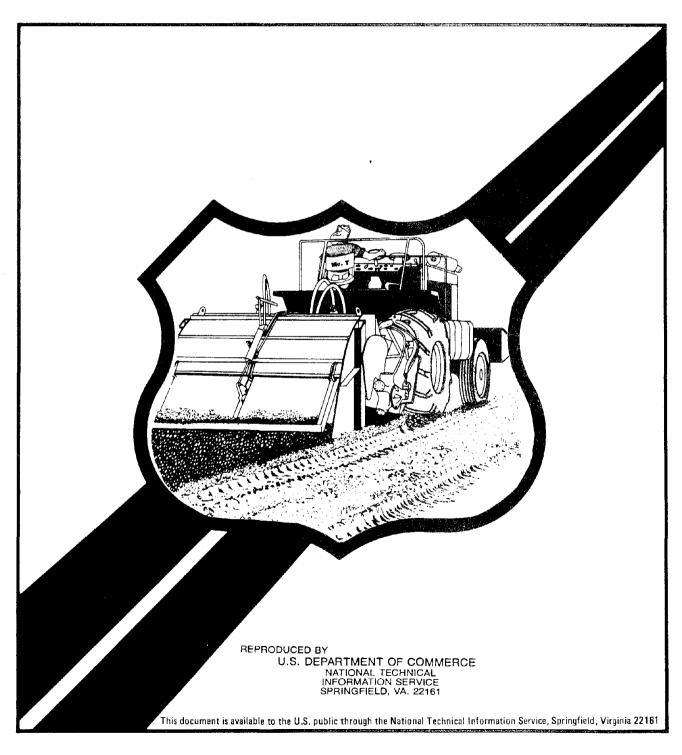
SOIL STABILIZATION FOR LOW-VOLUME ROADS VOL. 4: COST-BENEFIT ANALYSIS

Research, Development, and Technology


Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, Virginia 22101

Report No. FHWA/RD-86/099

Federal Highway Administration

Final Report May 1986

FOREWORD

This report, FHWA/RD-86/099, discusses the results of research conducted by Sheladia Associates, Inc. for the Federal Highway Administration (FHWA), Office of Research, under Contract DTFH61-81-C-00004. The work was part of FCP Project 5M, "Rehabilitation and Maintenance of Low-Volume Roads." Volume 4 -- Cost Benefit Analysis contains information useful in studying the economic evaluations needed to determine if stabilization is a viable option in reducing highway construction costs.

The information in this report discusses the four commonly used methods of soil stabilization in six climatic regions representative of the United States. Cost analyses of stabilization alternatives versus non-stabilization techniques were based on comparison of present worth using assumptions for the interest rate and life cycle time. The alternative having the least present worth was the method generally favored. Some case studies were presented supporting the conclusion that soil stabilization is a preferred design option.

Copies of Volume 1--Executive Summary (FHWA/RD-86/096) and Volume 4 are being given widespread distribution by FHWA to Technology Transfer Centers through the Rural Technical Assistance Program. Additional copies of these reports along with Volume 2--Road Engineer's Guide (FHWA/RD-86/097) and Volume 3--Road Builder's Guide (FHWA/RD-86/098) can be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

Richard E. Hay

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

1. Report No.	2. Gavernment Accession No.	Technical Report Documentation Pa. 3. Recipient's Catalog No.
FHWA/RD-86/099	PB87 1344171AS	
4. Title end Subtitle		5. Report Date
Soil Stabilization for		May 1986
Volume 4 - Cost-Benef:	it Analysis	5. Performing Organization Code
		82-203
7. Author(s)		6. Performing Organization Report No.
	d Crowther, Golam Akhter	203.6
9. Performing Organization Name and Address	015	10. Werk Unit No. (TRAIS)
Sheladia Associates,		34B3-433
5711 Sarvis Avenue, 4		11. Contract or Grant No.
Riverdale, Maryland	20/3/	DTFH 61-81-C-00004
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Federal Highway Admin:	istration	Phase II - FINAL
Office of Engineering	& Hwy. Operations R & D	September 1982-May 1984
6300 Georgetown Pike	operation it a s	14. Spansoring Agency Code
McLean, Virginia 2210	01	
15. Supplementary Notes FHWA Project Manager	- Roger M. Larson (1	HNR-20)
16. Abstract		
tors, road engineers, booklets were develope stabilization treatmen	f this report are quide and road builders respected to provide information ts, i.e., lime, asphalt, on of low-volume roads.	ctively. These quide n on the use of four
the above referenced construction of low-verse analysis procedure for gravel surfaced road	erein, documents the use four soil stabilization to blume roads. A life cycle evaluation of pavement and chip and seal surfaced stabilization treatment	treatments used in the le costing economic alternatives, i.e

17. Key Words Cost-Benefit Analysis Low-Volume Roads Soil Stabilization Energy Demand Analysis

ing the level of an existing roadbed.

18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service Springfield, Virginia

19. Security Classif. (of this report)	20. Security Classif. (of this page)	21- No. of Pages	22. Price
Unclassified	Unclassified	63	

ity; to provide conservation of good quality aggregates; to provide uniform strength for widening an existing roadbed; and to avoid rais-

METRIC (SI*) CONVERSION FACTORS

	APPROXIMATE	E CONVERSION	ONS TO SI UNITS				APPROXIMATE C	ONVERSIO	NS TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol		Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH] .		23 = 20			LENGTH	-	
	·					mm	millimetres	0.039	inches	in
in	inches	2.54	millimetres	mm	- 2	m	metres	3.28	feet	ft
ft	feet	0.3048	metres	m		m	metres	1.09	yards	yd
yd mi	yards miles	0.914 1.61	metres kilometres	m km	* = 8	km	kilometres	0.621	miles	mi .
"""	IIIIIeə	1.01	Kilometree	N.II				AREA		
		AREA		`	11 11 12 13 14 15 15 15 15 15 15 15					
						mm²	millimetres squared	0.0016 10.764	square inches square feet	in² ft²
in²	square inches	645.2	millimetres squared	mm²		m²	metres squared	0.39	square miles	mi²
ft²	square feet	0.0929	metres squared	m²		km²	kilometres squared hectores (10 000 m²)	2.53	acres	ac
yď²	square yards	0.836	metres squared	m²		ha	nectores (10 000 III-)	2.55	acres	ac
mi²	square miles	2.59	kilometres squared	km²						
ac	acres	0.395	hectares	ha	====		MA	SS (weigl	<u>ht)</u>	
			•		5 = 5	g	grams	0.0353	ounces	oz
_:		MASS (weig	aht)			kg	kilograms	2.205	pounds	lb
		(3.50)				Mg	megagrams (1 000 kg)	1.103	short tons	T
oz	ounces	28.35	grams	g						
lb	pounds	0.454	kilograms	kg	* = = =		:	VOLUME		
T	short tons (2000) lb) 0.907	megagrams	Mg					 ;	
						mL	millilitres	0.034	fluid ounces	fl oz
		VOI 11845	· -		<u> </u>	L	litres	0.264	gallons	gal
		VOLUME				m³	metres cubed	35.315	cubic feet	ft³
fl oz	fluid ounces	29.57	millilitres	mL		m³	metres cubed	1.308	cubic yards	yd³
	gallons	3.785	litres	L						
gal ft³	cubic feet	0.0328	metres cubed	m₃.	₩ <u> </u>		TEMPE	RATURE	(exact)	
yd³	cubic yards	0.0765	metres cubed	m³						
	-				<u> </u>	°C	Celsius 9/5 (Fahrenheit	°F
NOTE: V	olumes greater that	n 1000 L snail be	e snown in mª.				temperature ad	ld 32)	temperature	
					71 11 11 11 11 11 11 11		°F 32 40 0 140	98.6 80 120	°F 212 160 200 l	
	TEM	PERATURE	(exact)				-40 -20 0	20 40 37	60 80 100 °C	
°F		5/9 (after	Celsius	°C						
	temperature	subtracting 32) temperature		1	These fac	ctors conform to the re	quirement of I	FHWA Order 5190.1	A.

^{*} SI is the symbol for the International System of Measurements

CONTENTS

VOLUME 4 - COST-BENEFIT ANALYSIS

	PAGE
LIST OF FIGURES AND TABLES	iv
INTRODUCTION	1
Background	1
Purpose	3
Scope of Work	3
Methodology	6
COST-BENEFIT ANALYSIS	9
General	9
Assumptions and Data Requirements	10
Illustrative Procedure	10
Comments	12
CASE HISTORIES	19
General Data	19
Construction Data	24
Maintenance Data	29
Energy Data	34
CONCLUSIONS	42
RECOMMENDATIONS	44
REFERENCES	45
APPENDIX: COMPOUND INTEREST FACTORS	47

LIST OF FIGURES AND TABLES

VOLUME 4 - COST-BENEFIT ANALYSIS

		PAGE
LIST OF FIG	GURES	
FIGURE 1 -	LOW-VOLUME ROADS DEFINITION	2
FIGURE 2 -	SIX CLIMATIC REGIONS IN THE UNITED STATES	
	FOR USE IN HIGHWAY TECHNOLOGY	4
FIGURE 3 -	LOCATION OF CASE HISTORIES	20
LIST OF TAE	BLES	
TABLE 1 -	PRESENT WORTH ANALYSIS OF ALTERNATIVES	13
TABLE 2 -	THICKNESS EQUIVALENCY VALUES	17
TABLE 3 -	GENERAL DATA FOR CASE HISTORIES	21
TABLE 4 -	CONSTRUCTION DATA FOR CASE HISTORIES	25
TABLE 5 -	MAINTENANCE DATA FOR CASE HISTORIES	30
TABLE 6 -	ENERGY DATA FOR CASE HISTORIES	35
TABLE 7 -	ENERGY ASSOCIATED WITH MANUFACTURING	38
TABLE 8 -	ENERGY ASSOCIATED WITH AGGREGATE PRODUCTION-	39
TABLE 9 -	ENERGY REQUIREMENTS FOR AUTOMOBILE AND	
	TRUCK OPERATION	40
TABLE 10 -	ENERGY REQUIREMENTS FOR MISCELLANEOUS	
	CONSTRUCTION OPERATIONS	41

INTRODUCTION

BACKGROUND

Over 70% of this country's road miles are unpaved. Most of these roads need to be upgraded either to satisfy user's demand or to reduce excessive maintenance costs. American Road Builders Association's Education and Information Guide titled "Materials for Stabilization" (Ref. 1) recommends the consideration of soil stabilization as a tool for economic roadbuilding, conservation of aggregates, investment protection, and roadway upgrading. Inspite of these and other favorable recommendations, the application of soil stabilization treatments has not gained widespread consideration for upgrading of low-volume roads. The definition of low-volume roads adopted for this study is shown in Figure 1.

To promote the consideration of soil stabilization treatments and to realize its benefits a two phase study was initiated. The Phase I study provided for the identification of soil stabilization treatments; development of statistical data from federal low-volume road agencies i.e. US Forest Service, National Park Service, Bureau of Indian Affairs, Bureau of Land Management; development of case situations; and administration of a five member advisory panel to provide input in the development of work plan for Phase II. A two day project review and progress session was held in November 1981. Reference 2 provides a brief report of this two day review session. The Phase I Final Report (Ref. 3) titled "Roadbed Soil Stabilization" was submitted to the Contract Manager in May 1982.

