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ABSTRACT 

Previous researchers found that the most important accident causation factor was the driver’s 

abnormal driving status, which was associated with driving volatility. And the driving volatility 

can be traced from the trajectories of the vehicles that were embedded in the BSMs. Based on 

these findings, we developed an automatic safety diagnosis system for the connected vehicle 

environment (ASDSCE), a real-time near crash warning tool with a multi-dimensional cloud-

based driving anomaly detection (DAD) model and a conflict identification model (CIM) on the 

individual level specifically configured for BSMs. The architecture of the proposed system is 

composed of two components: one is in the cloud who collects and stores BSMs of the CVs and 

determines in batch mode the thresholds of each vehicle; the other is in the in-vehicle 

subsystem which determines the driving anomalies and detect conflicts. A near crash will be 

warranted when the traffic situation satisfies both of the following two conditions: (a) a conflict 

is identified and, (b) at least one of the drivers that is involved in the conflict is in abnormal 

driving status. 

The ASDSCE contains the following features: focusing on detecting abnormal drivers instead of 

normal drivers; using the trajectory data embedded in the BSM to study driving volatility; 

implementing on the individual drivers instead of the aggregate level; and reducing the model 

training time in order to leave sufficient time to the involved drivers to perform successful 

evasive actions. The presented computational pipeline of ASDSCE includes raw data collection, 

data preprocessing, data analysis, data communication and warning message generation. 

ASDSCE is built with Python on Visual Studio 2019 using the BSMs from the CV pilot studies and 

evaluated using the SHRP2 naturalistic driving study crash data. 

Keywords: 

driving status, abnormal detection, BSM, conflict, safety 
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EXECUTIVE SUMMARY 

The purpose of this project is to construct a computational pipeline to identify near-crash 

events using basic safety messages (BSMs) in the connected vehicle (CV) environment and 

generate near-crash warnings to the driver. 

We define near crash as a situation that satisfies both of the following two conditions: (a) a 

conflict is identified and, (b) at least one of the drivers involved in the conflict is in abnormal 

driving status. We built an automatic safety diagnosis system in the connected vehicle 

environment with Python on Visual Studio 2019 using the BSM data from the CV pilot studies 

and evaluated with the SHRP2 naturalistic driving study crash data. Our system is composed of   

a multi-dimensional driving anomaly detection model and a conflict identification model on the 

individual level using only the BSM data. 

Our system can be used as a real-time near crash warning tool in the CV environment. The 

significance of our system lies in its special data source. Because the data source is solely the 

BSMs, our system can serve as an additional collision warning tool which may supplement the 

current popular advanced driver assistance systems that rely on the data collected by the 

sensors on the ego vehicle. With our system, traffic safety can be hoped to be significantly 

improved because the collision warning can be triggered from another vehicle other than the 

ego vehicle itself. 

In addition, our system provides a way to reuse the BSMs. Due to the tremendous volume and 

complexity, it is not realistic to store all the BSMs generated in the CV environment into the 

data center. This research built a practical way to extract from BSMs the thresholds of the key 

performance indicators of each vehicle and only store these thresholds and the BSMs over a 

short period of time for traffic safety analyses. Therefore, the BSM storing problem can be 

mitigated. 

This study combines the CV, traffic conflict technology and big data technology together. The 

designed system can be used as a real-time near-crash warning tool in the CV environment. It 

can help to improve the safety of connected vehicles in driving and increase the market 

penetration of connected and autonomous vehicles (CAVs). 

Future work includes pilot studies to generate more data sets and further validate the current 

system and upgrading the model from sequential processing to parallel processing to reliably 

ensure real-time safety analysis and processing. 

ix 
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1.0 INTRODUCTION 
Crashes are a major cause of traffic congestion and reducing crashes is a prominent task 

for congestion mitigation. As human factors contribute to more than 90% traffic 

crashes, abnormal driving behavior has been intensively studied to improve traffic 

safety. In the connected vehicle (CV) environment, Basic Safety Messages (BSMs) 

transmitted between CVs. A driver’s behavior can be reflected by the vehicle’s 

trajectories which are embedded in the BSMs. If a driver’s abnormal driving behavior 

can be somehow detected, a potential crash can be avoided. Based on this reasoning, 

this project aims to utilize the BSMs to construct a near-crash warning system. 

1.1 Objective 
The objective of this project is to construct a computational pipeline to identify near-

crash events using basic safety messages (BSMs) in the connected vehicle (CV) 

environment and generate near-crash warnings to the driver. 

1.2 Scope 
The computational pipeline is an automatic safety diagnosis system in the CV 

environment (ASDSCE). The ASDSCE consists of the traffic management center (TMC), all 

the CVs under its surveillance, and the datapath between them. The concept of the 

ASDSCE is illustrated in Figure 1. 

The system in the cloud stores the historical BSMs of all the CVs under its surveillance, 

operates a continuous threshold calculation using the historical BSMs, and maintains a 

flag list of the current abnormal CVs. The historical BSMs are of a certain time period, 

say a month, calibrated according to the local conditions. The in-vehicle subsystem is 

equipped in all the CVs. It is composed of an on-board unit (OBU) and a computer. The 

two-way datapath is composed of the CV environment with the BSMs, including V2I and 

V2V, and the backhaul system. It transmits the information between the CVs, the 

roadside units (RDUs) and the TMC. The whole system configuration is illustrated in  

Figure 2. 

The process of the in-vehicle subsystem is illustrated in Figure 3. Once the engine of a 

CV starts, the OBU starts to receive streams of information from the cloud and the 

nearby CVs. This information will be passed to the in-vehicle computer. The computer 

runs the abnormal driving status detection model using the ego BSMs and the 

thresholds received from the cloud to determine the status of the ego vehicle. If the ego 

vehicle is detected abnormal, the ego vehicle will be flagged, and the flag information 

will be uploaded to the cloud through the datapath. The joined efforts between the 

cloud and the CV complete the so-called task: Driving Anomaly Detection (DAD). If any 

abnormal driving status is found in the ego and other nearby CVs, the in-vehicle 

computer will run the Conflict Identification Model (CIM) of the corresponding conflict 

10 
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scenario to identify conflicts. If any conflict is identified, a collision warning will be 

issued. 

The datapath is not within the study scope of this project. The datapath involves the 

vehicle cloud which is an open research problem and is one of the major challenges of 

the CV. 

Cloud 

FIGURE 1. THE CONCEPT OF THE ASDSCE. 

The proposed system uses solely raw BSMs in the CV environment, determines if the 

driver is in the abnormal driving status, and generate warnings when a conflict is 

identified. Here we define the near crash in a new way. A near crash needs to meet both 

of the following two conditions: first, at least one of the vehicles in a driver-vehicle unit 

(DVU) pair is in abnormal driving condition, and second a conflict is present. This project 

focuses on two tasks: task one is to perform Driving Anomaly Detection (DAD) with joint 

efforts from the cloud and the in-vehicle subsystem, in which the CVs with abnormal 

status are identified; task two is to perform Conflict Identification (CI) which is carried 

out the in-vehicle subsystem. 

11 
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FIGURE 2. THE PROCESS OF ASDSCE. 
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FIGURE 3. THE IN-VEHICLE SUBSYSTEM. 
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2.0 LITERATURE REVIEW 
More than six million crashes resulting in more than 30 thousand fatalities and two 

million injuries have been reported annually on U.S. highways and streets (NHTSA, 2021; 

NCS, 2021). Due to enormous societal impact, highway safety has long been intensively 

studied. The mainstream traffic safety studies are crash record based, whose major 

tools are statistical models, and the direct measures are crash frequency and crash 

severity (Tarko, 2018). However, the further advancing of this approach is encumbered 

because of the following situations: (a) the necessity of waiting for crashes to happen, 

which is the most undesirable defect of this approach (Tarko, 2005); (b) crash data were 

not strictly accurate: crashes tend to be under reported and the rules of reporting vary, 

which may bias data sampling and mislead the statistic models (Wang, 2010; Han, 

2009); (c) incomplete information: information in the circumstances preceding the 

recorded crash is seldom available; (d) problems in transfer: the related statistic models 

are site specific and local calibration is needed for transfer and some models might not 

be transferable (Wasconcelos, 2014). Nevertheless, the traffic conflict technique (TCT), a 

simulation-based approach, was proposed in late 1960s to measure the crash potential 

from the traffic kinematic characteristics instead of crash records. Having withstood 

considerate studies on its reliability and validity, TCT was gradually accepted by the 

safety community as a surrogate method of proactive safety analysis (Zheng, 2014; 

Chin,1997). 

The key concept of TCT is conflict, which was first proposed by Perkins and Harris as 

“any potential accident situation” including evasive actions of drivers and traffic 
violations (Per-kins1968traffic). The definition of conflict experienced many years of 

discussion and settled down as “an observable situation in which two or more road 

users approach each other in space and time to such an extent that there is a risk of 

collision if their movements remained unchanged” (Amundsen, 1977). The TCT 

overcomes the aforementioned disadvantages of the crash data-based safety study 

approaches and was utilized in numerous traffic studies. The earliest attempts can be 

traced back to 1976 in Cooper's simulation study of a T-junction (Cooper, 1976), 

followed by a good number of studies investigating the traffic conflict profiles, involving 

the total number of conflicts and the number of vehicles that encountered conflicts 

during simulation, on various road configurations (Archer,2005; Huguenin, 2005; 

Saccomanno, 2008). Meanwhile a good number of safety performance indicators of TCT, 

referred to as surrogate safety measures (SSMs), were developed. The SSMs can be 

categorized into temporal based, such as TTC and post-encroachment time (PET); 

distance based, such as proportion of stopping distance (PSD); deceleration based, such 

as deceleration rate to avoid a crash (DRAC); and other indicators, such as crash index 

(CI) and margin to collision (MTC) etc. Review of the SSMs can be found in the literature 

(Zheng,2014; Mahmud,2017; Chin, 1997). 

14 
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However, there are also issues in TCT. For example, the definition of conflict was 

complained to be too simple and unrealistic to describe traffic behaviors (Saunier, 2006; 

Hidas, 2005 modelling). It was also complained about ambiguity because the cutoff 

boundary between a conflict and a non-conflict situation is indistinct (Mahmud, 2017). 

Besides, many surrogate measures were developed but no consensus has been reached 

on what is the most preferable measure (tageld-in2017comparison). Moreover, the 

number of conflicts to an equivalent collision was found in-consistent and contextual 

with very high variation (Fazio, 1993; Hidas, 2005). These issues caused difficulty in 

implementing SSMs as indirect measures for the safety study in practice. 

Nevertheless, SSMs found their uses as a post-processor for safety evaluation in 

microscopic simulation models. In 2008 the Federal Highway Administration (FHWA) 

released the surrogate safety assessment model (SSAM) using the simulation data, 

including the trajectories of the simulated vehicles. SSAM uses combined TTC and PET to 

detect conflicts according to specific configuration of traffic. For example, in a car-

following scenario, a conflict would not be war-ranted when a TTC reached the 

threshold while the PET did not due to evasive maneuver; but in a head-on scenario, TTC 

reaching the threshold alone can warrant a conflict. The process of conflict 

determination of SSAM indicated that conflict was not a stationary term to be defined, 

but a user defined situation. In SSAM, the threshold of TTC was user defined but 

recommended to be 1.5 seconds for the values above it was not generally considered 

“severe” in a traditional field conflict study (Sayed, 1994; Gettman, 2008; Das, 2020). 

PET was defined as the time differential between the time the leading vehicle occupied 

a location and when the trailing vehicle arrived. The threshold value of PET was also 

user defined and needed calibration. PET threshold determination for heterogeneous 

traffic scenario is an open research problem (paul2020post). SSAM can be used as a 

safety evaluation add-on module of the microscopic simulation models such as VISSIM 

(Fellendorf, 2010) Paramics (Cameron, 1996) and CORSIM (Halati, 1997). Many studies 

used SSAM to identify traffic conflicts, as SSAM is based on the SSMs of TTC and PET. 

TTC and PET became the most used SSMs (Alrajie, 2015). 

Although SSAM is powerful in determining many safety features, using SSAM directly in 

the real world of the CV environment might cause some problems. For example, SSAM 

has its own module for driving abnormal detection by calculating the probability of 

collision using the trajectories, which needs at least five seconds to collect the data on 

the scene and train the model be-fore analyzing the driving status. Whereas the CV 

environment cannot afford the five seconds to perform this task of training the model 

on the scene. As in the CV environment, the effective range of BSMs is as short as 300 

meters, in the case that two CVs are 300 meters apart and both are running at the 

speed of 50mph (22.352 m/s) in the opposite direction, TTC is 6.7 seconds. If counting 

from the moment of receiving the first BSM from the vehicle of 300 meters away, after 

five seconds consumed by the model training process, there would be only 1.7 seconds 
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left, but the driver needs 2.5 seconds to perceive the danger and takes actions. Similar 

problems also exist in the car-following scenario when the leading vehicle brakes 

sharply, which happens when the driver is under abnormal driving status. Therefore, 

there is a need to reduce the model training time in order to leave sufficient time to the 

involved vehicles to perform successful evasive actions. 

Other than in stimulation models, TCT was also widely utilized in automobile industry on 

Advanced Driver Assistance Systems (ADAS), such as adaptive cruise control (ACC). 

While ACC is expected to reduce rear-end collisions caused by driver’s error, it cannot 

completely replace driver’s braking. Even equipped with ACC, a vehicle still needs the 

advanced real-time safety warnings (Bose, 2003). Therefore, collision 

warning/avoidance, such as lane departure warning (LDW), forward collision warning 

(FCW), pedestrian detection (PD), and automatic emergency braking (AEB) are installed 

in high-end cars and AVs and will be installed in low-end vehicles as well in the near 

future (Hu, 2020; Wang, 2011). In addition, emergency steering assistance (ESA) is 

receiving increasing research attention for it can help evade from a collision that is 

unavoidable by AEB alone (Eckert, 2011; He, 2019). For ADAS, TTC was the most widely 

used SSM because of its simplicity and applicability (Van, 1993; Farah, 2009; Qu, 2014; 

Qu, 2014; Meng, 2012; Jin, 2011; Li, 2017). In the area of ADAS, the concept of conflict is 

not popular because conflict is a concept that is too relax. A typical equivalent conflict -

to-crash rate is at million level (Fazio, 1993). If the collision warnings were based on 

conflicts, there would be too many false alarms. Therefore, a concept of near crash was 

used in ADAS to describe a situation of potential crash when a warning is needed. 

Near crash, also called near miss, was first formalized by McFarland and Moseley as the 

“emergency situation or critical incidents which could easily have led to a crash” 

(Williams, 1981). Hanowski et al., defined near crash as any circumstance that requires 

a rapid, evasive maneuver by the subject vehicle, or any other vehicle, pedestrian, 

cyclist, or animal to avoid a crash. And a rapid, evasive maneuver is defined as a 

steering, braking, accelerating, or any combination of control inputs that approach the 

limits of the vehicle capabilities (Hanowski, 2006). To be more descriptive, the measure 

of scale for criticality assessment (SCA) was developed to clarify how close a near crash 

is to a collision. Based on TTCs, SCA classifies the traffic situations to groups of 

imperceptible, harmless, unpleasant, dangerous, and uncontrollable (Sieber, 2016). 

The data for ADAS are mostly collected from the in-vehicle sensors such as radar, Linda, 

camera, speed sensor, and throttle position sensor etc. During the process, data fusion 

and image processing techniques were utilized to extract the trajectories of the nearby 

vehicles from the collected images. Currently data collection of the of nearby vehicles 

relies on the in-vehicle sensors. This posts a safety issue in the cases when the sensors 

all break down and therefore additional information from other channels are necessary. 

And there are other channels ready in deployment. As known by all, autonomous 
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vehicle (AV) is expected to be the ultimate solution to future transportation (Wang, 

2020). And “The full benefits of vehicle automation can be achieved only through 

connectivity” (USDOT, 2020). The ITS Joint Program Office of United States Department 

of Transportation (US DOT) is already moving forward with research on joining 

connected vehicle (CV) to AV. 

BSM is a class of SPMD data, which is a part of the connected vehicle (CV) program. BSM 

is the basic application known as the “Here I Am” data message. The format of BSM is 

defined by Society of Automotive Engineers J2735: The Dedicated Short-Range 

Communications (DSRC) Message Set Dictionary. BSMs are broadcast from the in-

vehicle device at the dedicated bound of 5.9 GHz spectrum at the query of 10 Hz to 

surrounding (maximum 300 miters) vehicles (Henclewood, 2014). A BSM is composed of 

two parts: part one is the main part of the message, which includes information such as 

the vehicle ID, epoch time, GPS location, speed, acceleration, yaw rate, and associated 

accuracy measurements; part two provide supplementary information. BSMs are overall 

regarded as snapshot for safety data and not be reused or stored. Unique research was 

found to try to reuse BSMs for an In-vehicle computing system (Benaissa, 2020). 

As a major initiative of US DOT, the CV technology enables safe, interoperable 

networked wireless communications among vehicles, the infrastructure, and 

passengers’ personal communications devices. The BSM data generated in the CV 

operation are massive in amount and become an innovative data source for traffic 

safety community and thus opened the door for the research topics on traffic safety 

that should have been carried out yet had not been done because of lack of data, in 

which a fundamental one is the driving behavior regime analysis. While the availability 

of big data provides opportunities for data driven modeling and analysis on safety data, 

it also calls for the effective data collecting, storage and quarrying. Once the CV project 

is brought about, up to 200GB/second data will be typically generated for a traffic 

management center (TMC). Due to the massive volume, it is not realistic to store all the 

BSMs, but only the most relevant information that is extracted from the raw data will be 

stored. This research is proposed to explore what information of BSMs need to be kept, 

how to extract it and how to process it for the real-time safety diagnosing. 

Another issue of ADAS is related to the focus of the warning criteria. From the 

systematical viewpoint the driving system is composed of drivers, vehicles, roads and 

environment. A crash is the result of a serial of malfunctions of the driving components 

as shown in Figure 4. Research shows that human factors contribute more than 90% 

crashes, as shown in Figure 5 (Treat, 1979; Singh, 2015; Dingus, 2016). As most crashes 

are due to the drivers who are in abnormal driving status, the safety study should focus 

on the abnormal driving status instead of the normal drivers. But the reality is, in 

developing the criteria for ADAS conflict detection, although many safety features were 

addressed, such as the types of vehicles involved, friction, and lighting conditions, no 
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driving status of the driver was considered. The driver responses differently when 

he/she is under abnormal driving status. For example, the perception and reaction time 

of drivers under influence (DUI) is longer than those who are under normal status, and 

the action of a DUI is unpredictable. If focus is put on the normal or average drivers, the 

warning criteria would not be able to represent the abnormal drivers. Therefore, ab-

normal driving status needs to be a focus of ADAS and additional conflict or near crash 

detection criteria needs to be established especially for abnormal drivers. And real-time 

driving anomaly detection (DAD) in the CV environment to issue real-time near crash 

waring is imperative and an active research problem. 

FIGURE 4.THE DYNAMICS OF CRASH CAUSATION (REASON1990). 

