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CHAPTER 1 
OVERVIEW 

Nowadays, activity detection has drawn fast-growing attention in both industry and 
research felds. Activity detection in extended videos [15, 74] is widely applied for 
public safety in indoor and outdoor scenarios. Activity detection on streaming videos 
captured by in-vehicle cameras is applied for vision-based autonomous driving. The 
development of these applications brings several challenges. First, most of these systems 
take unconstrained videos as input, which is recorded in large feld-of-views where 
multi-object and multi-activity occur simultaneously and continuously over time. Sec-
ond, the unconstrained videos in the real world are in multiple scenarios and under 
multiple conditions, e.g. in dynamically changed road environments from day to night 
in autonomous driving [85]. Third, effcient algorithms are demanded for real-time 
processing and responding to streaming video. 

Meanwhile, the advent of autonomous vehicles has driven the need for high-performance 
traffc environment perception systems. In this context, streaming perception, which 
involves detecting and tracking objects in a video stream simultaneously, is a fundamen-
tal technique that signifcantly impacts autonomous driving decision-making. Notably, 
the fast-changing scale of traffc objects due to vehicle motion can lead to conficts in 
the receptive feld when detecting both large and small objects. Moreover, real-time 
perception is an ill-posed problem that heavily depends on motion consistency context 
and historical data. Consequently, two major challenges in real-time perception are: (1) 
adaptively handling rapidly changing object scales, and (2) accurately and effciently 
learning long-term motion consistency. 

Therefore we developed two systems for enhancing traffc safety. The frst system 
focuses on road activity detection, which identifes the activities of vehicles. We discuss 
the frst system, Argus++, in Chapter 2. Further, we integrated the models in our video 
analysis framework Argus++ to enable the real-time processing of traffc footage, in-
cluding vehicle tracking. We introduce it in Chapter 4. Immediate notifcation could be 
provided on traffc density and speed estimation, and traffc incident detection. The sec-
ond system focuses on streaming perception, which enhances the safety of autonomous 
driving. For this system, we introduce the models and algorithms in Chapter 3. Further, 
in Chapter 5, we discuss how to train a powerful model for our systems, especially 
training vision-language transformers from captions. We showed that this model could 
enhance the vehicle detection task. 
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The broader impacts of our real-time traffc video analysis system extend beyond 
its technical capabilities and immediate applications. They encompass the societal, 
economic, and environmental implications that the system may have. Here are some 
aspects to consider when discussing the broader impacts: 

1. Enhancing safety and security: The action recognition system can contribute to public
safety and security by detecting and analyzing suspicious or illegal activities in real-
time. It can aid law enforcement agencies in monitoring public spaces, identifying
potential threats or problems, and responding promptly to ensure public safety. This
approach may also extend to other felds that are currently under-performing due to a
lack of concerted effort of this type.

2. Improving transportation and traffc management: By accurately analyzing and
predicting the actions and behaviors of vehicles, pedestrians, and cyclists, the system
can help optimize traffc fow, reduce congestion, and enhance overall transportation
effciency. This can lead to improved travel times, reduced fuel consumption, and
minimized environmental impact.

3. Supporting urban planning and infrastructure development: The insights provided by
the system’s analysis of traffc patterns, movement trends, and behavior can inform
urban planners and policymakers in making informed decisions about transportation
infrastructure development, traffc management strategies, and the allocation of
resources.

4. Enabling intelligent transportation systems: Integration of the online action recogni-
tion system with existing transportation infrastructure and intelligent transportation
systems can enable advanced functionalities such as adaptive traffc signal control,
smart parking management, and dynamic routing. This can lead to improved traffc
fow, reduced emissions, and enhanced overall transportation effciency.

5. Supporting emergency response: In emergency situations or natural disasters, the
system’s ability to quickly detect abnormal or unusual actions can aid emergency
response teams in identifying affected areas, assessing the impact, and coordinating
rescue efforts. It can also assist in the evacuation of people and the allocation of
resources.

2 



CHAPTER 2 
ARGUS++: ROBUST REAL-TIME ACTIVITY 

DETECTION FOR UNCONSTRAINED VIDEO STREAMS 
WITH OVERLAPPING CUBE PROPOSALS 

2.1 INTRODUCTION 

Figure 2.1: Architecture of Argus++. A video stream is processed frame-by-frame 
through object detection and tracking to generate overlapping cube proposals. With 

frame-level foreground segmentation, stable proposals are fltered out. Activity 
recognition models determine the classifcation scores for each proposal. These 

over-sampled cubes are deduplicated to produce the fnal activity instances. 

Nowadays, activity detection has drawn a fast-growing attention in both industry 
and research felds. Activity detection in extended videos [15, 74] is widely applied 
for public safety in indoor and outdoor scenarios. Activity detection on streaming 
videos captured by in-vehicle cameras is applied for vision-based autonomous driving. 
The development of these applications brings several challenges. First, most of these 
systems take unconstrained videos as input, which are recorded in large feld-of-views 
where multi-object and multi-activity occur simultaneously and continuously over time. 
Second, the unconstrained videos in real world are in multiple scenarios and under 
multiple conditions, e.g. in dynamically changed road environments from day to night 
in autonomous driving [85]. Third, effcient algorithms are demanded for real-time 
processing and responding of streaming video. 
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Conventional activity detection works [93, 24, 99, 46, 30] have achieved impres-
sive performance. However, they are not suitable for real world unconstrained video 
understanding. Most of these works are applied under certain constrains, e.g., only 
for processing trimmed and/or object-centered video clips. Meanwhile, they usually 
are specifed for certain scenarios, such as person activity, etc. Therefore, such algo-
rithms would fail when being transferred to unconstrained videos on both effciency and 
effectiveness. 

Previous works [83, 112, 62] on unconstrained video analysis proposed to generate 
and analyze tube/tubelet proposals, which are trajectories extracted from object detection 
and tracking results. Tube proposal has several drawbacks. First, tube proposals failed 
to capture the trace of moving objects when cropping the proposals from the original 
videos. Therefore, learning the activities highly relied on trace would be diffcult, e.g. 
’vehicle turning right’. Second, the tube proposals still cannot stay away from temporal 
activity localization to determine the existence of the activities. Besides, most of the 
previous works [83] utilize non-overlapping proposals, which straightforwardly cuts 
the tube proposals by fxed length of temporal windows. Inevitably, such methods 
destroy the completeness of activities. Therefore, it would result in signifcant degrade 
of performance. Third, the objects in the tube proposal will suffer from the bounding 
box shift and distortion across frames, which could result in a high false alarm rate on 
activity detection. 

To overcome the aforementioned challenges, we propose Argus++, an effcient robust 
spatio-temporal activity detection system for extended and road video activity detection. 
The proposed system contains four-stages: Proposal Generation, Proposal Filtering, 
Activity Recognition and Activity Deduplication. The major difference between Argus++ 

and the former works, such as [62], is the concept of cube proposals. Rather than simply 
adapted tube proposals, i.e. cropped trajectories of detected and tracked objects, we 
propose to merge and crop the area of detected objects across the frames. 

We summarize the contributions of our work as follows: 

1. We propose Argus++, a real-time activity detection system for unconstrained
video streams, which is robust across different scenarios.

2. We introduce overlapping spatio-temporal cubes as the core concept of activity
proposals to ensure coverage and completeness of activity detection through over-
sampling.

3. The proposed system has achieved outstanding performance in a large series of
activity detection benchmarks, including CVPR ActivityNet ActEV 2021, NIST
ActEV SDL UF/KF, TRECVID ActEV 2020/2021, and ICCV ROAD 2021.
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2.2 RELATED WORK 

Object Detection and Tracking Object detection and tracking are fundamental com-
puter vision tasks that aims to detect and track objects from images or videos. Image-
based object detection algorithms, such as Faster R-CNN [81] and R-FCN [16], have 
demonstrated convincing performance but are often expensive to apply on every frame. 
Video-based object detection algorithms [117, 79] use optical fow guided feature ag-
gregation to leverage motion information and reduce computation. With the deep 
features extracted from the backbone convolutional network, multi-object tracking al-
gorithms [103, 102] associates objects across frames based on feature similarity and 
location proximity. 

Activity Detection In recent years, there emerged some systems designed for spatio-
temporal activity detection on unconstrained videos [83, 112, 62, 8, 110, 114]. Generally, 
theses systems frst generates activity proposals and then feeds them to classifcation 
models. Since there have been a variety of video classifcation networks [93, 54, 24], the 
major focus is on the paradigm of proposals and the generation algorithm. In [62, 8], 
a detection and tracking framework is employed to extract whole object tracklets as 
tubelets, where temporal localization is required. In [83], an encoder-decoder network is 
used to generate localization masks on fxed-length clips for tubelet proposal extraction, 
which has varied spatial locations in different frames. 

2.3 METHOD 

2.3.1 Activity Detection Task 

In this paper, we tackle the activity detection task in unconstrained videos which are 
untrimmed and with large feld-of-views. Given an untrimmed video stream V , the 
system S should identify a set of activity instances S(V) = {Ai}. Each activity instance 
is defned by a three-tuple Ai = (Ti, Li, Ci), referring to an activity of type Ci occurs 
at temporal window Ti with spatial location Li. Li contains the precise location of Ai 

in each frame, forming a tube in the timeline. As such, activity detection can often be 
decomposed into three aspects, i.e., temporal localization (Ti), spatial localization (Li), 
and action classifcation (Ci). 

Each of the three aspects poses unique challenges to the video understanding system. 
Due to its multi-dimensional nature, it remains hard to defne and build a useful activity 
detection system under the strict setting. Therefore, we also evaluates with some loosened 
requirements. 
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Strict Setting All activity types are defned as atomic activities with clear temporal 
boundaries and spatial extents. The evaluation metric performs bipartite matching 
between predictions and ground truths. 

Loosened Setting Activity types are either atomic activities within a temporal window 
(e.g. standing up) or continuous repetitive activities that can be cut into multiple identif-
able windows (e.g. walking). The evaluation metric allows multiple non-overlapping 
predictions to be matched with one ground truth. 

2.3.2 Argus++ System 

The architecture of the proposed Argus++ system is shown in Figure 2.1. To tackle the 
task of activity detection, we adopt an intermediate concept of spatio-temporal cube 

proposal with a much simpler defnition than an activity instance: 

i i i i i i pi = (x0, x1, y0, y1, t0, t1) (2.1) 

This six-tuple design relieves the localization precision and caters modern action classif-
cation models which works on fxed-length clips with fxed spatial window. 

For an input video stream, the system frst generates candidate proposals with frame-
wise information such as detected objects, which will be covered in Section 2.3.3. These 
proposals are fltered with a background subtraction model as detailed in Section 2.3.4. 
Then, action recognition models described in Section 2.3.5 are applied on the proposals to 
predict per-class confdence scores. Finally, Section 2.3.6 introduces the post-processing 
stage to merge and flter the proposals with scores and generate fnal activity instances. 

2.3.3 Proposal Generation 

Starting this section, we introduce each of the components of Argus++. The system 
begins by generating a set of cube proposals. They are generated based on information 
from frame-level object detection with multiple object tracking methods. Cubes are 
sampled densely in the timeline with refned spatial locations. 

Detection and Tracking To conduct activity recognition, we frst locate the candidate 
objects (in most cases, person and vehicle) in the video. For each selected frame Fi, we 
apply an object detection model to get objects Oi = {oi,j | j = 1, · · · , ni} with object 
types ci,j and bounding boxes (x0, x1, y0, y1)i,j . Objects are detected in a stride of every 
Sdet frames. A multiple object tracking algorithm is applied on the detected objects to 
assign track ids to each of them as tr i,j . 

6 



Proposal Sampling To sample proposals on untrimmed videos without breaking 
the completeness of any activity instances, we propose a dense overlapping proposals 
sampling algorithm. As illustrated in Figure 2.2, this method ensures coverage of 
activities occurring at any time, with no hard boundaries. Two parameters, duration 
Dprop and stride Sprop , controls the sampling process. Each proposal contains a temporal 
window of Dprop frames. New proposals are generated every Sprop ≤ Dprop frames, 
possibly with overlaps. Generally, non-overlapping proposal system can be treated as a 
degraded case when Sprop = Dprop . 

Figure 2.2: Dense Overlapping Proposals 

Proposal Refnement To generate proposals in a temporal window from t0 to t1 = 

⌊ t0+t1t0 + Dprop , we select seed track ids Tr tc from the central frame tc = 
2 ⌋. Their 

bounding boxes are enlarged as the union across the temporal window [ 
(x0, x1, y0, y1)k = ({(x0, x1, y0, y1)i,j | 

t0 ≤ i ≤ t1, tr i,j = tr tc,k}) (2.2) 

k =1, · · · , ntc 

This algorithm is robust through identity switch in the tracking algorithm as it uses the 
stable seeds from the central frame. It also ensures the coverage of moving objects by 
enlarging the bounding box when it’s successfully tracked. This design is helpful for 
effciency optimization by allowing a large detection stride Sdet . When later applied for 
activity recognition, the bounding box can be further enlarged for a fxed rate Renl to 
include spatial context and compensate for missed tracks. 

2.3.4 Proposal Filtering 

For now, the proposal generation pipeline applies a frame-wise object detection with 
slight aid of tracking information. The motion information of video is not yet explored. 
To produce high quality proposals, we apply a proposal fltering algorithm to eliminate 
the proposals that are unlikely to contain activities. 

Foreground Segmentation For each proposal, a foreground segmentation algorithm 
is implemented to generate a binary mask for every Sbg frames for each video clip. We 
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Figure 2.3: Deduplication Algorithm for Overlapping Proposals 

average the value of pixel masks in its cube to get its foreground score fi. For proposals 
generated by object type c, those proposals with fi ≤ Fc will be fltered out. The 
threshold Fc is determined by allowing up to Ppos true proposals to be fltered out. 