As a result of Phase I progress review session, the Phase II statement of work was finalized in August 1982 and Phase II study was initiated in September 1982. This document titled,

Low-Volume Roads Definition

Low-Volume Roads are Service Roads in a Particular Area

Designed and Constructed with Minimum Serviceability Requirements

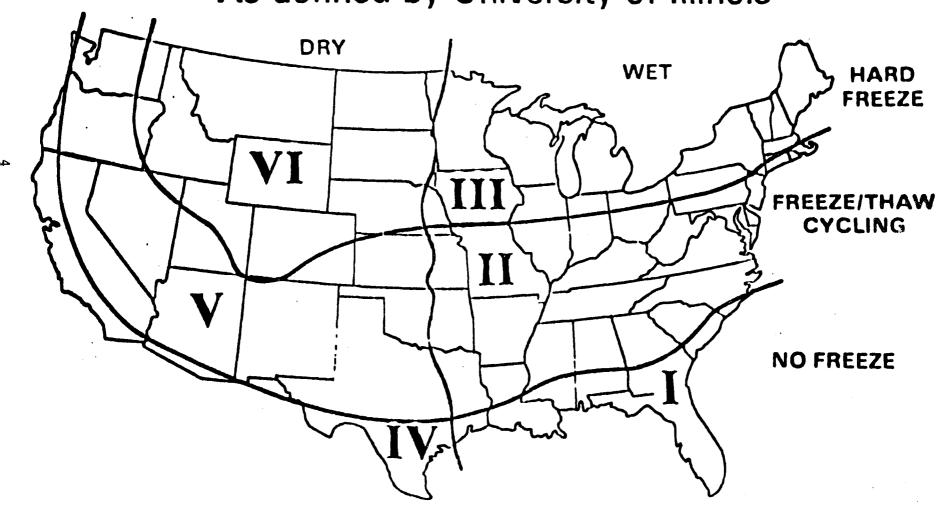
As Necessary and Sufficient to Enable All Vehicles Common to the Area

To Travel Unassisted and Safely with Reduced Priority for Speed and Comfort

"Volume 4 - Cost-Benefit Analysis" is one of four documents comprising the project Phase II Report. Volume 1 - Executive Summary, Volume 2 - Road Engineer's Guide, and Volume 3 - Road Builder's Guide are three separate documents representing the Phase II report.

PURPOSE

The cost-benefit analysis of low-volume road pavements with and without the condition of soil stabilization was to document the value received for expenditures made to stabilize roadway soils. The purpose of this analysis was to provide justification for the use (or non-use) of soil stabilization under specific climate and availability of materials.


SCOPE OF WORK

The scope of work for this study required accomplishment of the following tasks:

- 1. Case study selection and data collection for 24 potential case situations to represent four stabilization treatments (lime, asphalt, cement, and lime-fly ash) in each of six climatic regions and identification of equivalent nonstabilized road sections. The six climatic regions are shown in Figure 2.
- Conduct cost-benefit analysis of the selected case studies to document the value received for expenditures made to stabilize roadway soils.
- 3. Summarize cost-benefit analysis to provide justification for the use (or non-use) of soil stablization under specific climate and availability of materials.

SIX CLIMATIC REGIONS IN THE UNITED STATES FOR USE IN HIGHWAY TECHNOLOGY

As defined by University of Illinois

SIX CLIMATIC REGIONS IN THE UNITED STATES FOR USE IN HIGHWAY TECHNOLOGY

As defined by University of Illinois

	NO FREEZE	FREEZE/THAW CYCLING	HARD FREEZE	
WET	1	11	111	∫ Thornthwalte
DRY	IV	. V	VI .	Index = Zero

Freezing penetrates 5 inches

Freeze Index endures 60 days per year

- Development of detailed methodology to conduct economic analysis.
- 5. Development of energy consumption comparison for selected case situations with stabilization and equivalent pavement without stabilization.

METHODOLOGY

The study approach to develop potential case situations included review of available information compiled in Phase I. This review provided a basis to select eight states to represent six climatic regions and to cover four stabilization treatments (lime, asphalt, cement, and lime-fly ash). A listing of the selected states and corresponding climatic region is as follows:

<u>No</u> .	<u>State</u>	Climatic Region
	•	
1.	Florida	I
2.	Idaho	VI
3.	Illinois	II & III
4.	Iowa	III
5.	New York	III
6.	Oregon	V
7.	Texas	IV & V
8.	Virginia	II

All county as well state highway departments of the above listed eight states were surveyed for the use and non-use of soil stabilization treatments. This survey identifed almost all the case situations and reasons why soil stabilization was not used. Additional contacts included US Forest Service Region 6, National Lime Association, National Ash Association, Asphalt Institute, Portland Cement Association, Phase I study advisory

panel members, and some soil testing laboratories. In addition, several state, county and local highway officials were contacted to provide input with respect to the use of soil stabilization treatments and identification of local design standards for low-volume road pavements.

The project characteristics such as traffic, location, and type of treatment were screened to select localities for site visits. The site visits were coordinated with respective contact officials. The information collected from these site visits and interviews with road officials was catalogued to form the data base.

The current design practices whether rule of thumb designs or formal pavement design procedures utilize equivalency factors for various materials to develop pavement material options. American Association of State Highway and Transportation Officials (AASHTO) Interim Pavement Design Guide (Ref. 4) lists values of structural layer coefficients for various materials. Reference 5 (Design Guide for Secondary Road Pavements in Virginia) lists equivalent layer thicknesses for pavement materials including aggregates and soil stabilization treatments. Using local equivalency factors, the equivalent pavement design with full depth crushed aggregtes was developed for each of the case situation. The full depth crushed aggregate base course represented the pavement condition without stabilization. to generally high cost of full depth bituminous concrete or cement concrete, these pavement options were not considered in the analysis.

The life cycle costing criteria of comparing present worths was selected to document benefits of using soil stabilization treatments. This approach simply means that stabilization should be used when it results in the lowest present worth. The energy analysis was conducted by comparing the energy demand

required for pavement with and without stabilization. Reference 6 was used to calculate the energy demand for both conditions with and without stabilization.

Low-volume roads using soil stabilization treatments require some type of seal coat. For the most part one or more coats of chip and seal can provide satisfactory service. For the purposes of this report the equivalent pavement design without stabilization was assumed to be of full depth crushed aggregates or gravel base meeting specifications and having the same seal coat as the pavement with stabilization.

The low-volume unpaved or gravel surfaced roads may also provide satisfactory service for low traffic volumes. these gravel surfaced roads require seasonal grading, blading, and application of dust control agents. Regravelling is also required about every 2 to 4 years to replace gravel loss of approximately 1/2" to 1" per year. As traffic volume and intensity increase, the gravel surfaced roads generate more road users complaints such as dusting, flying stones, noise, poor riding quality, increased damage to vehicles and increased travel time. In addition, to provide safe and satisfactory service maintenance costs also increase. The excessive maintenance costs and road users' complaints can be eliminated by upgrading an unpaved road. The upgrading options for unpaved roads should consider the use of both pavement options with and without stabilization. An economic analysis excluding user costs should be conducted to identify the most cost effective approach. The data base does not contain case histories of earth or gravel surfaced roads, however, an economic analysis method is detailed to conduct such an analysis.

COST-BENEFIT ANALYSIS

GENERAL

The main objective of the cost-benefit analysis is to provide information with respect to cost-effectiveness of feasible options. It should be noted that the analysis solution is only a numerical quantity that is used as a tool in reaching the ultimate decision and is not the decision in itself.

For comparing cost-effectiveness of feasible pavement options, Reference 7 (Highway Engineering Economy) recommends four common methods for comparing economic worth of alternative proposals. These methods include:

- (1) Comparison of present worth of costs
- (2) Comparison of equivalent uniform annual costs
- (3) Ratio of annual benefit to annual cost
- (4) Rate of return on investment

The use of each method will lead to the selection of the same alternative as being the most advantageous economy-wise. These methods of analysis require the use of standard compound interest formulae to derive a solution. These formulae require the use of i (interest rate/period), n (analysis period), and cash flow disbursements throughout the analysis period.

The technique of comparing present worth of costs is the method selected for the purposes of this report. In this method the alternative having the minimum present worth is selected. The present worth represents the sum which would be required at the present date to finance all future outlays at their appropriate dates. The analysis period must be equal for all alternatives being considered.

ASSUMPTIONS AND DATA REQUIREMENTS

Values are estimated for the values of i, n, and cost components such as administration, construction, maintenance, and user costs. The administration and user costs for pavement options with and without stabilization are generally eliminated; i.e. these costs are assumed to be the same for both options. These costs are generally difficult to define. The interest rate can be estimated based on the probable rate of interest to be paid on long term borrowing by the concerned agency. this report, an i of 8% per year has beem assumed. The analysis period n is generally taken to be 20 years for paved roads. If present worth cost is to be computed only for gravel surfaced roads, the analyis period of 10 years may be considered more reasonable. The construction costs should be estimated based on prevailing unit prices for various materials, transportation, labor, and equipment costs. The maintenance costs for gravel surfaced roads should include grading, application of dust control, and regravelling to satisfy road serviceability requirements. The maintenance costs for chip and seal surfaced roads with or without soil stabilization should include chip and seal coat. The frequency of maintenance activities and its costs should be based on local experience.

ILLUSTRATIVE PROCEDURE

To illustrate the use of life cycle costing in the decision process, let's assume that three pavement alternatives A, B, and C have been developed for upgrading a one mile section of a gravel surfaced low-volume road. It is assumed that each alternative will provide a satisfactory service level for 20 years; user costs, administrative costs, and residual value are considered same in all alternatives and therefore not analyzed. It is assumed that for each alternative routine inspections, spot patching, grass mowing, shoulder and drainage improvements,

if required, will made during the 20-year life, and cost is considered same for all three alternatives. These costs are thus excluded from the analysis.

Alternative A, existing gravel surfaced road without stabilization, provides for no new improvement to the road. Under this alternative it is estimated that the road will require 2 inch compacted gravel to meet minimum serviceability requirements, six gradings per year, six applications of a dust control agent per year, and regravelling (2 inch compacted gravel) every 3 years.

Alternative B, chip and seal surfaced road with stabilization, provides for the upgrading of road by the use of 6 inch soil cement (in place mixing to a strength of 400 psi) and one layer of chip and seal coat. Soil cement is used for illustration only, the appropriate stabilization agent and its rate of application should be determined based on soil inspection and/or analysis. The estimated pavement maintenance includes application of a chip and seal coat every 5 years.

Alternative C, chip and seal surfaced road without stabilization, provides for the upgrading of road by the use of 6 inch depth specifications material of crushed aggregate base and one layer of chip and seal coat. The estimated pavement maintenance includes application of chip and seal coat every 5 years.

Having defined the feasible alternatives including construction and maintenance strategies, the next step is to estimate the appropriate values for i and n. For this illustration, i of 8% per year and n of 20 years have been used.

