297404

Report No. FHWA-RD-78-109

TECHNIQUES FOR REHABILITATING PAVEMENTS WITHOUT OVERLAYS – A SYSTEMS ANALYSIS

Vol. 2 Appendixes

September 1977 Final Report

Document is available to the public through the National Technical Information Service. Springfield, Virginia 22161

> REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

Prepared for FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development Washington, D. C. 20590

FOREWORD

These reports present the results of research conducted by the Texas Transportation Institute, Texas A&M University, for the Federal Highway Administration (FHWA), Office of Research, under contract DOT-FH-11-9142. This research study was part of FCP Project 5D, "Structural Rehabilitation of Pavement Systems." There are two volumes: Volume 1 describes the analysis used to determine the feasibility of various innovative techniques for rehabilitating pavements without using thick overlays and Volume 2 contains the appendixes of related information.

The research included the development of a systems decision analysis computer program which used utility theory to simultaneously consider seventeen different decision criteria. From this, a total of nineteen techniques demonstrated the capability of solving certain problems better than currently used techniques for rehabilitation.

Copies of the report are being distributed by memorandum to individual researchers. Additional copies may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

Charles F. Scherfey

Director, Office of Research Federal Highway Administration

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

		~	TECHNICAL REPORT STANDARD TITLE PAGE
1. Report No.	2. Government Acces	uon No.	3. Recipient's Cotolog No. ~
FHWA-RD- 78-109	٤.	• · · · · · · · · · · · · · · · · · · ·	PB291404
4. Title and Subritle			5. Report Date
Techniques for Rehabilitat	ing Davomonts	without	6. Performing Organization Code
Overlays-A Systems Analysi			0. Ferrorming Organization Code
 ⁷ Author(s) W.B. Ledbetter, R.L. Lytton H.L. Furr, J.A. Epps, J.P. I 	, S.C. Brittor	, W.G. Sarver	8. Performing Organization Report No. RF 3434-1F
9. Performing Organization Nome and Address			10. Work Unit No.
Texas Transportation Inst	itute		FCP 35D2-212
Texas A&M University	7040		11. Contract or Grant No.
College Station, Texas 7	7843		DOT-FH-11-9142 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address			
Federal Highway Administra	ation		Final Report
Office of Research			Sept. 1976-Sept. 1977
Structures and Applied Me	chanics Divisi	on	14. Sponsoring Agency Code
Washington, D. C. 20590			Sept. 1970-Sept. 1977 14. Sponsoring Agency Code \$0861
15. Supplementary Notes			
FHWA Contract Manager: R	ichard A. McCo	mb HRS-14	
16. Abstract	study use to a	atomina the	Fongibility of a veniety of
innovative techniques for i			feasibility of a variety of
			ey could be implemented. A
			determine their feasibility
a systems decision analysi	s computer pro	gram was devel	oped which utilizes utility
theory to simutaneously co	nsider 17 diff	erent decision	n criteria under four main
attributes (Cost, Performa	nce, Energy ar	d Impact). Us	sing this utility decision
analysis program, a total (of 19 techniqu	es demonstrate	ed the capability of solving
<pre>certain problems better that mising techniques are a) u</pre>	an currently t se of rejuvin:	ting agents for	and flexible never the 19 pro-
horizontally-bored sleeper	slab and ioir	t restoration	for rigid pavements, c) pre-
			the location of lane markings,
and e) reworked surface of	flexible pave	ment.	
			presently used techniques
are better than any of the			
gestions for further develo	techniques di	d not show any	/ promise at this time. Sug-
The report is present	ed in two Volu	mes Vol lo	contains the analysis and
Vol. 2 contains the append	ixes. Vol. 1	is Report No	FHWA RD-78-108 and Vol 2
is Report No. FHWA RD-78-10			
17. Key Hords		18. Distribution State	
Pavement, Rehabilitation, I		No restric	
Patching, Systems Analysis			to the public through
Rigid, Joints, Prestressing	g		hal Technical Information
		Service, S	Springfield, VA 22161
19 Security Classif, (of this report)	20. Security Clas	sif. (of this page)	22. Price
Unclassified	Uncl	assified	PC FI
· · · · · · · · · · · · · · · · · · ·			MF FO
Form DOT F 1700.7 (8-59)			

1

PREFACE

This report summarizes the results obtained from a research project conducted for the Structures and Applied Mechanics Division, Office of Research, Federal Highway Administration, under Contract No. DOT-FH-9142.

The work was conducted by a team of professional researchers and staff personnel of the Texas Transportation Institute. William B. Ledbetter and Robert L. Lytton served as co-principal investigators. The report was organized and compiled by William B. Ledbetter. Primary responsibility for preparation of the various chapters and appendixes were:

Responsible Person
Entire Team
W. B. Ledbetter, P.E.
R. L. Lytton, P.E.
S. C. Britton, P.E.
W. G. Sarver
H. L. Furr, P.E.
J. A. Epps, P.E.
J. P. Mahoney
N. F. Rhodes

The report is published in two volumes. Volume 1 contains the analysis (chapters 1 through 15) while volume 2 contains the appendixes (A through I).

Valuable supportive direction was given by Donald Ader, who performed most of the computer programming; D. J. Teague, who analyzed data and assisted in computer work, Lynette Kuykendall who keypunched and verified data; and Doris Christensen, Barbara Hodge and Loretta Rother, who typed the rough drafts of the manuscript. Final typing and publication of the report was under the direction of Louis J. Horn, Associate Research Editor for the Institute.

Technical supervision and management was under the direction of Mr. Richard A. McComb of the Federal Highway Administration. Mr. McComb's reviews and suggestions were instrumental in keeping the project headed toward meeting the objectives.

ii

TABLE OF CONTENTS

Vol	ume l	- Analysis	Page
1.	Intro	oduction	1
	1.1	The Problem	1
	1.2	Objective and Scope	2
	1.3	Distress Mechanisms and Manifestations	3
	1.4	Pavement Serviceability and Performance	7
	1.5	Research Approach	17
2.	Svst	ems Methodology for Decision Analysis	21
	2.1	Utility Methods for Decision Analysis	21
	2.2	Attributes and Decision Criteria	23
	2.3	Utility Curves	37
	2.4	Prediction of Utility Under Conditions of Uncertainty.	45
	2.5	Combination of Utilities	46
	2.6	Weighting Factors for Rehabilitation Decision	49
		2.6.1 Weights for Level-of-Payment Service	51
		2.6.2 Weights for Decision Criteria	56
		2.6.3 Weights for Decision Attributes	67
		2.6.4 Weights Used in this Project	71
	2.7	Utility Decision Analysis for Patching	71
		2.7.1 Construction Cost Utility Curve	74
		2.7.2 Revised Weights	
3.	Stab	ilizing Sublayers in-Place	76
5.	3.1	Introduction \cdot	76
	3.2	Electrical Methods	76
	3.3	Chemical Grouting	78
	3.4	High Strength Post-Hole Piles	78
	3.5	Heat Treatment	84
	3.6	Current Stabilization Equipment	85
	3.7	Utility of Potential Rehabilitation Techniques · · · ·	86
	5.7	builty of Fotential Renabilitation rechniques · · · ·	89
4.	Surfa	ace Rehabilitation of Flexible Pavements • • • • • • •	94
	4.1	Introduction	94
	4.2	Mechanical Surface Manipulation	95
	4.3	Surface Rejuvenation by Treatment with Special	
		Materials	101
	4.4	Surface Rejuvenation Using Physical Processes	107
	4.5	Surface Layer Reconstruction	109
	4.6	Utility of Potential Surface Rehabilitation Techniques .	113
	4.7	Selection of Techniques for Further Study	116
5.	Geom	etric Revision of Flexible Pavements	130
	5.1	Effect of Geometric Revision	130
	5.2	Assessment and Selection of Geometric Revision	
		Techniques	138

Page

6.	Repair or Replacement of Failed Joints	142
	6.1 Introduction	42
	6.2 Present Joint Design Procedures	146
		L46
		147
		150
	6.4.2 Horizontally Bored Sleeper Slab and Joint	
		152
		152
		L54
		157
		L59
7.	Surface Restoration of Rigid Pavements	164
		164
		165
	• •	165
		166
	7.2.3 Fiber Reinforced Concrete • • • • • • • • • • •	Ī 6 7
		170
	7.3 Utility of Potential Rehabilitation Techniques • • • •	173
	······································	
8.	Precast Concrete Elements in Pavement Rehabilitation	175
	8.1 Introduction • • • • • • • • • • • • • • • • • • •	175
	8.2 Partial Depth Patching Slabs • • • • • • • • • • • • • •	176
	8.3 Full Depth Precast Slabs • • • • • • • • • • • • • • • • • • •	185
	8.4 Potential Precast Rehabilitation Techniques	204
	8.4.1 Precast Joint Assembly	204
	8.4.2 Precast Panel Unit	204
	8.5 Utility of Potential Rehabilitation Techniques • • • •	206
9.		211
	9.1 Introduction · · · · · · · · · · · · · · · · · · ·	211
		211
		213
	9.2.2 Details of Prestressing Systems	214
		217
	•	223
10.	Crack Repair of Rigid Pavements	228
		228
		230
		231
		234
		235
		237
		24C
	·	

Page

]	L 1 .	Rigid 11.1 11.2 11.3	Introduction	243 243 245 247
		$11.4 \\ 11.5$	Potential Materials for Edge Beam Construction	248 255 255
			11.5.2 Sulfur Aggregate Concrete • • • • • • • • • • • • • • • • • •	255
		11.6	Utility of Potential Rehabilitation Techniques	257
1	12.	Local		259
		12.1	THELOUGELOUT I THE	259
		12.2	Dig out and Replace	259
			The second construction of the second s	261
			12.2.2 Operational Requirements	261
			12.2.3 Physical-Chemical Requirements	262
		12.3	Super-Penetrating Adhesives • • • • • • • • • • • • • • •	265
		12.4	Utility of Potential Rehabilitation Techniques.	267
		12.44	12.4.1 Super-Penetrating Adhesives · · · · · · ·	267
			12.4.2 Digout and Repair with a New Patching Material.	267
			12.4.3 Digout and Repair with Conventional Patching	
			Material	268
				268
			12,414 Convence aspharere concrete overlays	268
		,	12.4.5 Comparison of Utility Values	
1	L3.	Sensi	tivity Analysis of the Decision Analysis Program	271
	LJ•	13.1		271
		13.2		271
				272
		13.3		272
			TOTAL LOOPHATER LOOPHATER LOOPEALOND	274
			The rest of Startonne Strategouse the second set	276
			Tototo ourrende of frame to the totot of the totot	
		13.4	beneretary to beaution of the binds of the test of	278
		13.5	Summary	282
1	14.	Conclu	usions and Recommendations • • • • • • • • • • • • • • • • • • •	283
-		14.1		283
		14.2	0011	290
		14.6		290
			Titelt imprementation and percapitone	290
			14.2.2 Fulchel Research	
1	15.	Refer	ences	292
-	•	15.1	References to Chapter 1	292
		15.2	MULTITUUS CO ONAPCEL I PERSONAL PERSONAL	293
		15.3		295
		15.4	References to onapter 5 to the	297
		15.5		302
				303
		15.6		305
		13./	Keierences to Unabler / • • • • • • • • • • • • • • • • • •	~~~

Page

.

	15.8 References to Chapter 8. 307 15.9 References to Chapter 9. 309 15.10 References to Chapter 10. 310 15.11 References to Chapter 11. 312 15.12 References to Chapter 12. 313
Volu	me 2 - Appendixes
A. i	Analysis of State Questionnaires on Pavement Maintenance and Rehabilitation
В.	Rehabilitation Concept Index and Disposition B-1
с.	Highway Maintenance Costs
D.	A Review of Prestressed Concrete Pavement Construction Practices and Selected Variables Affecting the Application of Prestressing as a Rehabilitation Method D-1
E.	Time Value of Money (Interest)
F.	Updating Estimated Rehabilitation Cost Information F-1
G.	Updating User Cost and Accident Cost Information G-1
H.	Energy Requirements Associated with Highway Maintenance and Rehabilitation
I.	User's Input Guide

APPENDIX A. ANALYSIS OF STATE QUESTIONNAIRES ON PAVEMENT MAINTNEANCE AND REHABILITATION

Introduction

To gain pertinent pavement maintenance and rehabilitation information from all of the state transportation agencies a questionnaire was developed and, through the auspices of the ASSHTO operating subcommittee on maintenance, sent to each state's maintenance engineer. Ideas were solicited for new and innovative techniques for rehabilitating pavements. Those received were incorporated into the project and evaluated. Additionally several items of information were solicited which would be valuable in the conduct of the research project. These items are summarized in the following paragraphs.

Survey of Highway Surface Types

Each state was polled to find out what percentage of each classification of highway (interstate, primary, etc.,) was rigid, flexible, or other (Table A-1). Note the wide variation between states (as expected) and the overall average values; 54% rigid and 46% flexible on interstate, 28% rigid and 72% flexible on primary, 10% rigid and 81% flexible on secondary. This attests to the general belief that flexible type pavements can be constructed more economically than rigid pavements and thus are more widely used on the lower highway types.

Survey of Cost Information

Three questions were posed; what is your average construction cost per lane mile (1.6 km), what is your state maintenance budget, and what is your average annual maintenance cost per lane mile (1.6 km)? The results are tabulated in Tables A-2, A-3, and A-4. Here are exhibited very wide differences in costs between states. For example, on the interstate average construction costs vary from as little as \$100,000 per lane mile (1.6 km) in Ohio to as high as \$2,500,000 per lane mile (1.6 km) in Delaware, with an average cost of \$892,000 per lane mile (1.6 km). The average maintenance budget for the states is \$41,000,000 (Table A-3) and the average main-

A-1

	me	nt Typ	e	•				· · · ·		
			<u> </u>	lighway	Classif	icatio	<u>n</u>			
	Inte	rstate	Pri	mary	Seco	ondary		Farm t	o Mark	et
					Highwa					
	Rigi	d Flex		Flex		Flex		Rigid	Flex O	ther
Alabama	36	64	1	99	1	99	0	0	100	0
Alaska	ő	0	Ô	100	ō	50	50	õ	10	90
Arizona	7	93	1	99	1	99	0	1	99	0
Arkansas	100	0	65	35	, 6	94	0	0	100	0
California	62	38	29	71	2	98	0	0	100	0
Colorado	50	50	2	98	0	100	0	0	0	0
Connecticut	37	63	64	36	94	6	0	0	0	0
Delaware	100	0	85	15	80	20	0	15	85	0
Florida	27	73	2	98	0	100	0	0	0	0
Georgia	50	50	5	95	1	99	0	1	99	0
Hawaii	40	60	2	98	0	100	0	0	0	Ó
Idaho	12	88	2	98	0	100	0	0	100	0
Illinois	99 90	1 10	96 58	4 42	0 · 0	0	0	2 0	98 0	0 0
Indiana Iowa	90 90	10	58 76	42 24	· 0 1	0	0 98	4	10	86
Kansas	90 40	60	9	24 91	1	49	90 50	1	2	97
Kansas Kentucky	40 70	30	9 5	91 95	0	100	50 0	0	100	97
Louisiana	93	30 7	18	9J 82	5	95	0	3	97	0
Maine	33	'	10	02	5	25	0	1	,,	0
Maryland	61	39	20	80	7	93	0	0	0	0
Massachusetts	1	99	20	100	ó	100	ŏ.	ŏ	ŏ	ŏ
Michigan	70	30	60	40	75	25	0	ŏ	ŏ	ŏ
Minnesota	60	40	18	82	75	25	õ	ŏ	Ő	õ
Mississippi	68	32	19	81	1	99	0	Ō	0	0
Missouri	99	1	49	51	6	4	90	6	4	90
Montana	10	90	99	1	0	100	0	0	100	0
Nebraska	100	0	14	86	14	86	0	0	0	0
Nevada	7	93	1	99	0	100	0	0	100	0
New Hampshire	0	100	8	92	1	99	0	0	0	0
New Jersey	50	50	30	70	0	0	0	0	0	0
New Mexico	24	76	1	99	0	91	9	0	44	56
New York										
North Carolina		_								
North Dakota	95	5	98	2	0	100	0	0	100	0
Ohio	97	3	50	50	0	100	0	0	0	0
Oklahoma	30	70	30	70	30	70	0	1	99	0
Oregon	30	70	2	98 1 (1	99 70	0	0	0	0
Pennsylvania	93	7 0	84 23	16 77	30 4	70 90	0 0	5 0	95 0	0 0
Rhode Island South Carolina	100 43	57	23 2	98	4	90	0	1	99	0
South Dakota	43 90	10	10^{2}	98 90	2	99 98	0.	0	100	ŏ
Tennessee	20	80	2	90 98	0	90 0	0	0	100	0
Texas	50	50	20	80	2	98	ŏ	ĩ	99	0
Utah	15	85	۹ ²⁰	99	1	99	ŏ	ō	100	Ő
Vermont	ō	100	Ō	100	ō	100	ŏ	õ	100	ő
Virginia	35	65	4	96	ŏ	66	34	õ	0	õ
Washington	35	65	30	70	õ	100	Ó	õ	100	õ
West Virginia										
Wisconsin	100	0	27	73	4	96	0	0	0	0
Wyoming	22	78	0	100	0	100	0	0	0	0
Ontario	0	0	11	89	. 0	62	38	0	27	73
Average Values	54	46	. 28	72	10	81	9	2	80	18
Standard Deviat	ion34	34	31	30	23	30	23	3	36	38

Table A-1. Tabulation of Highway Surfaces of the different States by Highway Classification and by Pavement Type

.

	Interstate (\$1,000)	Primary (\$1,000)	Secondary (\$1,000)	Farm - Marke (\$1,000)	et Overall Annual Percent Increas
Alabama	1,175	146	146.	30	20
Alaska	-,	250	150	100	10
Arizona	800	212	188	88	8
Arkansas	1,300	425	100	100	6
California Colorado	625	375	235	75	8
Connecticut	1,200	1,000	990		6
Delaware	2,500	1,000	400	50	6
Florida	570	219	98		8
Georgia	1,500	400	200	100	. 8
Hawaii	-,				-
Idaho	100	60	30	30	7
Illinois	2,600	750	400	250	7
Indiana	406	360	207	63	30
Iova	400		207	05	
Kansas	2,000	300			. 6
Kentucky	1,375	750	400	250	7
Louisiana	250	240	ΨVV	70	1
Maine	200	240		. ,0	
Maryland	2,250	1,450	670		15
Massachusetts	500	500	170		10
Michigan	500	300	250		10
Minnesota	825	160	42	25	7
Mississippi	568	360	316	25	/
Missouri	462	300	120	120	5
	250	175	120	120	
Montana Nebraska		253	111	90	10
	275				8
Nevada	250	120	15	15	12
New Hampshire	500	375	300 450	100 320	8
New Jersey	1,700	1,000 450	300	50	6
New Mexico New York North Carolina	1,750	400	500	50	
	200	125	75	40	5
North Dakota Ohio	200 100	125 90	75	40	5 5
			40	25	5
Oklahoma	300	177	83	35	10
Oregon Bonnewlwania	1,500	500	325	250	10
Pennsylvania	1,000	1,000	450	450	9
Rhode Island	500	100	23	23	
South Carolina	500	100			5
South Dakota	410	320	110	55	12
Tennessee	200	150	100	71	
Texas	280	150	102	71	10
Utah	1,265	160	100	40	10
Vermont	543	324	159	65	r
Virginia	1,500	375	200	<i>e e</i>	5
Washington	467	287	132	55	
West Virginia	200	200			7
Wisconsin	300	200	75	000	7
Wyoming Ontario	700	280	240	200	10
·					
Average Values	892	391 310	219	107	8
Standard Deviat	ion 667	310	192	102	3

Table A-2.	Tabulation of Average Construction Cost per Lane Mile [*] and
	Percent Annual Increase as Reported by States

1

ת	laintenance	P	ercent of	Maintenar Roadside	nce Budg	et Expende	ed	
	Budget	Roadway	Roadway	and		Traffic	Adim.	Other
(\$1,000,000)	Surface	Shoulder	Drainage	Bridges	Services		
Alabama	29	24	9	8	18	10	0	31
Alaska								
Arizona	20	21	1	15	1	14	11	37
Arkansas	38	30	4	24	2	4	11	25
California	160	15	3	32	3	17	13	17
Colorado		18	3	12	2	18	2	45
Connecticut	39	18	4	25	5	8	12	26
Delaware	11	30	15	20	10	15	10	0
Florida	72	8	12	30	6	11	28	5
Georgia	40	22	24	15	6	8	2	23
Hawaii	9	17	13	19	8	17	· 22	4
Idaho	23	38	1	6	2	36	7	0
Illinois	80	22	7	26	10	5	12	18
Indiana	60	13	12	11	3	18	0	43
Iowa	37	9	11	10	4	13	27	26
Kansas	49	35	4	15	6	17	6	17
Kentucky	83 45	.19	5	19	18	14 23 ·	23	2
Louisiana	65	29	8	17	11	23	8	4
Maine Maruland	32	16	16	17	8	16	14	13
Maryland Massachusetts	32	4	3	14	4	22	22	31
Michigan	55	7	6	9	5	6	18	49
Minnesota	57	18	. 8	22	4	16	2	30
Mississippi	21	23	9	33	4	13	10	8
Missouri	100	25 54	4	11	3	10	5	8
Montana	21	25	24	7	2	33	7	2
Nebraska	24	51	4	9	8	15	3	ō
Nevada	- /	41	16	6	ĩ	12	8	15
New Hampshire	14	26	8	19	13	20	ō	14
New Jersey	23	53	0	10	6	11	.8	12
New Mexico	14	23	5	7	2	11	16	36
New York								
North Carolina								
North Dakota	12	69	3	3	5	10	9	1
Ohio	94	14	7	7	6	7	38	21
0klahoma	25	17	18	27	4	32	0	3
Oregon	51	14	3	1.5	8	11	5	44
Pennsylvania	100	26	9	12	2	9	18	24
Rhode Island	10	30	15	5	15	15	20	0
South Carolina	41	17	7	28	5	21	8	22
South Dakota	13	21	22	10	2	10	7	27
Tennessee	42	19	10	34	3	10	16	8
Texas	150	37	10	30	2	21	0	0
Utah	20	37	2	14	1	14	4	27
Vermont	14	18	3	6	7	10	9	47
Virgínia	89	18	11	0	6	19	19	33
Washington	47	22	6	21	10	12	7	22
West Virginia	27	1 *	. /	0.1	10	^	-,	~~
Wisconsin	34	16	16	21	10	0	7	30
Wyoming	16	38	4	10	2	12	· 9	2
Ontario	20	22	12	15	4	14	0	33
				- The second		·		<u>,</u>
Average Values	41	24	8	16	6	15	11	20
Standard Deviation		14	6	8	4	7	7	14

Table A-3.	Tabulation of Sta	te Maintenance	e Budget and	Percent of
	Maintenance Budge	t Expended by	Categories	

041 000 0	17 6 12 8 11 2 13 8 6 7 11 9 6 7 15 10 4 7 6 9 20 20 20 20 20 20 20 20 20 20
000 000 000 000 000 000 000 000	6 12 8 11 2 13 8 6 7 11 9 6 7 11 9 6 7 15 10 4 7 6 9
800 300 300 300 350 40 300 300 300 300 300 300 300 300 300 300 341 300 355 400 300 300 300 300 300 300 300 300	12 8 11 2 13 8 6 7 11 9 6 7 15 10 4 7 6 9
300 700 550 550 560 800	12 8 11 2 13 8 6 7 11 9 6 7 15 10 4 7 6 9
200 350 340 200 300 300 300 300 300 300 355 40 300 355 41 300 355 40 300 300 300	8 11 2 13 8 6 7 11 9 6 7 15 10 4 7 6 9
350 40 10	11 2 13 8 6 7 11 9 6 7 15 10 4 7 6 9
40 200 300 300 300 365 300 335 200 355 300 300 341 300 355 400 300 300 300 300 300 300 300	2 13 8 6 7 11 9 6 7 15 10 4 7 6 9
200 300 300 300 300 365 300 355 300 300 300 300 300 300 300 300 300	13 8 6 7 11 9 6 7 15 10 4 7 6 9
300 300 .000 .000	8 6 7 11 9 6 7 15 10 4 7 6 9
000 00 05 00 00 00 00 00 00 00	8 6 7 11 9 6 7 15 10 4 7 6 9
00 65 800 935 900 900 900 900 900 900 900 900 900 90	6 7 11 9 6 7 15 10 4 7 6 9
865 800 900 935 900 900 900 900 900 855 900 855 900 900 900 900 900	7 11 9 6 7 15 10 4 7 6 9
300 .00 335 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	11 9 6 7 15 10 4 7 6 9
00 35 700 00 00 300 341 300 355 400 300 300 355 400 300 300 300 300 300 300 300	9 6 7 15 10 4 7 6 9
335 700 600 700 800 800 841 900 855 800 800 855 800 800	6 7 15 10 4 7 6 9
200 200 200 300 341 300 555 400 300 300	6 7 15 10 4 7 6 9
00 200 300 341 300 555 400	7 15 10 4 7 6 9
200 300 341 355 400 300	7 15 10 4 7 6 9
300 300 341 000 355 400	15 10 4 7 6 9
300 341 300 355 400 300	15 10 4 7 6 9
300 341 300 355 400 300	10 4 7 6 9
341 000 355 400 300	4 7 6 9
000 355 400	7 6 9
855 600	6 9
400	9
300	
300	
	10
	8
184	12
200	18
.00	9
340	15
375	5
386	5
	ů.
40	14
397	10
000	10
506	7
	,
525	10
525	6
305	
380	16
135	11
	9
)4D	6
	<u>^</u>
	8
	10
UU	9
·····	9.2 3.6
3 6 4 1	350. 645 400 100 100 694 728

Table A-4. Tabulation of Average Annual Maintenance Cost per Lane Mile and Percent Annual Increase in Cost per Lane Mile as Reported by the States

1 mi = 1.6 km

3

tenance cost per lane mile (1.6 km) is \$1,694. Another interesting statistic generated in these three questions was the average annual increase in the construction costs (8%) and maintenance costs (9.2%). These increases reflect the inflationary trends experienced in the United States during the last few years.

As the cost data varied so widely (standard deviations almost equaling averages) an attempt was made to stratify the data to see if any trends would by established. States were divided into two groups using four methods; (a) according to truck population (1), (b) according to how much maintenance costs were incurred, (c) according to the freeze zone (2), and (d) according to soil type (3). The results of these groupings are given in Table A-5. While the averages did change somewhat according to the method of grouping selected, for the most part the scatter was not significantly reduced. One improved statistic was for maintenance cost per lane mile (1.6 km) according to how much maintenance costs were incurred. Those states spending less than the overall average maintenance costs (\$1,694) per lane mile (1.6 km) had an average cost of \$1,057, while those states spending more than the overall average had an avercost of \$2,266 per lane mile (1.6 km) or more than twice as much. This dramatically demonstrates the wide divergence in maintenance costs per lane mile (1.6 km) between states. Another improved statistic was the percentage of rigid pavement on the interstates as a function of truck population. Those states with the larger truck population averaged 60% rigid pavement while those states with the smaller truck population averaged only 36% rigid pavement (on the interstate). The remainder of the items analyzed in this manner showed little or no improvement by such stratification (in terms of reduced data scatter). The facts are that factors other than the four utilized here to analyze the data are strongly influencing costs. These other factors would probably include such things as interactive effects of climate and soil, traffic conditions, level of pavement service (very important), support of the state legislatures toward providing highways for the traveling public, and method of accounting for and reporting of maintenance costs. This last reason may explain a great deal of the data scatter as accounting methods yary widely from state-to-state.

A-6

Summary of Cost Data from Questionnaire by Truck Population, Maintenance Cost, Climatic Conditions, and Soil Conditions (4) Table A-5.

ve Twency five States spending States spending Non freeze Freeze Widespread to the states than 1800 more than 1800 zone zone medium expansive uck smaller truck cost/lane mile (2 cost/lane mile 2 cone zone cone cone cone cone cone cone cone c	Standard Average Standard Average Standard Average Standard Average Standard Average Standard Deviation De	24 12 36 33 50 33 52 29 15 29 15 21 11 21 15 6 10 7 6 4 8 15 8 16 9 18 7 22 15 8 15 7 18 7 22 15 8 15 7 18 7 22 10 5 16 7 12 22 10 5 11 7 11 7 20 15 17 13 24 16 17	5 1732 781 1057 393 2266 10 1623 927 1800 620 1487 546 4 9 3 9 3 568 4 9 4 9 4 7 4	8 36 37 52 35 50 28 51 28 48 29 51 34 8 64 33 46 36 50 29 49 27 52 33 49 37	7 26 34 26 34 24 28 30 27 24 33 60 32 5 74 38 74 34 76 27 70 29 76 39 40 28	2 10 26 9 19 15 28 15 25 13 27 10 20 2 31 27 79 31 70 38 15 25 13 27 10 20 2 37 79 31 70 38 75 42 78 38 2 31 10 70 38 70 34 72 78 38 2 31 13 29 6 16 15 34 12 25 12 18 38	2 1 4 2 4 1 1 9 4 7 5 2 3 3 86 29 73 40 78 41 63 36 70 29 74 39 7 13 29 25 36 21 41 28 39 23 38 24 38	7 932 710 802 653 792 627 1078 703 797 658 772 767 4448 374 298 253 792 627 1078 703 797 658 772 767 2382 224 382 231 167 230 217 192 124 7 101 84 84 64 116 94 79 60 137 122 127 88
Twenty five states with larger truck population (1)	Average Standard Deviation	60 32 21 11 9 5 19 8 13 6 113 6 113 8 22 15	1724 785 10 4	60 28 40 28	26 27 74 25	12 22 66 40 22 32	5 2 69 43 26 37	780 647 323 188 179 108 95 77
	Standard A Deviation							
Average Values		141 141 141 141 141 141 141 141 141 141	720 4	33 34	31 30	24 30 23	38 46 38	717 306 198 82
Averag	Average	241 16 11 11 20	1694 9	54 46	28 72	10 81 9	80 18	950 405 163 163

1 mi = 1.6 km

Summary of Distress Data for Flexible Pavements

The states were polled concerning the types of distress experienced on their various highway classifications. Their detailed responses, in terms of the most-prevalent and second-most-prevalent, are tabulated in Tables A-6 and A-7. A summary of the most prevalent and the second most prevalent distress types are given in Tables A-8 and A-9. Table A-10 summarizes the combined (most) prevalent and second-most prevalent) distress types occurring in flexible pavements. On interstate and primary highways rutting is the most frequently occurring distress type, followed closely by cracking. Thus potential rehabilitation techniques, to be of widespread general applicability, should address the problems of rutting and cracking.

Summary of Distress Data for Rigid Pavements

In the same manner as discussed previously the states were questioned concerning distress types on their rigid pavements. Their detailed responses are tabulated in Tables A-11 and A-12, and summarized in Tables A-13, A-14, and A-15. From Table A-15 the most frequently occurring distress conditions are rough ness and spalled joints. If spalled joints and spalling (which might have been confusing) are combined, then spalling would be the most frequently occurring distress condition. Other frequently occurring distress conditions involve joints in most cases (faulting, failed joint, and pumping). Thus the joint problem is seen as a most serious one and rehabilitation techniques are needed to solve this vexing problem in a more satisfactory manner.

Development and Construction Costs for Good Rehabilitation Techniques

To gain some insight on the maximum permissible development and construction costs that could be tolerated for a "good" rehabilitation technique, the states were asked their "opinion" as to what they thought (a) the maximum development cost a contractor would be willing to gamble on and (b) the maximum construction cost per lane mile (1.6 km) a state transportation agency would be willing to pay for a "good" rehabilitation technique. The results of this opinion survey are given in Figures A-1 and A-2. The numbers on each abscissa were given in the questions posed! This was

A-8

	Interetato	Primary	Secondary	Farm-Mar	kat
······································		<u>r i inai y</u>	secondary	raim-nai	Kel
Alabama	LC	LC	LC	LC	
Alaska	AC	AC	AC	AC	
Arizona	MC	MC	RO		
Arkansas		RA	RA	RA	
California	TC	TC	MC	MC	
Colorado	RA	RA	RA	RA	
Connecticut	MC	MC	MC		
Delaware		LC	MC	AC	
Florida	RU	RU	RU		
Georgia	TC	TC	TC	TC	
Hawaii	MC	MC	MC		
Idaho	MC	TC	RU		
Illinois	i d	10	AC	AC	
Indiana			TC	RU	
Iowa	RU	RU	10	RO	
Kansas	S	5	S	S	
Kentucky	RU	RU	RO	AC	
Louisiana	RU	RU	RU	RU	FLEXIBLE PAVEMENT
Maine	KU	ĸŬ	KU	Ru	
	RU	DII	МС		DISTRESS TYPE CODE
Maryland		RU	MC	0	TC Transverse Crack
lassachusetts	RU	RU	MC -	С	LC Longitudinal Crac
lichigan	TC	RU	242		MC Multiple Crack
linnesota	TC	MC	MC		AC Alligator Crack
Mississippi	MC	MC	MC	_	RA Raveling
lissouri	MC	MC	Р	Р	RU Rutting
Iontana	FL	MC	MC		FL Flushing
Nebraska		RU	BF	BF	RO Roughness
Nevada	RU	RU	AC	AC	P Patching
New Hampshire	LC	TC	RO		BF Base Failure
New Jersey	MC	MC	P	Ρ.	C Corrugations
New Mexico	FL	FL	FL	Р	S Shrinkage
New York					LS Low Skid Number
North Carolina					HS HOW SPACE MEMBER
North Dakota	RU	RU	RU	RU	
Dhio	\mathbf{LC}	\mathbf{LC}	LC		
Oklahoma	TC	TC	тс	TC	
Dregon	RU	\mathbf{TC}	BF	BF	
Pennsylvania	Р	Р	P	Р	
Rhode Island	\mathbf{LC}	LC	LC		
South Carolina	LC	LC	MC	MC	
South Dakota	RO	RO	RO	RA	
Fennessee	RU	RU			
Texas	TC	TC	AC	Р	
Utah	RU	RU	RU	RU	
Vermont	TC	TC	TC	P	
Virginia	RU	MC	MC	AC	
Washington	TC	LC	AC	AC	
West Virginia	10	10	110		
Visconsin	RU	TC	MC		
Visconsing	RU	RU	RA		
wyoming Ontario	KU	KU	KA		

Table A-6. Tabulation of Most Prevalent Distress Type for Flexible Pavements By Highway Classification

Table A-7. Tabulation of Second Most Prevalent Distress Type for Flexible Pavements by Highway Classification

	Distress (fype code	l by Highw	ay Class	sification
	Interstate	Primary	Secondary	Farm-Mai	rket
Alabama	RU	RU	RU	RU	
Alaska		TC	TC	PA	
Arizona	TC	TC	RU		
Arkansas	*0	TC	RU	AC	
California	LC	LC	AC	AC	
Colorado	RU	RU	RU	RŬ	
Connecticut	AC	AC	AC	KU	
	AC	RU		RA	
Delaware			AC	KA	
Florida	MC	AC	P		
Georgia	LC	LC	LC	LC	
Hawaii	RA	RA	RA		
Idaho		FL	FL	$_{\rm FL}$	
Illinois			RU	RU	
Indiana			RA	Р	
Iowa	MC	AC			
Kansas	RU	RU	RU	RU	FLEXIBLE PAVEMENT
Kentucky	RO	RO	MC	RO	DISTRESS TYPE CODE
Louisiana	PH	PH	PH	PH	TC Transverse Crack
Maine					LC Longitudinal Cra
Maryland	MC	RO	RO		MC Multiple Crack
Massachusetts	LC	LC	RA	RO	AC Alligator Crack
Michigan	MC	MC			RA Raveling
Minnesota	MC	RA	RA		RU Rutting
Mississippi	RU	RU	RU		FL Flushing
Missouri	TC	TC	RA	RA	RO Roughness
Montana	MC	RU	P	IVA.	P Patching
	МС	BF	RA	RA	BF Base Failure
Nebraska	10			ĸА	
Nevada	LC	LC	LC		C Corrugations
New Hampshire	TC	RO	AC	-	S Shrinkage
New Jersey	RA	P	RÓ	RO	LS Low Skid Number
New Mexico	TC	ТC	TC	MC	
New York					
North Carolina	•				
North Dakota	MC	MC	MC	MC	
Ohio	AC	AC	AC		
Oklahoma	RU	RU	RÜ	RU	
Oregon	тс	BF	TC	TC	
Pennsylvania	RU	RU	RU	RU	
Rhode Island					
South Carolina	TC	TC	RA	RA	
South Dakota	AC	AC	AC	AC	
Tennessee	RA	RA			
Texas	LS	LS	LS	LS	
Utah	RO	MC	P	P	
Vermont	LC	LC	LC	RA	
		P	P	NА	
Virginia	LC			т. к	
Washington	LC	AC	RA	RA	
West Virginia			D **		
Wisconsin	RA	RU	RU		
Wyoming	FL	Р	Р		
Ontario		RU	TC	MC	

			<u>Highway</u>	<u>Classifi</u>	catior	<u>1</u>		
Distress Type	Int. No	erstate a <u>%</u>	Pr No.	imary a _%	Seco No.	ndary a _%	Farm <u>No</u>	-Market . ^a %
Longitudinal Crack	5	10.0	7	15.9	3	6.4	0	0.0
Alligator Crack	1	2.0	2	4.5	5	10.6	7	25.0
Multiple Crack	7	14.0	9	20.5	14	29.9	2	7.1
Transverse Crack	7	14.0	7	15.9	4	8.5	2	7.1
Raveling	1	2.0	2	4.5	3	6.4	3	10.7
Rutting	14	28.0	13	29.5	6	12.8	5	17.8
Flushing	2	4.0	1	2.3	1	2.1	0	0.0
Roughness	1	2.0	1	2.3	5	10.6	0	0.0
Patching	10	20.0	1	2.3	3	6.4	5	17.9
Base Failure	0	0.0	0	0.0	2	4.2	2	7.2
Corrugations	0	0.0	0	0.0	0	0.0	1	3.6
Shrinkage	2	4.0	1	2.3	1	2.1	1	3.6
Total	50	100.0	45	100.0	47	100.0	28	100.0

Table A-8. Summary of Most Prevalent Flexible Pavement Distress Type as Reported by State Agencies

^aNumber of states naming the indicated distress type as the most prevalent.

			High	way Clas	sifica	ation		
Distress Type	Inters	state		imary	Sec	ondary	Farm	-Market
	No. ^a	%	No.	a %	No	. ^a %	No.	a%
Longitudinal Crack	8	21.7	3	7.7	3	7.3	1	3.6
Alligator Crack	2	5.4	5	12.9	5	12.2	3	10.7
Multiple Crack	8	21.7	4	10.2	3	7.3	3	10.7
Transverse Crack	5	13.4	7	18.0	4	9.8	1	3.5
Raveling	4	10.8	3	7.7	7	17.1	7	25.1
Rutting	6	16.2	10	5.7	9	22.0	6	21.4
Shrinkage	0	0.0	0	0.0	0	0.0	0	0.0
Flushing	1	2.7	1	2.5	1	2.4	1	3.6
Roughness	2	5.4	3	7.7	3	7.3	3	10.7
Pot Hole	1	2.7	1	2.5	1	2.4	1	3.6
Base Failure	0	0.0	2	5.1	0	0.0	0	0.0
Totals	37	100.0	39	100.0	36	100.0	26	100.0

Table A-9.	Summary of	Second	Most	Prevalent	Flexible	Pavement	Distress	Type a	s
	Reported B	y State	Agen	cies					

^aNumber of states naming the indicated distress type as the second most prevalent.

			Hig	hway Cla	ssific	ation		
Distress Type	Inte	rstate	Pr	imary	Seco	ndary	Farm	-Market
	No.	a <u>%</u>	No.	a <u>%</u>	No.	a 🦹	No.ª	%
Longitudinal Crack	13	14.9	10	11.6	6	6.8	1	1.9
Alligator Crack	3	3.4	7	8,1	10	11.4	10	18.5
Multiple Crack	15	17.2	13	15.2	17	19.3	5	9.2
Transverse Crack	12	13.8	14	16.2	8	9.1	3	5.5
Raveling	5	5.7	5	5.8	10	11.4	8	14.8
Rutting	20	23.2	23	26.7	15	17.0	11	20.3
Flushing	3	3.4	2	2.4	2	2.3	1	1.9
Roughness	3	3.4	4	4.6	8	9.1	3	5.5
Patching	10	11.5	4	4.6	8	9.1	7	12.9
Base Failure	0	0.0	2	2.4	2	2.3	2	3.8
Corrugations	0	0.0	0	0.0	0	0.0	1	1.9
Shrinkage	2	2.3	1	1,2	1	1.1	1	1.9
Pot Hole	1	1.2	1	1.4	1	1.1	1	1.9
Totals	87	100.0	74	100.0	79	100.0	54	100.0

Table A-10.	Summary of Combined Flexible Pavement Distress Type as Reported
	by State Agencies

^aNumber of states naming the indicated distress type as either the most prevalent or second most prevalent.

5

	<u>Distress Typ</u> Interstate	Primary	Secondary	Farm-Market
	Incerstate	<u>111mary</u>	Becondary	1 GI 11772GI KEL
Alabama	LC	LC		LC
Alaska				
Arizona	RO	RO		
Arkansas	PU	PU	SD	
California	FA	FA	TC	TC
Colorado	SC	SC		
Connecticut	RO	RO	RO	
Delaware	TC	SJ.	SJ	
Florida	PU	FĄ		
Georgia	FA	FA		
Hawaii				
Idaho	FA	LC		
Illinois	FJ	$\mathbf{F}\mathbf{J}$		
Indiana	FA	FA	FA	
Iowa	SJ	FA		
Kansas	SP	SP	SP	RIGID PAVEMENT
Kentucky	JD	JD		DISTRESS TYPE CODE
Louisiana	BU	BU	BU	BU RO Roughness
Maine				PU Pumping
Maryland	FJ	FJ	\mathbf{FJ}	FJ Failed Joint
Massachusetts	BU	BU	MC	SC Surface Crack
Michigan	FJ	FJ		SJ Spalled Joint
Minnesota	FJ	SJ		TC Transverse Crack
Mississippi	SD	SD	SD	C Corrugations
Missouri	RO	RO	RO	RO FA Faulting
Montana	SD			SP Spalling
Nebraska	SJ	SJ	LC	JD Joint Deterioration
Nevada	SP	SP	20	SD Surface Deterioratio
New Hampshire		RO	RO	CP Cracked Panel
New Jersey	СР	SD	SD	P P Patching
New Mexico	PU	PU		LC Longitudinal Crack
New York	20			MC Multiple Crack
North Carolina				G Grooving
North Dakota	SJ	FA		BU Blowups
Ohio	SJ	SJ		
Oklahoma	SJ	SJ	SJ	SJ
Dregon	C	BF	BF	BF
Pennsylvania	SD	SD	SD	SD
Rhode Island	BU	BU	BU	02
South Carolina	FA	LC	LC	LC
South Dakota	FJ	FJ	20	10
Tennessee	RO	RO		
Texas	MC	MC	CP	CP
Utah	SP	RÖ	RO	
Vermont	01			
Virginia	RO	FA		
Washington	FA	FA	FA	FA
West Virginia	1: A	1 47.	± 47.	1 * 3
Wisconsin	SP	SP	FA	
Wyoming	SJ	υĽ	1. 1.7	
Ontario	00	TC		

Table A-11. Tabulation of Most Prevalent Distress Type for Rigid Pavements by Highway Classification

	Distress Ty	vpe Code by	Highway	Class	ification
	Interstate	e Primary S	Secondary	Farm-	Market
Alabama	SJ	SJ			
Alaska					
Arízona	FA				
Arkansas	SJ	SP	FA		
California	TC	TC	SJ	SJ	
Colorado	RO	RO	20		
Connecticut	SJ	SJ	SJ		
Delaware	SJ	SD	SD		
Florida	FA	SP	52		
Georgia	PU	PU			
Hawaii	10	10			
Idaho	LC	FA			
Illinois	FA	BU			
Indiana	PU	PU	PU		
Iowa	SD	SJ	10		
Kansas	00	00			RIGID PAVEMENT
Kentucky	CP	CP			DISTRESS TYPE CODE
Louisiana	SP	SP	SP	SP	RO Roughness
Maine	. 51	51	01	51	PU Pumping
	RO	RO	RO		FJ Failed Joint
Maryland Massachusetts	TC	TC	FJ		SC Surface Crack
	TC	TC	C J		SJ Spalled Joint
Michigan	SD				-
Minnesota		RO	a 0		TC Transverse Crack
Mississippi	TC PU	TC PU	TC PU	PU	C Corrugations
Missouri	FA	PU	PU	FU	FA Faulting
Montana		0	C 7		SP Spalling JD Joint Deterioration
Nebraska	G SJ	G SJ	SJ		SD Surface Deterioration
Nevada	21	SJ SP	SP		CP Cracked Panel
New Hampshire	CD.			DO	
New Jersey	SD MC	P	RO	RO	P Patching
New Mexico	PT-	MC			LC Longitudinal Crack
New York					MC Multiple Crack
North Carolina	77.4				G Grooving
North Dakota	FA	LC			
Ohio	PU	PU	10		
Oklahoma	LC	LC	LC	LC	
Oregon	FJ	LC	LC	LC	
Pennsylvania	RO	RO	RO	RO	
Rhode Island	2				
South Carolina	SP	SD	SD	SD	
South Dakota	SJ	SJ			
Tennessee	SP	SP			
Texas		A	~~		
Utah	RO	CP	CP		
Vermont					
Virginia	PU	BU	SJ		
Washington	MC	MC	LC	LC	
West Virginia			_ ·		
Wisconsin	BU	BU	RO		
Wyoming	FJ				
Ontario		FJ			

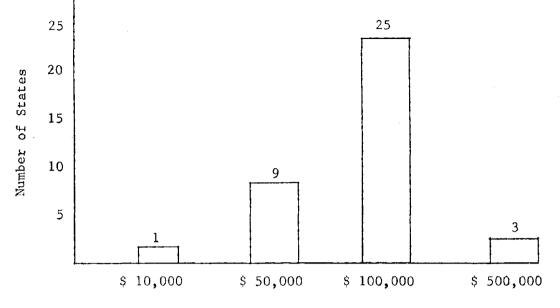
Table A-12.	Tabulation of Second	Most Prevalent	Distress	Type	for 3	Rigid
*	Pavements By Highway	Classification				

Roughness511.9Pumping49.5Failed Joint511.8Surface Crack12.4Spalled Joint614.3Transverse Crack12.4Corrugations12.4Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	No. $\frac{a}{\chi}$ 5 11.3 4 9.5 4 9.5 1 2.4 6 14.1 1 2.3 0 0.0 7 16.5 2 4.7 1 2.3 2 4.7 3 9.1		No. ^a % 1 10.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 10.0 1 10.0 1 10.0 0 0.0 0 0.0 1 10.0 0 0.0 0 0.0 1 10.0
Failed Joint511.8Surface Crack12.4Spalled Joint614.3Transverse Crack12.4Corrugations12.4Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	 4 9.5 1 2.4 6 14.1 1 2.3 0 0.0 7 16.5 2 4.7 1 2.3 2 4.7 	1 4.5 0 0.0 2 9.1 0 0.0 0 0.0 2 9.1 1 4.5 0 0.0 2 9.1 1 4.5 0 0.0 2 9.1	0 0.0 0 0.0 0 0.0 1 10.0 1 10.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Surface Crack12.4Spalled Joint614.3Transverse Crack12.4Corrugations12.4Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	 2.4 14.1 2.3 0.0 16.5 4.7 2.3 4.7 	0 0.0 2 9.1 0 0.0 0 0.0 2 9.1 1 4.5 0 0.0 2 9.1	0 0.0 0 0.0 1 10.0 1 10.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Spalled Joint614.3Iransverse Crack12.4Corrugations12.4Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	 6 14.1 1 2.3 0 0.0 7 16.5 2 4.7 1 2.3 2 4.7 	 2 9.1 0 0.0 0 0.0 2 9.1 1 4.5 0 0.0 2 9.1 	0 0.0 1 10.0 1 10.0 0 0.0 0 0.0 0 0.0 0 0.0
Transverse Crack12.4Corrugations12.4Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	1 2.3 0 0.0 7 16.5 2 4.7 1 2.3 2 4.7	0 0.0 0 0.0 2 9.1 1 4.5 0 0.0 2 9.1	1 10.0 1 10.0 0 0.0 0 0.0 0 0.0 0 0.0
Corrugations12.4Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	 0.0 7 16.5 2 4.7 1 2.3 2 4.7 	0 0.0 2 9.1 1 4.5 0 0.0 2 9.1	1 10.0 0 0.0 0 0.0 0 0.0 0 0.0
Faulting511.9Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	 7 16.5 2 4.7 1 2.3 2 4.7 	2 9.1 1 4.5 0 0.0 2 9.1	0 0.0 0 0.0 0 0.0
Spalling49.5Joint Deterioration12.4Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	 2 4.7 1 2.3 2 4.7 	1 4.5 0 0.0 2 9.1	0 0.0 0 0.0
Joint Deterioration 1 2.4 Blow Up 2 4.8 Surface Deterioration 3 7.1 Cracked Panels 1 2.4 Patching 1 2.4	1 2.3 2 4.7	0 0.0 2 9.1	0 0.0
Blow Up24.8Surface Deterioration37.1Cracked Panels12.4Patching12.4	2 4.7	2 9.1	
Surface Deterioration37.1Cracked Panels12.4Patching12.4			1 10.0
Cracked Panels 1 2.4 Patching 1 2.4	3 9.1		
Patching 1 2.4		4 18.1	1 10.0
0	0 0.0	1 . 4.5	1 10.0
	0 0.0	0 0.0	1 10.0
Longitudinal Crack 1 2.4	3 9.1	2 9.1	1 10.0
Multiple Crack 1 2.4	1 2.4	1 4.5	1 10.0
Base Failure 0 0.0	1 2.4	1 4.5	1 10.0
Grooving 0 0.0	0 0.0	1 4.5	0 0.0

Table A-13.	Summary of	Most	Prevalent	Rigid	Pavement	Distress	Type	as	Reported	by
	State Agenc	ies			,					

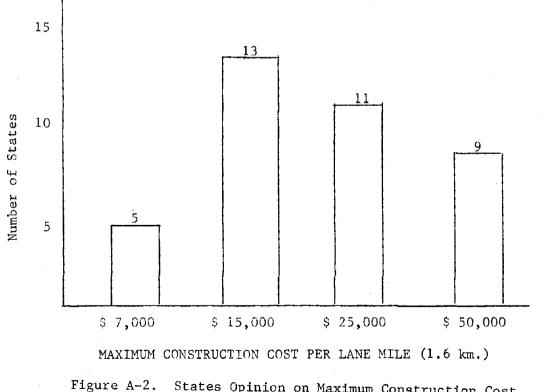
^aNumber of states naming the indicated distress type as the most prevalent.

