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FOREWORD 

The four-volume series that constitutes the state-of-practice review is the larger of 
two deliverables from the contract let in September 1993 on drilled and grouted 
micropiles. The volumes cover all aspects of the technology, with special reference 
to practices in the United States, France, Italy, Germany, and Great Britain •- those 
countries that are most active. This final report was originally prepared as one 
document. However, its length is such that it is now divided into four separate 
volumes, each containing certain groups of chapters from the original final report. 

Volume I (FHW A-RD-96-016) provides a general and historical framework and a new 
classification of micropile types based on both the concept of design and the mode of 
construction (chapter 1). Chapter 2 introduces the applications in a structured 
format, while chapters 3 and 4 deal with feasibility and cost, and contracting 
practices, respectively. Volume II (FHW A-RD-96-017) reviews design. Chapter 1 
covers the design of single micropiles, chapter 2 covers groups of micropiles, and 
chapter 3 covers networks of mictopiles. Volume III (FHW A-RD-96-018) includes a 
review of construction methods (chapter 1) and provides an introduction to 
specifying QA/QC and testing procedures (chapter 2). Volume IV (FHWA-RD-96-019) 
is a summary of 20 major case histories specially chosen to illustrate the various 
principles and procedures detailed in volumes I, II, and III. 

These volumes together are intended as a reference work for owners, designers, and 
contractors, and as a statement of current practice to complement the companion 
French national research program, FOREVER. 

NOTICE 

Charles J. Nemmers, P.E. 
Director, Office of Engineering 
Research and Development 

This document is disseminated under the sponsorship of the Department of 
Transportation in the interest of information exchange. The United States 
Government assumes no liability for its contents or use thereof. This report does not 
constitute a standard, specification, or regulation. 

The United States Government does not endorse products or manufacturers. 
Trademarks or manufacturers' 1.rames appear herein only because they are 
considered essential to the object of this document. 

:~o~~c:T~ R~~~~~~~TERNATIONAL COPYRIGHT 

~ASTIONAL TECHNICAL INFORMATION SERVICE 
. . DEPARTMENT OF COMMERCE 
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DEDICATION 

This study is dedicated to Dr. Fernando Lizzi, of Napoli, Italy, whose technical 
acumen in developing the concept of micropiles has been matched only by his 
imagination in applying them. Since obtaining the first micropile patents in 
1952, Dr. Lizzi has overseen the growth in their use on five continents. He has 
been inspirational to all associated with preparing this study, and doubtless 
will remain so to all those who read it. 

Fernando Lizzi 
"The Father ofMicropiles" 
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PREFACE 

When designing this study, the Federal Highway Administration recognized 
the necessity of ensuring input by practicing engineers, in general, and those 
in Europe, in particular. This was reflective of the origins of micropiles and of 
the countries of most common use. 

This input has been forthcoming to the Principal Investigators through both 
written submittals and commentaries on drafts, and through the attendance of 
these specialists at a series of workshops. 

At the first workshop held in Washington, DC, March 10-11, 1994, discussions 
were held about the structure and purpose of the study, and attendees made 
presentations on local and national practices. By the second workshop, also in 
Washington, DC, October 27-28, 1994, several chapters had been prepared in draft 
form, and these were reviewed by the group. At the third workshop in 
San Francisco, March 10-13, 1995, all chapters were reviewed in anticipation of 
concluding the Final Draft Report, and considerable verbal and written 
comments were received. In addition, the International Advisory Board also 
provided the Principal Investigators with published and unpublished data. 

Throughout this report, all such published or unpublished written reports are 
duly acknowledged. However, there are numerous examples of statements made 
by individual participants that are not specifically listed. These statements were 
made during the workshops and have not been separately referenced because: 
(1) this saves space and improves the flow of the text, and (2) other researchers 
have no means of retrieving such unwritten references. This report also 
contains information obtained by the Principal Investigators on study trips to 
specialists in Europe. 
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APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS 

Symbol When You Know Multiply By To Find .Symbol Ill Symbol When You Know Multiply By To Find Symbol 

LENGTH LENGTH 
in inches 25.4 millimeters mm mm millimeters 0.039 inches in 
ft feet 0.305 meters m m meters 3.28 feet ft 
yd yards 0.914 meters m m meters 1.09 yards yd 
mi mnes 1.61 kilometers km km kilometers 0.621 miles mi 

AREA AREA 

(nl square inches 645.2 square millimeters mm2 mm2 square millimeters 0.0016 square inches in2 

ftl square feet 0.093 square meters ml ml square meters 10.764 square feet ft2 
ydl square yards 0.836 square meters m• m' square meters 1.195 square yards ycP 
ac acres 0.405 hectares ha ha hectares 2.47 acres ac 
mi2 square miles 2.59 square kilometers km2 km2 square kilometers 0.386 square miles mi2 

VOLUME VOLUME 

ft oz ftuidounces 29.57 milliliters ml ml milliliters 0.034 fluid ounces fl oz 
gal gallons 3.785 liters l L liters 0.264 gallons gal 
ft3 cubic feet 0.028 cubic meters m3 m3 cubic meters 35.71 cubic feet ft3 

<: Ill 
ycf> cubic yards 0.765 cubic meters m3 m3 cubic meters 1.307 cubic yards ya' 

NOTE: Volumes greater than 1000 I shall be shown in m3• 

MASS MASS 

oz ounces 28.35 grams g g grams 0.035 ounces oz 
lb pounds ,0.454 kilograms kg kg kilograms 2.202 pounds lb 
T short tons (2000 lb) 0.907 megaarams Mg Mg megagrams 1.103 short tons (2000 lb) T 

( ot •metric ton") (or "r) (or"r) (or •metric ton") 

TEMPERATURE (exact) TEMPERATURE (exact) 

OF Fahrenheit 5(F-32)/9 Celcius oc °C Celcius 1.8C +32 Fahrenheit OF 
temperab.lre or (F-32V1.8 temperab.lre temperab.lre temperature 

ILLUMINATION ILLUMINATION 

fc foot-candles 10.76 lux Ix ix lux 0.0929 foot-candles fc 
ft foot-Lamberts 3.426 candela/m2 cd/m1 cdfm2 candela/m2 0.2919 foot-Lamberts " ,, 

I 

FORCE and PRESSURE or STRESS . FORCE and PRESSURE or STRESS I 

I 
poundforce 4.45 

Ill 
N newtons 0.225 lbf newtons N poundforca lb! I 

lbf/in' poundforce per 6.89 kiiopascals kPa kPa kilopascals 0.145 poundforce per lbf/in2 I 
square inch square inch 

I 
• SI is the symbol for the International System of Units. Appropriate 

rounding should be made to comply with Section 4 of ASTM E380. 
(Revised September 1993) 
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

The technology of micropiling was conceived in Italy in the early 1950's and was 
introduced more than 2 decades later into the United States. Since the mid-1980's in 
particular, there has been a rapid growth in the use of this technology, mainly as 
foundation support elements in static and seismic applications and as in situ 
reinforcement for slope and excavation stabilization. 

Many of these uses are directly related to transportation projects. Therefore, in 1993, 
the Federal Highway Administration (FHW A) decided to fund this study into the 
technology of micropiling. This decision largely reflected the industry's growing 
awareness of the potential of micropiling as a means of resolving difficult 
foundation and slope stability problems. However, it also underlined the desire of the 
FHW A to be a cooperative partner to their French colleagues who, in 1993, had 
commenced a new 5-year national project named "FOREVER" (Fondations Renforcees 
Verticalement). The FOREVER project was organized under the aegis of the Institute 
for Applied Research and Experimentation in Civil Engineering (IREX) and is under 
the technical direction of Professor Franc;ois Schlosser of the National Civil 
Engineering School (ENPC) and Dr. Roger Frank of the Center for Education and 
Research in Soil and Rock Mechanics (CERMES). It is also supported by the National 
Public Works Federation (FNTP), the Center for Studies and Research on Construction 
and Public Works (CEBTP), the system of Civil Engineering Laboratories (LPC), and a 
collection of other research and testing bureaus, businesses, contractors, and 
owners. (Acronyms in parentheses reflect the French names of the organizations.) 
FOREVER includes studies, numerical modeling, laboratory testing (centrifuge), and 
full-scale field testing. Its chief objective is to promote the use of micropiles in all 
fields: deep foundations of new buildings and structures, · stabilization of slopes and 
embankments, "consolidation" of existing foundations, retaining walls, reduction of 
embankment settlement, and shallow foundations. 

The major tasks of the FHWA study, as set in the "State-of-Practice Request for 
Proposals," were defined as follows: 

Task A. State-of-Practice Determination 

A. l. Comprehensive review and detailed analysis of the available 
research and development results, laboratory and field testing data, and site 
observations and monitored case studies to establish a comprehensive 
engineering knowledge base. 

A.2. Critical assessment of the available analytical models and design 
methods for single piles, groups of piles, and networks of reticulated piles 
under both axial and lateral loading conditions and applications. 

A.3. Comparisons and analyses of currently us!"d construction 
specifications and quality assurance procedures for each installation 
technique. 
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Task B. Research Needs Assessmem 

B. l. Evaluation of the limitations and uncertainties in the current state of 
practice, and development of relevant research programs to effectively 
address the identified engineering research needs. 

Task C. Research Coordination with Forei2n Pro2rams 

C.l. Recognizing the major role of European specialists, it was decided to 
involve them as fully as possible, via the creation of an International Advisory 
Board (for written and conference contributions). The Principal Investigators 
would undertake a series of visits to other specialists in Europe. 

Tasks D and E 

Referred to as the Draft Final and Final Report processes, respectively. 

The contract was awarded to Nicholson Construction Company, with Dr. Donald Bruce 
and Professor Han Juran of the Polytechnic University of Brooklyn (New· York) 
being nominated as the two Principal Investigators. The International Advisory 
Board initially consisted of Dr. Fernando Lizzi (Italy), Professor Schlosser (France), 
Professor Stuart Littlejohn (United Kingdom), and Dr. Thomas Herbst (Germany), 
although it was later supplemented by other specialists, including Mike Turner 
(United Kingdom), Professor Fred Kulhawy (Cornell University, New York), James 
Mason and Ray Zelinski (California Department of Transportation [Caltrans]), 
Professor Reidar Bjorhovde (University of Pittsburgh, Pennsylvania), and Bob Lukas 
(Ground Engineering, United States). This group provided a blend of contractor, 
consultant, academic, and client that mirrored the team assembled in France. 

The proposed task and progress schedule is shown as figure 1, while the as-built 
schedule, reflecting the various changes and extensions that occurred during the 
program, is shown as figure 2. 

As explained in the subsequent sections of this chapter, the subject of the study can 
be referred to generically as small-diameter drilled and grouted piles. They have 
been used throughout the world for various purposes, and this has spawned a 
profusion of local names, including: pali radice, micropali (Italian); pieux racines, 
pieux aiguilles, minipieux, micropieux (French); minipile, micropile, pin pile, root 
pile, needle pile (English); Verpresspfiihle, Kleinbohrpfiihle, Wurzelpfiihle 
(German); and Estaca Raiz (Portuguese). All, however, refer to a "special type of 
small-diameter bored pile" (Koreck, 1978). 