To define driving anomaly (DA) is an open research problem.  Currently, there are three 

approaches: first, from the common sense, abnormal driving behaviors include driving 

under the influence (DUI), driving with distraction, aggressiveness, and drowsiness 

because these behaviors will likely cause crashes. So traditionally DA was defined as a 

situation in which the driver is not concentrating on driving (Miyaji, 2008); Second, from 

statistics of the majority drivers:  as crashes are rare events, complying with the majority 

in driving maneuver is considered safe and normal. Hence DA can be defined as 
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deviating from the statistical majority; Third, from the statistics of the individual driving 

behavior: as driving behaviors differ substantially between individuals and everyone has 

one’s own driving patterns such as the way hitting the gas and brake pedals, wheel 

steering, and in the distance they keep when following a vehicle (Fancher, 1998; 

Igarashi, 2004), a driver might drive years to have a crash, so not complying with one’s 

own driving pattern can also be considered as DA.  In the occasions of DA, which 

indicates that the driver is not in the best mode and cannot judge if the driving status is 

normal, a safety alarm will be helpful to avoid a penitential crash. 

FIGURE 5. THE PRESENCE OF ACCIDENT CAUSATION FACTORS (TREAT1979). 

According to the definitions of DAD, the direct approach is to monitor the driver’s 

exhalation, facial and body movements using in-vehicle alcohol sensors and/or cameras 

and analyze the images using computer vision for DAD. The drawbacks of this approach 

are the cost of computation in deep learning and high-end cameras, the privacy issue, 

and its limitation from being freely broadcast at real-time (Janai, 2017). 

An indirect approach is to use social economic data to categorize risky drivers or use 

trajectory data which are the results from the driving maneuver. Social-economic 

factors are assumed to have impacts on driving behavior in a psychological way (Boyle, 
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2007). Age, gender and income level etc. were widely used because they are found 

statistically correlated with the number of crashes and these measurements are easily 

available. This method was widely utilized by automobile manufacturers and insurance 

companies to identify risky drivers since 1968 (Ayuso, 2019).  For example, pay-as-you-

drive insurance systems calculate premiums according to how risky the insured driver is. 

The riskiness factors used include driven miles, time of day, speed, and how accident-

prone the often-visited places are. "Aggressive driving” is a term used by the National 

Highway Traffic Safety Administration (NHTSA) to classify “driving actions that markedly 

exceed the norms of safe driving behavior and that directly affect other road users by 

placing them in unnecessary danger” (Richard, 2018). However, a theoretical definition 

for aggressive driving "has been proven challenging to arrive at a consensus" (Richard, 

2018). In case of the non-administrative research, “driving volatility” was proposed to 

replace "driving aggressive" as a measure of the instantaneous driving decisions (Wang, 

2015). The transition of the nomenclature opened the horizon of approaches of using 

only the data of vehicle trajectory to describe the driver’s behavior. 

In traffic safety, vehicular trajectory data were studied as the footprints of driving 

behaviors to identify DA and give warnings when abnormal events warrant a warning 

flag. The vehicular trajectory data contain detailed information on microscopic 

phenomena. Embedded in the trajectories, the speed, acceleration (Lajunen, 1997), jerk 

(Ericsson, 2000) were mostly selected as key performance indicators (KPIs) to measure 

driving volatility. Speeding is an aggressive behavior and very common among drivers 

but directly using speed as a KPI for DAD is naïve because speed is contextual to speed 

limits (Ellison, 2010). A simple solution is to use higher maximum speeds, which are 

associated with drivers who have more accident records (Lajunen, 1997). Another 

solution is to use acceleration which is also found associated with risky drivers. The 

change of acceleration with respect to the speed (Langari, 2005) and with respect to the 

time (Murphey et al., 2009) (also called the vehicle jerk) were also used to classify 

drivers driving behavior. The cut-off values for abnormal acceleration were studied, for 

example, 1.47 m/s2 as the threshold for aggressive acceleration and 2.28 m/s2 for 

extremely aggressive (Kim, 2013), and another study set the range of 0.85 to 1.10 m/s2 

as aggressive acceleration (De,2000). So far, no consensus threshold has been reached 

because it is contextual sensitive (Wang, 2015). Meanwhile, accelerations were found to 

vary with speeds and accelerations on different directions cannot change together, the 

thresholds for longitudinal and lateral accelerations of various speed bins were set to be 

the multivariate KPIs (Liu, 2014; Liu, 2016). This rule-based method has the advantages 

of simplicity and efficiency (Martinez, 2017) while its disadvantage is it cannot address 

the different driving patterns of individuals. 

The next improvement would be analyzing BSMs at the individual-level, which is the 

approach we employ in this project. This research is aimed to construct such a system 
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using the trajectory data embedded in BSMs to identity near crash to generate potential 

collision warning. 

3.0 PROBLEM STATEMENT 

In retrospection on the literature, traffic safety is facing a leapfrogging development. As 

the transportation system is evaluating toward ITS and CAV, the traditional safety 

statistical models can no longer bear the requirement to be the mainstream method. 

Until the full automation is achieved, as abnormal human behavior is a major causation 

factor of crashes, abnormal driving behavior will still be a focus of traffic safety. Each 

driver has the won driving pattern; today’s computation capability allows modeling the 

driving behavior at individual level. From the technology of ADAS, synthetizing TCT to 

the CV environment to form digital twins is a promising approach. 

However, there are salient shortcomings of adopting TCT and its key concept-- conflict: 

firstly, conflict is a loose measure, and the warnings can be triggered too often and 

result in too many false alarms; secondly, as the current ADASs use the data collected 

on the scene, the identification of abnormal human behavior is not prompt enough. 

From the geniture of the crash, psychological precursors of abnormal status already 

exist before the crash scene. It is possible to identify the abnormal status of the driver 

before the scene. Research have shown that the driving anomaly can be traced from the 

vehicle trajectories, which are embedded in the BSMs of the CV environment. 

With the growth of the market penetration rate, there will be massive BSMs, and it 

would be unpractical to store all of them in data centers. It is imperative to find a way to 

extract and store the valuable and storable information from the BSMs before they 

perish. 

Based on the background, we propose an automatic safety diagnosis system in the CV 

environment (ASDSCE). The ASDSCE contains the following features: 

a) Focus on detecting abnormal drivers instead of normal drivers, 

b) Use the trajectory data embedded in BSM to study driving volatility, 

c) On the individual driver level instead of the aggregate level, and 

d) Reduce the model training time in order to leave sufficient time to the involved 

drivers to perform successful evasive actions. 
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4.0 DATA DESCRIPTION 
4.1 BSM Data 
The basic safety message (BSM) data were the working data of our project. BSM is a 

basic application of CV program known as the “Here I Am” data message. BSMs are 

generated in the on-board-devices (OBDs) that were specifically designed for CVs. In the 

air, the BSMs are broadcasted at the dedicated bound of 5.9 GHz spectrum at the 

frequency of 10 Hz (Henclewood, 2014) and can be received by the nearby CVs and 

roadside units (RSU). The effective transmitting distances of BSMs are ranged from 300 

meters to 1000 meters. The format of a BSM is defined by the Society of Automotive 

Engineers J2735: The Dedicated Short-Range Communications (DSRC) Message Set 

Dictionary. A typical BSM is composed of two parts: part one is the main part of the 

message, including the vehicle ID, epoch time, GPS location, speed, acceleration, yaw 

rate, and associated accuracy measurements; part two provides supplementary 

information. BSMs were considered disposable and not reused. 

The Safety Pilot Model Deployment (SPMD) project is a part of the CV program. It was a 

research initiative on CVs and collected and stored the BSM data during the tests. The 

SPMD data are available on the Intelligent Transportation System (ITS) DataHub 

(its.dot.gov/data/). The working data used in this project are the field BSM data from a 

SPMD test conducted in Ann Arbor, Michigan, in October 2012. A Comma Separated 

Values (CSV) BsmP1 file of a size of 67GB stores all the BSMs generated by the 1527 test 

vehicles in the test. The original downloaded data file had 19 attributes and over 500 

million records. During our data pre-processing, the irrelevant attributes were filtered 

out and the resulted data file has 11 attributes including 𝐷𝑒𝑣𝐼𝐷 for the vehicle ID, 

𝐸𝑝𝑜𝑐ℎ𝑇 for timestamp and attributes for latitude, longitude, accelerations, heading 

and yaw-rate. The descriptions of the attributes are shown in Table 1. 

TABLE 1 ATTRIBUTE LIST OF THE BSM DATA 

Attributes Name Type Units Description 

DevID Integer None Test vehicle ID assigned by the CV 
program 

EpochT Integer seconds Epoch time, the number of seconds since 
the January 1 of 1970 Greenwich Mean 
Time (GMT) 

Latitude Float Degrees Current latitude of the test vehicle 

Longitude Float Degrees Current longitude of the test vehicle 

Elevation Float Meters Current elevation of test vehicle 
according to GPS 

Speed Real m/sec Test vehicle speed 

Heading Real Degrees Test vehicle heading/direction 

Ax Real m/sec^2 Longitudinal acceleration 

Ay Real m/sec^2 Lateral acceleration 

Az Real m/sec^2 Vertical acceleration 

Yawrate Real Deg/sec Vehicle yaw rate 
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4.2 SHRP2 Data 
The crash data from Naturalistic Driving Study (NDS) for the second Strategic Highway 

Research Program (SHRP 2) were our model evaluation data. NDS is a research program 

to address the impact of driver performance and behavior in traffic safety. The Virginia 

Tech Transportation Institute (VTTI) serves as the technical coordination and study 

design contractor for the NDS and maintains the InSight Data Access Website 

(Jafari2017). 

In the InSight Data Access Website, the Event Detail Table section there lists 41,530 

records of crashes and near crashes. Each record is posted with detailed information of 

the event including a video of up to 25 seconds before the event, event detail data and 

the final narrative. There are readily fetched data sets that had been used by previous 

studies and can be obtained by other institutes with no cost. However, although our 

required data can be retrieved from the crashes there was no used data set could meet 

our requirement. 

For acquiring NDS data, a data use license with VTTI and the proof of Institutional 

Review Board (IRB) approval are required. The data users also need to take the VTTI 

training in the protection of human subjects. We contacted VTTI with a data description 

and initiated the data purchase process. The data description is shown as the following: 

• Participant driver is at fault; 

• Police reportable or most severe crash severity; 

• Event nature of conflict with another vehicle (e.g. exclude run off road or tire 

strikes); 

• Incident type excludes backing or rear-end struck scenarios; 

• Crash occurred at least 60 days after participant’s entry into study; 

• Lowest volume and traffic movement roadways excluded (i.e., functional class 

5). 

We screened all the crashes of SHRP2 and hand-picked 47 crash events which meet the 

data description, and the driver was under abnormal driving status, such as driving 

under influence, driver fatigue, or driving while texting on the phone. We settled down 

on purchasing the data set that includes 47 crashes and 60-day time series data before 

the crash day. According to data requirement, from the SHRP 2 data collection system, a 

total of 12500 trips from 46 events were retrieved (one of the crash events did not have 

trip time information). As crashes are rare invent and the instrumented vehicles are 

limited in number, they do not have crashes in which both of the vehicles involved in a 

crash were instrumented. The crashes happened between an instrumented vehicle and 

a stationary object, such as a tree, fence or roadway curbs. 
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In order to protect potentially identifying information (PII), however, there were some 

restrictions. For example, the GPS coordinates for crash trips, the exact time, and any 

information can trace the driver’s identification cannot be released. The attributes of 

the time series data include vtti_timestamp, vtti.file_id, vtti.accel_x, vtti.accel_y, 

vtti.heading_gps, vtti.speed_gps vtti.speed_network,, x_position, y_position, as shown 

in Table 2. 

TABLE 2. ATTRIBUTE LIST OF THE SHRP2 DATA 

Attributes Name Type Units Description 
vtti_timestamp Integer millisecond The time steps from the released point of the trip. 
vtti.file_id Integer / The identification number of the trip  file. 
vtti.accel_x float g Vehicle acceleration in the longitudinal direction versus time. 
vtti.accel_y float g Vehicle acceleration in the lateral direction versus time. 
vtti.heading_gps float g Compass heading of vehicle from GPS. 

vtti.speed_gps float km/h Vehicle speed from GPS. 
vtti.speed_network float km/h Vehicle speed indicated on speedometer collected from network. 
x_position float meter The relative X coordinate to an point (fixed in one trip). 
y_position float meter The relative Y coordinate to an point (fixed in one trip). 

In order to use the SHRP2 data in the DAD model, the number of days prior to crash need to be 

identified. Although the query to fetch the data used the drivers that included to the program 

60 days before the crash, the maximum days 

5.0 TASK 1: DRIVING ANOMALY DETECTION (DAD) MODEL 
5.1 Introduction of the DAD Model 
We propose a multi-dimensional driving anomaly detection (DAD) system on the 

individual level specifically configured for BSMs. This DAD model is a crucial component 

of our automatic safety diagnosing system in the CV environment (ASDSCE). 

Anomaly detection is an interdisciplinary problem, and it has been applied in many 

domains such as finance for credit card fraud detection, healthcare for magnetic 

resonance imaging (MRI) diagnosis on malignant tumors (Wilson, 1934; Sundt, 1974), 

astronomy for damage detection on space craft, and cybersecurity for intrusion 

detection (Chandola, 2009), signal intrusion in the CV environment (Rajbahadur, 2018), 

but no application was found in DAD using the BSM data. 

Traditionally most highway safety studies have relied on historical crash data and 

statistical models. Yet crash data possess the notorious deficiency in availability and 

quality because crashes are rare events. As an alternative, the traffic conflict technique 

(TCT) that measures the crash potential -- conflict, which is defined as “an observable 

situation in which two or more road users approach each other in space and time to 

such an extent that there is a risk of collision if their movements remained unchanged” -
- without having to wait for crashes to happen emerged in late 1960s. The non-crash 
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data approach based TCT was widely used because it makes safety analysis much less 

expensive, can be well connected to traffic simulation models and has good 

performance in countermeasure analysis. However, the disputes on TCT’s qualification 

for surrogate measures for crash data have never been resolved. Especially when the 

modern transportation development calls for advanced safety diagnosis, TCT appears 

not readily tuned for the new challenge. This research is proposed to integrate TCT 

measures into the near-crash identification process, and to demonstrate that TCT is a 

useful tool for safety diagnosis. 

Although the idea of autonomous vehicles (AVs) has been around for more than a 

century, and it has reached a point where it can begin to be offered to the public, AV is 

still not largely accepted. Safety is the major issue especially in obstacle detection 

because the information merely from the ego vehicle cannot guarantee 100 percent 

safety. However, this problem can be readily solved in the environment of CV through 

exchanging BSMs. The driving automation cannot be achieved without CV. While the 

private sector is moving quickly in the AV space, the USDOT will play a significant role in 

the deployment of AVs. By integrating CV with AV, we can improve the safety of our 

roads, expand our transportation capabilities, and greatly extend mobility options to 

everyone. 

Since abnormal driving behaviors are present in more than 90% of crashes, a conflict 

together with at least one driver in abnormal driving status can be a closer stage to a 

crash. The hypothesis of this research is: each driver has his/her own driving patterns of 

normal and aggressive/abnormal status, which can be identified by the patterns of the 

driver’s BSMs, such as abnormal acceleration rates. The patterns found in the historical 

BSMs will be recorded and updated by the traffic management centers. The real-time 

safety diagnosis is running non-stop comparing the incoming BSMs and the stored 

patterns of BSMs. Once the real-time/new pattern of a driver is categorized to be 

aggressive, and a conflict is also identified, a near-crash event will be identified. While 

real-time safety diagnosing is still an open area for research, this research is proposed to 

superimpose the missing modules and integrating BSM and TCT as part of the pipeline 

for automate safety diagnosing. 

Data science is a mash-up of different disciplines which can help decision makers shift 

from ad hoc analysis to an ongoing conversation with data, and its intuition-based 

essence helps finding out the hidden patterns of the data.  The outstanding 

achievement of data companies such as Google, Amazon, Facebook, Twitter, and 

LinkedIn manifestos the magic power of data science and makes other companies even 

academia interested in using data science for breakthroughs in their problems that 

traditional methods won’t offer. However, in the merging of data science into an 

established discipline, especially the stringent transportation engineering field, 

rejections and obstacles arise, which is not uncommon in the evolution history of the 
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human knowledge body. So, for the data scientists, it is important to be precautious of 

the natural tendency of overlooking the fundamentals of the field; meanwhile for the 

established discipline, it would be wise to keep an open mind while scrutinizing the 

data-driven applications coming into its field. Benchmarked with the CV and AV, modern 

intelligent transportation system (ITS) transportation is moving toward fully automation. 

Instrumented with digital devices producing big data, ITS brings both challenges and 

opportunities to technological development and application innovation. For the traffic 

safety community, the challenge lies in keeping up with the modern driving 

environment and the tools from fast developing areas such as artificial intelligence, and 

the opportunity in reshuffling the safety analysis methods and guidelines. 

The proposed DAD system is a component of our computational pipeline to identify 

near-crash events. The designed functionality of the DAD is to take recent historical big 

BSM data to learn the thresholds to differentiate the normal and abnormal driving 

status, and with the thresholds to identify the anomalies using the real-time BSM data. 

5.2 Methodology of the DAD Model 
The methodology of our DAD is determined by the nature of the working data, the 

nature of the anomaly, the availability of the labels and the constraints and 

requirements of the traffic safety domain. 

The proposed DAD system is divided to two parts: in the cloud and in the in-vehicle 

subsystem. In the TMC, the system collects and stores BSMs of the vehicles it covers for 

a certain period of time, say a month, and determines in batch mode the thresholds of 

the selected key performance indicators (KPIs) representing the normal status for each 

vehicle, and broadcast the thresholds through BSMs; in the in-vehicle device, as new 

BSMs streaming in, the device compares the new values of each KPI with the received 

thresholds and determines if it is an outlier. The outliers will be analyzed to determine if 

the outliers combined deserve an anomaly event against that vehicle. Finally, the system 

will determine the impact factors to update thresholds according to the significances of 

the outliers. The whole process has five modules as follows (also illustrated in Figure 6): 

Module 1. Data Preprocessing and Selecting KPIs; Module 2: Learning What Is Normal; 

Module 3: Detecting Outliers; Module 4: Determine Abnormal Driving Event; Module 5: 

System Updating. 

5.2.1 Module 1: Selecting Key Performance Indicators (KPIs) 
The nature of the input data is key to DAD because it determines the techniques. 

By structure BSMs are discontinuous time series (TS) data, which is a type of 

sequence data where data instances are linearly ordered but have lots of not 

available (NA) records. BSMs are also spatial data because coordinates are 

included. TS data typically consist of two components: contextual attributes, 

which are used to determine the context for that instance, such as timestamps 
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and coordinates; and behavior attributes, such as speed and accelerations. Here 

if we treat timestamps as the contextual attribute and coordinates as behavior 

attribute, then BSM has high (almost infinitive) cardinality; If alternatively, we 

treat coordinates as the contextual attribute and time as the behavior attributes, 

then BSM will also has high cardinality; If we treat both time and coordinates as 

contextual attributes, then the number of contexts will be infinite. To make the 

problem solvable, we propose to treat time and space in different stages – as 

coordinates shows the environments, such as road conditions and traffic 

congestion etc. Hence in this project we focus on determining the driving status 

and ignore spatial coordinates. The environment impact will be handled by the 

Surrogate Safety Assessment Model (SSAM) to analyze the conflict. 

Having excluded the spatial component, the KPIs were determined based on the 

goals of making full use of the rest of BSM attributes. As driving behavior is 

complicated, we included multiple varieties since each KPI might have its own 

pattern. All we can have now are speed, acceleration, jerk, and yaw-rate. 