· ·	Highway Classification							
Distress Type	Inte No	rstate . ^a %	Pr No.	imary a _%	Sec No	ondary .ª %	Farm No.	-Market a %
Roughness	4	11.7	4	11.3	4	20.0	2	20.0
Pumping	4	11.7	3	8.6	1	5.0	1	1Ó.O
Failed Joint	2	5.9	1	2.9	1	5.0	0	0.0
Surface Crack	0	0.0	0	0.0	0	0.0	0	0.0
Spalled Joints	4	11.7	3	8.6	3	15.0	1	10.0
Transverse Crack	4	11.7	4	11.3	1	5.0	0	0.0
Corrugations	0	0.0	0	0.0	0	0.0	0	0.0
Faulting	5	14.7	1	2.9	1	5.0	0	0.0
Spalling	3	8.9	5	14.3	2	10.0	1	10.0
Joint Deterioration	0	0.0	0	0.0	0	0.0	0	0.0
Blow Ups	1	3.0	3	8.6	0	0.0	0	0.0
Surface Deterioration	3	8.9	2	5.7	2	10.0	1	10.0
Cracked Panel	1	3.0	2	5.7	1	5.0	0	0.0
Patch	0	0.0	1	2.9	0	0.0	0	0.0
Longitudinal Crack	2	5.9	3	8.6	3	15.0	3	30.0
Multiple Crack	2	5.9	2	5.7	0	0.0	0	0.0
Base Failure	0	0.0	0	0.0	0	0.0	0	0.0
Grooving	1	3.0	1	2.9	1	5.0	1	10.0
Total	34	100.0	35	100.0	20	100.0	10	100.0


Table A-14. Summary of Second Most Prevalent Rigid Pavement Distress Type as Reported by State Agencies

^aNumber of states naming the indicated distress type as the second most prevalent.

		Highway Classification						
Distress Type	Inte No.	rstate a _%		mary a _%		ondary .a %	Far No.	m-Market ^a %
Roughness	9	11.5	9	11.8	8	20.0	3	18.9
Pumping	8	10.3	7	9,3	1	2.5	1	6.2
Failed Joint	7	9.0	5	6.6	2	5.0	0	0.0
Surface Crack	1	1.3	1	1.3	0	0.0	0	0.0
Spalled Joint	10	12.8	9	11.8	5	12.5	1	6.2
Transverse Crack	5	6.4	5	6.6	1	2.5	1	6.2
Corrugations	1	1.3	0	0.0	0	0.0	1	6.2
Faulting	10	12.8	8	10.5	3	7.5	0	0.0
Spalling	7	9.0	7	9.3	3	7.5	1	6.2
Joint Deterioration	1	1.3	1	1.3	0	0.0	0	0.0
Surface Deterioration	6	7.7	5	6.6	6	15.0	2	12.7
Cracked Panel	2	2.6	2	2.6	1	2.5	0	0.0
Patching	1	1.3	1	1.3	0	0.0	1	6.2
Longitudinal Crack	3	3.8	6	7.9	6	15.0	3	18.8
Multiple Crack	3	3.8	3	3.9	1	2.5	1	6.2
Grooving	1	1.3	1	1.3	0	0.0	0	0.0
Blow Up	3	3.8	5	6.6	2	5.0	1	6.2
Basæ Failure	0	0.0	1	1.3	1	2,5	0	0.0
fotal	78	100.0	71	100.0	40	100.0	16	100.0


Table A-15. Summary of Combined Rigid Pavement Distress Type as Reported by State Agencies

^aNumber of states naming the indicated distress type as either the most prevalent or the second most prevalent.

MAXIMUM DEVELOPEMENT COST

Figure A-1. States Opinion on Maximum Development Cost a Contractor Would Pay for Rehabilitation Equipment.

re A-2. States Opinion on Maximum Construction Cost Per Lane Mile for Good Rehabilitation Technique.

done to provide some guidance and help with data analysis. Unfortunately they also assuredly influenced the opinions - perhaps to the point where the results are meaningless. What is the upper limit on development cost for a new piece of rehabilitation equipment? Perhaps, the answer is obvious; not so high that the investor does not have a good chance of receiving a minimum attractive rate of return on his investment!

The amount of capital involved - in itself - is probably not a major consideration. If a need exists and a profit can be made, capital generally will be forthcoming. But an acceptable rate-of-return is required! Also, as the future is often almost impossible to predict with sufficient accuracy to justify the risk, the pay back period for the investment becomes an important consideration. The higher the development cost, probably the longer the pay back period and thus the greater the risk. From this aspect, development cost is an important consideration.

With all these disclaimers then, most state officials believe (no doubt influenced by our numbers) development costs in excess of \$100,000 for a piece of rehabilitation equipment would be too high.

Even though suggested numbers were supplied for maximum construction costs, the data should reflect the vast experience of the responders. Here a wide variety of opinions exist with 9 states feeling that \$50,000 per lane mile (1.6 km) could be justified for a top technique that would restore the pavement to its original condition, while 29 states felt \$50,000 would be too high. This gives some valuable guidance on the value of potential techniques that involve major construction costs.

<u>Closure</u>

The questionnaire resulted in some extremely valuable information in this important area of pavement maintenance and rehabilitation. Practices differ widely throughout the United States as they are influenced by many different and extremely complex factors. This analysis shows the extent and nature of the rehabilitation problem in the United States and indicates the vast amounts of money that are required to maintain our investment in our nationwide network of highways.

A-20

APPENDIX B. REHABILITATION CONCEPT INDEX AND DISPOSITION

The 92 rehabilitation concepts considered in this project are listed in Table B-1. Each concept was given a numerical classification number. To make every effort to obtain <u>all</u> potential ideas, every person contacted was urged to submit any idea he might have, no matter how implausible he might feel it to be. Furthermore, no mention was made of the constraints on the projects limiting the scope of the investigation. As a result, some 30 ideas were considered to be either outside the scope of the project or too implausible to be considered further. The specific reasons for dropping each of these 30 ideas are enumerated following Table B-1.

Table B-1. REHABILITATION CONCEPT INDEX AND DISPOSITION

Classification Number	Concept	Disposition
101	Sulfur Injected Edge Beam	Long Edge Strengthening
102	Injection of Bentonite/Kerosene Mix	Discarded
103	Injection of High Viscosity Fluid Between PCC and Base	Stab. Sublayers in Place
104	Injection of Silicate Material	Stab. Sublayers in Place
105	Underfilling Joints With Sealant	Stab. Sublayers in Place
106	Drying/Sealing With Microwave	Surf. Rehap. of Flex. Pvt.
107	Microwave Heating With Layer of Absorbent Material in Pavement Structure	Surf, Rehab. of Flex. Pvt
108	Use Polysultide Foam as Joint Filler	Repair and Keplacement of Joints
109	Replace Existing Joints With Waterstop System	Repair and Keplacement of Joints
110	Pressure Injection of Sulfur into Subbase	Discarded
111	Use Gas to Drive Moisture From Subbase	Discarded
112	Install Pavement Side Drains to Remove Water From Subbase	Discarded
113	Use Cross Linkable Hydrocarbon to Remove Moisture from Subbase	Discarded
114	Injection of Expansive Foam to Drive Moisture from Subbase	Discarded
115	Injection of Silicone Rubber Between Subbase and Pavement to Form Continuous Moisture Barrier	Discarded

B-1 cont.

Classification Number	Concept	Disposition
116	Drying of Pavement Structure by Microwave	Discarded
117	Injection of Fluid Material into Void Area in Subbase	Stab. Sublayers in Place
118	Preconstruction Moisture Proofing Subbase at Proposed Joints	Discarded
119	Heavy Rolling to Increase Density of Surface, Subbase or Subgrade	Surf. Rehab. of Flex. Pvt.
120	Reworking Surface	Surface Rehab. of Flex. Pvt.
121	Heating Asphaltic Pavement Surface	Surf. Rehab. of Flex. Pvt.
122	Use Rejuvenating Agents to Restore Properties of Pavement Surface	Surf. Rehab. of Flex. Pvt.
123	Remove Moisture from Sub- grade by Electro-Osmosis	Stab. Sublayers in Place
124	Post Hole Piles	Stab. Sublayers in Place
125	Construct Additional Relief Joints	Repair and Replacement of Joints
126	Seal Joints in Pavement	Repair and Replacement of Joints
127	Replace Pavement	Use of Precast Elements
128	Adhesive Injection into Subbase and Subgrade	Stab. Sublayers in Place
129	Break Up Rigid Pavement and Inject Adhesive	Crack Repair of Rigid Pvt.
130	Heating and Planing Flexible Pavement	Surface Rehab. of Flex. Pvt.
131	Injection of Subscaling Material into Selected Pavement Layer	Stab. Sublayers in Place

B-1 cont.

Classification Number	Concept	Disposition
132	Pressure Grout Void Areas in Subbase or Subgrade	Stab. Sublayers in Place
133	Use Ultrasonics to Densify Pavement Structure	Surf. Rehab. of Flex. Pvt.
134	Patching and Glueing	Localized Rehab. Tech.
135	Freezing Flexible Pavement Surface	Discarded
136	Replace Pavement Surface	Discarded
137	Vibrate Pavement to Increase Density	Surf. Rehab. of Flex. Pvt.
138	Shave Pavement Surface	Surf. Kehab. of Flex Pvt.
139	Irradiation of Asphaltic	Surf. Rehab. of Fiex Pvt.
140	Stabilization of Pavement Structure	Stab. of Sublayers in Place
141	Seal the Surface of Bro- ken Pavement	Surf. Rehab. of Flex Pvt.
142	Prestress Existing Pavement	Prestressing Existing Rigid Pvt.
143	Joint Repair by Welding or Installing Flat Jacks	Discarded
144	Seal Cracks in Rigid or Flexible Pavements	Crack Repair of Rigid Pvt.
145	Install Key Lock Joints in Rigid Pavements	Repair and Repl. of Joints
146	Repair Holes with a Screw 🧳	Discarded
147	Use Skewed Joints	Discarded
148	Replace Joints with Post Tensioned Precast Unit	Prestressing Existing Rigid Pvt.
149	Use on Aramid Material in Patching	Localized Rehab. Tech.

.

Table B-1 cont.

Classification Number	Concept	Disposition
150	Use a Shape Charge to Remove or Break Up Paving	Discarded
151	Use Water Repellent Materials in the Pavement Structure	Discarded
152	Replace Joint Sealant with Self Leveling Material	Repair and Repl. of Joints
153	Use Rubber or Polyvinyl Chloriae Water Stop in Joint Repair	Repair and Repl. of Joints
154	Use Chemically Prestressed Concrete	Discarded
155	Use Zero Slump Concrete, Vibrator-Rolled as Subbase Surface with Asphaltic Concrete	Discarded
156	Reverse the Direction of Cross Slope	Geometric Revisions
157	Use of Lignin to Kejuvi- nate Asphaltic Concrete Pavement and Seal Cracks	Surf. Rehab. of Flex. Pvt.
158	Use of Petroset AT and Rock Binder	Surf. Rehab. of Flex. Pvt.
159	Use Polymer Impregnated Concrete in Patching or Slab Replacement	Surf. Rehab, of Flex. Pvt.
160	Saw Pavement Joints at an Angle When Repairing Failed Joints	Discarded
161	Spray and Place Kevlar into Rutted Wheel Path or Other Pavement Depressions, Then Level Pavement Surface	Discarded
162	Use Polyester Resins With Aggregate as Patching Materials	Surf. Kestoration of Rigid Pvt.
163	Replace Local Concrete Failure Due to Subgrade, with Prestressed Unit	Prestressing Existing Rigid Fvt

Table B-1 cont.

8

Classification Number	Concept	Disposition
164	Use Epoxy Asphalt as Patching Material	Localized Rehab. Tech.
165	Use European Asphalt Roof- ing Material that is Welded to Roof	Localized Rehab, Tech.
166	Use Polyurethane Sealants for Joints	Repair and Rep1. of Joints
167	Use of High Absorbing Corn- starch Type Material to Dry Up wet Soils	Discarded
168	Pick Up Segments of Pave- ments, Repair Segment and Replace Pavement	Discarded
169	Move Centerline Stripe l Foot Each Way	Geometric Revisions
170	Impose Seasonal Load Re- strictions	Discarded
171	Implement Preventive Main- tenance Program to Provide Regularly Scheduled Main- tenance	Promising Tech. for Rehab.
172	Replace Wheel Paths- Possibly With Rails	Surf. Rehab. of Flex Pvt.
173	Implace Wicks Into Sub- layer to Remove Moisture	Discarded
174	Use Conductive Asphalt Mixes Containing Coke	Surf. Rehab. of Flex Pvt.
175	Inplace Incapsulation With Strong and/or Impermeable Membrane	Discarded
176	Place Drainage Pipes Under Pavement From the Sides and Use the Same Pipes to Inject Stabilization Material	Stab. Sublayers in Place
177	Inject Lime into Subgrade	Stab. Sublayers in Place
178	Install Vertical Sand Columns as Dry Wells and Then Stabilize Columns	Stab. Sublayers in Place

Table B-1 cont.

Classification Number	Concept	Disposition
179	Proof Rolling by Temporarily Increasing the Legal Load Limit	Discarded
180	Reverse Traffic Flow	Discarded
181	Use Heated Aggregate to Heat Asphalt Surface, Re- move Aggregate and Roll the Asphalt	Surf. Rehab. of Flex Pvt.
182	Use Open Graded Emulsions	Surf. Rehab. of Flex Pvt.
183	Stress Relieving Interface Between Pavement Overlay with Overflex	Surf. Rehab. of Flex Pvt.
184	Use of Carbon Black and Other Asphalt Fillers	Discarded
185	Use Continuously Mixed Concrete in Construction Practice to Improve Uni- formity	Discarded
186	Seal Joints with Super Moduli Orthotropic Seal- ants	Repair and Replac. of Failed Joints
187	Reduce Wheel Load Limit	Discarded
188	Make CRCP Jointed Pave- ment	Crack Repair of Rigid Pvt.
189	Scarify Rigid Pavement Surface and Place Thin Layer of Latex Overlay	Surface Restoration of Rigid Pvt.
190	Asphalt Rubber Stress Absorbing Membrane	Surf. Rehab. of Flex Pvt.
191	Wide Expansion Joints over Concrete Load Trans- fer Beams at 1000ft inter- vals	Repair and Replac. Failed Joints
192	Vee Load Transfer Device	Repair and Replac. Failed Joints

 Rehabilitation Classification Numbers <u>102</u>, <u>111</u>, <u>112</u>, <u>113</u>, <u>114</u>, <u>116</u>, <u>167</u>, <u>and 173</u> involving various aspects of draining or forcing water from underlying layers

These ideas were dropped from further consideration for the following reasons:

1. They involve drainage which is specifically excluded from the work statement on this project.

2. They involve extremely complex aspects of soils and drainage which would require extensive expenditures of time and money to fully evaluate, thus diluting efforts on other items more directly applicable to the project objective.

Drainage is recognized as one of the most important factors influencing pavement performance and, hence, plays an important role in any rehabilitation concept. But, for the purposes of this project, drainage must be assumed to be adequate by either currently available methods or by anticipated results of other research.

2. Rehabilitation Classification Number <u>110</u> Pressure Injection of Sulphur into Subbase

This idea involves the use of a plentiful material, sulphur, which has been shown to have excellent binding properties. However when the sulphur, heated to around 150° C in order to be in liquid form, comes in contact with a subbase at ambient temperature it immediately solidifies and thus does not penetrate. As discussed by Meyer, et al. (<u>B 1</u>), the subbase must be heated and dried out for the sulphur to be used successfully. This would involve removing the surface layers and heating the subbase which would be expensive, time consuming, and energy consuming. Thus this idea was dropped from further consideration on this project.

3. Rehabilitation Classification Number <u>115</u> Injection of Silicone Rubber between Subbase and Pavement to Form Continuous Moisture Barrier

This idea was dropped from further consideration because existing techniques for forming a moisture barrier, using low viscosity asphalt,

B-8

work very well (see section on Stabilizing Subbases in Place) and silicone rubber is more expensive.

4. Rehabilitation Classification Numbers <u>118, 136, 147, 151, 155, and 185</u>, involving various new Construction Activities.

These ideas involve some potentially innovative techniques for new construction (or major reconstruction). They were dropped from the list of possibilities because the scope of this research was limited to potential techniques to be used for rehabilitating existing pavements.

5. Rehabilitation Classification Number 135 Surface Reworking by Freezing.

This idea has been dropped from the list of possibilities for the following reasons:

1. Low heat diffusivity of bituminous pavements and relatively small ΔT would tend to make this a slow process.

2. Not an efficient use of energy.

3. Other techniques considered for surface removal without heating (milling machines) will essentially do the same job, are faster and more efficient, and equipment is already available.

6. Rehabilitation Classification Number <u>143</u> Joint Repair by Welding or Installing Flat Jacks.

This idea has been dropped from the list of possibilities for the following reasons:

1. It involves expensive, time consuming, and energy consuming equipment and procedures, the results of which are doubtful unless new technology is developed. Laser welding of PCC is possible but the long term effects of such procedures are unknown. For example, at around 350°C PCC starts to lose its hydration water and the bonds are reduced significantly. Flat jacks require considerable time to install and are expensive.

2. Several more promising techniques for joint repair have been developed in this research project.

7. Rehabilitation Classification Number <u>146</u> Repair Hole With a Screw-In Plug Patch

Repair of a rigid or flexible pavement with this technique would be very difficult if not impossible. Preparation of the pavement to receive this type of patch would have to be performed with a specially developed machine that would be self leveling. Additionally, the pavement which would receive the patch would have to be sound and fairly thick to insure adequate load transfer. Casting of the patch out of conventional asphalt concrete could be cast to form the patch with some difficulty. The weight of the patch would make handling in the field difficult.

The fit of the patch in the pavement would have to be fairly secure otherwise a bonding aid would have to be used to insure that cracking would not continue. A "snug" fit probably would not be possible.

This idea has been dropped from the list of possibilities.

8. Rehabilitation Classification Number <u>150</u> Use of a Shape Charge to Remove or Break Up Paving

Shape charges to fracture or cut strong materials has been successfully employed by the military. Large scale soil removal operations have also been explored using explosives. Therefore this idea would be based on some available information and data from which to make an engineering assessment of its potential. However, the use of explosives involves a significant potential safety and environmental pollution hazard, especially in a populated area where the majority of the innovative rehabilitation techniques will be applicable.

Therefore, this idea has been dropped from the list of possibilities.

9. Rehabilitation Classification Number 154 Chemically Prestressed Concrete

This concept is dropped as not worthy of detailed investigation for the following reasons:

1. No method of chemically prestressing concrete exists for practical application.

2. There is no known record of a chemically prestressed concrete application in the construction industry.

3. There is no reported activity at the present in the development of chemically prestressed concrete.

10. Rehabilitation Classification Number <u>160</u> Saw Pavement Joints at an Angle (to the vertical) When Repairing Failed Joints

This idea was dropped from detailed consideration on the project for the following reasons:

1. No justification could be found for sawing the concrete at an angle. The potential for spalling is enhanced, the load transfer remains essentially the same as if the saw cut were vertical, and such a cut would be more expensive.

2. Vertical cuts have performed quite satisfactory.

3. Potential techniques utilizing vertical cuts look promising (see the section on Repair and Replacement of Failed Joints).

11. Rehabilitation Classification Number <u>161</u> Use Kevlar Spray followed by Level up on Surface.

This idea has been dropped from the list of possibilities for the following reasons:

1. Kevlar is a very strong fiber used for parachutes and aerospace

load slings, but is not now available in the form of a spray.

2. Cost of material, in any form, is now much too high for highway application (7 to 8 \$/lb.).*

 Rehabilitation Classification Number <u>168</u> - Pick Up Segments of Pavement, Repair Sublayers and Replace Pavement

This idea was dropped from the list of possibilities for the following reasons:

1. The only type of pavement with sufficient strength to be picked up in any significant size is PCC. And any PCC which needs rehabilitation will already be cracked or spalled at the joints. Thus the rehabilitated pavement, at best, will be only of marginal quality.

2. The equipment required to pick up a major segment of pavement, e.g., 12 ft by 15 ft, without damage does not presently exist. Therefore, substantial developmental costs will be incurred.

3. Once developed, any satisfactory machine capable of picking up these pavement segments will be large and difficult to transport, and will consume significant quantities of energy to perform its function.

4. The locations where conditions conducive to this approach exist are infrequent and widely scattered. Therefore, only a very limited number of machines would be manufactured. This will result in excessive mobilization and use charges for the equipment.

13. Rehabilitation Classification Number 170 Impose Seasonal Load Restriction

This idea was dropped from further consideration on this project because the determination of the overall utility of the concept would

^{* 1 1}b = 0.454 kg

^{**1} ft = 0.305 m

be practically impossible to estimate with any acceptable accuracy as every condition where this technique could be considered would be unique. Also the political and enforcement problems associated with the idea would be difficult to assess. The idea has merit, especially during the spring thaw in northern states on their secondary roads, and perhaps, should be considered in a separate study.

14. Rehabilitation Classification Number <u>175</u> Inplace Incapsulation with Strong and/or Impermeable Membrane

This idea was dropped from detailed consideration on the project because it involves extensive reworking of the pavement structure which is as costly and energy consumptive as total reconstruction. Such extensive a measure involves more than simple rehabilitation and thus was beyond the scope of the study.

15. Rehabilitation Classification Number <u>179</u> Proof Rolling By Temporarily Increasing The Legal Load Limit.

This idea has been dropped from the list of possibilities for the following reasons:

1. Harmful effects of application of this concept probably would outweigh any beneficial results because densification would tend to be localized and control would be very difficult to achieve.

2. Legal and administrative problems.

16. Rehabilitation Classification Number 180 Reverse Traffic Flow

This idea involves the reversal of traffic flow to correct joint faulting. Investigation of this idea revealed that, in Wisconsin, a

B-13

jointed, two-lane, PCC pavement which was faulted was incorporated into a four lane divided highway with the result that one lane of the faulted pavement was subjected to a reversal of traffic flow. According to Karl Dunn the faulting did diminish, only to be followed by faulting in the opposite direction. Thus the result was a temporary correction at best.

This idea was dropped from the possibilities for the following reasons:

1. The correction will, in all probability, be temporary only.

2. The places where such a concept could be used will be extremely scarce, as traffic safety, geometric constraints, and tradition would deter any major effort to reverse the flow of traffic.

 Rehabilitation Classification Number <u>184</u> Use Carbon Black and Other Fillers in Asphalt.

This idea has been dropped from the list of possibilities for the following reasons:

This concept is actually not a rehabilitation technique in itself but rather a way of modification and improvement of the binder used for asphalt concrete. As such it becomes a way of improving standard overlays or the replacement materials used in other rehabilitation techniques such as items 120 and 176.

18. Rehabilitation Classification Number <u>187</u> Reduce Wheel Load Limits

The idea was dropped from further consideration for the following reason:

While the reduction of wheel load limits can significantly prolong the life of a given pavement structure such a reduction involves political and social considerations beyond the scope and intent of this research study. To compare the overall utility, or value, of this concept with concepts involving restoration of pavements under existing wheel load limits, a much more complex decision criteria would have to be developed.

B-14

This concept is an excellent one and perhaps should be investigated as part of a separate study in order to provide decision makers with the full cause and effect relationship between wheel load limits and the cost of a highway system.

Reference

B 1. Meyer, A. H., Ledbetter, W. B., Layman, A. H., and Saylak, D., "Reconditioning Heavy-Duty Freeways in Urban Areas," <u>Final Report on</u> <u>NCHRP Project 14-4</u>, Transportation Research Board, NAS, in Press.

APPENDIX C. HIGHWAY MAINTENANCE COSTS

Introduction

Annual highway maintenance budgets for the various states range from a low of \$9,000,000 (Hawaii) to a high of \$160,000,000 (California), with an average of \$41,000,000. Annual maintenance costs are on the order of \$1,000 to \$4,000 per lane mile (\$600 to \$2400 per km) (C l). Thus, it is apparent that highway maintenance expenditures have become a significant portion of the total money expended on our highway system.

Maintenance costs for the pavement are typically of the order of 30 to 50 percent of the total highway maintenance budget. Expenditures for mowing, vegetation control, drainage, traffic services, snow and ice control, and administration are the other areas of a state's maintenance program which require relatively large expenditures.

In an attempt to define pavement maintenance cost, four states were contacted and maintenance cost information obtained (C 2 - C 9). A summary of state-wide pavement maintenance costs by maintenance activity is shown in Table C-1 for Arizona, California, Nevada and North Dakota. These costs are for the 1976 fiscal year (March -April 1976). Low and high costs represent the range of unit costs for individual districts within each state. Also given are average costs for each maintenance activity. In addition, productivity, crew size, and equipment requirements for the individual maintenance activities are given in the table.

Flexible Pavements

A review of Table C-1 indicates that a wide variety of pavement maintenance activities have been defined. For purposes of establishing maintenance cost information for flexible pavements, these activities have been condensed to the following items:

Fog Seal - Partial Width
 Fog Seal - Full Width

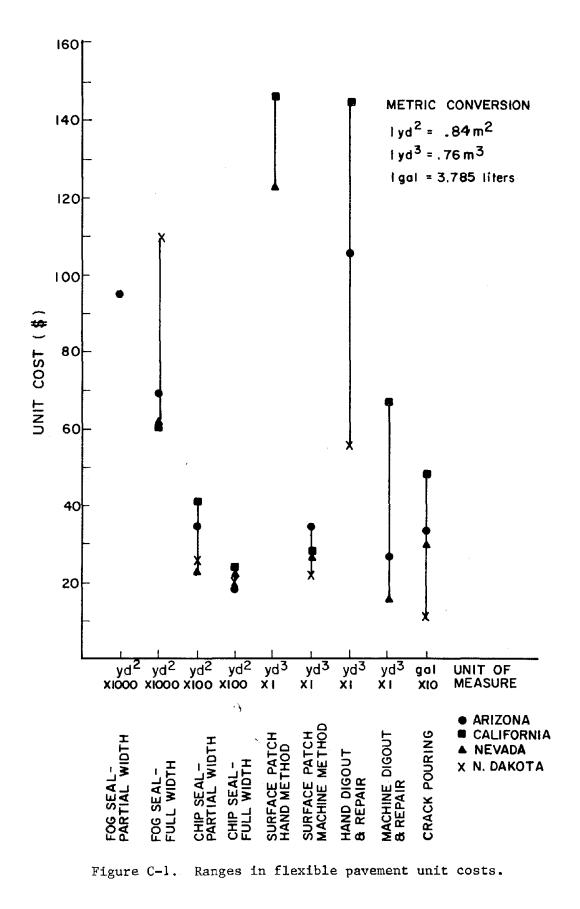
Activities
Maintenance
: Cost for Various
t for
Cost
Maintenance
Highway
с-1.
TABLE C

, 						
	Crew and Equipment	3 men, i truck, llonder 7 men, j truck, llonder, i colter, l distributor, l grader, l pickup 8 men, ztrucks, llonder, i compresor, l bickup 6 men, ztrucks, llonder, l distributor, lager, spreader, l men, l ztrucks, llonder, l distributor, lager, spreader, l pickup 18 men, l ztrucks, llonder, l roller, l distributor, l grader, l pickup 8 men, l ztrucks, llonder, l roller, l distributor, l grader, l pickup 8 men, l ztrucks, l londer, l roller, l distributor, l Marte, spreader, l bickup 8 men, l ztrucks, l londer, l roller, l distributor, l bickup 8 men, l ztrucks, l londer, l roller, l distributor, l Marte, pickup 8 men, l ztrucks, l londer, l roller, l distributor, l bickup 8 men, l ztrucks, l londer, l roller, l distributor, l bickup	2 ami, 1 truck, 1 moor grader, 1 backhee 2 ami, 1 truck, 1 moor grader 2 ami, 1 truck, 1 moor grader 2 ami, 1 truck, 1 moor grader 2 ami, 1 truck, 1 whether coller 2 ami, 1 truck, 1 kettle 2 ami, 1 truck, 1 kettle	<pre>8 mm.) trucks [loader, 1 coller, 1 m. grader, 1 wreet truck, 1 dir. 1 pawment culter 4 mm.; 2 trucks, 1 backr. 1 citie ha traine 5 mm.; 2 trucks 1 backr. 1 milet. 1 m. grader, 1 applied tast. 1 tile bed trailer 10 mm.; 4 crecks 1 backr. 1 tile pawaer, 1 brown, 1 tile bed trailer. 10 mm.; 5 trucks 1 backr. 1 tile bed statist 5 mm.; 2 trucks 1 backr. 1 backr. 1 tile bed trailer. 1 pickup 5 mm.; 2 trucks 1 backr. 1 tile bed trailer. 1 pickup 6 mm.; 5 trucks 1 backr. 1 coller, 1 backre planer, 1 tile bed 1 kum.; 5 trucks 1 backr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 5 trucks 1 backr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 5 trucks 1 backr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 5 trucks 1 backre, 1 coller, 1 backre planer, 1 tile bed 8 mm.; 1 trucks, 1 coddr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 1 trucks, 1 coddr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 1 trucks, 1 coddr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 1 trucks, 1 coddr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 1 trucks, 1 coddr. 1 coller, 1 backre planer, 1 tile bed 8 mm.; 1 trucks, 1 coddr. 1 coller, 1 backre planer, 1 bickup</pre>	<pre>5 mm. 2 trucks. 1 distributor. 1 laader at stockpile 5 mm. 2 trucks. 1 distributor 4 mm. 1 trucks. 1 distributor. 1 pickup 7 mm. 4 trucks. 1 distributor. 1 motor greder % or 2 rollers 8 mm. 8 trucks. 1 lader 2 titus. 1 proved box 7 zollers 1 brown 1 tenkost meters. 1 pup 1 mm. 9 trucks. 1 lader 2 titus. 2 motor greder % of 1 yoller. 1 brown 1 tenkost meters. 1 pup 1 mm. 9 trucks. 1 distributors. 1 motor greders. 2 rollers. 1 brown 1 tenkost meter. 1 mm. 9 trucks. 1 distributors. 1 tenk can hatter. 1 brown. 1 roller, 3 trucks 4-5 mm. 2 distributors. 1 tenk can hatter. 1 brown.</pre>	
	Productivity	6-26 march Ir/4/3 6-26 march Ir/4/3 0.20 - 04 0 march Ir/4/3 0.20 - 267 march I/9/4/3 0.26 - 166 march I/9/4/3 0.291 - 0.014 march I/9/4/2 0.013 - 0.013 march I/9/4/2 0.010 - 0.003 march I/9/4/2 0.04 - 0.010 - 0.003 march I/9/4/2 0.04 - 0.001 march I/9/4/2	 1.81 ann-hr/con of ant. removed 0.23 ann-hr/con of ant. 0.23 ann-hr/con of ant. 0.20 ann-hr/con of ant. 0.20 ann-hr/con of ant. 0.20 ann-hr/con of ant. replaced 2.13 ann-hr/con of ant. replaced 2.23 ann-hr/con of ant. replaced 2.23 ann-hr/con of ant. 0.290 ann-hr/yo² 3.12 ann-hr/yo² 3.12 ann-hr/yo² 3.12 ann-hr/yo² 3.13 ann-hr/yo² 3.13 ann-hr/yo² 3.13 ann-hr/yo² 3.13 ann-hr/yo² 3.13 ann-hr/yo² 3.23 ann-hr/yo² 3.23 ann-hr/yo² 3.23 ann-hr/yo² 3.23 ann-hr/yo² 	933 marr-Hr/yd ³ 2.0 marr-Hr/yd ³ 2.88 marr-Hr/yd ² 988 marr-Hr/yd ² 9021 marr-Hr/yd ² 0021 marr-Hr/yd ² 00258 marr-Hr/yd ³ 9.0 marr-Hr/yd ³ 9.0 marr-Hr/yd ³ 0.00588 m	5-7 man-hr/ya ² 0.01 to 0.03 man-hr/ya ² 0.02 to 0.03 man-hr/ya ² 0.5 to 0.9 man-hr/ya ² 0.5 to 0.9 man-hr/ya ² 2.3 man-hr/ya ² .01 man-hr/ya ²	
	unit of measure	2282222238 2482222238 269420004	ton (Removed) ton ton ton ton ton ton ton ton ton ton	LEVER VERENA H	уца в в а 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	
Costs 1976	Std.			17,5 137,46 26,70 26,70 .05 .03 .03 .63 .15 .15 .120 11,20	60.62 40 1.32 23.15 23.15 23.15 23.15 23.15 23 30.00 30.00 30.00 45	
Unit Cos	Avg.	112.39 34.56 3.38 42.85 27.38 27.38 .270 .95	8.72 235,92 25,92 25,92 25,93 25,93 25,93 25,93 25,93 25,93 25,18 25,28	17.35 123.66 27.96 27.96 .14 .06 .36 .35 .32 .32 .23	55.34 .26 1.18 4.83 22.35 22.35 29.00 29.01 .11	
		280.97 51.84 51.84 59.51 36.51 36.51 258 .258 .541 0.866 1.31		37.02 165.77 34.36 .58 .58 .11 .11 .11 .12 .23 .23 .27	76.30 .36 .36 .275 .272 .272 .15 .15 .15 .15	
	Range	70.24 25.92 25.54 33.48 33.48 1.41 1.80 .180 .0578 .75	day speciday sr day	25.60 25.88 25.88 25.88 25.88 25.88 25.88 25.25	46.59 21 3.92 1.266 1.126 1.126 1.126 1.126 1.126	1 mi = 1609 m
	Descriptive Title	Hand Patch with Frenix Leval this Premix First action for the Premix Space Stat Tarching Space Stat Tarching Stat Coarting (March) Stat Coarting (March) Frank Coarting (March) Frank Coarting (March)	Machine Disgout & Repart Machine Disgout & Repart Machine Disgout & Repart Machine Discont aurricace 20-100 cons per day which and a stratistic stratistic in program articular in program articular program and the stratistic man Disgout & Repart man Disgout & Repart for Scal Over Elli-Perchasticic for Scal Over Elli-Perchasticic for Scal Over Elli-Perchasticic for Scal Over Elli-Perchastic Muddenting Joint of El Spread and Stat-Rechanical Spread and Stratistic Muddenting Joint of Creek for Scal Over Scal Cont Muddenting Joint of Creek for Scal Over Stratistic Muddenting Joint of Creek for Scal Over Stratistic All Clanting Joint of Creek for Scal Over Stratistic All Clanting Joint of Creek	Rame 4 Surface Repair Surface Paching-Prenix(Mani) Surface Paching-Prenix(Mani) Surface Paching-Prenix(Manine) Surface Paching-Pois Seal Cost - Fush Casel Pairing Seal Cost - Plank Seal Cost - Plank	Hand Patching Sper Saaling Creek Bouring Buidan Grevel Rd. Buidan Sarvel Rd. Saal Patch Level Sandar Saal Vith Aggregate Shouldar Saal Vithour Aggregate Shouldar Saal Vithour Aggregate	1 ton = 907 kg 1 ft = 0.0305 m 1 11b = 0.45 kg
	No.	100 100 100 100 100 100 100 100 100 100	01-011 01-022 01-02 01-02 01-02 01-02 01-02 01-02 01-02 01-02 01-02 01-02 01-02 000 0000000000	10.02 101.03 100.03 100	412 416 416 416 416 416 416 416 416 416 416	Metric Conversions: 1 yd ² = 0.84 m ² 1 yd ³ = 0.76 m ³ 1 gel = 3.79 litre
	State	22 22 22 22 22 22 22 22 22 22 22 22 22	<u> </u>		****	

- 3. Chip Seal Partial Width
- 4. Chip Seal Full Width
- 5. Surface Patch Hand Method
- 6. Surface Patch Machine Method
- 7. Digout and Repair Hand Method
- 8. Digout and Repair Machine Method
- 9. Crack Pouring
- 10. Asphalt Concrete Overlay (C 10 C 11).

A general description for each activity has been prepared and is shown in Table C-2 together with average, low, and high unit costs for these activities. The reported suggested costs are the authors best estimate of representative unit costs for the stated maintenance activity (Table C-2). Figure C-1, which is a comparison of unit costs for the 4 states surveyed, was used as an aid in the analysis of the data and determination of representative average unit costs. The wide range of reported unit costs for this condensed list of activities is due in part to:

- 1. Different crew sizes utilized in the various states
- 2. Different equipment requirements for various states
- Differences in maintenance work activity as defined by various states
- 4. Variety of traffic conditions under which maintenance is performed
- 5. Type of facility on which maintenance activities are performed
- 6. Amount of work performed per lane mile.


Maintenance unit costs information has been converted to costs per yd^2 of total pavement surface area treated and cost per lane mile. Figure C-2, which graphically represents pavement area treated for a lane mile of highway, was used to estimate the amount of area typically treated. The suggested average unit cost for the maintenance activity (Table C-2) was utilized together with the expected range in cost to prepare Figures C-3 to C-12. These figures graphically illustrate the cost per yd^2 or cost per lane mile of rehabilitated pavement. Thus, costs are represented in terms of percent of total pavement surface area treated. Adjustments,

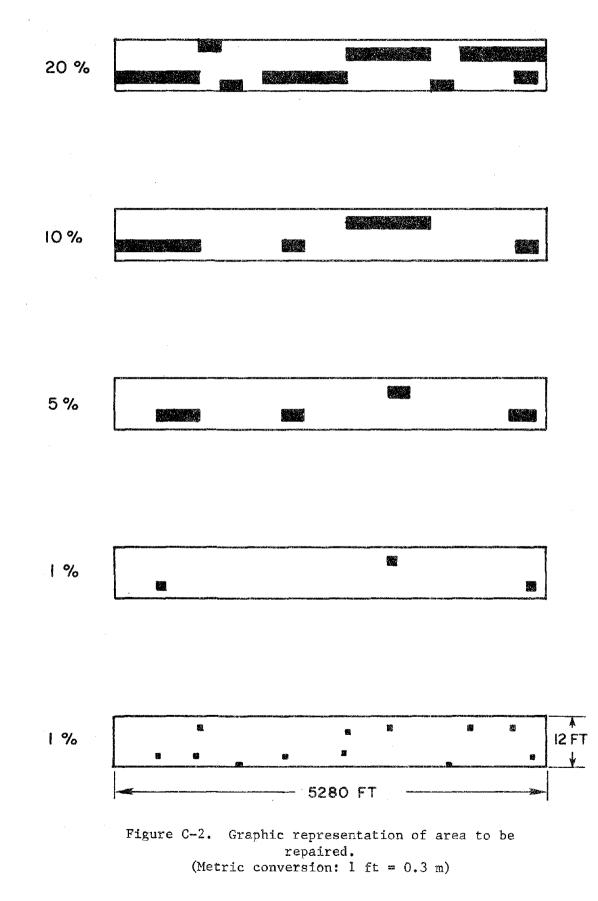

Descriptive	General Description	State	No.	Reported Average Unit	Sug	Suggested Co	Costs, Dollars	lars
Title				Cost, Dollars	Avg.	Low	High	unit of measure
Fog Seal - Partial Width	Light application of diluted emulsion or a proprietary material over a partial lane.	AZ	109	0.095/yd ²	. 095	.075	.131	yd ²
Fog Seal - Full Width	Light application of diluted emuslion or a proprietary material over a fuil lane width in a continous section.	AZ CA NV ND	108 01:983 101.06 435	0.069/yd ² 0.06/yd ² 0.06/yd ² 0.11/yd ²	.06	.05	.11	yd ²
Chip Seal - Partial Width	Chip Seal - Application of Asphalt and cover Partial Width aggregate to a limited area.	AZ CA NU MD	104 01-051 101.05 412	0.36/yd ² 0.41/yd2 0.23/yd2 0.26/yd2	• 35	.23	.41	yd 2
Chip Seal - Full Wiáth	Application of asphalt and cover aggregate to a full lane width in a continous section.	AZ Ny Ny	106 01-054 101.09 422	0.18/yd2 0.24/yd2 0.23/yd2 0.21/yd2	.21	.18	.24	yd ²
Surface Patch-Hand Method	Application of a Permix material to the surface of the pavement by hand method.	AZ CA NV	102 01-031 101.02	34.56/yd ³ 147.00/yd ³ 123.60/yd ³	130.00	60.00	170.00	yd ³
Surface Patch-Machine Method	Application of a Premix material to the surface of the pavement with machine	AZ CA CA NU NU	102 01-021 01-022 01-023 01-024 101.03 421	34.56/yd ³ 52.50/yd ³ 43.00/yd ³ 28.50/yd ³ 40.40/yd ³ 27.96/yd ³ 22.35/yd ³	28.00	20.00	40.00	yd ³ .
Digout & Repair Hand Method	Removal & repair of limited areas by use of hand tools.	A7. CA ND	101 01-034 411	112.39/yd ³ 145.00/yd ³ 55.34/yd ³	110.00	40.00	160.00	yd ³
Digout & Repair Machine Method	Removal & repair of limited areas by use of mechanized equipment.	AZ CA NV	105 01-011 101.01	27.38/yd ³ 68.00/yd ³ 17.35/yd ³	25.00	10.00	70.00	yd ³
Crack Pouring	Pouring cracks in flexible pave- ment with asphalt material (may include cleaning with compressed air & covering with sand.	A C C A Z	103 01-041 01-042 101.07 414	3.38/gai 4.83/gai 6.41/gai 3.00/gai 1.18/gai	3.25	1.10	6.50	gal.
Asphalt Concrete Overlay	Application of an asphalt concrete overlay usually less than about 2 inches.	TX US		21.00*/ton 15.12*/ton	31.00	23.00	43.00	yd ³
*Cost per ton	Metric Conversions: I yd ² = 0.84 m ²			1 ton = 907 kg				

TABLE C-2. Unit Cost for Flexible Pavement Maintenance Operations

C-4

 $1 \text{ yd}^3 = 0.76 \text{ m}^3$

based on experience, were utilized to alter average unit costs when very small or very large areas of the pavement were treated with a particular maintenance activity. For information purposes, the approximate pavement condition has been estimated in each case, in terms of distress type, distress severity, and distress extent. This condition is in the form of deduct points, as described in reference ($\underline{C-12}$). The overall pavement condition is represented by a number from 0 to 100, where 100 represents a distress-free pavement. The deduct points are to be subtracted from 100 (or some existing initial value less than 100) and thus the more extensive the maintenance the higher the deduct points. These deduct points are shown on each figure.

To prepare this cost figure for each maintenance activity, representative average costs were selected from Table C-2, keeping in mind the range of reported costs. Each activity's costs are described in the following paragraphs.

<u>Fog Seal - Partial Width</u>. Costs for various percentages of the pavement surface area treated are shown in Figure C-3. An average unit cost of 0.095 per yd² (0.11 per m²) is the basis for the relationship represented in Figure C-3.