Label Assignment To determine the above threshold and to train the activity recog-
nition module, we need to assign labels for each generated proposal according to the 
ground truth activity instances. We frst convert the annotation of activity instances 
into the cube format, denoted as ground truth cubes, by performing dense sampling of 
duration Dprop and stride Sprop within each instance. For each proposal, we estimate 
the spatial intersection-over-union (IoU) between it and ground truth cubes in the same 
temporal window. Then we follow Faster R-CNN [81] in the assignment process: 

• For each ground truth cube, assign it to the proposal with the highest score above
Slow.

• For each proposal, assign it with each ground truth cube with score above Shigh.

• For each proposal, assign it as negative if all scores are below Slow.

Shigh and Slow are the high and low thresholds. Through this algorithm, each proposal 
may be assigned one or more positive labels, a negative label, or nothing. Those assigned 
nothing are redundant detections which will not be used in classifer training. 

Proposal Evaluation To measure the quality of proposals before and after the fltering, 
we need a method for proposal evaluation. This can be achieved by assuming a perfect 
classifer in the activity recognition part, so the fnal metrics refects the upper bound 
performance with current proposals. To do this, we simply use the assigned labels as 
the classifcation outputs and pass through the deduplication algorithm covered later. To 
further measure other properties of the generated proposals, we can only pass through a 
subset of them, such as only those with spatial IoU against ground truth above 0.5. 

1http://activity-net.org/challenges/2021/challenge.html 
2https://actev.nist.gov/sdl#tab_leaderboard 
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Table 2.1: CVPR 2021 ActivityNet Challenge1ActEV SDL Unknown Facility 
Evaluation 

System/Team nAUDC @0.2Tfa ↓ MeanPmiss@0.02Tfa ↓ Relative Processing Time 

Argus++ (Ours) 
UMD JHU 

0.3535 
0.4232 

0.5747 
0.6250 

0.576 
0.345 

IBM-Purdue 0.4238 0.6286 0.530 
UCF 0.4487 0.5858 0.615 
Visym Labs 
MINDS JHU 

0.4906 
0.6343 

0.6775 
0.7791 

0.770 
0.898 

Table 2.2: NIST ActEV’21 SDL2Known Facility Evaluation 

System/Team nAUDC @0.2Tfa ↓ MeanPmiss@0.02Tfa ↓ Relative Processing Time 

Argus++ (Ours) 0.1635 0.3424 0.413 
UCF 0.2325 0.3793 0.751 
UMD 0.2628 0.4544 0.380 
IBM-Purdue 0.2817 0.4942 0.631 
Visym Labs 0.2835 0.4620 0.721 
UMD-Columbia 0.3055 0.4716 0.516 
UMCMU 0.3236 0.5297 0.464 
Purdue 0.3327 0.5853 0.131 
MINDS JHU 0.4834 0.6649 0.967 
BUPT-MCPRL 0.7985 0.9281 0.123 

2.3.5 Activity Recognition 

In this section, we will elaborately introduce our action recognition modules. Given the 
input proposal of an activity instance pi, our action recognition model V will give out 
the confdence vector ci: 

V(pi) = ci = {c 21 
i , ci , ...c 

n} (2.3)i 

i− t0 
iout of t1 

Where n represents the number of target actions, and ci ∈ Rn . Limited by GPU memory 
size and temporal length settings of pretrained weights, we need to select t frames 

samples from the activity instance. To do this, we strictly followed the 
sparse-sampling strategy mentioned in [99] for both training and inference stage. To be 
specifc, the video is evenly separated into t segments. From each segment, 1 frame will 
be randomly selected to generate the sampled clip. 

To transform the action recognition modules from previous multi-class task to the 
realm of multi-label recognition, we modifed the loss function for optimization. Instead 
of traditional cross entropy loss (XE), we implemented a weighted binary cross entropy 
loss (wBCE). In which, two weight parameters are adopted, the activity-wise weight 

1 2 1 2Wa = {w } and the positive-negative weight Wp 

balances the training samples of different activities and Wp 

= {w }. Wa 

balances the positive and 

n n, w , ..., w , w , ..., w a a a p p p 

negative samples of a specifc activity. With the aligned label sequence of ith instance 
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1 2 n crepresented as Yi = {yi , yi , ..., y } ∈ Rn . The calculation of w is derived as: i a 

c 1 
ŵa = P 

c (2.4) 
yi∈[I] i 

c 
c ŵa wa = n × P (2.5) 

wcˆc∈[n] a 

cAnd the derivation of wp is: P 
i∈[I] 1yi =0 c wp = P 

y 

c 

c (2.6) 
i∈[I] i 

In which, [I] represents all input instances, and [n] represent all target activities. Com-
pared with vanilla BCE loss, we found wBCE loss can signifcantly improve the fnal 
performance on internal validation set. 

Furthermore, we tried multiple action recognition modules and made late fusion 
action-wisely according to the results on the validation set. We found each classifer does 
show superiority on certain actions. Through the feedback from the online leaderboard, 
such fusion strategy can improve the fnal performance with noticeable margins. 

Table 2.3: NIST ActEV’21 SDL Unknown Facility Evaluation 

System/Team nAUDC @0.2Tfa ↓ MeanPmiss@0.02Tfa ↓ Relative Processing Time 

Argus++ (Ours) 0.3330 0.5438 0.776 
UCF 0.3518 0.5372 0.684 
IBM-Purdue 0.3533 0.5531 0.575 
Visym Labs 0.3762 0.5559 1.027 
UMD 0.3898 0.5938 0.515 
UMD-Columbia 0.4002 0.5975 0.520 
UMCMU 0.4922 0.6861 0.614 
Purdue 0.4942 0.7294 0.239 
MINDS JHU 0.6343 0.7791 0.898 

2.3.6 Activity Deduplication 

Overlapping Instances As the system generates overlapping proposals, it could have 
duplicate predictions for some of the proposals. This would result in a large amount of 
false alarms unless we deduplicate them. Figure 2.3 is a diagram for our deduplication 
algorithm which applies to each activity type with all proposals: 

1. Split the overlapping cubes of duration Dprop and stride Sprop into non-overlapping 
cubes of duration Sprop . An output cube relies on all original cubes in the temporal 
window, with an averaged score and an intersected bounding box. 

2. Merge the non-overlapping cubes of duration Sprop back into ⌊Dprop ⌋ groups of 
Sprop 
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non-overlapping cubes of duration Dprop . An output cube is merged from ⌊Dprop ⌋
Sprop 

cubes with an averaged score and the union of bounding boxes. 

3. Select the group where the maximum score resides. 

The deduplication algorithm performs an interpolation upon the overlapping cubes. 
Each group in step 3 contains information from every classifcation results, maximizing 
the information utilization. 

Adjacent Instances The above deduplication process only transforms overlapping 
instances to non-overlapping instances with the same duration. This would be suffcient 
under the Loosened Setting, where multiple predictions are allowed for each activity. 
No threshold would be needed to truncate low-confdence predictions as this happens 
automatically during the ground-truth matching process. 

However, for the Strict Setting, we need to further merge adjacent cubes into integrate 
instances. Currently we adopt a simple yet effective algorithm, by simply merging 
adjacent cubes where all of them have confdence score above Smerg. The merged 
instance needs to be longer than Lmerg to be kept in the fnal output. 

2.4 EXPERIMENTS 

Table 2.4: NIST TRECVID 2021 ActEV Evaluation [1, 113] 

System/Team nAUDC @0.2Tfa ↓ Mean Pmiss@0.15Tfa ↓ Mean wPmiss@0.15Rfa ↓ 

Argus++ (Ours) 
BUPT 

0.39607 
0.40853 

0.30622 
0.32489 

0.81080 
0.79798 

UCF 0.43059 0.34080 0.86431 
M4D 0.84658 0.79410 0.88521 
TokyoTech AIST 
Team UEC 

0.85159 
0.96405 

0.81970 
0.95035 

0.94897 
0.95670 

Table 2.5: NIST TRECVID 2020 ActEV Evaluation [2, 112] 

System/Team nAUDC @0.2Tfa ↓ Mean Pmiss@0.15Tfa ↓ Mean wPmiss@0.15Rfa ↓ 

Argus++ (Ours) 
UCF 

0.42307 
0.54830 

0.33241 
0.50285 

0.80965 
0.83621 

BUPT-MCPRL 0.55515 0.48779 0.84519 
TokyoTech AIST 
CERTH-ITI 

0.79753 
0.86576 

0.75502 
0.84454 

0.87889 
0.88237 

Team UEC 0.95168 0.95329 0.98300 
Kindai Kobe 0.96267 0.95204 0.93905 
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2.4.1 Implementation Details 

In Argus++, we apply Mask R-CNN [38] with a ResNet-101 [39] backbone from 
Detectron2 [104] pre-trained on the Microsoft COCO dataset [58] as the object detector, 
with Sdet = 8. Only person, vehicle, and traffc light classes are selected. For the 
tracking algorithm, we apply the work in [102] and reuse the region-of-interest from the 
ResNet backbone as in [111, 77]. 

The proposals are generated with Dprop = 64 and Sprop = 16. The labels are assigned 
with Shigh = 0.5 and Slow = 0. The proposal flter is set with a tolerance of Ppos = 0.05. 

For activity classifers, we adopted multiple state-of-the-art models including R(2+1)D [93], 
X3D [24], and Temporal Relocation Module (TRM) [78]. During training procedure, 
frames are cropped with jittering [99] and enlarged with Renl = 0.13. For X3D and 
TRM, we trained modules with weights pre-trained on Kinetics [46]. For R(2+1)D mod-
ules, we trained modules with weighst pre-trained on IG65M [30]. We fused confdence 
scores from these models according to their performance on the validation set. 

2.4.2 Evaluation Protocols 

To measure the performance, effciency, and generalizability of Argus++, we evaluate it 
across a series of public benchmarks. Argus++ is applied to NIST Activities in Extended 
Videos (ActEV) evaluations on MEVA [15] Unknown Facility , MEVA Known Facility, 
and VIRAT [74] settings for surveillance activity detection. With slight modifcations, 
it is also tested in the ICCV 2021 ROAD challenge for the action detection task in 
autonomous driving. 

In the NIST evaluations, the metrics [2] are designed in the Loosened Setting, where 
short-duration outputs are allowed and spatial alignment is ignored. The idea was that, 
after processed by the system, there will still be human reviewers to inspect the activity 
instances with the highest confdence scores for further usages. The performance is 
thus measured by the probability of miss detection (Pmiss) of activity instances within 
a time limit of all positive frames plus Tfa of negative frames, where Tfa is referred to 
as time-based false alarm rate. The major metric, nAUDC @0.2Tfa , is an integration of 
Pmiss on Tfa ∈ [0, 0.2]. 

In the ROAD challenge, the Strict Setting is adopted by using the mean average 
precision (mAP) at 3D intersection-over-union (IoU) evaluation metric. This metric 
does exact bipartite matching between predictions and ground truth instances, with 
challenging localization precision requirements. 

For metrics in the following tables, ↓ means lower is better and ↑ means higher is 

12 



better. For each metric, the best value is bolded and the second best is underscored. For 
ongoing public evaluations, the result snapshot at 11/01/2021 is presented. 

2.4.3 ActEV Sequestered-Data Evaluation 

ActEV Sequestered Data Leaderboards (SDL) are platforms where a system is submitted 
to run on NIST’s evaluation servers. This submission format prevents access to the 
test data and measures the processing time with unifed hardware platform3. For these 
evaluations, Argus++ was trained on MEVA, a large-scale surveillance video dataset 
with activity annotations of 37 types. We used 1946 videos in its training release drop 11 
as the training set and 257 videos in its KF1 release as validation set. The optimization 
target is reaching better performance within 1x real-time. 

Table 2.1 shows the published results from CVPR 2021 ActivityNet Challenge ActEV 
SDL Unknown Facility evaluation, where Argus++ demonstrated around 20% advantage 
in nAUDC @0.2Tfa over runner-up system. The test set of unknown facility is captured 
with a different setting from MEVA, which challenges the generalization of action 
detection models. Table 2.2 shows the ongoing NIST ActEV’21 SDL Known Facility 
leaderboard, where Argus++ shows over 40% advantage in nAUDC @0.2Tfa . The 
test set of known facility shares a similar distribution with MEVA, where our system 
learns well and is getting nearer for real-world usages. Table 2.3 shows the ongoing 
NIST ActEV’21 SDL Unknown Facility leaderboard continued from ActivityNet, where 
Argus++ still holds the leading position with over 5% advantage in nAUDC @0.2Tfa . 

2.4.4 ActEV Self-Reported Evaluation 

ActEV self-reported evaluations are where only results are submitted and test data is 
accessible. This currently includes the annual TRECVID ActEV evaluations on VIRAT. 
For TRECVID, we use the offcial splits of VIRAT for training and validation. 

Table 2.4 and 2.5 shows the leaderboard of 2020 and 2021 NIST TRECVID ActEV 
Challenge. In 2020, our systems is 22.8% better in nAUDC @0.2Tfa , 33.8% better in 
Mean Pmiss@0.15Tfa , and 3.5% better in Mean-wPmiss@0.15Rfa than the runner-up. 
Although the other competitors improved signifcantly in 2021, our system still holds 
the frst place with noticeable margins. 

2.4.5 ROAD Challenge 

Different from previous surveillance action detection benchmarks, the videos of ROAD 
Challenge[69] are gathered from the point of view of autonomous vehicles. It contains 

3https://actev.nist.gov/pub/Phase3_ActEV_2021_SDL_EvaluationPlan_ 
20210803.pdf 

13 

https://actev.nist.gov/pub/Phase3_ActEV_2021_SDL_EvaluationPlan_20210803.pdf
https://actev.nist.gov/pub/Phase3_ActEV_2021_SDL_EvaluationPlan_20210803.pdf
mailto:Mean-wPmiss@0.15Rfa
mailto:Pmiss@0.15Tfa


122K frames from 22 annotated videos, where each video is 8 minutes long on average. 
Totally 7K tubes of individual agents are included and each tube consists on average of 
approximately 80 bounding boxes linked over time. 