Conventionally the first step of TS analysis is to decompose TS data according to 

the context, in our case the context is the time. We did visualization of all the 

selected KPIs with respect to time, and no identifiable periodicity was observed. 

We also performed autocorrelation process, with no seasonality identified 

either. We also visualized the KPIs with respect to speed, and found they change 

with the speed, which is consistent with the literature findings. Figure 7 shows 

the relationship between acceleration and speed, which is in line with the 

previous studies that the accelerations have some special patterns with respect 

to speeds (Liu, 2014; Liu, 2016). 
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FIGURE 6. PROCESS OF THE PROPOSED DAD. 

As the KPIs of A𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑗𝑒𝑟𝑘 − 
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙, 𝑗𝑒𝑟𝑘 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 are found to co-exist with abnormal driving status 

(Lajunen, 1997; Ericsson, 2000; Langari, 2005; Murphey, 2009), we used speed as 

a context variable instead of time. As the yaw rate describes the rate of change 

of the heading angle and is directly related to the lateral acceleration, we did not 

include the heading and raw rate as a KPI. Since the cut-off values of the 

thresholds for normal vs. abnormal are contextually sensitive, and no consensus 

thresholds have been reached (Wang, 2015), we set up the thresholds as 

variables. 
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FIGURE 7.THE SCATTER PLOT OF ACCELERATIONS TO SPEEDS. 

The processing of the BSMs is illustrated as follows:  first, the csv file is converted 

to parquet format using the 𝐷𝑎𝑠𝑘 package in Python. This step reduces about 

40% query time. Then the file is split into smaller data files by the vehicle ID: 

𝐷𝑒𝑣𝐼𝐷. Subsets are created by 𝐷𝑒𝑣𝐼𝐷 and saved to 1527 small csv files. Since 

we are going to work on the individual level and we will always query by 𝐷𝑒𝑣𝐼𝐷, 

splitting big data into smaller ones drops query time from minutes to seconds. As 

the BSMs are generated at a frequency of 10 𝐻𝑧 , for each second there are 10 

instances. We group the instances by seconds and take the average and derive 

average BSMs for the second. The next step is to select KPIs from the attributes. 

After initial investigation and according to the literature review, we selected KPIs 

as: 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎l, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑗𝑒𝑟𝑘 − 
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙, 𝑗𝑒𝑟𝑘 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙. Jerk is calculated using the moving average of 

accelerations by second using the Pandas module of Python. The formulas for 

calculating jerks at longitudinal and lateral in the 𝑖𝑡ℎ row of the Pandas 

𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 are given in Equation (3-1) and (3-2). 
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𝑗𝑒𝑟𝑘𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑎𝑛𝑎𝑙[𝑖] 

acceleration𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙[𝑖] − 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛longitudinal[𝑖−1] 
= (3 − 1)

timestamp[i] − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑖 − 1] 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑟𝑎𝑙[𝑖] − 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑟𝑎𝑙[𝑖−1]
𝑗𝑒𝑟𝑘𝑙𝑎𝑡𝑒𝑟𝑎𝑙[𝑖] = (3 − 2)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑖] − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑖 − 1] 

Furthermore, we divide the KPIs to be positive and negative groups, e.g. 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙_𝑝𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒 and 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, because they represent different movements of the 

driver stepping on the gas or the brake and might have different patterns. 

Therefore, we have eight KPIs in total. 

5.2.2 Module 2: Learning What Is Normal 
Before detecting the anomaly, the system needs to learn what the “normal 

behaviors” look like. This is because the instances of crash are rare and obtaining 

labeled data of driving anomaly is prohibitively difficult while getting labels for 

normal behavior is much easier and less expensive. Nowadays in both research 

and practice, average thresholds at aggregate level are used. In our study we 

calculated the threshold at the individual level, resulting in a panel of thresholds 

for each driver. 

For each KPI, the values of “normal behavior” are determined in this module. As 

we have resampled the individual BSMs by taking the average of each 

parameter, we group the rows by speed bins. The speed bins of size of 1 mph are 

set up and instances by seconds are redistributed to the bins. As discussed 

previously, the driver who is complying with its historical driving pattern is 

considered normal and we assume the values of each sample bin are normally 

distributed. The mean and standard deviations of each KPI are calculated for 

each speed bin. Thus, the panel of what is normal for an individual driver is 

generated, which is the information that needs to be abstracted from historical 

BSMs. In our study we use one-month data of 1527 vehicles and the calculation 

for this module costs three hours when we use only one process thread on our 

workstation. In practice, when the number of vehicles gets huge, parallel 

computing needs to be applied. The duration of the data for storage is a trade-

off between the cost and the accuracy. The more the data stored the better the 

accuracy, but more expensive in storage and computation cost. The data panel 

of normal status of an individual vehicle is shown in Table . The rows are speed 

bins, the columns are the mean and standard deviation of the averages of 

positive and negative of 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 

𝑗𝑒𝑟𝑘_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 and 𝑗𝑒𝑟𝑘_𝑙𝑎𝑡𝑒𝑟𝑎𝑙. 
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TABLE 3. DATA PANEL EXTRACTED FROM AN VEHICLE (PARTIAL). 

Speed bin 5 6 7 8 

KPI Measure 

Acc_lon_p Mean 1.192235 1.337538 1.32516 1.398614 

Std 0.806321 0.839056 0.804345 0.804976 

Acc_lon_n Mean -1.04187 -1.14423 -1.1853 -1.20188 

Std 0.753567 0.74688 0.771699 0.786363 

Acc_lat_p Mean 0.069047 0.085095 0.096859 0.120503 

Std 0.431809 0.085095 0.096859 0.120503 

Acc_lat_n Mean -0.02688 -0.03648 -0.05113 -0.06153 

Std 0.040362 0.07236 0.132858 0.170901 

Jerk_lon_p Mean 0.824624 0.802729 0.692773 0.62276 

Std 0.696375 0.680028 0.612652 0.605413 

Jerk_lon_n Mean -0.42201 -0.46223 -0.39244 -0.40045 

Std 0.433433 0.487027 0.401976 0.395484 

Jerk_lat_p Mean 0.035219 0.050722 0.043935 0.054583 

Std 0.286576 0.237766 0.083867 0.110184 

Jerk_lat_n Mean -0.05251 -0.03598 -0.04478 -0.05237 

Std 0.582464 0.064078 0.084626 0.126077 

5.2.3 Module 3: Detecting Outliers 
Outliers or anomalies are data points that do not meet the condition of what is 

normal in Module 2. As we assume the BSMs are normally distributed, the data 

located in the 95% probability regions are considered normal and the other 

5% as outliers. From statistics, the cut-off value of 95% is two times of standard 

deviation away from the mean. Question might arise on our assumption: are the 

KPIs normally distributed? If a data set is normally distributed, the residual needs 
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to be random. The answer is no and but approximately yes. As shown in Figure 8, 

the 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 of 𝐼𝐷 6010 is not strictly normally distributed 

but close enough. Other scholars found it can be simulated with Negative 

Binomial distribution (Liu 2016), but we decide to take an approximation of 

normal distribution because we are solving an engineering problem, all we need 

to know is whether the vehicle has the potential to cause a crash, and we can 

use engineering alternatives to replace difficult mathematical problems. This 

philosophy is similar to our leaving the coordinates (environmental) impact from 

BSM to SSAM. 

FIGURE 8. Q-Q PLOT OF LONGITUDINAL ACCELERATION OF A SAMPLE VEHICLE. 

We set the regions of low probability to be 5 percentiles, with the values falling 

onto the range of  (𝑚𝑒𝑎𝑛 − 2 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑚𝑒𝑎𝑛 + 2 ∗ 
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛). The ranges of all KPIs at all the speed bins compose the 

thresholds. In our test runs there are many outliers detected. Since our goal is to 

minimize false-alarms, we are going to reduce the number of false-positives with 

the subsequent modules.  In our DAD system, this outlier detection module is 

processed in the in-vehicle device. The in-vehicle computer stores the up-to-date 

thresholds received from the TMC. When the vehicle starts, and the in-vehicle 

computer will start generating BSMs. The new BSMs will be processed to detect 

outliers. 
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5.2.4 Module 4: Determine Abnormal Driving Event 
A single outlier might not mean abnormal driving status, but multiple outliers in 

a short period of time signals anomaly: either the driver or the vehicle is not in 

good condition. In a DAD system, the outliers can be scored by the magnitude of 

deviation from the norm and/or duration of the outliers. In cases of comparing 

the impacts from different KPIs, a machine learning (ML) technique of 

normalization is commonly used. Considering it might introduce unnecessary 

uncertainties as we are not clear about the relationship between the 

comparative impacts of different KPIs, we decide not to use the magnitude of 

deviations. In the literature, five successive abnormal events of accelerations 

together warrant a safety alarm (Liu, 2016). If five successive outliers happen in a 

row of the same KPI, or more than two KPIs are outliers in the same second 

warrants an event of abnormal driving status. 

More research and calibration need to be done to make the initial state more 

reasonable. As our system is dealing with multiple stages of uncertainties on the 

driving status, normal driving status and abnormal driving status, and the output 

is an alarm for a possible crash, which is also uncertain, we are aiming at 

minimizing false alarms, but the system needs to be calibrated when used. Here 

we build the system and leave the users to adjust the values of the parameters 

according to the local conditions. 

5.2.5 Module 5: System Updating 
So far, our system is designed to update all the thresholds in batch mode 

periodically. When the data of the next month are collected, they will be 

processed by the system in the same way as described in this section. We 

mentioned the period to be one month simply because the only data we have 

covers a month’s period. However, a more advanced way of system updating is 

to apply auto-tuning. In DAD, auto-tuning adjusts the thresholds to provide an 

accurate baseline. After an anomaly is detected, the system needs to decide 

whether to use it to update what is normal. A driver might be in abnormal status 

today, for example DUI, and will be normal again the next day. In this case, no 

updating is needed. But there are cases that the driver changes his/her driving 

habits. For example, a near-sighted driver who starts to wear glasses and can see 

clearer than before might use a higher acceleration/deceleration rate. In the 

beginning, the system might treat it as abnormal, but if the anomaly persists 

then the system needs to gradually accept it and update to the new state. The 

tool to control how the anomalies are treated is the learning rate, which can 

adjust the trade-off between how fast the system learns and how adaptive it is. 

For example, the learning rate can be defined as 0.001 for the first day when the 

abnormal status is detected, and the corresponding threshold will change by 
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0.001 times, or almost no change happens since the rate is very small; if similar 

anomaly persists for 5 days in a row, the learning rate will be assigned a much 

bigger value, say 0.1. The ML algorithm of K-means is utilized to classify the 

abnormal status of the days. K-means is based on similarity of multidimensional 

variables. We will discuss auto-tuning in the Results and Discussion section. 

5.3 Evaluation of the DAD Model 
Evaluation on unsupervised anomaly detection is a constant challenge, so is the 

application of machine learning to practical engineering problems. Nevertheless, 

modeling driving status using BSMs of connected vehicles at the individual level is an 

unavoidable task for the automation of our traffic safety diagnosis system. In the model 

evaluation, the measurement of average precision is utilized, and the model is validated. 

Our model is a combination of machine learning (ML) and engineering modeling. As a 

data science technique, ML has become a hot topic in many domains since the deluge of 

big data, but when it comes to engineering, where accuracy and proving is emphasized, 

ML is not as successfully applied. One of the reasons is that ML is known as a “black 

box”, neither convincing nor easily assortative with domain knowledge. Through this 

research, we found it a practical way to build the ML model for engineering problem, 

basing on the domain knowledge, and use measures in the information system to 

validate the model using underlying assumptions. 

As our goal of building the DAD model is not to compete with other algorithms but to 

apply it in the real-world traffic safety engineering, in model evaluation, we evaluate the 

reasonableness of the model — whether the model can function as proposed. The 

research is based on the assumption that the driver is under abnormal driving status in 

an accident. So, the trajectory of the accident trip should have more outliers than a 

normal one. In our previous study, we found that the KPI data did not follow any 

statistical distribution strictly, but somehow close to the normal distribution. So, we 

assume they are normally distributed. In the model building, we set the inliers to be the 

ones that fall in the range of two times the standard deviation around the mean of each 

interval and consider the cases that is out of that range to be the outliers. Therefore, the 

95% of the instances should be normal, if the driving status is normal, but in the trip 

when the driver is under abnormal driving status, the outliers of the trajectory should be 

more than 5%. Hence, we set up the test as follows: select the accident trip files of all 

the drivers, if the number of anomaly cases detected is more than 5%, then the DAD 

model is valid. In the test, we calculated the average precision of each driver's testing 

file. 

The measure precision is the fraction of relevant instances among the retrieved 

instances and the average precision is a measure that combines recall and precision for 
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ranked retrieval results. The average precision is the mean of the precision scores after 

each relevant record is retrieved. Mathematically, the average precision is written as 

Equation (3-3) where 𝑟 is the rank of each relevant document, R is the total number of 

relevant records, and 𝑃@𝑟 is the precision of the top-r retrieved records (Zhang2009). 

∑𝑟 𝑝@𝑟 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 = (3 − 3)

𝑅 

The results of the test show that all the 42 drivers have been found to exhibit more than 

5% abnormal of the accident trips, which proves that the DAD model is valid, as shown 

in Figure 9. 

FIGURE 9. EVALUATION OF THE OUTLIER DETECTION MODEL. 

5.4 Sensitivity Analysis of the DAD Model 
In the domain of engineering, sensitivity analysis is a widely used tool in model 

evaluation. Parameter sensitivity analysis is usually performed in which a series of tests 

on the model with different parameter values to observe the dynamic behavior of the 

model responses to the parameter changes. And proper parameter values can be 

recommended through analyzing the patterns of the results. 
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Again, as our goal of building the DAD model is for real world application, the number of 

safety alarms need to be reasonable. In our tests, many abnormal instances were 

detected in a test file, from a few to thousands depending on the driver and trip 

duration. Too frequent alarms might annoy the driver and a single outlier might not 

mean abnormal driving status, but multiple outliers over a short period of time do signal 

anomaly. Therefore, we added Module five in our DAD model to cut down the 

occurrences of alarms. Sensitivity analysis is performed to generate the reasonable 

numbers of alarms. 

In our model, some parameters are defined as follows: 

𝑁𝑣 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑃𝐼𝑠 𝑏𝑒𝑖𝑛𝑔 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑒𝑐𝑜𝑛𝑑; 

𝑁𝑠 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑒𝑐𝑜𝑛𝑑𝑠; 

𝑁𝑠𝑡𝑑 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 

𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠; 

𝑁𝑑 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

An abnormal event (triggering an alarm) will be warranted if any of the following 

conditions is met: 

1. The number of KPIs being identified as outliers in the same second is larger or equal 

to 𝑁𝑣; 

2. Within 𝑁𝑠 more than one KPI are identified as an outlier in a row. 

In the sensitivity analysis, we test with various values of 𝑁𝑣 and 𝑁𝑠 to determine the 

best value by observing the model response. As aforementioned, we treat the threshold 

as a variable, here we use sensitivity analysis to investigate the proper value range. We 

are interested in how the model responds to the days prior to crash to calculate the 

thresholds. We also treat the number of days prior to the crash as a testing parameter. 

The parameter settings for sensitivity analysis are shown in Table . 

TABLE 4. PARAMETER SETTING FOR SENSITIVITY ANALYSIS. 

Parameter Test Value Initial 
Value 

𝑵𝒗 1,2,3,4,5,6,7,8 2 

𝑵𝒔 3,5,10,15,20,30 5 

𝑵𝒔𝒕𝒅 2,2.25,2.5,2.75,3 2 

𝑵𝒅 15,30,45,60 30 
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5.4.1 Sensitivity Analysis on 𝑁𝑣 
In our model, there are 8 KPIs: acceleration-longitudinal, acceleration-

lateral, jerk-longitudinal, jerk-lateral, each of which has positive and negative 

items. In sensitivity tests, we tested the 𝑁𝑣 value from 1 through 8. The 

model responses are shown in Figure 10 . With 𝑁𝑣 set to be 1 or 2, more 

than 15% of the instances of the trip seconds will be identified as alarms, 

which will result in too many alarms. Meanwhile the detailed recorded data 

show that in many cases, the acceleration and jerk at the same direction 

were identified as outliers at the same time, which indicated that the pair 

are correlated to some extent. So, we eliminated values 1 and 2. Figure 10 

also shows that when 𝑁𝑣 is more than 3, the curve becomes flat, which 

means the number of abnormal cases identified are very close. Therefore 

𝑁𝑣 was determined to be 3. 

FIGURE 10. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE NUMBER OF 

KPIS IS DETECTED AS ABNORMAL IN THE SAME SECOND. 

5.4.2. Sensitivity Analysis on 𝑁𝑠 
Figure 11 shows how the system responds to the various values of the number of 

successive seconds when a single KPI is found to be abnormal in a row. The value 

of 10 seconds is selected for 𝑁𝑠 because it is where the curve changes the slope 

at that point and the value of the ratio is close to 5%. 
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FIGURE 11. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE NUMBER OF SECONDS 

THAT ONE KPI SUCCESSIVELY DETECTED ABNORMAL. 

5.4.3. Sensitivity Analysis on 𝑁𝑠𝑡𝑑 
Figure 12 shows how the system responds to the different settings (the number 

of times of standard deviation away from the mean) to calculate the thresholds. 

It shows that the value of 2 and 2.5 did not result in significant changes. And 

from Figure 13, no alarms are generated for the testing file after the value of 

2.25, which violates the purpose of the model, which is to detect abnormal for 

all the potential crashes. We decided to use 2 because this is the widely used 

value and 2.25 did not make significant difference. 

FIGURE 12. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE TIMES OF STANDARD 

DEVIATION AWAY FROM THE MEAN. 
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FIGURE 13. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE TIMES OF STANDARD 

DEVIATION AWAY FROM THE MEAN. 

5.4.4. Sensitivity Analysis on 𝑁𝑑 
Figure 14 shows how the system responds to how many days the cloud saves 

the raw BSMs to calculate the thresholds. We assume that the cloud uses the 

batch mode to calculate the thresholds. The curve changes values within a small 

range, which means that system is not highly sensitive to the change of𝑁𝑑. We 

selected 30 days because it identifies the most anomaly events. In practice, this 

parameter is better to be determined by the number of vehicles covered by the 

cloud and the computational capacity of the server. Furthermore, the auto-

tuning is expected to replace the batch mode, then this parameter will no longer 

exist. 
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FIGURE 14. THE SYSTEM RESPONDING TO A STEP INCREASE IN NUMBER OF DAYS 

PRIOR CRASH TO CALCULATE THRESHOLD. 

5.5 Results and Discussion of the DAD Model 
The results from the proposed driving anomaly detection (DAD) model are the threshold 

panel of what is normal for an individual vehicle, which is the information that needs to 

be extracted from historical BSMs and stored in the TMC. In the threshold panel, the 

selected KPIs include 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑗𝑒𝑟𝑘 − 
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙, 𝑎𝑛𝑑 𝑗𝑒𝑟𝑘 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙. The mean and standard deviation of each KPI in 

each speed bin of a size of 1 mph are the major contents of the panel. 

Before model implementation, as our working data is a TS data, we performed standard 

TS data analysis with no periodicity identified. This is reasonable because the driving 

behavior is substantially complicated, and the majority of TS data do not have 

periodicity any way. Therefore, we conclude that the models for the TS data do not 

apply to BSMs. We implement our DAD model from scratch instead of using the existing 

machine learning models.   