A summary of estimated costs for each alternative is now developed. The cost estimates, as a rule, should include construction, maintenance and other costs which will be required

to provide the desired service over the analysis period. The present worth analysis for alternatives is shown in Table 1A, 1B, and 1C. A summary of present worths for these alternatives is shown in Table 1D.

The equivalent pavement design for conditions with and without stabilization can be computed by using appropriate thickness equivalency values for materials under consideration. A general correlation of thickness equivalency values is shown in Table 2.

COMMENTS

Alternative B, chip and seal surfaced road with stabilization, has the least present worth of \$5.92/square yard (sy). During the 20-year analysis period, Alternative B would provide a net saving of \$1.75/sy (7.67-5.92) over Alternative A and \$1.55/sy (7.47-5.92) over Alternative C. These savings are in constant dollars for year of construction as the base year. For one mile long and 22' wide road section, the total net savings for Alterntive B are estimated to be approximately \$22,587.00 $(1.75 \times 5280 \times 22 \times 1/9)$.

Alternative B with stabilization also provides conservation of good quality aggregates. For one mile long and 22' wide section, the net savings in aggreagates are estimated to be approximately 4,000 tons when compared with Alternative C and approximately 10,000 tons when compared with Alternative A.

It should be noted that the present worths are sensitive to the value of i. It is suggested that this value should be carefully selected. It should never be zero. Those who believe that the money used for road improvements is not borrowed and thus i of 0% is justified do not realize the opportunity cost of

TABLE 1A

PRESENT WORTH ANALYSIS OF ALTERNATIVES

ALTERNATIVE A - EXISTING GRAVEL SURFACED ROAD WITHOUT STABILIZATION

CUST CLIMPONE	<u>ENT</u>			PER SUUARE YARD	,
1. Intitial Co	nstruction - Referenced ti	me perio	o	•	
1.2 Haui	el (2" compacted) @ source 25 miles @ \$0.10/mile/ton pulation			\$ 0.80 0.25 0.15	
Total	l initial construction cos	t or pre	sent worth		- 1.30
 Maintenance 	Activities				
2.2 Dust	ing 6 times per year @2.59 Control (optional) 6 time avelling (2° compacted) ev	s per yea	ar @ 2¢/application	0.15 0.12 1.20	
Calculations of	present worth or maintena	ince cost	<u>s</u>		
every year. The	e yearly cost to perform ?	2 and 2	dust control agent activities are performed .2 are assumed to be \$0.15 and \$0.12 per square med to be \$0.27 per square yard.	•	
The present work	th to perform annual appli	cation to	or n years is calculated as follows:		
PWM _n =	PDC times P/A				
where, HMM _{TI} =	Present Worth or annual or years in this illustration		ertoom annual maintenance for n years (n is 20		
PDC =	Present Lay Cost (at time	od const	truction)\$0.27 in this illustration.		
P/A =	Present worth Factor cota Table for 1=0% is used in		m appropriate interest rate table in Appendix. Justration.		
z	9.82 tram P/A calumn for	n=20 year	r ,		
The present wort	th to perform annual maint	enance to	or 20 years is:		
Pw#120 = 0.27 x 5	9.82 = 2.65		· · · · · · · · · · · · · · · · · · ·		2.65
every 1 years.			ing 2 inches of additional gravel is performed to Day Cost to perform this maintenance activity		
The present work	th to perform regravelling	every 3	years for n years is calculated as follows:		
PwM _n =	PDC times sum of P/F				
wnere, PWM _n =	Present worth of all main	itenance «	costs for n years (n is 20 years in this illust	ration)	
PLC =	Present Day Cost (at time 3 years = \$1.20 in this i		truction) of maintenance activity to be perform	ed every	
Sum of P/F =	Sum of P/F factors obtain calculated as follows:	es from 1	P/F column in Appendix for 1=8%. This sum is		
	Maintenance Performed in year (n value)	<u>P/F</u>			
	3	J.79			
	6 9	0.63 0.50			
	12	0.40			
	15 18	0.32 0.25			
	20*	J.21	(*) Regravelling is assumed to be performed		
	Sum of P/F =	3.10	in the 20th year instead or 21st year.		
The present work	th to perform maintenance	activity	2.3 tor 20 years is PAM ₂₀ = 1.20 x 3.10 =		3.72

Total present worth or construction and maintenance for 20 year period ---

TABLE 1B

PRESENT WORTH ANALYSIS OF ALTERNATIVES

(ALTERNATIVE B - CHIP AND SEAL SURFACED ROAD WITH STABILIZATION)

2. Maintenance Activity

2.1 Chip & seal coat every 5 years (item 1.3)

Calculation of present worth of maintenance costs

Sum of P/F

= Sum of P/F factors obtained from P/F column of appropriate interest rate table in Appendix for i=8% as shown below:

Maintenance Performed in	/		
year (n value)	P/F		
5	0.68		
10	0.46		
15	0.32		
20	0.21		
Sum of P/F =	1.67		

Present worth to perform maintenace activity 2.1 for 20 years is $PWM_{20} = 1.30 \times 1.67 = ------ 2.17$

Total present worth of construction and maintenance --- 5.92

TABLE 1C

PRESENT WORTH ANALYSIS OF ALTERNATIVES

(ALTERNATIVE C - CHIP AND SEAL SURFACED ROAD WITHOUT STABILIZATION)

COCT

cos	r com	PONENTS (PER SQUARE YARD)	
1.	Init	ial Construction - Referenced Time Period	
	1.2	Crushed Aggregates to site (6" compacted) \$ 2.75 Haul 25 miles @\$.10/ton/mile 0.75 Manipulation 0.50 Chip and Seal Coat 1.30	
		Total intial construction 5.30 cost or present worth	
2.	Main	tenance Activity	
	2.1	Chip & seal coat every 5 years (item 1.4)	
		Calculation of present worth of maintenance costs	
		Formula PWM _n = PDC times sum of P/F, where	
		PDC = 1.30 (item 1.4)	
		<pre>Sum of P/F = Sum of P/F factors obtained</pre>	
		Maintenance Performed in year (n value) P/F	

Present worth to perform Maintenance activity 2.1 for 20 years is $PWM_{20} = 1.30 \times 1.67 = ----- 2.17$

Sum P/F =

5

10

15 20 0.68 0.46

0.32

0.21

1.67

Total present worth of construcation and maintenance ---- 7.47

TABLE 1D

PRESENT WORTH ANALYSIS OF ALTERNATIVES

(SUMMARY)

	PRESENT WORTH FOR
ALTERNATIVE	i = 8%, n = 20 YEARS
A - Existing Gravel Surtaced Road	
Without Stabilization	7.67
B - Chip & Seal Surfaced Road	
with Stabilization	5.92
C - Chip and Seal Surtaced Road	
without Stabilization	7.47

TABLE 2

THICKNESS EQUIVALENCY VALUES

Based on review of literature and interviews with county and state highway agencies a general correlation for various materials presented in this booklet is as follows:

1)	Crushed Aggregate	1"
2)	Soil-lime, soil-cement, soil-asphalt, or soil-lime-Fly ash	1"
3)	Aggregate-asphalt or Aggregate-cement	1.5"* to 2.0"**
4)	Soil-Aggregate-lime-fly ash, Soil-Aggregate -Cement, or Soil-Aggregate-Asphalt	1.5"* to 2.0"**

^{*} Road Mix

NOTE: The thickness equivalency values varies depending upon the design strength of the mix and quality control during construction. The state highway design guides can be used to determine thickness equivalency values for materials used in developing pavement alternatives.

^{**}Plant Mix

using the money. One of the basic principles of economic analyses is a realization of the time value of money.

The impact of inflation has not been taken into account. The maintenance costs are likely to be higher if inflation is considered. From a comparison point of view, this should not substantially affect the outcome. Therefore, the economic analysis can be made using present day costs.

P/F and P/A values for interest rates 4% to 15% and for n values up to 20 years are included in the Appendix. P/F and P/A values for any particular i and n can also be calculated by the use of the following formulae.

$$\frac{P}{F} = \frac{1}{(1+i)^n} \quad \text{and} \quad \frac{P}{A} = \frac{(1+i)^n - 1}{i(1+i)^n}$$

For i = 8% per year and n = 20 years, P/F and P/A are computed as follows:

$$\frac{P}{F} = \frac{1}{(1+.08)^{20}} = 0.21 \text{ and } \frac{P}{A} = \frac{(1+.08)^{20} - 1}{.08(1+.08)^{20}} = 9.82$$

Using i = 8% table in the Appendix will also give the same values of P/F and P/A. It should be noted that to simplify calculations these values can be rounded off to two decimal places.

CASE HISTORIES

GENERAL DATA

Figure 3 shows the location, climatic region, and the stabilization agent for 24 case histories. These case histories document the nationwide use of four commonly used stabilizers (lime, asphalt, cement, and lime-fly ash) in the construction of low-volume roads. In addition, the use of cement-fly ash is also documented.

Consideration of about 50 possible sites plus information obtained during the site visits was necessary to provide a better understanding and distribution of case histories. Lime-fly ash projects in Texas and Virginia were built for experimental purposes. Due to the limited use of lime-fly ash, these projects have been considered for documentation. Some states in the climatic Region VI indicated no use of soil stabilization treatments. This probably was due to the abundance of aggregates as well as long periods of freezing temperatures. Several jurisdictions have used both calicum chloride and magnesium chloride as stabilization agents. These materials can also be used as dust control agents on earth or gravel surfaced roads.

The general data of case histories is presented in Table 3. This table shows project title, location, designer, builder, climatic region, and type of soil stabilization treatment used for base and/or subbase. In addition, the source of project funding is also indicated. The percentage of aggregates, in the pavement design as-built, was estimated based on discussions with contact officials.