<u>Fog Seal - Full Width</u>. Costs for various pavement conditions are shown in Figure C-4. An average cost of \$0.06 per yd² (\$0.07 per m²) was used as the basis for the relationship. For pavements that are severely raveled (30 or more deduct points), the amount of applied emulsion was increased 0.02 gal per yd² (0.09 litre per m²). Since material costs represent 20% of the total unit cost of this operation (C 2), an increase in cost of \$0.01 per yd² (\$0.012 per m²) resulted. Likewise, costs representing treatments for lightly raveled pavement were reduced by \$0.01 per yd² (\$0.01 per m²).

<u>Chip Seal - Partial Width</u>. Costs for various percentages of the pavement surface area treated are shown in Figure C-5. An average unit costs of 0.35 per yd² (0.42 per m²) is the basis for the relationship represented in this Figure.

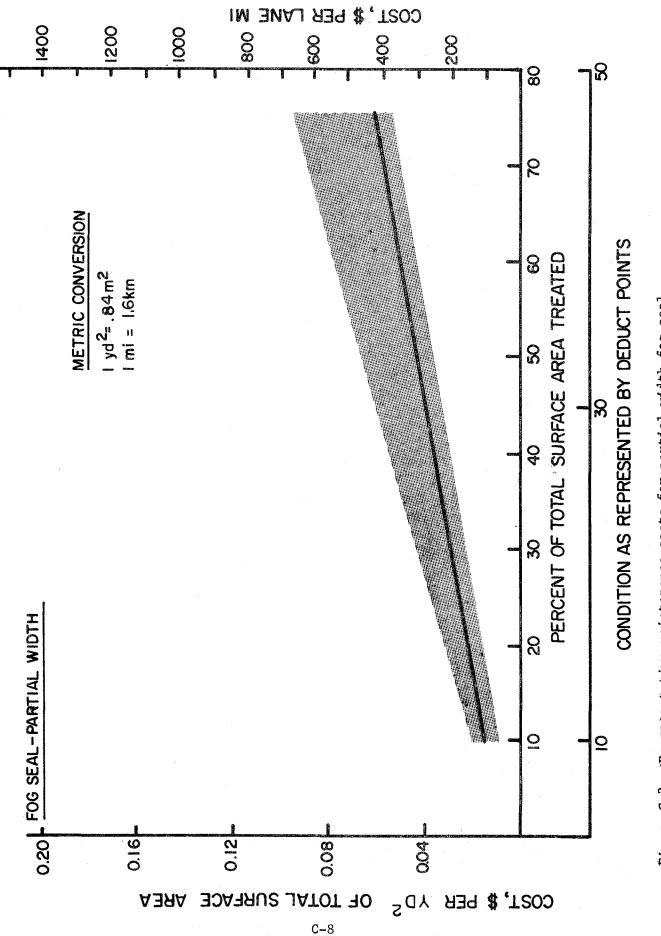
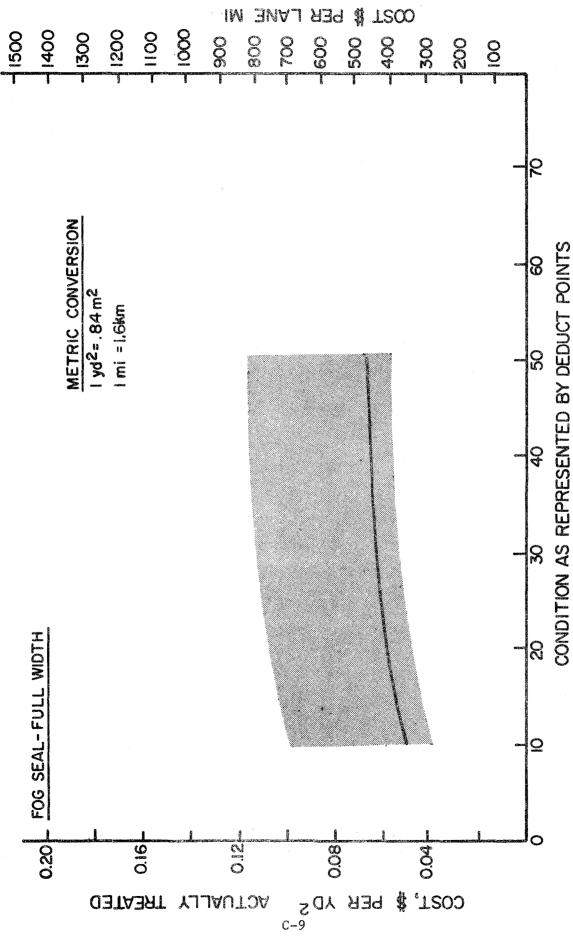
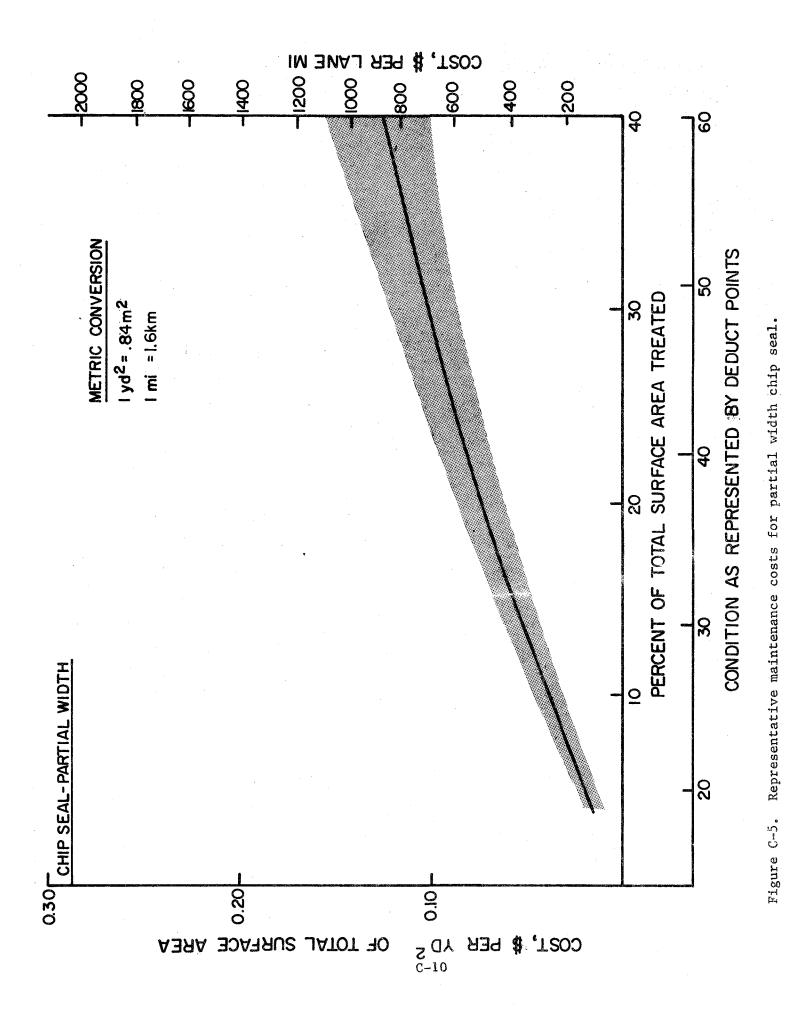




Figure C-3. Representative maintenance costs for partial width fog seal.

<u>Chip Seal - Full Width</u>. Costs for various pavement conditions are shown in Figure C-6. An average unit cost of 0.21 per yd^2 (0.25 per m^2) was used as the basis for this relationship. An appropriate cost adjustment was made for pavements requiring additional asphalt due to their surface condition. Some states placing chip seals under contract have experienced unit costs of the order of 0.35 per yd^2 to 0.40 per yd^2 ($4.42 \text{ to } 0.48 \text{ per m}^2$).

<u>Surface Patch - Hand Method</u>. Costs for various percentages of the pavement surface area treated are shown in Figure C-7. An average unit cost of \$130 per yd³ (\$170 per m³) of material placed was used as the basis for this relationship, assuming a one in. (2.5 cm) thick patch.

<u>Surface Patch - Machine Method</u>. Costs for various percentages of the pavement surface area treated are shown in Figure C-8. An average unit cost of \$28 per yd³ (\$37 per m³) of material placed was used as the basis for this relationship, assuming a one in. (2.5 cm) thick patch.

<u>Digout and Repair - Hand Method</u>. Costs for various percentages of the pavement surface area treated are shown in Figure C-9. An average unit cost of \$110 per yd³ (\$144 per m^3) of material placed was used for this relationship assuming a six in. (15 cm) thick patch.

<u>Dig Out and Repair - Machine Method</u>. Costs from various percentages of the pavement surface area treated are shown in Figure C-10. An average unit cost of \$25.00 per yd³ (\$32.70 per m³) of material placed was used as the basis for the relationship assuming a six in. thick patch (15 cm).

<u>Crack Pouring</u>. Costs for the pouring of various amounts of cracks (represented by linear ft (0.3 m) of cracks per 100 foot (30.5 m) length of a 12 ft (3.7 m) lane are shown in Figure C-11. An average unit cost of \$3.25/gal (\$.85/litre) of crack sealing material placed was used as the basis for this relationship. It was assumed that 1 gal (3.785 litres) of liquid would be utilized to pour 50 lineal ft (15 m) of cracks.

Asphalt Concrete Overlay. Costs for the placement of various thicknesses of asphlat concrete are shown on Figure C-12. An average unit cost of $\frac{16}{\text{ton or } 31.30/\text{yd}^3}$ ($\frac{0.018}{\text{kg or } 40.90/\text{m}^3}$) was used as the basis for this relationship. Overlay costs of the order of $\frac{20}{\text{ton } (\frac{0.022}{\text{kg}})}$ are

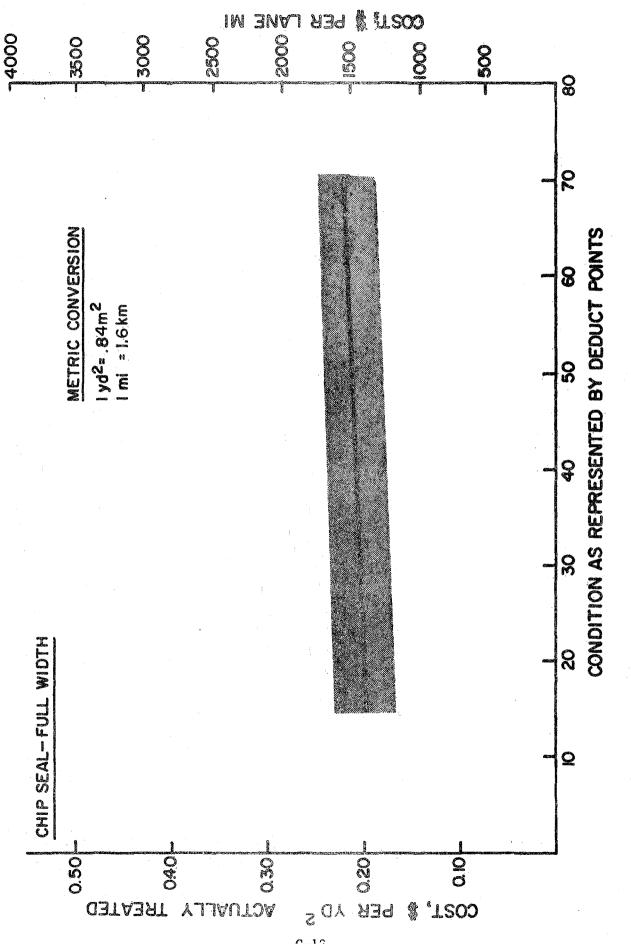


Figure C-6. Rapresentative maintenance costs for full width chip seal.

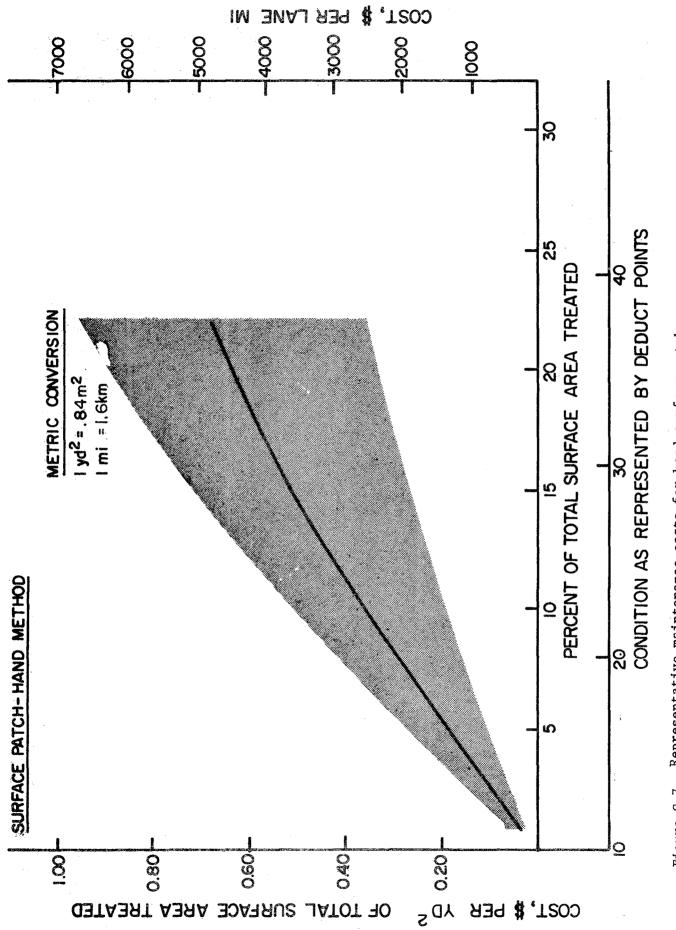
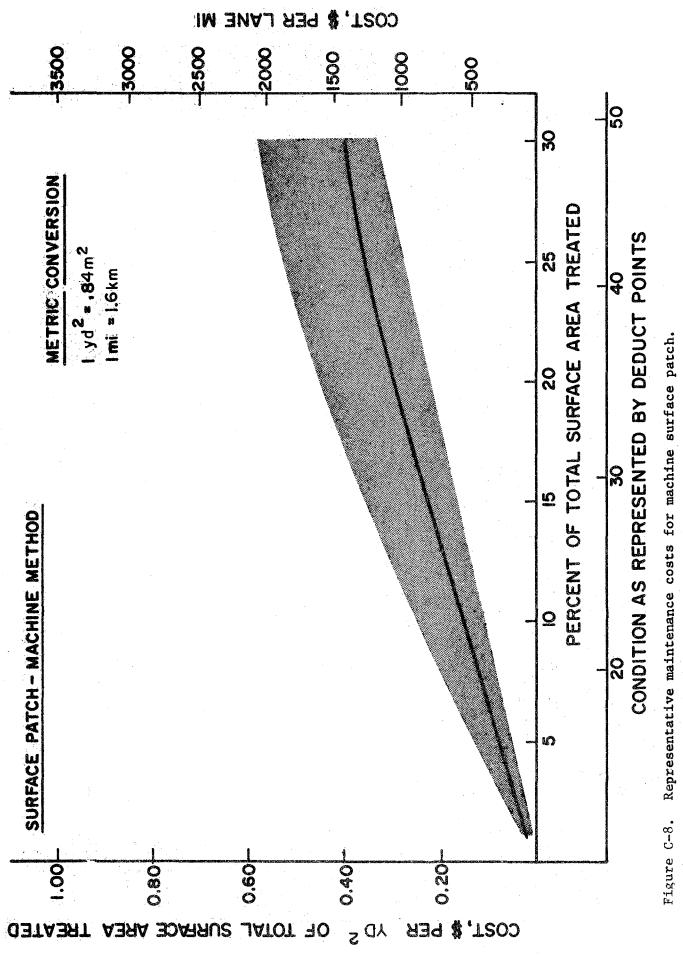



Figure C-7. Representative maintenance costs for hand surface patch.

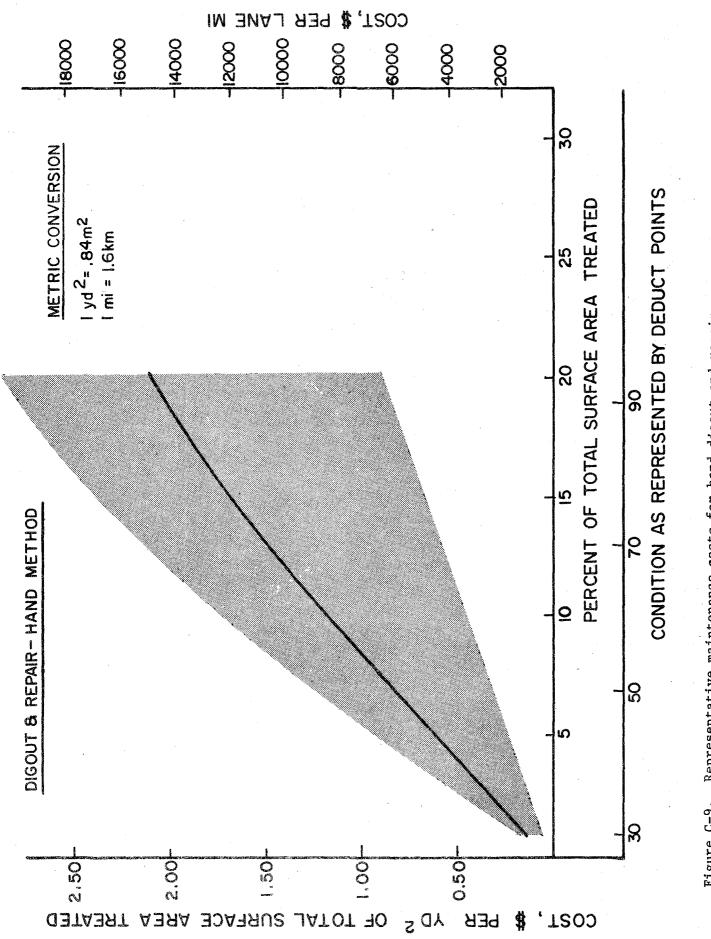
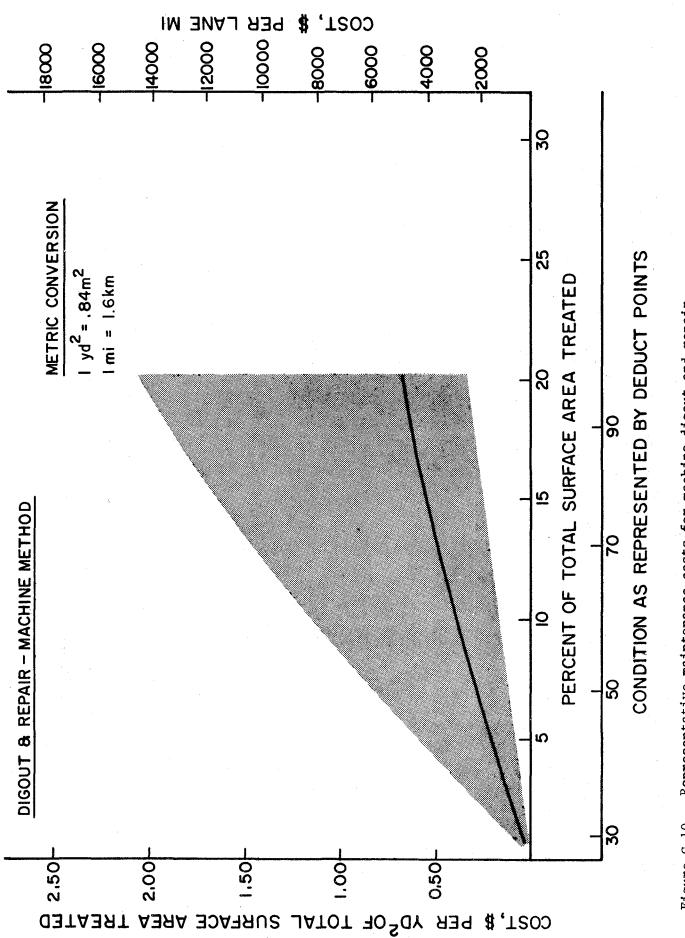



Figure C-9. Representative maintenance costs for hand digout and repair.

Representative maintenance costs for machine digout and repair. Figure C-10.

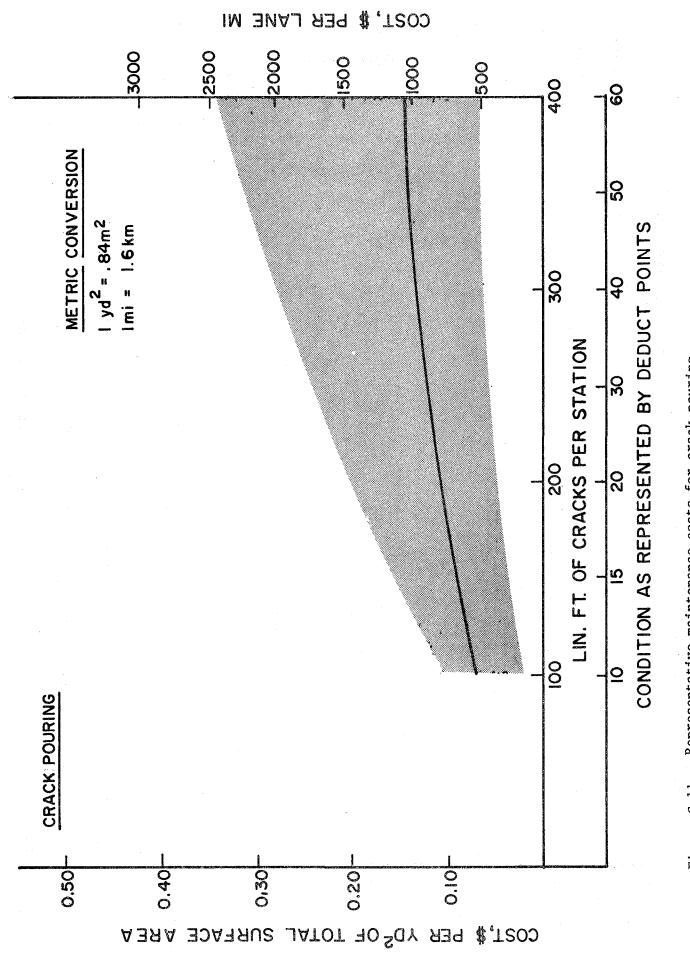


Figure C-11. Representative maintenance costs for crack pouring.

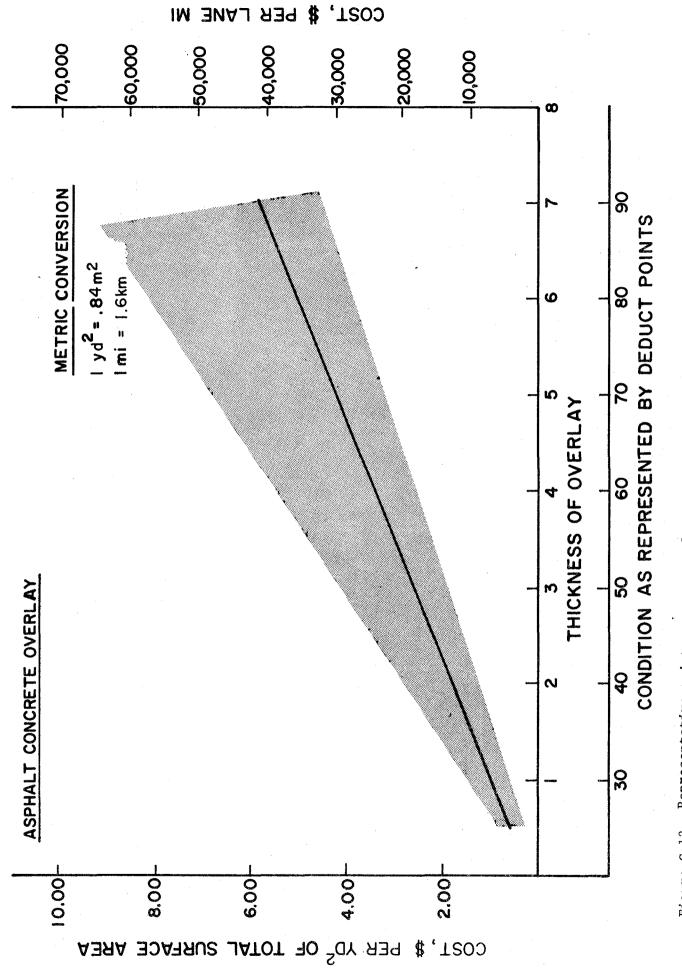


Figure C-12. Representative maintenance costs for asphalt concrete overlay.

not unusual in many parts of the United States.

<u>Rigid Pavements</u>. For the purpose of establishing maintenance cost information for rigid pavements, the following five rigid pavement maintenance activities have been defined:

- 1. Mudjacking
- 2. Temporary Patching
- 3. Permanent Patching
- 4. Joint Sealing
- 5. Expansion Joint Repair

Unit cost information is shown in Table C-3. Again the wide range of values can be attributed to many of the previously enumerated reasons, and suggested unit costs are offered.

Discussion of Flexible Pavement Costs

A summary of information contained on the previous Tables and Figures is shown in Table C-4 for ten maintenance and rehabilitation activities. These costs are based on the data obtained from four states and the assumption stated in the discussion. If the reader has need of determining maintenance costs for activities other than those listed on Table C-4, it will be necessary to obtain data from a state, county or city performing that activity.

The reader is reminded that the maintenance activities described in this report are normally performed on pavements with certain specific types of distress. For example, fog seals and chip seals are popular maintneance or rehabilitation activities that are used to correct raveling pavements. Typical types of pavement distress and maintenance activities associated with maintenance of these types of distress are shown on Table C-5. The reader is refined to reference (<u>C 13</u>) for a detailed description of the distress types

والمحاجز والمحاج	Modenteer Andres							
	Haintenance Activity					iggested (Unit Cost	suggested Unit Cost, Dollars
Descriptive Title	General Description	State	No .	Reported Average Unit Costs, Dollars	Avg.	Low	High	unit of measure
Mudjacking	Drilling Holes and Pumping concrete slurry under slab to fill the voids and raise the slab to grade.	СА	02-011	7.28/yd ²	7.25			yd ²
Temporary Patching	Patch with Bituminous material.	CA. NV	02-021	25.50/yd ³ 106.26/yd ³	80	20	160	yd ³
Permanent Patching	Patch with P.C.C.	NV	111.02	371.25/yd ³	375			vd ³
Joint Sealing	Cleaning joint, pour joint and apply sand as required.	CA CA	02-042 02-043 111.05	5.75/gal 4.77/gal 10.00/gal.	7.00	5.00	12.00	gal
Expansion Joint Repair	Cut along distressed area, clean out area, place filler material.	ΛN	90.111	6.79/lin ft	6.75	5.00	40.00	lin ft

TABLE C-3. Unit Cost for Rigid Pavement Maintenance Operations

Metric Conversions:

 $1 \text{ yd}^2 = 0.84 \text{ m}^2$ $1 \text{ yd}^3 = 0.76 \text{ m}^3$

l gal = 0.26 litre

1 ft = 0.305 m

Ç-20

Maintenance Activity	Cost Dol Sq Yd	lars * Per Lane Miles	Percent of Total Pavement Area Treated
Fog Seal - Partial Width	0.045	320	50 percent
Fog Seal - Full Width	0.06	420	100 percent
Chip Seal - Partial Width	0.06	420	15 pêrcent
Chip Seal - Full Width	0.21	1500	100 percent
Surface Patch - Hand Method	0.10	700	2.5 percent l inch thick
Surface Patch - Machine Method	0.08	560	10 percent 1 inch thick
Digout & Repair - Hand Method	0.25	1760	2 percent 4 inches thick
Digout & Repair - Machine Method	0.20	1400	5 percent 6 inches thick
Crack Pouring	0.12	850	250 lin. ft. Per Station
Asphalt Concrete Overlay	1.90	13,400	100 percent 2 inches thick

TABLE C-4. Representative Costs for Maintenance and Rehabilitation Activities

*Costs are for square yards of total pavement surface maintained. For example, surface patching by the hand method may have been applied over only 5 percent of total pavement surface area, yet costs reported are for the total pavement area maintained or one mile of pavement.

Metric Conversions:

- $1 yd^2 = 0.84 m^2$
- 1 mi = 1609 m
- 1 in. = 0.024 m
- 1 ft = 0.305 m

Types of Distress	Maintenan	Maintenance Activity
Rutting	Surface Patch - Hand Surface Patch - Machine	Asphalt Concrete Overlay
Raveling	Fog Seal - Partial Width Fog Seal - Full Width	Chip Seal - Partial Width Chip Seal - Full Width
Flushing (Bleeding)	Overlay Chip Seal - Full Width	
Corrugations	Surface Patch - Hand Surface Patch - Machine Asphalt Cone - Overlay	Digout & Repair - Hand Digout & Repair - Machine
Alligator Cracking	All Maintenance Operations could	ld be used
Longitudinal Cracking	Fog Seal - Partial Width Fog Seal - Full Width Crack Pouring	Chip Seal - Partial Chip Seal - Full Width Asphalt Cone - Overlay
Transverse Cracking	Crack Pouring Chip Seal - Fill Width	Asphalt Concrete Overlay
Patching	Surface Patch - Hand Surface Patch - Machine Chip Seal - Full Width	Digout & Repair - Hand Digout & Repair - Machine Asphalt Concrete Overlay
Failures	Surface Patch - Hand Surface Patch - Machine Asphalt Cone Overlay	Digout & Repair - Hand Digout & Repair - Machine

TABLE C-5. Maintenance Activities Associated with Flexible Pavement Distress

Conclusions

From a review of Tables C-1 - C-4 and Figures C-1 - C-12 the following observations are made:

1. Hand digout and repair techniques are very expensive. A one inch overlay can be placed at the same cost as performing hand digout and repair over about 8 percent of the pavement surface area.

2. A chip seal can be placed full-width at the same cost of performing hand digout and repair over about 2 percent of the pavement surface.

3. Full-width fog seals can be performed as economically as partial-width fog seals which cover 70 percent of the pavement surface area.

4. Full-width fog seals can be performed as economically as partial-width chip which cover 70 percent of the pavement surface area.

REFERENCES

- C 1. Results of Questionaire to State Transportation Agencies, 1977.
- C 2. Personal correspondence with John Hellmer, Maintenance Systems Engineer, State of California, Department of Transportation, Division of Highways, April, 1977.
- C 3. Personal correspondence with Ray Zink, Maintenance Engineer, North Dakota, State Highway Department, April 13, 1977.
- C 4. Personal correspondence with Kenneth J. Davis, Assistant Maintenance Engineer, State of Nevada, Department of Highways, April 29, 1977.
- C 5. Personal correspondence with Samuel F. Lanford, Assistant State Engineer, Maintenance Section Arizona Department of Transportation, Highway Division, February 23, 1977.
- C 6. "Performance Standards" Arizona Department of Transportation, Highway Division, Maintenance Section, July 1, 1976.
- C 7. "Manual of Instructions," Vol. II "Programing and Scheduling," State of California, Department of Transportation, Maintenance, July, 1976.
- C 8. "Maintenance Management System Manual of Instruction," State of Nevada, Department of Highways, July, 1973.
- C 9. "Maintenance Manual," North Dakota, State Highway Department, Maintenance Division.
- C 10. "Average Low Bid Unit Prices," Texas State Department of Highways and Public Transportation, Computer Section, Monthly reports 1976.
- C 11. "Bid Price Treads on Federal Aid Highway Contracts," <u>Engineering</u> New Record, December 23, 1976.
- C 12. Epps, J. A. et ..., "The Development of Maintenance Management Tools for use by the Texas State Department of Highways and Public Transportation," <u>Research Report 151-4F</u>, Texas Transportation Institute, September, 1976.
- C 13. Epps, J. A. et al., "Roadway Maintenance Evaluation User's Manual," Research Report 151-2, Texas Transportation Institute, September, 1974.

APPENDIX D. A REVIEW OF PRESTRESSED CONCRETE PAVEMENT CONSTRUCTION PRACTICES AND SELECTED VARIABLES AFFECTING THE APPLICATION OF PRESTRESSING AS A REHABILITATION METHOD

Concrete pavements have been used extensively throughout the world as a "high-type" of pavement. But the service lives that have been obtained with concrete pavements have been generally less than that obtained for other concrete structures (\underline{D} 2). New research information has shown that this is particularly true for some of the newer concrete paving techniques in popular use today.

The most widely used concrete pavement types to date are as follows:

- 1. Jointed Unreinforced
- 2. Jointed Reinforced Concrete
- 3. Continuously Reinforced Concrete (used extensively during the last 10 to 15 years with the first significant construction built in Indiana in 1938 (D 36).

The problems associated with concrete pavements appear to be primarily joint and crack related distress. Joint distress can stem from several mechanisms among which are joint lockup, lack of adequate load transfer between slabs and subgrade movement. Cracking type of distress can be caused by numerous mechanisms. Lack of adequate flexural strength to resist fatigue and/or overloading is one of the principal causative mechanisms. Additionally, shrinkage and curling stresses in concrete pavements can cause or contribute to cracking.

Both joint distress and the various kinds of cracking that can occur in concrete pavements are very important in that they will generally lead to pavement deterioration and ultimately to failure if not corrected.

Jointed unreinforced concrete pavements are generally built with contraction/expansion joints placed every 15 to 25 ft (4.6 to 7.6 m) with no steel reinforcement being contained in the slab. These relatively short slabs are designed to allow for adequate expansion and contraction of the slab so that cracking will not occur due to environmental and curing induced stresses. However, the numerous joints that are required can fail and therefore cause the pavement serviceability to deteriorate.

Jointed unreinforced concrete pavements are generally built with

D-1

contraction/expansion joints placed every 15 to 25 ft (4.6 to 7.6 m) with no steel reinforcement being contained in the slab. These relatively short slabs are designed to allow for adequate expansion and contraction of the slab so that cracking will not occur due to environmental and curing induced stresses. However, the numerous joints that are required can fail and therefore cause the pavement serviceability to deteriorate.

Jointed reinforced concrete pavements also contain numerous joints but are generally spaced further apart, say on the order of 25 to 100 ft (7.6 to 30.5 m). The reinforcing steel is used to strengthen the slabs against stresses induced by the environment because of their longer length. This reinforcing steel may or may not add to the load carrying capability of the pavement but it is generally positioned so as to add little to the flexural strength. Its primary function is to resist the slab movements induced by environmental and curing stresses. The numerous joints in this type of pavement present the same problem as they do in the unreinforced pavements.

Continuously reinforced concrete pavement (CRCP) differs primarily from the other two types in that its design does not require joints other than for construction stoppages and bridge abutments or other related structures. To allow for a joint-free pavement, longitudinal reinforcing steel in the amounts ranging generally from 0.5 to 0.7 percent of the transverse cross-sectional area is used. This amount of reinforcement is usually adequate to hold the slab together as the pavement slab shrinks after placement. Transverse cracks do occur and are eventually spaced about 6 ft (1.8 m) apart on properly designed and constructed CRCP (<u>D 36</u>). This rigid pavement type has gained wide usage in recent years. In 1958 approximately 80 equivalent two-lane miles, (129 equivalent two-lane kilometers) of CRCP had been built or was under contract. By 1971 about 10,000 equivalent two-lane miles, (16,000 equivalent two-lane kilometers) had been constructed or under contract.

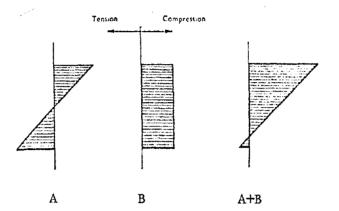
Joint-free CRCP was major advancement in pavement design but a recent study in Texas (<u>D 42</u>) has indicated significant distress in some of these pavements.

The rehabilitation of CRCP as well as all rigid pavement types is expensive. Not only is rehabilitation expensive but maintenance/

D-2

rehabilitation alternatives are limited. The most frequently used maintenance method in use today for resurfacing these pavements is asphalt concrete overlays, most of which are only marginally effective due to reflective cracking caused by the underlying concrete layer.

Review of Prestressed Concrete Pavements


After creating a possibly overly dismal picture of current concrete pavement practice, it is time to introduce an old but paradoxically new concrete pavement type which may overcome some of the difficulties observed with the previously mentioned three types. This "other" type is prestressed concrete pavement. Prestressed concrete pavement appears to be an attractive alternative in two ways. First, it may be a suitable alternate method for new rigid pavement highway construction. Second, existing prestressing methods may possibly be applied as a way to rehabilitate existing rigid pavements. The remainder of this paper will be devoted to a general review of existing rigid pavements which were constructed using prestressing methods and a review of some of the topics which should be examined in order to utilize prestressing as a rehabilitation method.

Prestressing a concrete pavement adds a compressive stress to the pavement cross section which is cumulative with the normal flexural strength of the concrete. This allows for a greater stress range in the flexural zone of the pavement and may be thought of as increasing the concrete tensile strength without increasing the modulus of elasticity of the concrete. Conventional concrete pavement design differs in that only the flexural strength of the unreinforced concrete can be utilized for load support (\underline{D} 2). Figure D-1 shows how prestressing affects a concrete pavement subjected to an applied bending moment. Prestressing new pavements can provide the following (D 24):

- 1. Elimination of a large percentage of transverse cracks.
- 2. Reduction or elimination of cracks in the road surface which can result in a reduction of moisture in the pavement foundation.
- 3. Decreased pavement thickness.

Presently, there are three methods which can be used to apply prestressing to a concrete pavement:

 Pretensioned steel. Steel strands are pulled to prescribed tension between anchors placed prior to concrete placement. The strands are cut near the ends and at joints after the concrete

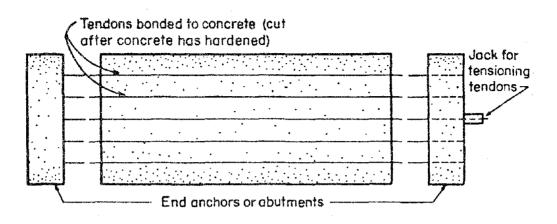
- A. Stress Distribution Across at Concrete Section Due to Applied Bending Moment.
- B. Stress Distribution Due to a Uniform Prestress.
- A+B. Resultant, Actual Stress Distribution Showing a Stress Shift.

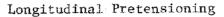
From Reference D3

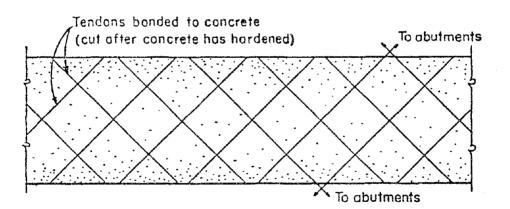
Figure D-1. Stress Shift Caused By Prestressing.

has attained required strength.

- 2. Post-tensioned steel. Horizontal strands or bars are coated or enclosed in tubes, unstressed before concrete is cast. After concrete strength development the steel is tensioned by jacking against the concrete end faces. Steel has been placed longitudinally, longitudinally and transversely, or diagonally.
- 3. Poststressed concrete. Plain concrete slabs are cast between anchors and compressed by jacks or wedges at ends and in transverse joints. No tendons are used longitudinally, but transverse post-tensioning is sometimes used in conjunction with the poststressing operation $(D \ 24)$.

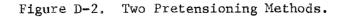

Figures D-2, D-3, and D-4 are idealized plan views of typical prestressed pavements. Figure D-2 show two pretensioning methods with the longitudinal pretensioning being the more common for this prestressing technique. Figure D-3 shows two post-tensioning methods, again with new longitudinal placement pattern being the more common. Figure D-4 shows a typical poststressing method.

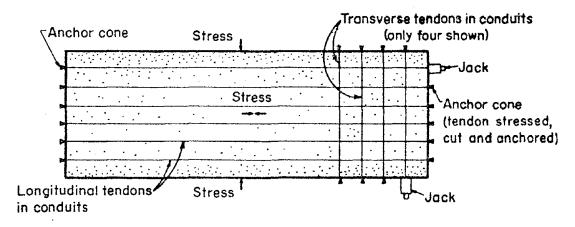

The basic requirements to be met in prestressed pavement design are the following:

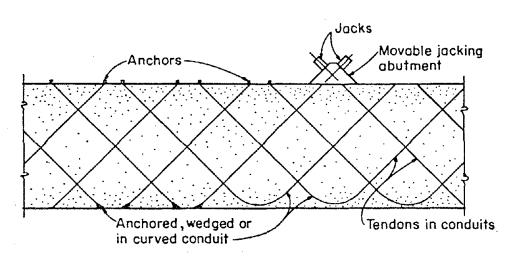

- The section thickness must be adequate for the imposed stresses and climate variations.
- The number of joints should be reduced by making the slab as long as possible, consistent with economy and construction needs.
- 3. At the joints, provision must be made to permit substantial longitudinal movement, sustain adequate load transfer, and protect the foundation $(D \ 24)$.

As can be readily observed, prestressed pavements offer several potential advantages over the more conventional rigid pavement types. Even though the first major prestressed pavement was constructed at Orly Airport in Paris in 1946, this type of pavement has not gained widespread usage. A review of the literature shows that a minimum of sixty to seventy prestressed pavement projects have been completed throughout the world since 1946. It is interesting to note that most of these projects were located in Europe.

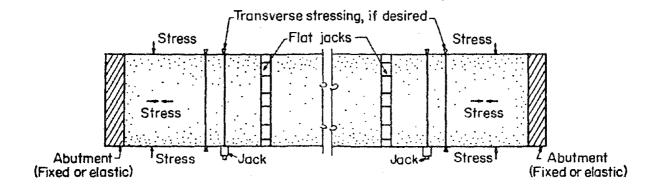
A relatively brief summary of these projects as described in the literature would be informative in several respects. First, a more






Diagonal Pretensioning

From Reference D 54


Longitudinal Post-Tensioning

Diagonal Post-Tensioning

From Reference D 54

Figure D-3. Two Post-Tensioning Methods.

From Reference D 54

Figure D-4. Typical Longitudinal Poststressing Method.

Chronological Summary of Known Prestressed Pavement Projects TABLE D-1.