Such a pile can withstand axial and/or lateral loads, and may be considered as either 
one component in a composite soil/pile mass or as a small-diameter substitute for a 
conventional pile, depending on the design concept (figures 3 and 4). Inherent in 
their genesis and application is the precept that micropiles are installed with 
methods that cause minimal disturbance to structure, soil, or environment. This, 
therefore, excludes other related techniques from this particular study, such as those 
that employ percussive or explosive energy (driven elements), ultra-high flushing 
and/or grouting pressure Uet nails), or large-diameter drilling techniques that may 
cause lateral soil decompression (auger-cast piles). 
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Likewise, micropile construction techniques are among those used to install soil 
nails, sub-horizontal in situ reinforcements used in excavation support and slope 
stabilization (figure 3). However, soil nailing is regarded in concept, design, and 
function to be outside the scope of this report; in fact, it has already been the subject 
of major Federal (NCHRP, 1987; FHW A, 1994) and private studies (Juran and Elias, 1990; 
Bruce, 1993). 

SCOPE AND INTENT OF THE REPORT 

This report constitutes a state-of-practice survey based on a critical assessment of 
data published worldwide on micropiles. As well as being a comprehensive 
introduction to the technology, the report is designed to assist the FHWA in 
establishing, at a future date, reliable design guidelines, construction specifications, 
and quality control procedures for the wide spectrum of micropile applications. It is 
also intended that the report will highlight future research needs. It must be 
emphasized, however, that it is not in the scope of this study to produce a design 
manual or a set of practice recommendations. 

The characteristics, classification, and historical background of micropiles are 
described in chapter 1 of volume I, followed by a structured review of their 
applications in chapter 2. Chapters 3 and 4 of this volume deal with feasibility, costs, 
and contracting practices. Volume II examines design, analysis, and performance 
issues as related to single piles, groups of piles, and networks of piles. Volume III 
discusses construction, quality assurance and control, as related to specifications, and 
reviews the range of pile tests that can be conducted. Volume IV provides details of 
significant case histories from around the world, but with an emphasis on domestic 
examples. The assessment of research needs and a proposal as to how they could be 
satisfied are provided in a different volume. 

The report describes the use of micropiles for both structural support and in situ 
reinforcement. Both static and seismic loading conditions are examined. 

DEFINITIONS AND CHARACTERISTICS 

The generic classification of piling methods and systems proposed by Fleming et al. 
(1985) is shown in figure 5. Piles that are driven are termed "displacement" piles 
because their installation methods displace laterally the soils through which they 
are introduced. Conversely, piles that are formed by creating a borehole into which 
the pile is then cast or placed are referred to as "replacement" piles because existing 
material, usually soil, is removed as part of the process. Micropiles are a small­
diameter subset of cast-in-place replacement piles. 

With conventional cast-in-place replacement piles, in which most, and occasionally 
all, the load is resisted by concrete as opposed to steel, the small cross-sectional area 
is synonymous with low structural capacity. Micropiles, however, are distinguished 
by not having followed this pattern: innovative and vigorous drilling and grouting 
methods, such as those developed in related geotechnical practices as ground 
anchoring, permit high soil/grout bond values to be generated along the micropile's 
periphery. To exploit this potential benefit, high-capacity steel elements occupying 
up to 50 percent of the hole volume can be used as the principal (or sole) load­
bearing element, with the surrounding grout serving only to transfer, by friction, 
the applied load between the soil and the steel. End bearing is not relied upon and, in 
any event, is relatively insignificant given the pile geometries involved. Early 
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micropile diameters were around 100 mm, but with the development of more powerful drilling 
equipment (figure 6), diameters of up to 300 mm are now considered practical. Thus, micropiles are 
capable of sustaining surprisingly high loads (compressive loads of more than 5000 kN have been 
recorded), or conversely, they can resist lower loads with minimal movement. 

The development of highly specialized drilling equipment and methods also allows micropiles to be 
drilled through virtually every ground condition, natural and artificial; with minimal vibration, 
disturbance, and noise; and at any angle below horizontal (figure 7). Micropiles are, therefore, used 
widely for underpinning existing structures, and the equipment can be further adapted to operate in 
locations with low headroom and severely restricted access (figure 8). 
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Figure 6. Example of contemporary diesel-hydraulic or electro-hydraulic 
track rig used for mkropiling. 

All of these observations of the traditionally recognized characteristics of micropiles 
lead to a fuller definition of a micropile: "a small-diameter (less than 300 mm[less 
than 250 mm in France]), replacement, drilled pile composed of placed or injected 
grout, and having some form of steel reinforcement to resist a high proportion of the 
design load." This load is mainly (and initially) accepted by the steel and transferred 
via the grout to the surrounding rock or soil using high values of interfacial friction 
with minimal end-bearing component, as is the case for ground anchors (FHW A, 
1984) and soil nails (DFI, 1988). They are constructed using the type of equipment 
used for ground anchor and grouting projects, although micropiles often must be 
installed in low-headroom and/or difficult-access locations. They must be capable of 
causing minimal damage to structure or foundation material during installation and 
must be environmentally responsive. The majority of micropiles are between 100 
and 250 mm in diameter, 20 to 30 m in length, and 300 to 1000 kN in compressive or 
tensile service load, although far greater depths and loads are not uncommon in the 
United States. Figure 9 shows that the ratio of the circumference to the cross-section 
area is extremely high, thus, the perimetric area governs the load transfer 
mechanism, namely skin friction, as opposed to end bearing, as discussed in Volume 
II. 



Figure 7. Diesel-hydraulic track rig drilling inclined micropiles. 

Figure 8. Electro-hydraulic track rig with short mast, used for micropiling in 
low-headroom conditions. [Note: Tracks withdraw inwards to permit rig 

movement through narrow openings.] 
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CLASSIFICATION 

It is common to find micropiles sub-classified according to diameter, constructional 
process, or nature of the reinforcement. However, given the definition of a 
micropile provided in Definitions and Characteristics, above, this report concludes 
that a new and rigorous classification should be adopted based on two criteria: 

• Philosophy of behavior. 
• Method of grouting. 

The former criterion dictates the basis of the overall design concept, and the latter is 
the principal determinant of pile/ground bond capacity. 

Classification Based on Philosophy of Behavior 

As detailed and illustrated in subsequent chapters, micropiles are usually designed to 
transfer structural loads to more competent or stable strata. Therefore, they act as 
"substitutes" or alternatives for other conventional pile systems (figure 4a). For 
axially loaded piles, the pile/ground interaction is in the form of.· side sh~ar and so it 
is restricted to that zone of ground immediately surrounding the pile. For micropiles 
used as in situ reinforcements for slope stabilization, recent research by Pearlman et 
al. (1992) suggests that pile/ground interaction occurs only relatively close to the 
slide plane, although above this level, the pile group may also provide a certain 
degree of continuity to the pile/ground composite structure. In both cases, however, 
the pile (and more correctly the reinforcement) directly resists the applied loads. 
This is equally true for cases when individual piles or groups of piles are used. In 
this context, a group is defined as a tight collection of piles, each of which is 
subjected to direct loading. Depending on prevailing codes, the individual pile design 
capacity may have to be reduced to conform to conventional "reduction ratio" 
concepts usually associated with driven piles, although this restriction is never 
enforced for micropiles given their mode of construction, which tends to improve, 
not damage, the inter-pile soil (volume II). 

When axially loaded piles of this type are designed to transfer their load only within 
a remote founding stratum, pile head movements will occur during loading in 
proportion to the length and composition of the pile shaft between the structure and 
the founding stratum. In this instance, the pile can be preloaded to ensure that the 
structure can be supported without further movement or settlement being necessary. 
Also, if suitably competent ground conditions exist all the way down from below the 
structure, then the pile can be fully bonded over its entire length and thus 
movements under load will be smaller than in the previous case (figure 4a). 

In this report, such directly loaded piles, whether for axial or lateral loading 
conditions, are referred to as CASE l elements. They comprise virtually all North 
American applications to date and at least 90 percent of all known international 
applications. 

On the other hand, we may distinguish the small group of CASE 2 structures. 
Historical Development of Micropiles describes how Dr. Lizzi introduced the concept 
of micropiling when he patented the "root pile" (palo radice) in 1952. The name 
alone evoked the concept of support and stabilization by locking onto a three-
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dimensional network of reticulated piles, similar to the root network of a tree. This 
concept involves the creation of a laterally confined soil/pile composite structure 
that can work for underpinning, stabilization, and earth retention, as illustrated in 
figure 4b. The piles are not heavily reinforced since they are not individually and 
directly loaded. They circumscribe a zone of reinforced, composite, confined 
material that offers resistance with minimal movement. The piles are fully bonded 
over their entire length, and so for this case to work, the soil over its entire profile 
must have some reasonable degree of competence. Research (volume II) has 
suggested that a positive "network effect" is achieved in terms of load/movement 
performance, such as the effectiveness and efficiency of the reticulated pile/soil 
interaction producing the composite mass. 

It is clear, therefore, that the basis of the design for a CASE 2 structure is radically 
different from a CASE 1 pile (or group of piles). Notwithstanding this difference, 
however, there will be occasions where there are transitional applications between 
these cases. For example, it may be possible to achieve a positive group effect in CASE 
1 designs (although this attractive possibility is currently, conservatively, ignored 
for pile groups), while a CASE 2 slope stability structure may have to consider direct 
pile-loading conditions (in bending or shear) across well-defined . slip planes. By 
recognizing these two basic design philosophies, even those transitional ·cases can be 
designed with appropriate engineering clarity and precision. 

The classification also permits us to accept and rationalize the often contradictory 
opinions made in the past about micropile fundamentals by their respective 
champions. For example, Lizzi (1982), whose focus is CASE 2 piles, was 
understandably an opponent of the technique of preloading high-capacity 
micropiles, such as those described by Mascardi (1982) and Bruce (1992). Now that 
these latter piles are recognized as being of a different class of performance, in 
which complete pile/soil contact and interaction are not fundamental to their proper 
behavior, the issue is correctly and honorably resolved. 

Classification Based on Method of Grouting 

Chapter 3 details the various steps in constructing micropiles. They are: 

• Drill. 
• Place reinforcement. 
• Place grout (usually involving extraction of temporary drill casing). 

There is no question that drilling method and technique will affect the scale of the 
grout/ground bond that can be mobilized. On the other hand, the act of placing 
reinforcement should not influence this bond development. Overall, however, 
international practices in both micropiles (e.g., French Norm DTU 13.2, 1992) and 
ground anchors (e.g., British Code BS 8081, 1989) confirm that the method of grouting 
is generally the most sensitive construction control over grout/ground bond 
development. The following classification of micropile type, based primarily on 
the type and pressure of the grouting, is therefore adopted. It is shown 
schematically in figure 10. 