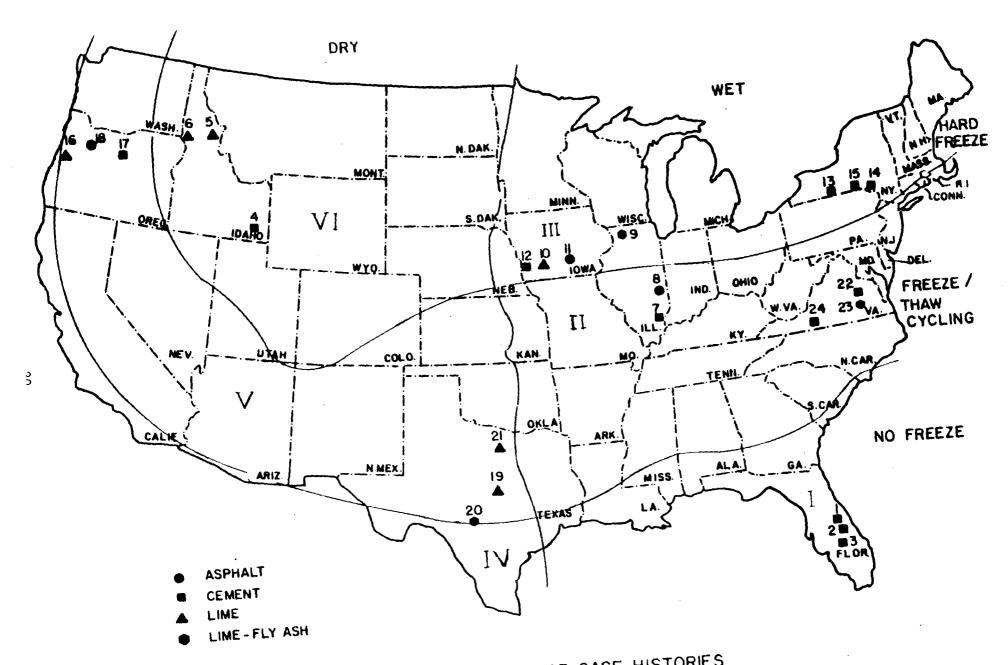


FIGURE 3 LOCATION OF CASE HISTORIES

TABLE 3

GENERAL DATA FOR CASE HISTORIES

CASE HISTORY	TITLE AND LOCATION	DESIGNED BY	BUILT BY	SOURCE OF FUNDING	CLIMATIC REGION	BASE/SUBBASE TREATMENT
l. FL.	Boyce Avenue, Orange County, Floria	Consultant	Contractor	County	Wet-No Freeze (I)	Soil-Cement (5%)
2. FL	Columbia Avenue, Osceola County, Florida	Consultant	County	County	Wet-No Freeze (I)	Soil-Cement (12%)
3. FL	SW 10th Street, Okeechobee, Florida	State	County	County	Wet-No Freeze (I)	Aggregate-Cement (7%)
4. ID	Siphon Road, Bannock County, Idaho	County	County	County	Dry-Hard Freeze (VI)	Soil-Aggregate- Cement (60%, 5%)
5. ID	State Highway No. 8, Clearwater County, Idaho	State	Contractor	Federal(84%) State (16%)	Dry-Hard Freeze (VI)	Soil-Aggregate- Lime (25%, 2%)
6. ID	State Highway No. 7, Nez Perce County, Idaho	State	Contractor	Federal(84%) State (16%)	Dry-Hard Freeze (VI)	Soil-Aggregate- Lime (25%, 4%)
7. IL	County Rt. 29, White County, Illinois	County	County	County	Wet-Freeze Thaw (II)	Soil-Aggregate- Cement (15%, 10%)
8. IL	County Rt. 1, Vermillion County, Illinois	County	Contractor	County	Wet-Freeze Thaw (II)	Aggregate-Asphalt (4%-Recycled)
9. IL	Rose Street, Stephenson County, Illinois	Consultant	County	County	Wet-Hard Freeze (III)	Soil-Aggregate-Lime Fly Ash (20%, 4%, 12%) (Kef. 8)
10. IA	County Rt. G-61, Adair County, Iowa	State	Contractor	State(80%) County(20%)	Wet-Hard Freeze (III)	Soil-Lime (4%, Subbase)
ll. IA	County Rt. F-46, Poweshiek County, Iowa	County	Contractor	State(80%) County(20%)	Wet-Hard Freeze (III)	Aggregate-Asphalt (4% - Recycled)

TABLE 3 (CONTD.)

GENERAL DATA FOR CASE HISTORIES

CASE HISTORY	TITLE AND LOCATION	DESIGNED BY	BUILT BY	SOURCE OF FUNDING	CLIMATIC . REGION	BASE/SUBBASE TREATMENT
12. IA	Mud Hollow Road, Pottawattamie County, Iowa	County	County	County	Wet-Hard Freeze (III)	Soil-Aggregate- Cement - Fly Ash
13. NY	County Rt. 42, Steuben County, New York	Consultant	Contractor	County	Wet-Hard Freeze (III)	Soil-Aggregate-Cement (15%, 9%)
14. NY	County Rt. 67, Delaware County, New York	County	County	County	Wet-Hard Freeze (III)	Aggregate-Cement (6%)
15. NY	County Rt. 514, Broome County, New York	County	County	County	Wet-Hard Freeze (III)	Soil-Aggregate-Cement (15%, 6%)
16. OR	Airport Avenue, Benton County, Oregon	County	Contractor	Federal(80%) County (20%)	Dry-No Freeze (V)	Soil-Lime (4%) (Sub-Base)
17. OR	Service CreekMitchell Highway (from Richmond Jct. to Girds Creek), Wheeler County, Oregon	State	Contractor	State	Dry-No Freeze (V)	Aggregate-Cement (7%)
18.	Route No. 42, Mt. Hood National Forest, Oregon	U.S. Forest Service	Contractor	U.S. Forest Service	Dry-No Freeze (V)	Aggregate-Asphalt Emulsion (7%) (Two layers (Ref. 9)
19. TX	Rowe Lane, Travis County, Texas	County	County	County	Dry-No Freeze (V)	Soil-Aggregate-Lime (80%, 5%) (Ref. 10)
20. TX	State Rt. FM 1604, Bexar County, Texas	State	Contractor	State	Dry-No Freeze (IV)	Soil-Lime-Fly Ash (3%, 10%)
21. TX	Mercedes St., City of Bennbrook, Texas	Consultant	Contractor	City	Dry-No Freeze (V)	Soil-Lime (5%) (Subbase)

TABLE 3 (CONTD.)

GENERAL DATA FOR CASE HISTORIES

CASE HISTURY	TITLE AND LOCATION	DESIGNED BY	BUILT BY	SOURCE OF FUNDING	CLIMATIC · REGION	BASE/SUBBASE TREATMENT
22. VA	State Rt. 721, King & Queen County, Virginia	State	Contractor	State	Wet-Freeze/ Thaw (II)	Soil-Cement (8%) (Subbase)
23. VA	State Rt. 641, Isle of Wight County, Virginia	State	Contractor	State	Wet-Freeze/ Thaw (II)	Soil-Lime-Fly Ash (5%, 10%) (Ref. 11)
24. VA	State Rt. 1821, Roanoke County, Virginia	State	Contractor	State	Wet-Freeze/ Thaw (II)	Aggregate-Cement (5%)

CONSTRUCTION DATA

Table 4 shows the construction data for case histories. This table also shows key project characteristics; i.e., traffic volume, design as-built, and construction cost/square yard. cost is shown both for the time of construction and at present The equivalent pavement design without stabilization (Column 10) was computed based on thickness equivalency values for full depth specifications material crushed aggregates. estimated construction cost of crushed aggregates and equivalent design is also shown both for the time of construction and at present (1983). The amount of money saved by using soil stabilization treatment for the study sections is shown in Column 13 and 14, for the prices for the year of construction and those for 1983 respectively. This saving was computed by comparing the cost of pavement with and without stabilization. The analysis indicate that soil stabilization treatments for the documented case histories (except No. 12, 13, and 18), on the average, saved over \$22,000/mile using 1983 prices. For case histories -- No. 12 (in Iowa), No. 13 (in New York), and No. 18 (in Oregon) -- soil stabilization treatments were not found to be cost effective. These three case histories, however, documents the consideration of soil stabilization treatments for the following reasons:

- 1. To improve frost susceptibility of the base courses;
- 2. To provide uniform strength to the base course for widening both sides of an existing road;
- 3. To avoid raising the level of an existing roadbed; and
- 4. To conserve large quantities of good quality aggregates.

The performance (Column 15) is based on visual observations and interview with contact officials.

TABLE 4

CONSTRUCTION DATA FOR CASE HISTORIES

		YEAR	LENGTH	HIOTH	1	PAVEMENT W	1 TH		PAVEM	ENT		[
CASE	PROJECT	OF	IN	IH I		STABILIZAT	ION		WITHOUT STAI	BILIZATION		BENEFI	TS OF	
HISTORY	TYPE	CONST.	MILE	FI,	ADT							STABIL	IZATION	
				1	(1982-83)		COST/SY	[COST/SY		WITH YEAR	WITH	
l i		İ	Ì	İ		DESIGN (AS-BUILT)	(YEAR OF	COST/SY	EQUIVALENT DESIGN	(YEAR OF	COST/SY		1983	PERFORMANCE
		•	1	j			CONST.)	(1983)		CONST.)	(1983)	PRICES	PRICES	
	2	-3-		3_	6		88	 	10	!!	12	13	14	15
! . !	Rurel	1982	0.140	201	400	I" A.C.	\$2,13	\$3,00	1# A.C.	\$2,13	\$5.00			Excelient
FL	Residen-	1707	0.140	29.		6" Soil-Coment"	2,92	4.00	6" Crushed Aggregate	5.25	6.75	\$ 3,827	\$ 4,517	CACALIANI
! "	t fai		1	1	(10) ITUCKS	(5,5\$)	2,72	1.00	(Haul = 50 miles)	3.23	1 6.77	, 5,027	* *,) ' '	
!		1				300 ps l in 7 days	!		(1.00) = 20 m(100)					
			1					1			·			
2	Farm to	1983	0.304	201	750	1" A.C.	1.10	1.10	1" A.C.	1.10	1.10	1		Excellent
FL	Market	l	ì	Ì	(7\$ Trucks)	6" Soll-Cement"	5.20	5,20	6 th Crushed Aggregate	7.00	7.00	10,645	10,645	
		 				(125)		.	(Haut = 80 mlies)		<u> </u>			
! . !	Urben	1972	0,750	201	500	1-1/4" A.C.	1,58	2.36	1-1/4"					™falr"
PL PL	Res Iden -	19/2	0.750	٠. بو٠	(20\$ Trucks)	6-1/2" Aggregate-	1,00	2.33	12" Appregate (Loca)	1.58 J.10	2.36	800	1, 144	Heavy Crecking et
1 "	t is i		l	l	(10) Huckey	coment* (7\$)	1.00	1 ***	Shell Pit)	7.10	*****		', '44	Surface, No Bese
1	, ,,,,	1	1			(from county shell		1	(Haul = 2 miles)			1		fallure
		1	1	1		plt)		I	(20.		1	1		10
		<u> </u>		<u> </u>		(400 ps in 7 days)								
		ŀ	ł					1						
4	Ferm to	1976	0.800	241	400	2ª A.C. (Road Mix)	2.50	2,60	2" A.C. (Road Mix)	2.50	2.80)		Excellent
ID	Market]	•	!	(20\$ Trucks)	6" Soll-Aggregate-	1.61	2,60	8 ^m Crushed Aggregate	1.92	3,00	1,259	2,253	
!		1	1	1		Cement * (60%, 5%)		1	(Heul - 8 miles)					
 				} -				1			 			
9		1957	2,500	261	350	3-1/2" A.C.	1,00	3.94	3" A.C.	1.00	3.94			Excellent
10	Commercial	ł	}	i -	(15% Trucks)	6" Crushed Aggregate	0.61	2,50	6º Crushod Aggregate	0,61	2.50			
i I		}	1	}		12" Soll-Aggregate-	0.74	3.25	12" Crushed Aggregate	1.22	5,00	10,505	66,733	
ļ		 	ļ	 	<u> </u>	Lime* (25%, 2%)	· · · · · · · · · · · · · · · · · · ·	 	(Haut = 5 miles)		<u> </u>			
				1				1						
6	Commercial	1973	4.740	241	190	2-1/2" A.C. (Road	0,87	3,20	2-1/2" A.C. (Road Mix)	0.07	3.20]		Excellent
10		!	l .	1	(35% Trucks)	Mlx) 6" Crushed Aggre~	0,98	2.50	6" Crushed Aggregate	0.00	2 50	i i		
			1	1		o" Crushed Aggre~	0.70	2.30	o" Grusned Aggregate	0.98	2,50	<u> </u>		
				1		84 Soll-Aggregate-	1,23	3.00	8" Crushed Aggregate	1,31	3.33	5, 339	22 014	
		Į	ţ	1		Lime*(25\$, 4\$)		1	(Haul = 5 miles)	1, 31	1 ,,,,	7, 377	22,034	
					·	1-1	·				<u> </u>		l	L