References (D) 57 16, 4, 37, 57 54, 54 54, 37, . 13, 54 13, 3, 54 37, 37 e, p ÷. Good as of : 1956 Good as of 1960 Good as of 1958 as of Good as of 1955 Good as of 1956 as of Pavement Condition Good 1956 Good 1960 slabs post-tensioned waterproof kraft transversally with paper on 4" com-longitudinally with pated gravel Concreté pavemént příč 0.08" bitumen on 2" concrete on 18-24" compacted sand on clay subgrade Concrete pavement on G bituminous paper on sand on gravel or brick earth Friction Reducing Layers & Sublayers л¥ Unk Unk Unk Similar to system U used at Orly but both longitudinal & trans-verse post-tensioning was used Post-tensioned diagonally with cables at 45° to CL Post-tensioned diagonally with cables at 450 to CL Precast square slabs post-tensioned trans-versally with cables Prestressing System Longitudinal: Post tensioned with cables Transverse: Post-tensioned with cables and restrainted longitudinally with abutments Post-tensioned with diagonal cables at 18½ to CL abutments Prestress AmountThickness Longitudinal Transverse(in)(psi) 510-570 510-570 476 240 240 228 23 Unk 550 510-570 510-570 300 476 228 550 212 Unk CL edge 00 7.9 6.5 5.5 6.3 6.3 6.0 6.0 5.5 Width (ft) 18 197 164 18 120 24 136 136 (total length
of individual
precast slabs) 5/136' slabs slabs Length (ft) 1380 61 76 243 164 360 404 Airfield 5/92' Pavement Road-Bridge Approach Type Facility Runway Runway Runway Road Road Schiphol Airport, Netherlands Brussels Airport Belgium Luzancy, France 1949 London Airport, Great Britain Crawley, Sussex (Great Britain) Orly Aerodrome, France Esbly, France Location Date 1946 1946 949 1950 1947 1951

ъ
e
Ē.
ā
Ч.
- 11
7
H
2
9
-
-
Н
님
D-1
Ť
Å
Å
Å
LE D-
Å

				r				· · · · · · · · · · · · · · · · · · ·	·
References (D)	3, 13, 54			54		3, 54	3, 13, 54	3, 13, 54	3, 4, 37, 39, 54, 57
Pavement Condition	Good as of 3, 13, 54	Good as of	Good as of 1960	Unk		Poor as of 3, 1955	Good as of 3, 13, 1960	Good as of 3, 13, 54 1960	600d as of 1958
Friction Reducing Layers & Sublayers	Unk	Unk	Unk	Unk		Unk	Unk	Unk	Concrete pavement on Good as of 3, 4, 37, kraft paper on 1½" 1958 39, 54, 57 of sand on 8" compacted hoggin
Prestressing System	Longitudinal: Post-			Longitudinal: Post- tensioned with cables		Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables	<pre>Longitudinal: Post- tensioned with cables</pre>	Post-tensioned diagonally with cables	Longitudinal: Post- stressed with flat jacks Transverse: Post- tensioned cables
Amount Transverse (psi)	0	0	0	0	0	13	0	28	256
Thickness Longitudinal Transverse (in) (psi) (psi)	190	90	245	410	300	280	280	250	Variable, 256 initially
Thickness (in)	6.0	6.0	6.0	10.0	6.0	6.0	6.0	6.0	1.7
Width (ft)	10	10	11.5	12	14 2/3	24	18	18-24	82
Length (ft)	110	130	190	3000 (15/180'	slabs) (2/150' slabs)	1200 (3/400' slabs)	660 (4/165' slabs)	3350	1410 (intermediate jacking locations every 360')
Type Facility	Road	Road	Road	Road		Road	Road	Road	Runway
Location	1951 Wexham Springs,	Buckinghamshire	(Great Britain)	1951 John Laing's, Itd.	Great Britain	1951 St. Leonards, Hampshire (Great Britain)	1952 Basildon, Essex (Great Britain)	1952 Woolwich, Great Britain	1953 Orly Aerodrome, France
Date	1951			1951		1951	1952	1952	1953

(Continued)
D-1
TABLE

	r				
References (D)	3, 7, 39, 54, 57	of 3, 54 se of	6, 9, 15, 54, 57	3, 37	3, 13, 54
Pavement Condition		Fair as of 1955 as of Transverse Cracks Good as of 1955 as of		Unk	Unk.
Friction Reducing Layers & Sublayers	Concrete pavement on Unk waterproof paper on prepared subgrade	Unk	Concrete pavement on NA building paper on 1" sand layer on 4" 2" sand-clay layer on 2" sand-clay and gravel subbase For this system. expected coefficient of friction between 0.60 and 0.72	Unk	Unk
Prestressing System	Longitudinal: Post- stressed with flat jacks Transverse: Part post-tensioned cables, part reinforcing rods	Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables Post-tensioned diagonally with cables at 30 ⁰ to CL	Longitudinal: Post- tensioned with strands Transverse: Post- tensioned with strands	Unk	Post-tensioned longitudinally and diagonally with cables. One slab jacked
Amount Transverse (psi)	Experi- mental Variation	128 43 125	Under testing varied between 240 to 0	unk	Varied between 0 to 35
Prestress Amount Thickness Longitudinal Transverse (in) (psi) (psi)	215 (Final) 740 (Initial)	300 240 374	690 ini- tially, under test- ing varied between 600 to 0	Unk	220-320
Thickness l	4.7	6.0 6.0 8.0 @ CL 8.0 @ edge	7.0	2.2	6.0
Width (ft)	23	28 28 28	12	27.5	22
Length (ft)	984 (intermediate jacking loca- tions every 195')	365 365 365	500	27.5	1500 (5/300' slabs)
Type Facility	Road	Road	Experi- mental Pavement	Runway (Overlay)	Road
Location	1953 Boug-Servas, France	1953 Heidenheim, Germany	1953 Patuxent River Naval Air Station, Maryland	1954 Australia	1954 Port Talbot, S. Wales (Great Britain)
Date	1953	1953	1953	1954	1954

		r			
References (D)	3, 13, 54	4, 10, 37, 40, 54		54	54
Pavement Condition	Good as of 3, 13, 1960 Although reinstate- ment of longitudi- pression was required	Excellent as of 1963		Unk	Unk
Friction Reducing Layers & Sublayers	Unk	Concrete pavement on Excellent waterproof kraft as of 1963 paper on 1" beach sand on bitumen coating on three 4" layers of graded material on	2 7 7 7 7 7 7	Unk	Unk
Prestressing System	Longitudinal: Post- stressed with flat jacks Transverse: Post- tensioned with wires	Longitudinal: Post- stressed with flat jacks Transverse: Post- tensioned cables		Longitudinal: Post- tensioned with cables	Longitudinal: Post- tensioned with steel bars Transverse: Post- tensioned with steel bars
Amount Transverse (psi)	20	250	250	0	460
Thickness Longitudinal (in) (psi)	550	1000, min. 250 psi at lowest temperature, 1250 psi at max. tem- perature	1000, min. 250 psi at lowest temperature, 1250 psi at max. tem- perature	85-341	460
Thickness (in)	4.0	7.1	۲.7	8.0	3.4
Width (ft)	50	197	82	20	25
Length (ft)	330	8000 (intermediate jacking loca- tions every 1000')	7700 (intermediate jacking loca- tions every 1000')	558	460
Type Facility	Road	Runway	Taxiway	Road	Road
Location	South Benfleet, Essex (Great Britain)	Maison Blanche Airfield, Algiers Algeria		1954 Speyer, Germany	1954 Montabaur, Germany
Date	1954	1954 1		1954	1954

continued)
Ö
<u> </u>
Ч
ABLE
E-i

[]	··			•	
References (D)			- 4-	57, 17, 18, 57	600d as of 10, 13, 54, 1960 as of 600d as of 1960
kefere (D)	54	54	54	3, 11	. 1;
	22	<u>u</u>)	<u>л</u>	of 1 2	of 5
Pavement Condition	×	<u>х</u>	×	Good as of	600d as of 1960 as of 600d as of 1960 as of
	nk	Unk	no	on Go 9" 19 ent	<u> </u>
Friction Reducing Layers & Sublayers			Concrete pavement on Unk 3/4" sand layer on 23" subbase	Concrete pavement on two layers of talc- coated paper on 5.9" thick bituminous base on 15.7" sand and gravel subbase. Estimated coefficient of friction = 0.35	
n Red & Sub			pave d lay ase	paver rs of aper tumin 15.7" el su d coe ion =	
ictio /ers			crete san subb	rete layer ted per ck bi grave frict	
	Unk	Unk		Conc two coat thic base and Esti of t	CPK CPK
Prestressing System	Post- cables ost-		Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables		Longitudinal: Post- stressed with flat jacks post- tensioned with single strand cables Post- Longitudinal: Post- stressed with wedges Transverse: None - although light although light was utilized
ng Sy		ned	ith ca ith ca ith ca	l and Post- trands metal	<pre>il: Post th flat Post- rith sinc es th wedge None steel steel id</pre>
ressi	udina ned w erse:	ensic ally	udina ned w erse: ned w	udina erse: ned s d in	udina ed wia ed wia ned w udina ed wia erse: erse: flize
Prest	Longitudinal: Post- tensioned with cables Transverse: Post-	censioned Post-tensioned diagonally	Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables	Longitudinal and Transverse: Post tensioned strands encased in metal tubes	Longitudinal: Post- stressed with flat jacks fransverse: Post- tensioned with singl strand cables Longitudinal: Post- Longitudinal: Post- stressed with wedges Transverse: None - although light reinforcing steel was utilized
rse		100	4 - 14 L		238 40 L 0 4 4 7 0 0 L
Amount Transverse (psi)	29-142	128	107	210	28
Prestre gitudin (psi)	299	370	213	200	840 980
Pr Longi (p	5	Υ Υ	~	ř.	α 6
Thickness Longitudinal (in) (psi)					
Thickn (in)	6.0	6.0	8.0	6.3	4.7
┝				~	
Width (ft)	25	25	197	30 (approx	8.2
£-	-			1ua] 32')	1640 (flat jacks placed every 229') 1640 (wedges placed every 393')
Length (ft)	788	394	656	3280 (individual slabs 492')	1649 (flat jack placed eve 229') (medges pla every 393'
<u>ج</u>			ţq	(in sla	(f1 p1a 229 wer
Type Facility	Road	Road	Airfield Pavement	Road	a d
Fa	Rc	Rc			d Road
5	ten,		port,	rmany	erlan
Location	lstet ny		a Air ia	l, Ge	Switz
ت ا	1954 Margelstetten, Germany		Vienna Airport, Austria	Bingen, Germany	Naz,
Da te	1954		1954	1955 E	1955 Naz, Switzerland
L			L	<u> </u>	L

?

[]			· · · · · ·			
References (D)	9, 38, 54	54	54	54	54, 57	54, 57
Pavement Condition	Good as of 9, 38, 1959 as of 9, 38,	Unk	Unk	Unk	Unk	Unk
Friction Reducing Layers & Sublayers	Concrete overlay on kraft paper on asphalt concrete level-up on existing 6" PCC pavement. Assumed max. f between overlay and building paper to be 1.2	Un k	Unk	Unk	Unk	Unk
Prestressing System	Longitudinal and Transverse: Post- tensioned strands in metal conduit	Precast slabs 30'x 9' post-tensioned in both directions with cables	Longitudinal: Post- tensioning Transverse: Post- tensioning	Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables	Longitudinal: Post- stressed with wedges	Longitudinal: Pre- tensioned with steel cables Transverse: Pre- tensioned with steel cables
Amount Transverse (psi)	425 175	250	107	185	0	355 (@ 68 ⁰ F)
Thickness Longitudinal Transve (in) (psi) (psi)	425 175	250	228	356-498	840-1330	355 (@ 68 ⁰ F)
Thickness (in)	4.0	6.0	8.0	6.3	5.0	3.2
Width (ft)	75 75	200	24	30	18	24.5
Length (ft)	80 80	200	427	5906	6575 (200', 400' 600' slabs)	1641
Type Facility	Taxiway Overlay (Placed over 6" PCC pave- ment)	Airfield Pavement	Road	Road	Road	Road
Location	1956 San Antonio International Airport, San Antonio, Texas	1956 Finningly, Great Britain	1956 Vienna, Austria	1957 Wolfsburg, Germany	1957 Moricken-Brunegg Switzerland	1957 Cesena, Italy
Date	1956	1956	1956	1957	1957	1957

I ft = 0.305 m, 1 inch = 25.4 mm, 1 PSI = 6.89 kPa

					······
References (D)	9, 39, 54, 57		1, 21, 39, 54, 57	54	54
Pavement Condition	Slabs loaded to failure in experi-	project	_	Unk	Unk
Friction Reducing Layers & Sublayers	Concrete slabs on waterproofed paper on ½ layer of sand on variable		Concrete pavement on NP 1" layer of sand on 6" granular subbase. Tests indicate coef- ficient of friction approx. 0.7	Concrete pavement on Unk waxed paper on 3" concrete layer	Unk
Prestressing System	Longitudinal and Transverse: Post- tensioned steel bars in steel conduits		Longitudinal: Post- tensioned strands in metal conduit	Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables	Longitudinal: Post- stressed Transverse: Post- tensioned
Amount Transverse (psi)	Variable	Variable	0	250	142
Thickness Longitudinal Transverse (in) (psi)	400	200	450	300-350	235
Thickness (in)	0.0	0.6	5.0	5.0	6.0
Width (ft)	25 (2/ 12.5' slabs)	25 (2/ 12.5' slabs)	12	230	37
Length (ft)	200	200	530 (30',100', 400' slabs)	290	164
Type Facility	Experi- mental Pavement		Experi- mental Highway Pavement (built by Jones & Laughlin Steel Co.)	Airfield Pavement	Road
Location	1957 Sharonville, Ohio		Pittsburgh, Pennsylvania	1958 Gatwick Airport, London (Great Britain)	1958 Strosshof, Austria
Date	1957		1957	1958	1958

1 ft = 0.305 m, 1 inch = 25.4 mm, 1 PSI = 6.89 kPa

.

ħ

				1	1
References (D)	54 54	10, 13, 54	54	54, 57	13, 54
Pavement Condition	Unk Unk	1960 as of	Unk	Unk	Unk
Friction Reducing Layers & Sublayers	Unk Unk	Concrete pavement on Good as of 1' layer of com- pacted sand	Unk	One blowup occurred on a similar pre- stressed pavement constructed at the same time. Pave- ment thickness was 7.9" instead of 6.3"	Concrete pavement on Unk double layer of paper on 3/4" fine sand on 17" stone subbase
Prestressing System	Longitudinal: Post- tensioned with cables Transverse: Post- Post-tensioned with bars diagonally with cables at 30 ⁰ to CL	Longitudinal: Pre- tensioned strands in individual 4'x39' precast panels. Transverse Precast Transversally with post-tensioned, grouted cables.	Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables	Longitudinal: Post- stressed with wedges	Longitudinal: Post- tensioned with cables Transverse: Post- tensioned with cables
Amount Transverse (psi)	108 158	470	305	0	165
Prestress AmountThicknessLongitudinal Transv(in)(psi)(psi)(psi)	495 426	620 (center area) 810, 935 (edge area)	305	1138	165
Thickness (in)	6.0 6.0	4.0	6.0	6.3	5.5
Width (ft)	18 36	75 (18/4' panels)	150	25	86
Length (ft)	197 134	1150	450 (3/150' slabs)	2625 (6 wedge jacking joints ~425' on centers)	9842
Type Facility	Road Road	Taxiway	Airfield Pavement	Road	Runway
Location	Osaka City, Japan	1958 Melsbroek Airport, Belgium	1958 Woodbourne, New Zealand	958- Anif-Saltzburg, 59 Austria Austria	1959 Hopsten, Germany
Date	1958	1958	1958	1958- 59	1959

I		· · · · · · · · · · · · · · · · · · ·			·····
References (D)	8, 9, 54, 57	11, 54			57, 13, 54,
Pavement Condition	Good to fair as of 1976. Pavement avement good con- dition but serious joint problems were were continuing	Unk	Unk	ч к С	Some cracking occurred tempera- tures and two com- pression pression at actives at actives oints joints
Friction Reducing Layers & Sublayers	Concrete pavement on polyethylene sheet- ing on ½ sand layer on 12 stabilized aggregate base. Estimated coeffi- cient of friction = 0.75	Concrete pavement on paper on 4" of sand asphalt on gravel	of friction less than 0.5		Concrete pavement on Some 3/4" layer of sand cracl on 7.9" base course occur on sandy silt temp subgrade ture two fail 30in 30in
Prestressing System	Longitudinal: Post- tensioned tendons in flexible metal conduit Transverse: Post- tensioned tendons in rigid metal conduit	Longitudinal: Pre- tensioned wire (227 psi) + Post- c+rocsing with flat		Longitudinal: Pre- tensioned wire Transverse: Post- tensioned cables in conduits	Longitudinal: Post- stressed with flat jacks Post- Transverse: Post- tensioned with cables
Amount Transverse (psi)	150	142	142	142	ч Ч
Prestress AmountThicknessLongitudinal Transv(in)(psi)(psi)(psi)	350	654	654	227	1650 (with pave- ment tempera- ture @ 90 ⁰ F as measured during June, 1961)
Thickness (in)	0.6	6.0	6.0	0.0	7.1 (9.8" at interme- diate jacking locations
Width (ft)	75 (3/ 25' slabs)	147.5 (6/ 24.7' 51abe)	74 74 (3/ 24.7 24.7	24.7 24.7 24.7 slabs)	148
Length (ft)	1500 (3/500' slabs)	3200 (8/400' slabs)	3609 (10/361' slabs)	1425 (4 slabs of variable length)	11,100 (interme- diate jack- ing loca- tions every 1082')
Type Facility	Taxiway	Runway	Taxiway	Apron	Runway
Location	Biggs Air Force Base, El Paso, Texas	1959 Vienna Airport, Austria			1959 Melsbroek Airport, Belgium
Date	1959	1959			1959

(Continued)
D-1
TABLE

ThicknessPrestress AmountFriction ReducingPavementReferences(in)(psi)(psi)(psi)(D)(D)	54 213 Longitudinal: Post- Unk Unk 54, 57 tensioned Transverse: Post- tensioned	<pre>,569 107, 273 Longitudinal: Post- Concrete pavement on During 13, 54, 57 pre- greesed with flat kraft paper on 3/4" 1961 blow- gacks and layer on cut- up occurred Transverse: Post- back asphalt sprayed in 2 of the tensioned with steel on compacted silty 3.2" slabs. Another strands strands subgrade in 1962 and joint faulting occurred in 1963.</pre>	50 ⁰ F 0 Longitudinal: Post- Unk Unk 54 stressed with flat jacks	0 Longitudinal: Pre- Unk Unk 54 tensioned with strands	225 Longitudinal and Concrete pavement on Unk 9, 54 Transverse: Post- two lavers of polv-
455-654213Longitudinal:Post- tensioned4.0,284,427,569107, 273Longitudinal:Post- tensioned4.0,284,427,569107, 273Longitudinal:Post- stressed with flat jacks4.0,284,427,569107, 273Longitudinal:Post- stressed with flat jacks4.0,284,427,569107, 273Longitudinal:Post- stressed with flat jacks4.0,284,427,569107, 273Longitudinal:Post- stressed with flat jacks4.0,284,427,569107, 273Longitudinal:Post- stressed with flat stressingvalues-tensioned with steel stressingLongitudinal:Post- stressed with flat jacksNone at 50°F0Longitudinal:Post- jacks3840Longitudinal:Pre-	. 4.0, 284.427,569 107, 273 Longitudinal: Post- stress are (above pre- stress are jacks with flat stressing reasioned with steel actual pre- stressing varied yraiues (post- greatly) (congitudinal: Post- stressed with flat jacks with flat jacks with flat jacks with flat	None at 50 ^o F 0 Longitudinal: Post- stressed with flat jacks 384 0 Longitudinal: Pre- tensioned with	384 0 Longitudinal: Pre- tensioned with	strands	Longitudinal and Transverse: Post- tensioned tendons in steel conduits
	25 6.3	26 3.2,	.5 6.0	.5 4.7	
(ft)			34.5	28.5	75
Length (ft)	2953 (6/492' slabs)	11,484 (26/443' slabs)	4265	328	512
Type Facility	Road	Road	Road	Road	Taxiway
Location	Dietersheim, Germany	1960 Between Zwartberg Road Belgium Belgium	1960 Boudry, Switzerland	1960 The Hague, Netherlands	1960 Lemoore Naval Air Station, California
Date	1959	960	960	960	960

	· · · · · · · · · · · · · · · · · · ·		
References (D)	19, 54	40	22, 57
Pavement Condition	Unk	Good as of 1963 as of	Good as of 1967 al- though though restress- ing has been trequired teach year to account for creep losses.
Friction Reducing Layers & Sublayers	Concrete pavement on 1" sand layer on 4" of lean concrete on clay subgrade	Concrete pavement on Good as of 40 impervious paper on 1963 1" layer of sea sand on 12" thick subbase on 11ty clay subgrade	Concrete pavement on Good as of 22, 57 two sheets of poly- ethylene with a slip though - addrive sandwiched pavement between two sheets restress- of building paper on ing has 4" of lean concrete been on sllv sand sub- grade. Coefficient to account of friction approx. for creep 1.0.
Prestressing System	Longitudinal and Concrete pavement on Unk Transverse: Post- 1" sand layer on 4" tensioned steel bars of lean concrete on wrapped with clay subgrade impregnated fabric to prevent bond	142, Longitudinal: Post- minimum stressed with flat throughout jacks and elastic slab jautments Post- transverse: Post- tensioned wire strands	Longitudinal: Post- Concrete pavement on Good as stressed with jacks two sheets of poly- 1967 al- Transverse: No transverse prestress- additive sandwiched pavement ing utilized between two sheets ing has of building paper on ing has 4" of lean concrete been on silty sand sub- grade. Coefficient to accou of friction approx. [for cree
Amount Transverse (psi)	-00-	142, minimum throughout slab	0
Thickness Longitudinal Transverse (in) (psi) (psi)	100+	1700, minimum 255 psi throughout slab	1200, minimum 100 residual prestress at lowest temperature
Thickness (in)	6.5	6.4	5.0 7.0
Width (ft)	150	148	26 26
Length (ft)	132 (9/15' slabs)	7700 (jacking in- tervals every 645')	d 1060 (active joints 280' from each end) (active joints 280' from each end) from each
Type Facility	Apron	Rur	Road
Location	1960 Gatwick Airport, Apron London (Great Britain)	1961 Maison Blanche Airfield, Algiers Algeria	1961 Winthorpe. Nottinghamshire (Great Britain)
Date	1960	1961	1961

TABLE D-1 (Continued)

ł

(Continued)
D-1
TABLE

References (D)	34, 57	23	57
Pavement Condition	Good as of 1968 al- 1/8" lon- gitudinal crack crack occurred approx. 3½ years after con- struction in the middle 2/3 of the road	Unk	Unk
Friction Reducing Layers & Sublayers	Concrete pavement on Good as of 34, bond breaker con- sisting of two sheets of two ethylene between two gitudinal sheets of kraft paper on 5.9" thick approx. 3½ cament stabilized after con- struction in the middle 2/3 of the road	Concrete pavement on two layers of paper on soil cement base	Unk
Prestressing System	Longitudinal: Post- stressed with screw jacks	Longitudinal: Post- tensioned tendons Transverse: Post- tensioned tendons	Longitudinal: Post- tensioned with teflon coated 7-wire strands Transverse: No pre- stressing utilized although some con- ventional steel was placed
Amount Transverse (psì)	0	unk Unk	0
Thickness Longitudinal Transve (in) (psi) (psi)	1850, initial (Effective prestress treperature dependent. Over 5 year period approx. 40 psi @ 340F to 1800 psi @ 1000F)	341	238
Thickness (in)	4.7	6.0 6.0	6.0
Width (ft)	19'8"	197 (8/ 24.6' slabs) 98 (4/ 24.6 slabs)	14
Length (ft)	1450 (active joint 287' from ment) ment)	13,100 (42/312' slabs) 10,500 (33/318' slabs)	300
Type Facility	Indus- trial Factory Road	Runway Taxiway	Road
Location	1964 Lier, Belgium	1965 Portugal	1971 Milford, Delaware Road
Date	1964	1965	L76L

References (D)	41, 57	48, 57
Pavement Condition	Good as of 1976. Al- 1976. Al- Joints had been removed placed. Some trans- verse verse has been observed	Good as of 1976. Al- though one crack and one oval shaped crack had occurred.
Friction Reducing Layers & Sublayers	Concrete pavement on Good as of two layers of poly- 1976. Al- ethylene sheeting though on a 6" cement joints had stabilized subbase been removed placed. Some trans- verse verse has been observed	Concrete pavement on Good as of two layers of poly- 1976. Al- ethylene sheeting on though one sand wept over a 3" transverse bituminous concrete crack and base on a 9" subbase one oval crack had occurred.
Prestressing System	Longitudinal: Post- tensioned wire transverse: No pre- stressing applied but No. 3 or No. 4 bars placed 0 30" centers	Longitudinal: Post- tensioned with 7- wire strand in steal tubing or propylene with poly- propylene transverse: No pre- stressing utilized but No. 3 or No. 4 bars were placed every 30"
nount Transverse (psi)	o	0
Thickness Longitudinal Transverse (in) (psi) (psi)	200 at (applied at ends of slab)	204 (design stress after losses at the pave- ment)
Thickness (in)	6.0	6.0
Width (ft)	24	24
Length (ft)	3200 (consists of six slabs ranks from ranging from ranging from in length)	200
Type Facility	Road	Road
Location	1971 Dulles Inter- national Airport	1972 US 222, Berks County, Pennsylvania
Date	1791	1972

ערהידי הווסל	
	-1
a rav m	LADLE

References (D)	7
Refere (D)	23 23
Pavement Condition	Good as of 1976. Service- Service- Index rating was 3.9. Narrow trans- verse verse crack was observed in 2 of the 23 slabs. Repairs made at 2 of the 19 joints.
Friction Reducing Layers & Sublayers	Concrete pavement on two layers of poly- ethylene on sand wept over 6 bituminous base on 6" unstabilized subbase
Prestressing System	Longitudinal: Post- Concrete pavement on Good as of 53, 57 tensioned with 7- tensioned with 7- wire strand in poly- propylene conduit boly- bituminous base on rating 6" unstabilized was 3.9. Narrow subbase subbase base crack was observed in 2 of the 23 slabs. Repairs Repairs had been made at 2 of the 19 of the 19
Amount Transverse (psi)	o
Thickness Longitudinal Transverse (in) (psi) (psi)	244 (design stress after losses at the pave- ment) ment
Thickness (in)	ę. 0
Width (ft)	24
Type Length Facility (ft)	13,232 (23,600' slabs nomial)
Type Facility	Road
Location	1973 Route 114, Cumberland County, Pennsylvania
Date	1973

general knowledge of the state-of-the-art of prestressed pavement construction could be ascertained. Second, from this collection of background material, enough key information could be made available to conduct a proper analysis into the rehabilitation possibilities of prestressing methods.

Table D-1 is a chronological listing of 58 separate completed prestressed pavement projects. To the extent possible, the information includes project location, date of construction, type of facility, project length, width, and thickness, prestress amount and type of prestress system, and pavement performance.

The following observations partially summarize the material contained in the table:

1. Of the 58 projects reviewed, a minimum of 64 separate pavements were constructed. They can be classified as 36 roads, 11 runways, 7 taxiways, 7 miscellaneous airfield pavements, and 3 experimental. This results in 56% of the prestressed pavements reviewed being roads, 39% airfield pavements, and 5% experimental. No project was found which utilized prestressing techniques for repair of rigid pavements already in service.

2. Chronologically, the number of projects can be broken out as follows:

Year	No. of Projects Constructed
1946	2
1947	1
1949	2
1950	1
1951	4
1952	2
1953	4
1954	8
1955	2
1956	3
1957	5
1958	6
1959	5
1960	5

1961	2
1964	1
1965	1
1971	2
1972	1
1973	1

A weighted average of the above data indicates that the mean construction year occurred between 1956 and 1957. Averaging only the beginning and ending years (1946 and 1973) provides an average year of 1960. This is an indicator that the number of new prestressed pavements has been decreasing in recent years rather than increasing or simply that fewer are being reported in the literature.

3. The number of reported prestressed pavements, ordered from high to low, are listed below by the countries in which they were constructed:

Country	No. of Projects
Great Britain	13
United States	10
Germany	8
Austria	5
Belgium	5
France	5
Switzerland	3
Algeria	2
Netherlands	2
Australia	1
Italy	1
Japan	1
New Zealand	1
Portugal	1

The majority of prestressed pavement projects were constructed in Europe although a number have been constructed in the United States.

4. Of the projects reviewed, the number of types of prestressing systems and prestressing amounts are summarized as follows:

Prestressing System and Number			Average Prestress Amount
Α.	Pretensioned:		
	Longitudinal	5	508 psi (3503 kPa)
	Transverse	1	355 psi (2448 kPa)
	*Diagonal	0	-
		D-25	

B. Post-Tensioned:"

	Longitudinal	33	319 psi (2200 kPa)
	Transverse	39	197 psi (1358 kPa)
	*Diagonal	8	-
С.	**Poststressed:		
	Longitudinal	19	821 psi (5661 kPa)
	Transverse	0	
	*Diagonal	0	-

It is apparent from the above data that post-tensioning systems have been the most requently used. For these systems the average amount of prestress used is 319 psi (2200 kPa) longitudinally and 197 psi (1358 kPa) transversally. The next most commonly used system is poststressing. The literature only revealed poststressing in the longitudinal direction with an average applied prestress of 821 psi (5661 kPa). This value represents an average upper amount and can vary significantly with increasing or decreasing pavement temperatures. The total number of pretensioned pavements is somewhat distorted to the low side due to the fact some of the pavements which were poststressed or post-tensioned were composed of precast, pretensioned units. But, for those pretensioned pavements reported, longitudinal and transverse prestress values of 508 psi (3503 kPa) were calculated, respectively.

5. A summary of the various project average lengths, widths, and thicknesses are as follows:

Type Facility	Avg. Length (ft)	Avg. Width (ft)	Avg. Thickness (in.)
Road	1988 (606m)	23 (7m)	5.8 (14.7cm)
Runway	5634 (1717m)	150 (46m)	6.4 (16.3cm)
Ta xi way	3590 (1094m)	79	6.0 (15.2cm)
Misc. Airfield	537 (164m)	171 (52m)	6.1 (15.5cm)
Experimental	677 (206m)	16 (5m)	7.0 (17.8cm)

The averages shown for the above data are informative but can be deceiving. For example, the lengths of roads range from 61 to 13,232

*Note 1: Diagonal prestressing amounts were separated into longitudinal and transverse components.

**Note 2: Average represents upper limit of values reported.

ft, (19 to 4033m) widths range from 8.2 to 37 ft, (2.5 to 11.3m) and thickness range from 3.2 to 8.0 in. (8.1 to 20.3cm).

5

Selective Examination of Variables Affecting Prestressing Techniques For Use In Pavement Rehabilitation

The information contained in the literature is particularly informative in more carefully examining prestressing methods as a possible rehabilitation technique. A number of the factors of importance in the design of new prestressed pavements are also important when considering prestressing in rehabilitation of existing pavements. Three of these factors considered to be of the most importance are coefficient of friction between the slab and its underlying layer, expected distress mechanisms of prestressed pavements and material properties of in-service concrete pavements.

In addition to the problems common to new prestressed construction and rehabilitation are others unique to rehabilitation. Probably the most important of these is that of how to install the prestressing tendons in the pavement.

Slab Friction

In this research effort the problem of overcoming slab friction was identified as a major consideration in applying prestressing methods to existing rigid pavements. Timms (<u>D 12</u>) has noted that a 50 percent reduction in pavement friction could result in a 30 to 40 percent reduction in the required prestressing force.

The force that resists movement of pavement on its supporting foundation is complex. It is a combination of friction and cohesion and resembles the direct-shear test used in geotechnical engineering. Since the subgrade and base materials differ from one area to another, the approach taken in the rehabilitation study is to treat the force as friction. For comparison purposes, the coefficient of friction will be reported whenever possible.

The first two laws governing friction were first put forth by Leonardo daVinci and the third by Coulomb in 1785. These three laws are (D 25):

1. Frictional force is proportional to the normal force.

2. Frictional force is independent of the area of contact, and

3. Frictional force is independent of the sliding speed. The first two laws are generally accepted as being true, the third law is not known as being true for all cases ($D \ 20$, $D \ 25$). The coefficient of

D--28

friction depends on many factors such as surface smoothness, available moisture and temperature. There are no theories that adequately treat dry friction and thus the laws of friction are empirical laws which are based principally on observations. Friction between lubricated surfaces lends itself to a more theoretical approach.

The kind of friction acting on pavements may be considered to be dry friction. Although if slip additives are applied or injected beneath pavements or if significant moisture is present, this could partially change to the lubricated type of friction. For dry friction, there can be two types of coefficients used in the following general formula:

f = uN where f = frictional force

 μ = coefficient of friction N = normal force

These two coefficients occur for a static case and for a kinetic (sliding) case. Kinetic coefficients of friction are often referred to in the literature as the "steady" or "sliding" coefficient of friction. Some of the kinetic coefficient of friction values reported actually continue to increase slightly as movement of the slab progresses. But, it is helpful to delineate between the static and kinetic condition of friction whenever possible. Discussion of slab friction will be primarily in terms of these (static and kinetic) coefficient of friction values. These values will act as a common denominator between the various experiments and tests reviewed.

It should be recognized that what is generally considered to be "true" coefficient of friction values may not always be directly applicable to pavement slabs. Many of the experiments reviewed showed that the coefficients of friction were often significantly influenced by the shearing strength of the layer underlying the slab. The resulting slab displacements often occurred in this underlying layer - not between the slab and the layer. This should be remembered while reading the following information obtained from the literature.

Slab movements of any concrete pavement are restrained to some extent by the friction between the slab and the subgrade support layer. For relatively short pavement slabs this kind of restraint does not appear to be of great significance. For much longer slabs, particularly for prestressed concrete pavement, support layer restraint commonly

referred to as "subgrade restraint" can be of great significance. Subgrade restraint can lead to induced compressive stresses in a slab when it expands and to induced tensile stresses when the slab attempts to contract (\underline{D} 14). Since concrete is weakest in tension, any potential tensile stresses in the slab can cause problems for a pavement. Subgrade friction tensile forces can be additive to load induced tensile stresses and will tend to counteract any prestressing applied to the pavement. These observations are partially depicted in Figure D-5.

It is reasonable that if the coefficient of friction between the slab and its underlying layers is high enough and cannot be reduced, prestressing methods would be ineffective in either new construction or in rehabilitation applications. Therefore, realistic ranges of slab friction values should be obtained to determine how effective rehabilitation prestressing techniques may be. First, an examination of friction values obtained from non-friction reducing construction is appropriate.

The earliest friction testing results in the literature were conducted by the U. S. Office of Public Roads and was first reported by Goldbeck (<u>D 47</u>) in 1917 and again in 1924 (<u>D 51</u>). The testing program was performed at the Arlington Experimental Farm belonging to the U. S. Department of Agriculture. Concrete slabs 6 ft (1.8 m) long by 2 ft (0.6 m) wide and 6 in. (15.2 cm) thick were cast on various types of subbases. The subbases ranged from smooth clay to 3 in. (7.6 cm) broken stone.

Force was measured with a spring dynamometer and applied to the test slabs by two men using a light steel rail as a lever. Displacements were measured by use of a Berry strain gage.

Table D-2 shows some of the results obtained in this testing program. In this table at a displacement of 0.050 in. (0.127 cm), the slabs were sliding and had reached their maximum friction values. Thus, the coefficients of friction shown at this displacement may be considered to be the static coefficients. As one might expect, the coefficient of friction for the 3 in. (7.6 cm) broken stone was the largest of all the subbase types but surprisingly was not much larger than those reported for the clay subbase at a 0.050 in. (0.127 cm) displacement.

Teller and Bosley (D 50) in 1930 reported the results of additional test slabs constructed by the Bureau of Public Roads in 1926. The test slabs were also 6 ft (1.8 m) long by 2 ft (0.6 m) wide and 6 in. (15.2 cm)

From Reference D14

thick. Coefficient of friction values were obtained for these slabs on varying subgrade conditions which ranged from dry to frozen. Table D-3 shows the coefficient of friction (static) for the first test conducted on each subgrade and the slab displacement occurring at this maximum friction value. The information contained in Table D-3 indicates that the wet subgrade produces the lowest coefficient of friction and a frozen subgrade can have an extremely high value.

The fact that the wettest subgrade exhibited the lowest friction may be of possible value in prestressing existing pavements. Water may be considered for use as an injected lubricant between the slab and underlying pavement layers prior to prestressing such pavements.

Teller and Sutherland $(\underline{D} \ 49)$ reported in 1935 the results of friction tests conducted on 4 ft (1.2 m) by 4 ft (1.2 m) concrete slabs placed on a compacted silty loam subgrade. The thicknesses for these slabs varied from 2 to 8 in. (5.1 to 20.3 cm). Testing of these slabs involved moving them forward and backward through a displacement of 0.040 in. (0.102 cm) several times until the subgrade resistance became stabilized. In the same manner displacements of 0.070 and 0.100 in. (0.178 and 0.254 cm) were accomplished. The initial displacement level of 0.040 in. (0.102 cm) was chosen because this was felt by the authors to represent actual field movements for a 40 ft (12.2 m) slab.

It was concluded that the coefficient of friction (kinetic) values decrease with increasing slab thicknesses. This can be seen in Table D-4. The coefficient of friction (kinetic) reported for the 2 in. (5.1 cm) thick slab is approximately 1.4 times greater than for that reported for the 8 in. (20.3 cm) slab at the 0.040 in. (0.102 cm) displacement level. Additionally, Teller and Sutherland noted from their tests that the resistance to slab movement will be greater for the first movement of a new pavement than it will after the concrete has expanded and contracted a number of times.

A possible explanation for the coefficient of friction values increasing with decreasing slab thickness may be due to the influence of the silty loam Mohr's envelope. Assuming that the Mohr envelope for this soil has a cohesion intercept and increased with a small angle of ϕ , the thin slabs tested should be expected to have, relatively, higher coefficients of friction than for thicker slabs tested on the same soil.

	5) 00140-000				
	Coefficient of Friction				
Subbase Type	@ 0.001 in. Displacement	@ 0.010 in. Displacement	@ 0.050 in. Displacement		
Level Clay	0.55	1.30	2.07		
Uneven Clay	0.57	1.29	2.07		
Loam	0.34	1.18	2.07		
Level Sand	0.69	1.24	1.38		
3/4 in. Gravel	0.52	1.10	1.26		
3/4 in. Broken Stone	0.44	0.92	1.09		
3 in. Broken Stone	1.84	1.78	2.18		

TABLE D-2. Coefficient of Friction Values for Various Subbase Types and Displacements as Reported by Goldbeck

1 in. = 2.54 cm

From Reference D47

TABLE D-3.	Maximum Coefficient of Friction Values and
	Associated Displacements for Four Subgrade
	Conditions

Subgrade Condition	Maximum Coefficient of Friction	Displacement at the Maximum Coefficient of Friction (in.)
Dry	2.0	0.05
Damp	2.5	0.04
Wet	1.7	0.12
Frozen	>8.5	>0.06

1 in. = 2.54 cm

Data From Reference D50

More specifically, by increasing the slab weight (or normal stress), the resulting shear strength of the soil would increase less rapidly.

Sparkes (D 55) in 1939 published the results of friction tests conducted at the Road Research Laboratory in Great Britain. The results were reported for concrete slabs placed on a clinker base course. The slab sizes were 4 ft (1.2 m) by 2 ft (0.6 m) and 7 ft (2.1 m) by 3.5 ft (1.1 m). The load was applied to the test slabs by the use of springs and horizontal displacements were recorded with dial gauges.

The results were reported in terms of slab resistance to movement (psf) versus slab movement. To convert this to coefficient of friction values, the unit weight of the concrete in the slabs is assumed to be 150 pcf (2403 kg/m³). Making the necessary calculations results in coefficient of friction (static) values of 3.7 for the 4 ft by 2 ft (1.2 m) by 0.6 m) slab and 3.1 for the 7 ft by 3.5 ft (2.1 m by 1.1 m) slab both taken at a displacement of 0.065 in (0.165 cm). These values were obtained on the first loading cycle of the two slabs. Sparkes noted that subsequent cycles resulted in considerably less force to produce a given displacement.

Scott (D3) in 1955 observed that other research work done at the Road Research Laboratory found slab friction values of 1.25 to 2.0 when using a layer of sand between the slab and the base.

Highway Research Board Special Report 78 (<u>D 54</u>) reports that values of slab friction in the range of 1.5 have been found for slabs placed directly on granular subbases.

Fribert (D2) reported in 1955 that the coefficient of sliding friction is 1.5 or more on rough subgrades and between 1.0 and 1.5 on sandy, even subgrades.

In 1954, Friberg (D 56) reported an average coefficient of friction for a 100 ft (30.5 m) pavement slab. This slab was 20 ft (6.1 m) wide with a 9 in. - 7 in. - 9 in. (22.9 cm - 17.8 cm - 22.9 cm) thickness cross section on paper over a sand-loam subgrade. The maximum slab friction value reported was approximately 1.5. An interesting quote from Frigerg's paper is: "Frictional coefficients for long slabs may be smaller than for short slabs, as they are also smaller for increasing thickness," Given that this statement is correct, then the magnitude of this potential

TABLE D-4.	Coefficient of Friction Values For Varying
	Slab Thicknesses and Displacements on a
	Silty Loam Subgrade

Coefficient of Friction

Slab Thickness (in.)	0.01 (in.)	0.02 (in.)	0.03 (in.)	0.04 (in.)		0.10 (in.)
8	0.8	1.2	1.5	1.8	2.1	2.2
б	0.9	1.3	1.6	2.0	2.4	2.5
4	1.1	1.5	1.8	2.2	2.8	3.1
2	1.3	1.7	2.1	2.5	3.3	3.5

1 in. = 2.54 cm

From Reference D49

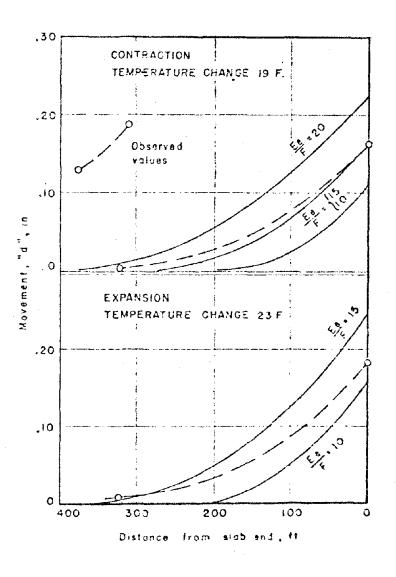
decrease in slab friction could be of interest in prestressing "conventional" pavements.

Friberg reported on another pavement located near Stilesville, Indiana. This pavement was constructed as CRCP with a length of 1310 ft placed directly on a clayey silt subgrade. The subgrade had an average Liquid Limit of 33 and Plasticity Index of 12.

By using an equation and measured movements for two separate temperature changes, Friberg calculated the range of coefficient of friction values which could be expected at the ends of this pavement. These values were estimated to range between 0.3 to 1.5. Figure D-6 shows the actual and calculated movements for a contraction temperature change of $19^{\circ}F$ (11°C) and an expansion temperature change of $23^{\circ}F$ ($13^{\circ}C$) for this particular Stilesville pavement.

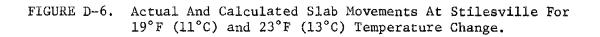
The values of coefficients of friction so computed will depend on the actual stresses and strains in the CRCP pavement and are certainly affected by the expected cracking in these kinds of pavements. But, the range of frictional values presented should include the "actual" value for the Stilesville pavement.

Cholnoky (<u>D</u> 6) in 1956 presented the results of data collected on four test slabs. These concrete test slabs were 3 ft by 8 ft by 7 in. (0.9 m by 2.4 m by 17.8 cm) and were constructed and tested prior to the prestressed pavement installation at Patuxent Naval Air Station in Maryland. The "pulling" test conducted on the four slabs produced the results shown in Table D-5. Figure D-7 shows details of the test setup.


TABLE D-5. Friction Tests Conducted Prior Prestress Pavement Construction At Patuxent Naval Air Station

Coefficient of Friction					
Slab No.	At Failure	During Sliding	Layers Below Test Slabs		
1	0.72	0.60	1" of sand covered with one layer of building paper.		
2	1.13	0.55	Two layers of building paper.		
3	0.77	0.63	Two layers of copper-clad Sisalkraft paper, with copper faces turned together with powdered soapstone between.		
4	*5.15	1.10	The prepared base directly, with no intermediate device.		

*2nd measurement was 2.45 (D57).


From Reference D6


1 in, = 2.54 cm

1 ft = 0.3 m1 in = 2.54 cm

From Reference D56

STRAIN MEASURING LINK SEE DETAIL B - 3'-0"X 8'-0"X 7"THK. TEST SLAB

4 SAND-CLAY

1 in. = 2.54 cm

DIRECTION OF PULL

HYDRAULIC JACK

From Reference D6

DETAIL "A"

FRICTION REDUCING

FIGURE D-7. Friction Test Setup Utilized By Cholnoky.

Up until the time of this testing, no coefficient of friction values of the size shown for Slab No. 4 had been observed in any of the literature.

Yoder and Witczak (D 26) in their pavement design textbook make the following quote: "Most engineers use an average f equal to 1.5 for making stress calculations (in pavements)."

In a 1960 testing program conducted by the Louisiana Department of Highways (\underline{D} 52), coefficient of friction (static) values were determined for concrete test slabs on a soil cement base. Three different subgrade surface cover treatments were evaluated but only one is of direct interest. This treatment was the application of 0.3 gal. per sq. yd. of asphalt emulsion to the soil cement surface as a curing membrane.

The test slab utilized was 9 ft (2.7 m) wide and 12 ft (3.7 m) long by 10 in. (25.4 cm) thick. The force was applied to the slab by use of a 100 ton (8.9 KN) hydraulic jack and slab movement was measured with Ames dials. The loading rate was 4,000 pounds (17,793 N) every 15 minutes until continuous sliding of the test slab occurred.

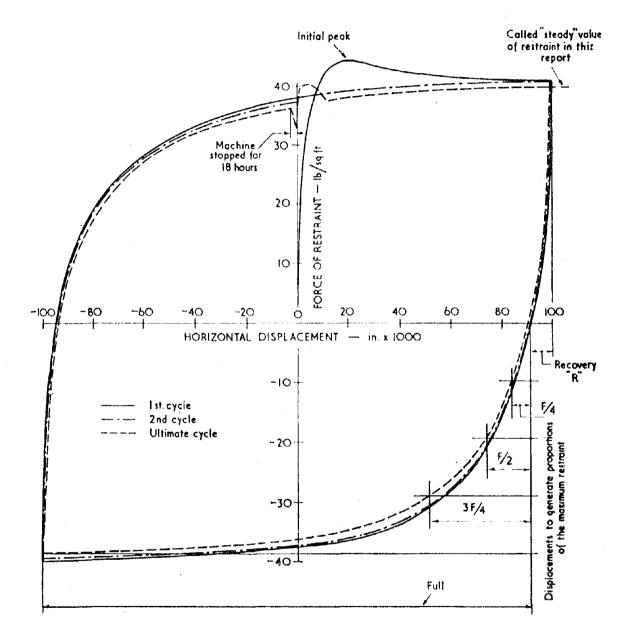
The concrete for the test slab was placed directly on the asphalt emulsion curing membrane. The soil cement was produced by stabilizing the subgrade with 12 percent cement by weight.

When tested under load, the slab moved 0.042 in. (0.107 cm) before sliding occurred. When sliding did occur the resulting coefficient of friction (static) was about 5.1. After this initial release of the slab, slab movement could be maintained with only 10,000 pounds (44,482 N) of force which equates to an approximate coefficient of friction (kinetic) of 0.8.

Stott (<u>D 14</u>) reported in 1961 the results of extensive laboratory testing of a small concrete slab on various underlying materials. The slab utilized in this testing program was 5 ft (1.5 m) by 4 ft (1.2 m) by 6 in. (15.2 cm) thick. The force was applied to slab by use of an electrically-driven screw and displacement was measured by dial and strain gauges. The rate of movement could be varied between 0 and 1/2 in. (1.27 cm) per hour which is similar to movements experienced by actual pavement slabs. Figure D-8 shows a typical force versus displacement loop utilizing this system. In Table D-6, the "force of restraint" is taken as the force required to move the slab divided by the area of the base of the slab,

and the "coefficient of restraint" is this same force divided by the weight of the slab. Thus the coefficient of restraint is reported in lieu of coefficient of friction.

The results contained in Table D-6 show that for a concrete test slab cast directly on one of the sharp sands an initial (static) coefficient of restraint value of 1.05 was obtained. The "steady" (kinetic) coefficient of restraint following several cycles reduced this to 0.66. The results of similar tests are also shown in Table D-6 but these other systems generally employed the use of paper or some other smooth material on which to cast the slab.


High-pressure lubricating oil approximately 1/8 in. (0.32 cm) thick was also placed on a smooth mortar base onto which the concrete slab was placed. Both the "initial" (static) and "steady" (kinetic) coefficient of restraint values reported were relatively low and ranged from 0.37 for "initial" and 0.33 to 0.49 for "steady" restraint conditions. Although these coefficients are low, the oil quickly squeezed out from underneath the slab. It is of interest to keep this experiment in mind while searching for materials to consider for injecting under existing rigid pavements.

Stott also tested a number of bitumens not reported in Table D-6. Bitumens were tested which had penetration values of 65, 100, 300 and 500. Thicknesses ranged from 0.115 to 0.275 in. (0.292 to 0.698 cm). This testing was accomplished to determine how bitumen induced restraint would depend on the following:

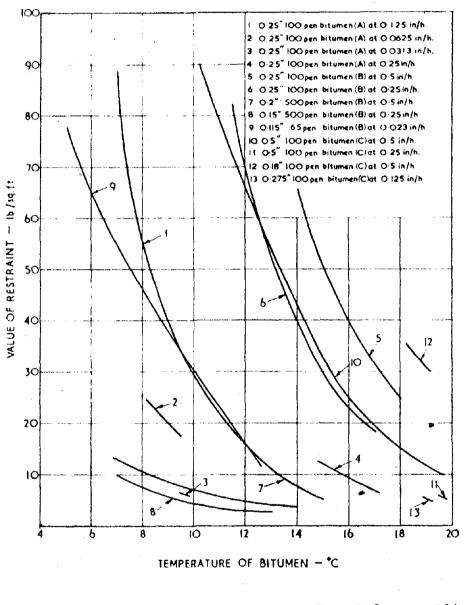
- (a) grade of bitumen
- (b) temperature of bituminous layer
- (c) thickness of bituminous layer
- (d) rate of slab movement

Figure D-9 shows some of the results of the testing performed. These curves indicate the following:

- (a) restraint is directly proportional to rate of slab movement
- (b) restraint is inversely proportional to thickness of the bituminous layer (after adjustment to a common test speed)
- (c) softer bitumens give less restraint than harder materials(after adjustment for differences in test speed and thickness)
- (d) restraint offered by bitumen increases significantly with decreasing temperature (roughly doubles for each 5.4°F (3°C) drop in temperature)

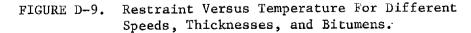
1 in = 2.54 cm1 psf = 47.88 Pa From Reference D14

FIGURE D-8. Typical Force/Displacement Curbes.


