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Abstract— With the significant increase of e-commerce, freight 

transportation demand has surged significantly over the past 
decade. Most of the demand has been served by trucks in the 
United States. One major problem commonly identified across the 
country is the worsening truck parking availability because the 
increase of truck parking facilities has lagged behind the growth 
of trucking activities. The lack of parking spaces and real-time 
parking availability information greatly exacerbate the 
uncertainty of trips, and often results in illegal and potentially 
dangerous parking or overtime driving. This paper elaborates on 
pilot research on improving truck parking facilities cooperated 
with the Washington State Department of Trans- portation 
(WSDOT), building and testing the advanced Truck Parking 
Information and Management System (TPIMS) with the real-time 
user visualization and prediction function empowered by artificial 
intelligence. Furthermore, by analyzing the activities of truck 
drivers, the researchers aggregated the regularity of truck 
parking patterns by a customized sequential similarity 
methodology. A Truck Parking Occupancy Prediction (TPOP) 
neural network for time-variant occupancy prediction by deep 
learning and attributes embedding is proposed and integrated into 
the TPIMS. The TPOP achieves 5.82%, 5.07%, 4.84%, and 
4.19% mean average percentage error (MAPE) for 16, 8, 4, and 
2 minutes ahead of occupancy prediction respectively, 
significantly outperforms other state-of-the-art methods. Clearly, 
the proposed solutions can benefit both the truck drivers and 
government agencies by a more efficient and smart TPIMS. 

Index Terms— Truck parking, parking information system, 
parking prediction, deep learning, pattern aggregation. 

 
I. INTRODUCTION 

RUCK-BORNE freight is a core component of modern 
logistics systems. With the huge increasing numbers of 

commercial trucks on the road, there is a rising apprehension 
about truck parking. Out-dated facilities and limited spaces 
always result in drivers’ anxiety about finding a parking space. 
However, with the pressure of delivery due and hours-of- 

service-regulations [1], limited time is allowed on searching 
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available parking slots. Under the situation of either continuing 
driving in fatigue or parking illegally on roadway shoulders and 
ramps, substantial safety concerns are raised for both drivers 
and operators. Based on the report from Federal Motor Carrier 
Safety Administration (FMCSA), the number of total fatalities 
in large truck crashes increased 46.90% from 2009 to 2018 
across the U.S. [2]–[4]. Meanwhile, a strong correlation has 
been found between the hours of driving and fatigue-related 
crashes [4], [5]. In the eleventh hour, the potential risk related 
to crashes is about 36% higher than that in the first hour [5]. So, 
reliable real-time parking availability information and parking 
pattern prediction will significantly help truck drivers schedule 
their stops at parking facilities and avoid unnecessary 
slowdown. 

Detailed pattern analysis and prediction for truck parking 
require a large amount of high-quality data, which need 
both huge investments on the parking infrastructures and the 
breakthrough of data collection techniques. Recently, with 
the rapid development of traffic sensing technologies and Truck 
Parking Information Management System (TPIMS), space 
level real-time truck parking occupancy status detec- tors are 
applied to practice in several states of the USA (including 
Washington, Florida, Minnesota and etc.). Gener- ally, there are 
two kinds of in-pavement parking sensors tested for TPIMS: 
radar-based detectors [6] (i.e., parking sensor manufactured by 
Sensys Networks, Inc.) and magnetic-based detectors [7] (i.e., 
parking sensor manufactured by SEN- SIT Technologies, 
LLC.). Both of them are installed below the surface of truck 
parking spaces and periodically report the occupancy status 
to the server. Previous research shows that the detection 
accuracies of both the radar-based and magnetic-based 
detectors are above 95% [8]. Thus, with the detailed parking 
activity data, advanced pattern analysis and availability 
prediction algorithms for trucks can be further developed. 