Roed Mix; "Plent Mix

TABLE 4 (CONT'D)

CONSTRUCTION DATA FOR CASE HISTORIES

CASE HISTORY	PROJECT TYPE	YEAR OF CONST.	LENGTH IN MILE	WIDTH IN FT.	ADT	PAVEMENT WITH PAVEMENT STABILIZATION WITHOUT STABILIZATION					BENEFI STABIL	TS OF		
					(1982 -8 3)	DESIGN (AS-BUILT)	COST/SY (YEAR OF CONST.)	COST/SY (1983)		COST/SY (YEAR OF CONST.)	COST/SY (1983)	WITH YEAR OF CONST. PRICES	WITH 1983 PRICES	PERFORMANCE
<u> </u>	2	3	1 1	5	6	7		9	10	11	12	13	14	15
7 7 IL	farm to Market	1961	6.500	201	300 (10≸ Trucks)	Double Chip & Seal 7" Soll-Aggregate- Cement=(15%, 10%)	\$0,20 0,80	\$1.00	Double Chip & Seel 7" Crushed Aggregate (Haul = 60 miles)	\$0.20 1.42	\$1.00 4.86	\$ 47,285	\$218, \$23	Excellent
8 HL	Farm to Market and Commercial	1982	4,250	201	325 (15\$ Trucks)	Chip & Seal 4" Aggregate— Asphalt**(4% — Recycled) 3" Aggregate (in Place)	0.88 3.03	0.88 2.62	Chip & Seal 8" Crushed Aggregate (Haul = 52 miles) 3" Aggregate (In Place)	0.88 3.84	0.83 5.06	40,392	121,675	Excellent
9 IL	Urban Residen- † lai	1982	0.336	221	750 (15≸ Trucks)	Chip & Seai 6" Soli-Aggregate- Lime-Fly Ash** (20%, 4%, 12%)	0.85 1.93	0.85	Chip & Seal 12" Crushed Aggregate (Haul = 40 miles)	0.85 2.02	0.85	390	1,257	Excellent
10 IA	farm to Market	1963	5.800	22 '	500 (15≴ Trucks)	2" A.C. 6" A.C. 4" Soli-Lime*(4.78≸)	0.57 1.54 0.19	3.10 6.90 0.85	2" A.C. 6" A.C. 4" Crushed Aggregate (Haul = 20 miles)	0.57 1.54 0.61	3.10 6.90 1.42	31,441	42,669	Excellent
11 1A	Farm to Market	1977	7,250	241	350 (5% Trucks)	l" A.C. 4" Aggregate- Asphalt ^{en} (4% Recycled)	1.41 2.59	1.84	1" A.C. 8" Crushed Aggregate (Haul = 14 miles)	1.41 2.49	1.84	- 16,333 (See Note 1)	- 154,14Q	Excellent
12 1A	Urban Residen- tial	19 79	0.208	241	545 (9\$ Trucks)	Double Chip & Seel 6" Soil Aggregate- Cement Fly Ash* (20\$, 3\$, 13\$)	0.57 1.95	0.53 4.10	Double Chip & Seni 9" Crushed Aggregate (Haul = 8 miles)	0.57 2.91	0.53 3.20	2,811	- 2,636	Good

Note 1: Stabilization improved frost susceptibility of the base course

"Road Mix; ""Plant Mix

TABLE 4 (CONTD.)

CONSTRUCTION DATA FOR CASE HISTORIES

CASE HISTORY	PROJECT TYPE	YEAR OF CONST.	LENGTH IN MILE	WIDTH IN FT.	ADT	PAVEMENT W STABILIZAT	ION		PAVEME WITHOUT STAE	BILIZATION		BEŅEFIT STABILI	ZATION	
					(1982-83)	DESIGN (AS-BUILT)	COST/SY (YEAR OF CONST.)	COST/SY (1983)		COST/SY (YEAR OF CONST.)	COST/SY (1983)	PRICES	WITH 1983 PRICES	PERFORMANCE
	2	3	4	5	6	<u> </u>	<u></u>	1 9	10	11	12	13	14	15
13 N7	farm 10 Market	1980	1.570	18'	436 (15% Trucks)	Chip & Seci 6" Soli-Aggregate- Cement ^{ee} (15%, 9%)	\$0.57 3.72	\$0.80 5,36	Chip & Seal 12" Crushod Aggregate (Haul = 2 miles)	\$0.57 2.62	\$0.80 3.57	5-18,237 (See Note 2)	\$-29,677	Good
14 NY	Farm to Market	1967	2,620	18'	365 (10\$ Trucks)	Chip & Seal 6" Aggregate-Cement" (6\$)	0.11 1,26	0.75 3.78	Single Chip & Seal 9" Crushed Aggregate	0.1)	0.75	9,960	-28,497	Good
						3 ⁿ Aggregate	0.29	0.87	34 Aggregate (Haul = 35 miles)	0.29	0.87			
15 Nr	farm to Market	1981	0.910	201	500 (5% Trucks)	1~1/2" A.C. (Road Mix)	1,56	1.56	1-1/2" A.C. (Road Hix)	1.56	1.56	5,552	-37,691	Excellent
						7# Soll-Aggregate- Coment** (15%, 6.6%)	6,50	7.80	14" Crushed Aggregate (Haul = 10 miles)	7.02	4.27			·
16 OR	Commerc fel	1963	1,325	241	336 (30\$ Trucks)	4" A.C. 4-1/2" Aggregate	6.00 1.82	6,00 1,82	4m A.C. 4m1/2m Crushed Aggr.	6.00 1.82	6.00	18,656	18,6%	Excellent
 						8" So 11 -L Ime " (4\$)	2,24	2.24	8" Crushed Aggregate (Haul = 6 miles)	3.24	3,24	! L		
17 08	Farm to Market and	1977	3.340	 28' 	100 (35\$ Trucks)	Chip & Seal (Four Coats)	1,20	1,32	Chip & Seat (Four Coats)	1,20	1,32	2,743	3,841	Excellent
	Commercial		İ İ		<u> </u>	10" Aggregate- Cement ^{es} (7≸)	4,95	5,24	14 ⁿ Crushed Aggregate (Haul = 15 miles)	5.00	5,31			
18 OR	Forest Service	1970	9,00	241	250 (20\$ Trucks)	4"A.C. 3" Aggregate- 1 Asphait-Emul-	1.68 1.21	4,62 1,64	4 ^m A.C. 14 ^m Crushed Aggreegate	1.68 2,72	4.62 15.04	-12,672	430,846	Excellent
		 	 			Asphair tmu! slon** (7\$) 4" Aggregate Asphair Emu! slon** (6\$)	1.61	6.65	(Haul > 65 miles)			(See Noto 3)		•

*Road Mix; **Plant Mix

NOTE 2: Stabilization was selected: (1) due to widening of both sides of an existing road to provide uniform strength to base course, and (2) to improve frost susceptibility of existing road base. NOTE 3: Stabilization was selected to avoid raising the level of existing roadbed and to conserve approximately 45,000 tons of good quality aggregate.

TABLE 4 (CONTD.)

CONSTRUCTION DATA FOR CASE HISTORIES

i		YEAR	LENGTH	WIDTH		PAVEMENT W	I TH		PAVEH	r MT		ĺ		
CASE	PROJECT	OF	IN	IN		STABILIZAT	ION	WITHOUT STABILIZATION INITIAL COST SA				ST SAVINGS		
HISTORY	TYPE	CONST.	MILE	FT.	ADT							WITH STABL	LIZATION	
i	i				(1982-831		COST/SY		EQUIVALENT TESIGN	CO51/5Y	Ĭ	WITH YEAR	WITH	
i						DESIGN (AS-BUILT)	(YEAR OF	COST/SY		IYEAR OF	COST/SY	OF CONST.	1983	PERFORMANCE
i				i	i		COMST.)	(1983)	•	CONST.)	(1983)	PRICES	PRICES	
	2	3		3	6	, ,		<u> </u>	10		1 12	13	. 14	15
,,	Farm to	1983	1,050	24'	210	Double Chip & Seel	\$1.40	\$1,40	Double Chip & Seel	5 1,40	1 51.40			
TX I	Market	(1901	1,050	24'	(10\$ Trucks)	4ª Crushed Aggregate	1.05	1,05	4" Crushed Aggregate	1.85	1.85	\$47,309	\$47,309	Excellent
'^ !	Mer Ner				(10g Ilocks)	6" Soll-AggrLime"	1.65	1.65	6" Crushed Aggregate	4.85	4.85	,,	,507	
- !		!				(80\$, 5\$)	1.07	1,05	(Haul = 20 miles)	4.07	1	!		
<u>†</u>		 	ļ ———			1009, 297			(1001 - 10 miles)					
20	Ferm to	1979	6.570	241	540	Double Chip & Seel	1,00	1,10	Double Chip & Seel	1,00	1.10			•
TX i	Market	i		1	(5\$ Trucks)	10" Crushed Aggre-	3,03	4,44	10" Crushed Aggregate	3,03	4.44	18,501	61,979	Excellent
i	1	i	i			gete				1	1			,
į						6" Soll-Lime-Fly Ash®	1.60	2,00	6 ^m Crushed Aggregate	1,82	2,67			
		i .	i :			(34, 104)		1	(Heul = 20 miles)	_	j	j		
	·	i	i					i				i		
21	Urben	1982	0, 237	441		2" A.C.	2,90	2,90	24 A.C.	2,90	2.90	İ		Excellent
TX j	Res ident let	İ	j	j	1000	4" A.C.	5.80	5,80	4" A.C.	5,60	5,80	j		
			İ		(5\$ Trucks)	8" So 11 -L Imp " (5\$)	2.11	2,11	8" Crushed Aggregate (Heul = 50 miles)	3,97	3,97	11,379	11,379	
22	Commercial	1982	1,724	221	821	Double Chip & Seal	1,27	1,27	Double Chip & Seal	1,27	1,27			Excellent
VA		1	1	ļ 	(25% Trucks)	4" Aggregate	1,65	1,65	4ª Aggregate	1.65	1,65	44.502	44,502	CACOTTON
		ľ	ľ	i		6" So II -Coment "	2,13	2,13	10" Crushed Aggregate	4,13	4.13	44,502	14,50.	
			<u> </u>			(8\$)			(Heul = 55 mlles)					
23	Ferm to	1958	0.060	221	650	Double Chip & Seal	0.20	1.38	Double Chip & Seel	0,20	1.38			
YA	Ferm to Market	1 979	0.000	' ''	(55 Trucks)	6" Soll-Lime-Fly	1.48	2.26	9" Crushed Aggregate	2.07	5,47	457	3.486	
·"	PG/ PS/	1	1	}	() Hucks,	Ash* (5%, 10%)	1.40	2.20	(Haul = 150 mlies)	2.07	3.47	437	2,486	Excellent
		1	 			1564 1564			1.00 miles)		1			
24	Urban	1973	0.430	221	1000	1-1/2" A.C.	0,61	1.17	1-1/2" A.C.	0.61	1,17			
YA	Res Ident la			-	(5\$ Trucks)	6" Aggregate-	1.41	2,62	12" Crushed Aggregate (Haut = 10 miles)	2.00	5,45	3,274	. 3, 385	Excellent