TABLE D-6. Slab-Moving Test Results for Materials Other Than Bitumens

			"Steady	' value of res	traint after several	displacements
Material under test	"Initial peak" restraint		Coeff. of Force of restraint		Formula of force (from	Displacement to
	Coeff. of restraint	Force of restraint (lb/sq.ft)	(from te 6in slat	(lb/sq.ft) est with	test with slab and extra wts) (lb/sq.ft)	generate ³ max. restraint (in)
Sand and aggregates						
Sharp sand A <t< td=""><td>0.74</td><td>50</td><td>0.62 0.69</td><td>42 46</td><td>10 + 0·47W 9 + 0·57W</td><td>0.035</td></t<>	0.74	50	0.62 0.69	42 46	10 + 0·47W 9 + 0·57W	0.035
Dune sand	0.78	54	0.69	48		0.035
Gravel	0.75	51	0.75	51		0.15
Limestone chippings (The above results are from 1in thick layers covered with concreting paper before casting the concrete)			0.26	37	6·5 + 0·46W	0.12
(from kin thick layer covered with concreting paper)			0.64	- 43	3 + 0·59W	0-060
Sharp sand B (from 1 in thick layer and concrete cast directly on the sand)	1.05	79	0.66	50	4·5 + 0·6W	0-50
Smooth mortar base	0.49	33	0.38	25	0 + 0.38W	0.007
Waterproof paper on smooth mortar base	0.90	60	0.65	43	10 + 0·48W	0.015
Hessian-backed paper on smooth mortar base	0.74	57	0.60	46		0.040
Polythene on sand (slab <i>placed</i> , not cast, on to polythene. Sliding between concrete and polythene)			0.43	29	—	0.022
Polythene on sand (slab cast on to polythene. Sliding between polythene and sand)			0-55	38	4·5 + 0·44₩	0.035
Polythene on smooth mortar base	Im	nracticable di	ue to rapid we		· ·	
High-pressure lubricating oil (cardium compound D) on smooth	1.11	74	0.17 to 0.34	11 to 22	· 2 + 0·14W	0.080
mortar base	0.37	28	0-33 to 0-49	25 to 37	_	0.002
Asphalts	• •		1			
in thick asphalt composed of 6 per cent of Shelphalt by weight to Thames Valley sand	0.86	67	0-3 to 0-6	23 to 46	0 + 0·3W	0.030
Ditto, but with 10 per cent of Shelphalt by weight	0.64	48		ults to previo	ous asphalt	

* Coefficient of restraint is the slab-moving force divided by the area of the base of the slab.


1 in. = 2.54 cm 1 psf = 47.88 Pa

From Reference D14

 1 in. = 2.54cm
 From Reference D14

 1 psf = 47.88 Pa

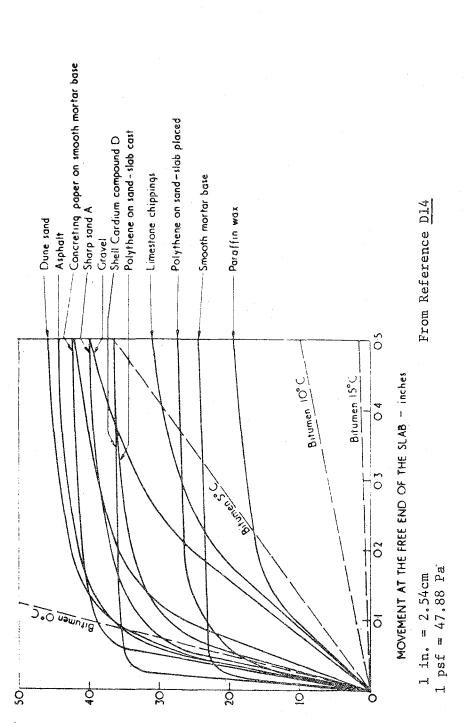


FIGURE D-10. Average Value of Subgrade Restraint Versus Movement at The Free End of A 6 In. Thick Slab.

1] .pz/ dl = BAJ2 GAOA A HTAENER TNIART289 BOARD8U2 FC BULAV BDAREVA

TABLE D-7. Movement of Free Ends of Concrete Pavement Slabs

Slab length	Movement (inches) of each free end for a temperature change of							
(ft) -	5deg C	10deg C	15deg C	20deg C	25deg C			
20	0.006	0.012	0.018	0.024	0.030			
40	0.012	0.024	0.036	0.048	0.060			
60	0.018	0.036	0.054	0.072	0.090			
100	0.030	0.060	0.090	0.120	0-150			
250	0.075	0.15	0.225	0.30	0.375			
500	0.15	0.30	0-45	0.60	0.75			

1 ft = 0.3 m1 in. = 2.54 cm From Reference D14

Additionally, it was noted that increasing the vertical force on the slab did not affect restraint. Thus one can conclude that increasing the thickness of pavement will not increase the restraint induced by a bituminous layer. It was also noted that the softer bitumens tested tended to flow out from beneath the slab.

Stott also added that restraint will vary throughout the length of a pavement slab. Restraint induced stresses will be zero at the slab ends and a maximum at the center of the slab. Therefore an approximate value of average restraint can be defined over half of a slab. The average subgrade restraint is plotted versus movement of the slab free end in Figure D-10 for the various materials tested. Companion data is also shown in Table D-7 which contains the calculated theoretical maximum movements of the free ends of concrete pavement slabs due to temperature changes taken over five such temperature changes and six slab lengths. Utilizing both Figure D-10 and Table D-7, comparisons can be made of the most promising restraint reducing materials. For example from Table D-7, the free end of a 500 ft (152 m) slab is calculated to move approximately 0.45 (1.14 cm) inches at 15°C (59°F) temperature change. Applying this movement value to Figure D-10 reveals that 100 penetration bitumen also at 15°C (59°F) offers the lowest value of restraint. However, it should be noted that restraint induced by bitumen at $5^{\circ}C$ ($41^{\circ}F$) significantly exceeds several other friction reducing materials tested for slab free end movements exceeding 0.20 in. (0.51 cm).

Comparing data in Table D-7 with data presented by Friberg (<u>D 56</u>), a rough check can be made on potential slab movement. Using a 500 ft (152 m) slab length (about 1/3 the length of the Stilesville slab) and a temperature change of 10°C (18°F), Table D-7 indicates the free end movement of a slab to be 0.30 in. (0.76 cm). Figure D-6 indicates the actual free end movement for the Stilesville 1,310 ft (399 m) CRCP slab to be approximately 0.17 in. (0.43 cm) for a 19°F (11°C) change in temperature. These two values are significantly different. Part of the difference can be explained by the fact that CRCP pavements are designed to crack and hence some of this cracking would tend to adsorb part of the slab movement. This would decrease the total movement of a free slab end. Sublayer restraint would also reduce in-service slab movements.

Data presented by Teller and Sutherland (<u>D</u> 49) allow for an additional check on potential slab movements. A 40 ft (12.2 m) long, 20 ft (6.1 m) wide and 6 in. (15.2 cm) thick concrete slab was constructed on a compacted silty loam subgrade and contained one transverse and one longitudinal joint. The total expansion and contraction of this slab was measured over a 5 year period. Typical values of total length changes for this slab ranged from -0.035 in, (-0.089 cm) (contraction) at 30° F (-1.1°C) or movement at one end of the slab of approximately 0.050 in. (0.127 cm). A calculation of potential temperature movement for this slab disregarding subgrade and other restraints can be made by using the following formula:

Total Slab Movement = e L ΔT

where

e = coefficient of thermal expansion (per °F)

L = length of slab (inches)

 ΔT = temperature change (°F)

So, using $e = 0.000005/^{\circ}F$ (0.000009/°C), L = 40 ft. (12.2 m), and $\Delta T = 70^{\circ}F$ (38.9°C), we obtain

Total Slab Movement = (0.000005) (40x12) (70) = 0.168 in. (or 0.427 cm) For the movement at one slab end, divide the total movement in half which results in a movement of 0.08 in. (0.213 cm). Therefore, the theoretical movement is approximately 1.7 times greater than the actual movement for the given temperature range. However, it should be noted that the transverse joints may have decreased the actual slab movement.

Chastain and Burke (D 5), Velz and Carsberg (D 43) presented information on slab movements measured on in-service pavements. Chastian and Burke obtained data on Illinois test pavements, Velz and Carsberg on Minnesota test pavements. Tables D-8 and D-9 show summaries of these measurements. From Table D-8 it is observed that typical slab end movements for a 20 ft (6.1 m) long slab ranges from 0.01 in. (0.025 cm) to 0.03 in. (0.076 cm) for varying seasonal air temperature changes. For 100 ft long slabs, movements ranging from 0.04 in. (0.102 cm) to 0.09 in. (0.229 cm) occurred. Table D-9 shows similar data for the Minnesota slabs with lengths ranging from 15 to 60 ft (4.6 to 18.3 m) with various expansion joint spacings. Movements for these slabs are slightly higher than for the measurements made in Illinois.

TABLE D-8. Measured and Calculated Seasonal Slab Displacements on Experimental Inservice Pavements in Illinois (Field Data from Reference <u>D</u>_5)

Length (ft.)	Slab ID Number	From/To Dates	*Seasonal Air Temperature Change (°F)	Measured Slab End Displacements (in.)
20	<u>1</u> B	Summer 1952/ Winter 1952-53	46	0.020
20	18	Summer 1955/ Winter 1956/57	65	0.028
20	18	Summer 1957/ Winter 1957-58	79	0.035
20	2В	Summer 1952/ Winter 1952-53	27	0.010
20	28	Summer 1955/ Winter 1956-57	64	0.030
20	2в	Summer 1957/ Winter 1957-58	71	0.025
100	3	Summer 1952/ Winter 1952-53	25	0.092
100	3	Summer 1955/ Winter 1956-57	58	0.080
100	Summer 1957/ 3 Winter 1957-58		40 - L	0.052
100	6	Summer 1952/ Winter 1952-53	21	0.060
100	6	Summer 1955/ Winter 1956-57	62	0.075
100	6	Summer 1957/ Winter 1957-58	39	0.045
100	7	Summer 1952/ Winter 1952-53	24	0.065
100	7 .	Summer 1955/ Winter 1956-57	60	0.072
100	7	Summer 1957 Winter 1957-58	39	0.042

*Temperature changes shown are diffferences between the average air temperatures at the time the joint openings were measured. 1 in. = 2.54 cm, 1 ft = 0.305 m, $1^{\circ}F = 1.8$ (°C)+32°

*Slab Length (ft)	Expansion Joint Interval (ft)	**Slab End Displacements Measured Between February and August 1948 (in.)
15	120	0.030
15	420	0.026
15	795	0.028
15	5260	0.028
20	120	0.052
2.0	400	0.032
20	800	0.046
20	5260	0.042
25	400	0.036
25	800	0.043
25	5260	0.056
30	120	0.075
30	420	0.056
30	810	0.055
30	5260	0.068
60	120	0.050

TABLE D-9. Measured Seasonal Slab Displacements on Experimental Inservice Pavements in Minnesota Data Obtained From Reference D43

*Distance between contraction joints.

**Average concrete temperature for February was 40°F and for August was 92°F resulting in a seasonal change of 72°F.

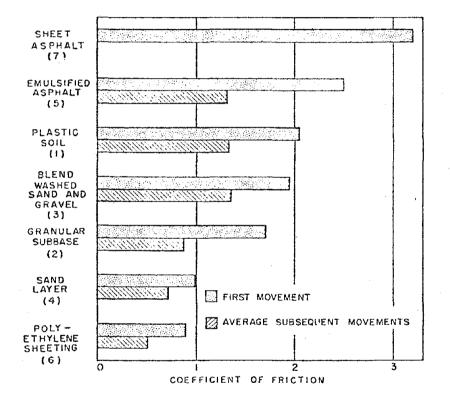
1 ft = 0.3 m 1 in. = 2.54 cm 1°F = 1.8(°C)+32°

The amount of movement to be expected in typical in-service slabs is quite important for two reasons. One, by knowing cyclic slab movements, a better evaluation of existing friction tests can be made to arrive at typical in-service coefficient of friction values; and two, it could be that in-service pavements may have experienced large enough temperature and moisture induced cyclic movements to be experiencing coefficient of friction values more in the sliding or kinetic range rather than in the static range. Thus, from the data just described (D 5, D 43, D 49), it is reasonable to assume that in-service pavements of lengths ranging from 20 ft (61. m) to over 100 ft (30.5 m) in length can be expected to move at about 0.05 in. or more. This will be somewhat dependent upon the subgrade restraint. Thus, it is not unreasonable to assume that many in-service pavements with the possible exception of CRCP have reached their maximum friction values and are now operating at somewhat lower friction levels than when first constructed. With this background information on slab movements, additional data from friction tests reported in the literature will be more informative.

In 1964 Timms (D 12) conducted a series of tests to determine the effect of various friction reducing mediums. The concrete slabs used in this testing program were 6 ft by 6 ft by 5 in. (1.8 by 1.8 m by 12.7 cm) thick. The slabs were cast in place on the following types of sublayers:

1. Subgrade soil consisting of micaceous clay loam referred to as "plastic soil".

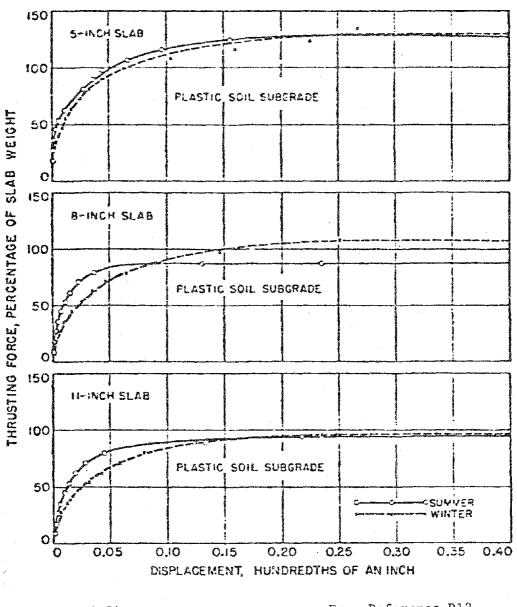
2. Granular subbase consisting of material grading and plasticity requirements for Federal Highway projects.


3. Granular subbase consisting of washed sand and gravel.

4. Granular subbase same as (2), with a 1 in. (2.54 cm) thick sand layer covered by one-ply building paper.

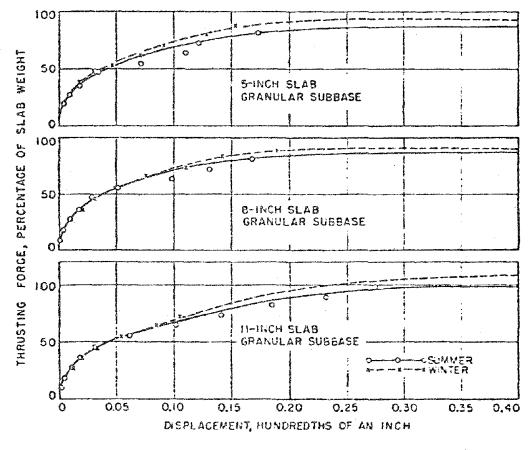
5. Granular subbase same as (2), covered with a layer of emulsified sand asphalt approximately 1 in. (2.54 cm) thick.

6. Granular subbase same as (2), with a thin leveling course of sheet asphalt covered by a double layer of polyethylene sheeting which contained a special friction reducing additive, and


7. Granular subbase same as (2), covered by a layer of sheet asphalt approximately 1/2 in. (1.27 cm) thick.

From Reference D12

FIGURE D-11. Summary of Coefficients of Friction For 5 In. Slabs.


1 in = 2.54 cm

1 in. = 2.54 cm

From Reference D12

FIGURE D-12. Force-Displacement Curves For Concrete Slabs On Plastic Soil.

1 in. = 2.54 cm

From Reference D12

FIGURE D-13. Force-Displacement Curves For Concrete Slabs On Granular Subbase.

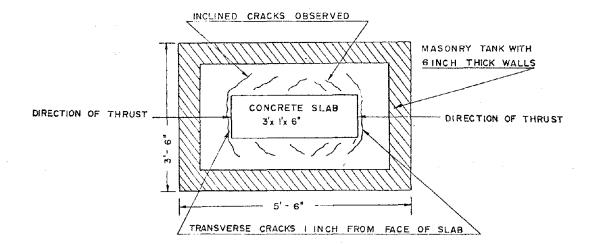
The force applied to the 6 ft (1.8 m) square slabs was done so with a hydraulic jack through a 3 ft - 4 in. long channel bearing plate. The horizontal displacement was measured with a micrometer dial.

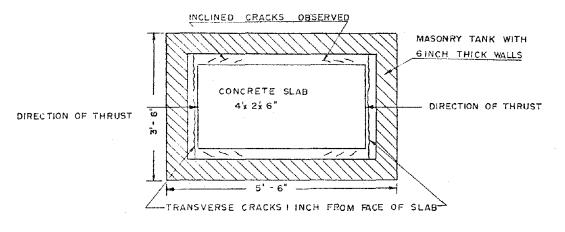
The summary of the results from this testing program is shown in Figure D-11. The numbers shown in this figure under the various layer types correspond to the numbers used to describe these layers earlier. Layer 7 (sheet asphalt on granular subbase) is observed to have the highest initial (static) coefficient of friction and is slightly higher than 3.0. Layer 6 (double layer of polyethylene sheeting with additive on granular subbase) is seen to have both the lowest initial (static) and average subsequent (kinetic) coefficient of friction and are approximately 0.9 and 0.5, respectively. It is of special interst to note that both Layers 1 and 2, which are typical of standard sublayers under existing concrete pavements, had initial (static) coefficient of friction values of about 2.0 and 1.7, respectively. Average subsequent (kinetic) coefficient of friction values for these two layers were about 1.3 and 0.9.

Additionally, tests were conducted in this experiment to evaluate both the effect on increasing slab thickness and seasonal effects. For Layer 1 (plastic subgrade), as the equivalent slab thickness increased from 5 in. to 11 in. (12.7 to 27.9 cm), the coefficient of friction tended to decrease. In the free sliding (kinetic) range, the force required to move the slabs in winter were generally higher than for the summer. This can be observed in Figure D-12. Moisture contents in the top 1/2 in. (1.27 cm) of the soil for summer and winter were 22 and 25 percent, respectively. For Layer 2 (granular subbase), the coefficient of friction tends to remain the same or increase slightly for increasing pavement thickness and there is little difference between winter and summer values. This can be seen in Figure D-13.

Venkatasubramanian (D 35) conducted friction studies with small concrete test slabs placed on smooth to very rough base surfaces. He investigated the amount of restraint and coefficient of friction values produced by moving these slabs across various surfaces. What is unique about this work is the types of bases used. One series of tests were conducted on a macadam base which can have an extremely rough texture.

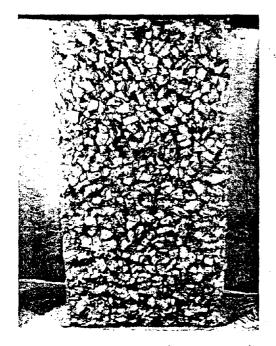
The purpose of Venkatasubramanian's work was to investigate friction in "bonded" concrete pavement slabs. Venkatasubramanian stated that

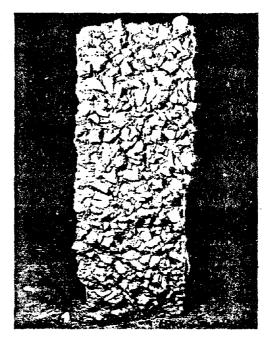

European highway engineers were not certain that utilizing a minimum coefficient of friction is an advantage in Highway construction and that a high coefficient of friction may help to distribute stresses in pavements induced by expansion and contraction.


The test slabs used to investigate friction in Venkatasubramanian's experiment were either 4 ft by 2 ft (1.2 m by 0.6 m) or 3 ft by 1 ft (0.9 m by 0.3 m) in size and 4 or 6 in. (10.2 or 15.2 cm) thick. These test slabs were tested within a tank which was 4.5 ft by 2.5 ft by 1.0 ft (1.37 m by 0.76 m by 0.3 m) deep. A hydraulic load cell was used to measure the force applied to the test slab. Horizontal movement was measured with four dial gages set at each corner of the slab. Figure D-14 shows a generalized plan view of the testing scheme.

Several base course frictional conditions were examined in this experiment. Of the ten slabs tested, only five of these were cast directly on the prepared bases inside the testing tank. It is these five slabs in which we are interested and for convenience are labeled 1 through 5 and are described as follows:

- Slab 1: 3 ft by 1 ft by 6 in. (0.9 m by 0.3 m by 15.2 cm), on compacted damp sand base
- Slab 2: 4 ft by 2 ft by 4 in. (1.2 m by 0.6 m by 10.2 cm), on saturated water-bound macadam base
- Slab 3: 3 ft by 1 ft by 6 in. (0.9 m by 0.3 m by 15.2 cm), on saturated
 water-bound macadam base
- Slab 4: 4 ft by 2 ft by 7 in. (1.2 m by 0.6 m by 15.2 cm), on dry water-bound macadam base
- Slab 5: 3 ft by 1 ft by 7 in. (0.9 m by 0.3 m by 15.2 cm), on dry waterbound macadam base


For Slab 1, the sand base was comprised of a locally available river sand. For Slabs 2 through 5, the water-bound macadam base was composed of three layers. The first of these was a 2 in. (5.1 cm) thick layer of compacted sand on which a 6 in. (15.2 cm) thick handpacked laterite stone subbase was placed. On top of this was placed a 4 in. (10.2 cm) thick water-bound macadam base which utilized 1 1/2 in. (3.8 cm) broken stones. Disintegrated gravel was placed around the broken stones as a filler material. The surface of the macadam was finished by wire brushing which

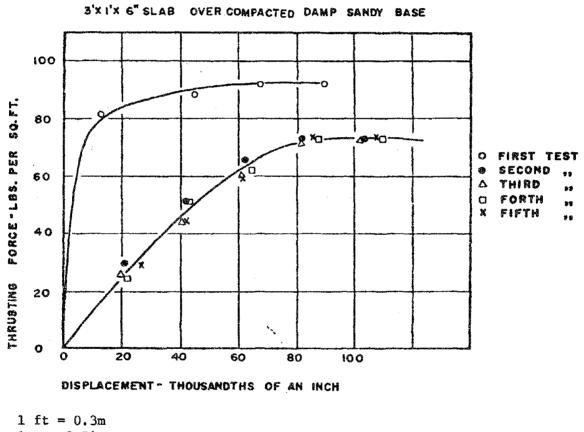


1 ft = 0.3 m1 in. = 2.54 cm From Reference D35

FIGURE D-14. Generalized Plan View of Testing Apparatus Used By Venkatasubramanian

Underside of 4-ft by 2-ft by 4-in. slab bonded to saturated waterbound macadam base after test.

Underside of 3-ft by 1-ft by 6-in. sleb bonded to saturated water-bound macadam base after test.



Underside of 4-ft by 2-ft by 6-in. slab bonded to water-bound macadam base (dry) after test.

Underside of 3-ft by 1-ft by 6-in. slab bonded to water-bound macadam base (dry) after test.

FIGURE D-15. Undersides of Concrete Test Slabs Placed on Macadam Base. From Reference $\underline{D35}$ 1 inch = 25.4 mm 1 ft = 0.305 m

1 m = 2.54 cm1 psf = 47.88 Pa

From Reference D35

FIGURE D-16. Thrusting Force (Restraint) Versus Displacement For A 3' x1' x6" (0.9m x 0.3m x 15.2cm) Slab Over Damp Sand Base.

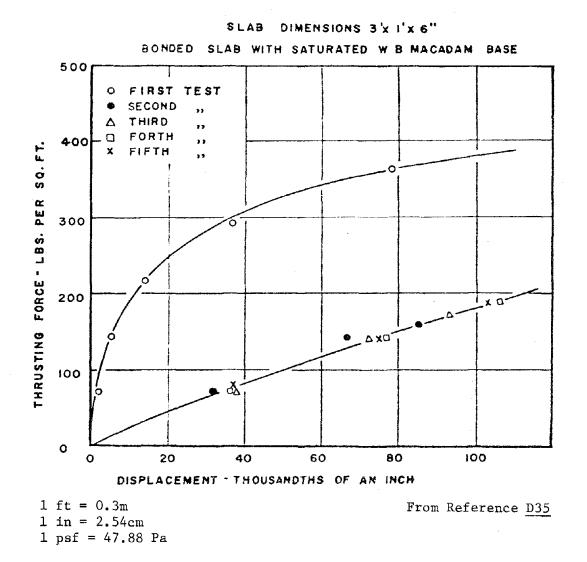
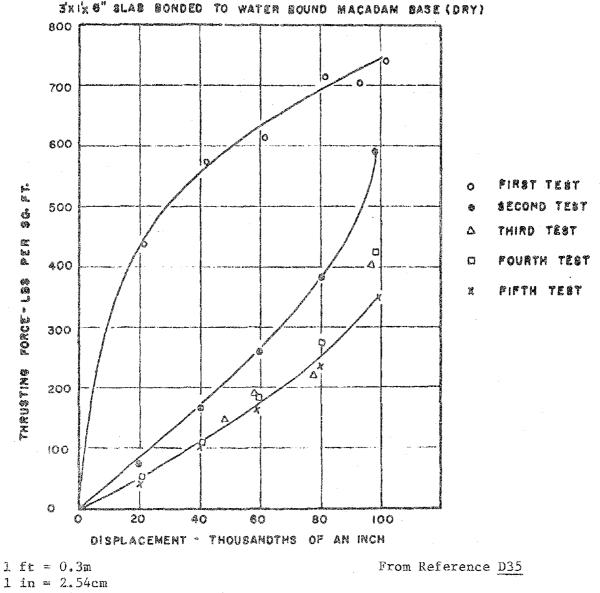



FIGURE D-17. Thrusting Force (Restraint) Versus Displacement For A 3' x1' x6" (0.9m x 0.3m x 15.2cm) Slab Over Saturated Macadam Base.

1 psf = 47.88 Pa

FIGURE D-18. Thrusting Force (Restraint) Versus Displacement For A 3' x1' x6" (0.9m x 0.3m x 15.2cm) Slab Over Dry Macadam Base. removed loose material prior to slab placement. The construction of the macadam was accomplished in such a manner to create a large amount of friction between the slab and the base. Figure D-15 shows the underside of both the 4 ft 2 ft (1.2 m by 0.6 m) and 3 ft by 1 ft (0.9 m by 0.3 m) slabs which were placed on the macadam base. Notice in this figure the large amount of angular macadam stone clinging to the underside of the slab.

Figure D-16, D-17 and D-18 show partial results from the testing program. In Figure D-16, a plot of "thrusting force" (or restraint) versus displacement is plotted for Slab 1 on a damp, sandy base. Figures D-17 and D-18 are the same type of plots for Slabs 3 and 5, respectively. All three figures exhibit the same trend which is that more force is required to overcome friction during the initial (static) forcing cycle. For Slabs 1 and 3, the force required to cause movement is approximately constant for the four subsequent forcing cycles. Recall that Slabs 1 and 3 were placed on damp sand and saturated macadam base, respectively. For Slab 5, placed on a dry macadam base, the force versus displacement curves become essentially constant after the third forcing cycle.

Values of subgrade restraint (Venkatasubramanian calls restraint "thrusing force") are summarized in Table D-10 and D-11. These values are significant in that coefficient of friction values may be obtained from this data.

In Table D-10, restraint values were taken from Venkatasubramanian's plots (D 35) at a displacement of 0.05 in. (0.127 cm). The restraint values for the slabs placed on the dry water-bound macadam are the highest. A displacement value of 0.05 in. (0.127 cm) was chosen to approximately match that displacement value used in Table 9. And because of information contained in Reference D49 and Discussed earlier. Table D-11 is a summary of similar data obtained at the Road Research Laboratory (D 44). The restraint values shown in this table for a rough subgrade taken at a 0.05 in. (0.127 cm) displacement are approximately equal to those obtained by Venkatasubramanian for a saturated macadam base.

The restraint values shown in Table D-10 for a dry macadam base should represent the extreme case of frictional restraint to be expected in existing in-service pavements. Probably, the "rough subgrade" value of 300 psf (14.36 KPa) in Table D-11 and the static restraint values for Slabs 2 and 3 in Table D-10 are more realistic upper limits. This should

Slab Number, Size, and Base	Restraint (Thrusting Force) For 1st Cycle @ 0.05 in. Movement (psf) (Static)	Restraint (Thrusting Force) for Subsequence Cycles @ 0.05 in. Movement (psf) (Kinetic)
Slab 1: 3'x1'x6" on compacted damp sand base	90	75
Slab 2: 4'x2'x4" on saturated water-bound macadam base	330	90
Slab 3: 3'xl'x6" on saturated water-bound macadam base	325	100
Slab 4: 4'x2'x6" on dry water bound macadam base	r- 560	∿ 180
Slab 5: 3'xl'x6" on dry water bound macadam base	- 600	∿ 180
1 ft = 0.3 m		

TABLE D-10. Values of Subgrade Restraint For Selected Slabs Data Obtained From Reference D35

1 in. = 2.54 cm

1 psf = 47.88 Pa

TABLE D-11.	Estimated Values of Subgrade Restraint and	
	Displacements For Various Subgrades	

Type of Subgrade	Maximum Restraint of Subgrade (psf)	Displacement Needed to Produce Slipping (in.)
Very smooth subgrade of completed sand or gravel. Smooth subgrade covered with waterproof paper.	100	0.01
Moderately smooth subgrade of compacted sand, gravel or clinker. Rough sub- grade covered with water- proof paper.	200	0.03
Rough subgrade	300	0.05

1 in. = 2.54 cm

From Reference D44

1 psf = 47.88 Pa

be a reasonable assumption since normal subbase preparation in the United States does not utilize rough surface techniques such as that obtained with the macadam type of sublayers.

Subbase preparation is discussed in a 1969 PCA summary presented by the ACI (\underline{D} 45) which revealed the results of a nationwide concrete pavement practice survey. These results indicated that 68 percent of the states have an optional requirement which allows the use of automatic, self-propelled fine grading machines for subbase preparation. The survey also showed that at least 36 percent of the states do not allow the operation of trucks on the prepared subgrade thus precluding rutting and nonuniform compaction of the subgrade surface. Thus, relatively smooth subbases and subgrades can be expected in much of the construction in the United States.

The restraint values previously discussed are informative but a presentation of coefficient of friction values would round out this examination of Venkatasubramanian's experiment. Knowing the size and depth of the test slab and the restraint value, the coefficient of friction can be calculated by using the following formula:

 $\mu = f/N$

where

µ = coefficient of friction
f = subbase/subgrade restraint
N = normal force (weight
 of slab)

For example, in Table D-10, a maximum restraint value of 600 psf (28.73 KPa) is shown for a 0.05 in. (0.127 cm) displacement for Slab 5 on a dry macadam base. The coefficient of friction (static) can be calculated as follows:

$$\mu = f/N = \frac{(600 \text{ psf}) (3 \text{ ft}) (1 \text{ ft})}{(150 \text{ pcf}) (3 \text{ ft}) (1 \text{ ft}) (0.5 \text{ ft})} = 8.0$$

Therefore the coefficient of friction (static) at the specific displacement is equal to 8.0.

Table D-12 gives the coefficient of friction values (static and kinetic) as obtained by Venkatasubramanian for the five slabs previously discussed. For Slabs 2 and 3, which are considered as upper limit values for typical in-service pavements, the averaged coefficient of friction values at 0.1 in. (0.254 cm) for these two slabs are 6.5 (static) and

- D-66

TABLE D-12. Coefficients of Friction (Static and Kinetic) For Five Test Slabs On Two Types of Bases at Various Displacements

Data Obtained From Reference D35

		0.02	0.02 in.	oefficient 0.0(Coefficient of Friction 0.06 in.		0.10 in.
Slab	Slab Number, Size, and Base	Static	Kinetic	Static	Kinetic	Static	Kinetic
Slab 1:	: 3'xl'x6" on compacted damp sand base	1.17	0.34	1.26	0.86	1.28	1.00
Slab 2:	: 4'x2'x4" on saturated water-bound macadam base	4.70	0.52	7.30	2.10	7.81	3.33
Slab 3:	Slab 3: 3'xl'x6" on saturated water-bound macadam base	3.47	0.69	4.72	1.67	5.27	2.50
Slab 4:	: 4'x2'x6" on dry water- bound macadam base	3.48	0.55	8°68	2.44	10.44	4.58
Slab 5:	3'xl'x6" on dry water- bound macadam base	6.11	0.70	8.70	2.43	10.14	4.86

1 ft = 0.3m

1 in. = 2.54cm

2.9 (kinetic). Although, displacements of 0.1 in. (0.254 cm) are probably on the lower end of the range of those expected for existing rigid pavements after receiving prestressing as a rehabilitation technique.

For example, to illustrate the range of displacements expected, assume a 200 ft (61 m) long segment of rigid pavement is post-tensioned in a rehabilitation effort. Also assume two seasonal temperature changes of $50^{\circ}F$ (27.8°C) and $100^{\circ}F$ (55.6°C). Disregarding subgrade friction, moisture changes and using a concrete coefficient of thermal expansion of $0.000005/^{\circ}F$ ($0.000009/^{\circ}C$), this results in movements at the end of the slab of approximately 0.3 in. and 0.6 in. (0.8 cm and 1.5 cm), respectively due to temperature changes alone.

Other references (D 12, D 14) have shown that the coefficient of friction stabilizes to approximately a constant value usually between displacements of 0.05 and 0.2 in. (0.127 and 0.508 cm). Therefore, the coefficient of friction values presented by Venkatasubramanian (D 35) and shown in Table D-12 can probably be expected to increase. Thus, in the range of displacements expected for prestressed relabilitated pavements, the upper limit of expected coefficient of friction (static and kinetic) can be expected to be in the range of about 7 to 10 for the static case and 3 to 5 for the kinetic case.

The highest coefficient of friction values found in the literature were obtained in a testing program conducted by the PCA (\underline{D} 46) in 1971. In this testing program a number of different friction reducing methods were utilized on cement-treated subbases. Summaries of the complete testing program may be found in Reference Nos. D46 and D57. Of more direct interest was the tests performed on the cement-treated subbase (CTB) without the use of any friction reducing layers.

These test were conducted on 4 ft by 4 ft by 7 in. thick (1.2 m by 1.2 m by 15.2 cm) concrete slabs which were cast directly on the CTB. Crushed limestone was used as aggregate for the CTB in three different gradations which produced smooth, medium, and rough surface textures. The gradations used to produce these different textures are shown in Table 13. One set of tests were run on each of the three CTB gradations and all were covered with 0.2 gallon per square yard of bituminous curing compound. The bitumen used was Shell SS-1 asphalt emulsion. One additional test was

run on the medium aggregate gradation utilizing CTB without the curing compound. The average compressive strength of the CTB as determined by cores was 3050 psi (21,030 KPa) and was attained by adding 6 percent by weight of cement to the crushed limestone.

The slabs were loaded through a load cell and movement was measured with an electronic transducer. The loading rate was approximately 200 pounds (889.6 N) per minute. The results of the load tests showed that extremely high coefficient of friction values resulted from this testing program. For both the bituminous coated and uncoated CTB, the static coefficient of friction could not be overcome with the testing equipment available and this varied between test slabs. The resulting values are shown in Table D-14, Item No. 13.

It appears that the CTB became bonded to the concrete slabs in both of the cases examined. The effect the bituminous curing compound may have had in causing this bonding for the high coefficient of friction values reported is not known. In any case, the coefficient of friction values are so high that existing concrete pavements placed on CTB should be eliminated from consideration for receiving prestressed rehabilitation at the present time. A summarized PCA survey (D 45) of current nationwide paving practice published in 1969 shows that at least 10 states allow only the use of cement treated subbases in concrete pavement construction. Thus, a number of existing pavements may be unsuitable for receiving prestressing as a rehabilitation method.

With the information summarized in Table D-14, an indication of the values of coefficient of friction that will be encountered on existing concrete pavements can be roughly estimated. An average of all static coefficient of friction values in the table excluding only the values obtained by the PCA for cement-treated bases results in a value of 2.9. If the values obtained by Venkatasubramanian are also excluded because of the extreme roughness of the bases tested, the average static value lowers to about 2.2. Using the same averaging procedure for kinetic coefficient of friction, these values are 1.3 and 1.1, respectively. It is expected that many existing in-service concrete pavements will have coefficient of friction values somewhere between 2.9 to 1.1. This is due to the fact that many jointed pavements experience seasonal temperature and moisture induced movements which will tend to lower friction values from the static

	Percent Passing fo	or Each Surfa	ce Texture of CTS
Sieve Size	Smooth	Medium	Rough
1 1/2 in.			100
3/4 in.			67
1/2 in.		100	
3/8 in.		66	
No. 4	100	0	
No. 10	48		
No. 18	38		
No. 35	20		
No. 60	13		
No. 140	9		
No. 200	7		
0.005	1		

TABLE D-13. Crushed Limestone Gradations Used for Cement-Treated Subbases

1 in. = 2.54 cm

From Reference D46

TABLE D-14.	Summary of Coefficient of Friction Values for
	Pavements/Test Slabs Without Use of Friction
	Reducing Methods

	Author	(Ref. No.)	Date	Concrete Pavement/Slab Placed on Following	*Coefficient of Friction
1.	Goldbeck	(D 47)	1917	Clay subgrade	2.1 (Static)
				Loam subgrade	2.1 (Static)
				Sand layer	1.4 (Static)
				3/4 in. gravel subbase	1.3 (Static)
				3/4 in. broken stone	1.1 (Static)
				3 in. broken stone	2.2 (Static)
2.	Teller and Bosley	(D 50)	1930	Dry subgrade	2.0 (Static)
				Damp subgrade	2.5 (Static)
				Wet subgrade	1.7 (Static)
	·			Frozen subgrade	>8.5 (Static)
3.	Sparkes	(D 55)	1939	Clinker base	3.1-3.7 (Static)
4.	Friberg	(D 56)	1954	Subgrade paper on sand- loam subgrade	∿1.5 (Unk)
				Clayey silt subgrade	Probable range between 0.33 and 1.67
5.	Friberg	(D 2)	1955	Rough subgrade	1.5 (Kinetic)
				Sandy, even subgrade	1.0-1.5 (Kinetic)
6.	Stott	(D 3)	1955	Sand layer	1.2-2.0 (Unk)
7.	Cholnoky	(D 6)	1956	Base course	5.2 (Static) 1.1 (Kinetic)
8.	Watson	(D 52)	1960	Soil cement base with asphalt emulsion curing membrane	5.1 (Static) 0.8 (Kinetic)
9.	Stott	(D 14)	1961	Sharp sand	1.0 (Static) 0.7 (Kinetic)
10.	HRB S.R.78	(D 54)	1963	Granular subbase	1.5 (Unk)
11.	Timms	(D 12)	1964	Micaceous clay loam subgrade	2.0 (Static) 1.3 (Kinetic)
				Granular subbase	1.7 (Static) 0.9 (Kinetic)

*Parenthesis indicate type of friction, either static or kinetic.

	Author	(Ref. No.)	Date	Concrete Pavement/Slab Placed on Following	*Coefficient of Friction
12.	Venkatasubramanian (all values taken	(D 35)	1966	Compacted damp sand base	1.28 (Static) 1.00 (Kinetic)
	at 0.1 in. dis- placement)		Sat mac Dry	Saturated water-bound macadam base	7.81 (Static) 3.33 (Kinetic)
		· .		Dry water-bound macadam base	10.14 (Static) 4.86 (Kinetic)
13.	PCA	(D 57)	1971	Cement-treated base coated with bituminous curing compound:	
				Smooth Surface	>13.5 (Static)
				Medium Surface Rough Surface	>44.0 (Static) >51.0 (Static)
				Cement-treated base uncoated:	
		•		Medium Surface	>8.0 (Static)

TABLE D-14. Summary of Coefficient of Friction Values for Pavements/Test Slabs Without Use of Friction Reducing Methods - (CONTINUED)

*Parenthesis indicate type of friction, either static or kinetic.

TABLE D-15. Coefficient of Friction for Selected Materials

Material	Coefficient of Friction (Includes Both Static and Kinetic)
Sand	0.49 to 1.03
Polyethylene Sheets	0.3 to 0.8
Polyethylene Sheet Over Sand Layer	0.55 to 0.8
Bitumen	Depends on Condition
Oil	0.33 to 0.49

From Reference D57

to that approaching the kinetic situation. In any case, for planning purposes, a maximum coefficient of friction value of about 3.0 and minimum value of about 0.1 should be anticipated. Although, it should also be recognized that for some existing concrete pavements the coefficient of friction will approach those as determined by Venkatasubramanian.

For typical coefficient of friction values for prestressed pavements incorporating some type of friction reducing layer, refer to Table D-1 or the recently completed report by the PCA for the FHWA (\underline{D} 57). A good summary of typical ranges presented in the PCA report is shown as Table D-15.

It has been noted from the literature reviewed that thin sand layers have been frequently used in new prestressed pavement projects as a friction reducing layer. Timms (\underline{D} 12) points out that these sand layers could contribute to pumping under the relatively thin prestressed pavements. Both edge pumping and pumping through any open transverse cracks could occur.

Before concluding this section on friction, it is appropriate to briefly examine new types of potential friction reducing layers. These materials could possibly be used in either new prestressed pavement construction or as friction reducers in rehabilitating existing concrete pavements with prestressing techniques.

For example, Bowden and Tabor $(\underline{D-27})$ examined several types of friction reducing materials which include carbon, graphite, Teflon, glass and rubber. It was noted that carbon, and especially graphite, has a low coefficient of friction. For hard, non-graphitic carbon surfaces, it was found that the coefficient of steel on carbon and of carbon on carbon is approximately 0.16. With graphite the coefficient was found to be about 0.1.

Teflon was also found to be an excellent friction reducing material. The friction of Teflon on Teflon is comparable to ice on ice. This coefficient of friction is about 0.04 which is quite low. Additionally, Teflon maintains this low coefficient of friction over a range of temperatures from at least 20°C (68°F) to 200°C (392°F).

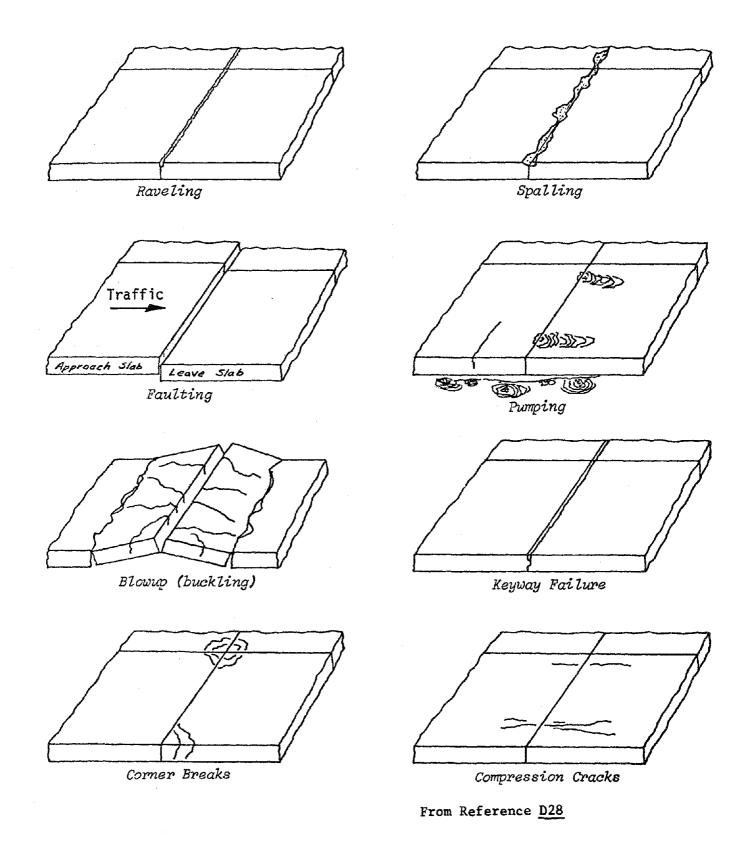
Bowden and Tabor also observed that glass on glass has a coefficient of friction of about 0.9 and that the coefficient for rubber on steel can be about 4.0. Others have found that for a wide range of solids

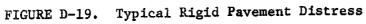
sliding on rubber the coefficient of friction is about 1.0. The observed coefficients of friction for these materials do not encourage their use.

There are many possible materials that could be used for reducing friction in prestressing applications. Further examination graphite should be considered as well as water injection or possibly a combination of both.

Distress of Prestressed Pavements

In attempting to apply prestressing techniques to existing concrete pavements, the problem of prestressed related distress should be examined. Conceivably, prestressing may in some cases cause more damage to a pavement as opposed to doing nothing at all.


To get a "feel" for this kind of distress, a review of available distress information on existing prestressed pavement projects should be informative. Table D-19 partially attempts to review distress but this section will go into more detail. Individual projects will be reviewed in a chronological sequence. For each project, four possible types of distress can be summarized. These are as follows:


- 1. Cracking
- 2. Blowups
- 3. Faulting
- 4. Other types of joint related problems

Although mainly used to illustrate distress at joints, Figure D-19 is generally descriptive of the types of distress which affect rigid pavements.

For each project reviewed, the location, date of construction and distress types will be underlined. For applicable references for each project listed refer to Table D-1. The following projects are reviewed:

1. <u>Heidenhein, Germany</u>. This road was constructed in <u>1953</u>. The pavement slabs were 365 ft (111 m) long by 28 ft (8.5 m) wide with a 6.0 in. (15.2 cm) depth. Two slabs with these dimensions were constructed and both were post-tensioned with cables in the longitudinal and transverse directions. One slab had prestressing amounts of 300 psi (2068 KPa) longitudinally and 240 psi (1655 KPa) transversally. The other companion slab had 240 psi (1655 KPa) longitudinally and 43 psi (296 KPa)

transversally. <u>Transverse cracking</u> was reported at intervals for both of these slabs in 1955. No other distress information was provided.

2. Biggs Air Force Base, El Paso, Texas. A prestressed taxiway was constructed at this air base in 1959. The taxiway has a total length of 1500 ft (427 m) which was segmented into 3/500 ft (3/152 m) slabs. The width was 75 ft (23 m) segmented into 3/25 ft (3/7.6 m) paving lanes. All slabs had a total depth of 9.0 in. (22.9 cm). In the longitudinal direction the slabs were post-tensioned with tendons in flexible metal conduit and prestressed to 350 psi (2413 KPa) Transversally, the slabs were posttensioned with tendons in rigid metal conduit and prestressed to 150 psi (1034 KPa). Transverse cracks occurred during construction at the ends of the taxiway. These were identified as shrinkage cracks and were due to rapid temperature changes during the early curing period. Serious joint performance problems have been encountered on this project. A detailed account of these joint problems is contained in the recent PCA report (D 57). This material is repeated here, in part, for convenience. "Initial construction required two 15-ft. 4-in. intermediate gap slabs between the 500-ft. prestressed slabs and two 9-ft. 8-in. joint slab at the ends of the pavement. One, $1/4 \ge 1-1/2$ -in. contraction joint was provided in the center two joint slabs. Polyurethane foam filled, 1-1/2in. wide expansion joints were constructed in the joint slabs at the ends of the section. The contraction joints at the intermediate gap slabs opened about 1 in. These joints were then filled with polyurethane foam in combination with a polysulfide rubber joint sealer. Because of continuing joint performance problems, the sealer was removed and the joint was filled with concrete.