• Type A: Grout is placed in the pile under gravity head only. Since the grout 
column is not pressurized, sand-cement "mortars," as well as neat cement 
grouts, are used. The pile drill hole may have an underreamed base (to aid 
performance in tension), but this is now very rare and not encountered in 
any other pile type. 
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Figure 10. Classification of micropile type based on type of grouting. 

• Type B: Neat cement grout is injected into the drilled hole as the temporary 
steel drill casing is withdrawn. Pressures are typically in the range of 0.3 to 1 
MPa. They are limited by the ability of the soil to maintain a tight grout "seal" 
around the casing during its withdrawal and the need to avoid hydrofracture 
pressures and/or excessive grout consumption. 

• Type C: Neat cement grout is placed in the hole, as done for Type A. Between 
15 to 25 minutes later, before hardening of this primary grout, similar grout is 
injected once via a preplaced sleeved grout pipe at a pressure of at least 1 MPa. 
This type of pile, referred to in France as IGU (Injection Globale et Unitaire), is 
common practice only in that country. 

• Type D: Neat cement grout is placed in the hole, as done for Type A. Some 
hours later, when this primary grout has hardened, similar grout is injected 
via a preplaced sleeved grout pipe. In this case, however, a packer is used 
inside the sleeved pipe so that specific horizons can be treated several times if 
necessary, at pressures of 2 to 8 MPa. This is referred to in France as IRS 
(Injection Repetitive et Selective), and it is a common practice worldwide. 

Table l provides more details about this classification and it also indicates the 
relationship between other proposed classifications and terminologies. The 
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relationship to pile capacity is explored in volume II, while volume III provides full 
descriptions of each aspect of these types. 

Combined Classification 

Micropiles referred to in this report are allocated a classification number denoting 
the philosophy of behavior (CASE 1 or CASE 2) that relates fundamentally to the 
"design" approach, and a letter denoting the method of grouting (Types A, B, C, or D) 
that reflects the major "constructional" control over capacity. 

For example, a repeatedly post-grouted micropile used for direct structural 
underpinning is referred to as Type 1D, whereas a gravity-grouted micropile used as 
part of a stabilizing network is Type 2A. At this point, it may be interesting to note 
that the piles in each of the many case histories referred to in this report 
comfortably fall into this combined classification and, by so doing, have verified its 
selection. 

HISTORICAL DEVELOPMENT OF MICROPILES 

The concept of micropiles dates back to Italy in the early 1950's when tnnovative and 
reliable methods of underpinning historic buildings and monuments were being 
sought in that war-damaged country (Lizzi, 1982). Specifically, a system was needed 
that could accept structural loads with minimal movements and could be installed in 
confined working areas and in various soil types. In addition, it was essential that 
the construction method impose minimal adverse effects on the structure being 
underpinned or on adjacent structures. 

In response to this need, the Italian specialty contractor Fondedile, under the 
technical direction of Dr. Lizzi, developed the "palo radice" (root pile), a small-
diameter, drilled, cast-in-place, lightly reinforced grouted pile. These piles were 
ideally suited for underpinning applications. Their small diameters of around 100 
mm permitted construction with small-sized rotary drill rigs that could be operated 
under restricted-access conditions and could drill through existing structures and 
subsoils with minimal disturbance. In addition, the injection of the grout, consisting 
of coarse sand, cement, and water, promoted high frictional bond with the 
surrounding soil. Such piles were tested to loads of more than 400 kN, and no 
grout/soil interfacial failures were recorded, although at the time, the anticipated 
load that was calculated conventionally for such a pile was only about 100 kN. The 
typical arrangement of pali radice as used for underpinning is shown in figure 11, 
which is extracted from Fondedile's first patent application of March 11, 1952. 

That year also saw the first application of root piles, for the underpinning of the A. 
Angiulli school in Naples, Italy. The piles were 13 m long, 100 mm in diameter, and 
centrally reinforced by a 12-mm-diameter bar. The excellent load-holding 
performance of the first test pile (figure 12) in the volcanic ashes and sands at this 
site drew widespread professional attention, as did the publication of similar data 
from numerous sites thereafter. It is easy to concur with Dr. Lizzi's later assessment 
(1982) that "the introduction of 'Pali Radice' gave rise to a complete change in the 
field of underpinning." 

The acquisition and publication of such test information, essential from a business 
development viewpoint, were facilitated by the relatively low cost of direct full-scale 
load tests in the field, and were driven by the innovative spirit of research into new 
applications. In contrast, most contemporary construction regulations (for example, 
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Table 1. Details of micropile classification based on type of grouting. 

MICROPILE TYPE COMPARISON WITH 
AND GROUTING OTHER TYPES OR 

METHOD SUBTYPE DRILL CASING REINFORCEMENT GROUT CLASSIFICATIONS NOTES 

• Majority of Type A 
Al Temporary or None, monobar, cage Sand/cement • Original "Root Piles" micropiles now used 

unlined ( open or tube mortar or neat • GEWI Pile only when bond zone 
hole or auger) cement grout, • French Types I or II is in rock or stiff 

tremied to base cohesives. 

TYPE A of hole (or • Includes 
Gravity grout only A2 Permanent, full Drill casing itself casing), • NCC Types S2 and R2 underreamed piles, 

length no excess but very rare. 
Drill casing in upper pressure • Unreinforced 

A3 Permanent, upper shaft, bar(s) or tube in applied • NCC Types S l and S2 micropiles now not 
shaft only lower shaft ( may used ( or allowed by 

extend full length) codes). 

-..J 

Bl Temporary or Monobar(s) or tube Neat cement • Later "Root Piles" 
fully extracted ( cages rare due to grout is first • French Type I 

lower structural tremied into • Italian "Steel Pile" 
capacity) drill casing. • GEWI Pile 

Excess 
TYPEB pressure (up to • Sand/cement mortars 

Pressure-grouted B2 Permanent, Drill casing itself l MPa • NCC Types S2 and R2 are used very rarely, 
through the casing full length typically) is since these may 
during withdrawal applied to cause problems 

additional during 
Drill casing in upper grout injected pressurization. 

B3 Permanent, upper shaft, bar(s) or tube in during • NCC Types S l and S2 
shafl oniy lower shaft (may withdrawal of 

extend full length) casing 



...... 
00 

MICROPILE TYPE 
AND GROUTING 

METHOD 

TYPEC 
Primary grout 

placed under gravity 
head, then one 

phase of 
secondary "global" 
pressure grouting 

TYPED 
Primary grout 
placed under 

gravity head, then 
one phase of 

secondary "global" 
pressure grouting 

Table 1. Details of micropile classification based on type of grouting 
(continued) . 

COMPARISON WITH 
OTHER TYPES OR 

SUBTYPE DRILL CASING REINFORCEMENT GROUT CLASSIFICATIONS 

Neat cement 
Cl Temporary or Monobar(s) or tube grout is first • French Type Ill 

unlined ( open ( cages rare due to tremied into (Injection Globale et 
hole or auger) lower structural hole (or Unitaire) 

capacity) casing). 
Between 15 
to 25 minutes 
later, similar 

- grout injected -
C2 Not possible through tube 

( or reinforcing 
pipe) from 

C3 Not conducted - head, once -
pressure is 
greater than 1 
MPa. 

Temporary or Monobar(s) or tube Neat cement • French Type IV 
DI unlined ( open ( cages rare due to grout is first (Injection Repetitive et 

hole or auger) lower structural tremied into Selective) 
capacity) hole (or • Tubfix 

casing). • IM Pile 
Some hours 
later, similar 
grout injected 

D2 Not possible - through -
sleeved pipe 
(or sleeved 
reinforcement) 

Pennanent, upper via packers, as 
D3 shaft only many times as • NCC Type SI -

necessary to • GEWIPile 
achieve bond. 

NOTES 

• Appears to be used 
in France only. 

• Secondary grouting 
via a separate sleeved 
pipe or through the 
reinforcement tube 
equipped with 
sleeves. 

• Typically, the classic 
tube a manchette is 
used with double 
packer. Alternatively, 
the steel tube can be 
equipped with 
sleeves or the DSI 
regrout tube (with 
return) can be used 
(Volume 3). 

• Secondary grouting 
via a separate sleeved 
pipe or 
through the 
reinforcement tube 
equipped with 
sleeves. 



in France and Germany) for cast-in-place bored piles permitted diameters in excess 
of 300 mm, only vertical installations, and very little opportunity for alternatives or 
innovation. 

With the growing acceptance of the technique in international circles, the use of 
root piles spread quickly throughout Europe. For example, Fondedile introduced root 
piles into the United Kingdom in 1962, mainly to underpin historic structures 
threatened by decades of neglect. By 1965, similar systems had been used in West 
Germany in association with underground urban transportation schemes and, in the 
same decade, root piles were used during construction of parts of the Milan, Italy, 
subway. During this project, the Milan Subway Authority introduced the term 
"micropali" (micropiles) in reference to root piles, because the term "root piles" was 
proprietary. It is noteworthy that at the time of the introduction of micropiles to 
West German practice, the West German Code (DIN4014) for Bored Piles limited the 
capacity of a 400-mm-diameter pile to the range of 300 to 370 kN, compared to 
demonstrated micropile capacities in excess of 1000 kN for 120- to 250-mm-diameter 
elements. 

While the great majority of these applications were direct underpinning (CASE 1), 
the demands of urban engineering had encouraged the appearance of the CASE 2 
"reticulated pali radice" (figure 13), the first full-scale tests of which were carried 
out in 1957. Such structures were then applied for slope stabilization, reinforcement 
of quay walls, protection of buried structures, and other soil and structure support 
and reinforcement needs, as described more fully in chapter 2. 

Elsewhere, other contractors had begun to develop their own proprietary micropiles, 
such as the GEWI pile (first used at the Hoechst facility in Frankfurt, West Germany, 
by Dywidag in 1971), the Rodio Tubfix Micropile (first tested in Switzerland in 1962), 
and the pieu aiguille (Soletanche, 1974). These techniques were quickly exported 
overseas by branches or licensees of the original European contractors. 

Refinements continue to be made by European contractors, driven by the need to 
provide highly engineered, high-quality solutions to progressively difficult 
construction challenges, in an extremely competitive economic climate. One example 
is the growing use of Type D piles, in which bond enhancements by high-pre:ssure 
grouting are favored over bond area enlar2ement by enlarging the pile perimeter. 
Indeed, in France, very lightly reinforced or unreinforced Type A piles (equivalent 
to the original root pile) are no longer used for economic reasons. CASE 2 
applications appear to be considered only in Italy and Japan, although increasing 
awareness of their potential is clear, especially in France. 

Fondedile introduced micropiles into North America in 1973 by executing a number 
of CASE 1 underpinning jobs, principally in the New York and Boston areas. The first 
example of a reticulated CASE 2 structure was in 1975 for a structure to support and 
stabilize the abutment and pier foundation of a bridge along I-55 in Jackson, MS 
(figure 14). In November 1977, a similar structure was completed in the Mendocino 
National Forest, CA (figure 15) to stabilize a landslide area along Forest Highway 7. 
Both projects were instrumented by the U.S. Army Corps of Engineers, under contract 
with the Research Division of the FHW A (Palmerton, 1984). 