After implementation of DAD, we performed model evaluation using the Average 

Precision method to evaluate our DAD model. The evaluation results show that our DAD 

model is valid. Then, sensitivity analysis was carried out to determine the recommended 

values for some model parameters. Table summarizes the results of the sensitivity 

analysis. 
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TABLE 5. DETERMINED PARAMETER VALUES. 

Parameter Determined Value 
𝑵𝒗 3 
𝑵_𝒔 10 

𝑵_𝒔𝒕𝒅 2 
𝑵_𝒅 30 

There are several limitations. First of all, human behavior is complicated, and the 

attempt of determining the behavior status based on the footprint of a vehicle can be 

inaccurate. Second, in scoring the outliers, we are not clear about the relationship of the 

comparative impacts of different KPIs. We keep whatever KPI that might have some 

impact instead of running the statistical testing to exclude those not statistically related 

KPIs. This is again because of the complication of human behavior, and we do not have 

the luxury of plenty of data and understanding of human mental processing.  And finally, 

we did not run the auto-tuning due to lack of data and the changing of driving habits 

might need time longer than one month. 

In this section, we described a DAD system that determines if the driver is in abnormal 

driving status according to the driving volatility using solely the BSM data. We explained 

the theoretical foundation, the mathematical model of the proposed DAD model and 

performed model implementation. The resulted threshold panels are what need to be 

extracted from the BSMs and need to be stored in the cloud for traffic safety analysis. 

The proposed DAD passed the model evaluation and through sensitivity analysis the 

recommended values of certain model parameters were obtained based on the working 

data. 

6.0 TASK 2: CONFLICT IDENTIFICATION MODEL (CIM) 
6.1 Introduction of CIM 
A major obstacle to the prevalence of AV is safety. Currently, the safety of AVs relies 

largely on the surveillance systems and motion detection in the ego vehicle. The real-

world detection is affected by many factors such as weather, interference, and 

sensibilities. This safety issue can be mitigated by sending near crash warnings to the 

drivers in the CV environment, through analyzing the trajectories of the vehicles 

embedded in the BSMs. 

In the literature, the research using trajectories to detect the potential crashes utilized 

the trajectory data that were collected on the scene. However, in the case of using 

BSMs, as the effective transmission distance of the V2V BSMs is limited, there might be 

no sufficient time to perform a chain of tasks to avoid a crash after the vehicles come 

into the effective V2V range, including collecting the data, training the model, analyzing 
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the data, broadcasting the alarm and for the driver to perceive the alarm and take 

actions. In order to leave adequate time to the drivers, we separate the process into 

two steps: step one is the driving anomaly detection including the threshold values 

determined in the cloud using historical BSMs and the driving abnormal detection (DAD) 

in the in-vehicle subsystem using real time BSMs; step two is to detect the conflicts by 

the in-vehicle system using the real time BSMs and the results from the first step. This 

section focuses on the second step in which we define a conflict as the condition when 

attention is needed when a vehicle is under abnormal state. This section also describes a 

conflict detection model (CIM) using the profiles of speed and distance to identify 

conflicts. 

6.2 Methodology of CIM 
6.2.1 Conflict Scenarios 
The speed distance profile (SDP) of a vehicle is a sequence of time-stamped 

measurements of the vehicle's position and speed, often recorded by the 

odometer or the Global Positioning System (GPS) (Andrieu, 2013). The SDP here 

is the time-stamped sequence of the coordinates and speeds of a driver-vehicle 

units (DVUs) pair, in which at least one DVU is under abnormal status. The 

proposed CIM is to identify conflicts between the DVU pair using the SDP 

extracted from their BSMs. As the purpose of the ASDSCE is to generate 

warnings against potential crashes, the safest way to define the conflict scenario 

is to embrace the worst cases. Four of such scenarios are defined when 𝐷𝑉𝑈𝑎 

and 𝐷𝑉𝑈𝑏 are close to each other (within the effective BSM V2V range) and at 

least one of them is in abnormal driving status (with a flag), as shown in Figure 

15. 
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FIGURE 15. CONFLICT SCENARIOS UNDER ABNORMAL DRIVING STATUS. 

➢ Scenario A: Head-on scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are in 

abnormal driving status (flagged). 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the 

maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 

➢ Scenario B: Car-following scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are 

flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed 

while 𝐷𝑉𝑈𝑏 is trying to steer away; 

➢ Scenario C: Head-on scenario in which only 𝐷𝑉𝑈𝑎 is flagged. 𝐷𝑉𝑈𝑎 is 

heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying 

to steer away; 

➢ Scenario D: Car-following scenario in which only 𝐷𝑉𝑈𝑎 is flagged. 𝐷𝑉𝑈𝑎 is 

heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying 

steer away. 

In Figure 15, d_critical denotes the critical distance which is the distance 

between the DVU pair when a conflict is detected. 

6.2.2 Mathematical Model for the Speed Distance Profile (SDP) 
To illustrate our SDPs, as shown in Figure 15, we introduce the time to evade 

(TTE), which is defined as the time interval that 𝐷𝑉𝑈𝑏 needs to perform a chain 
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of actions including hearing and understanding the warning, checking the 

surrounding and taking actions and steers away from the location of potential 

collision. During the TTE, the relative distance between the DVU pair decreases 

from the critical distance to zero. In order to determine the value of TTE, the 

perception-reaction time (PRT) was reviewed. In the transportation safety 

community, PRT is defined as the time for a driver to perceive and respond 

appropriately to an impending hazard (Bates, 1995). The American Association of 

State Highway and Transportation Officials (AASHTO) recommended a PRT of 2.5 

seconds, including 1.5 seconds for visual perception time (VPT) and 1.0 second 

for reaction time, as the design standard for calculating the stopping sight 

distance (SSD). Although this PRT was determined through extensive studies and 

it passed some extreme test cases, “surprise intrusion” tests and in full-scale 

road tests, however, certain other tests showed that 2.5 seconds were not safe 

enough and some researchers called for increasing the value to 3.0 seconds or 

more (Sens, 1989; Grime, 1952). As drivers under influence typically have longer 

PRT, our understanding is that AASHTO's standard was set for average normal 

drivers and a higher value of PRT is more appropriate for abnormal drivers. Our 

TTE is similar to the PRT but with one difference – PRT was defined to perceive 

and react to the same object – the conflicting vehicle, while TTE is used to 

perspective two objects – the warning and the conflicting vehicle. So, an 

additional audio perception time (APT) to hear the warning, and pass it to the 

brain, and for the brain to comprehend the warning and instruct the eyes to look 

for the conflicting vehicle needs to be added. As APT was tested shorter than 

VPT (Jain, 2015), we take the value of 1.0 second for the APT. Therefore, in our 

case, the TTE is set up to be 3.5 seconds for the normal DVUs, and 4.0 seconds 

for the abnormal DVUs. From the results of the related studies (Bokare, 2017; 

Kusano, 2011), the maximum acceleration for the vehicle was selected as 

2.87𝑚/𝑠2 for the critical distance calculation, and a deceleration rate of  

0.52𝑚/𝑠2 was selected for the braking distance calculation. 

Using the SDP data extracted from the BSMs, we constructed the math model to 

detect the potential conflicts. Given that 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are in the V2V 

effective range (which means they can exchange BSMs) and at least one of 𝐷𝑉𝑈𝑎 

and 𝐷𝑉𝑈𝑏 is under abnormal status. The in-vehicle subsystem will check the 

headings – 𝐴𝐵𝑆 ∗ (ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑎 − ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑏) to determine the scenario type and 

the distance 𝑑 between 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏, as shown in Eq. (4-1). If 𝑑 is not 

greater than the critical distance 𝑑𝑐𝑟𝑖𝑡, as shown in Eq. (4-2), or in Eq. (4-3), then 

a conflict is identified. In the equations, the location of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are 

denoted as 𝑃𝑎 (𝑥𝑎, 𝑦𝑎), 𝑃𝑏 (𝑥𝑏, 𝑦𝑏), respectively, 𝑙 denotes the length of a DUV, 

and 𝑣𝑎, and 𝑣𝑏 denote the speeds of 𝐷𝑉𝑈𝐴 and 𝐷𝑉𝑈𝐵, respectively. 𝑇𝑇𝐸 = 
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3.5𝑠𝑒𝑐𝑜𝑛𝑑𝑠/4.0𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , and 𝑎𝑚𝑎𝑥 = 2.87𝑚/𝑠2 denotes the maximum 

acceleration of 𝐷𝑉𝑈𝑎. 

𝑑 = √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2 (4 − 1) 

𝑑𝑐𝑟𝑖𝑡−ℎ𝑒𝑎𝑑−𝑜𝑛 = 𝑇𝑇𝐸 ∗ (𝑣𝑎 − 𝑣𝑏) + 0.5 ∗ 𝑎𝑚𝑎𝑥 ∗ 𝑇𝑇𝐸2 + 𝑙 (4 − 2) 

𝑑𝑐𝑟𝑖𝑡−𝑐𝑎𝑟−𝑓𝑙𝑜𝑜𝑤𝑖𝑛𝑔 = 𝑇𝑇𝐸 ∗ (𝑣𝑎 − 𝑣𝑏) + 0.5 ∗ 𝑎𝑚𝑎𝑥 ∗ 𝑇𝑇𝐸2 (4 − 3) 

Thus, the conflict in our system is defined as the situation when the actual 

distance between 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 is not greater than the critical distance when 

abnormal driving status is present in at least one of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏. 

6.3 Case Study of CIM 
We implemented the CIM in Python for all of our working data which are in the comma-

separated values (CSV) format and Python is powerful in manipulating tabular data. In 

the CIM, we loaded the CSV files of the DUV pair that are under investigation to 

different Pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒𝑠. 

6.3.1. Data Description 

The SHRP2 data set has two sets of speeds: the network speed and the GPS speed. The 

network speeds are recorded at the frequency of 10𝐻𝑧 and the GPS speed at 1𝐻𝑧. The 

network speed is generated by the vehicle's speedometer through multipart tools such 

as dive cable, speed cup, hairspring, and pointer needle on the dial panel. It includes 

many errors because of the long-chain process and different manufacturers might have 

different standards of error tolerances. The network speed is shown on the driver's dash 

panel to give the driver some idea of the driving speeds. The network speeds usually are 

higher than the actual speeds, with acceptable error tolerance of 10 percent. On the 

other hand, the GPS speed is more accurate as it is from the satellite. We use network 

speeds to test the driver's driving status for the driver is directly influenced by them. 

The speed bin was set up as 1 mph, and the instances are aggregated to 1 sec with 

means. 

In order to simulate the BSMs, which were generated at a frequency of 10 Hz, we 

paused the program for 0.1 second after each time it reads one record of the data. 

Although the proposed CIM is straightforward in theory, to demonstrate it is difficult 

because of lack of data. We did not find any crash record that both of the involved 

vehicles are CVs as crashes are rare events and the number of CVs in the CV pilot studies 

were limited. However, in the Naturalistic Driving Study (NDS) 𝐼𝑛𝑆𝑖𝑔ℎ𝑡 Data, there are 

some crashes recorded between one equipped vehicle and a stationary object, such as a 
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fence or a roadway curb. For our case study, a total of 23 such crashes are selected, in 

which the drivers were reported under abnormal driving status, such as DUI, driving 

while texting on the phone or being tired after long driving etc. The driving status 

information were provided by the Strategic Highway Research Program (SHRP II) NDS 

𝐼𝑛𝑆𝑖𝑔ℎ𝑡 Data Access (SHRP2, 2020). Under the principle of the privacy protection, the 

coordinates of the trajectories of the 23 cases were revised to be relative to certain 

points that were unpublished. As the stationary object can be used to represent the 

normal DUV with the speed of zero, all the 23 cases fall into scenario C as described in 

Subsection 2.4. We created the data set of 𝐷𝑉𝑈𝑎 as staying on the crash point from 

each trajectory files of the 23 crashes. In the CIM testing, when a conflict is firstly 

identified, the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, the speed of 𝐷𝑉𝑈𝑏 and the distance between 𝐷𝑉𝑈𝑎 and 

𝐷𝑉𝑈𝑏, are recorded. 

6.3.2. CIM Algorithm and Running Results 

Figure 16 shows that in all of the 23 cases, the first conflict was identified at least 19 

seconds before the crash. This indicates that 𝐷𝑉𝑈𝑎 should have enough time to take 

evasive actions and demonstrates that the CIM is functioning as proposed. Table 

records the details of the tests runs. 
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FIGURE 16. SPEED AND TIME REMAINING OF CONFLICTS IDENTIFIED FIRST TIME IN TEST RUNS 
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Table 6. Conflict identification test records. 

Case Number Speed Distance Confict_timestamp Crash_timestamp Remain_time 
Unit km/h m sec sec sec 

1 82 117 23 49 26 
2 35 65 207 223 16 
3 18 46 9802 9822 20 
4 19 47 1000 1077 77 
5 20 48 1053 1115 62 
6 23 51 363 505 142 
7 22 50 10594 10617 23 
8 26 55 406 435 29 
9 84 119 1349 1379 30 

10 41 49 2428 2449 21 
11 14 19 2397 2415 18 
12 55 87 1335 2320 985 
13 52 84 1649 1690 41 
14 11 38 518 545 27 
15 27 56 1189 1222 33 
16 2 18 3 56 53 
17 7 7 4 75 71 
18 23 51 1349 1375 26 
19 30 59 64 83 19 
20 43 74 3633 3750 117 
21 59 91 2493 2520 27 
22 27 56 3110 3137 27 
23 30 59 522 560 38 

6.4 Results and Discussion of CIM 
In this section we constructed a conflict detection model (CIM) using the speed distance 

profile (SDP) to detect conflicts between a driver-vehicle unit (DVU) pair under 

abnormal driving status. In our system, a conflict is defined as a traffic situation 

involving a DVU pair which satisfies the following two conditions: (1) at least one of 

them is under abnormal driving status; (2) the actual distance between them is less or 

equal to the critical distance, which is calculated by the time to evade (TTE) with the 

maximum possible approaching speed. The model was tested on the SHAPII crash data. 

The results show that the conflict identification model can function as expected. 

The contribution of this CIM lies in that it creatively introduced a collision warning tool 

using the data sources not from the traditional in-vehicle sensors but from the BSMs of 

the CV environment. Collision warnings from outside the ego vehicle can greatly 

enhance safety especially in the circumstances of unexpected malfunctioning of the ego 

vehicle. This section also emphasizes the importance of abnormal driving status from a 

systematic viewpoint. Abnormal driving status is a major collision causation factor and 

deserves more attention of the ADAS. The authors call for putting focus on abnormal 

driving status instead of the normal drivers. Substantial future work is expected to 
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specialize in many aspects of the CIM, including but not limited to, implementing the 

thresholds and the flag list in the datapath, upgrading the model from sequential 

programming to parallel programming, specifying vehicle type, vehicle length, 

acceleration rate, deceleration rate, and improving the sophistication of the conflict 

scenarios. 

The CIM is a component of the in-vehicle subsystem of ASDSCE, in which a near crash 

warning will be generated if a conflict is detected between the pair of ego CV and a 

nearby CV when any CV in the pair is under abnormal driving status. The functionality of 

CIM is to generate collision warnings solely using BSMs. 

This section reports our work on several issues: a) redefining the conflict. Conflict is a 

key concept of surrogate safety analysis, which was originally designed for traffic 

simulation data. We tailor it to fit our system; b) developing the mathematical 

algorithms to identify the conflicts; c) implementing the algorithms in the in-vehicle 

subsystem. The algorithm is tested on the SHRP2 crash data which contain similar 

features of the BSMs. 
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7.0 CONCLUSIONS 
In this project, we built an automatic safety diagnosis system in the connected vehicle 

environment (ASDSCE). It is a real-time near crash warning tool on the individual level 

specifically configured for BSMs. The architecture of the proposed composed of two 

components: one is the driving anomaly detection (DAD) model, which collects and stores 

historical BSMs in the cloud and determines in batch mode the thresholds of each vehicle and 

identify the abnormal driving behavior from the real-time BSMs; the other is a conflict 

identification model (CIM) which is in the in-vehicle subsystem which detects conflicts. A near 

crash warning will be warranted when the traffic situation satisfies both of the following two 

conditions: (a) a conflict is identified and, (b) at least one of the drivers that is involved in the 

conflict is in abnormal driving status. 

Using solely the BSM data, the DAD system determines if the driver is in abnormal driving status 

according to the driving volatility. The DAD contains two parts: one is in the cloud where the 

threshold panels defending what is normal of each CV are generated using the historical BSMs; 

the other is in the in-vehicle computer where the current BSMs of the ego vehicle are 

compared with the thresholds that are being broadcasted from the cloud. We explained the 

theoretical foundation and the mathematical algorithm for the proposed DAD model and 

implemented the model. To answer the initial project target problem, the content of what need 

to be extracted from the BSMs and can to be stored in the cloud for traffic safety analysis are 

the threshold panels of all the individual CVs. The proposed DAD model passed the model 

evaluation. Through sensitivity analysis the recommended values of certain model parameters 

were established based on the working dataset. 

The CIM is a component of the in-vehicle subsystem of ASDSCE, in which a near crash warning 

will be generated if a conflict is detected between the pair of the ego CV and a nearby CV when 

any CV in the pair is under abnormal driving status. The functionality of CIM is to generate 

collision warnings solely using BSMs. In building the CIM, we redefined conflict to fit our 

system, developed the mathematical algorithm and implemented the algorithm with Python. 

The algorithm is tested on the SHRP2 crash data. 

The ASDSCE contains the following features: focusing on detecting abnormal drivers instead of 

normal drivers; using the trajectory data embedded in the BSM to study driving volatility; 

implementing on the individual level instead of the aggregate level; and reducing the model 

training time to leave sufficient time to the involved drivers to perform successful evasive 

actions. The present computational pipeline of ASDSCE includes raw data collection, data 

preprocessing, data analysis, data communication and warning message generation. ASDSCE is 

built with Python on Visual Studio 2019 using the BSMs from the CV pilot studies and evaluated 

using the SHRP2 naturalistic driving study crash data. 
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The ASDSCE system can be used as a real-time near-crash warning tool in the CV environment. 

This project can help to improve the safety of CVs in driving and It open a new approach for the 

safety of CAV operations. 

51 



       

  
 

 
 

 

   

 

   

 

  

  

     

    

      

 

  

 

    

    

 

  

 

 

 

    

  

  

   

  

   

 

 

STRIDE I Southeastern Transportation Re-search, 
Innovation, Development and Education Center 

Automatic Safety Diagnosis in Connected Vehicle Environment (Project F4) 

8.0 RECOMMENDATIONS 
The contribution of this project lies in that it creatively introduces a collision warning tool using 

the data sources not from the traditional in-vehicle sensors but from the BSMs generated in the 

CV environment. Collision warnings triggered from outside the ego vehicle can greatly enhance 

safety especially in the circumstances of unexpected malfunctioning of the ego vehicle. As the 

automatic safety diagnosis system in the connected vehicle environment (ASDSCE) utilizes 

solely the BSM data, the ASDSCE can serve as an additional collision warning tool 

supplementing the current tools that rely on the data collected by the sensors on the ego 

vehicle. However, the system is based on many assumptions due to lack of data and because of 

its nature of complexity, the system still needs fine tuning on many aspects. 

There are several limitations of the DAD model. First of all, human behaviors are complicated. 