Forces due to restrainted temperature expansion caused spalling and crushing of the intermediate and end joint slabs. Removal and replacement of the 8-ft. wide and 5-ft. wide sections of these slabs was initiated in 1960. Two expansion joints were provided in each of the intermediate slabs and one in each of the end slabs.

One, approximately 1 1/2-in. wide opening was observed in each of the end joint slabs when the pavement was inspected in March, 1962. No spalling or crushing of the gap slab was observed at that time, but distress was noted in the cork asphalt joint filler and sealant. During an October, 1963 inspection, it was observed that none of the transverse

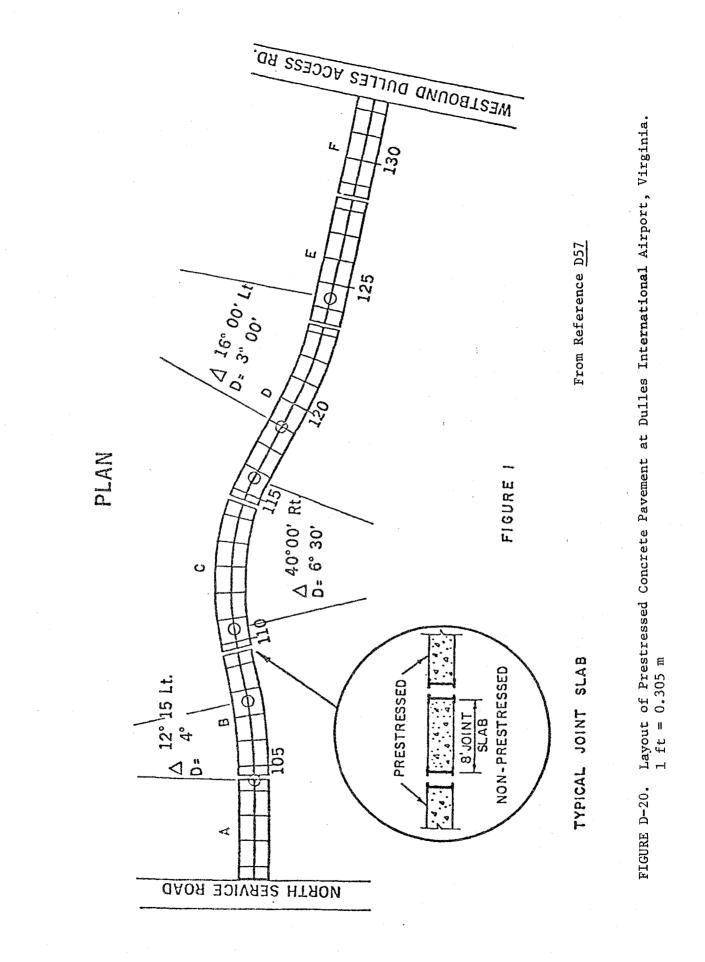
joints had retained their sealant.

Premolded neoprene joint sealants were placed into the transverse joints during 1964. The uncompressed premolded seal width was about $1 \frac{1}{2}$ -in. The material was compressed to about 1 in. at the time of pavement inspection during July, 1976. The top of the premolded sealant was squeezed from the joint and had been cut by aircraft traffic.

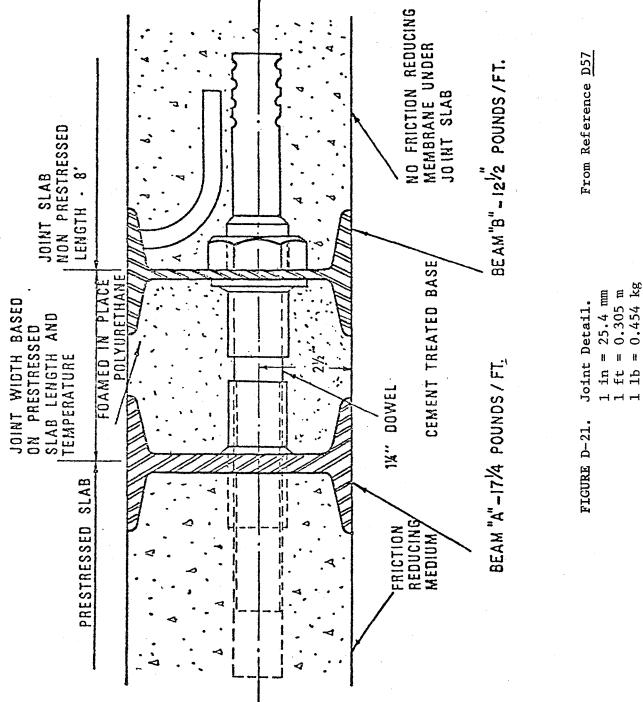
3. <u>Melsbrock Airport, Belgium</u>. A poststressed runway 11,100 ft (3383 m) long and 148 ft (45 m) wide was constructed in <u>1959</u>. The pavement thickness was 71. in. (18.0 cm) and the pavement was poststressed longitudinally with flat jacks every 1082 ft (330 m). From available data a prestress value of 1650 psi (11,377 KPa) was recorded at a pavement temperature of 90°F (32.2°C) in June, 1961. Transversally, the pavement was post-tensioned with wire strands, but this prestressing amount is not available. During December, 1961, <u>cracks</u> appeared at a temperature of 27°F (-2.8°C). Restressing was done to close these cracks. Also <u>two</u> <u>compression failures</u> were reported at the active joints. These joint failures occurred in 1962 and 1963, respectively, on days with no wind and intense sunlight. The pavement surface temperature exceeded 120°F (48.9°C) at the time of the compression failures. Additionally, it is believed that steep temperature gradients caused additional prestress at the pavement surface.

4. <u>Between Zwartberg and Meeuwen, Belgium</u>. This road was constructed in <u>1960</u> and is 11,484 ft (3500 m) long (26/443 ft slabs) and 26 ft (7.9 m) wide. Three thicknesses were used: 3.2, 4.0, and 4.7 in. (8.1, 10.2, and 11.9 cm). Longitudinally, the slabs were poststressed with flat jacks and design prestressing values were 284, 427, and 529 psi (1958, 2944, and 3657 KPa), respectively for increasing thickness. Transversally, the slabs were post-tensioned with steel strands at prestressing design levels of 107 psi (738 KPa) for the 3.2 (8.1 cm) and 4.0 in. (10.2 cm) slabs and 273 psi (1882 KPa) for the 4.7 in. (11.9 cm) slabs. The variation in longitudinal prestress due to temperature changes was measured to be 30 to 40 psi per °F (373 to 497 KPa/°C) during the spring of 1960. <u>Numerous cracks</u> occurred by October, 1960. Restressing was applied in October, 1960, and again during the spring of 1961. An unspecified time later during that that same year, <u>blowups</u> occurred in two of the 3.2 in. (8.1 cm) thick slabs

at 104°F (40°C). The prestress amount was measured one day after the blowups at 2800 psi (19,306 KPa) five slabs away from the location of one of the failures. Each 443 ft (135 m) slab contracted 1.06 in. (2.69 cm) due to another restressing accomplished during December, 1961. The prestress applied at this time was 1000 psi (6895 KPa) at 41°F (5°C). During April, 1962, the temperature rose from 32°F (0°C) to 73°F (22.8°C) with the result that a blowup occurred in another slab (thickness unknown). A concrete stress of 2700 psi (18,616 KPa) was measured five slabs away. Additional cracks formed after the April, 1962, blowup. The pavement was restressed for the winter condition during September, 1962. More cracks formed after a sharp temperature drop during that same month. Joint faulting of 0.8 in. (2.03cm) was observed between two slabs during January, 1963, after a temperature drop to 14°F (-10°C). At several other active jacking joints, the slabs had lifted from the grade for a distance of 20 ft (6.1 m) from the joint. Another 3.2 in. (8.1 cm) thick slab experienced a blowup 16 ft (4.9 m) from the nearest joint in March, 1963. During May, 1963, a blowup again occurred in one of the slabs which had experienced a previous blowup (thickness unknown). This blowup also occurred 16 ft (4.9 m) from the nearest joint. The temperature at the time of this blowup was 95°F (35°C).


5. Lier, Belgium. This industrial factory road was constructed in 1964 and is 1450 ft (442 m) long, approximately 20 ft (6.1 m) wide, and 4.7 in. (11.9 cm) thick. Longitudinally, the pavement was poststressed with screw jacks at an initial prestress of 1850 psi (12,756 KPa). This value of prestress varied over a 5 year period ranging from 40 psi (276 KPa) at 34°F (1.1°C) to 1800 psi (12,411 KPa) at 100°F(38°C). No transverse prestressing was utilized. Active jacking joints were provided 287 ft (84.5 m) from each abutment. At an age of 3 1/2 years a 1/8 in. (0.32 cm) longitudinal crack appeared along 2/3 of the length of the road. No transverse cracks occurred. Apparently, the longitudinal crack is not considered as presenting any significant problems.

6. <u>Dulles International Airport, Virginia.</u> This road was constructed in <u>1971</u>. Its length is 3200 ft (975 m) which consists of six slabs ranging from 400 to 760 ft (122 to 232 m) long. The road is 24 ft (7.3 m) wide and 6.0 in. (15.2 cm) thick. Longitudinally, the slabs were post-tensioned with wire strands. A prestress of 200 psi (1379 KPa) was applied at the ends


of all slabs. Transversally, no prestressing was applied but No. 3 or No. 4 bars were placed at 30 in. (76.2 cm) centers. <u>Transverse cracks</u> have occurred in several of the slabs. The first crack occurred in the 760 ft (232 m) slab shortly after construction when the concrete temperature dropped more than 40°F (4.4°C). However, as of 1976, none of the transverse cracks show any significant surface spalling. <u>Joint distress</u> has been encountered on this project. Several of the joints were removed and replaced after the gap concrete (placed after post-tensioning was completed) separated from the I-beam. This was reported to be due to inadequacies in the reinforcing design details of the gap concrete and to freezing of the dowel bars. Figures 20 and 21 show the layout and details of the joints installed on this project.

7. <u>Route 222 Bypass, Kutztown, Pennsylvania</u>. This road was constructed in <u>1972</u>, is 500 ft (152 m) long, 24 ft (7.3 m) wide, and 6.0 in. (15.2 cm) thick. Longitudinally, the pavement is post-tensioned with 7-wire strand in steel tubing or sheathed with polypropylene. The design prestress amount was 204 psi (1407 KPa). No transverse prestressing was utilized but No. 3 or No. 4 bars were placed every 30 in. (76.2 cm). A <u>transverse</u> <u>crack</u> was first reported about one year after construction 300 ft (91.4 cm) from the east end of the slab and extends across both traffic lanes. The crack was approximately 0.05 in. (0.127 cm) wide at the slab surface. An <u>oval shaped crack</u> about 15 ft (4.6 m) long occurred in the outside traffic lane about 50 ft (15.2 m) from the west and of the slab. The cause of this crack was an overload during shoulder construction. Neither one of the reported cracks were spalling as of a July, 1976, inspection.

8. <u>Route 114, Cumberland County, Pennsylvania</u>. This road was constructed in <u>1973</u> and is 13,232 ft (4033 m) long (23/600 ft slabs), 24 ft (7.3 m) wide and 6.0 in. (15.2 cm) thick. Longitudinally, the pavement is post-tensioned with 7-wire strand in polypropylene conduit. Design prestress amount was 244 psi (1682 KPa). Transversally, no prestressing was applied. A <u>transverse crack</u> was observed in July, 1976, in two of the pavement slabs. There was no observed spalling at either crack. <u>Joint</u> <u>repairs</u> have been made on two of the nineteen joints. At one of the two joints repaired, the female beam separated from the slab concrete for a short distance. It is speculated that the male and female beam interlocked

during pavement contraction. Repair at the second joint was due to gap concrete failure at a male beam which had interlocked with the female beam. Additionally, <u>shoulder distress</u> was observed along many of the slabs. Open interfaces with shoulder drop-offs in excess of 2 in. (5.1 cm) have occurred. The shoulders are constructed of an aggregate base covered with a double bituminous surface treatment.

Briefly summarizing the distress observed on the eight projects:

1. Heidenheim, Germany (Post-tensioned)

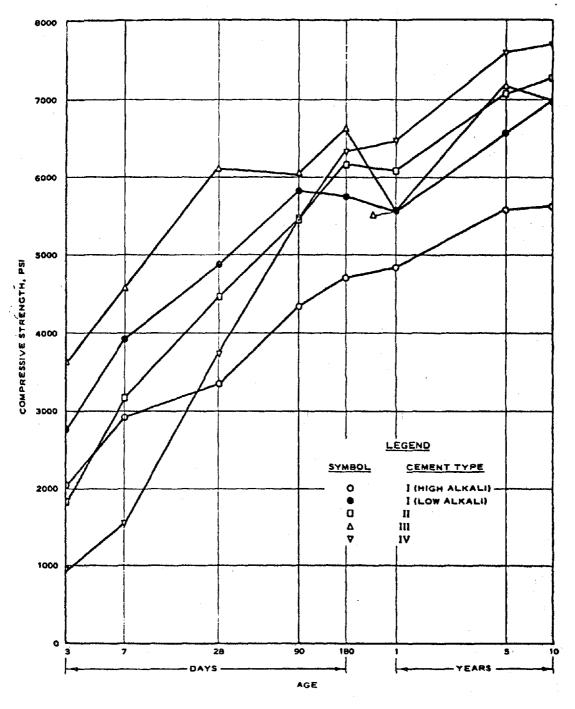
-Transverse cracking, cause unknown.

- 2. Biggs Air Force Base, El Paso, Texas (Post-tensioned)
 - Transverse cracking, due to shrinkage cracking after temperature drop during early curing stage.
 - Joint distress, due apparently to excessive joint movement and inadequacy of joint sealants to accommodate movement.
- 3. Melsbrock Airport, Belgium (Poststressed)
 - Cracking (presumably transverse), occurred at low temperatures.
 - Compressive failures at active joints, occurred at high pavement temperatures.
- 4. Between Zwartberg and Meeuwen, Belgium (Poststressed)
 - Cracking (presumably transverse), occurred at low temperatures.
 - Blowups and slab lifting, occurred at high temperatures.
 - Joint faulting, occurred at low temperatures.
- 5. Lier, Belgium (Poststressed)
 - Longitudinal crack, cause unknown but was considered to be minor.
- 6. Dulles International Airport, Virginia (Post-tensioned)
 - Transverse cracks, at least one occurred shortly after construction when temperature dropped significantly.
 - Joint distress, related to inadequate reinforcement in the gap slabs and freezing of the dowel bars.
- 7. Route 222 Bypass, Kutztown, Pennsylvania (Post-tensioned)
 - One transverse crack (minor).
 - One oval shaped crack, due to temporary overload.
- Route 114, Cumberland County, Pennsylvania (Post-tensioned)
 Two transverse cracks (minor).

- Joint distress, problems occurred with male and female beams interlocking at joints.

For post-tensioned pavements, available information indicates transverse cracking and joint problems are the most common kinds of distress associated with these pavements. The most serious problems appear to occur with joints and these problesm seem to stem primarily from inadequate joint design.

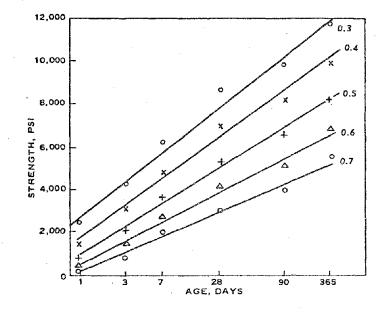
Transverse cracking, various joint problems, and blowups were the most often observed distress types for poststressed pavements. This distress is in general caused by the varying prestress amount which is directly proportional to temperature changes.


Two recommendations result from this short review of distress. One, if better joint construction methods can be found, then many of the distress problems associated with post-tensioned prestressed pavements can be eliminated. Two, it is not advisable to prestress existing in-service concrete pavements which are significantly faulted -- unless the faulting is corrected prior to prestressing.

Two Material Properties of In-Service Concrete Pavements

This section is specifically oriented toward two concrete material properties: compressive strength and creep. These two variables can have a significant impact on prestressing applied in new pavement construction. The effect of these two variables in applying prestressing to existing rigid pavements should also be examined. One reason is to determine typical in-service compressive strengths of concrete pavements and the other is to see if creep may be significant after the prestressing is applied.

<u>Compressive Strength</u>. A generally accepted rule-of-thumb for concrete is that it gains strength for several years after placement. Of course, numerous factors can affect this strength gain. Such factors as watercement ratios, curing methods, type of cement are some of the more important ones.


Mather (<u>D</u> 31) showed several examples of how these factors vary with time. Figure D-22 was obtained from a Waterways Experiment Station

From Reference D31

FIGURE D-22

Effect of Cement Characteristics on Strength Development to 10 Years Age With 0.5 Water-Cement Ratio and 6 Percent Entrained Air. 1 PSI = 6.89 kPa

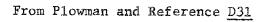


FIGURE D-23

Age-Strength Relation for Various Water-Cement Ratios. 1 PSI = 6.89 kPa investigation and shows how compressive strength increases with concrete age for five different cement types for a concrete with a water-cement ratio of 0.5. As shown in the figure for a Type I (high alkali) cement, the compressive strength increases from 3300 psi (22,754 KPa) at an age of 28 days to approximately 5700 psi (39,302 KPa) at an age of 10 years. Thus, for this specific concrete, a 1.7 increase in compressive strength occurred in about 10 years. The same kind of trend was apparent for the non-air entrained concrete data also presented by Mather.

The influence of water/cement ratios on compressive strength was also described in this reference. Figure D-23 is a plot of data first presented by Plowman and summarized by Mather. This figure shows compressive strength versus concrete age for various levels of watercement ratios. It is quite apparent that increasing the water-cement ratio significantly reduces both the initial and one year old compressive strength values.

One of the most informative references on concrete compressive strength increasing with age is by Washa and Wendt (<u>D 29</u>) reporting on work conducted at the University of Wisconsin. Concrete properties were measured over a period of up to 50 years on laboratory produced samples. The testing was conducted primarily on concrete cylinders made in either 1910, 1923, or 1937.

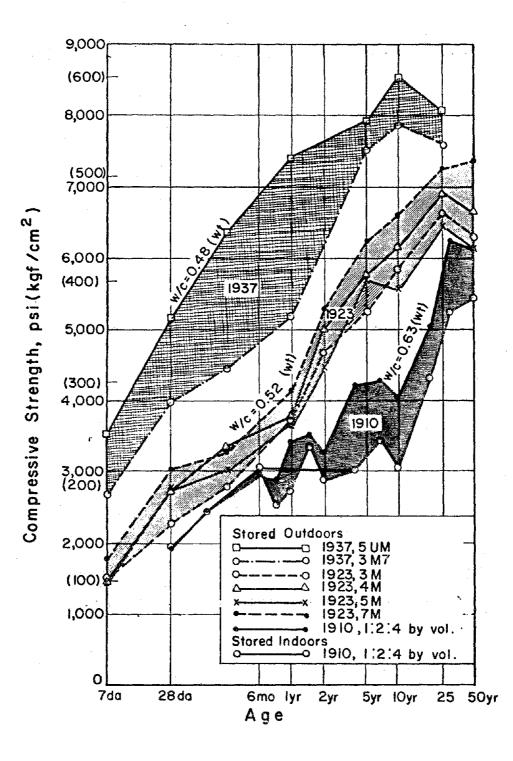
Table D-16 provides the basic information on the laboratory samples made in each of the three test series. This table shows that the cement used in the 1937 series is more typical of today's fine ground cements which results in higher amounts of C_3S - tricalcium silicate. Thus the 1937 series is of the greatest interest.

The 1937 series samples were moist cured for 28 days before being placed outdoors for the remaining length of the test period. Either 6 by 12 in. (15.2 by 30.5 cm) or 6 by 18 in. (15.2 by 45.7 cm) sized cylinders were used in the testing program. The results of the compressive strength testing performed can be seen in Figure D-24. The data plotted in this figure show that the 1937 series samples increased in compressive strength up to the 10-year point then decreased slightly from 10 years to 25 years of age. An increase by a factor of approximately 1.7 to 1.8 occurred from the initial 28 day compressive to the 10-year value. This is about the

Ages With The compound Compositions of The Constituent Cements. Comparison of Compressive Strengths of Concretes at Different TABLE D-16.

From Reference D29

											-							
		Mix pro	Mix proportions	1	Wa	Water cement	Method		<u>ភូមិ</u> ទ្	Compound composition of cement		Surface	Con	npress	sive st	trengt	Compressive strength, psiț	at
Test series	Coarse aggregate	by Vol.	by Wt.	Cement content, Sk/yd ^a	By Vol.	By Wt.	or mold- ing	Cement	C ₃ S	CaS	C3A		1 mo	1 yr	5 yr	10 yr	25 yrt	50 yr
A 1910	Lower Mag. Limestone	1:2:4 1:3:6	1:2.18:3.50 1:3.27:5.25	5.75 4.01	0.94	0.63	Hand Hand	Atlas	28.9 28.9	44.4 44.4	11.4 11.4	1045 1045	1920 875	3440 1920	4250 2550	4050 3010	6250 3240	6160 3970
B 1923	Average of Janes. Gr. Lannon Dol. Red Granite	1:2:4 1:2:4	1:2.4:4.47 1:2.4:3.92 1:2.4:4.00	5.15 5.52 5.41	0.76 0.81 0.77	0.51 0.54 0.51	Hand Hand Hand Hand	3M 5M 7M	43.7 32.8 46.5 30.4	29.7 38.6 25.1 41.4	11.0 14.2 14.8 13.3	1100 1285 1235 1295	2285 2715 2740 3005	3735 3775 3690 4165	5250 5780 5735 6215	5870 6185 5570 6610	6645 6915 6475 7270	6295 6675 6140 7390
C 1937	Janesville Gravel	1:1.66:3.80 1:1.66:3.80 1:2.09:4.78	$\begin{array}{c} 1:2:4.25\\ 1:2:4.25\\ 1:2.51:5.34\end{array}$	5.68 5.82 4.73	0.74 0.60 0.74	0.49 0.40 0.49	Hand Vib. Vib.	3M7 3M7 3M7	53.1	21.5	10.4	1370	3990 5030 4285	5195 6530 5805	7510 8780 7400	7865 8700 7855	7585 8200 7840	
		1:1.66:3.80 1:1.66:3.80 1:2.09:4.78	$1\!:\!2\!:\!4.25\\1\!:\!2\!:\!4.25\\1\!:\!2\!:\!34$	5.66 5.82 4.75	0.74 0.60 0.74	0.49 0.40 0.49	Hand Vib. Vib.	5M7 5M7 5M7	52.6	21.0	6.11	1780	4525 6185 4990	6015 8195 6240	7540 9015 1 7820	8025 10465 7885	7885 9850 8050	
		$\begin{array}{c}1:1.66:3.80\\1:1.66:3.80\\1:2.09:4.78\end{array}$	$\begin{array}{c} 1:2:4.25\\ 1:2:4.25\\ 1:2:51:5.34\end{array}$	5.72 5.84 4.76	0.72 0.59 0.71	0.48 0.39 0.47	Hand Vib. Vib.	5UM 5UM	37.5	34.0	4.53	1920	5150 6265 5130	7395 8310 1 7325	7940 0430 8860	8525 10145 9015	8070 9915 8250	
		1:1.66:3.80 1:1.66:3.80 1:2.09:4.78	$\begin{array}{c} 1:2:4.25\\ 1:2:4.25\\ 1:2:51:5.34\\ 1:2.51:5.34\end{array}$	5.67 5.82 4.74	0.74 0.60 0.74	0.49 0.40 0.49	Hand Vib. Vib.	ннн	56.5	16.2	13.0	2110	5145 7050 5480	6715 8695 7360	7640 9995 8405	7910 9515 8180	6835 8985 7500	
	*All specimens stored outdoors after moist curing	red outdoo	rs after mo	ist curing	hò							-						


Series A test results adjusted to 12-in. (30 cm) cylinder length for purposes of comparison ($S_{12} = 1.05 S_{13}$). (See Reference 3). their values may be converted to kgf/cm² by multiplying by 0.07031. Test Series A results at 30 yr.

 $1 \text{ psi} = 6.895 \text{x} 10^3 \text{ Pa}$

same increase as reported by Mather for concrete also aged 10 years.

With a rough idea of how concrete compressive strength can increase with age, the next question might be what are typical initial compressive strengths used in pavement concrete. In Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, a minimum compressive strength of 3,500 psi (24,132 KPa is recommended if the mix specification is to be based on strength. Finney (D 45) states that the average compressive strength of pavement concrete at one year of age is consistently between 4,000 and 6,000 psi (27,580 and 41,370 KPa). Finney also states in reviewing a PCA survey conducted in 1969 that 12 states require 28 day compressive strengths fanging from a minimum of 3,000 psi (20,685 KPa) to a maximum of 4,370 psi (30,131 KPa). Additionally, in "Specifications for Concrete Pavements and Concrete Bases" (ACI 617-58) it is stated that an average compressive strength shall not be less than 4,000 psi (27,580 KPa) at 28 days for use in the design of dowels and tie bars. Typical compressive strengths reported for the AASHO Road Test (D 32) ranged from about 2,900 psi (19,996 KPa) at 3 days and over 6,100 (42,060 KPa) psi at 2 years for 1-1/2 in. (3.81 cm) maximum size aggregate.

Typical in-service concrete pavement compressive strengths have been reported in numerous references. Two of these references are by Chastin and Burke (D 5), Velz and Carsberg (D 43). Chastin and Burke (D 5) reported on US 66 concrete pavement built in Illinois in 1952. Utilizing Type 1A cement and a water-cment ratio of 0.48, the average strength of 44 cores was 4,433 ps1 (30,566 KPa) at an average age of 40 days. Velz and Carsberg (D 43) reported on concrete pavement built in Minnesota in 1940. Using Type 1 cement and a water-cement ratio ranging from 0.51 to 0.54, the average compressive strength at 28 days was 4,536 psi (31,276 KPa) (based on 6 in. modified cubes), at 150 days 5,451 psi (37,585 KPa) (based on 6 in. cores), and at 19 years 7,660 psi (52,816) (based on cores). Thus the compressive strength increase for this project over the 19 year period was 1.7 times the initial 28 day value. The above discussion can be summarized by assuming that the average 28 day compressive strength for existing in-service concrete pavements ranges from 3,500 to 4,500 psi (24,132 to 31,028 KPa). By applying a strength increase factor

From Reference <u>D29</u> FIGURE D-24. Compressive Strength-Age Relations For Specimens Molded in 1910, 1923 and 1937.

of about 1.7 for pavements 10 years old, expected ranges of compressive strength would be from 6,000 to 7,700 psi (41,370 to 53,092 KPa). For pavements less than 10 years old, these values would be less and for pavements more than 10 years the compressive strengths should not be expected to change significantly from their 10 year values. <u>Creep</u>. The creep of in-service pavements which receive prestressing is of interest. The amount of creep that occurs after the prestressing is applied will influence the type and amount of prestressing to be used. Creep of "young" concrete has been well defined in the literature but the effect of applying compressive loads to aged concrete is not.

Hanson (\underline{D} 30) in a 1953 Bureau of Reclamation report described the creep studies which extended over a period of 10 years on concretes from several dams constructed in the Western United States. The specimens tested were sealed after overnight curing and remained sealed for the duration of the testing program. Various specimens obtained from the Shasta Dam in California were initially loaded at an early age and subsequently 7 years later and are therefore of interest. The concrete from this dam utilized Type IV cement and a water-cement ratio of 0.58. No air entrainment was used and the maximum sized aggregate ranged from 3 to 6 in. (7.6 to 15.2 cm). Specimen size was 6 in. by 27 in. (15.2 cm by 66.0 cm) cylinders. For samples loaded at 28 days to 500 psi, (3448 KPa), the elastic plus creep strain was computed to be 520 millionths after 10 years of continuous loading. For identical samples loaded at 7.25 years of age, the elastic plus creep strain was measured at 120 millionths for loadings up to about 2 years.

Troxell, Raphael, and Davis (<u>D 33</u>) also conducted long term creep tests on concrete specimens. The influence of many concrete variables were investigated in this testing program but of particular interest are the creep measurements made on specimens subjected to similar conditions as the ones reported by Hanson (<u>D 30</u>). A group of 4 in. by 14 in. (10.2 cm by 10.2 cm) cylinders with a water-cement ratio of 0.69 and 1-1/2 in. (3.81 cm) macimum size aggregate were moist cured for 28 days then subjected to a 600 psi (4137 KPa) compressive loading. Under loading the samples were exposed to 70° F (21.1°C) air and 70 percent relative humidity. After 10 years of this loading condition creep was reported at a strain

value of approximately 750 millionths. This value is about 44 percent higher than the reported by Hanson but several major variables were different - such as water-cement ratio, aggregate size, cement type and others. The important point in this comparison is that creep tests conducted on concretes obtained from dam construction are at least in the same range of values obtained for typical pavement concrete thus providing a rough check on the Shasta Dam specimens which were loaded after approximately 7 years.

Based on the preceding discussion, it is speculated that existing in-service concrete pavements prestressed up to 500 psi (3448 KPa) can be expected to creep at a strain somewhere between 100 to 200 millionths. For a 300 psi (2068 KPa) prestressing value, this strain would range from 50 to 100 millionths. At this prestressing level and without considering subgrade friction or potential joint effects, a 100 ft (30.5 m) slab would move a total of about 0.09 in. (0.229 cm) or 0.045 in. (0.114 cm) at each slab end.

Conclusions

1. The number of new prestressed concrete pavements reported in the literature are declining.

2. Post-tensioning is the most common prestressing technique used in prestressing new concrete pavements.

3. The majority of prestressed pavements reviewed were constructed in either Great Britain, the United States or Germany.

4. With the possible exception of CRCP it may be reasonable to assume that many of the existing in-service concrete pavements have reached and passed maximum subgrade friction values and are now operating at lower friction levels than when initially constructed. This is due to environmentally induced movements.

5. The coefficient of friction for existing in-service concrete pavements which did not receive special subgrade or supporting layer friction reducing methods during construction can be expected to range between 1.1 and 2.9. Existing in-service pavements which did receive friction reducing construction methods can be expected to range between 0.3 and 1.0.

6. Graphite or water could be possible materials to inject underneath existing pavements to reduce friction and hence increase the benefit of prestressing such pavements.

7. Prestressing of existing concrete pavements should not be attempted if frozen subgrade (supporting layer) conditions exist.

8. For post-tensioned pavements, transverse cracking and joint problems are the most common kinds of observed distress. For poststressed pavements, these distress types are transverse cracking, various joint problems and blowups.

9. More emphasis should be placed on the design of joints for prestressed pavements.

10. Existing in-service concrete pavements which are faulted should not be considered for prestressing unless the faulting is corrected pfior to prestressing.

11. Expected compressive strengths for 10 year ole in-service concrete pavements can be expected to range between 6,000 and 7,700 psi (41,370 and 53,092 KPa).

12. Creep of existing concrete pavement after prestressing is applied is not expected to be major consequence. This conclusion is based on the assumption that existing cracks and joints will be adequately prepared to prevent movement prior to prestressing and that significant creep will not occur in aged concrete.

References

- D 1. Moreell, B., Murray, J. and Heinzerling, J. E., "Experimental Prestressed Concrete Highway Project in Pittsburgh," Proc. Highway Res. Board, V. 37, 1958, pp. 150-191.
- D 2. Friberg, B. F., "Pavement Research, Design, and Prestressed Concrete," Proc. Highway Res. Board, V. 34, 1955, pp. 65-84.
- D 3. Stott, J. P., "Prestressed Concrete Roads," Proc., Inst. Civil Eng., London, V. 4, No. 3-II, Oct. 1955, pp. 491-511.
- D 4. Pedersen, G. S., "Prestressed Concrete for Airfield Pavements," Civil Engineering, ASCE, V. 28, No. 11, Nov. 1958, pp. 846-849.
- D 5. Chastain, W. E. and Burke, J. E., "An Experiment in Pavement Slab Design," Highway Research Board, Bulletin 274, 1960, pp. 119-149.
- D 6. Cholnoky, T., "Prestressed Concrete Pavement for Airfields," J. Amer. Concrete Inst., V. 28, No. 1, July 1956, pp. 59-84.
- D 7. Anonymous, "An Experimental Prestressed Road in France," Concrete & Const. Engineering, V. 50, No. 5, May 1955, pp. 199-200.
- D 8. Anonymous, "Taxiway Is a Concrete Laboratory," Engineering News-Record, N.Y., V. 163, No. 8, Aug. 20, 1959, pp. 32-34.
- D 9. Renz, C. F. and Melville, P. L., "Experience With Prestressed Concrete Airfield Pavements in the United States," J. Prestr. Concrete Inst., V. 6, No. 1, March 1961, pp. 75-92.
- D 10. Vendepitte, D., "Prestressed Concrete Pavements A Review of European Practice," J. Prestr. Concrete Inst., Vol. 6, No. 1, March 1961, pp. 60-74.
- D 11. Freibauer, B., "Pretensioned Prestressed Concrete Slabs for the Vienna Airport," J. Prestr. Concrete Inst., V. 6, No. 1, March 1961, pp. 48-59.
- D 12. Timms, A. G., "Evaluating Subgrade Friction Reducing Mediums for Rigid Pavements," Highway Research Record, No. 60, 1964, pp. 28-38.
- D 13. Mayer, A., "European Developments in Prestressed Concrete Pavements for Roads and Airports," Bull. Highway Res. Board, No. 274, 1960, pp. 92-109.
- D 14. Stott, J. P., "Tests on Materials for Use in Sliding Layers Under Concrete Road Slabs," Civil Engineering and Public Works Review, Vol. 56, Nos. 663, 664, 665, 1961, pp. 1297, 1299, 1301, 1466, 1603, 1605.
- D 15. Cholnoky, T., "Theoretical and Practical Aspects of Prestressed Concrete for Highway Pavements," Bull. Highway Res. Board, No. 179, 1958, pp. 13-31.

- D 16. Melville, P. L., "Review of French and British Procedures in the Design of Prestressed Pavements," Bull. Highway Res. Board, No. 179, 1958, pp. 1-12.
- D 17. Anonymous, "W. Germany Uses Blitz Approach to Highway Building," Engineering News-Record, N.Y., V. 166, No. 5, Feb. 2, 1961, pp. 52-54.
- D 18. Bowman, W. G., "West Germany: Where Construction is Booming," Engineering News-Record, N.Y., V. 167, No.6, Aug. 10, 1961, pp. 32-44.
- D 19. Anonymous, "Prestressed Slab has Tubular Anchorages," Engineering News-Record, N.Y., Nov. 3, 1960, pp. 42-44.
- D 20. Sherwood, R. S., "The Mechanism of Dry Friction," The Iowa State College Bulletin, Engineering Report No. 6, Iowa Engineering Experiment Station, 1950-1951.
- D 21. Smith, J. R. and Evanko, J. L., "Moving Load Test on Experimental Prestressed Concrete Highway Slab, Part B - Additional Investigations," Highway Research Record, No. 131, 1966, pp. 49-64.
- D 22. Kidd, R. A. and Stott, J. P., "The Construction of an Experimental Prestressed Concrete Road at Winthrope, Nottinghamshire," Proc., Inst. Civil Engr., London, V. 36, March, 1967, pp. 473-498.
- D 23. Mittelmann, G., "Construction of Prestressed Pavement at an Airport in Portugal," J. Amer. Concrete Inst., Proc's, V. 64, No. 7, July, 1967, pp. 393-397.
- D 24. ACI Committee 325-VI (J. A. Bishop Chairman) "Proposed Design for Experimental Prestressed Pavement Slab," ACI Jour. Amer. Concrete Inst., Proc's, V. 65, No. 4, April, 1968, pp. 249-258.
- D 25. Halliday, D. and Resnick, R., "Physics for Students of Science and Engineering," John Wiley and Sons, Inc., 1962.
- D 26. Yoder, E. and Witczak, M., "Principles of Pavement Design," John Wiley and Sons, Inc., 1975.
- D 27. Bowden, F. P. and Tabor, D., "The Friction and Lubrication of Solids," Oxford at the Clarendon Press, 1950.
- D 28. "Design, Construction, and Maintenance of PCC Pavement Joints," NCHRP Synthesis 19 (1973) 40 pp.
- D 29. Washa, G. W. and Wendt, K. F., "Fifty Year Properties of Concrete," ACI Journal, Proc's, V. 72, No. 1, January, 1975, pp. 20-28.
- D 30. Hanson, J. A., "A Ten-Year Study of Creep Properties of Concrete," Report No. SP-38, Concrete Laboratory, U.S. Bureau of Reclamation, Denver, July, 1953.

- D 31. Mather, B., "Stronger Concrete," Highway Research Record, No. 210, 1967, pp. 1-28.
- D 32. "The AASHO Road Test," Special Report 61B, Highway Research Board, 1962.
- D 33. Troxell, G. E., Raphael, J. M., and Davis, R. E., "Long-Time Creep and Shrinkage Tests of Plain and Reinforced Concrete," Proceedings, ASTM, V. 58, 1958, pp. 1101-1120.
- D 34. Huyghe, G. and Celis, R., "Joint-Free Experimental Prestressed Pavement," J. Prestr. Concrete Inst., Vol. 17, No. 1, Jan.-Feb. 1972, pp. 58-72.
- D 35. Venkatasubramanian, V., "Friction Studies in Bonded Cement Concrete Pavement Slabs," Highway Research Board, No. 112, 1966, pp. 120-135.
- D 36. "Continuously Reinforced Concrete Pavement," NCHRP Synthesis 16 (1973) 23 pp.
- D 37. Harris, A. J., "Prestressed Concrete Runways: History, Practice, and Theory," Proc., Inst. Civil Eng., London, V. 6, Jan. 1957, pp. 45-66.
- D 38. Lemcoe, M. M. and Mahla, C. H., "Prestressed Overlay Slab for San Antonio Airport," J. Amer. Concrete Inst., V. 31, No. 1, July 1959, pp. 25-35.
- D 39. ACI Committee 325, "Prestressed Pavement, A World View of Its Status," J. Amer. Concrete Inst., Vol. 30, No. 8, Feb. 1959, pp. 829-838.
- D 40. Glaudon, J. G., "Study of Stresses in Prestressed Concrete Pavements at Maison-Blanche Airport," Highway Research Record, No. 44, December, 1963, pp. 30-103.
- D 41. Pasko, T. J., "Prestressed Highway Pavement at Dulles Airport for Transpo 72," J. Prestr. Concrete Inst., V. 17, No. 2, March-April, 1972, pp. 46-54.
- D 42. McCullough, BJ F. and Strauss, P. J., "A Performance Survey of Continuously Reinforced Concrete Pavements in Texas," Research Report 21-1F, Center for Highway Research, University of Texas at Austin, November, 1974.
- D 43. Velz, P. G. and Carsberg, E. C., "Investigational Concrete Pavement in Minnesota: 18-Year Report," Highway Research Board, Bulletin 274, 1960, pp. 70-91.
- D 44. "Concrete Roads, Design and Construction," London, Her Majesty's Stationery Office, 1956.
- D 45. Finney, E. A., "Better Concrete Pavement Serviceability," The Iowa State University Press, Ames, Iowa and American Concrete Institute, Detroit, Michigan, 1973.
- D 46. "Methods for Reducing Friction Between Concrete Slabs and Cement-Treated Subbases," Report to Office of Research, Fairbanks Highway Station, FHWA, Portland Cement Association, October, 1971.

- D 47. Goldbeck, A. T., "Friction Tests for Concrete on Various Subbases," American Concrete Institute, Proceedings, Vol. 8, 1917.
- D 48. Gramling, W. L. and Brunner, R. J., (Pennsylvania Dept. of Transportation) "Post-tensioned Concrete Pavement," Innovations in Construction and Maintenance of Transportation Facilities, Transp. Research Board Special Report 148, 1974, pp. 57-64.
- D 49. Teller, L. W. and Sutherland, C. E., "The Structural Design of Concrete Pavements," Public Roads, Vol. 16, October and November, 1935, pp. 169-197.
- D 50. Teller, L. W. and Bosley, H. L., "The Arlington Curing Experiments," Public Roads, Vol. 10, No. 123, February, 1930.
- D 51. Goldbeck, A. T., "Friction Tests of Concrete on Various Subbases," Public Roads, July, 1924.
- D 52. Watson, C. M., "Coefficients of Friction Between Concrete Pavement Slabs and Soil Cement Base Under Different Methods of Subgrade Treatment," Report, Louisiana Department of Highways, July, 1960.
- D 53. Brunner, R., "Prestressed Pavement Demonstration Project," Transportation Research Board, No. 535, 1975, pp. 62-72.
- D 54. "Prestressed Concrete Pavements," Special Report No. 78, Highway Research Board, 1963.
- D 55. Sparkes, F. N., "Stresses in Concrete Road Slabs," The Structural Engineer, February, 1939, pp. 98-116.
- D 56. Friberg, B. F., "Frictional Resistance Under Concrete Pavements and Restraint Stresses in Long Reinforced Slabs," Proceedings of Highway Research Board, Vol. 33, 1954, pp. 167-184.
- D 57. Hanna, A. N., Nussbaum, P. J., Arriyavat, P., Tseng, J. J., and Friberg, B. F., "Prestressed 'Zero Maintenance' Pavements Task A - Technological Review," Draft Report DOT-FH-11-8894, Portland Cement Association, August, 1976.

APPENDIX E. TIME VALUE OF MONEY (INTEREST)

Highway engineers almost always find that the money consequences of any alternative involving construction, rehabilitation, or maintenance occur over a substantial period of time - often many years. Thus the question arises can we simply add up the various sums of money at various times and obtain a net result? Obviously money today and money tomorrow do not have the same "worth", or "value" in terms of what goods and services they can buy. Factors such as inflation, supply and demand, and individual likes and dislikes affect the value of particular goods and services. But, these factors aside, is there still a time value of money? Again, the obvious answer is yes! One hundred dollars today is worth more than the promise of \$100 one year from The reason is that you can take the \$100 you receive today, invest it now. in a savings account and receive at least \$105 one year from now. The use of money is a valuable asset - so valuable that people are willing to pay to have money available for their use. Money can be rented in roughly the same way one rents an apartment, only with money the charge for its use is called interest instead of rent.

The existence of interest is demonstrated by the continuing offer by banks and savings institutions to pay for the use of people's money, to pay interest. (Currently, a passbook savings account will draw at least 5% interest.)

What about the treatment of interest in economy studies for public works, such as highways? An excellent treatment of this question is given by Grant, et al. (E 1):

Engineers have not always agreed on the point of view that should be taken toward the treatment of interest in judging the soundness of proposed public works expenditures. Some different viewpoints on this subject have been as follows:

1. Costs should, in effect, be computed at zero interest rate. The advocates of this viewpoint have generally restricted its application to those public works that were financed out of current taxation rather than by borrowing.

2. Costs should be computed, using an interest rate equal to the rate paid on borrowings by the particular unit of government in question. If the proposed public works are to be financed by borrowing, the probable cost of the borrowed money should be used. Otherwise the average cost of money for long-term borrowings should be used.

3. Just as in private enterprise, the question of the interest rate to be used in an economy study is essentially the question of

E-1

what is a minimum attractive rate of return under the circumstances. Although the cost of borrowed money is one appropriate element in determining the minimum attractive rate of return, it is not the sole element to be considered. In most instances the appropriate minimum attractive rate of return should be somewhat higher than the cost of borrowed money.

Our discussions in Chapters 9 and 11 made it clear that the authors of this book favor the view stated under heading 3. Some further aspects of the case supporting this view are developed following Example 19-1.

Example 19-1. The Effect of the Selection of the Minimum Attractive Rate of Return on a Comparison of Highway Bridge Types

Facts of the Case. In a certain location near the Pacific Ocean, two alternative types of highway bridge are under consideration for the replacement of an existing timber trestle bridge on a state highway in a rural area. The first cost of a steel bridge will be \$340,000; the first cost of a concrete arch bridge will be \$390,000. Maintenance costs for the steel bridge consist chiefly of painting; the average annual figure is estimated to be \$3,000. Maintenance costs on the concrete arch bridge are assumed to be negligible over the life of the bridge. Either bridge has an estimated life of 50 years. The two bridges have no differences in their prospective services to the highway users.

It is evident that in this instance the choice between the two types depends on the assumed interest rate or minimum attractive rate of return. A tabulation of annual costs with various interest rates is as follows:

	A	1 0+	Difference i	n Annual Cost
Interest	Annua	LUSI	Favoring	Favoring
Rate	Steel	Concrete	Steel	Concrete
0%	\$ 9,800 '	\$ 7,800		\$2,000
2%	13,820	12,410		1,410
4%	18,830	18,150		680
5%	21,630	21,360	· ·	270
6%	24,570	24,740	\$ 170	
8%	30,790	31,880	1,090	
10%	37,290	39,340	2,050	
12%	43,940	46,960	3,020	

If i* is below 5.6%, the concrete bridge is more economical for this location. If above 5.6%, the steel bridge is more economical.

The Need for Some Minimum Attractive Rate of Return in Economy Studies for Public Works. Examples 9-1 and 19-1 both dealt with economy studies for state highway projects. In general, such projects in the United States have been financed chiefly by current highway-user taxes and have involved little or no public borrowing. This is the field in which the advocates of the 0% interest rate in public works projects were most articulate. It is also a field in which the funds available in any year have been limited by current tax collections, and in which there often have been many desirable projects that could not be constructed because of the limitation on current funds.

Example 19-1 represents a type of decision that usually is made on the level of engineering design rather than on the policy level of determining the order of priority of projects competing for funds. If each authorized project is to be designed to best advantage, it is essential that economy studies be made to compare the various alternative features in the design. If such studies were made at 0% interest, and if the conclusions of the studies were accepted in determining the design, many extra investments would be made that would yield relatively small returns (such as 1% or 2%). These extra investments in the projects actually undertaken would absorb funds that might otherwise have been used for additional highway projects. If the additional projects put off by a shortage of funds should be the ones where the benefits to highway users represented a return of, say, 15%, on the highway investment, it is clearly not in the over-all interest of highway users to have invested funds earning a return of only 2%. In other words, where available funds are limited, the selection of an appropriate minimum attractive rate of return calls for consideration of the prospective returns obtainable from alternative investments. This is as sound a principle in public works as it is in private enterprise.

If the time should ever be reached when economy studies indicate that all the highway funds currently available cannot be used without undertaking a number of highway investments yielding very low returns (such as 2%), a fair conclusion would be that highway user taxes should be lowered. In such a case the alternative investments would be those that might be made by individual taxpayers if taxes should be reduced. Money has a time value to the taxpayers; this is a fact that shoudl be recognized in the use of funds collected from taxpayers.