Table 2.6 shows the performance of our system with other competitors. Our system 
ranks the frst with 20% average mAP. Although the performance is still far from 
satisfying in this Strict Setting, it demonstrates the capability of Argus++ in adapting to 
precise 3D localization and moving camera view points. 

Table 2.6: ICCV 2021 ROAD Challenge Action Detection4 

System/Team Action@0.1 ↑ Action@0.2 ↑ Action@0.5 ↑ Average ↑ 

Argus++ (Ours) 
THE IFY 

28.54 
28.15 

25.63 
20.97 

6.98 
6.58 

20.38 
18.57 

YAAAHO 26.81 20.40 7.02 18.07 
hyj 
3D RetinaNet [85] 
LeeC 

26.52 
25.70 
13.64 

20.32 
19.40 
9.89 

7.05 
6.47 
2.23 

17.97 
17.19 
8.59 

Table 2.7: Proposal Quality Metrics on VIRAT Validation Set 

nAUDC @0.2Tfa IoU Reference Coverage 
Threshold Average ≥ 0 ≥ 0.5 Average ≥ 0.5 ≥ 0.9 

Unfltered Proposals 0.2358 0.0772 0.1518 0.1562 0.1125 0.4211 
Filtered Proposals 0.2352 0.0772 0.1469 0.1563 0.1099 0.4280 

2.4.6 Ablation Study 

Coverage of Proposal Formats We analyze the coverage of dense spatio-temporal 
proposals and determines the best hyper-parameters for the proposal format. By directly 
use ground truth cubes as proposals, we estimate the upper bound performance of both 
overlapping and non-overlapping proposal formats on VIRAT validation set. The results 
are shown in Table 2.8, where non-overlapping proposals shows at least 6.7% systematic 
errors while overlapping proposals with duration 64 and stride 16 only has 1.3%. 

Performance of Proposal Filtering We examine the quality of the proposals with and 
without the flter, as shown in Table 2.9 and 2.7. With the proposal evaluation procedure 
introduced in Section 2.3.4, the proposals are further fltered by IoU with reference and 
coverage of reference at levels from 0, 0.1, to 0.9 to calculate partial results. 

4https://eval.ai/web/challenges/challenge-page/1059/leaderboard/ 
2748 
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Table 2.8: Lower Bounds of nAUDC @0.2Tfa on VIRAT Validation Set with different 
proposal formats. Italic values are non-overlapping proposals while the others are 

overlapping proposals. Duration and stride are in the unit of frames. 

Duration / Stride 16 32 64 96 

32 0.0705 0.1208 - -
64 0.0127 0.0621 0.0673 -
96 0.0275 0.0504 - 0.0688 

Table 2.9: Statistics of Proposals on VIRAT Validation Set 

Name Unfltered Filtered 

Number of Proposals 211271 62831 
Positive rate 0.1704 0.5204 
Rate of unique label 0.4558 0.4415 
Rate of two labels 0.4127 0.4252 
Rate of three labels 0.1017 0.1060 

With the dense cube proposals, the best nAUDC @0.2Tfa we can achieve with a ideal 
classifer is 0.08, as indicated in the IoU ≥ 0 column. The IoU and reference coverage 
bounded scores are used to measure the spatial matching quality of proposals, as the 
nAUDC @0.2Tfa does not consider spatial alignments. We can see that even with a 
condition of IoU ≥ 0.5, our proposal can achieve up to 0.15, which indicates the spatial 
preciseness. The proposal flter is also proved effective, which removed 70% of original 
proposals without dropping the recall level. 

The effect of the proposal flter is also evaluate on the SDL, as shown in Table 
2.10. It not only reduces processing time from 0.925 to 0.582, but also improves 
nAUDC @0.2Tfa due to reduced false alarms. 

Table 2.10: Proposal Filter on NIST ActEV’21 SDL Unknown Facility Micro Set 

Proposal Filter nAUDC @0.2Tfa ↓ Processing Time 

Enabled 0.4822 0.582 
Disabled 0.5176 0.925 

2.5 CONCLUSION & FUTURE WORK 

In this work, we proposed Argus++, a robust real-time activity detection system for 
analyzing unconstrained video streams. We introduced overlapping spatio-temporal 

cubes as an intermediate concept of activity proposals to ensure coverage and com-
pleteness of activity detection through over-sampling. The proposed system is able to 
process unconstrained videos with robust performance across multiple scenarios and 
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real-time effency on consumer-level hardware. Extensive experiments on different 
surveillance and driving scenarios demonstrated its superior performance in a series of 
activity detection benchmarks, including CVPR ActivityNet ActEV 2021, NIST ActEV 
SDL UF/KF, TRECVID ActEV 2020/2021, and ICCV ROAD 2021. 

Future works are suggested to focus on extending the current system to more appli-
cations, such as action detection in UAV captured videos, frst-person human activity 
understanding, etc. The proposed system could also be extended to end-to-end frame-
works for better performance. 
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CHAPTER 3 
DAMO-STREAMNET & LONGSHORTNET: PIONEERING 

TECHNIQUES FOR OPTIMIZING STREAMING 
PERCEPTION IN AUTONOMOUS DRIVING 

3.1 INTRODUCTION 

The advent of autonomous vehicles has driven the need for high-performance traffc 
environment perception systems. In this context, streaming perception, which involves 
detecting and tracking objects in a video stream simultaneously, is a fundamental tech-
nique that signifcantly impacts autonomous driving decision-making. Notably, the 
fast-changing scale of traffc objects due to vehicle motion can lead to conficts in the 
receptive feld when detecting both large and small objects. Moreover, real-time per-
ception is an ill-posed problem that heavily depends on motion consistency context 
and historical data. Consequently, two major challenges in real-time perception are: (1) 
adaptively handling rapidly changing object scales, and (2) accurately and effciently 
learning long-term motion consistency. 

(a) (b)

Figure 3.1: Comparison of offine detection (VOD) and streaming perception, where the 
latter is real-time and can respond promptly to motion changes (a), and performance 
comparisons of streaming perception task, showcasing the balance between accuracy 

and speed achieved by our proposed methods, DAMO-StreamNet [34] and 
LongShortNet [51], which sets a new state-of-the-art benchmark (b). 

Despite previous research on temporal aggregation techniques [100, 9, 55, 88, 42] 
has primarily focused on offine settings and is unsuitable for online real-time percep-
tion. Furthermore, enhancing the base detector has not been thoroughly investigated in 
the context of real-time perception. To address these limitations, we propose DAMO-
StreamNet [34] and LongShortNet [51], two practical real-time perception pipelines that 
improve the model in four key aspects: 
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1. To enhance the base detector’s performance, we propose an effcient feature ag-
gregation scheme called Dynamic Receptive Field FPN. This scheme utilizes 
connections and deformable convolution networks to resolve receptive feld con-
ficts and bolster feature alignment capacity. We also adopt the cutting-edge 
detection technique Re-parameterized to further enhance the network’s perfor-
mance without adding extra inference costs. These improvements lead to higher 

detection accuracy and faster inference times. 

2. To capture long-term spatial-temporal correlations, we design a dual-path structure 
temporal fusion module. This module employs a two-stream architecture that 

separates spatial and temporal information, facilitating the accurate and effcient 

capture of long-term correlations. 

3. To tackle the challenges of learning long-term motion consistency, we propose 
an Asymmetric Knowledge Distillation (AK-Distillation) framework. This frame-
work employs a teacher-student learning strategy in which student networks are 
supervised by transferring the generalized knowledge captured by large-scale 
teacher networks. This method enforces the long-term motion consistency of the 

feature representations between the teacher-student pair, resulting in enhanced 

performance. 

4. To fulfll the real-time forecasting requirement, we update the support frame 
features with the current frame before the next prediction in the inference phase. 
Additionally, the support frame features are updated by the current frame to prepare 
for the next prediction in the inference phase to satisfy the real-time forecasting 
requirement. This approach allows for the pipeline to handle real-time streaming 

perception and make predictions on time. 

In summary, our methods offer a state-of-the-art solution for real-time perception 

in autonomous driving. DAMO-StreamNet [34] outperforms existing SOTA methods, 
achieving 37.8% (normal size (600, 960)) and 43.3% (large size (1200, 1920)) sAP 
without using any extra data. LongShortNet [51] achieves 37.1% (normal size (600, 960)) 
and 42.7% (large size (1200, 1920)) sAP without using any extra data, outperforming the 
existing state-of-the-art StreamYOLO [108] with almost the same time cost (20.23 ms 
vs. 20.12 ms). Our work not only establishes a new benchmark for real-time perception 
but also provides valuable insights for future research in this feld. Moreover, DAMO-
StreamNet1 and LongShortNet2 can be applied to various types of autonomous systems, 
such as drones and robots, enabling real-time and accurate environmental perception. 

1DAMO-StreamNet is at https://github.com/zhiqic/DAMO-StreamNet. 
2LongShortNet is at https://github.com/zhiqic/LongShortNet. 
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3.2 RELATED WORK 

Image Object Detection. In recent years, remarkable progress in deep learning-based 
object detection has been witnessed. Image object detection is fundamental to streaming 
perception. Therefore, we frst review the state-of-the-art detectors [29, 97] and cutting-
edge techniques from multiple aspects, including backbone design [98, 19, 20, 18, 96], 
effective feature aggregation [57, 31, 44, 91, 11, 94], and optimal label assignment [28, 
47, 7]. Associated with the backbone network development, the feature aggregation 
solution, FPN [57] and PAFPN [61] are known as ‘necks’ in the general detection 
pipeline. Neural Architecture Search (NAS) is also applied to this topic, introducing 
NAS-FPN [31, 12, 41] for object detection. All the efforts aforementioned are mainly 
for bridging the representation gap between classifcation and object detection. Beyond 
this setting, GiraffeDet [44] adopts an extremely lightweight backbone but a heavy neck 
for feature learning. 

Video Object Detection. A common schema to learn the temporal dynamics is feature 
aggregation which boosts per-frame feature representation by aggregating the features of 
nearby frames [100, 9, 55, 88, 50]. DeepFlow [119] and FGFA [118] utilize the optic 
fow from FlowNet [22] to model motion relations via different temporal feature aggre-
gation. MANet [100] self-adaptively combines pixel-level and instance-level calibration 
according to the motion in a unifed framework to calibrate the features at pixel-level with 
inaccurate fow estimation. Despite the gratifying success of these approaches, most of 
the pipelines for video object detection are overly sophisticated, requiring extra temporal 
modeling components, e.g., optical fow model [119], recurrent neural network [55, 36], 
feature alignment module [105, 80, 35], relation networks [27]. An effective and simple 
way for VOD is by adopting a temporal linking module such as Seq-NMS [33], Tubelet 
rescoring [45] and Seq-Bbox Matching [5, 50] as post-processing, which links the same 
object across the video to form tubelets and aggregating classifcation scores to achieve 
the state-of-the-art performance. 

3.3 DAMO-STREAMNET 

The overall framework is illustrated in Fig. 3.4. Initially, a video frame sequence passes 
through DAMO-StreamNet to extract spatiotemporal features and generate the fnal 
output feature. Subsequently, the Asymmetric Knowledge Distillation module (AK-
Distillation) takes the output logit features of the teacher and student networks as inputs, 
transferring the semantics and spatial position of the future frame extracted by the teacher 
to the student network. 

Given a video frame sequence S = {It, . . . It−Nδt}, where N and δt represent the 
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Figure 3.2: A comprehensive comparison between PAFPN and our proposed DRFPN,
both constructed using the base block CSP and DR layer. The notation “Conv with k, s”

represents a convolution layer with kernel size ‘k’ and stride ‘s’.

number and step size of the frame sequence, respectively. DAMO-StreamNet can be
defined as,

T = F(S,W ),

where W denotes the network weights, and T represents the collection of final output
feature maps. T can be further decoded using Decode(T ) to obtain the resultR, which
includes the score, category, and location of the objects.

In the training phase, the student network can be represented as,

Tstu = Fstu(S,Wstu).

Besides the student network, the teacher network takes the t + 1 frame as input to
generate the future result, represented by,

Ttea = Ftea(It+1,Wtea),

where Wstu and Wtea denote the weights of the student and teacher networks, respectively.
Then, AK-Distillation leverages Tstu and Ttea as inputs to perform knowledge distillation
AKDM(Tstu, Ttea). More details are elaborated in the following subsections.

3.3.1 Network Architecture

The network is composed of three elements: the backbone, neck, and head. It can be
formulated as,

T = F(S,W ) = Gh(Gn(Gb(S,Wb),Wn),Wh),

20



where Gb, Gn, and Gh stand for the backbone, neck, and head components respectively, 
while Wb, Wn, and Wh symbolize their corresponding weights. Previous studies [44] 
highlighted the neck structure’s critical role in feature fusion and representation learning 
for detection tasks. Consequently, we introduce the Dynamic Receptive Field FPN 
(DRFPN), which employs a learnable receptive feld approach for enhanced feature 
fusion. To benchmark against the current state-of-the-art (SOTA), we apply the same 
settings for Gn, Gh, and StreamYOLO [108], leveraging CSPDarknet-53 [29] and TAL-
Head [108] to build the network. Given the proven effcacy of long-term temporal 
information by the existing LongShortNet [51], we also integrate a dual-path architec-
tural module for spatial-temporal feature extraction. 