The attempt to determine the behavior status through the footprint of a vehicle can be 

inaccurate. Second, in scoring the outliers, we are not clear of the relative impacts of different 

KPIs. We keep whatever KPI that might have some impact instead of running the statistical 

testing to exclude the not statistically related KPIs. This is again because of the complication of 

human behavior, and we do not have the luxury of plenty of data and understanding of human 

mental processing.  And finally, we did not run the auto-tuning due to lack of data and changing 

driving habits for a driver might need time longer than one month. 

This project also emphasizes the importance of abnormal driving status from a systematic 

viewpoint. Abnormal driving status is a major collision causation factor and deserves more 

attention of the ADAS. The authors call for putting focus on abnormal driving status instead of 

the normal drivers. Substantial future work is expected to investigate many aspects of the CIM, 

including but not limited to, implementing the thresholds and the flag list in the datapath, 

upgrading the model from sequential processing to parallel processing, specifying vehicle type, 

vehicle length, acceleration rate, deceleration rate, and improving the sophistication of the 

conflict scenarios. 

The datapath is not within the study scope of this project. The datapath involves the vehicle 

cloud which is an open research problem and is one of the major challenges of the CV.  Future 

efforts are expected on the datapath research. 

The computational models of this project are coded in sequential manner. As in the real word 

of CVs, the BSMs and the number of CVs will be overwhelming. Real-time safety analysis 

demands parallel computing to speed up data processing. Therefore, upgrading the current 

project by employing parallel computing technologies is inevitable. 
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AASHTO -- American Association of State Highway and Transportation Officials 

ACC -- adaptive cruise control 

ADAS -- advanced driver assistance systems 

AEB -- automatic emergency braking 

APT -- audio perception time 

AV -- autonomous vehicle 

AV -- autonomous vehicle 

BSM -- basic safety message 

CI -- crash index 

CIM -- conflict detection model 

CSV -- comma-separated values 

CV -- connected vehicle 

DA -- driving anomaly 

DVU -- driver-vehicle unit 

ESA -- emergency steering assistance 

FCW -- forward collision warning 

FHWA -- Federal Highway Administration 

GPS -- Global Positioning System 

ITS -- intelligent transportation system 

ITS -- intelligent transportation system 

KPI -- key performance indicator 

LDW -- lane departure warning 

MTC -- margin to collision 
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NDS -- Naturalistic Driving Study 

NHTSA -- National Highway Traffic Safety Administration 

NHTSA -- National Highway Traffic Safety Administration 

OBU -- on-board unit 

PAID -- Pay-as-you-drive 

PD -- pedestrian detection 

PET -- post-encroachment time 

PRT -- perception-reaction time 

PSD -- proportion of stopping distance 

SCA -- scale for criticality assessment 

SHRP II -- the Strategic Highway Research Program 

SPMD -- Safety Pilot Model Deployment (SPMD) 

SSAM -- surrogate safety assessment model 

SSM -- surrogate safety measure 

TCT -- traffic conflict technique 

TMC -- traffic management center 

TMC -- traffic management center 

TS -- time series 

TTE -- time to evade 

US DOT -- United States Department of Transportation 

V2V -- vehicle-to-vehicle 

VPT -- visual perception time 

10.2 Appendix B – Associated websites, data, etc., produced 

https://insight.shrp2nds.us/login/auth 

https://www.its.dot.gov/pilots/ 
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Date Type of 
Accomplishment 
(select from drop 
down list) 

Detailed Description 
Provide name of person, name of event, name of award, title of 
presentation, location and any links to announcements if available 
Please attach any abstracts, summaries, high quality photos, or 
additional details as an appendix. 

09/07/2020 Conference 

Paper 

We submitted the abstract of a paper titled “Anomaly 

Detection on Driving Status Using Basic Safety Messages in 

Connected Vehicle Environment” to the International 

Conference on Transportation and Development (ICTD) 

2021. 

11/31/2020 Conference 

Paper 

We submitted the full paper titled “Anomaly Detection on 

Driving Status Using Basic Safety Messages in Connected 

Vehicle Environment” to the International Conference on 

Transportation and Development (ICTD) 2021. 

6/8/2021 Conference 

Presentation 

We presented online our paper titled “Anomaly Detection 

on Driving Status Using Basic Safety Messages in Connected 

Vehicle Environment “on the International Conference on 

Transportation and Development (ICTD) 2021. 

10/26/2021 Publication We submitted the abstract of a paper titled “Evaluation and 

Sensitivity Analysis of Unsupervised Driving Anomaly 

Detection” to vehicles of Multidisciplinary Digital Publishing 

Institute 

11/9/2021 Conference 

Paper 

We submitted the abstract of a paper titled “Conflict 

Identification Using Speed Distance Profile on Basic Safety 

Messages” to the International Conference on 

Transportation and Development (ICTD) 2022. 

01/24/2022 Conference 

Paper 

We submitted the full paper titled “Conflict Identification 

Using Speed Distance Profile on Basic Safety Messages” to 

the International Conference on Transportation and 

Development (ICTD) 2022. The conference accepted our 

paper in the conference program of ICTD 2022. 
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Abstract of the paper submitted to the International Conference on Transportation and 

Development (ICTD) 2021. https://www.asce-ictd.org/ 

Anomaly Detection on Driving Status Using Basic Safety Messages in 

Connected Vehicle Environment 

Di Wu, P.E.1, Shuang Z. Tu, Ph.D.2, and Robert W. Whalin, Ph.D., P.E., D.CE3 

1Computational and Data Enabled Science and Engineering Program, Jackson State University, 

Email: dwzoon@gmail.com 

2Department of Electrical and Computer Engineering and Computer Science, Jackson State University, Email: 

shuang.z.tu@jsums.edu 

3Department of Civil and Environmental Engineering and Industrial Systems and Technology, Jackson State University, Email: 

robert.w.whalin@jsums.edu 

ABSTRACT 

As human factors contribute to more than 90% crashes, abnormal driving behavior has been 

intensively studied to improve traffic safety. Basic Safety Messages (BSMs) transmitted between 

connected vehicles (CVs) are time series data with high-cardinality. Real-time anomaly detection on 

driving status using BSMs is important but neglected. This paper is to explore what information 

imbedded in BSMs needs to be stored, how to extract and process it for real-time safety diagnosis. 

We propose a real-time multi-dimensional driving anomaly detection (DAD) system on individual 

level specifically configured for BSMs. The architecture of the proposed system is composed of two 

parts: in cloudthe system collects and stores BSMs of the vehicles it covers for a short period of time, 

and determines in batch mode the thresholds of the selected key performance indicators (KPIs) 

representing normal status for each vehicle, and broadcast the thresholds through the BSMs; in the 

in-vehicle device, as new BSMs streaming in, the device compares them with the received thresholds 

and determines the outliers; if detected, the outliers will be analyzed and determines if the vehicle 

warrants an anomaly flag; finally, the system will determine the impact factors to update thresholds 

according to the significances of the outliers. This system of AD is a crucial component of our 

pipeline for the automatic safety diagnosing system in the CV environment. This research is 

sponsored by the Southeastern Transportation Research, Innovation, Development and Education 

Center (STRIDE). 

Keywords: anomaly detection, BSM, connected vehicle, safety, algorithm 
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Abstract of the paper submitted to Vehicles of Multidisciplinary Digital Publishing Institute. 

https://www.mdpi.com/journal/vehicles 

Evaluation and Sensitivity Analysis of Unsupervised Driving Anomaly 

Detection 

Di Wu 1, † , ‡ , Shuang Tu 2, † , ‡ * and Robert Whalin 3, † , ‡ 

1 Computational and Data Enabled Science and Engineering Program, Jackson State University; dwzoon@gmail.com 

2 Department of Electrical and Computer Engineering and Computer Science, Jackson State University; 

shuang.z.tu@jsums.edu 

3 Department of Civil Engineering, Jackson State University; robert.w.whalin@jsums.edu 

* Correspondence: shuang.z.tu@jsums.edu; 

First Note: Current address:1400 John R. Lynch St, Jackson, MS 39217 

Second Note: These authors contributed equally to this work. 

Abstract: Evaluation on unsupervised anomaly detection is a constant challenge, so is the application 

of machine learning to practical engineering problems. Nevertheless, modeling driving status using 

basic safety messages (BSMs) of connected vehicles at the individual level is an unavoidable task for 

the automation of our traffic safety diagnosis system. This paper records our efforts in model 

evaluation and sensitivity analysis in building the driving anomaly detection system. In the model 

evaluation, the measurement of average precision was utilized and the model was validated. In the 

sensitivity analysis, a number of key performance indicators (KPIs) were set up based on the model 

responding to the changing values of the KPIs. Our model is a combination of machine learning 

(ML) and engineering modeling. As a data science technique ML has become a hot topic in many 

domains since the deluge of big data, but when it comes to engineering, where accuracy and proving 

is emphasized, ML is not as successfully applied. One of the reasons is that ML is known as a “black 
box”, neither convincing nor easily assortative with domain knowledge. Through this research, we 

found it a practical way to build the ML model for engineering problem, basing on domain 

knowledge, and use measures in information system to validate the model using underling 

assumptions. Given the lack of information on the distributions followed by the model parameters, 

sensitivity analysis is a practical tool to set up parameters at reasonable ranges. This paper is a part of 

our ongoing project of Anomaly Detection on Driving Status Using Basic Safety Messages in the 

Connected Vehicle (CV) Environment. 

Keywords: model evaluation; unsupervised; machine learning; driving status; outlier detection; 

sensitivity analysis; traffic safety 
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Abstract of the paper submitted to the International Conference on Transportation and 

Development (ICTD) 2022. https://www.asce-ictd.org/ 

Conflict Identification Using Speed Distance Profile on Basic Safety Messages 

Di Wu 1, Li Zhang2, Robert Whalin3 and Shuang Tu4* 

1Computational and Data Enabled Science and Engineering Program, Jackson State University; e-mail: 

di.wu@students.jsums.edu 

2Department of Civil and Environmental Engineering, Mississippi State University; e-mail: li.zhang@ngsim.com 

3Department of Civil and Environmental Engineering and Industrial Systems and Technology, Jackson State University; e-mail: 

robert.w.whalin@jsums.edu 

4 Department of Electrical and Computer Engineering and Computer Science, Jackson State University; e-mail: 

shuang.z.tu@jsums.edu 

*corresponding author 

ABSTRACT 

A major obstacle to the prevalence of autonomous vehicles (AVs) is safety. The safety of AVs 

relies largely on the surveillance systems and motion detection in the ego vehicle. The real-world 

detection is affected by many factors such as weather, interference and sensibilities. This safety 

issue can be mitigated by sending near crash warnings to the drivers in the connected vehicle 

(CV) environment, through analyzing the trajectories of the vehicles embedded in the basic 

safety massages (BSMs). In the literature, the research using trajectories to detect the potential 

crashes utilized the trajectory data that were collected on the scene. However, in the case of 

using BSMs, as the effective transmission distance of the vehicle-to-vehicle (V2V) BSMs is 

limited, there might be no sufficient time to perform a chain of tasks to avoid a crash after the 

vehicles come into the effective V2V range, including collecting the data, training the model, 

analyzing the data, broadcasting the alarm and for the driver to perceive the alarm and take 

actions. In order to leave adequate time to the drivers, we separate the process into two steps: 

step one is the driving anomaly detection including the threshold generation in the cloudusing 

historical BSMs and the driving abnormal detection (DAD) in the in-vehicle subsystem using 

real time BSMs; step two is to detect the conflicts using the real time BSMs and the results from 

the first step. In our system, a near crash warning will be generated if a conflict is detected 

between the pair of ego CV and a nearby CV when any CV in the pair is under abnormal driving 

status. This paper focuses on the second step, in which several issues are solved: a) redefining 

the conflict. Conflict is a key concept of surrogate safety analysis, which was originally designed 

for traffic simulation data. We tailor it to fit our system; b) developing the mathematical 

algorithms to identify the conflicts; c) implementing the algorithms in the in-vehicle subsystem. 

The algorithm is tested on the SHRP2 crash data which contain similar features of the BSMs. 

This paper is part of our ongoing project of Anomaly Detection on Driving Status Using Basic 

Safety Messages in the Connected Vehicle (CV) Environment (ASDSCE). 
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	ABSTRACT 
	 
	Previous researchers found that the most important accident causation factor was the driver’s abnormal driving status, which was associated with driving volatility. And the driving volatility can be traced from the trajectories of the vehicles that were embedded in the BSMs. Based on these findings, we developed an automatic safety diagnosis system for the connected vehicle environment (ASDSCE), a real-time near crash warning tool with a multi-dimensional cloud-based driving anomaly detection (DAD) model an
	The ASDSCE contains the following features: focusing on detecting abnormal drivers instead of normal drivers; using the trajectory data embedded in the BSM to study driving volatility; implementing on the individual drivers instead of the aggregate level; and reducing the model training time in order to leave sufficient time to the involved drivers to perform successful evasive actions. The presented computational pipeline of ASDSCE includes raw data collection, data preprocessing, data analysis, data commu
	Keywords:  
	driving status, abnormal detection, BSM, conflict, safety 
	  
	EXECUTIVE SUMMARY 
	 
	The purpose of this project is to construct a computational pipeline to identify near-crash events using basic safety messages (BSMs) in the connected vehicle (CV) environment and generate near-crash warnings to the driver.  
	We define near crash as a situation that satisfies both of the following two conditions: (a) a conflict is identified and, (b) at least one of the drivers involved in the conflict is in abnormal driving status.  We built an automatic safety diagnosis system in the connected vehicle environment with Python on Visual Studio 2019 using the BSM data from the CV pilot studies and evaluated with the SHRP2 naturalistic driving study crash data. Our system is composed of   a multi-dimensional driving anomaly detect
	Our system can be used as a real-time near crash warning tool in the CV environment. The significance of our system lies in its special data source. Because the data source is solely the BSMs, our system can serve as an additional collision warning tool which may supplement the current popular advanced driver assistance systems that rely on the data collected by the sensors on the ego vehicle. With our system, traffic safety can be hoped to be significantly improved because the collision warning can be trig
	In addition, our system provides a way to reuse the BSMs. Due to the tremendous volume and complexity, it is not realistic to store all the BSMs generated in the CV environment into the data center. This research built a practical way to extract from BSMs the thresholds of the key performance indicators of each vehicle and only store these thresholds and the BSMs over a short period of time for traffic safety analyses. Therefore, the BSM storing problem can be mitigated.    
	This study combines the CV, traffic conflict technology and big data technology together. The designed system can be used as a real-time near-crash warning tool in the CV environment. It can help to improve the safety of connected vehicles in driving and increase the market penetration of connected and autonomous vehicles (CAVs). 
	Future work includes pilot studies to generate more data sets and further validate the current system and upgrading the model from sequential processing to parallel processing to reliably ensure real-time safety analysis and processing.
	1.0 INTRODUCTION 
	Crashes are a major cause of traffic congestion and reducing crashes is a prominent task for congestion mitigation. As human factors contribute to more than 90% traffic crashes, abnormal driving behavior has been intensively studied to improve traffic safety. In the connected vehicle (CV) environment, Basic Safety Messages (BSMs) transmitted between CVs. A driver’s behavior can be reflected by the vehicle’s trajectories which are embedded in the BSMs. If a driver’s abnormal driving behavior can be somehow d
	1.1 Objective 
	The objective of this project is to construct a computational pipeline to identify near-crash events using basic safety messages (BSMs) in the connected vehicle (CV) environment and generate near-crash warnings to the driver. 
	1.2 Scope 
	The computational pipeline is an automatic safety diagnosis system in the CV environment (ASDSCE). The ASDSCE consists of the traffic management center (TMC), all the CVs under its surveillance, and the datapath between them. The concept of the ASDSCE is illustrated in 
	The computational pipeline is an automatic safety diagnosis system in the CV environment (ASDSCE). The ASDSCE consists of the traffic management center (TMC), all the CVs under its surveillance, and the datapath between them. The concept of the ASDSCE is illustrated in 
	Figure 1
	Figure 1

	. 

	The system in the cloud stores the historical BSMs of all the CVs under its surveillance, operates a continuous threshold calculation using the historical BSMs, and maintains a flag list of the current abnormal CVs.  The historical BSMs are of a certain time period, say a month, calibrated according to the local conditions. The in-vehicle subsystem is equipped in all the CVs. It is composed of an on-board unit (OBU) and a computer. The two-way datapath is composed of the CV environment with the BSMs, includ
	The system in the cloud stores the historical BSMs of all the CVs under its surveillance, operates a continuous threshold calculation using the historical BSMs, and maintains a flag list of the current abnormal CVs.  The historical BSMs are of a certain time period, say a month, calibrated according to the local conditions. The in-vehicle subsystem is equipped in all the CVs. It is composed of an on-board unit (OBU) and a computer. The two-way datapath is composed of the CV environment with the BSMs, includ
	Figure 2
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	.  

	The process of the in-vehicle subsystem is illustrated in 
	The process of the in-vehicle subsystem is illustrated in 
	Figure 3
	Figure 3

	.  Once the engine of a CV starts, the OBU starts to receive streams of information from the cloud and the nearby CVs. This information will be passed to the in-vehicle computer. The computer runs the abnormal driving status detection model using the ego BSMs and the thresholds received from the cloud to determine the status of the ego vehicle. If the ego vehicle is detected abnormal, the ego vehicle will be flagged, and the flag information will be uploaded to the cloud through the datapath. The joined eff

	scenario to identify conflicts. If any conflict is identified, a collision warning will be issued.  
	The datapath is not within the study scope of this project. The datapath involves the vehicle cloud which is an open research problem and is one of the major challenges of the CV.   
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	FIGURE 1. THE CONCEPT OF THE ASDSCE. 
	 
	The proposed system uses solely raw BSMs in the CV environment, determines if the driver is in the abnormal driving status, and generate warnings when a conflict is identified. Here we define the near crash in a new way. A near crash needs to meet both of the following two conditions: first, at least one of the vehicles in a driver-vehicle unit (DVU) pair is in abnormal driving condition, and second a conflict is present. This project focuses on two tasks: task one is to perform Driving Anomaly Detection (D
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	FIGURE 2. THE PROCESS OF ASDSCE. 
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	FIGURE 3. THE IN-VEHICLE SUBSYSTEM. 
	  