On the basis of the foregoing comparisons, this report involves the use of interest on money. In 1962, 45% of the state agencies used an interest rate of 0%, 22% used an interest rate between 2 and 3 3/4% and 33% used rates between 4 and 7% (E2). Today, most, if not all, state transportation agencies, use some interest rate in their economics evaluations. In 1959 a value of 7% was suggested as an appropriate value for interest rate to reflect the value of money at that time (E3). More recently (1976), Caltrans has selected 7% as a realistic value to determine the present worth of future dollars (E4). Finally, looking at the average costs to borrow money, as reflected in the municipal bond rate (5%) the public utility bond rate (8%) and the home mortgage rate (9%) reported in Engineering News Record (E5), the 7% interest rate utilized by many agencies for the past 15 years seems appropriate.

Therefore, on this project, an interest rate of 7% has been selected.

E-3

References

- E 1. Grant, E. L., Ireson, W. G., and Leavenworth, R. S., <u>Principles of</u> <u>Engineering Economy, Sixth Edition</u>, The Ronald Press Co., New York, New York, 1976.
- E 2. Glancy, David, "Utilization of Economic Analysis by State Highway Departments," HRR 77, Transportation Research Board, NAS, 1963.
- E 3. Grant, E. C., "Interest and the Rate of Return on Investments," <u>HRB</u> <u>Special Report 56</u>, Transportation Research Board, NAS, 1959.
- E 4. Faber, C. E., and Womack, R. R., "A New Direction for the Highway Program," TRK 585, Transportation Research Board, NAS, 1976.
- E 5. "Borrowing Costs Holding The Line," <u>Engineering News Record</u>, March 24, 1977, p 80.

APPENDIX F. UPDATING ESTIMATED REHABILITATION COST INFORMATION

As cost information is obtained from various sources at various times it is necessary to bring these costs to a common time frame. For the purposes of this project, April 1, 1977, has been selected. In order to convert whatever cost figures obtained to a April 1, 1977, (first quarter 1977) estimate, the cost index method is used. In this method:

$$C_{c} = C_{o} \left(\frac{I_{c}}{I_{o}} \right)$$

Where: C = Current estimated total cost

 C_{o} = Total cost at other time "O" (same sized project)

I = Current index number (first quarter 77)

 I_{o} = Index number at other time "0"

The index number to use depends upon the type of cost being estimated. Four indices are given from which to choose:

1. The ENR Construction Cost Index (F 1)

2. The ENR Bid Price Trends on Federal - Aid Highway Contracts (F 1, F 2)

3. The ENR Equipment Price Index (F 1)

4. The Cost Trends on Highway Maintenance and Operations (F_2)

The ENR Construction Cost Index (Table F-1) was designed as a general purpose construction cost index to chart basic costs with time. It is a weighted aggregrate index of constant quantities of structural steel, port-land cement, lumber, and common labor, valued at \$100 in 1913.

The Bid Price Trends on Federal - Aid Highway Contracts is compiled by the Federal Highway Administration as reported by state transportation agencies, (Table F-2). The base year for this index is 1967.

The ENR Equipment Price Index (Table F-3) is compiled from Bureau of Labor statistics and only the January 1977 index is given (tor a base year of 1967). To use this index subtract 100 from the 1977 index then divide by 10 to obtain an average yearly percent increase in equipment costs. Then use as shown in the following example.

Equipment: Concrete paver which cost \$125,000 in June 1971. Time change - June 1971 to April 1977 = 5.75 years.

F-1

= \$180,000

The Cost Trends for Highway Maintenance and Operations (Table F-4) are given through 1973 (the latest year available). To update to 1977, an estimate must be made using Figure F-1.

Table F-1. Construction Cost Index History 1903-1976

How ENR builds the Index: 200 hours of common labor at the 20-cities average rate, plus 25 cwt of standard structural steel shapes at the mill price, plus 22.56 cwt (1.128 tons) of Portland cement at the 20-cities average price, plus 1,088 board feet of 2 x 4 lumber at the 20-cities average price.

1951 543 93 1919 198 1927 1935 196 189 1926 276 1950

1913=100

Monthly

	Tan	Tak	Max	1	Marr	Inno	7., 1.,	Aug	Sont	Oct	Nou	Dec	Annual Average
	Jan.	rep.	mar.	Apr.	мау	June	July	Aug.	sept		• 100	· Dec.	Average
1960	812	813	813	815	823	827	829	830	831	830	830	831	824
1961	834	834	834	838	847	850	854	854	854	854	855	855	847
1962	855	858	861	863	872	873	877	881	881	880	880	880	872
1963	883	883	884	885	894	899	90 9	914	914	916	914	915	901
1964	918	920	922	926	930	935	945	948	947	948	9 48	948	936
												•	
1965	948	957	958	957	958	969	977	984	986	986	986	988	971
1966	988	997	998	1006	1014	1029	1031	1033	1034	1032	1033	1034	1019
1967	1039	1041	1043	1044	1059	1068	1078	1089	1092	1096	1097	1098	1070
1968	1107	1114	1117	1124	1142	1154	1158	1171	1186	1190	1191	1201	1155
1969	1216	1229	1238	1249	1258	1270	1283	1292	1285	1299	1305	1305	1269
1970	1309	1311	1314	1329	1351	1375	1414	1418	1421	1434	1445	1445	1385
1971	1465	1467	1496	1513	1551	1589	1618	1629	1654	1657	1665	1672	1581
1972	1686	1691	1697	1707	1735	1761	1772	1777	1786	1794	1808	1816	1753
1973	1838	1850	1859	1874	1880	1896	1901	1902	1929	1933	1935	1939	1895
1974	1940	1940	1940	1961	1961	1993	2040	2076	2089	2100	2094	2101	2020
1975	2103	2128	2128	2135	2164	2205	2 248	2274	2275	2293	2292	2297	2212
1976	2305	2314	2322	2327	2357	2410	2414	2445	2465	2478	2486	2490	3401
1977	2494	2505	2513										

From Reference <u>F1</u>. 1 board ft = 25.4 mm x 304.8 mm x 304.8 mm 1 in = 25.4 mm, 1CWT = 45.36 kg

Table F-2. Bid	Price	Trends	on	Federal-Aid	Highway	Contracts
----------------	-------	--------	----	-------------	---------	-----------

Federal Highway Administration Base: 1967 = 100

			<u>S</u> ı	irfacin	<u>g</u>		Sti	ructures		High-	ENR
	Exca- vation		PCC	Bit. conc.	Com-	steel	steel	Struc.	Com-	way Bid	Build ing
	price (yd)	Index		price (t)	bined Index	-	price (1b)	price (yd ³)	bined Index	Price Index	Cost Index
1967	0.54	100.0	4.43	6,47	100.0	0.131	0.247	70.30	100.0	100.0	100.0
1970	0.66	121.8	5.42	8.04	123.3	0.163	0.338	92.73	132.2	125.6	124.4
1971	0.67	123.8	6.06	8.54	134.5	0.177	0.348	97.02	138.5	131.7	140.5
1972	0.72	133.4	6.25	9.22	141.9	0.181	0.342	100.17	140.6	138.2	155.2
1973 Av.	.80	147.1	6.87	9.99	154.8	.207	.373	111.83	156.5	152.4	171.3
01	0.67	124.7	6.57	9.85	150.3	0.181	0.295	109.34	141.9	137.8	166.3
Q2	75	138.0	6.36	9,90	148.2	0.193	0.352	113.51	153.4	145.9	168.5
03	81	149.5	7.10	9.61	154.7	0.212	0.422	110.60	162.1	155.1	170.4
94	93	172.7	7.43	10.83	167.7	0.233	0.379	113.51	162.0	167.8	171.8
1974 Av.	1.00	184.1	8.67	14.74	211,3	.340	.551	136.80	214.5	201.8	179.8
01	97	179.7	8.17	13.28	194.6	.281	.459	129,64	190.2	187.4	171.0
	96	178.0	8.48	15.77	216.8	.342	.555	137.07	215.4	201.4	177.5
<u>1</u> 3	1.02	187.9	8.82	14.64	212.4	.371	.577	152.57	233.7	209.7	183.2
04	1.03	190.6	9.10	15.18	219.7	.362	.648	130.33	224.1	209.9	183.8
1975 Av.	1.03	190.6	8.62	15.13	213.8	. 297	.554	138.76	210.5	203.8	195.5
Q1	1.02	188.1	9.84	13.95	219.1	.332	.577	140.93	219.7	207.3	187.3
02	1,00	184.9	8.22	14,35	203.2	.320	.542	139.85	213.1	199.3	193.4
03	1.02	188.8	8.49	15,58	215.5	.283	.556	142,13	211.5	203.9	196.9
Q4	1.10	202.6	9.00	16.41	227.7	.277	.548	131.90	207.9	209.8	199.8
1976 Av.	1.03	191.2	8.65	15.07	213.7	.257	.493	138.75	198.1	200.4	219.9
Q1	1.04	192.0	7.70	16.28	212.3	.251	.543	133.72	199.3	200.3	202.7
Q2	1.05	194.3	8.56	14.13	205.5	.242	.510	145.65	203.1	200.4	217.5
ņ3	1.03	191.1	9.18	15.12	219.4	.264	.438	135.28	189.6	199.0	227.6
Q4	1.01	187.3	9.17	14.76	217.4	.271	.481	141.34	200.4	200.4	231.8
%chg.											
Q3'76-Q4'76		-2,0	-	-1.7	-0.9	+2.9	+9.8	+4.5	+5.7	+0.7	+1.8
Q4175-Q4176	5 -8.2	-7.6	+1.9	-10.1	-4.5	-2.2	-12.2	+7,2	-3.6	-4.5	-16.0

From Reference <u>F</u>1. 1 yd³ = 0.765 m³, 1 yd² = 0.836 m², 1 1b = 0.454 kg

Table F-3. Equipment Price Indexes

Bureau of Labor Statistics, 1967=100

	Jan.	%chg. 10/76-	%chg. 1/76-
	1977	1/77	1/77
All Construction Equipment *	208.8	+3,3	+8.0
Power Cranes, Excavators & equip	210.1	+2.8	+7.1
Crane, hydr., rbbr-tired, 12-18tons(a)#.	196.1	+2.2	+7.7
trk-mntd,15-25tons(e)	147.4	+3.2	+3.9
25-50tons(e)	149.2	+1.2	+4.0
cable, trk-mntd,50-100tons(e)	159.2	+3.2	+7.6
crawler,50-100tons(e)	181.5	+2.8	+7.0
Excavators, hydr.(e)	151.1	+2.4	+6.3
Bucket, clamshell, 1/4 yd ³	267,6	+6.3	+14.3
dragline, 3/4 yd ³	271.7	+3.4	+9.5
Backhoes	180.7	+2.6	+3.7
Scraper, 12-18 yd ³	199.6	+1.0	+3.6
20-35 yd ³	213.3	+9.2	+15.2
Grader,115-144 BHP	200.4	+3.5	+7.5
Tractors	215.0	+4.3	+9.2
Wheel, off-highway,250-350 HP	223.4	+6.6	+9.6
375-475 HP(c)	188.8	+1.9	+6.1
Crawler,60-89 net eng HP	185.2		+11.0
90-129 net eng HP	214.1	+3.2	+6.3
130-199 net eng Mp	228.3	+3,0	+7.0
200- & over net eng HP	226.1	+4.1	+7.8
Shovel-Loader, crawler,90-129 HP	198.3	+2.8	+5.8
rbbr-tired, $2^{1}/2$ & under $3^{1}/2$ yd ³ (e)	156.1	+2.9	+5.8
rbbr-tired, 5 & under $7^{1}/2$ yd ³ (e)	162.0	+3.6	+5.9
Contractors' Off-Highway Truck, 50-ton .	217.5	+3.5	+6.5
Roller, tandem			
pneumatic			
vibratory(d)			
Dewatering Pump, 10 m GPH	197.1	+1.5	+.9
90 m GPH	231,4	+1.8	+7.8
Portable Air Compressors	124.1	+3.4	+8.7
Mixers, Pavers, Spreaders	176.9	+2.9	+7.5
Concrete Mix Plant, mobile(c)	158,6	+2.8	+7.1
Truck Mixer, 7 yd ³	172.7	+6.6	+12.8
Slipform Paver(d)			
Bituminous Batch Plant, portable(b)	175.7	+1,6	+3.1
Bituminous Spreader	194.9	,	+7.6
Crushing Plant, portable(b)	190.5	+1.8	+6.3
Welding Machines and Equipment	191.0	+1.9	+2.8

(a)Dec. '67=100 (b)Dec. '68=100 (c)Dec. '69=100 (d)Dec. '70=100
 (e)Dec. '72=100 Manufacturer to Dealer (first transaction) Construction Equipment Price Indexes by Bureau of Labor Statistics. Department of Labor.
 *Excluding welding machinery. #Self-propelled.

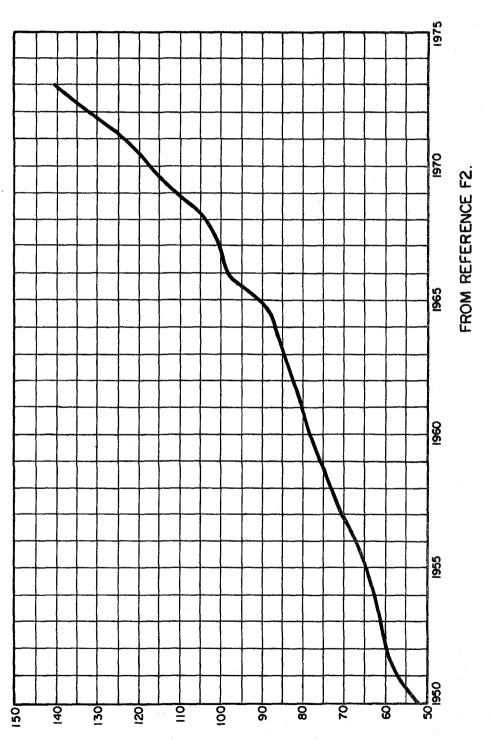

From Reference <u>F 1</u>. 1 ton = 907.2 kg 1 yd³ = 0.765 m³

Table F-4. Cost Trends Highway Maintenance and Operation¹

Year	Labor	Material	Equipment	Overhead	Total
1950	43.58	74.53	57.66	57.07	51.31
1951	47.76	81.07	64.34	62.23	56.41
1952	51,15	81.99	66.86	65.05	59.28
1953	52,00	82.54	68.76	65.73	60.33
1954	54.89	83.49	70.40	66.42	62.55
1955	55,94	82,80	74.24	67.71	64.09
1956	58.70	86.91	74.06	70.55	66.31
1957	63,20	90.86	75.66	78.22	70.28
1958	65.74	92.27	78.91	81.21	72.90
1959	67,82	92.40	83.15	81.88	75.17
1960	71.02	94.68	86.98	84.19	78.35
1961	73,25	95.18	87.19	85.08	79.82
1962	76.06	96.66	88.76	86.47	82.09
1963	79.46	96.87	89.25	88.05	84.32
1964	81.79	97.48	91.25	89,98	86.35
1965	85.69	99.23	94.23	92.01	89.66
1966	98.02	99.68	96.70	96.23	97.76
1967	100.00	100.00	100.00	100.00	100.00
1968	103.63	102.03	100.42	105.03	102.79
1969	113.71	106.24	104.24	110.86	110.44
1970	122.02	111.03	106.56	116.81	116.78
1971	129.67	117.37	107.93	122.76	122.68
1972	138,21	124.27	119.98	128.71	131.68
1973	148.04	130,42	133.70	134.66	141.75

1967 = Base Year

¹These data are prepared from the unit cost information submitted each year by State highway departments, and cover both physical maintenance and major traffic service items including snow and ice control. Previous issues of this table used base period 1957-59.

References

F 1. Engineering News Record, March 24, 1977.

F 2. Highway Statistics, 1973, FHWA, 1973.

APPENDIX G. UPDATING USER COST AND ACCIDENT COST INFORMATION

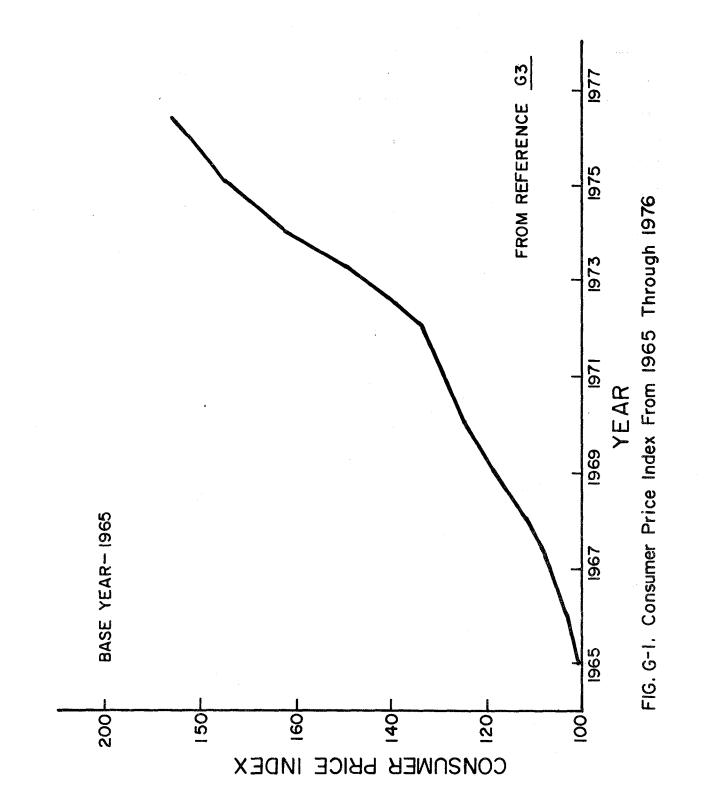
User costs have been obtained from McFarland's data (G 1) which reflects 1972 dollars. Accident costs are based on a 1975 report which reflects 1974 dollars (\$1240 per accident) (G 2). The problem is how to update these costs to 1977 dollars. To accomplish this the consumer price index has been selected. (Table G-1). This index reflects the average increase in prices for a number of selected consumer products from 1965 (the selected base year) through 1976. To estimate the index for April 1977 is 186.

Accidents costs, updated to April 1977, are:

 $C_{c} = \$1240 \ (\frac{186}{154}) = 1240 \ x \ 1.21 = \1500

This value has been entered into the computer program as a default value, which means the value does not have to be entered each time a technique is analyzed.

User costs <u>must</u> be entered each time a technique is analysed. To update the McFarland data, as prepared in graphical form, multiply the value obtained from the graph by:


$$\frac{186}{131} = 1.42$$

For example, if user costs per vehicle mile of 0.16 was obtained from the graph, enter $0.16 \times 1.42 = 0.23$ on the computer input sheet.

Year	Index	Percent Rise each Year
1965	100	3.4
1966	1.03.4	3.0
1967	106.4	4.7
1968	111.5	4.7
1969	118.3	6.1
L970	124.8	5.5
1971	129.0	3.4
L972	133.4	3.4
L973	145.1	8.8
1974	162.8	12.2
1975	174.2	7.0
1976	182.6	4.8

TABLE G-1. Consumer Price Index

From Reference <u>G 3</u>.

G-3

References

- G 1. McFarland, W. F., "Benefit Analysis for Pavement Design Systems," <u>Research Report No. 123-13</u>, Texas Transportation Institute, Texas A&M University, 1972.
- G 2. Accident Facts, 1975
- G 3. Wall Street Journal, Monday, April 4, 1977, p 28.

APPENDIX H. ENERGY REQUIREMENTS ASSOCIATED WITH HIGHWAY MAINTENANCE AND REHABILITATION

Introduction

Transportation of goods and services required 25 percent of the total 90 quadrillion (10^{15}) Btu (95000 quadrillion J) consumed in the United States in 1977 (H 1). This amount increases to 42 percent if the total amount of energy required for 1) the production of raw materials used in transportation vehicles, 2) manufacture of transportation vehicles and 3) the production of materials for construction, rehabilitation and maintenance of transportation facilities is considered.

The information included below defines the energy requirements for operations associated with highway maintenance and rehabilitation. It is estimated that the energy associated with these operations consumes about 1.5 to 2.0% of the total energy consumed in the United States (H 2). Even with this relatively small percent of total energy consumption associated with highway maintenance and rehabilitation, it is none-theless important that the engineer optimize these operations based on energy requirements just as he presently optimizes his operation based on costs.

Energy Equivalents

A wide variety of equipment and processes are utilized to produce, transport and place materials associated with highway maintenance and rehabiliation activities. Typical equivalencies for a wide variety of fuels associated with these operations are shown in Table H-1. It should be noted that as the density of the petroleum product increases, the energy equivalent increases. Asphalt cement which has a high density

H-1

Fuel	Energy Equivalencies
Gasoline	125,000 Btu/gal (<u>H 14</u>)
Kerosene	135,000 Btu/gal (<u>H 14</u>)
Fuel Oil, No. 1 (API 42)	135,000 Btu/gal (<u>H 14</u>)
Fuel Oil, No. 2 (API 35) (diesel)	139,000 Btu/gal (<u>H 14</u>)
Fuel 011, No. 3 (API 28)	143,000 Btu/gal (<u>H 14</u>)
Fuel 0i1, No. 4 (API 20)	148,500 Btu/gal (<u>H 14</u>)
Fuel 0il, No. 5 (API 14)	152,000 Btu/gal (<u>H 14</u>)
Fuel Oil, No. 6 (API 10) (Bunker C)	154,500 Btu/gal (<u>H 14</u>)
Natural Gas	1,000 Btu/ft ³ (<u>H 14</u>)
Propane Gas	91,000 Btu/gal (<u>H 14</u>)
Butane Gas	100,000 Btu/gal (<u>H 14</u>)
Asphalt Cement	158,000 Btu/gal (<u>H 5</u>) 19, 045 Btu/lb.
Coal	11,670 Btu/1b (<u>H 7</u>)
Petroleum Coke	14,470 Btu/1b (<u>H 7</u>)
Lignite	6000 to 9000 Btu/1b

TABLE H-1. Fuel Equivalents

.

Metric Conversion: 1 Btu/gal = 278.7 J/1 1 Btu/ft³ = 37.26 J/1 1 Btu/1b = 2324 J/kg

y

has a relatively large energy equivalent. It also should be noted that asphalt has not been considered as a fuel source but rather as a construction material in this report. Thus if asphalt cement, cutback asphalt or emulsified asphalt are materials utilized as a part of the maintenance or rehabilitation activity; their energy equivalencies as a fuel are not considered (<u>H 14</u>). The potential is there, however.

To aid the reader in conversion from one energy unit to another energy unit the following is offered:

1	kWh	-	3412 Btu
1	hp-hr	=	2547 Btu
1	hp	=	0.7457 kW
1	kWh	=	1.341 hp-hr
1	kW	=	1.341 hp
1	Btu	=	1055 J
1	J	=	0.000948 Btu

A British thermal unit (Btu) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit when water is at or near 39.2°F. A Joule is a unit of work and energy in the SI System. 4.186 Joules are required to raise one gram of water 1°C.

In actual practice, energy is lost when fuel is converted into electrical energy or into horsepower. For example, the following energy conversions are not unlikely:

1. 11,000 Btu to generate 1 kWh

2. 0.06 gal of gasoline to generate 1 brake horsepower hour (bhphr)*

∄–3

^{*}The brake horsepower of an engine is calculated by direct measurement by use of a dynamometer and takes into account system losses.

3. 0.04 gal of diesel fuel to generate 1 brake horsepower hour (bhp-hr)*

Thus, the burning of fuel to generate electricity is about 31 percent efficient. The burning of fuel in engines to obtain power is approximately 34 percent and 46 percent efficient for gasoline and diesel engines, respectively. Additionally, since power equipment is ordinarily not operated at full rated power for a prolonged period of time, adjustments of the order of 67 percent and 75 percent of rated power (relative to continious operation) are normally made for stationary and power vehicles respectively (H 14).

Energy Requirements for Highway Maintenance

Energy requirements for equipment associated with maintenance and rehabilitation, manufacture of materials, production of mixtures, construction operations and individual maintenance and rehabilitation operations are included below.

Equipment. Energy requirements for various types of vehicles and equipment associated with maintenance and rehabilitation are shown on Table H-2 and Table H-3. Table H-2 gives energy requirements for automobiles and trucks while Table H-3 includes various maintenance equipment. Appropriate references are included.

Production and Manufacture. Energy requirements for the manufacture of asphalt products, portland cement, steel and lime are shown on Table H-4. Energy Associated with operations involving the production of aggregates, asphalt concrete and portland cement concrete are shown in Tables H-5, H-6 and H-7 respectively. In some cases different values have been

H-4

······································	Energ	y Requireme	nts	_ Ref
Type of Vehicle	Btu/mi	Btu/hr	Btu/ton mi	_ Kei
Automobile	7,230			(<u>H 23</u>)
Stationwagon	7,760			(<u>H 23</u>)
Pickup	11,400			(<u>H 24</u>)
Maintenance Trucks - Diesel	26,700	97,300		(<u>H_23</u>)
Maintenance Trucks - Gasoline	26,600	100,000		(<u>H 23</u>)
Maintenance Trucks - 1 ton	15,600			(<u>H 24</u>)
Maintenance Trucks - 2 Axle	27,500			(<u>H 24</u>)
Distributor Truck - Gasoline	31,300			(<u>H 24</u>)
Truck Tractor - Diesel	30,400			(<u>H 24</u>)
Truck - 2 Axle, 6 Tire, Gasoline			11,000	(<u>H 14</u>)
Truck - 3 Axle, Gasoline			4,270	(<u>H 14</u>)
Truck - 3 Axle, Diesel			3,800	(<u>H 14</u>)
Truck - 3 Axle (combination) Gasoline		÷ .	7,440	(<u>H 14</u>)
Truck - 3 Axle (combination) Diesel			5,840	(<u>H 14</u>)
Truck - 4 Axle (combination) Gasoline			5,040	(<u>H 14</u>)
Truck - 4 Axle (combination) Diesel			3,270	(<u>H 14</u>)
Truck - 5 Axle (combination) Gasoline			2,900	(<u>H 14</u>)
Truck - 5 Axle (combination) Diesel			1,960	(<u>H 14</u>)

TABLE H-2. Energy Requirements for Automobile and Truck Operation

Metric Conversion:

1 Btu/mi = 656.1 J/km 1 Btu/hr = 1055 J/hr 1 Btu/ton mi = 0.723 J/kg km

		· · · ·
Type of Vehicles		equirement
	Btu/hr	Ref
Front End Loader - 2 cu yd Diesel	6,950	(<u>H 23</u>)
Front End Loader - 1.5 cu yd Gasoline	5,000	(<u>H_23</u>)
Loader for Aggregates	875,000	(<u>H 14</u>)
Front End Loader, Diesel	222,000	(<u>H_24</u>)
Motor Grader - 23,000 1b Diesel	6,950	(<u>H_23</u>)
Grader, Diesel	375,000	(<u>H 24</u>)
Rollers	625,000	(<u>H_14</u>)
Roller	111,000	(<u>H 24</u>)
Striping Machine, Self Contained	125,000	(<u>H_24</u>)
Hand Striping Machine	62,500	(<u>H 24</u>)
Mower, Roadside	125,000	(<u>H 24</u>)
Mower, Landscape	46,800	(<u>H 24</u>)
Tractor, Farm Type	375,000	(<u>H_24</u>)
Spreader, Self Propelled	338,000	(<u>H_24</u>)
Broom, Mechanical	125,000	(<u>H 24</u>)
Dozer, Track Type	417,000	(<u>H 24</u>)
Crushing/Screening Plant	695,000	(<u>H_24</u>)
Asphalt Paver	626,000	(<u>H 14</u>)

TABLE H-3. Energy Requirements for Miscellaneous Maintenance and Rehabilitation Equipment

Metric Conversion: 1 Btu/mi = 656.1 J/km 1 Btu/hr = 1055 J/hr 1 cu yd = 0.765 m³ 1 1b = 0.454 kg

	Energ	gy Requir	ements	
Item	Btu/gal	Btu/1b	Btu/ton	- Ref
Asphalt Cement	2,500	300	600,000	(<u>H 14</u>)
Emulsified Asphalt	2,000	240	480,000*	(<u>H 14</u>)
Cutback Asphalt	2,500	300	600,000**	(<u>H_14</u>)
Portland Cement		3,750	7,500,000	(<u>H 5</u>), (<u>H</u>
Steel, for tiebars, re-bars		10,500	210,000,000	(<u>H_14</u>)
Lime		3,000	6,000,000	(<u>H 14</u>)

TABLE H-4. Energy Associated with Manufacturing

*For equal quantities of binder this is equivalent to 740,000 Btu/ton. Assumes 65 percent residual asphalt.

**For equal quantities of binder this is equivalent to 750,000 Btu/ton. Assumes 80 percent residual asphalt.

Metric Conversion: 1 Btu/gal = 278.7 J/1 1 Btu/1b = 2324 J/kg 1 Btu/ton = 1.164 J/kg

H--7

		Ene	rgy Requir	ement	
Product	Operation	Btu/1b	Btu/ton	Btu/yd ³ *	- Ref
	Drilling and shooting	6	12,000	21,000	(<u>H 14</u>
	Crushing	25.5	51,000	89,500	(<u>H 14</u>
Crushed Stone	Handling (cranes & bulldozers)	3.5	7,000	12,300	(<u>H 14</u>
	Total	35	70,000	123,000	(<u>H 14</u>
	Total	26	52,000	91,300	(<u>H 1</u>
	Crushing	17.5	35,000	61,400	(<u>H</u> 14
Crushed Gravel	Handling (cranes & bulldozers)	2.5	5,000	8,780	(<u>H 1</u> 4
	Total	20	40,000	70,200	(<u>H 1</u> 4
Natural or				<u></u>	
Uncrushed	Total	7.5	15,000	26,300	(<u>H 14</u>
Aggregate					
*130 lbs/ft ³ ass	umed unit weight (2100 km/m	3)			
Metric Conversio	n:				
1 Btu/1b = 2324	4 J/kg				
1 Btu/ton = 1.1	164 J/kg				
1 Btu/yd ³ = 13	81 J/m ³				

TABLE H-5. Energy Associated with Aggregate Production

	Operation		Energy Req	uirements	
		Btu/ton of mix	Btu/of operation**	Equivalent gals. of diesel/hr	Equivalent gals. of diesel/ton of mix
	Asphalt Heating & Storage	6,400	960,000	6.9	0.046
	Loader	4,380	657,000	4.7	0.031
	Cold Bins, Vibrators, Belt Feeders	100	15,000	0.1	0.001
	Cold Feed Belt Conveyor	250	37,500	0.3	0.002
	Cold Feed Total	4,730	710,000	5.1	0.034
•	Dryer Drive Motor	1,260	188,000	1.3	0.009
	Dryer Fuel Pump Blower	1,460	218,000	1.5	0.010
	Dryer Exhaust Fan	1,260	189,000	1.4	0.009
	Dryer Secondary Dust Collector	800	120,000	0.9	0.006
	Dryer Total	4,780	715,000	5.1	0.034
	Mixing Plant Hot Elevator	350	53,000	0.4	0.003
	Mixing Plant Screening	455	68,300	0.5	0.003
	Mixing Plant Asphalt Pump	250	37,500	0.3	0.002
	Mixing Plant Mineral Filler Elevator	c 200	30,000	0.2	0.001
	Mixing Plant Pugmill	2,070	310,000	2.2	0.015
	Mixing Plant Compressor (Discharge)	200	30,000	0.2	0.001
	Mixing Plant Storage Conveyor	400	60,000	0.4	0.003
	Mixing Plant Total	3,920	589,000	4.2	0.028
	Drying and Heating Aggregate	233,000***	35,000,000	252	1.68
	Plant Operation Total	253,000	38,000,000	273	1.82
	Paving Machine	4,170	625,000	4.5	0.030
	Rollers - 3	12,500	1,880,000	13.5	0.090
	Spreading and Compaction Total	16,700	2,500,000	18.02	0.120
	Drying and Heating Aggregate	278,000 (<u>H 3</u>) 41,700,000	300	2.00
	Drying and Heating Aggregate	278,000 (<u>H 2</u>	2)41,700,000	300	2.00
	Drying and Heating Aggregate	327,000****	49,000,000	353	2.35
	Plant Operation (excluding drying)				
	Lay & Compact	41,700 (<u>H 3</u>	6,260,000	45	0.300
	Plant Operation (excluding drying)				
	Lay & Compact	40,910	6,140,000	44.1	0.30

TABLE H-6. Energy Associated with Asphalt Concrete Production*

After references (<u>H 14</u>) except where noted.

After references (<u>H 14</u>) except where noted. *Operating at 67 percent rated power. ** Operating at 150 ton/hr (907 kg/hr). ***5% moisture removed and raise temperature to 300°F (148°C) for a mix which contains 94% by wt. of aggregate. ****Unpublished Illinois source stated in reference (<u>H 14</u>). Data from Illinois quoted in reference (<u>H 14</u>).

Metric Conversion: 1 Btu/ton = 1.164 J/kg. 1 gal/hr = 3.785 1/hr

1 Btu/hr = 1055 J/hr 1 gal/ton = 4.173 1/g

TABLE H-7. Energy Associated with Portland Cement Concrete Production

	E	nergy Require	ement	
	Btu ton ton of	Btu/yd ³ of mix*	Equivalent of diesel	
Operation	mix		ton of mix	yd ³ of mix
Loader	4380	8870	0.032	0.065
Conveyor	270	550	0.001	0.003
Mixing & Other Plant Operations	1770	3580	0.013	0.026
Total Plant Operation	6420	13,000	0.046	0.094
Placing, Consolidation & Finishing	2590	5240	0.019	0,038

* 150 lb/ft³ (2400 kg/m³) assumed unit weight (after reference (<u>H 14</u>) Metric Conversion:

1 Btu/ton = 1.164 J/kg 1 Btu/yd³ = 1.381 J/m³ 1 gal/ton = 0.00417 1/kg 1 gal/yd³ = 4.951 1/m³ reported and thus the different values are given in the Table. Requirements for miscellaneous construction operations are shown in Table H-8.

<u>Maintenance and Rehabilitation Activities.</u> Energy requirements associated with the performance of routine maintenance and rehabilitation activities is shown in Table H-9. The specific activity for which energy data have been calculated are:

- 1. Fog Seal Partial Width
- 2. Fog Seal Full Width
- 3. Chip Seal Partial Width
- 4. Chip Seal Full Width
- 5. Surface Patch Hand Method
- 6. Surface Patch Machine Method
- 7. Digout and Repair Hand Method
- 8. Digout and Repair Machine Method
- 9. Crack Pouring

10. Slurry Seal

11. Asphalt Concrete Overlay.

Energy required for material manufacture, material transportation, mixture production, mixture transportation, mixture placement, and compaction are included in the data reported in Table H-9. Assumptions as to the percent of the pavement area treated with the particular maintenance activity and the thickness or quantity of material applied are identical to those used for estimating maintenance costs. These data were developed based primarily on information obtained from the Arizona Department of Transportation (H 24).

Energy consumption for materials utilized in pavements (in-place) are given on Table H-10. Materials included in the table are asphalt con-

H-11

		Energy	y Requirement	-	
Operation	Btu/gal	Btu/ton	Btu/yd ³	Equivalent g of diesel pe	
			-	ton	yd ³
Spreading and Compaction Granular and Stabilized bases	4_+	17,000	30,980	0.122	0.223
Travel Plant Mixing in Windrow		3,000	5,470	0.022	0.039
Blade Mixing		7,820	14,250	0.056	0.103
Central Plant Mixing of Stabilized Base		6,890	12,550	0.050	0.090
Excavation - Earth		39,800	59,100(16)	0.286	
Excavation - Rock		35 ,500	76,700(16)	•	
Excavation - Other		39,100	68,700(16))	
Asphalt Distribution, Asphalt Cement	590				
Asphalt Distribution, Cutback Asphalt	445				
Asphalt Distribution, Emulsified Asphalt	145				
Aggregate Spreading for Seal Coats	9.4**		·		
Rolling Cold Asphalt Mixes	120***				

TABLE H-8. Energy Requirements for Miscellaneous Construction Operations

*135 $1b/ft^3$ (2160 kg/m³) assumed unit weight except for excavation items

**9.4 Btu/yd²

***120 Btu/yd² in.

After Reference (<u>H 14</u>) except where noted

Metric Conversion:

1 Btu/gal = 278.7 J/1 1 Btu/ton = 1.164 J/kg 1 Btu/yd³ = 1.381 J/m³ 1 ton = 907 kg 1 yd³ = 0.764 J m³ 1 in = 2.54 cm

	ş
TABLE H-9. Representative Energy Requirements for Maintenance and Rehabilitation Activities	Energy Requirements

		Pactor Doute				
1	وهو و و و و و و و و و و و و و و و و و و	The reduct of the second secon	ements			- Percent of total
Maintenance Activity	Energy/unit	Btu/yd ³ of area treated	Btu/yd ² in.	Btu/lane mi*	Btu/yd ² *	
						Assumptions
Fog Seal- Partial Width	10,500 Btu/gal (<u>H 24</u>)	1,050 (H 24)	I	3,700,000 (<u>H_24</u>)	<u>4</u>) 525 (<u>H 24</u>)) 50 percent
Fog Seal - Full Width	6,850,000 Btu/lane mi (H 24) 3,300,000 Btu/lane mi (H 14)	970 (H 24) 470 (H 14)	ł	6,850,000 (H 2 3,300,000 (H 1	24) 970 (H 24) 14) 470 (H 14)	1) 100 percent
Chip Seal - Partial Width	537,000 Btu/yd ³ (<u>H 24</u>)	4,480 (<u>H 24</u>)		4,700,000 (H 2	<u>24</u>) 670 (<u>H 24</u>)) 15 percent
Chip Seal - Full Width	14,400,000 Btu/lane mi (<u>H 24</u>) 27,800,000 Btu/lane mi (<u>H 14</u>)	2,050 (<u>H 24</u>) 3,950 (<u>H 14</u>)	l -	14,400,000 (<u>H 2</u> 27,800,000 (<u>H 1</u>	24) 2,050 (H 24) 14) 3,950 (H 14)	1) 100 percent
Surface Patch - Hand Method	Data Not Available					2.5 percent 1 in. thick
Surface Patch - Machine Method	1,070,000 Btu/yd ³ (<u>H 24</u>)	29,800 (<u>H 24</u>) 2	9,800 (H 24)	(H 24) 29,800 (H 24)21,000,000 (H 24)	<u>4</u>) 2,990 (<u>H 24</u>)) 10 percent 1 in. thick
Digout & Repair Hand Method	1,600,000 Btu/yd ³ (<u>H 24</u>)	178,000 (<u>H 24</u>) 4	44,460 (<u>H 24</u>)	24)25,000,000 (H 2	<u>24</u>) 3,560 (<u>H_24</u>)	1) 2 percent 4 in. thick
Digout & Repair Machine Method	1,120,000 Btu/yd ³ (<u>H 24</u>)	187,000 (<u>H 24</u>) 3	31,200 (<u>H 24</u>)	24)65,800,000 (H 24)	<u>4)</u> 9,350 (<u>H</u> 24)) 5 percent 6 in. thick
Crack Pouring	32,400 Btu/lane mi (H 19) 33,500 (H 25) Btu/gal (H 25)	()	1 1	8,500,000 (H 24) 3,900,000 (H 25)	1	250 lin. ft per station
Slurry Seal	9,400,000 Btu/lane mi (H 19)	1,340 (<u>H 19</u>)		9,400,000 (H 19)	<u>9) 1,340 (H 19)</u>	100 percent
Asphalt Concrete Overlay	e 512,000 Btu/ton (<u>H 14</u>) 533,000 Btu/ton (<u>H 16</u>)	55,600 (H 14) 2 57,800 (H 16) 2	27,800 (<u>H 14</u>) 28,900 (<u>H 16</u>)	(1391,000,000 (H) (407,000,000 (H)	14)55,600 (H 16)57,800 (H	14) 100 percent 16) 2 in. thick
* Energy requi may have been a maintained on o (<u>H 25</u>) Indicates	* Energy requirements for yd ² of total pavement may have been applied over only 5 percent to tota maintained on one lane mi of pavement. (<u>H 25</u>) Indicates Reference on which data is based.	ement surface maintained. For o total pavement surface area, based.		example, surface patching by the hand me yet energy reported is for the pavement	e patching by rted is for th	surface patching by the hand method y reported is for the pavement area
Metric Conversion: 1 Btu/gal = 278.7 J/1	7 J/1	1 Btu/mí = 656.1 J/km	/km		1 Btu/ yd ³ =	= 1.381 J/m ³

1 Btu/yd² = 1263 J/m²
1 ft = .305 m

1 Btu/ton = 1.164 J/kg

l in. = 2.54 cm

1 Btu/yd² in = 497 J/m² cm

H-13

		Energy Re	quirement	
Material	Btu/ton	Btu/yd ³	Btu/yd ² -in.	Ref
<u>, , , , , , , , , , , , , , , , , , , </u>	512,000	1,000,000	27,800	(<u>H 14</u>
Asphalt Concrete	533,000	1,040,000	29,000	(<u>H 16</u>
PCC-Jointed Non-Reinforced	1,210,000	2,450,000	68,000	(<u>H 1</u> 4
PCC-Jointed Reinforced	1,390,000	2,820,000	78,400	(<u>H 1</u>
PCC-Continuously Reinforced	1,620,000	3,280,000	91,110	(<u>H 1</u>
Slurry Seal	₩ ġy-@ ¹ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		1,340**	(<u>H 1</u>
Chip Seal-Emulsion & Crushed Stone		. I	3,950**	(<u>H</u> 1
Fog Seal			470**	(<u>H</u> 1
Crushed Stone Base	236,000	414,000	11,500	(<u>H 1</u>
	218,000	382,000	10,600	(<u>H 1</u>
Emulsified Asphalt Base	87,400	562,000	15,600	(<u>H</u> 1

TABLE H-10. Energy Consumption for Pavement Materials In-Place*

*Includes energy associated with manufacturing, mixing, hauling, placing and compacting.

**These treatments are not 1 in. in thickness.

Metric Conversion:

- 1 Btu/ton = 1.164 J/kg
- $1 \text{ Btu/yd}^3 = 1.381 \text{ J/m}^3$
- $1 \text{ Btu/yd}^2 \text{in} = 497 \text{ J/m}^2 \text{cm}$
- 1 in. = 2.54 cm

crete, portland cement concrete, slurry seal, chip seal, fog seal, crushed stone base and emulsified asphalt base. The energy consumed includes the energy associated with manufacturing, mixing, hauling, placing, and compacting.

A summary of the data presented on Tables H-9 and H-10 is shown in Table H-11 together with energy requirements per dollar (December 1975) for ten maintenance and rehabilitation activities. If one assumes that the Federal Highway Administration estimate for annual maintenance of highway and roadways is correct (5 billion dollars for 3,800,000 mi (6,100,000 km) of road and furthermore, if it is assumed that on the average 20,000 Btu (21,000,000 J) (See Table H-11) of energy are required for each dollar expended on maintenance, it can be concluded that about 0.1 percent of the total energy consumed in the United States is utilized in highway maintenance operations. This 0.1 percent of the total energy represents 100,000,000,000,000 Btu per year (1.06 x 10^{17} J) or approximately 15,800,000 bbl of oil per year. The reader is reminded that this neglects the approximately 140,000,000 bbls of asphalt consumed each year as a pavement ingredient.

H-15

TABLE H-11.	Representative Costs and Rehabili		:gy Requirement Activities	and Energy Requirements for Maintenance tation Activities		
	Costs Do	Dollars * Per	Energy Requ	Requirements*, Btu	Energy required	Percent of total
Maintenance Activity	yd. ²	Lane Mi	Yd. ²	Lane Mi	per unit costs, Btu/dollar	pavement area treated
Fog Seal - Partial Width	0.045	320	525	3,700,000	11,700	50 percent
Fog Seal - Full Width	0.06	420	970	6,850,000	16,200	100 percent
Chip Seal - Partial Width	0.06	420	670	4,700,000	11,200	15 percent
Chip Seal - Full Width	0.21	1500	2050	14,400,000	9,800	100 percent
Surface Patch - Hand Method	0.10	700	Data Not	Data Not Available		2.5 percent 1 in. thick
Surface Patch - Machine Method	0.08	560	2990	21,000,000	37,400	10 percent 1 in. thíck
Digout & Repair - Hand Method	0.25	1760	3560	25,000,000	14,200	2 percent 4 in. thick
Digout & Repair - Machine Method	0.20	1400 [°]	9350	65,800,000	46,700	5 percent 6 in. thick
Crack Pouring	0.12	850	1220	8,500,000	10,200	250 Lin. ft Per Station
Asphalt Concrete Overlay	1,90	13,400	55,600	391,000,000	29,300	100 percent 2 in. thick
* Costs and energy are for yd ² of total pavement surface maintained.	for yd ² of to	otal pavement sur	face maintaine		For example, surface patching by the hand	the hand

" used and energy are not you of horear payement sufface manufather. For example, sufface partning by the name method may have been applied over only 5 percent of total payement surface area, yet costs and energy reported are for the total pavement area maintained or one lane mi of pavement.

Metric Conversion: 1 $yd^2 = 0.836 m^2$

1 Btu/yd ² = 1263 J/m² l mi = 1.609 km l in. = 2.54 cm 1 Btu = 1056 J

1 Btu/mi = 676.1 J/km

REFERENCES

- H 1. Black, S. E. and K. E. Cook, "Transportation and the Energy Crisis," <u>Transportation Research News</u>, Transportation Research Board, NAS, No. 55, Summer, 1974.
- H 2. "National Trends: Choices to the Year 2,000," U. S. Department of Transportation, January 12, 1977.
- H 3. Foster, C. R. and R. Kloiber, "Fuel Conservation," A Special National Asphalt Pavement Association paper, January, 1974.
- H 4. Foster, C. R., "Heating and Drying of Aggregates BTU Requirements and Exhaust Volumes," National Asphalt Pavement Association, Information Series 47.
- H 5. "On the Subject of Energy," Portland Cement Association, November, 1975.
- H 6. "Cement Industry Reports Gains in Coal Conversion, Energy Efficiency," Portland Cement Association, June 9, 1975.
- H 7. "Energy Report for the U. S. Portland Cement Industry," Portland Cement Association, May, 1975.
- H 8. "The Concrete Approach to Energy Conservation," Portland Cement Association, 1974.
- H 9. "Energy Primer Selected Transportation Topics," U. S. Department of Transportation, 1975.
- H 10. "Energy Conservation in Transportation and Construction," A Conference Report, December, 1975.
- H 11. "Fuel Conservation Federal-Aid Highway Construction Program," Direct Federal Highway Construction Program:, <u>Federal Highway</u> <u>Administration Notice N 5080.3</u>, December 27, 1973.
- H 12. Stander, Richard, "Energy Conservation in Construction," <u>American</u> Road Builder, January, 1976.
- H 13. Nichols, F. P., "Notes on Energy Requirements for Crushing Stone," preliminary figures, National Crushed Stone Association, Nov. 1975.
- H 14. "Energy Requirements for Roadway Pavements," The Asphalt Institute, Misc. Report 75-3, April, 1975.
- H 15. Barton, J. A., "Energy and Asphalt," presented at University of Illinois Bituminous Paving Conference, November, 1975.