Dynamic Receptive Field FPN. Recent object detection studies, including StreamY-
OLO [108] and LongShortNet [51], have utilized YOLOX as their fundamental detector. 
YOLOX’s limitation is its fxed spatial receptive feld that cannot synchronize features 
temporally, thus impacting its performance. To address this, we propose the Dynamic 
Receptive Field FPN (DRFPN) with a learnable receptive feld strategy and an optimized 
fusion mechanism. 

Specifcally, Fig.3.2 contrasts PAFPN and DRFPN. PAFPN employs sequential top-
down and bottom-up fusion operations to amplify feature representation. However, 
conventional convolution with a static kernel size fails to align features effectively. As a 
solution, we amalgamate the DRM module and Bottom-up Auxiliary Connect (BuAC) 
with PAFPN to create DRFPN. We introduce three notable modifcations compared to 
PAFPN’s CSP module (Fig.3.2):(1) We integrate deformable convolution layers into the 
DRFPN module to provide the network with learnable receptive felds;(2) To enhance 
feature representation, we adopt re-parameterized convolutional layers [20];(3) ELAN 
[97] and Bottom-up Auxiliary Connect bridge the semantic gap between low and high-
level features, ensuring effective detection of objects at diverse scales. 

Dual-Path Architecture. The existing StreamYOLO [108] relies on a single historical 
frame in conjunction with the current frame to learn short-term motion consistency. 
While this suffces for ideal uniform linear motion, it falls short in handling complex 
motion, such as non-uniform motion (e.g., accelerating vehicles), non-linear motion 
(e.g., rotation of objects or camera), and scene occlusions (e.g., billboard or oncoming 
car occlusion). 

To remedy this, we integrate the dual-path architecture [51] with a reimagined base 
detector, enabling the capture of long-term temporal motion while calibrating it with 
short-term spatial semantics. The original backbone and neck can be represented formally 
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as, 

Gn(Gb(S,Wb),Wn) 

= Gn+b(S,Wn+b) 

= Gfuse(Gshort(It), Glong 
n+b n+b (It−δt, . . . , It−Nδt)), 

and Glong where Gfuse represents the LSFM-Lf-Dil of LongShortNet. Gshort denote the n+b n+b 

ShortPath and LongPath of LongShortNet, which are used for feature extraction of the 
current and historical feature, respectively. Note that their weights are shared. 

Finally, the dual-path network is formulated as, 

T = F(S,W ) 

= Gh(Gn(Gb(S,Wb),Wn),Wh) 

(It), Glong = Gh(Gfuse(Gshort 
n+b n+b (It−δt, . . . , It−Nδt))), 

where the proposed dual-path architecture effectively addresses complex motion scenar-
ios and offers a sophisticated solution for object detection in video sequences. 

3.3.2 Asymmetric Knowledge Distillation 

The ability to retain long-term spatiotemporal knowledge through fused features lends 
strength to forecasting, yet achieving streaming perception remains a daunting task. 
Drawing inspiration from knowledge distillation, we’ve fashioned an asymmetric dis-
tillation strategy, transferring “future knowledge” to the present frame. This assists the 
model in honing its accuracy in streaming perception without the burden of additional 
inference costs. 

Given the asymmetric input nature of the teacher and student networks, a sizable gap 
emerges in their feature distributions, thus impairing the effectiveness of distillation at 
the feature level. Logits-based distillation primarily garners performance improvements 
by harmonizing the teacher model’s response-based knowledge, which aligns knowledge 
distribution at the semantic level. This simplifes the optimization process for asymmetric 
distillation. As a result, we’ve engineered a distillation module to convey rich semantic 
and localization knowledge from the teacher (the future) to the student (the present). 

The asymmetric distillation is depicted in Fig. 3.4. The teacher model is a still image 
detector that takes It+1 as input and produces logits for It+1. The student model is a 
standard streaming perception pipeline that uses historical frames It−1, . . . , It−N and 
the current frame It as input to forecast the results of the arriving frame It+1. The logits 
produced by the teacher and student are represented by Tstu = {F cls, F reg, F obj }, and stu stu stu 
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= {F cls, F reg, F obj }, where F cls , F reg, and F obj correspond to the classifcation, Ttea tea tea tea · · · 

objectness, and regression logits features, respectively. The Asymmetric Knowledge 
Distillation, AKDM(·), is mathematically formulated as, 

AKDM(Tstu, Ttea) 

, F cls , F obj F reg F̂ reg = Lcls(F cls ) + Lobj (F obj ( ˆ ),stu tea stu tea ) + Lreg stu , tea 

where Lcls(·) and Lobj (·) are Mean Square Error (MSE) loss functions, and Lreg(·) is 
F reg F reg the GIoU loss [82]. ˆ and ˆ represent the positive samples of the regression logit stu tea 

features, fltered using the OTA assignment method as in YOLOX [29]. It is worth noting 
that location knowledge distillation is only performed on positive samples to avoid noise 
from negative ones. 

3.3.3 K-step Streaming Metric 

The Streaming Average Precision (sAP) metric is a prevalent tool used to gauge the preci-
sion of Streaming Perception systems [52]. This metric gauges precision by juxtaposing 
real-world ground truth with system-generated results, factoring in process latency. 

Two primary methodologies exist in this domain: non-real-time and real-time. For 
non-real-time methods, as depicted in Fig.3.3(a), the sAP metric calculates precision 
by comparing the current frame It results with the ground truth of the following frame 
It+2, post processing of frame It. Conversely, real-time methods, as demonstrated in 
Fig. 3.3(b), conclude the processing of the current frame It prior to the next frame It+1 

arrival. Our proposed method, DAMO-StreamNet, is a real-time method, adhering to the 
pipeline outlined in Fig. 3.3(b). 

Though the sAP metric effectively evaluates the short-term forecasting capability of 
algorithms, it falls short in assessing their long-term forecasting prowess— a critical 
factor in real-world autonomous driving scenarios. In response, we introduce the K-step 
Streaming metric, an expansion of the sAP metric, specifcally tailored to evaluate long-
term performance. As depicted in Fig. 3.3(c), the algorithm projects the results of the 
upcoming two frames, and the cycle continues. The projection of the next K frames is 
represented as ”K-sAP”, as shown in Fig. 3.3(d). Consequently, the standard sAP metric 
translates to 1-sAP in the K-step metric context. 

3.4 LONGSHORTNET 

We argue that spatial semantics and temporal motion are crucial for detecting complex 
movements such as non-uniform, non-linear, and occlusion. To this end, we propose 
LongShortNet, which coherently models long-term temporal and fuses it with short-term 
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Figure 3.3: Illustration of matching rules under different metrics. The frames in green 
font denote the current frame and the frames in red font denote the frames matched with 

the current frame under the specifc metric. (a) Matching result of non-real-time 
methods under 1-sAP. (b) Matching result of real-time methods under 1-sAP. (c) 

Matching result of real-time methods under 2-sAP. (d) Matching result of real-time 
methods under K-sAP. 

semantics. LongShortNet consists of ShortPath and LongPath, as shown in Fig. 3.4(a). 
The frame sequence captured by the camera is divided into the current frame and the 
support frame, which are fed into ShortPath and LongPath, respectively, to generate 
spatial and temporal features. The Long-Short Fusion Module (LSFM) aggregates 
short-term spatial and long-term temporal information to capture motion consistency for 
representation learning. Finally, a detection head predicts upcoming results based on the 
features produced by the LSFM. 

Formally, ShortPath takes the current frame It as input and outputs spatial features 
Ft = F(It), where F(·) is CNN networks, which includes the backbone (CSPDarknet-
53 [6]) and the neck (PANet [60]). Similarly, LongPath stores temporal features Ft−iδt = 

F(It−iδt), i ∈ [1, N ] where N and δt denote the number of frames and time steps, respec-
tively. F(·) represents the network of LongPath. Note that the backbone of Short/Long 
paths is weight-shared. By introducing tunable parameters N and δt, LongPath can 
capture more long-term temporal for fne movement reasoning. Then LSFM aggre-
gates all features through Ffuse = LSFM(Ft, . . . , Ft−Nδt), where Ffuse denotes the fused 
features generated by LSFM. The details of LSFM(·) are described in the next section. 
Finally, the results are acquired by Dres = H(Ffuse), where H denotes the detection head 
(TALHead [108]) and Dres are predicted locations, scores, and categories. 

3.4.1 Long Short Fusion Module 

The previous streaming perception work [108] only roughly concatenates the features 

of the last two frames, without exploiting temporal motion and spatial semantics. We 
investigate a variety of feature aggregation ways, including 1) early fusion vs. late fusion 
and 2) average (equal weights) vs. dilatation (different weights). In summary, we verifed 

24 



Element-wise add 1x1 convolutions∗

…

LSFM-Lf-Avg

…

LSFM-Lf-Dil

LSFM-Ef-DilLSFM-Ef-Avg

Early
fusion

(Ef)

Late
fusion

(Lf)

Average (Avg) Dilatation (Dil)

Shared weights

Rt+1

Future Result

It

It-𝛿𝑡
It-2𝛿𝑡

It-N𝛿𝑡

…

LSFM

Short Path

Backbone
+Neck

Head

Long Path

Current Frame

Support Frame

…

…

(a) Our LongShortNet (b) The fusion schemes of LSFM

∗
∗

∗

∗
∗
∗
∗

∗
∗
∗
∗

∗

Figure 3.4: Illustration of our LongShortNet. (a) is an overview of LongShortNet. (b) 
shows the details of different fusion schemes of LSFM. 

four types of LSFM as shown in Fig. 3.4(b), denoted as LSFM-Ef-Avg, LSFM-Ef-Dil, 
LSFM-Lf-Avg, and LSFM-Lf-Dil. 

Average-Early-Fusion. The LSFM-Ef-Avg process fuses the spatial semantics of each 
frame in LSFM and outputs pre-averaged synthetic spatiotemporal features for the 
detection head. This vanilla version allocates equal importance to the features of all 
frames, which is defned as, 

NX
Ffuse = Ft−iδt + Ft, (3.1) 

i=1 

where it counts all the features to fuse the current/historical spatial information directly 
and equally. 

Dilatation-Early-Fusion. For LSFM-Ef-Dil, we investigate different weighting schemes 
for feature fusion as, 

NX
Ffuse = Concat(Gshort(Ft), Glong(Ft−iδt)) + Ft, (3.2) 

i=1 

where G denotes the 1 × 1 convolution operation and Concat means the channel-wise 
concatenation. Supposed that the channel dimensionality of Ft and Ft−iδt is d, all long-
term temporal features are fused by addition before concatenating with the short-term 
spatial features. In this case, the output channels numbers of Gshort(·) and Glong(·) are 
both ⌊d/2⌋. Note that we also adopt a residual connection to add current spatial features 
to enhance the historical temporal features. 

Average-Late-Fusion. Contrary to the early fusion, LSFM-Lf-Avg fusion preserves the 
spatial semantic features of each frame separately and relies on the detection head to 
extract more high-level coherent features. It instantly concatenates all features without 
discriminating between ShortPath and LongPath, which is defned as, 

Ffuse = Concat(Gavg(Ft), . . . , Gavg(Ft−Nδt)) + Ft, (3.3) 

where the output channels number of Gavg(·) is ⌊d/(1 + N)⌋. LSFM-Lf-Avg treats all 
features equally. 
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Dilatation-Late-Fusion. We further propose LSFM-Lf-Dil, which enlarges the number 
of channels of ShortPath and forces LongShortNet to pay more attention to the current 
spatial information. Specifcally, LSFM-Lf-Dil is defned as, 

Ffuse = Concat(Gshort(Ft), . . . , Glong(Ft−Nδt)) + Ft, (3.4) 

where two 1 × 1 convolution operations are employed to project Ft and Ft−iδt sepa-
rately. The output channels numbers of Gshort(·) and Glong(·) are ⌊d/2⌋ and ⌊d/2N⌋. After 
extensive experimental comparison, we fnally chose Dilatation-Late-Fusion as LSFM 
and set N and δt to 3 and 1. 

Table 3.1: Comparison with both non-real-time and real-time state-of-the-art (SOTA) 
methods on the Argoverse-HD benchmark dataset. The symbol ’‡’ denotes the use of a 
large size (1200, 1920) and extra data. The symbol ’†’ denotes the use of a large size 

(1200, 1920) without the use of extra data. The best results for each setting are shown in 
green. The largest increments of the large resolution setting are shown in red. 

Methods sAP sAP50 sAP75 sAPs sAPm sAPl

Non-real-time detector-based methods 

Streamer (S=900) [52] 18.2 35.3 16.8 4.7 14.4 34.6 
Streamer (S=600) [52] 20.4 35.6 20.8 3.6 18.0 47.2 

Streamer + AdaScale [13, 32] 13.8 23.4 14.2 0.2 9.0 39.9 
Adaptive Streamer [32] 21.3 37.3 21.1 4.4 18.7 47.1 

Real-time detector-based methods 

StreamYOLO-S [108] 28.8 50.3 27.6 9.7 30.7 53.1 
StreamYOLO-M [108] 32.9 54.0 32.5 12.4 34.8 58.1 
StreamYOLO-L [108] 36.1 57.6 35.6 13.8 37.1 63.3 

LongShortNet-S (Ours) [51] 29.8 50.4 29.5 11.0 30.6 52.8 
LongShortNet-M (Ours) [51] 34.1 54.8 34.6 13.3 35.3 58.1 
LongShortNet-L (Ours) [51] 37.1 57.8 37.7 15.2 37.3 63.8 

DAMO-StreamNetNet-S (Ours) [34] 31.8 52.3 31.0 11.4 32.9 58.7 
DAMO-StreamNetNet-M (Ours) [34] 35.7 56.7 35.9 14.5 36.3 63.3 
DAMO-StreamNetNet-L (Ours) [34] 37.8 59.1 38.6 16.1 39.0 64.6 

Large resolution 

StreamYOLO-L ‡ 41.6 65.2 43.8 23.1 44.7 60.5 
LongShortNet-L (Ours) [51]† 42.7 (+1.1) 65.4 (+0.2) 45.0 (+1.2) 23.9 (+0.8) 44.8 (+0.1) 61.7 (+1.2) 

DAMO-StreamNet-L † (Ours) [34] 43.3 (+1.7) 66.1 (+0.9) 44.6 (+0.8) 24.2 (+1.1) 47.3 (+2.6) 64.1 (+3.6) 

3.5 EXPERIMENTS 

3.5.1 Dataset and Metric 

Dataset: We utilized the Argoverse-HD dataset, which comprises various urban outdoor 
scenes from two US cities. The dataset contains detection annotations and center RGB 
camera images, which were used in our experiments. We adhered to the train/validation 
split proposed by Li et al. [52], with the validation set consisting of 15k frames. 