	2.0 LITERATURE REVIEW 
	More than six million crashes resulting in more than 30 thousand fatalities and two million injuries have been reported annually on U.S. highways and streets (NHTSA, 2021; NCS, 2021). Due to enormous societal impact, highway safety has long been intensively studied. The mainstream traffic safety studies are crash record based, whose major tools are statistical models, and the direct measures are crash frequency and crash severity (Tarko, 2018). However, the further advancing of this approach is encumbered b
	The key concept of TCT is conflict, which was first proposed by Perkins and Harris as “any potential accident situation” including evasive actions of drivers and traffic violations (Per-kins1968traffic). The definition of conflict experienced many years of discussion and settled down as “an observable situation in which two or more road users approach each other in space and time to such an extent that there is a risk of collision if their movements remained unchanged” (Amundsen, 1977). The TCT overcomes th
	However, there are also issues in TCT. For example, the definition of conflict was complained to be too simple and unrealistic to describe traffic behaviors (Saunier, 2006; Hidas, 2005 modelling). It was also complained about ambiguity because the cutoff boundary between a conflict and a non-conflict situation is indistinct (Mahmud, 2017). Besides, many surrogate measures were developed but no consensus has been reached on what is the most preferable measure (tageld-in2017comparison). Moreover, the number o
	Nevertheless, SSMs found their uses as a post-processor for safety evaluation in microscopic simulation models. In 2008 the Federal Highway Administration (FHWA) released the surrogate safety assessment model (SSAM) using the simulation data, including the trajectories of the simulated vehicles. SSAM uses combined TTC and PET to detect conflicts according to specific configuration of traffic. For example, in a car-following scenario, a conflict would not be war-ranted when a TTC reached the threshold while 
	Although SSAM is powerful in determining many safety features, using SSAM directly in the real world of the CV environment might cause some problems. For example, SSAM has its own module for driving abnormal detection by calculating the probability of collision using the trajectories, which needs at least five seconds to collect the data on the scene and train the model be-fore analyzing the driving status. Whereas the CV environment cannot afford the five seconds to perform this task of training the model 
	left, but the driver needs 2.5 seconds to perceive the danger and takes actions. Similar problems also exist in the car-following scenario when the leading vehicle brakes sharply, which happens when the driver is under abnormal driving status. Therefore, there is a need to reduce the model training time in order to leave sufficient time to the involved vehicles to perform successful evasive actions. 
	Other than in stimulation models, TCT was also widely utilized in automobile industry on Advanced Driver Assistance Systems (ADAS), such as adaptive cruise control (ACC). While ACC is expected to reduce rear-end collisions caused by driver’s error, it cannot completely replace driver’s braking. Even equipped with ACC, a vehicle still needs the advanced real-time safety warnings (Bose, 2003). Therefore, collision warning/avoidance, such as lane departure warning (LDW), forward collision warning (FCW), pedest
	Near crash, also called near miss, was first formalized by McFarland and Moseley as the “emergency situation or critical incidents which could easily have led to a crash” (Williams, 1981).  Hanowski et al., defined near crash as any circumstance that requires a rapid, evasive maneuver by the subject vehicle, or any other vehicle, pedestrian, cyclist, or animal to avoid a crash. And a rapid, evasive maneuver is defined as a steering, braking, accelerating, or any combination of control inputs that approach t
	The data for ADAS are mostly collected from the in-vehicle sensors such as radar, Linda, camera, speed sensor, and throttle position sensor etc. During the process, data fusion and image processing techniques were utilized to extract the trajectories of the nearby vehicles from the collected images. Currently data collection of the of nearby vehicles relies on the in-vehicle sensors. This posts a safety issue in the cases when the sensors all break down and therefore additional information from other channe
	vehicle (AV) is expected to be the ultimate solution to future transportation (Wang, 2020). And “The full benefits of vehicle automation can be achieved only through connectivity” (USDOT, 2020). The ITS Joint Program Office of United States Department of Transportation (US DOT) is already moving forward with research on joining connected vehicle (CV) to AV.  
	BSM is a class of SPMD data, which is a part of the connected vehicle (CV) program. BSM is the basic application known as the “Here I Am” data message. The format of BSM is defined by Society of Automotive Engineers J2735: The Dedicated Short-Range Communications (DSRC) Message Set Dictionary. BSMs are broadcast from the in-vehicle device at the dedicated bound of 5.9 GHz spectrum at the query of 10 Hz to surrounding (maximum 300 miters) vehicles (Henclewood, 2014). A BSM is composed of two parts: part one 
	As a major initiative of US DOT, the CV technology enables safe, interoperable networked wireless communications among vehicles, the infrastructure, and passengers’ personal communications devices. The BSM data generated in the CV operation are massive in amount and become an innovative data source for traffic safety community and thus opened the door for the research topics on traffic safety that should have been carried out yet had not been done because of lack of data, in which a fundamental one is the d
	Another issue of ADAS is related to the focus of the warning criteria. From the systematical viewpoint the driving system is composed of drivers, vehicles, roads and environment. A crash is the result of a serial of malfunctions of the driving components as shown in 
	Another issue of ADAS is related to the focus of the warning criteria. From the systematical viewpoint the driving system is composed of drivers, vehicles, roads and environment. A crash is the result of a serial of malfunctions of the driving components as shown in 
	Figure 4
	Figure 4

	. Research shows that human factors contribute more than 90% crashes, as shown in 
	Figure 5
	Figure 5

	 (Treat, 1979; Singh, 2015; Dingus, 2016). As most crashes are due to the drivers who are in abnormal driving status, the safety study should focus on the abnormal driving status instead of the normal drivers. But the reality is, in developing the criteria for ADAS conflict detection, although many safety features were addressed, such as the types of vehicles involved, friction, and lighting conditions, no 

	driving status of the driver was considered. The driver responses differently when he/she is under abnormal driving status. For example, the perception and reaction time of drivers under influence (DUI) is longer than those who are under normal status, and the action of a DUI is unpredictable. If focus is put on the normal or average drivers, the warning criteria would not be able to represent the abnormal drivers. Therefore, ab-normal driving status needs to be a focus of ADAS and additional conflict or ne
	 
	  
	 
	Figure
	FIGURE 4.THE DYNAMICS OF CRASH CAUSATION (REASON1990). 
	To define driving anomaly (DA) is an open research problem.  Currently, there are three approaches: first, from the common sense, abnormal driving behaviors include driving under the influence (DUI), driving with distraction, aggressiveness, and drowsiness because these behaviors will likely cause crashes. So traditionally DA was defined as a situation in which the driver is not concentrating on driving (Miyaji, 2008); Second, from statistics of the majority drivers:  as crashes are rare events, complying w
	deviating from the statistical majority; Third, from the statistics of the individual driving behavior: as driving behaviors differ substantially between individuals and everyone has one’s own driving patterns such as the way hitting the gas and brake pedals, wheel steering, and in the distance they keep when following a vehicle (Fancher, 1998; Igarashi, 2004), a driver might drive years to have a crash, so not complying with one’s own driving pattern can also be considered as DA.  In the occasions of DA, w
	 
	 
	 
	Figure
	FIGURE 5. THE PRESENCE OF ACCIDENT CAUSATION FACTORS (TREAT1979). 
	According to the definitions of DAD, the direct approach is to monitor the driver’s exhalation, facial and body movements using in-vehicle alcohol sensors and/or cameras and analyze the images using computer vision for DAD. The drawbacks of this approach are the cost of computation in deep learning and high-end cameras, the privacy issue, and its limitation from being freely broadcast at real-time (Janai, 2017).  
	An indirect approach is to use social economic data to categorize risky drivers or use trajectory data which are the results from the driving maneuver. Social-economic factors are assumed to have impacts on driving behavior in a psychological way (Boyle, 
	2007). Age, gender and income level etc. were widely used because they are found statistically correlated with the number of crashes and these measurements are easily available. This method was widely utilized by automobile manufacturers and insurance companies to identify risky drivers since 1968 (Ayuso, 2019).  For example, pay-as-you-drive insurance systems calculate premiums according to how risky the insured driver is. The riskiness factors used include driven miles, time of day, speed, and how acciden
	In traffic safety, vehicular trajectory data were studied as the footprints of driving behaviors to identify DA and give warnings when abnormal events warrant a warning flag. The vehicular trajectory data contain detailed information on microscopic phenomena. Embedded in the trajectories, the speed, acceleration (Lajunen, 1997), jerk (Ericsson, 2000) were mostly selected as key performance indicators (KPIs) to measure driving volatility. Speeding is an aggressive behavior and very common among drivers but d
	The next improvement would be analyzing BSMs at the individual-level, which is the approach we employ in this project. This research is aimed to construct such a system 
	using the trajectory data embedded in BSMs to identity near crash to generate potential collision warning.  
	3.0  PROBLEM STATEMENT 
	 
	In retrospection on the literature, traffic safety is facing a leapfrogging development. As the transportation system is evaluating toward ITS and CAV, the traditional safety statistical models can no longer bear the requirement to be the mainstream method.  Until the full automation is achieved, as abnormal human behavior is a major causation factor of crashes, abnormal driving behavior will still be a focus of traffic safety. Each driver has the won driving pattern; today’s computation capability allows m
	However, there are salient shortcomings of adopting TCT and its key concept-- conflict: firstly, conflict is a loose measure, and the warnings can be triggered too often and result in too many false alarms; secondly, as the current ADASs use the data collected on the scene, the identification of abnormal human behavior is not prompt enough.  
	From the geniture of the crash, psychological precursors of abnormal status already exist before the crash scene. It is possible to identify the abnormal status of the driver before the scene. Research have shown that the driving anomaly can be traced from the vehicle trajectories, which are embedded in the BSMs of the CV environment.  
	With the growth of the market penetration rate, there will be massive BSMs, and it would be unpractical to store all of them in data centers. It is imperative to find a way to extract and store the valuable and storable information from the BSMs before they perish. 
	Based on the background, we propose an automatic safety diagnosis system in the CV environment (ASDSCE). The ASDSCE contains the following features: 
	a) Focus on detecting abnormal drivers instead of normal drivers, 
	a) Focus on detecting abnormal drivers instead of normal drivers, 
	a) Focus on detecting abnormal drivers instead of normal drivers, 

	b) Use the trajectory data embedded in BSM to study driving volatility, 
	b) Use the trajectory data embedded in BSM to study driving volatility, 

	c) On the individual driver level instead of the aggregate level, and 
	c) On the individual driver level instead of the aggregate level, and 

	d) Reduce the model training time in order to leave sufficient time to the involved drivers to perform successful evasive actions. 
	d) Reduce the model training time in order to leave sufficient time to the involved drivers to perform successful evasive actions. 


	4.0 DATA DESCRIPTION 
	4.1 BSM Data 
	The basic safety message (BSM) data were the working data of our project. BSM is a basic application of CV program known as the “Here I Am” data message. BSMs are generated in the on-board-devices (OBDs) that were specifically designed for CVs. In the air, the BSMs are broadcasted at the dedicated bound of 5.9 GHz spectrum at the frequency of 10 Hz (Henclewood, 2014) and can be received by the nearby CVs and roadside units (RSU). The effective transmitting distances of BSMs are ranged from 300 meters to 100
	The Safety Pilot Model Deployment (SPMD) project is a part of the CV program.  It was a research initiative on CVs and collected and stored the BSM data during the tests. The SPMD data are available on the Intelligent Transportation System (ITS) DataHub (its.dot.gov/data/). The working data used in this project are the field BSM data from a SPMD test conducted in Ann Arbor, Michigan, in October 2012. A Comma Separated Values (CSV) BsmP1 file of a size of 67GB stores all the BSMs generated by the 1527 test v
	TABLE 1 ATTRIBUTE LIST OF THE BSM DATA   
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 

	Type 
	Type 

	Units 
	Units 

	Description 
	Description 


	DevID 
	DevID 
	DevID 

	Integer 
	Integer 

	None 
	None 

	Test vehicle ID  assigned by the CV program 
	Test vehicle ID  assigned by the CV program 


	EpochT 
	EpochT 
	EpochT 

	Integer 
	Integer 

	seconds 
	seconds 

	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 
	Epoch time, the number of seconds since the January 1 of 1970 Greenwich Mean Time (GMT) 


	Latitude 
	Latitude 
	Latitude 

	Float 
	Float 

	Degrees 
	Degrees 

	Current latitude of the test vehicle  
	Current latitude of the test vehicle  


	Longitude 
	Longitude 
	Longitude 

	Float 
	Float 

	Degrees 
	Degrees 

	Current longitude of the test vehicle 
	Current longitude of the test vehicle 


	Elevation 
	Elevation 
	Elevation 

	Float 
	Float 

	Meters 
	Meters 

	Current elevation of test vehicle according to GPS 
	Current elevation of test vehicle according to GPS 


	Speed 
	Speed 
	Speed 

	Real 
	Real 

	m/sec 
	m/sec 

	Test vehicle speed 
	Test vehicle speed 


	Heading 
	Heading 
	Heading 

	Real 
	Real 

	Degrees 
	Degrees 

	Test vehicle heading/direction 
	Test vehicle heading/direction 


	Ax 
	Ax 
	Ax 

	Real 
	Real 

	m/sec^2 
	m/sec^2 

	Longitudinal acceleration 
	Longitudinal acceleration 


	Ay 
	Ay 
	Ay 

	Real 
	Real 

	m/sec^2 
	m/sec^2 

	Lateral acceleration 
	Lateral acceleration 


	Az 
	Az 
	Az 

	Real 
	Real 

	m/sec^2 
	m/sec^2 

	Vertical acceleration 
	Vertical acceleration 


	Yawrate 
	Yawrate 
	Yawrate 

	Real 
	Real 

	Deg/sec 
	Deg/sec 

	Vehicle yaw rate  
	Vehicle yaw rate  




	 
	 
	 
	 
	 

	 
	 

	 
	 

	 
	 


	 
	 
	 

	 
	 

	 
	 

	 
	 




	4.2 SHRP2 Data 
	The crash data from Naturalistic Driving Study (NDS) for the second Strategic Highway Research Program (SHRP 2) were our model evaluation data. NDS is a research program to address the impact of driver performance and behavior in traffic safety. The Virginia Tech Transportation Institute (VTTI) serves as the technical coordination and study design contractor for the NDS and maintains the InSight Data Access Website (Jafari2017). 
	In the InSight Data Access Website, the Event Detail Table section there lists 41,530 records of crashes and near crashes. Each record is posted with detailed information of the event including a video of up to 25 seconds before the event, event detail data and the final narrative. There are readily fetched data sets that had been used by previous studies and can be obtained by other institutes with no cost. However, although our required data can be retrieved from the crashes there was no used data set cou
	For acquiring NDS data, a data use license with VTTI and the proof of Institutional Review Board (IRB) approval are required. The data users also need to take the VTTI training in the protection of human subjects. We contacted VTTI with a data description and initiated the data purchase process.  The data description is shown as the following: 
	• Participant driver is at fault; 
	• Participant driver is at fault; 
	• Participant driver is at fault; 

	• Police reportable or most severe crash severity; 
	• Police reportable or most severe crash severity; 

	• Event nature of conflict with another vehicle (e.g. exclude run off road or tire strikes); 
	• Event nature of conflict with another vehicle (e.g. exclude run off road or tire strikes); 

	• Incident type excludes backing or rear-end struck scenarios; 
	• Incident type excludes backing or rear-end struck scenarios; 

	• Crash occurred at least 60 days after participant’s entry into study; 
	• Crash occurred at least 60 days after participant’s entry into study; 

	• Lowest volume and traffic movement roadways excluded (i.e., functional class 5). 
	• Lowest volume and traffic movement roadways excluded (i.e., functional class 5). 


	We screened all the crashes of SHRP2 and hand-picked 47 crash events which meet the data description, and the driver was under abnormal driving status, such as driving under influence, driver fatigue, or driving while texting on the phone. We settled down on purchasing the data set that includes 47 crashes and 60-day time series data before the crash day. According to data requirement, from the SHRP 2 data collection system, a total of 12500 trips from 46 events were retrieved (one of the crash events did n
	In order to protect potentially identifying information (PII), however, there were some restrictions. For example, the GPS coordinates for crash trips, the exact time, and any information can trace the driver’s identification cannot be released. The attributes of the time series data include vtti_timestamp, vtti.file_id, vtti.accel_x, vtti.accel_y, vtti.heading_gps, vtti.speed_gps vtti.speed_network,, x_position, y_position, as shown in Table 2. 
	TABLE 2.  ATTRIBUTE LIST OF THE SHRP2 DATA   
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 
	Attributes Name 

	Type 
	Type 

	Units 
	Units 

	Description 
	Description 



	vtti_timestamp 
	vtti_timestamp 
	vtti_timestamp 
	vtti_timestamp 

	Integer 
	Integer 

	millisecond 
	millisecond 

	The time steps from the released point of the trip. 
	The time steps from the released point of the trip. 


	vtti.file_id 
	vtti.file_id 
	vtti.file_id 

	Integer 
	Integer 

	/ 
	/ 

	The identification number of the trip  file. 
	The identification number of the trip  file. 


	vtti.accel_x 
	vtti.accel_x 
	vtti.accel_x 

	float 
	float 

	g 
	g 

	Vehicle acceleration in the longitudinal direction versus time. 
	Vehicle acceleration in the longitudinal direction versus time. 


	vtti.accel_y 
	vtti.accel_y 
	vtti.accel_y 

	float 
	float 

	g 
	g 

	Vehicle acceleration in the lateral direction versus time. 
	Vehicle acceleration in the lateral direction versus time. 


	vtti.heading_gps 
	vtti.heading_gps 
	vtti.heading_gps 

	float 
	float 

	g 
	g 

	Compass heading of vehicle from GPS. 
	Compass heading of vehicle from GPS. 


	vtti.speed_gps 
	vtti.speed_gps 
	vtti.speed_gps 

	float 
	float 

	km/h 
	km/h 

	Vehicle speed from GPS. 
	Vehicle speed from GPS. 


	vtti.speed_network 
	vtti.speed_network 
	vtti.speed_network 

	float 
	float 

	km/h 
	km/h 

	Vehicle speed indicated on speedometer collected from network. 
	Vehicle speed indicated on speedometer collected from network. 


	x_position 
	x_position 
	x_position 

	float 
	float 

	meter 
	meter 

	The relative X coordinate  to an point (fixed in one trip). 
	The relative X coordinate  to an point (fixed in one trip). 


	y_position 
	y_position 
	y_position 

	float 
	float 

	meter 
	meter 

	The relative Y coordinate  to an point (fixed in one trip). 
	The relative Y coordinate  to an point (fixed in one trip). 