By the mid-1970's, American specialty contractors who were previously engaged in 
drilling, grouting, and anchoring work began to develop their own variants, such as 
the Nicholson Pin Pile (Bruce, 1988), a Type A, B, or D highly reinforced pile. All 
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a) VERTICAL CROSS-SECTION 

b) HORIZONTAL CROSS-SECTION A·A 

Figure 11. Classic arrangement of underpinning of a masonry wall using "pali 
radice" (from patent no. 497736, March 1952). 

20 



Figure 12. 

G.L 
-4'=----------

AREA TO BE EXCAVATED 

BOTTOMOFTHE 
EXCAVATION 
--.:JI:=---------

r r 

(I) 
a: 
w 
t; 

0 

LOAD IN TONS 

10 zo JO ◄ O •• 5-0 

::E 
3~'-J----+-----1----""<;:----t----,--+--;---+­
;i 
:!: 

~ J.00 
w +-----t----r----t--~~---­
::E 
w 

E 
(I) •· ...... r----t----t-----+-----+--+---+-

Break of the conglomerate of the plle tip cfc = 450 kg /cm') 

1 metric ton = 1. 10 tons (short) 

Load-movement · data from the first root pile test, A. Angiulli school, 
Naples, Italy, 1952 (Lizzi, 1982). 

. : -,.~ _?'.: ~; -:;:• 
. . 

R.C.WALL 

C 

BALLAST 

JACK 

G.L 
- r --------

AREA TO BE EXCAVATED 

BOTTOM OF THE l~ 
E~!T~O_N ______ { 

l '\ , :- .;.:-: 

J!Ktt· .. - ___ . 

-
. ' _:_:_:_·:::::.. 

R.C.WALL 

•RETICULATED PALI RADICE, 

Figure 13. Early load tests on reticulated micropile structures: first phase -
load being applied behind wall; second phase - load directly on the wall, Milan 

Subway, 1957 (Lizzi, 1982). 

21 



Figure 14. 

PARAPET-. 

PAVEMENT 

PARAPET 

NOATION 

.ISTING 
CRETE 

Sl.AB 

Reticulated micropile structure for abutment and pier support, 
Jackson, Mississippi (Lizzi, 1978). 

TYPICAL CROSS SECTION 

capping beam 

FRONT VIEW 

------~---·- ··-· -···-· -··+--· --· -· -· ·-• -·· 

Figure 15. 
1 ft= 0.305 m 

Reticulated micropile structure for slope stabilization, 
Mendocino Pass, California (Lizzi, 1978). 

22 



applications were CASE 1. The skepticism of a traditional East Coast piling market, 
however, did not encourage rapid application of the technique, and indeed, by 1984, 
Fondedile decided to close their American venture for commercial reasons. 

Ironically, the period from 1987 onwards then saw rapid growth as th1e pressure from 
innovative contractors, the weight of successful case histories, and the newly 
realized needs of consultants and owners working in old urban environments finally 
overcame the concerns of the traditionalists (Bruce, 1988a). As an illustration, Bruce 
(1994) listed 25 case histories of micropile projects completed by his company, in the 
United States, between the years 1978 and 1988. However, an additional 20 projects 
were completed in the subsequent 2 years. All of these applications were in the older 
urban areas of the East Coast or the "Rust Belt," or for industrial facilities in the 
Southeast. Since then, the number of applications conducted by a wide range of 
specialty contractors - for underpinning alone - has continued its exponential 
advance, with much activity now centering on seismic retrofit applications on the 
West Coast. 

There has also been a significant, if less dramatic, growth in the use of micropile 
structures for slope stabilization, especially in the rural areas of the Appalachian 
Mountains, where more conventional solutions using large-scale equip~ent may not 
be feasible. These systems have been designed conceptually as CASE 1, although the 
legacy of the original Fondedile CASE 2 concept continues to influence aspects of 
design, as detailed in volume II. Further details of U.S. applications are provided in 
volume IV. 

This contrast between micropile growth in Europe and North America in many ways 
reflected the situation in piling in general. In Europe, in the immediate post-war 
years, there was a shortage of steel, but an abundance of cheap (although often 
highly mechanically qualified) labor. Cast-in-place concrete piling, therefore, 
became popular, and in the absence of rigorous analytical expertise, industry 
leadership was in the hands of specialty geotechnical contractors. Designs relied 
heavily on the results of prior load test programs, while innovations were driven by 
the particular challenges posed by war damage and new urban infrastructure 
projects. 

In North America, materials, especially steel, were generally cheaper and more 
readily available, although labor costs were significantly higher. Furthermore, 
there was no need for reconstruction programs, and the major capital works were 
typically outside the cities rather than inside them. This set of circumstances, 
therefore, favored the growth of the low-technology, prescriptive specificativn 
driven-pile market rather than encouraging the formation of specialty design/build 
companies. 

Today the situation is similar throughout the world in terms of construction costs and 
technical demands. There are strong technical and academic centers, and responsive 
and supportive public administrations. Specialty construction companies have been 
founded, or have been exported, globally. These factors all have helped the growth 
of micropiles. 

Regarding micropiles in other countries, in Canada, there has been little demand and 
very few applications. The activity level in Mexico is currently similar, although the 
problem there is less a shortage of applications rather than a shortage of funding. 
As in most other fields of specialty engineering, the potential in Mexico is 
considerable. Applications in South America have likewise been restricted by 
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financial difficulties, although some large CASE 2 installations have been made, such 
as for a landslide prevention scheme along the Santos-Sao Paulo Highway in Brazil in 
1977 (Lizzi, 1978). 

According to Heinz (1994), "micropiling is alive and well in South Afric:a," based on 
technologies imported by European specialty contractors working with local 
partners. Micropiles are regarded as a "specialized tool from the geotechnical toolbox 
for solving particular problems" - an observation now common internationally. 
Applications vary from 300-mm-diameter high-capacity CASE 1 piles to 75-mm­
diameter "simple" CASE 2 soil reinforcement, and piles of Types A, B, and D have been 
installed in a wide variety of soil and rock conditions. 

OVERVIEW 

In summary, it appears that micropiles are being used throughout the world and are 
regarded as a reputable construction tool of exceptional value and potential. While 
the underpinning of Europe's historic structures continues apace (e.g., Gouvenot, 
1975; Herbst, 1982; Attwood, 1987; Doornbos, 1987), especially in cities being impacted 
by new underground construction, the newer and expanding cities of the-- Far East 
(Bruce and Yeung, 1983; Schlosser, 1994; Mitchell, 1985), South Africa, ~nd South 
America are blossoming markets as sophisticated construction continues in soft soils, 
with high water tables in highly congested and populous areas, often under the 
threat of major seismicity. The market in the United States appears to be a 
combination of both, given the ongoing upgrading and refurbishment of industrial, 
transportation, and commercial structures, especially on the coastal belts. On a 
somewhat cautionary note, the FOREVER team sees two major research challenges to 
be met that could promote micropile growth: (1) there are no specific or general 
recommendations regarding long-term corrosion, and (2) "the tools for the design, 
dimensioning, and calculation of micropiles do not sufficiently take into account the 
effects of groups or networks (of piles) under a wide variety of stresses (static, cyclic, 
and seismic loads). Throughout their history, commercial and technological 
innovations have almost always preceded studies of fundamental performance and 
the development of design methods." 

24 



CHAPTER 2. REVIEW OF APPLICATIONS 

INTRODUCTION 

Micropiles are used in two basic applications: as structural support and as 
in situ soil reinforcement (figure 16). For direct structural support, groups of 
micropiles are designed based on the CASE 1 assumptions, namely that the piles 
accept directly the applied loads, and so act as substitutes for, or special 
versions of, more traditional pile types. Such designs often demand substantial 
individual pile capacities and so piles of construction Type A (gravity grouted, 
bond in rock), Type B (pressure grouted through the head), and Type D (post­
grouted) are most commonly used. 

For micropiles used as in situ reinforcement, the original reticulated network 
concept of Lizzi (CASE 2) featured low-capacity piles circumscribing and 
internally reinforcing a composite pile/soil gravity structure. Type A piles 
(gravity grouted, fully bonded in soil) typify these designs. Recent research 
by Pearlman et al. (1992) on groups of piles suggests that in certain conditions 
and arrangements, the piles themselves are principally, directly, and.- locally 
subjected to bending and shearing forces. This would, by definition, by a CASE 
1 design approach. Such piles typically are highly reinforced and of Type A 
or Type B only. 

Whereas CASE 1 and CASE 2 concepts alone or together can apply to slope 
stabilization and excavation support, generally only CASE 2 concepts apply to 
the other major applications of in situ reinforcement. Little commercial work 
has been done in these applications (with the ·exception of improving the 
structural stability of tall towers [figure 4]). However, the potential is real and 
the subject is being actively pursued in the FOREVER program. 

Table 2 summarizes the link between application, classification, design 
concept, and constructional method. It also provides an indication of how 
common each application is on a worldwide basis. 

REVIEW OF APPLICATIONS 

Further details of many of the projects introduced in this section are provided 
in volume IV, which observes the same organization as below. As shown in 
figure 16, there are two basic applications, namely structural support and 
in situ reinforcement. 

Structural Support 

Underpinning of Existing Foundations 

Micropiles were originally devised for underpinning in the restoration of 
weakened, historic buildings, and were primarily installed as CASE 1 pile 
groups. Lizzi (1982) suggested that micropiles were an ideal underpinning tool 
for the following reasons: 

• Their execution did not 11 
••• introduce, even temporarily, any undue 

weakness or overstress in the structure as well as the soil. 11 

• They responded immediately to additional structural movement. 
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• They enabled assessment of a new Factor of Safety. 

Lizzi has also alluded to the possibility of using CASE 2 networks as indirect 
structural underpinning. However, it would seem that this application is, 
more precisely, in the realm of improving structural stability through 
creating and attaching an underlying pile/ground composite base, and, 
therefore, is introduced in the section on Structural Stability and is described 
in volume II. 

Micropiles have been used for underpinning: 

• To prevent or arrest structural settlements. 
• To repair or replace deteriorating or inadequate foundations. 
• To upgrade the load-bearing capacity of an existing foundation to 

permit, for example, the extension or raising of a structure. 

Arresting or preventing structural movements 

Structural movements can be caused by a variety of factors, including: 

• Poor ground beneath the existing foundation. Munkfakh and Soliman 
(1987) describe the use of micropiles in the underpinning of a transit vehicle 
repair facility at Coney Island, New York, that had experienced major 
differential floor subsidence due to uneven settlements of an underlying soft 
soil layer. New heavy equipment was expected to accelerate these differential 
settlements. Micropiles were an effective solution because they could be easily 
and economically constructed to deeper soil strata of more competent bearing 
materials. In this case, micropiles were employed based on their proven 
performance; compatibility with existing soil; relatively low cost compared 
with other solutions; and, most importantly, because they could be installed 
while the facility remained in full operation (figure 17). 