"Road Hiss "Plant His

MAINTENANCE DATA

The maintenance data of case hisotries is shown in Table 5. Column 4 of this table presents maintenance criteria for each case history. This maintenance criteria, for the most part, is anticipated maintenance, for the next 20 years (analysis period for present worth analysis). The maintenance cost is shown in Columns 5 and 6 for both the year of construction and for 1983. The present worth for the cost of maintenance for the 20 year analysis period has been computed by using an interest rate of 8% per year. The computed value of present worth of maintenance costs is shown in Column 7. The maintenance critera of the equivalent pavement design with stabilization is assumed to be the same and is not shown in Table 4. At present the maintenance practices do not account for different maintenance criteria for pavement with or without stabilization. This practice coupled with the use of thickness equivalency factors for various materials allows the decision maker to make decision based on the least first cost. However, first cost criteria must not be used when evaluating pavement options which have different maintenance criteria.

TABLE 5

MAINTENANCE DATA FOR CASE HISTORIES

	15.40	PAVEMENT WITH		MAINTENANCE COS	PRESENT	
CASE HISTORY 1	YEAR OF CONSTRUCTION 2	STABILIZATION (AS BUILT) 3	MAINTEN AN CE CRITERIA 4	YEAR OF CONSTRUCTION PRICES 5	1983 PRICES 6	WORTH ('83 BASIS) 7
1 FL	1982	<pre>1" A.C. 6" Soil-Cement* (5.5%)</pre>	1" A.C. Overlay every 15 years	\$ 2.13	\$ 3.00	\$ 1.15
2 FL	1983	<pre>1" A.C. 6" Soil-Cement* (12%)</pre>	1" A.C. Overlay every 15 years	1.10	., 1.10	0.43
3 FL	1972	1-1/4" A.C. 6-1/2" Aggregate- Cement* (7%)	1-1/4" A.C. Overlay every 15 years	1.58	2.36	0.91
4 I D	1978	2" A.C. (Road Mix) 6" Soil-Aggregate- Cement* (60%, 5%)	Chip & Seal every 7 years	0.40	0.50	0.57
5 ID	1967	3-1/2" A.C. 6" Crushed Aggregate 12" Soil-Aggregate- Lime (25%, 4%)	Chip & Seal every 15 years	0.26	0.50	0.19
6 ID	1973	2-1/2 A.C. (Road Mix) 6" Crushed Aggregate 8" Soil-Aggregate- Lime* (25%, 4%)	Chip & Seal every 12 years	0.26	0.50	0.27
7 IL *Road Mix **Plant Mi:		Double Chip & Seal 7" Soil-Aggregate- Cements* (15%, 10%)	Chip & Seal every 10 years	0.10	0.50	U.34

TABLE 5 (CONTD.) MAINTENANCE DATA FOR CASE HISTORIES

	PAVEMENT WITH		PRESENT		
YEAR OF CONSTRUCTION 2	STABILIZATION (AS BUILT) 3	MAINTEN AN CE CRITERIA 4	YEAR OF CONSTRUCTION PRICES 5	1983 PRICES 6	WORTH ('83 BASIS) 7
1982	Chip & Seal 4" Aggregate-Asphalt** (4%-Recycled) 3" Crushed Aggregate	Chip & Seal every 10 years	\$ 0.88	\$ 0.88	\$ 0.60
1982	Chip & Seal 6" Soil-Aggreyate- Lime-Fly Ash** (20%, 4%, 12%)	Chip & Seal Every 4 years	0.85	0.85	1.85
1963	2" A.C. 6" A.C. 4" Soil-Lime* (4.78%)	Chip & Seal every 12 years	U . 20	0.93	0.50
1977	l" A.C. 4" Aggregate-Asphalt** (4%-Recycled)	1" A.C. overlay every 10 years	1.37	1.79	1.21
1979	Double Chip & Seal 6" Soil-Aggregate- Cement-Fly Ash* (20%, 3%, 13%)	Chip & Seal every 10 years	0.57	U . 66	0.45
1980	Chip & Seal 6" Soil-Aggregate- Cement** (15%, 9%)	Chip & Seal every 5 years	0.57	0.80	1.34
1967	Chip & Seal 6" Aggregate-Cement* (6%)	Chip Seal every 4 years	0.11	0.75	1.67
	1982 1982 1977 1979	YEAR OF CONSTRUCTION (AS BUILT) 2 1982 Chip & Seal 4" Aggregate-Asphalt** (4%-Recycled) 3" Crushed Aggregate Chip & Seal 6" Soil-Aggreyate- Lime-Fly Ash** (20%, 4%, 12%) 1963 2" A.C. 6" A.C. 4" Soil-Lime* (4.78%) 1977 1" A.C. 4" Aggregate-Asphalt** (4%-Recycled) 1979 Double Chip & Seal 6" Soil-Aggregate- Cement-Fly Ash* (20%, 3%, 13%) 1980 Chip & Seal 6" Soil-Aggregate- Cement** (15%, 9%) 1967 Chip & Seal 6" Aggregate-Cement* (6%)	YEAR OF CONSTRUCTION (AS BUILT) 2 1982 Chip & Seal 4 " Aggregate-Asphalt** (4%-Recycled) 3 " Crushed Aggregate 1982 Chip & Seal 6 " Soil-Aggregate- Lime-Fly Ash** (20%, 4%, 12%) 1963 2 " A.C. 6 " A.C. 4 " Soil-Lime* (4.78%) 1977 1 " A.C. 4 " Aggregate-Asphalt** (4%-Recycled) 1979 Double Chip & Seal 6 " Soil-Aggregate- Cement-Fly Ash* (20%, 3%, 13%) 1980 Chip & Seal 6 " Soil-Aggregate- Cement** (15%, 9%) 1967 Chip & Seal 6 " Aggregate-Cement* (6%) Chip Seal every 4 years Chip & Seal every 5 years Chip & Seal every 6 " Soil-Aggregate- Cement** (15%, 9%) Chip & Seal every 4 years Chip & Seal every 5 years Chip & Seal every 6 " Aggregate-Cement* (6%)	YEAR OF CONSTRUCTION (AS BUILT) 1982 Chip & Seal 4" Aggregate-Asphalt** (4%-Recycled) 3" Crushed Aggregate Lime-Fly Ash** (20%, 4%, 12%) 1963 2" A.C. 4" Soil-Lime* (4.78%) 1977 1" A.C. 4" Aggregate-Asphalt** (4%-Recycled) 1979 Double Chip & Seal 6" Soil-Aggregate-Cement** (20%, 3%, 13%) 1980 Chip & Seal Chip & Seal every 4 years Chip & Seal every 10 years	YEAR OF CONSTRUCTION

^{**}Plant Mix

TABLE 5 (CONTD.)

MAINTENANCE DATA FOR CASE HISTORIES

		PAVEMENT WITH	MAINTENANCE COS	PRESENT		
CASE HISTORY	YEAR OF CONSTRUCTION 2	STABILIZATION (AS BUILT) 3	MAINTEN AN CE CRITERIA 4	YEAR OF CONSTRUCTION PRICES 5	1983 PRICES 6	WORTH ('83 BASIS) 7
15 NY	1981	1-1/2" A.C. (Road Mix) 7" Soil-Aggregate- Cement** (15%, 6.6%)	Chip & Seal every 5 years	\$ 0.6 8	\$ 0.85	\$ 1.42
16 OR	1983	4" A.C. 4-1/2" Agyregate 8" Soil-Lime* (4%)	1-1/2" A.C. Overlay every 15 years	2.25	2.25	U . 87
17 OR	1977	Chip & Seal (4 Coats) 10" Aggregate- Cement** (7%)	Double Chip and Seal every 10 years	0.60	0.80	U.54
18 OR	1970	4" A.C. 3" Aggregate-Asphalt (Emulsion)** (7%) 4" Aggregate-Asphalt (Emulsion** (6%)	Chip & Seal every 12 years	0.21	0.42	0.23
19 TX	1983	Double Chip & Seal 4" Crushed Aggregate 6" Soil-Aggregate- Lime* (80%, 5%)	Chip & Seal every 12 years	0.70	0.70	0.38
20 TX	1979	Double Chip & Seal 10" Crushed Aggregate 6" Soil-Lime-Fly Ash* (3%, 10%)	Chip & Seal every 8 years	0.50	0.55	0.52

^{*}Road Mix **Plant Mix

TABLE 5 (CONTD.)

MAINTENANCE DATA OF CASE HISTORIES

		PAVEMENT WITH		MAINTENANCE COS	T/SY	PRESENT
CASE HISTORY 1	YEAR OF CONSTRUCTION 2	STABILIZATION (AS BUILT) 3	MAINTEN AN CE CRITERIA 4	YEAR OF CONSTRUCTION PRICES 5	1983 PRICES 6	WURTH ('83 BASIS) 7
21 TX	1982	2" A.C. 4" A.C. 8" Soil-Lime* (5%)	Chip & Seal every 6 years	0.77	U.77	1.15
22 V A	1982	Double Chip & Seal 4" Crushed Aggregate 6" Soil-Cement** (8%)	Chip & Seal every 6 years	0.41	0.41	0.89
23 V A	1958	Double Chip & Seal 6" Soil-Lime-Fly Ash* (5%, 10%)	Chip & Seal every 6 years	0.10	0.43	0.89
2 4 V A	1973	<pre>1-1/2" A.C. 6" Aggregate-Cement** (5%)</pre>	1-1/2" A.C. Overlay every 12 years	0.61	1.17	0.63

^{*}Road Mix **Plant Mix

ENERGY DATA

Table 6 shows the energy data for case histories. The energy demand is shown for both pavement designs, with and without stabilization. The energy demand in British Thermal Units (BTU's) was calculated by using Tables 7 thru 10. The energy demand for production, transportation and construction operations has been considered in the energy analysis.

The energy demand for maintenance operations is assumed to be same for both pavement with and without stabilization. It should be noted that if gravel surfaced road is included in these comparisons for alternatives, then the energy demand for maintenance operations should also be analyzed to compare the total energy demand for all alternatives. The purpose of energy demand analysis is to provide the decision maker with a tool for selecting the most beneficial alternative from economic and energy impacts. The energy demand analysis indicate that soil stabilization treatment for the documented case histories (except No. 9, 18 and 23), on the average, consumed additional 63,000 BTU per square yard. For case histories No. 9 (in Illinois), No. 18 (in Oregon), and No. 23 (in Virginia) soil stabilization treatment exhibited energy benefits ranging from 18,000 to 171,476 BTU per square yard.