Evaluation Metrics: We employed the streaming Average Precision (sAP) metric to 
evaluate performance. The sAP metric calculates the average mAP over Intersection 
over Union (IoU) thresholds ranging from 0.5 to 0.95, as well as APs, APm, and APl 
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for small, medium, and large objects, respectively. This metric has been widely used in 
object detection, including in previous works such as [52, 108]. 

3.5.2 Implementation Details 

Our DAMO-StreamNet and LongShortNet models are both premised upon the YOLOX 
base detector [29], initially pretrained on the COCO dataset [56]. We further fne-tuned 
these frameworks on the Argoverse-HD dataset for a total of 8 epochs, deploying a batch 
size of 32 and 16 respectively, with the aid of 4 V100 GPUs. Both models were developed 
in three confgurations: small, medium, and large, named DAMO-StreamNet-S/M/L and 
LongShortNet-S/M/L, designed with the intent to facilitate convenient comparison with 
recent state-of-the-art models [108, 51]. The standard input resolution (600, 960) was 
maintained unless otherwise indicated. Hyperparameters were chosen consistently with 
previous works [108, 51] to ensure fair comparison. In the case of DAMO-StreamNet, 
the AK-Distillation served as an auxiliary loss during the training process, with the 
loss weight set at 0.2/0.2/0.1 for the small, medium, and large models respectively. 
To guarantee the real-time performance of the network, we adopted and made minor 
adjustments to the buffer scheme proposed in [108]. 

3.5.3 Comparison with State-of-the-art Methods 

We compared our proposed approach with state-of-the-art methods to evaluate its per-
formance. In this subsection, we directly copied the reported performance from their 
original papers as their results. The performance comparison was conducted on the 
Argoverse-HD dataset [52]. An overview of the results reveals that our proposed DAMO-
StreamNet with an input resolution of 600 × 960 achieves 37.8% sAP, outperforming 
the current state-of-the-art methods by a signifcant margin. For the large-resolution 
input of 1200 × 1920, our DAMO-StreamNet attains 43.3% sAP without extra training 
data, surpassing the state-of-the-art work StreamYOLO, which was trained with large-
scale auxiliary datasets. This clearly demonstrates the effectiveness of the systematic 
improvements in DAMO-StreamNet. 

Compared to StreamYOLO and LongShortNet, DAMO-StreamNet-L achieves abso-
lute improvements of 3.6% and 2.4% under the sAPL metric, respectively. This also 
provides substantial evidence that the features produced by DRFPN offer a self-adaptive 
and suffcient size of the receptive feld for large-sized objects. It is worth noting that 
DAMO-StreamNet experiences a slight decline compared to LongShortNet under the 
stricter metric sAP75. This observation suggests that although the dynamic receptive 
feld achieves a suffcient receptive feld for different scales of objects, it is not as accu-
rate as fxed kernel-size ConvNets. The offset prediction in the deformable convolution 
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layer may not be precise enough for high-precision scenarios. In other words, better 
performance could be achieved if this issue is addressed, and we leave this for future 
work. 

Table 3.2: Ablation study of the base detector on the Argoverse-HD dataset. The best 
results for each subset and the corresponding increments are shown in green font and 

red font, respectively. 

Methods S M L 

Equip StreamYOLO with our DRFPN 

StreamYOLO 28.7 33.5 36.1 

+DRFPN 30.6 (+1.9) 35.1 (+1.6) 36.7 (+0.6) 

LongShortNet Equipped with our DRFPN 

LongShortNet 29.8 34.0 36.7 

+DRFPN 31.5 (+1.7) 35.7 (+1.7) 37.5 (+0.8) 

3.5.4 Ablation Study 

Investigation of DRFPN. To verify the effectiveness of DRFPN, we use StreamY-
OLO [108] and LongShortNet [51] as baselines and integrate them with the proposed 
DRFPN, respectively. The experimental results are listed in Table 3.2. It is evident 
that DRFPN signifcantly improves the feature aggregation capability of the baselines. 
Particularly, the small-scale baseline models equipped with DRFPN achieve improve-
ments of 1.9% and 1.7%, separately. This also demonstrates that the dynamic receptive 
feld is crucial for the stream perception task. More importantly, DRFPN enhances 
the performance of LongShortNet, which suggests that the temporal feature alignment 
capacity is also augmented by the dynamic receptive feld mechanism. 

Table 3.3: Exploration of N and δt on the Argoverse-HD dataset. StreamNet denotes 
our DAMO-StreamNet. The best two results and the worst one are shown in green font, 

blue font, and purple font, respectively. The best increments are shown in red font. 

(N , δt) StreamNet-S StreamNet-M StreamNet-L 
(0, -) 28.1 32.0 34.2 
(1, 1) 30.6 35.1 36.7 
(1, 2) 31.2 34.5 37.1 
(2, 1) 31.2 35.7 (+3.7) 37.5 (+3.3) 
(2, 2) 31.4 (+3.3) 35.4 (+3.4) 37.2 
(3, 1) 31.5 (+3.4) 35.3 37.2 
(3, 2) 31.2 35.1 37.4 (+3.2) 
(4, 1) 31.1 35.0 37.1 
(4, 2) 30.7 35.2 36.5 
(5, 1) 31.1 35.0 37.5 (+3.3) 
(5, 2) 30.9 34.7 36.9 
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Investigation of Temporal Range. To isolate the infuence of temporal range, we 
conduct an ablation study on N and δt, as listed in Table 3.3. (0, -) represents the model 
utilizing only the current frame as input. It is evident that increasing the number of input 
frames can enhance the model’s performance, with the best results obtained when N is 
equal to 2, 2, and 3 for DAMO-StreamNet-S/M/L, respectively. However, as the number 
of input frames continues to increase, the performance experiences signifcant declines. 
Intuitively, longer temporal information should be more conducive to forecasting, but 
the effective utilization of long-term temporal information remains a critical challenge 
worth investigating. 

Table 3.4: Ablation study of our proposed models. D-SN and AK-D represent 
DAMO-StreamNet and AK-Distillation, respectively. The best results and the largest 

increments are shown in green font and red font, respectively. 

Methods S M L 
D-SN (N=1) 30.6 35.1 36.7 

D-SN (N=1)+AK-D 31.5 (+0.9) 35.3 (+0.2) 37.1 (+0.4) 
D-SN (N=2/3) 31.5 35.7 37.5 

D-SN (N=2/3)+AK-D 31.8 (+0.3) 35.5 (-0.2) 37.8 (+0.3) 

Investigation of AK-Distillation. AK-Distillation is a cost-free approach for enhanc-
ing the streaming perception pipeline, and we examine its impact. We perform AK-
Distillation with various lengths of temporal modeling and scales of DAMO-StreamNet. 
As the results listed in Table 3.4 indicate, AK-Distillation yields improvements of 0.2% 
to 0.9% for the DAMO-StreamNet confgured with N = 1 short-term temporal modeling. 
This demonstrates that AK-Distillation can effectively transfer ”future knowledge” from 
the teacher to the student. For the DAMO-StreamNet with the setting of N = 3, AK-
Distillation improves DAMO-StreamNet-S/L by only 0.3%, but results in a slight decline 
for the medium-scale model. The limited improvement for long-term DAMO-StreamNet 
is due to the narrow performance gap between the teacher and student, and the relatively 
high precision is diffcult to further enhance. 

Investigation of K-step Streaming Metric. We evaluate DAMO-StreamNet with set-
tings N = 1 and N = 2/3 under the new metric sAPk, where k ranges from 1 to 6. The 
results are listed in Table 3.5. It is clear that the performance progressively declines 
as k increases, which also highlights the challenge of long-term forecasting. Another 
observation is that the longer time-series information leads to better performance under 
the new metric. 

Inference Effciency Analysis. Although the proposed DRFPN has a more complex 
structure compared to PAFPN, DAMO-StreamNet still maintains real-time streaming 
perception capabilities. For long-term fusion, we adopt the buffer mechanism from 
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Table 3.5: Exploration study of K-sAP on the Argoverse-HD dataset. Here, our 
proposed model DAMO-StreamNet is denoted as StreamNet. The best results and 
largest increments for each subset are shown in green and red font, respectively. 

K-Step Metric StreamNet (N=1) StreamNet (N=2/3) 

S 

sAP1 30.6 31.5 (+0.9) 
sAP2 28.3 29.8 (+1.5) 
sAP3 24.9 25.9 (+1.0) 
sAP4 22.1 23.3 (+1.2) 
sAP5 21.0 21.8 (+0.8) 
sAP6 18.8 20.0 (+1.2) 

M 

sAP1 35.1 35.7 (+0.6) 
sAP2 31.9 32.8 (+0.9) 
sAP3 28.8 29.2 (+0.4) 
sAP4 25.7 25.9 (+0.2) 
sAP5 23.2 23.4 (+0.2) 
sAP6 21.5 22.0 (+0.5) 

L 

sAP1 36.7 37.5 (+0.8) 
sAP2 33.2 33.9 (+0.7) 
sAP3 29.8 30.6 (+0.8) 
sAP4 27.1 27.2 (+0.1) 
sAP5 24.2 25.0 (+0.8) 
sAP6 22.3 22.7 (+0.4) 

StreamYOLO [108], which incurs only minimal additional computational cost for multi-
frame feature fusion. 

Table 3.6: Ablation study of inference time (ms) on V100. 

Methods S M L 
LongShortNet (N=1) 14.2 17.3 19.7 
LongShortNet (N=3) 

DAMO-StreamNet (N=1) 
DAMO-StreamNet (N=3) 

14.6 
21.0 
21.3 

17.5 
24.2 
24.3 

19.8 
26.2 
26.6 

3.6 CONCLUSION & FUTURE WORK 

We introduced DAMO-StreamNet and LongShortNet exhibit several key enhancements: 
(1) a fortifed neck structure with deformable convolution; (2) a dual-branch structure for
deeper time-series data analysis; (3) logits layer distillation for improved deep learning
model interpretation; and (4) a cutting-edge real-time forecasting mechanism that perpet-
ually updates frame features. Evaluation on the Argoverse-HD dataset underscores our
models’ superiority over their state-of-the-art peers.

In future work, we intend to: (1) incorporate explicit motion consistency constraints 
based on geometric context to improve performance robustness and accuracy in complex 
settings; and (2) extend these methods’ applications in autonomous systems areas such 
as planning and control, potentially advancing autonomous driving technology. 
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CHAPTER 4 
VEHICLE TRACKING USING NATURAL LANGUAGE 

DESCRIPTIONS 

4.1 INTRODUCTION 

The AI-CITY challenge [72] focuses on the development of intelligent traffc systems. 
Vehicle tracking refers to the task of retrieving a track given an input query. A track refers 
to the camera id the vehicle is observed in, the frame number & corresponding location 
coordinates (bounding boxes) of the object within the frame. Track 2 of the AI-CITY 
challenge focuses on a specifc task where in the input data, natural language description 
of the vehicle are also provided eg. “A red sedan turns right at the intersection”. 

This introduces a new challenge of combining vision with natural language techniques 
for accurate vehicle retrieval. Existing works have focused on using a dual-stream archi-
tecture utilizing language encoders and visual encoders to obtain feature representations 
from both modalities and utilize a form of contrastive learning to effectively predict 
output tracks. Prior works [53, 76, 71] have also looked to fnd better ways to represent 
static properties such as vehicle color, type, shape and dynamic properties such as motion, 
speed and position relative to other vehicles. 

In this paper, we propose to explore some research questions related to the contribution 
of different features to vehicle tracking. The key research questions for this paper as as 
follows: 

• What is the contribution of static and dynamic properties to model performance? 

• How much does the language modality contribute to model performance? 

• To what extent can language features help capture both static and dynamic proper-
ties? 

• How well can enhanced visual/video transformers capture tracking-features? 

To answer these research questions, we conduct our study based on four major 
experiments. The frst experiment deals with data augmentation to fnd the extent 
language contributes to the model performance. Our results show that augmenting the 
natural language descriptions make the model more robust and perform better on the 
retrieval task. We also add a prompt feature to explicitly pass color and type features of 
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the vehicle to the model. We engineer a manual template to obtain this prompt feature 
and fnd that although our proposed template performs better than existing prompt-based 
approaches, it does not contribute to model performance signifcantly. 

We also build a modifed symmetric network to obtain motion features from the 
language description. We notice signifcant improvement in model performance with 
the presence of motion features, showing the importance of dynamic properties for 
vehicle retrieval. We also replace existing visual encoders and utilize SWIN transformers 
for better and effcient visual embeddings. Our model shows comparable performance 
to existing systems. We also perform an ablation study to show the contributions of 
different modalities and features. 

4.2 RELATED WORK 

4.2.1 Connecting Language and Vision 

[3] propose to jointly train the vision and transformer-based language model using 
symmetric InfoNCE loss and instance loss. As shown in Figure 4.1, the vanilla network 
consists of (1) local image encoder for local cropped vehicle image, (2) text encoder for 
language description input, (3) global image encoder to help learning more position and 
motion information. 