Another common application is to stabilize moving retaining walls (e.g., 
Attwood, 1987 and Lizzi, 1971). Since micropiles can be installed through, and 
bonded within, existing structures, they can provide a direct connection with 
a competent underlying horizon without the need for pile caps, while at the 
same time reinforcing the structure internally. Also, construction can be 
executed without compromising the existing stability of the wall. 

• Dewaterin~ activities or ~roundwater table fluctuations. Micropiles can 
be founded in deeper horizons where the effects of groundwater table 
lowering will not be felt. Therefore, nearer surface settlements will not cause 
structural movements, although a certain degree of separation between 
structure and subsoil surface may occur. 

• Adjacent deep excavations or tunneling activities. Structural 
movements may be caused by adjacent deep excavations or underlying bored 
tunneling. In each example, the structure so threatened can be directly 
underpinned by CASE 1 micropiles, as described above. In addition, however, 
this movement potential can be eliminated by CASE 2 networks, as illustrated 
in Soil Strengthening and Protection. 
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Table 2. Relationship between micropile application, design concept, and 
construction type. 
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Figure 17. Installation of micro piles in a fully operational transit repair 
facility, Coney Island, New York. 

Repair and/or replacement of existing foundations 

Micropiles have been used to repair or replace existing foundations that have 
deteriorated or have otherwise proven inadequate due to improper design or 
construction, unforeseen loadings, or other factors, including fluctuating 
water tables. Groneck et al. (1993) describe the use of Type 1B micropiles to 
replace deteriorated timber piling at a grain export facility on the Columbia 
River in Washington State. It was constructed in the 1930's under a fast 
schedule, which did not allow time for the original timber piles to be treated 
with a preservative. Subsequently, severe deterioration of the piles occurred 
in the region above the water table, leading to differential settlement to an 
extent that threatened to shut down operations. Of the several underpinning 
options considered, only micropiles could economically accommodate 
construction in the tight-access and environmental conditions, in close 
proximity to existing piles, without interrupting facility operations, and 
without further threatening the stability of the structure (figure 18). 
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(a) 

(b) 

Figure 18. Installation of micropiles: (a) inside and (b) outside an operational 
grain facility, Vancouver, Washington. 
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Figure 19. Typical cross section of reinforced and underpinned retaining wall 
at Albert Docks, Liverpool, United Kingdom (Turner and Wilson, 1990). 

Turner and Wilson (1990) describe an application at Albert Docks in Liverpool, 
United Kingdom. By careful design of their orientation, the Type lB 
micropiles were capable of withstanding both tension and compression loads 
(figure 19). They penetrated through the existing river wall and the 
underlying alluvium and boulder clay to be bonded into the underlying 
bedrock. 

Bruce et al. (1990) describe the underpinning with micropiles of the Bascule 
piers of a 60-year-old bridge in Maryland, originally founded on wooden· piles. 
River scour had exposed these piles in several places, leaving them vulnerable 
to attack and thus in need of replacement. Micropiles were employed for 
several reasons: their construction was possible both through the structure 
and the scour zone; their design and performance could be verified easily and 
economically through a test program; and through preloading, they could 
guard the bridge against further settlement during the transfer of structural 
load to these new foundation elements. 
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Figure 20. Typical cross section and details, Marseille Law Courts, France 
(Soletanche, 1986). 

-The Soletanche Company published a short case history of a similar 
application for the Marseille Law Courts Building (1986). The massive 
structure was more than 100 years old and was founded on concrete footings 2 
to 6 m thick, bearing on wooden piles driven into sandy, clayey silt. A drop in 
groundwater level had caused deterioration and even destruction of the 
wooden piles and consolidation of the silt. Type 1D micropiles were selected to 
transfer the structural loads to a compact marl layer, about 11 m below the 
footings (figure 20). Each of the 605 piles was installed to a maximum depth of 
10 m into the marl and was rated at a 320- to 500-kN service load. The work was 
completed in 20 months under difficult working conditions, operating from 
cellars, corridors, and offices in small areas at one time, so as not to interfere 
with activities in the building. 

Upgrading of load capacity 

The load capacity of a foundation system may have to be upgraded if the 
structure it supports is to accept additional load. For example, an existing 
bridge or elevated highway structure may have to be widened to accommodate 
increases in traffic volume, or additional stories may be desired on a building. 
Vibration-induced loadings may be anticipated from machinery newly placed 
within a structure. 
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Figure 21. Underpinning of a bridge pier in Italy by root piles (Lizzi, 1971). 

In most of these cases, however, access to existing foundations is restricted, 
with installation often required from within basements or beneath bridges or 
other elevated structures. Also, if the structure is located in an urban area, 
access may be further limited and additional restrictions may be imposed on 
permissible vibrations and noise levels during construction. 

Micropiles are well suited to these conditions. For example, Lizzi (1971) 
describes the use of Type lA micropiles to increase the load-bearing capacity 
of a bridge pier in Italy to accommodate widening of the bridge deck (figure 
21). Micropiles were employed in this case because their construction would 
not disturb, vibrate, or shake the existing structure, and also because they 
could accommodate associated restricted access. In Lizzi's opinion, the most 
important example of this type is the earlier underpinning of the Ponte 
Vecchio in Florence from 1962 to 1966. This bridge had survived the rigors of 
war only to be found succumbing to traffic vibrations. Micropiles were 
installed through the existing footings and the bridge successfully withstood a 
major flood in 1966, which proved to be very destructive to other structures in 
the valley. 
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The redevelopment and refurbishment of a commercial building on Boylston 
Street in Boston, Massachusetts, involved the addition of two stories and a 
mechanical penthouse (Bruce, 1988a). To accommodate the resultant increase 
in load, Type IB micropiles were constructed through enlarged pile caps 
around the original timber piles (figure 22). Piling had to be executed from 
within the basement of the structure, in headroom as low as 2.4 m. 

Other notable and recent examples in the United States include an extension to 
the Presbyterian University Hospital, Pittsburgh, Pennsylvania, and the 
rehabilitation of the Old Post Office Building in Washington, D.C. (Bruce, 1992) 
(volume IV). 

Foundations for New Structures 

The numerous advantages that micropiles can offer when being installed 
under existing structures may not always be needed when selecting a piling 
system for new construction. However, when difficult ground conditions are 
foreseen; limitations are placed on noise, vibration, and spoil handling; or 
access is severly restricted, then micropiles have again proved to be· a cost­
effective option. Construction duration and technical performance are less 
common, although occasionally controlling factors, and the following 
circumstances - singly or together - can be regarded as the most compelling. 
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Figure 22. General arrangement of micropiles, Boylston Street, Boston, 
Massachusetts (Bruce, 1988a). 
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Figure 23. Widening of the thruway between Milan and Bergamo, Italy, over 
the Adda River (Lizzi, 1971). 

(I) Restrictive Site or Access Conditions 

The relatively small drilling and grouting equipment utilized for micropile 
construction enable micropiles to be constructed in certain restrictive 
situations where other pile techniques cannot be implemented. For instance, 
micropiles can provide deep foundations for new structures that are close to 
existing ones, and they are often used as foundations for new bridge 
abutments or piers (for example, at the Brooklyn-Queens Expressway), when 
power lines or other overhead obstructions limit installation headroom, or 
when steep slopes prevent the operation of conventional pile driving and 
drilled shaft equipment (Pearlman and Wolosick, 1992). Figure 23 illustrates 
the latter situation, encountered during widening of a thruway spanning the 
Adda River in Italy. Micropiles were installed from the steep abutment slope. 
In addition, the specialized drilling equipment could reliably penetrate the 
bouldery overburden. 

(2) Difficult Geological Conditions 

Micropiles have been used as new foundations in cases where geological 
conditions are particularly difficult, variable, or unpredictable, and 
conventional driven or bored piles would be exceptionally difficult or costly to 
install. Examples of such conditions include soils with random boulders; fills 
with buried services or old building materials; and variable geological 
conditions, such as where hard layers alternate with weak ones. Karstic 
limestone terrains are often addressed in this way, and examples abound 
throughout the world of using micropiles as opposed to large-diameter bored 
piles. 
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A particularly interesting example was described by Fenoux (1976). Micropiles 
were used for the foundations of the "Le Fermentor" building in Monte Carlo, 
Monaco, which was built on highly variable ground (figure 24) with a great 
many obstructions, including old foundations. No conventional piling system 
could have been economically mobilized or used in the timeframe available. 

New bridge construction is a common application since abutments are often 
located in areas of inadequate bearing materials, such as alluvial deposits, 
which dictate the need for deep foundation alternatives. Bruce (1988, 1989) 
describes the construction of a new highway crossing over the Delaware River 
in New Jersey, for which driven piles were originally specified to be founded 
on solid rock. During excavation for one of the piers, however, only random 
rock thicknesses (karstic limestone) were found, and the actual bedrock 
surface was highly irregular. A Type lA micropile alternative was chosen 
over large-diameter drilled shafts mostly due to economics, but also because of 
the technical advantage of the micropiles transferring load by skin friction as 
opposed to end bearing, eliminating the risk of failure by piles punching 
through into soft clay interbeds in the karstic limestone. The decision to use 
micropiles was further supported when comparing actual micropile depths to 
anticipated drilled shaft depths (figure 25). The large-diameter elements 
would have been too short to develop adequate end bearing, since poor or 
voided rock was found consistently below the predesigned caisson tip levels. 

(3) Environmentally Sensitive Areas 

Bruce (1988, 1989) describes the use of Type lB micropiles as foundations for 
the support poles of an aviary-type structure, constructed in an 
environmentally sensitive garden setting where preservation of the existing 
flora and fauna was paramount. Conventional piling and spread footings were 
unacceptable because of the nature of the site and their potential for 
disturbing the existing flora. Micropiles could accommodate construction in 
this sensitive environmental setting and were also economically advantageous 
since their installation utilized the same equipment being used for adjacent 
ground anchors. The swampy underfoot conditions were also not conducive to 
the use of large equipment, and the required loads could not be met by the 
capacities of contemporary mechanical or helical anchors. 

Micropiles are also particularly useful in supporting tower structures, such as 
electrical transmission towers, since they can withstand both compressive and 
tensile loadings with equal facility. Weitman (1981) confirms that micropiles 
are used as tension elements below buoyant structures, although there are 
usually several other options in this instance. 

Bruce and Yeung (1983) describe the use of Type IA micropiles to support a 
new extension of the Hong Kong Country Club. The nature of the site and the 
presence of an adjacent wildlife park ruled out the use of large equipment and 
severely restricted noise and waste emission. 