TABLE 6
ENERGY DATA FOR CASE HISTORIES

CASE	PR OJE CT	YE AR	BASE/SUBBASE W		BASE/SUBB		BENEFITS OF
HISTORY	SIZE (SY)	OF CUNST.	DESIGN (AS-BUILT)	BTU'S PER SY	EQUIVALENT DESIGN	BTU'S PER SY	STABILIZATIUN (BTU/SY)
1 FL	1,643	1982	6" Soil-Cement*(5.5%)	142,000	6" Crushed Aggr.	69,000	- 73,200
2 FL	5,914	1983	6" Soil-Cement* (12%)	142,000	6" Crushed Aggr.	69,000	- 73,200
3 FL	8,800	1972	6-1/2" Aggregate- Cement* (7%)	198,250	12" Crushed Aggr.	138,000	- 60,250
4 ID	11,264	1978	6" Soil-Aggregate- Cement* (60%, 5%)	183,00	8" Crushed Aggr.	92,000	- 91,300
5 ID	38,134	1967	12" Soil-AggrLime* (25%, 2%)	284,400	12" Crushed Aggr.	138,000	-146,000
6 ID	66,740	1973	8" Soil-AggrLime* (25%, 4%)	189,600	8" Crushed Aggr.	92,000	-180,400
7 IL	76,267	1961	7" Soil-AggrCement* (15%, 10%)	165,900	7" Crushed Aggr.	80,500	- 85,400
8 I L	89,761	1982	4" Aggregate-Asphalt** (4% Recycled)	116,000	8." Crushed Aggr.	92,000	- 24,000
9 IL	4,337	1982	6" Soil-Aggr-Lime-Fly Ash** (4%, 12%)	120,000	12" Crushed Aggr.	138,000	18,000

S

TABLE 6 (CONTD.)

ENERGY DATA FOR CASE HISTORIES

CASE	PR OJE CT	YE AR	BASE/SUBBASE		BASE/SUBB		BENEFITS OF
HISTORY	SIZE (SY)	OF CONST.	DESIGN (AS-BUILT)	BTU'S PER SY	EQUIVALENT DESIGN	BTU'S PER SY	STABILIZATIU. (BTU/SY)
			Р .				***
18 UR	126,721	1970	3" AggrAsphalt- Emulsion** (7%) 4" AggrAsphalt- Emulsion** (6%)	109,200	14" Crushed Aggr.	161,000	51,8 00
19 TX	14,784	1983	6" Soil-AggrLime* (80%, 5%)	142,000	6" Crushed Aggr.	69,000	- 73,200
20 TX	92,506	1979	6" Soil-Lime-Fly Ash* (3%, 10%)	120,000	6" Crushed Aggr.	69,000	- 51,000
21 TX	6,118	1982	8" Soil-Lime* (5%)	189,600	8" Crushed Aggr.	92,000	- 97,600
22 V A	22 , 251	1982	6" Soil-Cement** (8%)	139,878	10" Crushed Aggr.	135,102	- 4,775
23 V A	774	1958	6" Soil-Lime-Fly Ash* (5%, 10%)	91,837	9" Crushed Aggr.	263,313	171,476
24 V A	5,550	1973	6" Aggregte-Cement** (5%)	82,695	12 " Crushed Aggr.	72,733	- 9,962

*Road Mix **Plant Mix

TABLE 8

ENERGY ASSOCIATED WITH AGGREGATE PRODUCTION

		ENERGY REQUIREMENT				
PR ODUCT	OPER AT LON	BTU/LB	BTU/TON	BTU/YD ^{3*}		
	Drilling and shooting	6	12,000	21,000		
	Crushing	25.5	51,000	89,500		
Crushed Stone	Handling (cranes and and bulldozers)	3.5	7,000	12,000		
	Total	35	70,000	123,000		
	Total	26	52,000	91,300		
	Crushing	17.5	35,000	61,400		
Crushed Gravel	Handling (cranes and bulldozers)	2.5	5,000	8,780		
	Total	20	40,000	70,000		
Natural or						
Uncrushed	Total	7.5	15,000	26,300		
Aggregate						

^{*130} lbs/ft 3 assumed unit weight (2100 kg/m 3)

Metric Conversion

1 BTU/1b = 2324 J/kg

1 BTU/ton = 1.164 J/kg

1 BTU/yd³ = 1381 J/m³

Source: (6)

TABLE 9

ENERGY REQUIREMENTS FOR AUTOHOBILE AND TRUCK OPERATION

	<u>ENE</u> RGY	REQUIREMEN	NTS
TYPE OF VEHICLE	BTU/mi	BTU∕hr	BTU/tor mi
Automobile	7,230		
Stationwagon	7,760		
Pickup	11,400		
Maintenance TrucksDiesel	26,700	97,300	
Maintenance TrucksGasoline	26,600	100,000	
Maintenance Trucks1 ton	15,600		
Maintenance Truck2 Axle	27,500		
Distributor TruckGasoline	31,300		
Truck TractorDiesel	30,400		
Truck2 Axle, 6 Tire, Gasoline	•		11,000
Truck3 Axle, Gasoline			4,270
Truck3 Axle, Diesel			3,800
Truck3 Axle (combination) Gasoline			7,440
Truck3 Axle (combination) Diesel			5,840
Truck4 Axle (combination) Gasoline			5,040
Truck4 Axle (combination) Diesel	·		3,270
Truck5 Axle (combination) Gasoline			2,900
Truck5 Axle (combination) Diesel			1,960

Metric Conversion:

1 BTU/mi = 656.1 J/km 1 BTU/hr = 1055 J/hr 1 BTU/ton mi = 0.723 J/kg km

Source: (6)

TABLE 10

ENERGY REQUIREMENTS FOR MISCELLANEOUS CONSTRUCTION OPERATIONS

		ENERGY R	REQUIREMENT		,
OPERATION*	BTU/G AL	BTU/TON	BTU/YD ³	EQUIVALENT GALLONS OF DIESEL PER	
				TON	YD ³
Spreading and compacting Granular and Stabilized Base		17,000	30,980	0.122	0.223
Travel Plant Mixing in Windrow	,	3,000	5,470	0.022	0.039
Blade Mixing		7,820	14,250	0.056	0.103
Central Plant Mixing of Stabilized Base		6,890	12,550	0.050	0.090
Excavation - Earth		39,890	59,100	0.286	
Excavation - Rock		35,500	76,700		
Excavation - Other		39,100	68,700		, ,
Asphalt Distribution, Asphalt Cement	590				
Asphalt Distribution, Cutback Asphalt	445		·		·
Asphalt Distribution	145				
Aggregate Spreading for Seal Coats	9.4**				-
Rolling Cold Asphalt Mixes	120***	·			

^{*135} lb/ft 3 (2160 kg/m 3) assumed unit weight except for excavation items

$$1 BTU/ton = 1.162 J/kg$$

$$1 \text{ ton} = 907 \text{ kg}$$

$$1 \text{ yd}^3 = 0.764 \text{ J m}^3$$

$$1 \text{ in.} = 2.54 \text{ cm}$$

Source: (6)

^{**9.4} BTU/yd²
***120 BTU/yd² in.

CONCLUSIONS

Based on the evaluations of case histories, review of the literature, survey of county engineers for the use and non-use of soil stabilization treatments, interviews with representatives of material industry associations and numerous local and state highway department officials, -- the criteria for consideration of soil stabilization treatments is discussed hereunder.

- o Soil stabilization should be considered as a design alternative for upgrading low-volume roads in all climatic regions and when specification materials are not available in abundance. The roadway soils should be inspected and/or analyzed to select the appropriate stabilization agent and its rate of application. Pavement alternatives with and without stabilization should be identified. Once identified, alternatives should be evaluated to develop comparative present worth values using the interest rate applicable for long-term borrowing and the appropriate analysis period (usually 20 years for paved roads). The alternative having the least present worth should be accepted. An illustrative procedure to evaluate alternatives is presented in the section titled Cost-Benefit Analysis.
- o Soil stabilization is a preferred design alternative: to provide better frost susceptibility; to provide conservation of good quality aggregates; to provide uniform pavement strength for widening an existing roadbed; and to avoid raising the level of an exiting roadbed.
- o Soil stabilization treatment is successful when favorable climatic conditions exist during construction and curing period.

- o Frequently the required assistance in planning, mix design, specifications, construction operations, quality control, etc., can be obtained from other experienced local and state highway personnel. The material industry associations can also provide assistance in the application of their products. Additional assistance can also be procured from consulting engineers and soil testing laboratories.
- o Soil stabilization treatments can be performed without the use of special mixing machinery or equipment. The farm disc harrows or other similar ploughs can be used successfully to obtain good results for mixing operations.
- o The soil inspection and analysis can lead to cost effective solutions. The soil inspection and analysis should be considered as a valuable tool to establish the most cost effective pavement option for upgrading of low-volume roads.

RECOMMENDATIONS

As a result of this study, our recommendations are as follows:

- o The soil stabilization treatments should be considered for potential benefits such as reduced cost and improved performance. Some of these cost benefits and better performance results from conservation of good quality aggregates, better frost susceptibility, uniform pavement characteristics for widening, or maintaining the same level of an existing roadbed.
- o Good records should be kept to identify comparison in pavement performance and in costs with and without stabilization.
- o Other suitable stabilizers should also be considered such as calcium chloride, and magnesium chloride.
- o Training seminars should be developed and offered to inform users on the use of soil stabilization treatments in upgrading low-volume roads and on the techniques to conduct cost-benefit and energy demand analysis.

REFERENCES

- American Road Builders Association, "Education and Information Guide," "Materials for Stabilization", Washington, D.C., September 1976.
- 2. U. S. Department of Transportation, Federal Highway Administration, "Proceedings of the project-Soil Stabilization Criteria for Low Volume Roads, Progress and Reivew", November 18, 1981.
- Arora, Pritam L., and Ahmed, T., "Roadbed Soil Stabilization", Phase 1 Report - Soil Stabilization Criteria for Low-Volume Roads, Federal Highway Administration, May 1982.
- 4. American Associaton of State Highway and Transportation Officals, AASHTO Interim Guide for Design of Pavement Structures", Washington, D.C., 1972.
- 5. Vaswani, N. K., "Design Guide for Secondary Road Pavements in Virginia", Virginia Highway Research Council, October 1973.
- 6. U.S. Department of Transportation, Federal Highway
 Administration, "Soil Stabilization in Pavement Structures:
 A User's Manual, Volume 1," FHWA-IP-80-2, October 1979.
- 7. U.S. Department of Transportation, Federal Highway Administration, "Highway Engineering Economy", July 1978.
 - 8. Weber, L., "Lime-Fly Ash Stabilization for Pavement Repair", Public Works, December 1982.