- H 16. "Fuel Usage Factors for Highway Construction," <u>Highway Research</u> Circular No. 158, Transportation Research Board, NAS.
- H 17. "Optimizing the Use of Materials and Energy for Transportation," Special Report 166, Transportation Research Board, NAS, 1976.
- H 18. "How Much Fuel per Crew-Day? Maintenance Study," Rural and Urban Roads, May, 1974, report based on Arizona Study by S. F. Lanford.
- H 19. "Slurry Seal A Block with Half a Gallon of Gasoline," Slurry Seal, Inc., Waco, Texas.
- H 20. Jensen, G. F., "Industrial Energy Study of the Concrete, Gypsum and Plaster Products Industries," Stanford Research Institute, Menlo Park, California, sponsored by Federal Energy Administration. Washington, D.C., Aug. 1974.
- H 21. "Energy Use in the Contract Construction Industry; Tetra Tech, Inc., prepared for Federal Energy Administration, February, 1975.
- H 22. "Bituminous Construction Handbook," Barber-Greene, Aurora, Illinois, 1976.
- H 23. Personal correspondence with C. C. Caltrider, Maryland Department of Transportation, March 3, 1977. (Information obtained for TRB Committee A3CO1 activities.)
- H 24. Personal correspondence with W. G. Fleischli, D. R. Powell and S. F. Lanford, Arizona Department of Transportation, February 23, 1977. (Information obtained for TRB Committee A3CO1 activities.)
- H 25. Personal correspondence with Russell Neal, Texas State Department of Highways and Public Transportation, Odessa, Texas, 1976.
- H 26. McKetta, J. J. "Their Energy Crisis Fact or Fiction," <u>Special Report</u> 166, Transportation Research Board, NAS, 1976.
- H 27. Fairweather, J., "U. S. Energy" A 40 Watt Outlook," <u>Civil Engineering</u>, ASCE, December, 1974

APPENDIX I. USER'S INPUT GUIDE

The input for the UDAREM decision analysis computer program (See Ch. 2) is divided into two distinct divisions; utility curve and probability density function (PDF) inputs. The utility curve inputs require a set of points describing each of the seventeen curves. The PDF input, in the form of optimistic, most probable, and pessimistic estimates (O, MP, P), is needed for each decision criterion. There must be an equal number of PDF inputs as there are utility curves. Most of these inputs are relatively simple, but a few require additional information and calculations in order to arrive at the O, MP, and P values.

The computer program presently requires that the input have English units but, with minor changes it will become compatible with SI units. A list of conversions that would be needed for this purpose are:

1 British Thermal Unit (Btu)	= 1.055×10^3 joule (J)
1 mile (mi) (U. S. Statute)	$= 1.609 \times 10^3$ metre (m)
1 pound-mass (16m)	= 4.535×10^{-1} kilogram (kg)
$1 \text{ yard}^2 (\text{yd}^2)$	$= 8.361 \times 10^{-1} \text{ metre}^2 (\text{m}^2)$

A sample data collection form is shown on pages I-2 through I-9. Following the form are guide instructions for the user to fill out this form.

REH/	AB T	ECHNIQUE			CLASS	5. #
түр	E OF	ROAD (URBAN, SUBURBAN, OR	RURAL)			
PRI	HARY	DISTRESS APPLICATION				
A.	COS				· ·	
	1.	DEVELOPMENT COST (TOTAL \$)			
	2.	CAPITAL EQUIPMENT COST (T	OTAL \$)			· · · · · · · · · · · · · · · · · · ·
	3.	CONSTRUCTION COST (\$/LANE	MILE)			
	4.	MAINTENANCE COST (\$/LANE	MILE)			
	5.	USER SAVINGS	·			
		<pre>Interest Rate (%) (Default)</pre>			(7.0)	
			S.I.			
		Serviceability Index -	t	0	0	. 0
		Time Relation	S.I.		i	
		(With Rehab.)	t	· · · · · · · · · · · · · · · · · · ·		
		(Time in Yrs)	S.I.			
			t	•		
	a.	PRESENT WORTH ACCUMULATED	USER CO	ST		
		METHOD # 1				
			S.I.		·	
		Serviceability Index -	t		<u>a mangan ak</u> kanal ing ang panganan sa kana ang panak	····
		Time Relation	S.I.			•
		(Without Rehab.)	t			
		(Time in Yrs)	S.I.			
			t			
			S.I.			
			UC		ang	• <u>•••••••</u> ••
		User Cost-	S.I.			
			UC	· · · · · · · · · · · · · · · · · · ·		<u></u>
		Serviceability Index	S.I.			
		v	UC			

I-2

			0	MP	Р
	Average Daily Traffic-	ADT	(3000)	(5000)	(6500)
	Time Relation	t			
	(one way - 24 hr Traffic) (Defaults)	ADT	(0)	(0)	(0)
		t	(10)	(10)	(10)
	METHOD # 2 User Cost (w/o Rehab.) User Cost (w/ Rehab.)				
b.	USER COSTS DURING CONSTRUCTION				
	Percent Cars (%) Percent Trucks (%)				
	1. Speed Change Cost				
	Number of Speed Changes (Default)	٠	(2)		
	Basic Speed Change Cost Cha (Default)	(\$/1000 nges/VEH		(10)	
	Truck Speed Change Cost Mu (Default)	ltiplier			(9)
	 Maneuvering Costs Percent of Detour Lengt Curves (Default) 	h in	(10)		
	Basic Maneuvering Cost	(\$/1000 H-MILES)		(22)	
	Truck Maneuvering Cost (Default)	Multipli	ier		(6)
	3. Roughness Costs				·
	Serviceability Index of (Default)	Detour	(3.0)		
	Detour Length/Rehab Len (Default)	gth Rati	i <u>o</u> (1.0)		

I-3

P

	4.	Present Worth Additional Accident Cost	
		Rehabilitation Section Length (mi) (Default)	(1)
		Normal Speed (mph) (Default)	(55)
		Restricted Speed (mph) (Default)	(45)
		# of Lanes Open, One Way, Normal Operation, (1-4) (Default)	(2)
		# of Lanes Open, One Way, During Rehab., (1-4) (Default)	(1)
·		<pre># of Lanes Open, One Way, for Detour, (1-3) (Default)</pre>	(1)
		Average Cost of Accident (\$/Accident) (Default)	\$1,500
в.	EXPEC	TED PERFORMANCE	
	6. T	IME OF DEVELOPMENT (yr)	
	7. L	IFE (yr)	
	8. L	EVEL OF PAVEMENT SERVICE	
		Type of Pavement; Enter One Number:	
		Rigid - 1 or Flexible - 2	
		 a. SERVICEABILITY INDEX - TIME RELATION (WITH REHAB) HAS BEEN INPUTTED IN USER SAVINGS (Decision Criteria No. 5). 	
		Minimum Value (Default) Maximum Value (Default) Acceptable Life (Default)	(0) (5) (20/10)

			0	MP	р
b.		sn ₄₀	(74/74)	(56/57)	(40/40)
		t	0 (0/0)	0 (0/0)	
		^{SN} 40		(38/42)	(23/22)
	Skid Number-Time Relation	t	(5/5)	(5/5)	(5/5)
	(Default Rigid/Flexible)	sn ₄₀	(48/48)	(36/37)	(18/15)
		t	(10/10)	(10/10)	(10/10)
	Minimum Value (Default)` Maximum Value			(10)	
	(Default) Acceptable Life (Default)			(80)	
					_
с.		t			0
-		t			
	Mên fanna Maltur	t			.
	Minimum Value Maximum Value				
(De	Acceptable Life fault Rigid/Flexible)			(20/10)	
		t	0	0	0
d	·	t			
-		t		4	

1-5

	0.1	MP	Ρ
Minimum Value			
Maximum Value			
Acceptable Life (Default Rigid/Flexible)		(20/10)	·
	t	0	0
e	t		·
	t		
Minimum Value			
Maximum Value		•, <u> </u>	
Acceptable (Default Rigid/Flexible)		(20/10)	
f.	t	0	0
·····	t	······	·
	t		·
Minimum Value			
Maximum Value			
Acceptable Life (Default Rigid/Flexible)		(20/10)	·
	t	0	0
g			
	t		

i. i.

I-6

्र**े** कर्म्

	0	MP	P
Minimum Value			
Maximum Value			
Acceptable Life (Default Rigid/Flexible)		(20/10)	
h.	t	0	0
n.	t		·····
	t		
Minimum Value			
Maximum Value			
Acceptable Life (Default Rigid/Flexible)		(20/10)	
	t	0	0
i.	t		
	t	· · · · · · · · · · · · · · · · · · ·	
Minimum Value		State State in some of the state of the stat	
Maximum Value			
Acceptable Life (Default Rigid/Flexible)		(20/10)	

			0	MP	P
j.		t	0	0	0
		t			
		t			
	Minimum Value			<u></u>	
	Maximum Value				
(Def	Acceptable Life ault Rigid/Flexible)			(20/10)	
	Weights				
	a. Serviceability Index				
	b. Skid Number			<u></u>	
	c.				
	d.			<u></u>	
	e. f.				
	g.				
	9. h.				
	i.			<u></u>	
	j.				
				1.0	(Total)
9.	TRAFFIC VOLUME-CONSTRUCTION TIME Urban-1, Suburban-2, or Rural-3 (Enter one number)			<u>.</u>	
	Construction Time (Months) Volume-to-Capacity Ratio (V/C)				attan ang ang ang ang ang ang ang ang ang a
10.	EXPECTED REWORKABILITY				4

C. ENERGY

11. USER (ALL REQUIRED DATA PREVIOUSLY RECORDED IN USER SAVINGS, DECISION CRITERION NO. 5)

	<pre>12. REHABILITATION (Btu/sy) 13. MATERIAL (Btu/lb) Application Rate (lb/sy)</pre>		
D.	IMPACT 14. SAFETY IMPROVEMENT 15. SAFETY (DURING REHAB.) 16. NOISE (DURING REHAB.)	 	

0

MP

P

17. POLLUTION (DURING REHAB.)

A. COST ATTRIBUTE

ALL COSTS SHOULD BE UPDATED TO REFLECT CURRENT COSTS.

1. Development Cost

The total cost incurred from the inception of the idea until the time the technique has been proven applicable.

Such costs include:

- a. Feasibility study
- b. Engineering, research and development
- c. Legal fees including patents, incorporation, etc.
- d. Prototype construction and testing
- e. Marketing the technique
- f. Tooling up for production

INPUT (Total \$)

MP

P

2. Capital Equipment Cost

The total cost incurred in acquiring all "special" equipment necessary for implementing the technique, and all costs associated with marketing.

0

Such costs include:

a. Equipment cost, including purchase, transportation, and special handling

0

- b. Equipment storage, insurance safety and security
- c. Marketing and management costs

INPUT (Total \$)

MP

P

3. Construction Cost

These are the total costs per lane mile incurred in applying the technique. Restorative rehabilitation will generally cost more than preventative rehabilitation.

Such costs include:

a. Material

b. Labor

c. Equipment ownership or rental (excluding special equipment)

d. All equipment operating costs including fuel and maintenance

e. Overhead, contingencies, and profit

4. Maintenance Cost

The annual cost per lane mile of maintaining the rehabilitated pavement for the life of the technique after the technique has been applied.

MP

Р

n

INPUT (\$/lane mile)

5. User Savings

The difference in present value of annual costs per lane mile incurred by the user if the pavement was not rehabilitated and if the pavement was rehabilitated. Costs encountered if there were no rehabilitation would include (a) vehicle ownership and operating costs, (b) time delay due to roughness, (c) and accident costs. If the rehabilitation technique was used the costs would include (a) time delay around detours during construction, (b) vehicle ownership and operating costs (presumably less than if no rehabilitation were performed), and (c) accident costs. User SAVINGS consists of the discounted present worth of accumulated user costs for the life of the rehabilitation and user costs during construction which are then analyzed over the life of the rehabilitation. Figure I-1 is provided to show the distribution of input which is required for this decision criteria. The initial input is an interest rate which is used to calculate discounted present worth and annual costs. This interest rate has a default value of

I-11

7.0% that will be used unless a different rate is recorded on the input form.

INPUT (%) Interest Rate

The Serviceability Index - Time Relation (With Rehabilitation) is the next required input.

This relation will begin at time equal to zero; the time at which the rehabilitation technique is installed.

INPUT

SERVICEABILITY INDEX - TIME RELATION* (WITH REHABILITATION)

SERVICEABILITY INDEX	(SI)			
TIME (t=o)				
SERVICEABILITY INDEX	(SI)			
TIME (YR)	÷			
SERVICEABILITY INDEX	(SI)			
TIME (YR)				
		0	MP	Р

Serviceability Indexes and their associated years are to be selected to represent the probable changes in SI with time. The interest rate and this SI matrix are purposely shown as input data prior to user cost input because they are used later as input for User Energy Savings (Decision Criterion No. 11).

a. Present Worth Accumulated User Cost

This cost, being one of five costs which make up User Savings, can utilize either of two methods for PDF input.

METHOD 1

Method 1 requires the selection of a Serviceability Index -Time Relation (Without Rehabilitation) which will begin at time equal to zero. Time zero denotes the time at which the rehabilitation technique would have been installed.

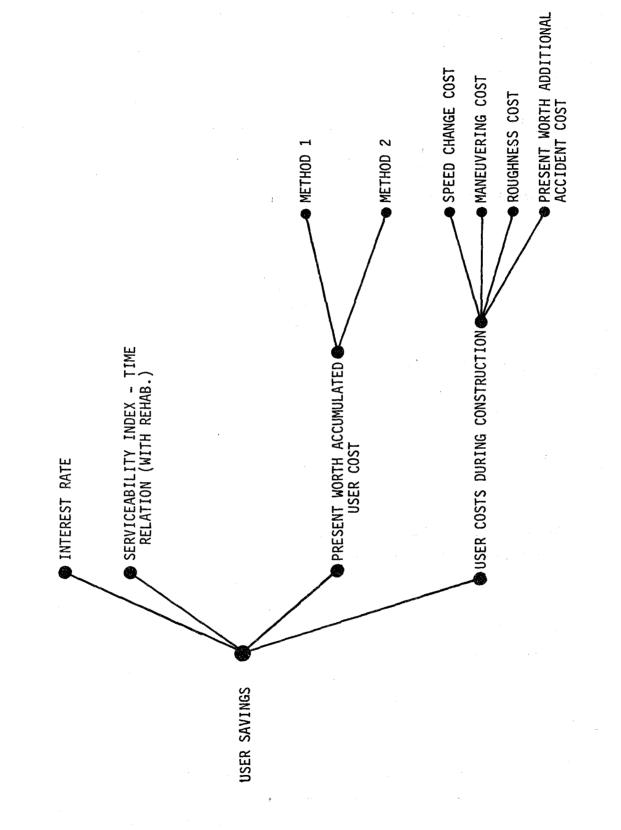


Figure 1-1. Branch Diagram of User Savings Input.

SERVICEABILITY INDEX - TIME RELATION* (WITHOUT REHABILITATION)

SERVICEABILITY INDEX (SI)	<u></u>		
TIME (t=o)		··	
SERVICEABILITY INDEX (SI)			<u></u>
TIME (YR)			
SERVICEABILITY INDEX (SI)			
TIME (YR)	<u>_</u>		
	0	MP	P

Serviceability Indexes and their associated years are to be selected to represent the probable changes in SI with time.

A relationship between user cost and serviceability index is needed in order to facilitate relating user cost with time. Two alternatives are provided here for the purpose of obtaining user costs. It should be noted here that both alternatives utilize the data provided by McFarland (<u>I-1</u>). The main difference between the two is the manner in which the basic data are handled.

The curves that apply to the first alternative are shown in Fig. I-2 for urban and suburban conditions and Fig. I-3 for rural conditions. These curves offer the capability of obtaining 0, MP, and P estimates by a change in volume-to-capacity ratio (v/c).

Figures I-4, I-5, and I-6 apply to the second alternative method in determining user cost as a function of serviceability index. A graph is provided for each type of road - urban, suburban and rural and on each graph an 0, MP and P curve is provided. After the type of road is determined, the graph which corresponds to that type road is used. The graph is entered with serviceability index and the 0, MP and P user cost estimates can be read for each curve.

INPUT

USER COST - SERVICEABILITY INDEX RELATION*

SERVICEABILITY INDEX (SI)	dal approximation which it is a second second	
USER COST (\$/veh-mi)		
SERVICEABILITY INDEX (SI)		
USER COST (\$/veh-mi)		

I-14

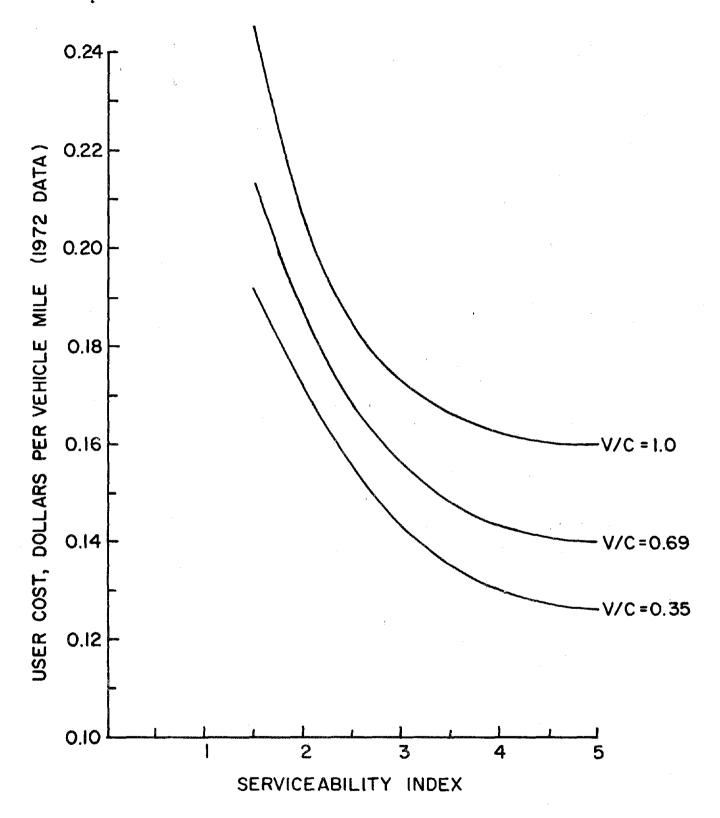


Figure I-2. Variation in Total User Costs With Serviceability Index for Divided Highways in Urban and Suburban Locations.

From Reference <u>I-1</u>

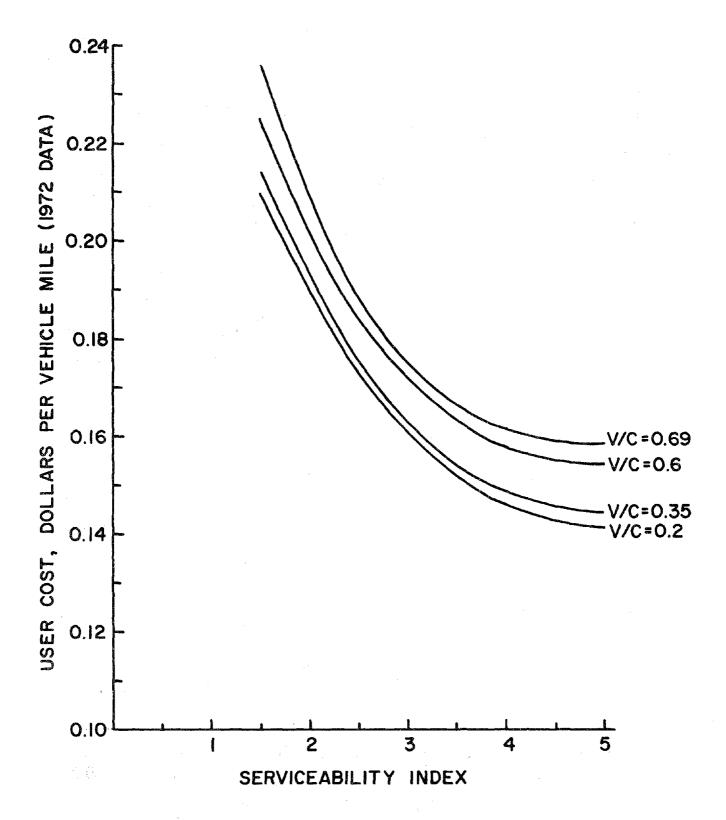
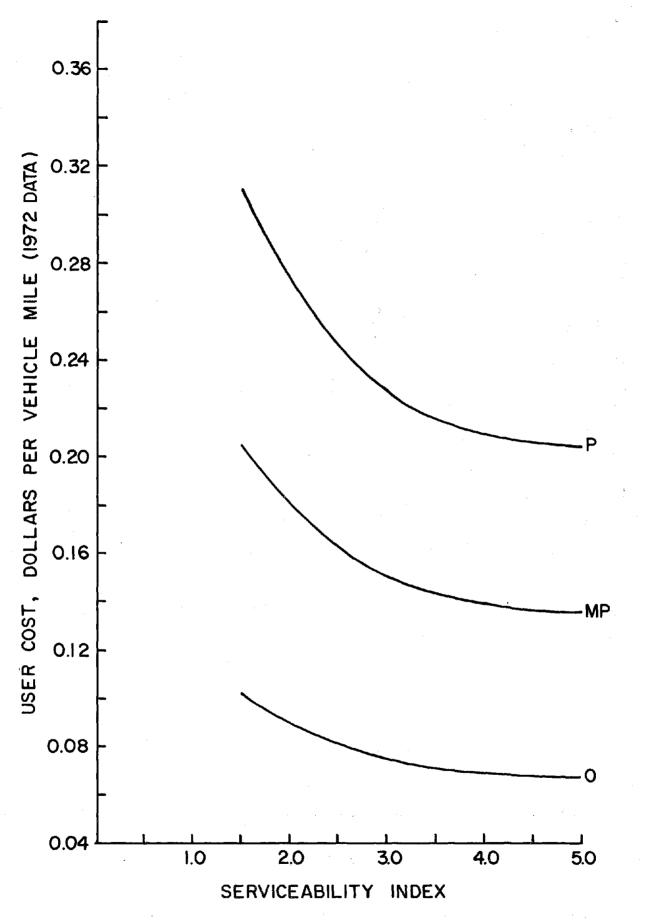
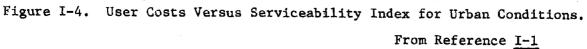
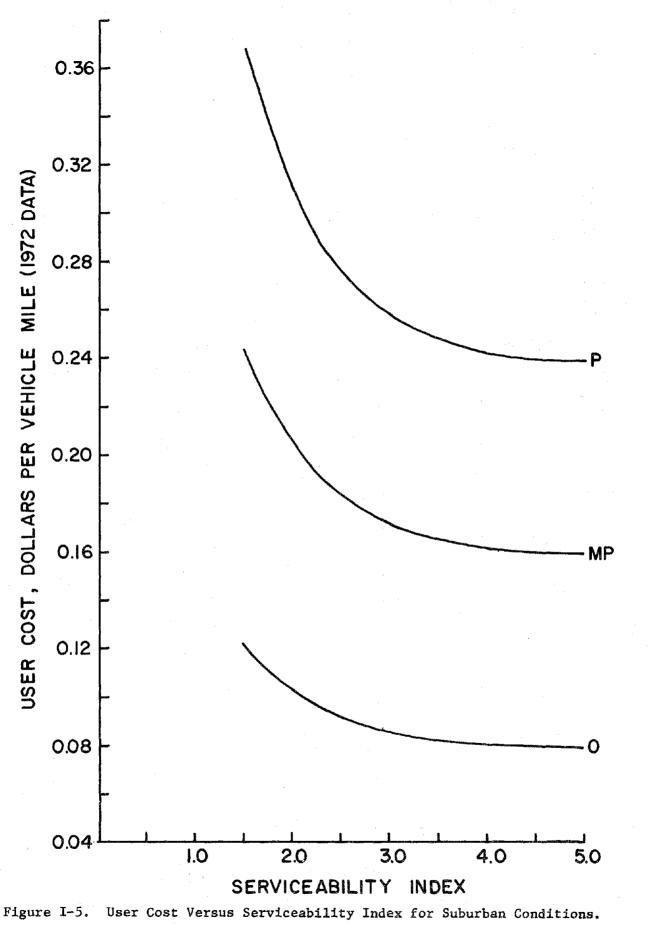
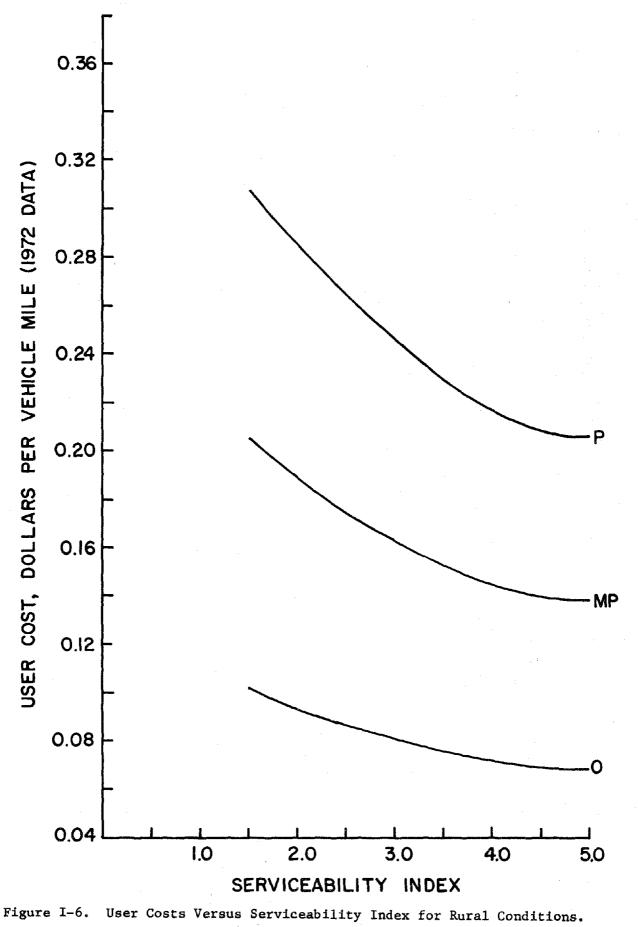





Figure I-3. Variation in Total User Costs With Serviceability Index for Divided Highways in Rural Areas.


From Reference I-1

From Reference 1-1

From Reference <u>I-1</u>

SERVICEABILITY INDEX (SI) USER COST (\$/veh-mi) O MP P

*NOTE: It should be kept in mind that these costs are related to the expected performance of the rehabilitation technique. User costs and their corresponding Serviceability Indexes are to be selected to describe the change in user costs with change in SI.

Average daily traffic (ADT) is defined as the amount of one-way vehicular traffic per lane for a 24-hour period. Only two points are required of the 0, MP and P Average Daily Traffic - Time Relation curves. It is not compulsory that the time in years begin at time equal to zero; the values may be any reasonable estimates of time. Default values are supplied and shown on the input form.

INPUT

	ADT	(3000)	(5000)	(6500)
AVERAGE DAILY TRAFFIC - TIME RELATION (veh/day/lane)	t	(0)	(0)	(0)
(one-way-24 hr. traffic)	ADT	(4500)	(9000)	(13,000)
(DEFAULTS)	t	(10)	(10)	(10)
		0	MP	Р

METHOD 2

A second method of inputting user costs is provided for flexibility. This second method allows one to input different values of total user costs as equivalent uniform annual costs (EUAC)---for the life of the pavement (without rehab.) and life of the technique (with rehab.). In determining these costs an interest rate of 7.0% should be used.

INPUT

User Cost (w/o Rehab.) (\$/YR)

User Cost (w/Rehab.) (\$/YR)

b. User Costs During Construction

The percent cars and trucks are needed to calculate Speed Change Cost, Maneuvering Costs and Roughness Costs.

INPUT

PERCENT CARS (%) _____ PERCENT TRUCKS (%) ____

1) Speed Change Cost

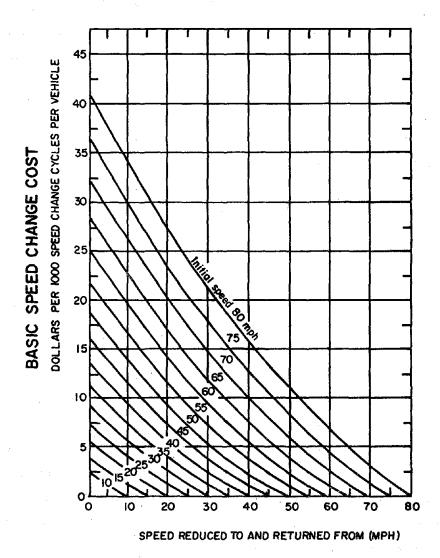
This is the cost of extra fuel and oil that is consumed when a vehicle slows and then resumes speed. Three inputs are needed to compute this cost, the basic speed change cost, the number of speed changes and the truck speed change cost multiplier. Figure I-7, from Ogelsby (I-2), has been used to determine the speed change cost and Table I-1, from Ogelsby (I-2), has been used to determine the truck multiplier. The number of speed changes is to be determined by the user. Default values are provided for each of these three inputs, if desired by the user.

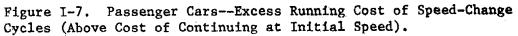
INPUT

Number of Speed Changes

(Default = 2)

Basic Speed Change Cost (\$/1000/speed changes/veh)


Truck Speed Change Cost Multiplier


(Default = 9)

2) Maneuvering Cost

This cost is associated with the travel on curves and around corners due to a detour. Three inputs are required to determine this cost; the percent of the detour route length in curves, the basic maneuvering cost and the truck maneuvering cost multiplier. The percent of the detour route in curves is determined by the user (with the default value of ten provided). The basic maneuvering cost can be

I-21

From Reference $\underline{I-2}$.

taken from Fig. I-3. Table I-1 is again used to determine the truck maneuvering multiplier. The default values for the basic maneuvering cost and the multiplier are \$22 per 1000 VEHICLE-MILES and 6, respectively.

INPUT

Percent of Detour Length in Curves (%) ______ Basic Maneuvering Cost (\$/1000 veh-mi) _____ Truck Maneuvering Cost Multiplier ______ (Default = 6)

3) Roughness Cost

This cost is associated with the riding surface quality of the detour route. The serviceability index of the detour is required (with a default value of 3.0 provided). The other input needed is a ratio of the detour route length to the rehabilitation length (with the default value of 1.0 provided).

INPUT

Serviceability Index of Detour (SI)

(Default = 3.0)

Detour Length/Rehab. Length Ratio

(Default = 1.0)

4) Present Worth Additional Accident Cost

This cost is the present worth of a difference of costs, accident cost associated with a normal road and accident costs associated with a restricted road. A normal road would be one which is void of any rehabilitation construction efforts. A restricted road is one which part or all has been closed and traffic detoured due the rehabilitation work in progress. There are seven inputs required and all are to be determined by the user.

INPUT

Rehabilitation Section Length (mi)	······································
Normal Speed (mph)	
Restricted Speed (mph)	
No. of Lanes Open, One Way, Normal Operation	(1-4)

			From Referen	ce <u>I-2</u>
		<u> </u>	Vehicle Class	
Operating Condition	5,000 lb Pickup	12,000 lb Single- Unit Truck	40,000 lb Gasoliné- driven Truck (2-S2)	50,000 1b Diesel- driben Truck (3-S2)
Added costs for spe changes	ed 1.15	2.5	9.0	11.5
Added costs for maneuvering curves and corners	1.15	2.2	6.0	6.0

Table I-1.First Approximations of Multipliers to Determine RunningCosts for Other Vehicle Classes from Those for Passenger Cars.

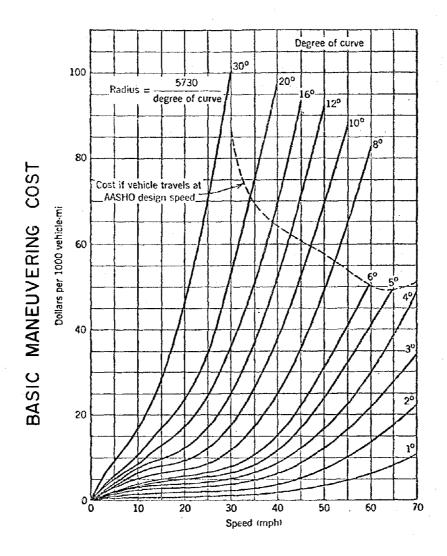


FIGURE I-8. Passenger cars - excess vehicle running cost due to horizontal curves. (Above cost on level tangent). (Source: NCHRP Report 133).

From Reference I-2

No. of Lanes Op	en, One Way, During	Rehab. (1-4)
No. of Lanes Op	en, One Way, for Det	our (1-3)
Average Cost of	Accident (\$/Accide	nt)

B. EXPECTED PERFORMANCE

6. Time of Development

The time of development is the time in years that will be required to develop an idea to the point where it has been proven applicable.

INPUT (YR)

<u>0</u> <u>MP</u> <u>P</u>

7. <u>Life</u>

Expected life is the time in years that a given rehabilitation technique will keep the pavement at an acceptable level of service or distress while requiring no more than periodic minor maintenance. Life of the technique ends when the probability of maintaining an acceptable level of service drops below 50 percent.

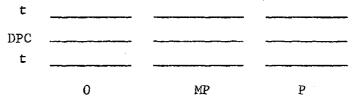
INPUT (YR)

8. Level of Pavement Service

Level of pavement service is defined by the critical performance or distress conditions measured over the life of the technique (See Chapter 1).

This particular decision criterion can vary in size depending upon the number of distress conditions utilized. For each condition to be inputted a maximum and minimum condition value must be assigned. In addition, the "acceptable" life must be selected along with one of the two general pavement types (rigid or flexible). The "acceptable" life is the time in years management and the traveling public expect the pavement to perform in a satisfactory manner. This not necessarily the same as the expected life of the technique. Rather it is an overall pavement life before major revision and/or reconstruction is contemplated. This "acceptable" life is usually determined by experience and is related to the period of time beyond which more funding for additional rehabilitation can be requested for the same section of road without adverse reaction from management or the legislature. Default values for acceptable life have been selected as 10 years for flexible pavements and 20 years for rigid pavements.

Two of the distress conditions are to always be used as input for this decision criterion; the Serviceability Index -Time Relation, and the Skid Number - Time Relation. The Serviceability Index - Time Relation input that is used here is identical to the Serviceability Index - Time Relation (with rehabilitation) that was recorded in User Benefit Cost (Decision Criterion No. 5). In order to assure that the Skid Number - Time Relation input is always utilized default values have been provided. There are two sets of defaults; the first is for rigid pavements and the second is for flexible pavements. Since the input for this decision criterion can vary, only one example is shown to illustrate the type of input that is necessary.


INPUT

Type of Pavement; Rigid-1 or Flexible-2 (1 or 2) ______ Minimum Value ______ Maximum Value ______ Acceptable Life (Default 20/10)

Distress or Performance t Condition (DPC) DPC

an a		
0	0	0
·	، دې دې د د د د د د د د د د د د د د د د	

1-27

Weights are assigned to each distress or performance condition in describing Level of Pavement Service. These weights must sum to a total of 1.0.

INPUT

		Distress or Performance Condition	Weights
	a.	Serviceability Index	
•	Ъ.	Skid Number	
			and the second second second
			······································
	. 1		
			1.0 (Total)

9. Traffic Volume Construction Time

Input values for this decision criterion are type of roadway (urban, suburban, or rural), volume/capacity ratio at time of construction (a number from 0 to 1.0) and the estimated construction time for the technique, in months.

INPUT

Urban - 1, Suburban - 2, or Rural - 3 (1, 2 or 3) Volume - To - Capacity Ratio (0-1) Estimated Construction Time (month) 0 MP P

This decision criterion is defined as the ratio between the estimated construction time, and the "tolerable" construction time, based on traffic conditions. The tolerable construction time is calculated in the program from equations developed from data in reference (I-2) and (I-3). These equations are graphically portrayed in Figure I-9. Note the definition of volume/capacity ratio as being the ADT per lane/13,000 (veh/day)! The tolerable construction time (not to be confused with the estimated construction time) is shown on the abscissa of Figure I-9 and comes from the traffic levels shown in Figure I-8.

10. Expected Reworkability

Expected reworkability describes how easily the pavement can continue to be upgraded, added to, or maintained once the rehabilitation technique has been applied. The following qualitative judgement should be used.

	Relative Scal	e	
1.	Excellent	5.	Very poor (P < .001 %)
2.	Good	6.	Unacceptable expense
3.	Fair	7.	Totally unacceptable
4.	Poor		

INPUT

C. ENERGY

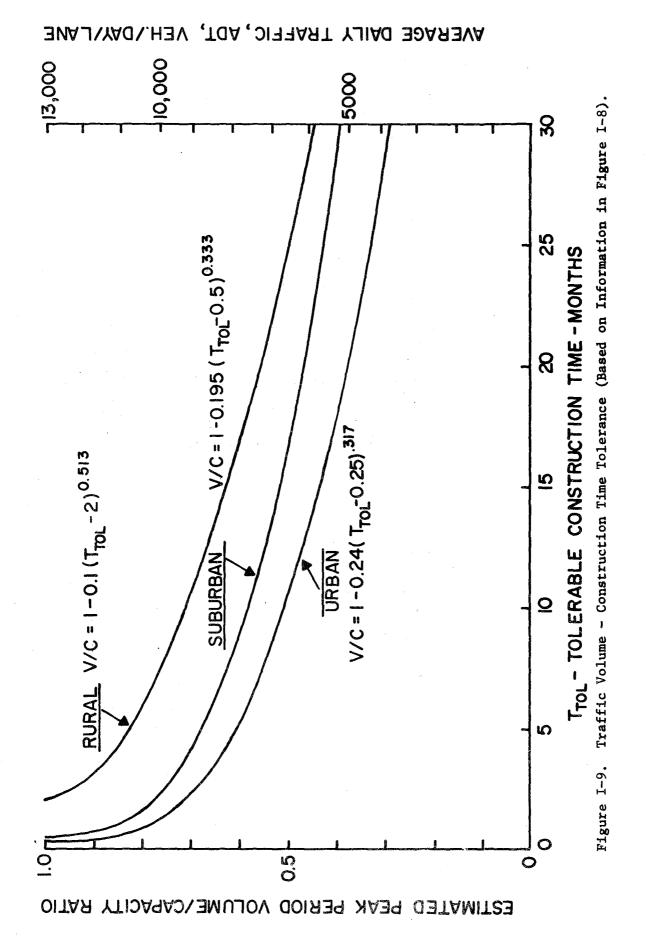
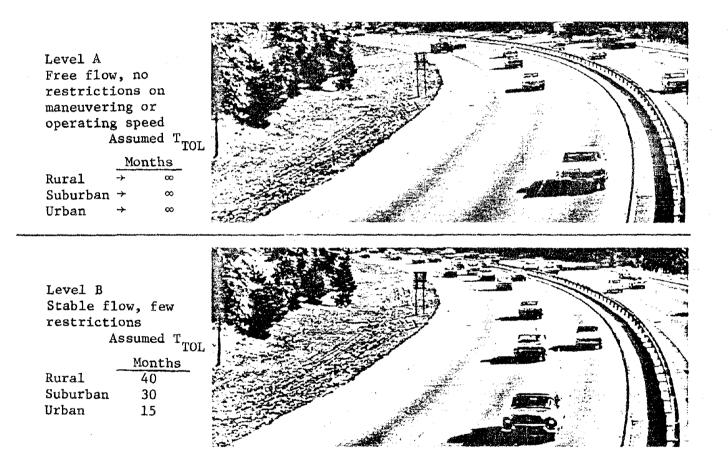
11. User Energy Savings

This energy is the quantity of energy in Btu/yr./mi that is saved by applying the rehabilitation method. All required data has been previously recorded in User Savings, decision criterion No. 5, and thus no additional input is needed.

12. Rehabilitation Energy

This input involves the energy required to install the technique, and includes such items as transportation, material handling, placing and compaction. It <u>does not</u> include the energy involved in the manufacture of any of the materials utilized (see Decision Criterion No. 13).

I-29

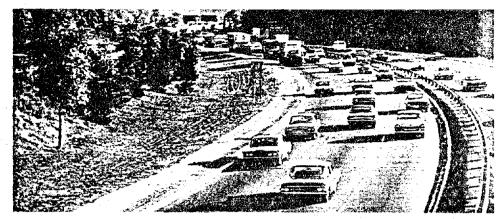
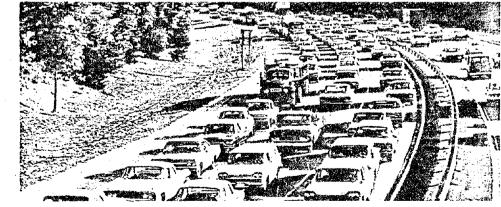


Figure I-10. Relation Assumed Between Traffic Level of Service and Tolerable Construction Time (T_{TOL}) Level of Service

Definitions From Reference <u>I-3</u> Level of Service Illustrations From Reference I-4.



Level C Stable flow, more restrictions Assumed T_{TOL} <u>Months</u> Rural 25 Suburban 10 Urban 4

Level E Unstable some stop As	
Rural Suburban Urban	Months 3 1 0.5

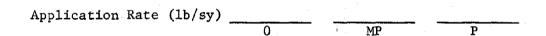
Level F Forced flow, many stoppages Assumed T_{TOL}

	Months
Rural	2
Suburban	0.5
Urban	0,25

INPUT

Rehabilitation (Btu/yd²)

P


MP

13. Material Energy

This input involves the energy required to manufacture each material used in the technique. In addition, if the material has an intrinsic energy value (eg. can be utilized as a fuel) this can be included. Whether or not this intrinsic energy is included depends upon the materials suitability as a fuel source. For example, cutback additives in asphalt are valuable fuels and thus their intrinsic energy should be included. On the other hand many asphalts contain chemically combined sulphur which render them unsuitable for use as a fuel (at least until technology advances significantly). In this case the intrinsic energy value of asphalt should probably not be included.

INPUT

Material (Btu/1b)

D. IMPACT

14. Safety Improvement

This is a qualitative measure of 1 to 7 of the degree of improvement in accident hazard due to the application of the technique based on the following qualitative judgement:

0

I-33

1. Excellent

2. Good

Fair

- .
- 4. Poor

3.

5. Unacceptable without some precautions (P < .001 %)</p>

MP

 Unacceptable without extensive precautions (0.001% < P < .01%)
 Totally unacceptable (P > 0.01%)

Ρ

INPUT

Rating (1-7)

15. Safety (During Rehabilitation)

This is a qualitative measure of 1 to 7 (See Decision Criterion 14) of the degree of safety to the traveling public and the work force during the application of the rehabilitation technique. Traffic addicent hazard as well as occupational hazards due to chemical, electrical, radioactive, and mechanical energy should be considered.

INPUT

16. Environmental Impact - Noise

This is a qualitative measure of 1 to 7 (See Decision Criterion 14) of the expected noise level due to applying the technique. This may be any unusual traffic noise expected because of maneuvering around the rehabilitation activity and any noise level changes due to the rehabilitated pavement surface. The time required to apply the technique will be weighted as well; the longer the rehabilitation construction time, the lower the rating (higher number)

INPUT

17. Environmental Impact - Pollution

This is a qualitative measure of 1 to 7 (See Decision Criterion No. 14) of the expected level of pollution due to applying the rehabilitation technique and to any unusual amount of pollution to be expected from re-routing the traffic. Pollution that may result will include solids and gases as well as harmful chemicals that may leach out with time.

I-34

The time it takes to apply the technique will increase the amount of traffic - related pollution and will tend to lower the rating (higher number).

INPUT

References

- I-1. McFarland, W. F., "Benefit Analysis for Pavement Design Systems," Texas Transportation Institute Report 123-13, 1972.
- I-2. Oglesby, C. H., <u>Highway Engineering</u>, 3rd Ed., John Wiley & Sons, New York, 1975.
- I-3. "Highway Capacity Manual," <u>HRB Special Report 87</u>, Transportation Research Board, NAS, 1966, 397 pp.
- I-4. Cappelle, D. G., et al., <u>An Introduction to Traffic Engineering</u>, Institute of Traffic Engineers, 1968.

FEDERALLY COORDINATED PROGRAM OF HIGHWAY RESEARCH AND DEVELOPMENT (FCP)

The Offices of Research and Development of the Federal Highway Administration are responsible for a broad program of research with resources including its own staff, contract programs, and a Federal-Aid program which is conducted by or through the State highway departments and which also finances the National Cooperative Highway Research Program managed by the Transportation Research Board. The Federally Coordinated Program of Highway Research and Development (FCP) is a carefully selected group of projects aimed at urgent, national problems, which concentrates these resources on these problems to obtain Virtually all of the available timely solutions. funds and staff resources are a part of the FCP. together with as much of the Federal-aid research funds of the States and the NCHRP resources as the States agree to devote to these projects.*

FCP Category Descriptions

1. Improved Highway Design and Operation for Safety

Safety R&D addresses problems connected with the responsibilities of the Federal Highway Administration under the Highway Safety Act and includes investigation of appropriate design standards, roadside hardware, signing, and physical and scientific data for the formulation of improved safety regulations.

2. Reduction of Traffic Congestion and Improved Operational Efficiency

Traffic R&D is concerned with increasing the operational efficiency of existing highways by advancing technology, by improving designs for existing as well as new facilities, and by keeping the demand-capacity relationship in better balance through traffic management techniques such as bus and carpool preferential treatment. motorist information, and rerouting of traffic.

3. Environmental Considerations in Highway Design, Location, Construction, and Operation

Environmental R&D is directed toward identifying and evaluating highway elements which affect the quality of the human environment. The ultimate goals are reduction of adverse highway and traffic impacts, and protection and enhancement of the environment.

4. Improved Materials Utilization and Durability

Materials R&D is concerned with expanding the knowledge of materials properties and technology to fully utilize available naturally occurring materials, to develop extender or substitute materials for materials in short supply, and to devise procedures for converting industrial and other wastes into useful highway products. These activities are all directed toward the common goals of lowering the cost of highway construction and extending the period of maintenance-free operation.

5. Improved Design to Reduce Costs, Extend Life Expectancy, and Insure Structural Safety

Structural R&D is concerned with furthering the latest technological advances in structural designs, fabrication processes, and construction techniques, to provide safe, efficient highways at reasonable cost.

6. Prototype Development and Implementation of Research

This category is concerned with developing and transferring research and technology into practice, or, as it has been commonly identified, "technology transfer."

7. Improved Technology for Highway Maintenance

Maintenance R&D objectives include the development and application of new technology to improve management, to augment the utilization of resources, and to increase operational efficiency and safety in the maintenance of highway facilities.

^{*} The complete 7-volume official statement of the FCP is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161 (Order No. PB 242057, price \$45 postpaid). Single copies of the introductory volume are obtainable without charge from Program Analysis (HRD-2), Offices of Research and Development, Federal Highway Administration, Washington, D.C. 20590.