The work proposes to augment visual training data especially to capture the global/external 
features. The method proposes fxing a background and then capturing the different 
vehicle bounding boxes at different timestamps to form a “motion image”. 

The work deploys a ”dual-stream” structure using local images and global ”motion” 
images. The local images are the detected vehicles, cropped from a random frame. The 
global motion image is obtained using the method specifed in the paragraph above. The 
dual stream structures involves two independent CNN encoders pre-trained on ImageNet. 

For each stream, they introduce 3 projection heads (local features, global motion 
features and the concatenated fusion feature) to map visual representation to space 
of contrastive representation learning. Additionally, classifcation heads output the 
predicted probability of different tracks (similar to projection head, but the output 
dimension is the number of tracks). 

For text embeddings, the authors deploy BERT or RoBERTa as text encoder. The 
projection head maps text embeddings to the space of contrastive representation learning. 
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Figure 4.1: Jointly train vision, language model 

4.2.2 Symmetric Network 

[116] builds upon the previous work by using a symmetric network to encode visual
and language features. The work proposes similar image augmentation method. They
improve generating ”motion images” when the vehicle is too close in adjacent frames.
By calculating the IOU (Intersection over Union) of adjacent frames, the paper proposes
to discard frames larger than a threshold IOU.

For language augmentation, the authors propose frst to use spacy to extract noun 
phrases and pick the frst one and append it to the beginning. The idea is based on the 
assumption that the frst noun is usually a description of the vehicle and the appearance 
can be enhanced by repeating the description. 

As shown in Figure 4.2, the proposed approach is to use separate visual encoders 
for local images and for global images. Both will also have a text encoder to enhance 
information of either local or global image with features from the textual descriptions. 

For the local and global image encoders, the cropped image of the vehicle or the 
motion image is fed as input to Effcient Net B2 [107] or ibn-ResNet101-a [75] pretrained 
on ImageNet. For text encoding, they use RoBERTa [63]. 

They propose to concatenate the local and global image features to fuse information 
at different granularities. The fused visual and textual representations are projected into 
the same space by the projection heads. They also use InfoNCE loss. 
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Figure 4.2: Symmetric model with language and vision encoders for static and dynamic 
properties separately 

4.2.3 Multi-granularity Retrieval System 

[115] propose a multi-granular system with 3 main modules: (1) Language parsing: to
obtain attributes of the vehicle from the language descriptions (2) Language-augmented
multi-query: vehicle track retrieval module that serves as baseline model to incorporate
information from multiple imperfect queries (3) Target vehicle attributes enhancement
module: which explicitly fuses the static and dynamic properties of the target vehicle to
generate fnal retrieval results.

The authors note that most language queries have a similar language structure: main 

subject + action + (optional other subject + action). Hence they employ Semantic Role 
Labeling technique and words-frequency voting to collect main attribute words from the 
query which can help defne characteristics of the car Lcolor, Ltype, and Ldirection. 

This work proposes using BaiduNLP to augment the query set to include more 
imperfect sentences. A sample Nq of this augmented set of queries Qi, vehicle track 
images vi and motion images mi are passed as inputs of a multi-query vehicle tracking 
model. The Motion Em(·) and Vehicle Track Ev(·) encoder use the Spatial-Temporal 
Transformer Encoder [4], producing corresponding vehicle track feature ftrack and 
motion feature fmotion. 

ftrack is forwarded through two different fully connected layers to extract the color 
embedding fcolor and the type embedding ftype, which are learned using labels Lcolor

and Ltype. Furthermore a re-identifcation feature extractor [73] is used to obtain freid
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Figure 4.3: Multi granular model with post processing module for reweighting 
text-language match scores 

Model MRR% 
Connecting Vision & Language 18.69 
Symmetric Model 43.92 
Multi-granular Retrieval 56.52 

Table 4.1: Baseline MRR performance 

from the vehicle images vi. 

A contextualized aggregation network, based on transformer attention network Eveh 

is used to obtain 
fvehicle = Eveh([ftrack,fcolor,ftype,freid,fmotion]) 

The language encoder samples a set of n queries from the augmented dataset Qi

flang = Elang([f1,..,fn]) 
where Elang is distilbert model [101]. 

The cross-modal matching similarity is calculated by a simple dot product between 
fvehicle and flang. The paper then goes on to describe a Target Vehicle Attribute En-
hancement module to align the static and dynamic properties of the target vehicle by 
re-weighting the retrieval results. This in fact helps improve MRR by almost 15% which 
is a signfcant increase. 

4.3 PROPOSED APPROACH 

We now describe the several experiments we ran based on the research questions de-
scribed in Section 4.1. 
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Figure 4.4: Backtranslation for Data Augmentation 

4.3.1 Data Augmentation 

Natural language descriptions are an addition to the AI-CITY track 2 dataset. However, 
there are only 3 descriptions per query. In order for the model to obtain better under-
standing of the language features, we propose to replace the BaiduNLP Augmentation 
[115] with a simple backtranslation technique.

Backtranslation provides more training data to improve model robustness. It does so 
by converting a sentence in one source language (English) to another (say, Chinese) and 
translating it back to the source language. This generates semantic invariants for each of 
the natural language descriptions in the training samples. We utilize the data collected 
by [3]. Translating to languages that are similar to English, such as French and German, 
may cause backtranslation to generate the same texts. Hence, the texts are translated to 
Chinese and then back to English. An example of this is Figure 4.4. 

Entity strengthening is used by 4.2.2 by extracting noun phrases such as “white sedan” 
from Spacy. They then proceed to repeat this phrase in the sentence by appending it to 
the beginning of the input sentence. The purpose of this is to provide more information 
to the language encoder about the static properties of the vehicle such as its color and 
type. Although we utilize this data augmentation technique, we argue that there are 
better methods to capture static properties of vehicle as described in the next subsection. 

4.3.2 Prompt Tuning 

Prompting has proven to add crucial information to NLP tasks [59]. [23] propose a 
prompt-tuning technique (Figure 4.5) to provide explicit features to the model regarding 
the static properties of the model such as the color and type. In order to do this, they use 
a dependency parser [40] to obtain noun-adjective phrases from the input sentence. Since 
the natural language descriptions in the dataset are of simple and consistent structure, it 
is easy to obtain these phrases. After that they utilize a manual prompt template “This is 

a [COLOR] [TYPE]” eg. This is a blue SUV. This prompt template is fed additionally to 
the language encoder to obtain a prompt feature to better improve model performance. 
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Figure 4.5: Prompt Tuning for better static property representation 

Figure 4.6: Common language patterns in Train set 

Pattern Count 
A [COLOR] [TYPE] drives 110 
A [COLOR] [TYPE] goes 49 
A [COLOR] [TYPE] turns 113 
A [COLOR] [TYPE] keeps 68 

Table 4.2: Tabulated number of language templates in Validation Set 

Model MRR % 
[23] 30.12 
A [COLOR] [TYPE] goes 29.95 
A [COLOR] [TYPE] drives 31.97 

Table 4.3: Model performance with manual prompt templates 
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We perform an analysis on the dataset and observe that a large number of input 
descriptions follow a fxed language pattern. An analysis of such language patterns is 
shown in Figure 4.6 and Table 4.2. We observe that a large number of sentences follow a 
language pattern “A [COLOR] [TYPE] drives/turns” eg. “A white sedan drives down 

the road..” or “A white sedan turns left at an intersection”. We propose that a prompt 
template which mirrors such a pattern will be able to better capture the static properties 
of a vehicle. This is similar to the idea of entity strengthening or highlighting, but is a 
more intuitive way to provide information to the text encoder. 

We propose to utilize the manual template “A [COLOR] [TYPE] drives” and experi-
ment with other templates defned in Table 4.2, instead of the Manual Template proposed 
by [23]. We argue that this technique will help better capture the properties of the vehicle 
since these will be a form of data augmentation. The language descriptions already 
follow a similar template and providing this explicit prompt feature will help reinforce 
the color and type features to the model. This is backed by the performance of model 
with manual template as shown in Table 4.3. 

We also tried to include other properties such as position and speed using prompt 
tuning. However, the language descriptions in the existing dataset do not provide much 
information to extract such features solely from the text modality. We instead need to 
resort to a better way to obtain such features from the text and vision modalities. What 
could be obtained from the language description is information about the motion (eg. 
“turns left”, “turns right” or “keeps straight”). We do not fnd an intuitive way to include 
this in the manual prompt and hence propose a more sophisticated technique for this in 
the next subsection. 

4.3.3 Modifed Symmetric Network 

We build upon the Symmetric network of [116] and propose our new model architecture. 
The symmetric model used by the prior work focuses on utilizing one text encoder and 
one image encoder (for local image) to obtain static property features and another pair of 
one text encoder, one image encoder (for global motion image) to obtain dynamic/global 
property features. 

Since we pass different inputs to the visual encoders, it makes sense to use such a 
symmetric network. We pass a static image of a car just for it to capture static/local prop-
erties such as vehicle color, type, shape, size. However, for dynamic/global properties 
we use a global image motion map. Hence the need to use another visual encoder to 
obtain features such as motion, direction, velocity. However, we argue that using two 
different encoders for the text modality is a complex and redundant architecture. 
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We propose a novel text encoding architecture to obtain static properties and the 
motion property. The way we can include information about the motion/direction 
explicitly to the text encoder is through keywords in the description eg. “turns left” or 
“turns right” or “keeps straight”. This is a better way to capture motion embeddings 
rather than using entity strengthening or other methods in previous works. 

We use DistilBERT [101] to obtain three features from the input sentence descriptions 
Lcolor, Ltype and Ldirection. These denote embeddings for color, type and motion of the 
vehicle respectively from the language input. We obtain similar features Vcolor, Vtype and 
Vdirection from the visual encoders which is Effcient Net B3 [90] instead of the B2 used 
in the prior work. We perform a late fusion technique where we project the embeddings 
to the same space and average the features. We also experimented by sum-pooling the 
features. 

To maximize the similarity between the features learnt from the visual encoders 
and text encoders, we use symmetric InfoNCE Loss [106]. The image to text loss is 
calculated using the following equation 

X1 
N exp(cos(Vfeat 

i , Li )/T )
Li2t = −log PN 

feat (4.1)
N exp(cos(V i , Li )/T )i=1 i=1 feat feat 

Additionally, the text to image loss is calculated using: 

N 
1 X exp(cos(Li , V i )/T )feat feat Lt2i = −log PN (4.2)
N exp(cos(Li , V i )/T )i=1 i=1 feat feat 

where cos(.) is the cosine similarity function and Li denotes a feature embedding feat 

from the language modality of the ith sample and V i is the same for a visual feature. feat 

The symmetric InfoNCE loss is calculated as: 

LinfoNCE = Li2t + Lt2i (4.3) 

With these changes, we expect our refned model architecture to capture the vehicle 
tracking features in a more effcient manner. 
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4.3.4 SWIN Transformers 

Swin Transformers [64] is a transformer-based deep learning model with state-of-the-art 
performance in vision tasks. Unlike the Vision Transformer (ViT) [21], Swin Transformer 
is highly effcient and has greater accuracy. ViT’s struggle with high resolution images 
since it’s computational complexity is quadratic to image size. 

Using heirarchical feature maps, patch merging and a shifted window multi-headed 
self attention, SWIN transformers provide linear time complexity and perform well on 
high resolution images. We propose to use SWIN transformers replacing the visual 
encoder that takes the global motion image map as input. 

4.4 EXPERIMENT SETUP 

4.4.1 Dataset 

We use the CityFlow-NL dataset [25] to train and evaluate our model. It is the frst 
multi-camera tracking dataset with natural language descriptions providing precise 
details for multi-view ground truth vehicle tracks. The CityFlow-NL dataset comprises 
approximately 4 hours of video surveillance. It consists data of 666 target vehicles 
collected from 40 cameras and a total of 3,028 single-view vehicle tracks and 5,289 
unique natural language descriptions. 

4.4.2 Evaluation 

For evaluation, we use the Mean Reciprocal Rank or MRR metric. For each input query, 
the model produces a ranked output list of tracks. The reciprocal rank of the ith query 
is the multiplicative inverse of the rank of the frst correct answer ranki. MRR is the 
average of the reciprocal ranks of the overall test set 

NX1 1 
MRR = (4.4)

N rankii=1 

For example, if the correct answer is ranked frst, the reciprocal rank would be 1. If 
the correct answer is ranked third, the reciprocal rank would be 1/3. MRR is a useful 
metric because it takes into account both the accuracy of the ranking model (i.e., whether 
the correct answer is included in the list of predictions) and the position of the correct 
answer in the list of predictions. A high MRR indicates that the ranking model is both 
accurate and able to place the correct answers at the top of the list. 
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Model MRR% 

[115] (before post-processing) 40.73 
Without BaiduNLP Augmentation 37.72 
Backtranslation 38.20 

Table 4.4: Comparison of Data Augmentation 

Model MRR% 

[115] (before post-processing) 40.73 
Symmetric Network [116] 43.92 
Modifed Symmetric Network 35.90 
Modifed Symmetric Network + Prompt Tuning 35.11 
Modifed Symmetric Network + SWIN 39.08 
Modifed Symmetric Network + Prompt Tuning + SWIN 39.45 

Table 4.5: Ablation Study: Model MRR performance of different model architectures 

4.4.3 Implementation Details 

We build our code base upon [25]. For training, we utilize resources of 4 GPUs (G 
instances on AWS). During training, we use a batch size of 4 due to the limited computa-
tion power and train the model for 200 warm-up epochs with a learning rate of 1e-5 and 
for 500 epochs with a learning rate of 1e-3. We use the AdamW optimizer [66], and use 
InfoNCE loss [95] as the criterion. 

We use DistilBERT [101] as the language encoder. We use Visual encoders described 
in Sections 4.2.2 and 4.3.4. In order to extract video frames from videos, we use the data 
preprocessing technique provided by [116]. We use cropped car image fles to generate 
IOU-fltered motion maps that include more vehicle information. The multimodal 
features from both encoders are fused by simply projecting them to the same space and 
averaging them. 