- 9. U. S. Department of Agriculture, Forest Service Region Six,
 "Base Stabilization Paving Skyline Road S-42, Mt. Hood
 National Forest", February 1971.
- 10. Ledbetter, W. B., Teague D. J., Long, R. L., and Banister, B. N., "Construction of Fly Ash Test Sites and Guidelines tor Construction", Texas Transportation Institute, October 1981.
- 11. Nichols, F. P. Jr., "Base and Subgrade Stabilization Experiments Progress Report No. 3", Virgnia Highway Research Council, March 1959.

APPENDIX COMPOUND INTEREST FACTORS

4% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.9615	0.962
2	0.9246	1.886
3	0,8890	2.775
4	0.8548	3.630
1 2 3 4 5	0.8219	4.452
6	0.7903	5.242
6 7	0.7599	6.002
8	0.7307	6.733
8 9	0.7026	7.435
10	0.6756	8.111
11	0.6496	8.760
12	0.6246	9.385
13	U.6006	9.986
14	0.5775	10.563
15	0.5553	11.118
16	0.5339	11.652
17	0.5134	12.166
18	0.4836	12.659
19	0.4936	13.134
20	0.4564	13.590

5% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.9524	0.952
1 2 3 4 5	0.9070	1.859
3	0.8638	2.723
4	0.8227	3.546
5	0.7835	4.329
6	0.7462	5.076
7	0.7107	5.786
8	0.6768	6.463
6 7 8 9	0.6446	7.108
0	0.6139	7.722
1	0.5947	0.206
1	0.5847	8.306
2	0.5568	8.863
3 4	0.5303	9.394
5	0.5051 0.4810	9.899 10.380
,	0.4010	10.380
6	0.4581	10.838
7	0.4363	11.274
8	0.4155	11.690
9	0.3957	12.085
0	0.3769	12.462

6% COMPOUND INTEREST FACTORS

 $\label{eq:continuous} (-1)^{-1} (1+\epsilon)^{-1}

n	P/F	P/A
1	0.9434	0.943
1 2 3 4 5	0.8900	1.833
3	0.8396	2.673
4	U.7921	3.465
5	0.7473	4.212
6	0.7050	4.917
6 7 8 9 .0	0.6651	5.582
8	0.6274	6.210
9	0.5919	6.802
C	0.5584	7.360
l	0.5268	7.887
2	0.4970	8.384
3	0.4688	8.853
4	0.4423	9.295
5	0.4173	9.712
.6	0.3936	10.106
.7	0.3714	10.477
8	0.3503	10.828
9	0.3305	11.158
0	0.3118	11.470

7% COMPOUND INTEREST FACTORS

n ·	P/F	
1	0.9346	0.935
1 2 3	0.8734	1.808
- 3	0.8163	2.624
Δ.	0.7629	3.387
4 5	0.7130	4.100
6	0.6663	4.767
7	0.6227	5.389
6 7 8 9	0.5820	5.971
0	0.5439	6.515
10	0.5083	7.024
10	0.3003	,,024
11	0.4751	7.499
12	0.4440	7.943
13	0.4150	8.358
14	0.3878	8.745
15	0.3624	9.108
16	0.3387	19.447
17	0.3166	19.763
18	0.2959	10.059
19	0.2765	10.336
20	0.2584	10.594

8% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.9259	0.926
1 2 3	0.8573	1.783
3 .	0.7938	2.577
4	0.7350	3.312
4 5	0.6806	3.993
6	0.6302	4.623
7	0.5835	5.206
6 7 8 9	0.5403	5.747
9	0.5002	6.247
10	0.4632	6.710
11	0.4289	7.139
12	0.3971	7.536
13	0.3677	7.904
14	0.3405	8.244
15	0.3152	8.559
16	0.2919	8.851
17	0.2703	9.122
18	0.2502	9.372
19	0.2317	9.604
20	0.2145	9.818

9% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.9174	0.917
1 .	0.8417	1.759
3	0.7722	2.531
4	0.7084	3.240
4 5	0.6499	3.890
6	0.5963	4.486
7	0.5470	5.033
8	0.5019	5.535
8 9	0.4604	5.995
10	0.4224	6.418
11	0.3875	6. 805
12	0.3555	7.161
13	0.3262	7.487
14	0.2992	7.786
15	0.2745	8.061
16	0.2519	8.313
17	0.2311	8.544
18	0.2120	8.756
19	0.1945	8.950
20	0.1784	9,129

10% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.9091	0.909
1 2 3 4 5	0.8264	1.736
3	0.7513	2.487
4	0.6830	3.170
5	0.6209	3.791
6	0.5645	4.355
6 7	0.5132	4.868
8 9	0.4665	5.335
	0.4241	5.759
10	0.3855	6.144
11	0.3505	6.495
12	0.3186	6.814
13	0.2897	7.103
14	0.2633	7.367
15	0.2394	7.606
16	0.2176	7.824
17	0,1978	8.022
18	0.1799	8.201
19	0.1635	8.365
20	0.1486	8.514

11% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.9009	0.901
2 .	0.8116	1.713
3	0.7312	2.444
4	0.6587	3.102
1 2 3 4 5	0.5935	3.696
6	0.5346	4.231
7	0.4817	4.712
8 9	0.4339	5.146
9	0.3909	5.537
10	0.3522	5.889
11	0.3173	6.207
12	0.2858	6.492
13	0.2575	6.750
14	0.2320	6.982
15	0.2090	7.191
16	0.1883	7.379
17	0.1696	7.549
18	0.1528	7.702
19	0.1377	7.839
20	0.1240	7.963

12% COPPOUND INTEREST ENCHORS

n	P/F	P/A
1	0.8929	0.893
2	0.7972	1.690
2 3 4 5	0.7118	2.402
4 ´	0.6355	3.037
5	0.5674	3,605
6	0.5066	4.111
6 7	0.4523	4.564
8	0.4039	4.968
9	0.3606	5.328
10	0.3220	5.650
11	0.2875	5.938
12	0.2567	6.194
13	0.2292	6.424
14	0.2046	6.628
15	0.1827	6.811
16	0.1631	6.974
17	0.1456	7.120
18	0.1300	7.250
19	0.1161	7.366
20	0.1037	7.469

13% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.8850	0.885
2	0.7831	1.668
3	0.6931	2.361
4 .	0.6133	2.974
1 2 3 4	0.5428	3.517
6	0.4803	3.998
7	0.4251	4.423
6 7 8 9	0.3762	4.799
9	0.3329	5.132
10	0.2946	5.426
11	0.2607	5.687
12	0.2307	5 . 918
13	0.2042	6.122
14	0.1807	6.302
15	0.1599	6.462
16	0.1415	6.604
17	0.1252	6.729
18	0.1108	6.840
19	0.0981	6.938
20	0 .086 8	7.025

14% COMPOUND INTEREST FACTORS

<u>n</u>	P/F	P/A
1	0.8772	0.877
2	0.7695	1.647
1 2 3 4 5	0.6750	2.322
4	0.5921	2.914
5	0.5194	3.433
6	0.4556	3.889
7	0.3996	4.288
6 7 8 9 10	0.3506	4.639
9	0.3075	4.946
10	0.2697	5.216
11	0.2366	5.453
12	0.2076	5.660
13	0.1821	5.842
14	0.1597	6.002
15	0.1401	6.142
16	0.1229	6.265
17	0.1078	6.373
18	0.0946	6.467
19	0.0829	6.550
20	0.0728	6.623

15% COMPOUND INTEREST FACTORS

n	P/F	P/A
1	0.8696	0.870
1 2 . 3 4 5	0.7561	1.626
3	0.6575	2,283
4	0.5718	2,855
5	0.4972	3.352
6	0.4323	3.784
6 7	0.3759	4.160
8 9	0.3269	4.487
9	0.2843	4.772
10	0.2472	5.019
11	0.2149	5.234
12	0.1869	5.421
13	0.1625	5.583
14	0.1413	5.724
15	0.1229	5.847
16	0.1069	5.954
17	0.0929	6.047
18	0.0808	6.128
19	0.0703	6.198
20	0.0611	6.259

 $\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} +$

FEDERALLY COORDINATED PROGRAM (FCP) OF HIGHWAY RESEARCH, DEVELOPMENT, AND TECHNOLOGY

The Offices of Research, Development, and Technology (RD&T) of the Federal Highway Administration (FHWA) are responsible for a broad research, development, and technology transfer program. This program is accomplished using numerous methods of funding and management. The efforts include work done in-house by RD&T staff, contracts using administrative funds, and a Federal-aid program conducted by or through State highway or transportation agencies, which include the Highway Planning and Research (HP&R) program, the National Cooperative Highway Research Program (NCHRP) managed by the Transportation Research Board, and the one-half of one percent training program conducted by the National Highway Institute.

The FCP is a carefully selected group of projects, separated into broad categories, formulated to use research, development, and technology transfer resources to obtain solutions to urgent national highway problems.

The diagonal double stripe on the cover of this report represents a highway. It is color-coded to identify the FCP category to which the report's subject pertains. A red stripe indicates category 1, dark blue for category 2, light blue for category 3, brown for category 4, gray for category 5, and green for category 9.

FCP Category Descriptions

1. Highway Design and Operation for Safety

Safety RD&T addresses problems associated with the responsibilities of the FHWA under the Highway Safety Act. It includes investigation of appropriate design standards, roadside hardware, traffic control devices, and collection or analysis of physical and scientific data for the formulation of improved safety regulations to better protect all motorists, bicycles, and pedestrians.

2. Traffic Control and Management

Traffic RD&T is concerned with increasing the operational efficiency of existing highways by advancing technology and balancing the demand-capacity relationship through traffic management techniques such as bus and carpool preferential treatment, coordinated signal timing, motorist information, and rerouting of traffic.

3. Highway Operations

This category addresses preserving the Nation's highways, natural resources, and community attributes. It includes activities in physical

maintenance, traffic services for maintenance zoning, management of human resources and equipment, and identification of highway elements that affect the quality of the human environment. The goals of projects within this category are to maximize operational efficiency and safety to the traveling public while conserving resources and reducing adverse highway and traffic impacts through protections and enhancement of environmental features.

4. Pavement Design, Construction, and Management

Pavement RD&T is concerned with pavement design and rehabilititation methods and procedures, construction technology, recycled highway materials, improved pavement binders, and improved pavement management. The goals will emphasize improvements to highway performance over the network's life cycle, thus extending maintenance-free operation and maximizing benefits. Specific areas of effort will include material characterizations, pavement damage predictions, methods to minimize local pavement defects, quality control specifications, long-term pavement monitoring, and life cycle cost analyses.

5. Structural Design and Hydraulics

Structural RD&T is concerned with furthering the latest technological advances in structural and hydraulic designs, fabrication processes, and construction techniques to provide safe, efficient highway structures at reasonable costs. This category deals with bridge superstructures, earth structures, foundations, culverts, river mechanics, and hydraulics. In addition, it includes material aspects of structures (metal and concrete) along with their protection from corrosive or degrading environments.

9. RD&T Management and Coordination

Activities in this category include fundamental work for new concepts and system characterization before the investigation reaches a point where it is incorporated within other categories of the FCP. Concepts on the feasibility of new technology for highway safety are included in this category. RD&T reports not within other FCP projects will be published as Category 9 projects.