Clearly, by summarizing the truck parking patterns with 
various impact factors, commercial vehicle (CV) operators and 
agency managers can further improve and optimize their 
strategies. In general, the spatio-temporal factors (i.e., parking 
utility with the truck parking lot location, time-of-day) are 
critical for finding truck parking patterns, which can help 
people find out when and where the imbalance of supply 
and demand occurs [9], [10]. Attributes factors (i.e., weather 
impact, parking lot supporting facilities like restrooms and food 
stores) are useful for people to understand how the exter- nal 
attributes influence the freight activities and how to provide 
truck drivers with better services [11]. The pattern aggregation, 
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including distribution correlation and similarity analysis, can 
help managers set up different management schemes, thereby 
achieving dynamic control strategies. Furthermore, the parking 
availability prediction is a more straightforward way to help the 
CV operators better plan schedule and provide valuable parking 
utility reference in advance [12], [13]. However, to build an 
innovative and efficient TPIMS, several challenges 
are still need to overcome from both theoretical and practical 
perspectives: 

• Lack of Quantitative Aggregations for the Truck Park- 
ing Pattern: Currently, the analysis and calculation of 
truck parking patterns still focused on primary analysis, 
which lacks of mathematical approach for the system- 
atical pattern distribution aggregation [7], [8]. In gen- eral, 
the parking pattern is closely related two types of features: 
spatial-temporal features (including parking lot location, 
time of day, day of week, etc.) and attributes fac- tors 
(weather conditions, facilities quality of the parking lot, 
etc.). The quantitative pattern analysis, i.e., similarity 
calculation, can help researchers aggregate the truck 
drivers activities [14] and obtain more straightforward 
conclusions of parking utilities. 

• Poor Accuracy and Flexibility of Prediction Algorithms: 
Generally, the truck parking availability prediction 
methods can be divided into two categories [14], [15], the 
traditional approaches and machine learning based 
approaches. The traditional approaches are always 
borrowed from statistical modeling regression, whose 
performances are not desirable for supporting real-time 
truck parking occupancy prediction. Meanwhile, even 
several researchers did investigations based on machine 
learning approaches and obtained encouraging results; the 
neural network architecture is generally born from 
sequential prediction modeling. Under the circumstances, 
the prediction scale is a fixed time step, which 
significantly reduce the flexibility and practical value of 
the proposed methods. 

• Limited Integration of Multi-Source Features 
Representations: Nowadays, most of the previous truck 
parking prediction neural networks are based on temporal 
learning architecture, which is mainly designed for 
capturing the hidden pattern from the historical input 
sequence to the output [8], [15]. However, to infer the 
future truck parking occupancy, the historical sequential 
learning approaches need to be further improved by 
integrating other useful information sources, which are 
always in various data formats. The attributes and 
categories representations, including time of day, day of 
week, weather conditions and driver characteristics need 
to be fully involved into the prediction scheme. 

Fortunately, the booming of sequential modeling approaches 
shed a new light on addressing the aforementioned difficulties. 
To quantify the relationship of parking pattern, sequence 
similarity comparison calculation method is introduced and 
improved in the research. In general, similarity estimation 
is a significant research topic with a long history in the 
transportation research community [16]–[19]. Through 
evaluating the similarity among objects, it is easy to do 

the classification and group feature extraction [20]. The main 
goal of similarity calculation is to estimate the given input’s 
mathematical distance and classify data to match the real 
application with the pre-defined scenarios [21]. And then, 
different groups will be treated by customized rules according 
to the restrictions in the scene. In truck parking scenario, when 
discovering and clustering the parking pattern characteristics of 
a parking lot for various days within one week, the managers 
can obtain a straightforward idea for the weekly parking 
distribution and then make a periodic management plan for 
various days of week. Furthermore, in parking lot 
management and planning of dynamic charging strategy, 
similarity analysis of parking occupancy rate and parking 
pattern in different locations and different periods is carried out 
to set up different management schemes, thereby achieving 
dynamic control and optimizing benefits. 