4.5 RESULTS 

Table 4.4 shows the variation in model performance with data augmentation. Although 
backtranslation does not perform better than BaiduNLP augmentation, we conclude that 
the language modality has a noticeable impact on vehicle retrieval. This was expected 
since the dataset only consisted of 3 natural language descriptions and augmenting it 
makes the model more robust and takes language more into consideration. 

We perform an ablation study of our other experiments and show the results compari-
son in Table 4.5 and Figure 4.7. We notice that our novel model architecture performs 
comparably to existing SOTA methods. 
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Figure 4.7: Model performance comparison 

From Figure 4.7 we analyze the performance of our modifed symmetric model with 
and without the feature fmotion. This feature is what is obtained by combining the feature 
vectors Vmotion from the vision model and Lmotion from the language encoder. Without 
these features, the model performance drops drastically to 17.41%. With the motion 
features, our model has an MRR of 35.9%. This was expected since simply capturing 
static features such as color, type will not provide information to the model about vehicle 
tracking coordinates. This shows the importance of dynamic properties and we argue 
that additional embeddings such as Lspeed (to capture the speed of a vehicle) would 
further improve model performance. However, with the existing dataset there is not 
much information we can extract about such features from the language descriptions. 

We also include the Prompt Tuning approach we introduced in Section 4.3.2 utilizing 
the manual template “A [COLOR] [TYPE] drives”. We append this feature to the 
projection head of our modifed symmetric network. The intuition behind this approach 
was for feeding the model more explicit information about the color and type of the 
vehicle. However, we notice similar performance even with the addition of this feature. 
This further shows that static properties such as color and type do not contribute as 
greatly to the retrieval task. It consolidates our hypothesis that dynamic properties play a 
key role in the task. 

By replacing existing visual encoders (EffcientNet B3) with the SWIN transformer we 
see a close to 3% increase in model performance. This essentially tells us that enhanced 
visual embeddings are able to obtain better static and dynamic properties. 

Our ablation study further shows how adding prompt tuning to modifed symmetric 
network + SWIN does not perform better. We believe that the SWIN transformer with its 
shifted window attention mechanism is able to better capture dynamic features especially 
better than existing methods. We propose that using SWIN in place of other visual 
transformers will in general lead to better performance on Vehicle Tracking tasks. 
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With this study we are able to answer the research questions we set out to address in 
Section 4.1. Our analysis shows how dynamic properties like motion, speed and position 
relative to other vehicles may lead to further improvements in the model. We also show 
that the language descriptions, although add noticeable features for tracking, does not 
contribute as much as visual features. 

4.6 CONCLUSION 

In this section, we build upon existing models for Vehicle tracking using natural lan-
guage descriptions. We build our own symmetric model with modifed visual encoders 
and introduce a motion feature from the language descriptions. Our model performs 
comparably to existing beatlines. 

Furthermore, we perform an ablation study to show the contribution of the text and 
vision modalities to model performance. We also highlight the importance of dynamic 
properties for improved vehicle tracking compared to static properties such as color, 
vehicle type with experiments using manual prompt templates. 

As a future research direction, we propose to explore methods in trying to capture 
dynamic features from the language description. We propose to use more sophisticated 
methods to capture Lmotion and can also explore ideas to obtain information regarding 
vehicle velocity, position, etc. We can also explore an improvement of using Video-
SWIN transformers [65] and using prompt learning instead of defning manual templates. 
Our prompt template can also include information of dynamic properties. 
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CHAPTER 5 
TRAINING VISION-LANGUAGE TRANSFORMERS 

FROM CAPTIONS 

5.1 INTRODUCTION 

Vision-Language Transformers can be learned without low-level human labels (e.g. 
class labels, bounding boxes, etc). Existing work, whether explicitly utilizing bounding 
boxes [10, 89, 68] or patches [48], assumes that the visual backbone must frst be 
trained on ImageNet [84] class prediction before being integrated into a multimodal 
linguistic pipeline. We show that this is not necessary and introduce a new model Vision-
Language from Captions (VLC) built on top of Masked Auto-Encoders [37] that does not 
require this supervision. In fact, in a head-to-head comparison between ViLT, a strong 
patch-based vision-language transformer which is pretrained with supervised object 
classifcation, and our model, VLC, we fnd that our approach 1. outperforms ViLT on 
standard benchmarks, 2. provides more interpretable and intuitive patch visualizations, 
and 3. is competitive with many larger models that utilize ROIs trained on annotated 
bounding-boxes. 

Our previous work has been evaluated by the industry and the link is VLC. In previous 
work, we evaluate our model over several tasks including visual question answering, 
image-text retrieval and image classifcation. On top of this, we extend our work to 
provide more analysis and show our model can be applied to image-text grounding. 

5.2 BACKGROUND 

Image-text grounding refers to the process of associating textual descriptions with 
corresponding visual content. It plays a crucial role in multimodal learning and has 
signifcant importance in various real-world applications. Here are a few reasons why 
image-text grounding is important: 

• Enhancing Multimodal Understanding: By linking textual and visual information, 
image-text grounding facilitates a deeper understanding of multimodal data. It 
enables the model to learn the relationships between different modalities, such as 
images and corresponding textual descriptions, leading to more comprehensive 
representations. 

• Visual Captioning: Image-text grounding plays a vital role in generating descriptive 
captions for images. By grounding the textual descriptions to the visual content, 
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Figure 5.1: Left: Extending VLC to effciently performing image-text grounding tasks: 
We fnetune the Transformer backbone with supervision on similarities between patch 

and text representations. During inference, a bbox/mask can be obtained from the 
affnity scores with minimal computation overheads. Right: Reasonable segmentation 

masks resulted from interpolating patch-text affnities. Running the same inference 
procedure twice with coarse-to-fne resolution improves precision. 

models can generate accurate and relevant captions that capture the salient details 
of the image. This has applications in accessibility, image understanding, and 
content summarization. 

• Content Understanding and Analysis: In real-world applications like social media
analysis, news aggregation, or brand monitoring, image-text grounding helps in
understanding and analyzing the content shared by users. By grounding the text
and images, it becomes possible to extract relevant information, detect sentiments,
identify objects, and comprehend the context more accurately.

5.3 METHODOLOGY 

Since the model was not pretrained to generate bounding boxes, we propose a novel 
algorithm which produces a bounding box based on patch-text affnities in a single 
forward pass. This results in much less inference time and higher parameter effciency 
compared with competitive pipelines tailored to bounding box generation. See Figure 5.1 
(Left) for an overview of the proposed grounding workfow. 

5.3.1 Finetuning 

Our approach builds on the notion of an affnity map. Formally, we defne the affnity 
map, A, as the cosine distance between all Language tokens and Visual patches. 

Â 
t,p = cos(Lt, Vp) (5.1) 

for T tokens and P patches. This resulting matrix [−1, 1]T ×P provides a normalized 
score for the relationship between every token and patch. 
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Supervision Signals For supervision, we translate bounding box annotations to sets 
of patches and phrases simply correspond to their indices, with [CLS] being the initial 
index 0. The ground-truth affnity scores can be obtained from labeled datasets where 
annotators selected bboxes corresponding to phrases in an (image, sentence) pair. Thus, 
for an (image, sentence) pair, we have a set of annotated (bbox, phrase) pairs, from 
which we would like to get a T × P matrix of affnity scores. Note that the full image √ √ 
has dimensions H × W and will be divided into a P × P grid. 

For a given annotated (bbox, phrase) pair, if the lexical token Lt belongs to the phrase 
and patch Vp overlaps with the bbox, we set At,p in the ground-truth affnity map to be 
amount the patch overlaps with the bbox. 

|P atch ∩ BBox|At,p = (5.2)
|P atch| 

If a bbox corresponds to the entire sentence, we set ground-truth affnity scores for the 
0-th token, [CLS]. 

Hyperparameters We opt for a higher resolution (384) and smaller patches (16) since 
the patch size will determine the granularity of our predictions. This yields a fnal 24×24 
grid. We fnetune VLC on the combined Refcoco/+/g training sets for 50 epochs with 
AdamW [67] optimizer and a 5e−4 learning rate. 

Finetuning Objective We optimize our model with a binary-cross-entropy (BCE) loss 
between the ground-truth and predicted affnity scores. X 

Loss = BCE(At,p, Â 
t,p) (5.3) 

t∈T,p∈P 

We intentionally avoided the use of a softmax because normalization would force 
competition across patches and affect their individual judgments. Each token-patch pair 
relationship is independent during loss calculation. 

Note, that the domain expected by BCE is the full real line, but our affnities are 
computed via cosine similarities and are therefore bounded to [-1,1]. Empirically, we 
found that re-scaling the input by k = 2 improved performance due to a better utilization 
of the [0,1] output range. However, performance decreases with a larger k because it 
tends to over-sharpen the sigmoid’s decision boundary, leaving less “wiggle room” for 
the raw logits. 
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Figure 5.2: Inference procedure overview for “Affnity Map ⇒ BBox”, which is 
formulated as a search problem. Left: we defne the search space to contain all 

candidate bboxes that lie on gridlines. Right: our algorithm greedily iterates over bboxes 
following the search order of large → small, and terminates once the search criterion no 

longer improves. 

5.3.2 Inference 

The forward pass through the Transformer outputs a single tensor of shape L×768, or 
more accurately, the concatenation of two tensors of shape T ×768 and P ×768 for the 
encoded Language and V isual sequences, respectively. During inference, these matrices 
are used in Equation 5.1 to compute the predicted affnity matrix Â. Next, we describe 
how a mask or a bounding box can be algorithmically derived from a predicted affnity 
matrix Â. We emphasize that this procedure requires no additional learned parameters 
and is algorithmically effcient. 

Since rows in Â 
actv associated with a phrase can be pooled into a single row and √ √ √ √ 

Âr P × Preshaped into P × P , we henceforth refer actv to such a [−1, 1] matrix with 
spatial correspondence to the image, albeit with a coarser resolution. Then, a binary mask 
can be simply derived by bilinearly interpolating Âr back to the original resolution, actv 

and binarizing the values with a threshold. 

The procedure for deriving a bbox from Âr is more complicated, which we detail actv 

below. We formulate bbox prediction as a search problem. A bbox is denoted by 
B = (x, y, w, h), satisfying 0 ≤ x ≤ x + w ≤ W , 0 ≤ y ≤ y + h ≤ H . The goal is 
to search for B given Âr , such that B best represents a rectangular region Âr triesactv actv 

to highlight (Figure 5.2, Left). To solve the search problem we need to decide on the 
following: the search space, the search order, and the search criterion. 

Search space Theoretically, we have an infnite number of boxes to search over which 
can be as large as the input image or as small as nearly a single point. We constrain our 
search to only those boxes whose edges lie on gridlines, with step t denoting the unit 
between two gridlines. 
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Search order We start with a box encompassing the full image and greedily search for 
progressively smaller boxes. 

Search criterion We propose a satisfying criterion M that guarantees equivalence 
Ârbetween actv and the theoretically optimal bbox (B). In the case where all values in 

Âr are binary, this reduces to calculating a standard IoU (Intersection-over-Union). In actv 

practice, values will be real-valued. We overload the notation to handle the generalization 
Ârfrom binary to real values in actv. Intersection is defned as the sum of the active values 

within B. Union is equal to the sum of three terms, namely the active values inside B, 
the values that should have been active inside B and the active values outside B. The 
frst two terms in Union add up to |B|. As a single equation this results in 

|Âr ∩ B| M = actv (5.4)
|B| + |Âr ∩ ¬B| actv 

In practice, this is an easy calculation, as the intersections and negations simply 
correspond to summing the values inside and outside of the candidate box. Further, 
summing (in leiu of counting) trivially generalizes to the continuous valued activations. 

We provide additional proof of the equivalence to optimizing F1 in the supplementary. 
We will note, there is a potential hyperparameter which we will call C that defnes the 
desired “tightness” of the box. 1 

Next we leverage the the search space, order and criterion (M) in Algorithm 1 to 
predict bounding boxes. Initializing B to surround the entire image, our PUSH algorithm 
greedily iterates over progressively smaller B and terminates when M(Âr 

actv, B) no 
longer improves. Within each iteration, there are “push” attempts on the edges of B, one 
at a time, by t-amount inwards according to an order O ∈ P ermutation([T, L, B, R]). 
For example, O = [T, R, B, L] would translate to a clockwise progression of tightening 
edges from the T op − Right − Bottom − Left. A push operation is successful if and 
only if it increases M. Otherwise, the edge is left unchanged. The algorithm terminates 
when it encounters unsuccessful push attempts on all four edges in a row. Figure 5.2 
visualizes a PUSH execution. 

In our experiments, we use values P = 24, W = H = 384 and t = 1
4 ∗ patch size = 

4.2 A known limitation of our approach is highly discontiguous or concave affnity 

1For example, C = 0.5 ∗ |Âr | would produce bboxes systematically smaller than C = |Âr |. Theactv actv 
supplementary discusses about where C is derived from. In this work, we leave the scaling to 1 and allow 
future work to analyze how C would infuence the returned value of Algorithm.1 

2Empirically, we fnd that the order of [L, B, R, T ] does not affect performance. We ran our bbox 
inference procedure on the Refcocog val(umd) 10 times, randomly permuting the order of [L, B, R, T ] at 
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Algorithm 1: PUSH 

input :heatmap Âr , image size (W, H), step t, measureactv 

M : (Âr 
actv, B) → R, 

order O ∈ P ermutation([T, L, B, R]) 
output :B: box coordinates (x, y, w, h) s.t. 0 ≤ x ≤ x + w ≤ W and 

0 ≤ y ≤ y + h ≤ H 

(x, y, w, h) ← (0, 0, W, H) 
B ← (x, y, w, h) 
while w > 0 and h > 0 and move ̸= False do 

for e ∈ O do 
if e == T then B ′ ← (x, y + t, w, h − t) 
else if e == B then B ′ ← (x, y, w, h − t) 
else if e == R then B ′ ← (x, y, w − t, h) 
else B ′ ← (x + t, y, w − t, h) 

if M(Âr Ar 
actv, B ′ ) > M( ˆ 

actv, B) then 
B ← B ′ 

(x, y, w, h) ← B 
move ← T rue 

end 
end 

end 
return B 

patterns. We did not observe this condition in our setting. We provide empirical evidence 
that our “Affnity Map ⇒ BBox” formalization is effective but leave a mathematically 
rigorous investigation to future work. 