Micropiles are also becoming a preferred option to underpin structures in old 
urban and industrial areas that are underlain by contaminated soil. The small-
diameter drilling and easily controllable flush effluent clearly reduces the 
degree of potential surface contamination. Recent examples of this advantage 
include the work done for a petrochemical facility in Mobile, Alabama (Bruce 
et al., 1992), and the piles installed under the Brooklyn-Queens Expressway in 
New York City (Bruce and Gemme, 1992), and applications are being considered 
for the Interstate 880 Replacement Project in Oakland, California. 
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Figure 24. Cross section of a new foundation on "needle piles" adapted to 
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(Fenoux, 1976). 
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Figure 26. Protection of a diaphragm wall with secant minipile screen 
utilizing anti-acid grout (Bachy, 1992). 

A rather unusual case history was reported by the French company, Bachy 
(1992). A concrete diaphragm wall had been installed to form an underground 
carpark in Barcelona, Spain (figure 26). Studies of the concrete revealed it 
was chemically and physically deteriorating due to extremely aggressive 
groundwater (chlorides, sulphates, and pH values as low as 1.7) originating 
from an adjacent metallurgical plant. An in situ screen was therefore 
required to isolate the concrete wall from the souce of pollution, and, 
primarily as a result of very restricted surface access, a Type IA micropile wall 
was designed. Special anti-acid grouts were designed by the contractor. The 
200-mm-diameter piles were overlapped (secant piles) in the deeper, high­
acidity regions, and were made contiguous in areas of medium acidity. 
Investigations carried out after completion of the screen detected no· trace of 
acid on the diaphragm wall, and so confirmed the effectiveness of the 
micropile screen wall. 

Seismic Retrofitting 

Micropiles are increasingly being used in the seismic retrofit of highway 
structures such as bridge piers. Often, footing capacities must be upgraded to 
accommodate higher design overturning moments, and micropiles provide a 
practical alternative to traditional techniques (compression piling and 
tiedown anchors) since they derive their load-holding capacity through 
frictional bond. They therefore perform comparably in tension and in 
compression, optimizing the required number of elements. In addition, 
micropiles can surmount many of the typical constraints associated with such 
upgrades, most of which are undertaken in urban areas: 

• Noise- and vibration-level limitations. 
• Installation in low-headroom conditions (such as beneath bridge decks) 

affecting drilling and reinforcement placing activities. 
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• Difficult drilling conditions due to ground obstructions, high water 
tables, utilities, or strata of alternating hardness. 

• Reduction of excessive pile lengths to meet higher tensile capacity 
requirements. 

• Limited right-of-way access. 
• Inability to extend existing footings. 
• Contaminated soils. 

As an example, Pearlman et al. (1993) describe the use of micropiles for the 
strengthening of existing footings during the seismic retrofit of the Caltrans 
North Connector Overcrossing (1-110). Originally, the design prescribed the 
use of 610-mm-diameter Cast-ln-Drilled-:,Hole (CIDH) concrete piles. However, 
concrete obstructions and water-bearing sand layers encountered during 
drilling, together with low overhead clearance, prevented the use of this pile 
type. An alternative program utilizing Type 1B micropiles was successfully 
implemented to complete the retrofit at considerable savings to the owner 
(figure 27). This application of micropiles is extremely important, an 
observation underlined by the extensive testing of such piles in the major 
FHWA/Caltrans test-pile program conducted in 1992 and 1993 in San -Francisco, 
California, and their subsequent acceptance as an approved Caltrans 
foundation option (Caltrans, 1993) on several sole-source contracts. 

Figure 27. Drilling of micropiles using a detached drill mast, for seismic 
retrofit in footing excavation, 1-110, Los Angeles, California. 
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It should be noted that all piles installed so far in U.S. seismic retrofit 
programs have been CASE 1, and nearly all were vertical. Although it is 
suspected that great potential exists for a CASE 2 approach to seismic retrofit, 
this cannot yet be verified, given the current state of knowledge. 
Internationally, no systematic data exist on the performance of micropile-
supported structures during seismic events. However, Lizzi contributed a 
"statistical datum" in the form of his observation that each of the multitude of 
delicate structures founded on micropiles have "remained practically 
unaffected by the several severe earthquakes" recently recorded in Italy 
(Lizzi, 1994). 

In Situ Reinforcement 

Lizzi (1982a) originally advanced the "knot effect" concept, in which the 
micropiles, appropriately spaced in a reticulated three-dimensional network, 
encompass and reinforce the soil, while at the same time they are supported by 
the soil. For slope stabilization applications, he advocated that these 
reticulated micropile structures create a reinforced soil/pile "gravity. 
retaining wall," where the soil supplies the essential resisting force (the 
gravity), and the piles supply additional resistance to the tensile and- shear 
forces acting on this wall. For such structures, the individual piles are 
engaged as friction piles securing the pile/soil composite mass in the upper 
section (CASE 2), and as structural elements subjected to shear and bending in 
the lower part (CASE 1). The overall aim of this structure is to provide a stable 
block of reinforced soil to act as a coherent retaining structure, holding back 
the soil behind it, while providing resistance to shear across the failure plane. 

In contrast, Pearlman et al. ( 1992) present evidence that similar structures, 
but comprising groups of inclined micropiles, do not necessarily behave as 
gravity walls, but rather the micropiles serve only to connect the moving zone 
(above the slip surface) to the stable zone (below the slip surface). Through 
their bending and shear capacities alone, they therefore increase sliding 
resistance along the slip plane. Palmerton (1984) also presents data indicating 
similar behavior. These piles would, therefore, be purely CASE 1 in design 
approach. 

For the other three major applications of in situ reinforcement shown in 
figure 16, the design concept appears to be CASE 2, although certain older case 
histories indicate that some soil-strengthening and retention schemes have 
featured at least a minor component of direct axial loading (CASE 1). 

In all these examples, it must be restated that the in situ reinforcement 
features micropiles installed in steeply dipping networks and groups. This is 
in contrast to the in situ reinforcement effect provided by subhorizontal 
groups of soil nails, as illustrated in figure 3. 

Embankment. Slope. and Landslide Stabilization 

Typical configurations and applications of inclined micropile walls for the 
stabilization of slopes, embankments, and landslides are illustrated in figure 
28. Lizzi (1978) confirms certain differences in design concept for different 
types of soil masses, as shown in figure 29. For the case of bouldery, stiff, or 
dense formations, the shear resistance of the piles across the supposed sliding 
surface is important (CASE 1). Conversely, in the loose soil condition where 
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Figure 28. Typical configurations and applications for inclined micropile 
(Type A) walls (Pearlman et al., 1992). 
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Figure 29. Typical patterns for reticulated micropiles in two different sl~pe 
stability applications (Lizzi, 1978). 
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the idea is to construct a gravity wall, the essential element is the soil, and so 
the individual capacity of the piles is not critical (CASE 2). Similar types of 
installations for slope or embankment stabilization are termed RPM (Root Pile 
Method) in Japan. Reticulated micropiles have also been used to reinforce the 
downstream portion of an embankment dam (Lizzi, 1982a). 

Regardless of their design concepts, micropile groups and networks are 
employed where conventional retaining systems cannot be constructed due to 
geological, site/access, or cost constraints. Particular advantages include the 
ability to provide stabilization without the need to excavate and the relatively 
low impact of the installation procedure on the existing stability of the slope. 

Soil Strengthening and Protection 

Reticulated micropile networks have been used on occasion to retain or 
support soils during nearby or adjacent tunneling or deep excavation 
activities. 

Figure 30 illustrates the application as a retaining wall, protecting the 
foundation of an existing building during the excavation of a cut-arid-cover 
section. Figure 31 shows a similar, more recent application - support of 
excavation in a road-widening project. In both cases, surface access was 
severely restricted, and major restraints had been placed on noise and waste 
emission levels. Each example was essentially a CASE 2 design, but the latter 
structure also had a CASE 1 function as it was, over part of its length, subjected 
directly to compressive structural loads by a new bridge deck bearing on its 
capping beam. 

A slightly different application is shown in figure 32. The foundation soils 
(Zone B) of an existing building were protected against any loss of ground (in 
Zone A) arising from the adjacent underground construction of new subway 
tunnels. Construction was carried out from within a small service tunnel and 
traffic was not disrupted. This example is purely a CASE 2 structure, in 
contrast to that in figure 33 where the micropile network provided both a zone 
of reinforced soil (to limit soil movement) and direct structural underpinning 
(CASE 1) for the existing building. · 

In the example shown in figure 34, a newly constructed tunnel was being 
structurally damaged by irregular point loads exerted by a very variable, often 
loose, flyche-type sediment. Conventional prestressed rock . bolts were not 
feasible due to the absence of an appropriate bonding horizon. Instead, a 
network of 10- to 12-m-long CASE 2 micropiles were installed, creating an 
in situ arch of reinforced soil that accepted the loads and distributed them 
evenly to the lining. 

An extremely significant application of essentially vertical piles for ground 
reinforcement was provided by Blondeau et al. (1987) and is described in detail 
in volume IV. The soil under a heavy structure involved in the construction of 
a new nuclear power plant in South Korea was found to be a weathered and 
faulted zone with static and dynamic properties far inferior to the adjacent 
sound rock masses (figure 35). These CASE 2 piles were installed to improve 
the mass properties of the faulted zone and to render it much closer in both 
static and dynamic performance, as a foundation mass, to the intact rock. 
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Figure 30. Typical micropile configuration to protect a structure from the 
effects of an adjacent subway excavation in Milan, Italy (Lizzi, 1982). 
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Figure 31. Reticulated micropile wall used as support of excavation, Dartford, 
United Kingdom (Attwood, 1987). 
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Figure 32. Typical micropile scheme for protection of a structure during 
tunneling operations, Paris, Fr~ce (Lizzi, 1982). 

Settlement Reduction 

A few examples of CASE 2 projects using vertical small-diameter driven piles 
have been recorded. Figure 36 shows an American experiment by Korfiatis 
using wooden piles to reduce the settlement potential of an embankment, 
while in England a system called Bridge Approach Support Piling (BASP) was 
proposed to provide improved foundation conditions for access ramps. 
Weitman (1981) and FOREVER (1992) have suggested that such applications 
could be executed with micropiles, although cost-effectiveness would be a 
major issue. No full-scale example has yet been reported. However, Plumelle 
(1984, 1985) has reported on several tests conducted at an experimental site 
near Paris, and this initiative may well result in future commercial 
applications (figure 37). 

Structural Stability 

Lizzi and Carnevale (1981) demonstrated how reticulated root piles were used to 
improve the stability of a tall and slender tower in Mosul, Iraq (figure 38). 
This CASE 2 network defines a bulb of reinforced soil, attached to the structure, 
whose weight significantly lowers the center of gravity of the whole 
structure-bulb system. In this approach, the piles do not have to extend to 
great depths, or even reach a particularly competent bearing horizon. It is 
merely sufficient that the block of reinforced soil has adequate weight. For 
the example shown in figure 38, the micropiles were part of a complete and 
integrated soil and structure retrofit. 
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Figure 3 3. Reticulated micro pile underpinning 
construction of a railway tunnel in Salemo, 
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Figure 34. Scheme of reinforcement of an existing tunnel (Lizzi, 1994). [Note: 
Reinforcements are inclined in three dimensions.] 