	 
	In order to use the SHRP2 data in the DAD model, the number of days prior to crash need to be identified. Although the query to fetch the data used the drivers that included to the program 60 days before the crash, the maximum days  
	5.0 TASK 1: DRIVING ANOMALY DETECTION (DAD) MODEL 
	5.1 Introduction of the DAD Model 
	We propose a multi-dimensional driving anomaly detection (DAD) system on the individual level specifically configured for BSMs. This DAD model is a crucial component of our automatic safety diagnosing system in the CV environment (ASDSCE).  
	Anomaly detection is an interdisciplinary problem, and it has been applied in many domains such as finance for credit card fraud detection, healthcare for magnetic resonance imaging (MRI) diagnosis on malignant tumors (Wilson, 1934; Sundt, 1974), astronomy for damage detection on space craft, and cybersecurity for intrusion detection (Chandola, 2009), signal intrusion in the CV environment (Rajbahadur, 2018), but no application was found in DAD using the BSM data.  
	Traditionally most highway safety studies have relied on historical crash data and statistical models. Yet crash data possess the notorious deficiency in availability and quality because crashes are rare events. As an alternative, the traffic conflict technique (TCT) that measures the crash potential -- conflict, which is defined as “an observable situation in which two or more road users approach each other in space and time to such an extent that there is a risk of collision if their movements remained un
	data approach based TCT was widely used because it makes safety analysis much less expensive, can be well connected to traffic simulation models and has good performance in countermeasure analysis. However, the disputes on TCT’s qualification for surrogate measures for crash data have never been resolved. Especially when the modern transportation development calls for advanced safety diagnosis, TCT appears not readily tuned for the new challenge. This research is proposed to integrate TCT measures into the 
	Although the idea of autonomous vehicles (AVs) has been around for more than a century, and it has reached a point where it can begin to be offered to the public, AV is still not largely accepted. Safety is the major issue especially in obstacle detection because the information merely from the ego vehicle cannot guarantee 100 percent safety. However, this problem can be readily solved in the environment of CV through exchanging BSMs. The driving automation cannot be achieved without CV. While the private s
	Since abnormal driving behaviors are present in more than 90% of crashes, a conflict together with at least one driver in abnormal driving status can be a closer stage to a crash. The hypothesis of this research is: each driver has his/her own driving patterns of normal and aggressive/abnormal status, which can be identified by the patterns of the driver’s BSMs, such as abnormal acceleration rates. The patterns found in the historical BSMs will be recorded and updated by the traffic management centers. The 
	Data science is a mash-up of different disciplines which can help decision makers shift from ad hoc analysis to an ongoing conversation with data, and its intuition-based essence helps finding out the hidden patterns of the data.  The outstanding achievement of data companies such as Google, Amazon, Facebook, Twitter, and LinkedIn manifestos the magic power of data science and makes other companies even academia interested in using data science for breakthroughs in their problems that traditional methods wo
	human knowledge body. So, for the data scientists, it is important to be precautious of the natural tendency of overlooking the fundamentals of the field; meanwhile for the established discipline, it would be wise to keep an open mind while scrutinizing the data-driven applications coming into its field. Benchmarked with the CV and AV, modern intelligent transportation system (ITS) transportation is moving toward fully automation. Instrumented with digital devices producing big data, ITS brings both challen
	The proposed DAD system is a component of our computational pipeline to identify near-crash events. The designed functionality of the DAD is to take recent historical big BSM data to learn the thresholds to differentiate the normal and abnormal driving status, and with the thresholds to identify the anomalies using the real-time BSM data. 
	5.2 Methodology of the DAD Model 
	The methodology of our DAD is determined by the nature of the working data, the nature of the anomaly, the availability of the labels and the constraints and requirements of the traffic safety domain. 
	The proposed DAD system is divided to two parts: in the cloud and in the in-vehicle subsystem. In the TMC, the system collects and stores BSMs of the vehicles it covers for a certain period of time, say a month, and determines in batch mode the thresholds of the selected key performance indicators (KPIs) representing the normal status for each vehicle, and broadcast the thresholds through BSMs; in the in-vehicle device, as new BSMs streaming in, the device compares the new values of each KPI with the receiv
	The proposed DAD system is divided to two parts: in the cloud and in the in-vehicle subsystem. In the TMC, the system collects and stores BSMs of the vehicles it covers for a certain period of time, say a month, and determines in batch mode the thresholds of the selected key performance indicators (KPIs) representing the normal status for each vehicle, and broadcast the thresholds through BSMs; in the in-vehicle device, as new BSMs streaming in, the device compares the new values of each KPI with the receiv
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	):  Module 1. Data Preprocessing and Selecting KPIs; Module 2: Learning What Is Normal; Module 3: Detecting Outliers; Module 4: Determine Abnormal Driving Event; Module 5: System Updating. 

	5.2.1 Module 1: Selecting Key Performance Indicators (KPIs) 
	The nature of the input data is key to DAD because it determines the techniques. By structure BSMs are discontinuous time series (TS) data, which is a type of sequence data where data instances are linearly ordered but have lots of not available (NA) records. BSMs are also spatial data because coordinates are included. TS data typically consist of two components: contextual attributes, which are used to determine the context for that instance, such as timestamps 
	and coordinates; and behavior attributes, such as speed and accelerations. Here if we treat timestamps as the contextual attribute and coordinates as behavior attribute, then BSM has high (almost infinitive) cardinality; If alternatively, we treat coordinates as the contextual attribute and time as the behavior attributes, then BSM will also has high cardinality; If we treat both time and coordinates as contextual attributes, then the number of contexts will be infinite. To make the problem solvable, we pro
	Having excluded the spatial component, the KPIs were determined based on the goals of making full use of the rest of BSM attributes. As driving behavior is complicated, we included multiple varieties since each KPI might have its own pattern. All we can have now are speed, acceleration, jerk, and yaw-rate. Conventionally the first step of TS analysis is to decompose TS data according to the context, in our case the context is the time. We did visualization of all the selected KPIs with respect to time, and 
	Having excluded the spatial component, the KPIs were determined based on the goals of making full use of the rest of BSM attributes. As driving behavior is complicated, we included multiple varieties since each KPI might have its own pattern. All we can have now are speed, acceleration, jerk, and yaw-rate. Conventionally the first step of TS analysis is to decompose TS data according to the context, in our case the context is the time. We did visualization of all the selected KPIs with respect to time, and 
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	  shows the relationship between acceleration and speed, which is in line with the previous studies that the accelerations have some special patterns with respect to speeds (Liu, 2014; Liu, 2016).  

	 
	Figure
	FIGURE 6. PROCESS OF THE PROPOSED DAD. 
	As the KPIs of A𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑗𝑒𝑟𝑘−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑗𝑒𝑟𝑘−𝑙𝑎𝑡𝑒𝑟𝑎𝑙 are found to co-exist with abnormal driving status (Lajunen, 1997; Ericsson, 2000; Langari, 2005; Murphey, 2009), we used speed as a context variable instead of time. As the yaw rate describes the rate of change of the heading angle and is directly related to the lateral acceleration, we did not include the heading and raw rate as a KPI. Since the 
	 
	 
	Figure
	FIGURE 7.THE SCATTER PLOT OF ACCELERATIONS TO SPEEDS. 
	  
	The processing of the BSMs is illustrated as follows:  first, the csv file is converted to parquet format using the 𝐷𝑎𝑠𝑘  package in Python. This step reduces about 40% query time. Then the file is split into smaller data files by the vehicle ID: 𝐷𝑒𝑣𝐼𝐷. Subsets are created by  𝐷𝑒𝑣𝐼𝐷  and saved to 1527 small csv files. Since we are going to work on the individual level and we will always query by  𝐷𝑒𝑣𝐼𝐷, splitting big data into smaller ones drops query time from minutes to seconds. As the 
	𝑗𝑒𝑟𝑘𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑎𝑛𝑎𝑙[𝑖]=acceleration𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙[𝑖] −𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛longitudinal[𝑖−1]timestamp[i]−𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑖−1]                 (3−1) 𝑗𝑒𝑟𝑘𝑙𝑎𝑡𝑒𝑟𝑎𝑙[𝑖]=𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑟𝑎𝑙[𝑖]−𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑡𝑒𝑟𝑎𝑙[𝑖−1]𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑖]−𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝[𝑖−1]              (3−2) 
	Furthermore, we divide the KPIs to be positive and negative groups, e.g. 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙_𝑝𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒 and 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, because they represent different movements of the driver stepping on the gas or the brake and might have different patterns. Therefore, we have eight KPIs in total.  
	 
	5.2.2 Module 2: Learning What Is Normal 
	Before detecting the anomaly, the system needs to learn what the “normal behaviors” look like. This is because the instances of crash are rare and obtaining labeled data of driving anomaly is prohibitively difficult while getting labels for normal behavior is much easier and less expensive. Nowadays in both research and practice, average thresholds at aggregate level are used. In our study we calculated the threshold at the individual level, resulting in a panel of thresholds for each driver. 
	For each KPI, the values of “normal behavior” are determined in this module. As we have resampled the individual BSMs by taking the average of each parameter, we group the rows by speed bins. The speed bins of size of 1 mph are set up and instances by seconds are redistributed to the bins. As discussed previously, the driver who is complying with its historical driving pattern is considered normal and we assume the values of each sample bin are normally distributed. The mean and standard deviations of each 
	For each KPI, the values of “normal behavior” are determined in this module. As we have resampled the individual BSMs by taking the average of each parameter, we group the rows by speed bins. The speed bins of size of 1 mph are set up and instances by seconds are redistributed to the bins. As discussed previously, the driver who is complying with its historical driving pattern is considered normal and we assume the values of each sample bin are normally distributed. The mean and standard deviations of each 
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	. The rows are speed bins, the columns are the mean and standard deviation of the averages of positive and negative of  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑗𝑒𝑟𝑘_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙  and  𝑗𝑒𝑟𝑘_𝑙𝑎𝑡𝑒𝑟𝑎𝑙. 

	TABLE 3. DATA PANEL EXTRACTED FROM AN VEHICLE (PARTIAL). 
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	5.2.3 Module 3: Detecting Outliers 
	Outliers or anomalies are data points that do not meet the condition of what is normal in Module 2. As we assume the BSMs are normally distributed, the data located in the 95% probability regions are considered normal and the other 5% as outliers. From statistics, the cut-off value of 95% is two times of standard deviation away from the mean. Question might arise on our assumption: are the KPIs normally distributed? If a data set is normally distributed, the residual needs 
	to be random. The answer is no and but approximately yes. As shown in 
	to be random. The answer is no and but approximately yes. As shown in 
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	,  the 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 of 𝐼𝐷 6010 is not strictly normally distributed but close enough. Other scholars found it can be simulated with Negative Binomial distribution (Liu 2016), but we decide to take an approximation of normal distribution because we are solving an engineering problem, all we need to know is whether the vehicle has the potential to cause a crash, and we can use engineering alternatives to replace difficult mathematical problems. This philosophy is similar

	 
	Figure
	FIGURE 8.  Q-Q PLOT OF LONGITUDINAL ACCELERATION OF A SAMPLE VEHICLE. 
	We set the regions of low probability to be 5 percentiles, with the values falling onto the range of  (𝑚𝑒𝑎𝑛 − 2 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛,𝑚𝑒𝑎𝑛 + 2 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛). The ranges of all KPIs at all the speed bins compose the thresholds. In our test runs there are many outliers detected. Since our goal is to minimize false-alarms, we are going to reduce the number of false-positives with the subsequent modules.  In our DAD system, this outlier detection module is proces
	5.2.4 Module 4: Determine Abnormal Driving Event 
	A single outlier might not mean abnormal driving status, but multiple outliers in a short period of time signals anomaly: either the driver or the vehicle is not in good condition. In a DAD system, the outliers can be scored by the magnitude of deviation from the norm and/or duration of the outliers. In cases of comparing the impacts from different KPIs, a machine learning (ML) technique of normalization is commonly used. Considering it might introduce unnecessary uncertainties as we are not clear about the
	More research and calibration need to be done to make the initial state more reasonable. As our system is dealing with multiple stages of uncertainties on the driving status, normal driving status and abnormal driving status, and the output is an alarm for a possible crash, which is also uncertain, we are aiming at minimizing false alarms, but the system needs to be calibrated when used. Here we build the system and leave the users to adjust the values of the parameters according to the local conditions.  
	5.2.5 Module 5: System Updating 
	So far, our system is designed to update all the thresholds in batch mode periodically. When the data of the next month are collected, they will be processed by the system in the same way as described in this section. We mentioned the period to be one month simply because the only data we have covers a month’s period. However, a more advanced way of system updating is to apply auto-tuning. In DAD, auto-tuning adjusts the thresholds to provide an accurate baseline. After an anomaly is detected, the system ne
	0.001 times, or almost no change happens since the rate is very small; if similar anomaly persists for 5 days in a row, the learning rate will be assigned a much bigger value, say 0.1. The ML algorithm of K-means is utilized to classify the abnormal status of the days. K-means is based on similarity of multidimensional variables. We will discuss auto-tuning in the Results and Discussion section.  
	 
	5.3 Evaluation of the DAD Model 
	Evaluation on unsupervised anomaly detection is a constant challenge, so is the application of machine learning to practical engineering problems. Nevertheless, modeling driving status using BSMs of connected vehicles at the individual level is an unavoidable task for the automation of our traffic safety diagnosis system. In the model evaluation, the measurement of average precision is utilized, and the model is validated. Our model is a combination of machine learning (ML) and engineering modeling. As a da
	As our goal of building the DAD model is not to compete with other algorithms but to apply it in the real-world traffic safety engineering, in model evaluation, we evaluate the reasonableness of the model — whether the model can function as proposed. The research is based on the assumption that the driver is under abnormal driving status in an accident. So, the trajectory of the accident trip should have more outliers than a normal one. In our previous study, we found that the KPI data did not follow any st
	The measure precision is the fraction of relevant instances among the retrieved instances and the average precision is a measure that combines recall and precision for 
	ranked retrieval results. The average precision is the mean of the precision scores after each relevant record is retrieved. Mathematically, the average precision is written as Equation (3-3) where 𝑟 is the rank of each relevant document, R is the total number of relevant records, and 𝑃@𝑟 is the precision of the top-r retrieved records (Zhang2009). 
	 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛= ∑𝑝@𝑟𝑟𝑅                                                  (3−3) 
	 
	The results of the test show that all the 42 drivers have been found to exhibit more than 5% abnormal of the accident trips, which proves that the DAD model is valid, as shown in 
	The results of the test show that all the 42 drivers have been found to exhibit more than 5% abnormal of the accident trips, which proves that the DAD model is valid, as shown in 
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	Figure
	FIGURE 9. EVALUATION OF THE OUTLIER DETECTION MODEL. 
	5.4 Sensitivity Analysis of the DAD Model 
	In the domain of engineering, sensitivity analysis is a widely used tool in model evaluation. Parameter sensitivity analysis is usually performed in which a series of tests on the model with different parameter values to observe the dynamic behavior of the model responses to the parameter changes. And proper parameter values can be recommended through analyzing the patterns of the results.  
	Again, as our goal of building the DAD model is for real world application, the number of safety alarms need to be reasonable. In our tests, many abnormal instances were detected in a test file, from a few to thousands depending on the driver and trip duration. Too frequent alarms might annoy the driver and a single outlier might not mean abnormal driving status, but multiple outliers over a short period of time do signal anomaly. Therefore, we added Module five in our DAD model to cut down the occurrences 
	In our model, some parameters are defined as follows: 𝑁𝑣 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑃𝐼𝑠 𝑏𝑒𝑖𝑛𝑔 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑒𝑐𝑜𝑛𝑑; 𝑁𝑠 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑒𝑐𝑜𝑛𝑑𝑠; 𝑁𝑠𝑡𝑑 –𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛             𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠; 𝑁𝑑 – 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑟𝑎𝑠ℎ 𝑡𝑜 𝑐
	An abnormal event (triggering an alarm) will be warranted if any of the following conditions is met: 
	1. The number of KPIs being identified as outliers in the same second is larger or equal to 𝑁𝑣; 
	2. Within 𝑁𝑠 more than one KPI are identified as an outlier in a row. 
	In the sensitivity analysis, we test with various values of 𝑁𝑣 and 𝑁𝑠 to determine the best value by observing the model response. As aforementioned, we treat the threshold as a variable, here we use sensitivity analysis to investigate the proper value range. We are interested in how the model responds to the days prior to crash to calculate the thresholds. We also treat the number of days prior to the crash as a testing parameter. The parameter settings for sensitivity analysis are shown in 
	In the sensitivity analysis, we test with various values of 𝑁𝑣 and 𝑁𝑠 to determine the best value by observing the model response. As aforementioned, we treat the threshold as a variable, here we use sensitivity analysis to investigate the proper value range. We are interested in how the model responds to the days prior to crash to calculate the thresholds. We also treat the number of days prior to the crash as a testing parameter. The parameter settings for sensitivity analysis are shown in 
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	TABLE 4. PARAMETER SETTING FOR SENSITIVITY ANALYSIS. 
	Parameter 
	Parameter 
	Parameter 
	Parameter 
	Parameter 

	Test Value 
	Test Value 

	Initial Value 
	Initial Value 



	𝑵𝒗  
	𝑵𝒗  
	𝑵𝒗  
	𝑵𝒗  

	1,2,3,4,5,6,7,8 
	1,2,3,4,5,6,7,8 

	2 
	2 


	𝑵𝒔 
	𝑵𝒔 
	𝑵𝒔 

	3,5,10,15,20,30 
	3,5,10,15,20,30 

	5 
	5 


	𝑵𝒔𝒕𝒅  
	𝑵𝒔𝒕𝒅  
	𝑵𝒔𝒕𝒅  

	2,2.25,2.5,2.75,3 
	2,2.25,2.5,2.75,3 

	2 
	2 


	𝑵𝒅 
	𝑵𝒅 
	𝑵𝒅 

	15,30,45,60 
	15,30,45,60 

	30 
	30 




	 
	5.4.1 Sensitivity Analysis on 𝑁𝑣 
	In our model, there are 8 KPIs: acceleration-longitudinal, acceleration-lateral, jerk-longitudinal, jerk-lateral, each of which has positive and negative items. In sensitivity tests, we tested the 𝑁𝑣 value from 1 through 8. The model responses are shown in 
	In our model, there are 8 KPIs: acceleration-longitudinal, acceleration-lateral, jerk-longitudinal, jerk-lateral, each of which has positive and negative items. In sensitivity tests, we tested the 𝑁𝑣 value from 1 through 8. The model responses are shown in 
	Figure 10
	Figure 10

	 . With 𝑁𝑣 set to be 1 or 2, more than 15% of the instances of the trip seconds will be identified as alarms, which will result in too many alarms. Meanwhile the detailed recorded data show that in many cases, the acceleration and jerk at the same direction were identified as outliers at the same time, which indicated that the pair are correlated to some extent. So, we eliminated values 1 and 2. 
	Figure 10
	Figure 10

	 also shows that when 𝑁𝑣 is more than 3, the curve becomes flat, which means the number of abnormal cases identified are very close. Therefore  𝑁𝑣 was determined to be 3. 

	 
	Figure
	FIGURE 10. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE NUMBER OF KPIS IS DETECTED AS ABNORMAL IN THE SAME SECOND. 
	5.4.2. Sensitivity Analysis on 𝑁𝑠 
	Figure 11
	Figure 11
	Figure 11

	 shows how the system responds to the various values of the number of successive seconds when a single KPI is found to be abnormal in a row. The value of 10 seconds is selected for 𝑁𝑠 because it is where the curve changes the slope at that point and the value of the ratio is close to 5%. 

	 
	Figure
	FIGURE 11. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE NUMBER OF SECONDS THAT ONE KPI SUCCESSIVELY DETECTED ABNORMAL. 
	5.4.3. Sensitivity Analysis on 𝑁𝑠𝑡𝑑  
	Figure 12
	Figure 12
	Figure 12

	 shows how the system responds to the different settings (the number of times of standard deviation away from the mean) to calculate the thresholds. It shows that the value of 2 and 2.5 did not result in significant changes. And from 
	Figure 13
	Figure 13

	, no alarms are generated for the testing file after the value of 2.25, which violates the purpose of the model, which is to detect abnormal for all the potential crashes. We decided to use 2 because this is the widely used value and 2.25 did not make significant difference. 

	 
	Figure
	FIGURE 12. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE TIMES OF STANDARD DEVIATION AWAY FROM THE MEAN. 
	 
	Figure
	FIGURE 13. THE SYSTEM RESPONDING TO A STEP INCREASE IN THE TIMES OF STANDARD DEVIATION AWAY FROM THE MEAN. 
	5.4.4. Sensitivity Analysis on 𝑁𝑑 
	Figure 14
	Figure 14
	Figure 14

	  shows how the system responds to how many days the cloud saves the raw BSMs to calculate the thresholds. We assume that the cloud uses the batch mode to calculate the thresholds. The curve changes values within a small range, which means that system is not highly sensitive to the change of𝑁𝑑. We selected 30 days because it identifies the most anomaly events. In practice, this parameter is better to be determined by the number of vehicles covered by the cloud and the computational capacity of the server.