5.4 EXPERIMENTS 

First we verify the strength of our approach in a zero-shot setting before investing in 
larger fne-tuning results. We adapt our model to perform zero-shot visual reasoning 
on the Kilogram [43] dataset. Kilogram challenges a model to recognize an abstract 
Tangram shape from a language description. Tangram shapes drastically differ from 
natural scenes as they only contain abstract and implicit visual clues. Hence, recognition 
demands more sophisticated reasoning about the interplay between visual and linguistic 
cues. The task is formulated into a 10-way classifcation problem where the model 
chooses the most relevant image given an abstract shape description. Specifcally, we 
rank image relevance by the logits calculated by the pretrained image-text matching head. 
Table 5.1 shows that our model consistently outperforms ViLT across all input conditions. 
This supports our design consideration that freeing up the model from priors of limited 
ImageNet concepts helps it generalize to arbitrarily many linguistically-specifed visual 

each PUSH iteration. For 90% samples the algorithm returned the same predicted bbox all 10 times. For 
the remaining samples, the 10 returned bboxes have a joint IoU=0.95±0.07. 
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Input Condition ViLT Ours Human 

WHOLE+BLACK 12.9 13.8 47.7 
PARTS+BLACK 12.5 15.2 49.1 
WHOLE+COLOR 11.7 13.9 49.5 
PARTS+COLOR 10.7 13.5 63.0 

Table 5.1: Zero-shot inference accuracy on Kilogram (dev), a challenging image-text 
matching task for recognizing abstract visual entities from linguistic descriptions. VLC 

consistently outperforms ViLT across all input conditions. 

categories. Further improvement may come from additional fnetuning to familarize our 
model with the Tangram shape domain, which is left for future work. 

We fnetune the encoder on the training sets of Refcoco, Refcoco+, and Refcocog 
[109, 70] following the umd split. We convert ground-truth bounding boxes to patch-text 
affnity scores and use them to fnetune the preceding representations. At inference time, 
we algorithmically predict a bounding box for each referential expression from affnity 
scores between the last layer patch and text representations. 

Comparison to modularized models Previous models either use an RoI (Region-
of-Interest) extractor to produce candidate bboxes to choose from [10, 26, 14, 87], or 
directly predict the coordinates and dimensions of bboxes in the image coordinate system 
[17]. The former approach relies on an off-the-shelf detector, while the latter requires 
gating mechanisms to infuse linguistic information into a visual backbone. Our approach 
outperforms all previous approaches with modular designs (Table ??, Top), meanwhile 
achieving the best inference-time effciency. This justifes our unifed approach in which 
both understanding and localization tasks can beneft from large-scale representation 
learning. 

Comparison to unifed models that have far more parameters or computation 
Most of performant models under comparison incorporated bounding box annotations 
from VG [49] in their pretraining data. With a much lighter architecture and much less 
annotated data, our model already achieves competitive performance. This holds promise 
that the performance will continue to improve as resolution and data are scaled up during 
pretraining. 

Generalization to dense prediction Moreover, demonstrates that interpolating well-
aligned path-text affnities naturally results in segmentation masks. Table 5.2 reports 
pixelwise-IoU between our interpolated masks and ground-truth masks on Refcoco/+/g. 
We have doubled the performance of TSEG [86], the previous state-of-the-art method 
on Referring Expression Segmentation without training on ground-truth masks. Note, 
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Model Refcoco/+/g(umd) val 

TSEG-CRF [86] 25.95 22.62 23.41 
VLCBase (ours) 50.65 45.88 46.37 

Table 5.2: We achieve non-trivial pixelwise IoU on Referring Expression Segmentation 
through interpolating low-resolution affnity maps into segmentation masks without 

dense supervision. 

performing a second forward pass with zoomed-in regions leads to signifcantly fner 
mask contours (Figure 5.1 Right). We leave a closer investigation of this inference trick 
to future work. 

Model Text Image Group 

MTurk Human 89.50 88.50 85.50 
Random Chance 25.00 25.00 16.67 

UNITERBase 32.25 13.25 10.00 
VILLABase 30.00 12.00 8.00 
ViLTBase 34.75 14.00 9.25 
CLIPBase 30.75 10.50 8.00 
FLAVA-ITMBase 32.25 20.50 14.25 
VLCBase 28.00 19.75 12.50 

UNITERLarge 38.00 14.00 10.50 
VILLALarge 37.00 13.25 11.00 
VLCLarge 32.00 20.00 14.75 

Table 5.3: Winoground is a challenging test-only set for visio-linguistic compositional 
reasoning. VLCLarge is competitive among similar-sized models without a second-stage 

pretraining. 

Better Grounding translates to compositional reasoning We fnd that the fnetuned 
patch-text affnities translate to greater compositional reasoning performance. We 
report inference-only results on Winoground [92] with our Refcoco-fnetuned model 
in Table 5.3. Winoground requires pairing up two sets of images and sentences with 
minimally contrastive semantics. Instead of directly predicting a pairing logit using the 
image-text matching head, it is more effective to measure image-sentence association 
via grounding success conditioned on an input sentence. Concretely, by treating the max 
affnity as the image-sentence-matching score, our Refcoco-fnetuned model achieves 
a state-of-the-art Group Score and outstanding Image Scores on Winoground.3 This 
superior reasoning performance again verifes that our pretrained representations are 
more capable of using text/images to disambiguate each other. 

3Please refer to the Winoground [92] paper for how their evaluation metrics are defned. 
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Input image Predicted affnity map Predicted bbox re- Predicted & Ground-
duced truth 

the leftmost train The model succeeded at distinguishing same-type instances via absolute position. 

the smallest train The model succeeded at distinguishing same-type instances via absolute size. 

Table 5.4: Patch-token affnities can be fnetuned towards localizing objects specifed by 
referring expressions. 

5.5 VISUALIZATIONS 

We show that fnetuning can further incentivize the affnity patterns to behave like 
bounding boxes, which is the standard output format for localization. We visualize 
predicted alignment after fnetuning in Table. 5.4. We highlight a greater reasoning 
ability beyond recognition in terms of disambiguating visual entities based on how they 
are referenced linguistically. 

5.6 CONCLUSION 

We present Vision-Language from Captions (VLC), a generic vision-language model 
pretrained with only image-caption pairs. It uses a single linear layer to project raw 
pixel stimuli and token embeddings into the same representation space, followed by 
Transformer blocks jointly modeling two modalities. By removing the dependency on 
image region proposals, our model is both (1) more data effcient, for it does not require 
pretraining-scale class labels or bounding box annotation, and (2) faster at inference, for 
it does not require a tedious vision-only branch. 

Despite being lighter and faster, VLC performs competitively on a diverse set of vision-
language tasks, as compared to existing approaches relying on detection or ImageNet 
supervision. The MIM pretraining objective encourages richer and language-aware visual 
representations, which implicitly results in fner-grained alignment between patch and 
token representations. With moderate downstream fnetuning, VLC can be easily adapted 
to (1) perform multi-modal retrieval, (2) answer questions, (3) reason about visual 
information guided by free-form language, or (4) ground linguistically-referenced objects 
into bounding boxes. VLC’s strong performance across nine downstream benchmarks 
clearly demonstrate the wide task applicability of a unifed vision-language encoder. 
As performance scales with increased training data, this opens an exciting avenue for 
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large-scale weakly-supervised open-domain vision-language models. 
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APPENDIX I: GLOSSARY 

Chapter 2 

1. Activity Detection/Recognition: The task of identifying and localizing activities 
of objects (person/vehicle) within an image or a video. 

2. Object Detection: The task of identifying and localizing objects within an image 
or a video. 

3. Object Tracking: The task of tracking and localizing target objects from a 
sequence of images or a video (containing multiple objects). A track refers to the 
camera id the vehicle is observed in, the frame number and the corresponding 
location coordinates (bounding boxes) of the object within the frame. 

4. Proposals of activity detection: Clips of videos cropped from the raw footage. 

5. Backbone: The main component of a neural network responsible for extracting 
low-level features from input data. 

6. Average Precision (AP): A commonly used metric in object detection that mea-
sures the accuracy of object localization and classifcation. 

7. Intersection over Union (IoU): A measurement of the overlap between the 
predicted bounding box and the ground truth bounding box, used to evaluate the 
accuracy of object localization. 

Chapter 3 

1. Streaming Perception: The process of detecting and tracking objects in real-time 
video streams, particularly in the context of autonomous driving. 

2. Object Detection: The task of identifying and localizing objects within an image 
or video. 

3. Receptive Field: The region of an input image that infuences the value of a 
particular pixel in the output feature map of a neural network. 

4. Feature Aggregation: The process of combining multiple features from different 
layers or frames to create a more informative representation. 

5. Motion Consistency: The ability to maintain the consistency of object motion 
across different frames in a video. 
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6. Knowledge Distillation: The process of transferring knowledge from a large, 
complex model (teacher) to a smaller, simpler model (student) to improve the 
student’s performance. 

7. Inference: The process of applying a trained model to new data to make predic-
tions. 

8. Real-time Forecasting: The ability to make predictions and decisions in real-time 
without signifcant delays or latency. 

9. Backbone: The main component of a neural network responsible for extracting 
low-level features from input data. 

10. Neck: An intermediate component in a neural network that connects the backbone 
and head, often used for feature fusion and refnement. 

11. Head: The fnal component of a neural network responsible for generating predic-
tions or outputs. 

12. Temporal Fusion: The process of combining information from different frames 
in a video to capture temporal dependencies and correlations. 

13. Long-term Motion Consistency: The ability to maintain consistency in object 
motion over a longer period of time, considering complex motion patterns and 
occlusions. 

14. Support Frame: A previous frame used as reference or context for making 
predictions in a video stream. 

15. Fine-tuning: The process of further training a pre-trained model on a specifc task 
or dataset to improve its performance on that task. 

16. Average Precision (AP): A commonly used metric in object detection that mea-
sures the accuracy of object localization and classifcation. 

17. Intersection over Union (IoU): A measurement of the overlap between the 
predicted bounding box and the ground truth bounding box, used to evaluate the 
accuracy of object localization. 

Chapter 4 

1. Object Tracking: The task of identifying and localizing objects within an image 
or a video. A track refers to the camera id the vehicle is observed in, the frame 
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number and corresponding location coordinates (bounding boxes) of the object 
within the frame. 

2. Backbone: The main component of a neural network responsible for extracting 
low-level features from input data. 

3. Data augmentation: Data augmentation is a technique used in machine learning 
and data science to increase the size and diversity of a dataset by creating new, 
synthetic data samples. 

4. Prompt tuning: Prompt tuning refers to the process of fne-tuning or optimizing 
the initial prompt or instruction given to a language model to achieve desired 
outputs. It is commonly used with autoregressive language models, such as GPT 
(Generative Pre-trained Transformer), where the model generates text based on a 
given prompt. 

Chapter 5 

1. Embedding: A vector to represent individual image or text description which is 
synonymous to feature/representation. 

2. Vision-language Pretraining (VLP): The process to learn vision-language joint 
embeddings which can be applied to multimodal tasks. 

3. Modality: A term referring to image/text/video data. 

4. Multi-modal: The process of processing information from different modalities 
jointly. 

5. Visual question answering: A task to answer questions based on images. 

6. Text-image grounding: A task to ground objects in the images based on text 
descriptions. 

7. Generative models: A group of models focus on modeling the joint distribution 
of inputs and outputs. 

8. Contrastive learning: A Machine Learning paradigm where unlabeled data points 
are juxtaposed against each other to teach a model which points are similar and 
which are different. 
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APPENDIX II: DATASETS 

Dataset Details Reference 
MEVA Person and vehicle activity detection datasets. [15] 
VIRAT Person and vehicle activity detection datasets. [74] 
ROAD Vehicle activity detection datasets in ICCV 2021 ROAD Challenge. [69] 

Table 5: Datasets utilized in Chapter 2 

Dataset Details Reference 
Argoverse-HD Urban outdoor scenes from two US cities [52] 
COCO Object detection, segmentation, and captioning [56] 

Table 6: Datasets utilized in Chapter 3 

Dataset Details Reference 
CityFlow-NL Vehicle tracking dataset [25] 
AI-CITY track 2 dataset Vehicle tracking dataset in AI-CITY track 2 [72] 

Table 7: Datasets utilized in Chapter 4 

Dataset Reference 
MSCOCO https://cocodataset.org/#home 
VG https://homes.cs.washington.edu/˜ranjay/visualgenome/index.html 
GCC https://ai.google.com/research/ConceptualCaptions/ 
SBU https://www.cs.rice.edu/˜vo9/sbucaptions/ 
VQA https://visualqa.org/ 
GQA https://cs.stanford.edu/people/dorarad/gqa/about.html 
Flickr30K https://shannon.cs.illinois.edu/DenotationGraph/ 
OpenImages https://storage.googleapis.com/openimages/web/index.html 
Kilogram https://github.com/lil-lab/kilogram 
Refcoco https://github.com/lichengunc/refer 
Winoground https://huggingface.co/datasets/facebook/winoground 

Table 8: Datasets utilized in Chapter 5 
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