This whole concept has great potential in the seismic retrofit of structures in 
that the dynamic response of a structure/network system will be substantially 
different from that of the structure alone. The lack of experimental 
demonstration and appropriate design methodologies has to date prevented 
this solution from being adopted more widely. 

FACTORS INFLUENCING THE CHOICE OF MICROPILES 

Physical Constraints 

Micropiles can be installed with conventional, small-scale drilling and 
grouting equipment (volume III). The maneuverability and compactness of 
such equipment can permit piles to be installed in confined, awkward, or 
otherwise physically constraining work spaces. For this reason, micropiles 
have proved to be an ideal choice when project requirements dictate 
installation in areas with low overhead clearance, or in close proximity to 
existing walls, columns, footings, or other structures. Drilling and placing of 
reinforcement can proceed in as little as 2 m of headroom and as close as 200 
mm to existing walls. These features also can allow installation from within 
existing, fully functional facilities with minimal disruptions to normal 
operations. The portable or modular nature of the equipment also allows 
installation on steep slopes, in limited right-of-way areas, and in other 
locations that do not permit conventional piling rigs to be mobilized. The 
small diameters further facilitate pile installation in areas known to hay)! 
buried services or other utilities. 
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Figure 35. Micropile foundations at Uljin Nuclear Power Plant, South Korea 
(Blondeau et al., 1987). 
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Environmental Constraints 

The drilling and grouting techniques used in micropile construction are 
selected to impart minimal disturbance on the soil, structure, and surrounding 
environment. Thus, micropiles have been selected when installation is 
required near structures sensitive to vibration-induced damage (e.g., historic 
buildings); in areas with soils susceptible to vibration-induced settlement; and 
in populated areas where vibrations, noise, dust, or disposal of cuttings or 
flush are problematical. The use of lightweight drilling equipment, coupled 
with the nature of the drilling process, has also permitted micropile 
construction on sensitive slopes of marginal stability. Furthermore, 
underpinning with micropiles does not require the prior dewatering of the 
site. This has obvious technical and cost advantages, especially where the 
groundwater may be contaminated and safe spoil disposal is extremely 
onerous. 

Difficult Ground Conditions 

Micropiles are an attractive option when ground conditions are difficult. The 
range of available drilling techniques permits installation through virtually 
any type of fill, soil, rock, or obstruction, as well as through existing 
structures. Depth and orientation also are virtually unrestricted within the 
typical range of micropile applications. Installation has been accomplished in 
a wide range of challenging ground conditions, including: 

• Karstic limestone (with voids or solution cavities). 
• Mined rock (with voids or rubble-filled voids). 
• Bouldery ground or glacial tills. 
• Soils with a high groundwater surface. 
• Variable/random urban fills. 
• In the presence of existing foundations or other obstructions. 

The drilling and grouting procedures used in construction enable micropiles 
to suitably develop side resistance in almost any soil type, including: 

• 

• 

Stiff or hard clays or silts of low plasticity . 
Sands and gravels. 
All rock formations. 
Combination materials such as glacial tills or fills . 

It should also be noted that micropile drilling techniques can accommodate the 
even wider range of materials, both natural and artificial, which can overly 
target bearing strata (volume III). 

Load/Movement Criteria 

Micropiles carry load predominantly through side resistance and, when 
suitably reinforced, can sustain relatively high loads with only small 
movement. Therefore, they are attractive when movement criteria are 
especially strict. It should be noted, however, that there is a major conceptual 
difference between underpinning historic, delicate, masonry monuments 
where only minimal additional movements can be tolerated and the support of 

52 



contemporary reinforced-concrete or steel-framed buildings that may be 
designed to accommodate relatively large differential movements. 
Appropriate designs can be made to address each concept of movement control. 
If a structure is extremely sensitive, preloading of CASE 1 piles can be 
undertaken in certain circumstances to fully eliminate pile compression 
before the piles are attached to the structure. However, it must also be recalled 
that support with minimal movement was one of Lizzi's goals when 
introducing the original root pile, which was fully bonded to the surrounding 
soil over its entire length and which therefore had excellent load-resisting 
properties. 

Figure 39 shows the results of early tests in Venice, Italy. The fully bonded 
root pile had a movement at 5 IO kN of 1.3 mm, compared to a movement at the 
same load of 7.2 mm for a "steel" micropile. The latter was bonded to the soil 
only in a deep bearing stratum. Analysis of this behavior is provided in 
volume II. 

Tests indicate that geotechnical capacity is similar in both compressiQn and 
tension (since micropiles are essentially stiff elements). Tensile capacity in 
competent soils and rocks is generally limited to the structural capadty of the 
reinforcement (Pearlman and Wolosick, 1992), assuming that the 
pile/structure connection can maintain the limit state demands of the pile. 
When subjected to lateral forces, micropiles derive resistance from the 
horizontal response of adjacent soils, and can thus sustain significant lateral 
deflection before yield levels are exceeded. 

For example, lateral load tests on vertical micropiles reinforced with a 
178-mm-diameter casing yielded (in variable urban fills) a 19-mm deflection 
at a lateral load of 85 kN, and in stiff alluvial soils, a deflection of 7 .6 mm at 107 
kN, both for a free-head condition (Pearlman and Wolosick, 1992). Micropiles 
also appear to respond favorably to repeated cyclic loading (Herbst, 1994), 
although data are limited. Further discussion is provided in chapter 4. For all 
these reasons, micropiles are well suited for satisfying the demands of complex 
loading conditions. 

Connection to Structure 

As illustrated in the Review of Applications, micropiles can be incorporated 
and fixed directly into an existing foundation. Since this connection is usually 
provided by bonding between the pile steel and the structure, it offers both 
tensile and compressive strength. In addition, this ability can preclude the 
necessity of creating a new foundation footing, which, in turn, would need to 
be connected to the existing footing. 

Cost 

Cost is clearly an important factor when considering the use of micropiles, and 
this aspect is explored further in chapter 3. When evaluating cost­
effectiveness, it is important to assess the cost of a micropile option in light of 
the other factors listed above, namely physical, environmental, and geological 
constraints; service performance; and connection to structure. For example, 
for a "green" field site, with soft, clean uniform soils and unrestricted access, 
micropiles may not be a competitive solution. However, for the delicate 
underpinning of existing bridge piers in a heavily trafficked old industrial or 
residential area, then they may be the most cost-effective choice, if not the 
only option. 53 
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CHAPTER 3. FEASIBILITY AND COST 

Chapter 2 of this volume, and volumes III and IV demonstrate the wide range 
of conditions under which micropiles can be used. They are practical in any 
soil, fill, or rock condition, and can be installed at any angle. They can 
accommodate potentially restrictive access and environmental problems, and 
they have wide application both for new construction and in association with 
existing structures. Micropiles are used for structural underpinning and 
in situ earth reinforcement (figure 16). As described in volume II, dealing 
with design, there remain many theoretical and behavioral issues that are 
incompletely understood, and, in general, capabilities in these fields tend to 
lag behind those in the more practical aspects of the technology. 

However, micropile installation is subjected to a variety of quality assurances 
and controls, typically and mostly applied by the contractor. This is quite 
different from installers of driven piles whose practices - at every stage of 
the process - tend to be specified and monitored by a second party. There is, 
therefore, not the same risk to successful performance with micropiles as one 
could otherwise anticipate, given the incompleteness of design theor_y. 

Nevertheless, this situation has restricted the growth of the use of micropiles 
in certain fields of application, of which seismic retrofit is a good example. 
However, this is not so much a reflection of their unfeasibility, rather it is an 
admission of incomplete understanding, inadequate design rules, and 
weaknesses in predictive ability. By designing very conservatively; if 
necessary, micropile-based solutions can invariably be "made to work" -· 
technically - in any given piling application. However, costs may escalate to 
an extent that micropiles, though feasible technically, may not be cost­
effecti ve. 

The selling price of a micropile is the product of many cost-determining 
factors, including: 

• 
• 

• 
• 
• 
• 

• 
• 

Physical, access, and environmental conditions on site . 
Subsurface conditions . 
Required capacity. 
Pile length . 
Pile inclination . 
Local labor employment regulations . 
Contractor overhead and margin percentages . 
Country of construction. 
Risk assessment. 
Contractual arrangement. 
Quantity . 
Performance risk. 

There is, therefore, no one "typical selling price," but instead a wide and 
responsive range. As a guideline, however, and assuming: 

• No physical, environmental, or access restrictions. 
• "Easy" subsurface conditions. 
• Average load-holding capacity and average length. 
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• Vertical inclination. 
• Non-Union operation. 
• Typical contractor overhead and margin percentages. 

then the "base" selling price in the United States is in the range of $130 to 
$200/per linear meter of pile (1995 costs). This is probably higher than in 
certain other countries, for example, Britain. However, it must be recognized 
that every country has its own cost structure that affects not only every type 
of piling, but each alternative structural support method as well. A sensitivity 
analysis using this base linear price would indicate the influence on cost by 
the following factors: 

• Physical and access conditions Very easy Very difficult 
-25 percent +100 percent 

• Geology/soil conditions Very easy Very difficult 
-15 percent +50 percent 

• Pile capacity Very low Very high 
-15 percent +30 percent 

• Inclination Vertical Shallow .· i-ncline 
0 percent 15 percent 

• Union Non-union Very strong 
0 percent 30 percent 

• Overhead and profit margins Very low Very high 
(reflecting risk) -10 percent +10 percent 

Thus, applying an unattractive combination of all these factors (for example, a 
site with very difficult access and geology, and high-capacity inclined piles in 
a very strong union area) might raise the linear price by much more than 200 
percent of the base (i.e., to more than $300/linear meter). In such instances, 
micropiles, although feasible, may not be apparently cost-effective, and so an 
alternate technology may be investigated. Usually in such an instance, 
however, exactly the same factors that raise the micropile price will have at 
least the same cost implication as these other options, which may not even be 
technically or practically feasible in any case. 

In addition, care should always be taken to clearly define the "true cost" of a 
solution based on micropiles. For example, when comparing linear costs of 
micropiles to those of other types, the high linear capacity of micropiles 
should be factored in and a truer assessment will then be made on the basis of 
price per meter per ton. 

Likewise, a micropile option may necessitate less support work (from the 
General Contractor) or may significantly reduce the overall project schedule, 
thus providing a cost savings to the owner that is disproportionate to the cost 
difference of the various piling options. 

There are several ways of paying for micropile work, ranging from "lump 
sum" to "cost plus." However, it is more common to find a basis of payment that 
includes the following items: 

Item 

Mobilization/demobilization. 
Set up drill rig. 
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Unit 

Per visit to site. 
Per hole. 



. Install pile (of nominated capacity). Per linear meter 
of specified capacity. . Test pile. Per specified type of 
test. . Penetrate obstructions. Per linear meter or per 
hour. 