	 
	Figure
	FIGURE 14. THE SYSTEM RESPONDING TO A STEP INCREASE IN NUMBER OF DAYS PRIOR CRASH TO CALCULATE THRESHOLD. 
	5.5 Results and Discussion of the DAD Model 
	The results from the proposed driving anomaly detection (DAD) model are the threshold panel of what is normal for an individual vehicle, which is the information that needs to be extracted from historical BSMs and stored in the TMC. In the threshold panel, the selected KPIs include 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑗𝑒𝑟𝑘−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙,𝑎𝑛𝑑 𝑗𝑒𝑟𝑘−𝑙𝑎𝑡𝑒𝑟𝑎𝑙. The mean and standard deviation of each KPI in each speed bin of a size o
	Before model implementation, as our working data is a TS data, we performed standard TS data analysis with no periodicity identified. This is reasonable because the driving behavior is substantially complicated, and the majority of TS data do not have periodicity any way. Therefore, we conclude that the models for the TS data do not apply to BSMs. We implement our DAD model from scratch instead of using the existing machine learning models.    
	After implementation of DAD, we performed model evaluation using the Average Precision method to evaluate our DAD model. The evaluation results show that our DAD model is valid. Then, sensitivity analysis was carried out to determine the recommended values for some model parameters.  
	After implementation of DAD, we performed model evaluation using the Average Precision method to evaluate our DAD model. The evaluation results show that our DAD model is valid. Then, sensitivity analysis was carried out to determine the recommended values for some model parameters.  
	Table 
	Table 

	 summarizes the results of the sensitivity analysis. 

	 
	 
	 
	TABLE 5. DETERMINED PARAMETER VALUES. 
	Parameter 
	Parameter 
	Parameter 
	Parameter 
	Parameter 

	Determined Value 
	Determined Value 



	𝑵𝒗 
	𝑵𝒗 
	𝑵𝒗 
	𝑵𝒗 

	3 
	3 


	𝑵_𝒔 
	𝑵_𝒔 
	𝑵_𝒔 

	10 
	10 


	𝑵_𝒔𝒕𝒅 
	𝑵_𝒔𝒕𝒅 
	𝑵_𝒔𝒕𝒅 

	2 
	2 


	𝑵_𝒅 
	𝑵_𝒅 
	𝑵_𝒅 

	30 
	30 




	 
	There are several limitations. First of all, human behavior is complicated, and the attempt of determining the behavior status based on the footprint of a vehicle can be inaccurate. Second, in scoring the outliers, we are not clear about the relationship of the comparative impacts of different KPIs. We keep whatever KPI that might have some impact instead of running the statistical testing to exclude those not statistically related KPIs. This is again because of the complication of human behavior, and we do
	In this section, we described a DAD system that determines if the driver is in abnormal driving status according to the driving volatility using solely the BSM data. We explained the theoretical foundation, the mathematical model of the proposed DAD model and performed model implementation. The resulted threshold panels are what need to be extracted from the BSMs and need to be stored in the cloud for traffic safety analysis. The proposed DAD passed the model evaluation and through sensitivity analysis the 
	6.0 TASK 2: CONFLICT IDENTIFICATION MODEL (CIM) 
	6.1 Introduction of CIM 
	A major obstacle to the prevalence of AV is safety. Currently, the safety of AVs relies largely on the surveillance systems and motion detection in the ego vehicle. The real-world detection is affected by many factors such as weather, interference, and sensibilities. This safety issue can be mitigated by sending near crash warnings to the drivers in the CV environment, through analyzing the trajectories of the vehicles embedded in the BSMs. 
	 In the literature, the research using trajectories to detect the potential crashes utilized the trajectory data that were collected on the scene. However, in the case of using BSMs, as the effective transmission distance of the V2V BSMs is limited, there might be no sufficient time to perform a chain of tasks to avoid a crash after the vehicles come into the effective V2V range, including collecting the data, training the model, analyzing 
	the data, broadcasting the alarm and for the driver to perceive the alarm and take actions. In order to leave adequate time to the drivers, we separate the process into two steps: step one is the driving anomaly detection including the threshold values determined in the cloud using historical BSMs and the driving abnormal detection (DAD) in the in-vehicle subsystem using real time BSMs; step two is to detect the conflicts by the in-vehicle system using the real time BSMs and the results from the first step.
	6.2 Methodology of CIM 
	6.2.1 Conflict Scenarios 
	The speed distance profile (SDP) of a vehicle is a sequence of time-stamped measurements of the vehicle's position and speed, often recorded by the odometer or the Global Positioning System (GPS) (Andrieu, 2013). The SDP here is the time-stamped sequence of the coordinates and speeds of a driver-vehicle units (DVUs) pair, in which at least one DVU is under abnormal status. The proposed CIM is to identify conflicts between the DVU pair using the SDP extracted from their BSMs. As the purpose of the ASDSCE is 
	The speed distance profile (SDP) of a vehicle is a sequence of time-stamped measurements of the vehicle's position and speed, often recorded by the odometer or the Global Positioning System (GPS) (Andrieu, 2013). The SDP here is the time-stamped sequence of the coordinates and speeds of a driver-vehicle units (DVUs) pair, in which at least one DVU is under abnormal status. The proposed CIM is to identify conflicts between the DVU pair using the SDP extracted from their BSMs. As the purpose of the ASDSCE is 
	Figure 15
	Figure 15

	. 

	 
	Figure
	FIGURE 15. CONFLICT SCENARIOS UNDER ABNORMAL DRIVING STATUS. 
	➢ Scenario A: Head-on scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are in abnormal driving status (flagged). 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 
	➢ Scenario A: Head-on scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are in abnormal driving status (flagged). 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 
	➢ Scenario A: Head-on scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are in abnormal driving status (flagged). 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 

	➢ Scenario B: Car-following scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 
	➢ Scenario B: Car-following scenario in which both of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 

	➢ Scenario C: Head-on scenario in which only 𝐷𝑉𝑈𝑎 is flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 
	➢ Scenario C: Head-on scenario in which only 𝐷𝑉𝑈𝑎 is flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying to steer away; 

	➢ Scenario D: Car-following scenario in which only 𝐷𝑉𝑈𝑎 is flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying steer away. 
	➢ Scenario D: Car-following scenario in which only 𝐷𝑉𝑈𝑎 is flagged. 𝐷𝑉𝑈𝑎 is heading toward 𝐷𝑉𝑈𝑏 at the maximum possible speed while 𝐷𝑉𝑈𝑏 is trying steer away. 
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	In 
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	,  d_critical denotes the critical distance which is the distance between the DVU pair when a conflict is detected. 

	6.2.2 Mathematical Model for the Speed Distance Profile (SDP) 
	To illustrate our SDPs, as shown in 
	To illustrate our SDPs, as shown in 
	Figure 15
	Figure 15

	, we introduce the time to evade (TTE), which is defined as the time interval that 𝐷𝑉𝑈𝑏 needs to perform a chain 

	of actions including hearing and understanding the warning, checking the surrounding and taking actions and steers away from the location of potential collision. During the TTE, the relative distance between the DVU pair decreases from the critical distance to zero. In order to determine the value of TTE, the perception-reaction time (PRT) was reviewed. In the transportation safety community, PRT is defined as the time for a driver to perceive and respond appropriately to an impending hazard (Bates, 1995). 
	Using the SDP data extracted from the BSMs, we constructed the math model to detect the potential conflicts. Given that 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 are in the V2V effective range (which means they can exchange BSMs) and at least one of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 is under abnormal status. The in-vehicle subsystem will check the headings – 𝐴𝐵𝑆∗(ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑎−ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑏) to determine the scenario type and the distance 𝑑 between 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏, as shown in Eq. (4-1). If 𝑑 is not greater than the critica
	3.5𝑠𝑒𝑐𝑜𝑛𝑑𝑠/4.0𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , and 𝑎𝑚𝑎𝑥=2.87𝑚/𝑠2 denotes the maximum acceleration of 𝐷𝑉𝑈𝑎.  𝑑=√(𝑥𝑎−𝑥𝑏)2+(𝑦𝑎−𝑦𝑏)2                                                                            (4−1) 𝑑𝑐𝑟𝑖𝑡−ℎ𝑒𝑎𝑑−𝑜𝑛=𝑇𝑇𝐸∗(𝑣𝑎−𝑣𝑏)+0.5∗𝑎𝑚𝑎𝑥∗𝑇𝑇𝐸2+𝑙                          (4−2) 𝑑𝑐𝑟𝑖𝑡−𝑐𝑎𝑟−𝑓𝑙𝑜𝑜𝑤𝑖𝑛𝑔=𝑇𝑇𝐸∗(𝑣𝑎−𝑣𝑏)+0.5∗𝑎𝑚𝑎𝑥∗𝑇𝑇𝐸2                        (4−3) 
	Thus, the conflict in our system is defined as the situation when the actual distance between 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏 is not greater than the critical distance when abnormal driving status is present in at least one of 𝐷𝑉𝑈𝑎 and 𝐷𝑉𝑈𝑏. 
	6.3 Case Study of CIM 
	We implemented the CIM in Python for all of our working data which are in the comma-separated values (CSV) format and Python is powerful in manipulating tabular data. In the CIM, we loaded the CSV files of the DUV pair that are under investigation to different Pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒𝑠. 
	6.3.1. Data Description 
	 
	The SHRP2 data set has two sets of speeds: the network speed and the GPS speed. The network speeds are recorded at the frequency of 10𝐻𝑧 and the GPS speed at 1𝐻𝑧. The network speed is generated by the vehicle's speedometer through multipart tools such as dive cable, speed cup, hairspring, and pointer needle on the dial panel. It includes many errors because of the long-chain process and different manufacturers might have different standards of error tolerances. The network speed is shown on the driver's
	 
	 In order to simulate the BSMs, which were generated at a frequency of 10 Hz, we paused the program for 0.1 second after each time it reads one record of the data. Although the proposed CIM is straightforward in theory, to demonstrate it is difficult because of lack of data. We did not find any crash record that both of the involved vehicles are CVs as crashes are rare events and the number of CVs in the CV pilot studies were limited. However, in the Naturalistic Driving Study (NDS) 𝐼𝑛𝑆𝑖𝑔ℎ𝑡 Data, ther
	fence or a roadway curb. For our case study, a total of 23 such crashes are selected, in which the drivers were reported under abnormal driving status, such as DUI, driving while texting on the phone or being tired after long driving etc. The driving status information were provided by the Strategic Highway Research Program (SHRP II) NDS 𝐼𝑛𝑆𝑖𝑔ℎ𝑡 Data Access (SHRP2, 2020). Under the principle of the privacy protection, the coordinates of the trajectories of the 23 cases were revised to be relative to c
	6.3.2. CIM Algorithm and Running Results 
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	  shows that in all of the 23 cases, the first conflict was identified at least 19 seconds before the crash. This indicates that 𝐷𝑉𝑈𝑎  should have enough time to take evasive actions and demonstrates that the CIM is functioning as proposed. 
	Table 
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	 records the details of the tests runs.  
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	FIGURE 16. SPEED AND TIME REMAINING OF CONFLICTS IDENTIFIED FIRST TIME IN TEST RUNS 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6. Conflict identification test records.  
	Case Number 
	Case Number 
	Case Number 
	Case Number 
	Case Number 

	Speed 
	Speed 

	Distance 
	Distance 

	Confict_timestamp 
	Confict_timestamp 

	Crash_timestamp 
	Crash_timestamp 

	Remain_time 
	Remain_time 



	Unit 
	Unit 
	Unit 
	Unit 

	km/h 
	km/h 

	m 
	m 

	sec 
	sec 

	sec 
	sec 

	sec 
	sec 


	1 
	1 
	1 

	82 
	82 

	117 
	117 

	23 
	23 

	49 
	49 

	26 
	26 


	2 
	2 
	2 

	35 
	35 

	65 
	65 

	207 
	207 

	223 
	223 

	16 
	16 


	3 
	3 
	3 

	18 
	18 

	46 
	46 

	9802 
	9802 

	9822 
	9822 

	20 
	20 


	4 
	4 
	4 

	19 
	19 

	47 
	47 

	1000 
	1000 

	1077 
	1077 

	77 
	77 


	5 
	5 
	5 

	20 
	20 

	48 
	48 

	1053 
	1053 

	1115 
	1115 

	62 
	62 


	6 
	6 
	6 

	23 
	23 

	51 
	51 

	363 
	363 

	505 
	505 

	142 
	142 


	7 
	7 
	7 

	22 
	22 

	50 
	50 

	10594 
	10594 

	10617 
	10617 

	23 
	23 


	8 
	8 
	8 

	26 
	26 

	55 
	55 

	406 
	406 

	435 
	435 

	29 
	29 


	9 
	9 
	9 

	84 
	84 

	119 
	119 

	1349 
	1349 

	1379 
	1379 

	30 
	30 


	10 
	10 
	10 

	41 
	41 

	49 
	49 

	2428 
	2428 

	2449 
	2449 

	21 
	21 


	11 
	11 
	11 

	14 
	14 

	19 
	19 

	2397 
	2397 

	2415 
	2415 

	18 
	18 


	12 
	12 
	12 

	55 
	55 

	87 
	87 

	1335 
	1335 

	2320 
	2320 

	985 
	985 


	13 
	13 
	13 

	52 
	52 

	84 
	84 

	1649 
	1649 

	1690 
	1690 

	41 
	41 


	14 
	14 
	14 

	11 
	11 

	38 
	38 

	518 
	518 

	545 
	545 

	27 
	27 


	15 
	15 
	15 

	27 
	27 

	56 
	56 

	1189 
	1189 

	1222 
	1222 

	33 
	33 


	16 
	16 
	16 

	2 
	2 

	18 
	18 

	3 
	3 

	56 
	56 

	53 
	53 


	17 
	17 
	17 

	7 
	7 

	7 
	7 

	4 
	4 

	75 
	75 

	71 
	71 


	18 
	18 
	18 

	23 
	23 

	51 
	51 

	1349 
	1349 

	1375 
	1375 

	26 
	26 


	19 
	19 
	19 

	30 
	30 

	59 
	59 

	64 
	64 

	83 
	83 

	19 
	19 


	20 
	20 
	20 

	43 
	43 

	74 
	74 

	3633 
	3633 

	3750 
	3750 

	117 
	117 


	21 
	21 
	21 

	59 
	59 

	91 
	91 

	2493 
	2493 

	2520 
	2520 

	27 
	27 


	22 
	22 
	22 

	27 
	27 

	56 
	56 

	3110 
	3110 

	3137 
	3137 

	27 
	27 


	23 
	23 
	23 

	30 
	30 

	59 
	59 

	522 
	522 

	560 
	560 

	38 
	38 


	 
	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 




	 
	6.4 Results and Discussion of CIM 
	In this section we constructed a conflict detection model (CIM) using the speed distance profile (SDP) to detect conflicts between a driver-vehicle unit (DVU) pair under abnormal driving status. In our system, a conflict is defined as a traffic situation involving a DVU pair which satisfies the following two conditions: (1) at least one of them is under abnormal driving status; (2) the actual distance between them is less or equal to the critical distance, which is calculated by the time to evade (TTE) with
	The contribution of this CIM lies in that it creatively introduced a collision warning tool using the data sources not from the traditional in-vehicle sensors but from the BSMs of the CV environment. Collision warnings from outside the ego vehicle can greatly enhance safety especially in the circumstances of unexpected malfunctioning of the ego vehicle. This section also emphasizes the importance of abnormal driving status from a systematic viewpoint. Abnormal driving status is a major collision causation f
	specialize in many aspects of the CIM, including but not limited to, implementing the thresholds and the flag list in the datapath, upgrading the model from sequential programming to parallel programming, specifying vehicle type, vehicle length, acceleration rate, deceleration rate, and improving the sophistication of the conflict scenarios. 
	The CIM is a component of the in-vehicle subsystem of ASDSCE, in which a near crash warning will be generated if a conflict is detected between the pair of ego CV and a nearby CV when any CV in the pair is under abnormal driving status. The functionality of CIM is to generate collision warnings solely using BSMs.  
	This section reports our work on several issues: a) redefining the conflict. Conflict is a key concept of surrogate safety analysis, which was originally designed for traffic simulation data. We tailor it to fit our system; b) developing the mathematical algorithms to identify the conflicts; c) implementing the algorithms in the in-vehicle subsystem. The algorithm is tested on the SHRP2 crash data which contain similar features of the BSMs. 
	 
	  
	7.0 CONCLUSIONS 
	In this project, we built an automatic safety diagnosis system in the connected vehicle environment (ASDSCE). It is a real-time near crash warning tool on the individual level specifically configured for BSMs. The architecture of the proposed composed of two components: one is the driving anomaly detection (DAD) model, which collects and stores historical BSMs in the cloud and determines in batch mode the thresholds of each vehicle and identify the abnormal driving behavior from the real-time BSMs; the othe
	Using solely the BSM data, the DAD system determines if the driver is in abnormal driving status according to the driving volatility.  The DAD contains two parts: one is in the cloud where the threshold panels defending what is normal of each CV are generated using the historical BSMs; the other is in the in-vehicle computer where the current BSMs of the ego vehicle are compared with the thresholds that are being broadcasted from the cloud. We explained the theoretical foundation and the mathematical algori
	The CIM is a component of the in-vehicle subsystem of ASDSCE, in which a near crash warning will be generated if a conflict is detected between the pair of the ego CV and a nearby CV when any CV in the pair is under abnormal driving status. The functionality of CIM is to generate collision warnings solely using BSMs. In building the CIM, we redefined conflict to fit our system, developed the mathematical algorithm and implemented the algorithm with Python. The algorithm is tested on the SHRP2 crash data. 
	The ASDSCE contains the following features: focusing on detecting abnormal drivers instead of normal drivers; using the trajectory data embedded in the BSM to study driving volatility; implementing on the individual level instead of the aggregate level; and reducing the model training time to leave sufficient time to the involved drivers to perform successful evasive actions. The present computational pipeline of ASDSCE includes raw data collection, data preprocessing, data analysis, data communication and 
	The ASDSCE system can be used as a real-time near-crash warning tool in the CV environment. This project can help to improve the safety of CVs in driving and It open a new approach for the safety of CAV operations.  
	 
	  
	8.0 RECOMMENDATIONS  
	The contribution of this project lies in that it creatively introduces a collision warning tool using the data sources not from the traditional in-vehicle sensors but from the BSMs generated in the CV environment. Collision warnings triggered from outside the ego vehicle can greatly enhance safety especially in the circumstances of unexpected malfunctioning of the ego vehicle. As the automatic safety diagnosis system in the connected vehicle environment (ASDSCE) utilizes solely the BSM data, the ASDSCE can 
	There are several limitations of the DAD model. First of all, human behaviors are complicated. The attempt to determine the behavior status through the footprint of a vehicle can be inaccurate. Second, in scoring the outliers, we are not clear of the relative impacts of different KPIs. We keep whatever KPI that might have some impact instead of running the statistical testing to exclude the not statistically related KPIs. This is again because of the complication of human behavior, and we do not have the lu
	This project also emphasizes the importance of abnormal driving status from a systematic viewpoint. Abnormal driving status is a major collision causation factor and deserves more attention of the ADAS. The authors call for putting focus on abnormal driving status instead of the normal drivers. Substantial future work is expected to investigate many aspects of the CIM, including but not limited to, implementing the thresholds and the flag list in the datapath, upgrading the model from sequential processing 
	The datapath is not within the study scope of this project. The datapath involves the vehicle cloud which is an open research problem and is one of the major challenges of the CV.  Future efforts are expected on the datapath research.  
	The computational models of this project are coded in sequential manner. As in the real word of CVs, the BSMs and the number of CVs will be overwhelming. Real-time safety analysis demands parallel computing to speed up data processing. Therefore, upgrading the current project by employing parallel computing technologies is inevitable.  
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