• Grout (beyond specified volume per pile). Per cubic meter. 
• Delay time. Per crew hour . 

Regarding construction ~. this will be strongly influenced by the same 
factors determining cost, and, of course, the two are usually closely and 
inversely related. Under good conditions, a micropile productivity in excess of 
100 m per rig per 8-h working shift can be expected. This figure will be 
reduced by a factor of 2 or 3 in extremely adverse conditions. 

When arriving at micropile linear costs, the following approximate cost 
proportions may be expected (excluding site mobilization, demobilization, and 
general contractor-type services or facilities): 

• Labor 25-40 percent 
• Equipment 15-30 percent 
• Materials 15-30 percent 
• Consumables 10-25 percent . Subcontracts 0-20 percent 

As a final word, it is reiterated that the linear cost of micropiles is usually in 
excess of that of conventional piling systems, especially those of the driven 
variety. However, under certain combinations of circumstances, micropiles 
will be the cost-effective option, and occasionally, it will be the only feasible 
technical option. 
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CHAPTER 4. CONTRACTING PRACTICES 

Although contracting practices vary between different countries and 
cultures, there are certain common elements that are apparent. First, most 
micropile works are· carried out under subcontracts to general contractors, 
and the value can typically range from 5 percent to 40 percent of the value of 
the overall project. Second, although there is a growing trend to base awards 
on other criteria, such as technical merit, resources, and experience, price 
usually remains the most important factor for obtaining a contract award. 
Third, as a reflection of the growing complexity and sophistication of 
micropile works, an increasing proportion of jobs are let on a design/build 
basis. In this scenario, a geotechnical and/or structural consultant will often 
work for the micropile contractor or on an official team, as opposed to the 
conventional case where the consultant alone designs the work in advance 
and then oversees and directs its execution. In association with this trend, 
performance-type specifications are becoming more common, in preference 
to the "prescriptive" types that frequently do not have the inherent technical 
or contractual flexibility synonymous with a cost-effective, non-litigious, and 
successful execution. Assuming that the reader is well versed with respect to 
this conventional "low bidder" approach, emphasis is placed in this chapter on 
the more innovative design-build options. 

As noted by Nicholson and Bruce (1992), the American specialty geotechnical 
construction community has historically been a follower rather than a leader. 
This has been due to the nature of past construction demands (e.g., building 
roads through the deserts rather than soft ground tunnels under old cities), 
and a tradition of litigious and confrontational operating conditions. One can 
cite the import of ground anchors, diaphragm walls, jet grouting, and soil 
mixing as examples of foreign concepts, whereas compaction grouting (Baker 
et al., 1983) is the sole "uniquely American process" being exported 
internationally from domestic roots. Micropiles, as noted frequently in this 
report, are another example of a European technology import, 
notwithstanding the local flavor it now displays. 

Still, the most common delivery system for a construction project is the 
traditional "Design-Bid-Build" system, in which the steps are well defined: 

• Design: The owner, or a consultant selected by the owner, 
designs the project. 

• Bid: A suitable bidding period is established, usually 4 to 6 weeks, and 
any contractor who can secure suitable bonding bids the work. 

• Build: The low bidder is then determined and the project is built in 
accordance with the plans and specifications of the owner and the 
consultant. 

There may be some opportunities to innovate - the engineer or constructor 
can propose Value Engineering - but these opportunities may be limited, 
especially on "fast track" projects in which micropiling may be a minor 
element. 
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This present low-bidder system, used for the overwhelming majority of public 
works construction in the United States, has led to other problems in the 
industry in addition to not encouraging innovation and development. 
Disputes, formal arbitration, and lawsuits are becoming an everyday 
occurrence for many contractors. Low profit margins have led to the failure 
of many companies involved in the high-risk arena of specialty geotechnical 
contracting. 

Despite these constraints, micropiling and other such innovative technologies 
are, of course, increasing in usage, and this is steadily encouraging new or 
alternative practices, mainly in the bidding and procurement stages. The 
American Society of Civil Engineers Specialty Conference at Cornell 
University, Ithaca, NY, in June 1990, dealt with the subject of "Design and 
Performance of Earth Retaining Structures." One section was devoted to 
contracting practices, and A.J. Nicholson described these innovative 
modifications. All are valid for establishing procurement methods for 
micropiles and are summarized as follows. 

It is common to find contract documents that include qualification ~lauses that 
call for some limited review of a contractor's experience record by tp.e owner 
or consultant. The owner's approval is (nominally) required before the 
specialty subcontractor may be employed by the general contractor. However, 
it is difficult to ensure that these clauses will perform as intended. In a very 
competitive bidding atmosphere, the successful general contractor usually 
feels he or she has a "right" to use the subcontractor of his or her choice. This 
often means that the general contractor will choose on the basis of cost over 
experience, and will rely on his or her own interpretations of the cla.uses to 
justify the selection. For example, certain "experienced" individuals can be 
hired temporarily, or materials or equipment suppliers can be engaged to 
furnish "technicians" to supervise certain more critical phases of the work. 
This state of affairs affords no incentive or encouragement to the innovative 
specialty contractor and ultimately leads to a deterioration of product quality 
through error, omission, carelessness, or, simply, lack of experience. 

A more attractive method has been the concept of prequalificatjon. whereby 
only pre-approved contractors are permitted to bid to the general contractor. 
About half of the State highway departments are currently using or are 
considering this method for certain types of work. Typically, though, general 
contractors find themselves besieged by subcontract bids at the last minute 
from "new" companies claiming to have the suitable level of expertise. If the 
offer is low enough, the contractor is tempted, and rarely does the owner 
intervene because his or her fine intentions are submerged in the self­
justification of "fair and open competition." The good intentions of 
prequalification are further diminished by the fact that no national forum 
exists where standard guidelines are set. The U.S. Army Corps of Engineers and 
others, however, are experimenting with a contractor rating program to 
prohibit a contractor with an "unsatisfactory" record from previous work 
from bidding on other work. Each owner typically has his or her own 
prequalification system, and tight bidding and award schedules rarely leave 
time for submitted references to be verified. A drawback of even rigidly 
applied prequalification is that it rules out the potential for contribution by 
the innovative specialist during the project's conceptual and design phases. 
This is everyone's loss, as the team is potentially weaker. 
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The Value Engineering Proposal is a form of alternate proposal, long 
established in American practice. Although more progressive in concept, it 
has found limited use in specialty geotechnical contracting. This is not solely 
because cost savings must be shared, rather it is because at bid time the 
general contractor is typically unable or unwilling to assess the inherent 
risks. These risks include the fear that change may disrupt the work; the 
owner may not accept the scheme; and there may be insufficient time for 
approval. When presented with such concerns, often for little reward in 
return, most general contractors simply reject value-engineered proposals. 

In contrast, the challenge of equitably procuring a solution using micropiles 
- or any other specialty geotechnical technique - is often best met using the 
Design-Build concept, common in the bidding climates of Europe and Japan 
and promoted for many years by the FHWA. The Design-Build concept allows 
the geotechnical specialist contractor to introduce cost-effective solutions that 
meet or exceed the owner's performance criteria. Such contracting practices 
promote innovative design and accelerated construction, often with the use of 
equipment specially built for the purpose. They are based on the use ·of 
performance-type specifications as opposed to the prescriptive types. common 
for traditional technologies in conventional bidding methods. The traditional 
role of the owner's representative - the design consultant •- · is often modified 
and may be expanded. The design consultant not only sets the performance 
criteria within practical limits, but also provides assurance that the owner's 
needs are satisfied. Review and critique of competitive proposals from 
specialty contractors and consultants employed by them ensure that the most 
economical solution is found. There are four distinct options: 

• Post-Bid Desi2n. The owner prepares a set of special design criteria 
(special provisions) that are included in the bid invitation and define 
the parameters for the alternate design. An owner-designed or "as-
designed" system may also be included. After successfully pricing the 
project and obtaining a contract, the specialist then provides a design to 
the owner for review and approval, and this design must satisfy the 
performance parameters. 

A difficulty with this approach concerns the ability of the owner and 
contractor to agree on the design after the award has been made. Disputes and 
delays may result, and often the contractor must modify the design, which 
usually compromises potential profitability. Also, to protect himself or 
herself, the owner may overspecify the design parameters, and this may 
reduce design flexibility. However, this can be a very useful option, especially 
for smaller, highly technical projects. 

• Pre-Bid Design. Prequalified, selected specialists prepare designs for 
the owner's review prior to the bid. Approved designs become part of 
the bid package and the specialty subcontractor prepares a price for 
construction of the proprietary design only. This method works best 
when the contractor is permitted to prepare plans of a conceptual 
nature only. Such plans exclude details that the contractor feels are 
unique to his or her design. As long as the supporting calculations 
address these details, the bid documents may include only enough 
information to make other contractors aware of the nature of the work. 
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This is a positive opportunity for innovative contractors, who of course, 
must still remain cost-effective. 

• Negotiated Work. The owner is committed to a team approach wherein 
the contractor becomes an important part of the team for all foundation 
and ground-support aspects of the project. Risk-sharing is integral. 
The contractor is responsible for the adequacy of the design and its 
construction; the owner is responsible for the accuracy of the 
information upon which the design is based. Costs are reduced as the 
contractor includes fewer contingencies, and innovation is encouraged 
because the contractor is rewarded for economies of design and 
installation. Quality is enhanced due to the team approach. 

• Two-Phase Biddini:. In many ways another type of negotiated bid, two­
phase bidding, has gained favor in recent years with many Federal and 
State agencies. Prequalified contractors are invited to submit separate 
very detailed technical and financial offers. The technical aims of the 
project and special restrictions are clearly specified, but a wide scope is 
afforded to the inventive bidder. Each proposal is assessed 
independently by separate committees and is graded on a point system 
disclosed in advance. The value of the technical proposal may often 
exceed that of the price proposal, and it emphasizes technical 
competence, personnel and corporate experience, and safety. There 
may be successive "rounds" of bidding, with the responsive contractors 
being interviewed between times so that they can optimize their 
proposals to a "best and final" submittal. 

During the negotiations, the successful contractor should have developed a 
full understanding of the requirements of the job, and so there should be no 
subsequent controversy over the specifications, scope of work, or the quality 
level intended. Also, the successful contractor may not have the lowest bid. 
Unsuccessful contractors will have incurred a great deal of bidding cost, but 
this prospect alone will deter all but the most serious contenders. This process 
also involves considerable effort on behalf of the owner, and so is really 
viable only on particularly large and/or complex projects. 

Overall, there are significant opportunities for the owner and the consultant, 
as well as the contractor, in pursuing design-build options based on 
performance specifications as opposed to the traditional low-bid approach 
using prescriptive specifications. In summary, the former provides benefits 
by: 

• 
Providing optimum solutions at the lowest possible cost. 
Encouraging innovation through contractor-sponsored research and 
development. 
Fostering improvements in quality, performance, and cost. 
Incorporating the most advanced and practical designs by prequalified 
contractors who are regularly and exclusively engaged in the business. 
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