Furthermore, inspired by previous successful demonstra- 
tions of sequence learning approach for traffic prediction, 

including traffic network perceptions and parameters forest- 
ing [22]–[24], parking occupancy predicting [25]–[27], a more 

flexible and adaptable truck parking prediction algorithm 
can be achieved by the merging of state-of-the-art deep 

learning and representations embedding. Through sequence- 
to-sequence encoder and decoder architecture, reliable and 
precise multi-timescale prediction can be accomplished. With 
the help of attributes embedding and attention mechanism, 
the category information, including time of day, day of week, 

weather conditions and the drivers characteristics can be better 
integrated into the prediction framework to improve forecast- 
ing accuracy effectively. Also, through the customized the 
algorithm by a modular design structure, the whole truck park- 
ing prediction framework can be more flexible and adaptable. 

In summary, the whole team claims the technical 
innovations below: 

• Successfully implemented a pilot TPIMS for public agen- 
cies and CV operators with the Washington State Depart- 
ment of Transportation (WSDOT). The proposed system 
includes space-by-space parking status data collection, 
real-time data processing, multi-timescale occupancy 
availability prediction and information dissemination (via 
a website and a mobile app). 

• Investigated and aggregated the truck parking pat- tern 
by long-term slot-level parking data in the USA. A 
novel sequence-based pattern similarity analy- sis method, 
Advanced Sequence Alignment Method (ASAM), was 
proposed to quantify sequential parking records similarity 
under various conditions, including time of day, day of 
week and various weather conditions. Through ASAM, 
unambiguous periodical parking pattern can be 
summarized and quantified. 

• An attributes-aware sequence-to-sequence deep learning 
architecture – Truck Parking Occupancy Prediction 
(TPOP) neural network, was proposed for the availability 
prediction. TPOP models the interrelation of the input 
metadata sequence and the attributes information, 
conducts multi-timescale predictions for future parking 
availability simultaneously. It achieves 5.82%, 5.07%, 
4.84%, and 4.19% mean average 



 

 

percentage error (MAPE) for 16, 8, 4, and 2 minutes ahead 
occupancy prediction, respectively, outperforming other 
cutting-edge methods. 

 
II. LITERATURE REVIEW 

A. Parking Occupancy Pattern Analysis 
Occupancy pattern is one of the most essential characteristics 

for a truck parking lot. A farseeing research was proposed by 
[28] in early 2015, using wireless ground sensors and cameras 
to investigate the parking lot utilization distribution in Florida 
State. However, with the limited data sources and 
computational power, slot-level parking pattern analysis was 
not feasible. An urban parking survey [29] systematically 
summarized the advanced parking system development all 
over the world in 2017. Additionally, the research also 
reflected the backwardness of truck parking infrastructure at 
the information perception and dissemination. Also, in 2017, 
the GPS-based truck parking utilization analysis was proposed 
by [30]. The result shows that “parking utilization was found to 
vary considerably throughout the day”, which makes 
researchers release the importance of investigating truck 
parking behaviors. 

With the development of sensor technologies, researchers 
from the University of Florida first proposed a detailed slot-
level parking event and utilization analysis [8] in 2018. 
However, the research focused on comparing and evaluating 
three types of parking sensors, rather than discussing the truck 
parking pattern in detail. It is inspiring that the slot-level truck 
parking detectors’ accuracies were above 95% (the best one 
was more than 97%), which can support precise truck parking 
pattern analysis. Simultaneously, a group of researchers also 
tried to extract the truck parking information from the truck 
travel diary log in 2018 [31]. The research was lasted for 2053 
days and included 148 truck drivers. They found that the peak 
period for truck parking often happened during the nighttime, 
which is very different from public urban parking pattern. 
However, the inherent limitations of data collection approach 
made this study difficult to quantify the general pattern of the 
truck parking behavior. In 2020, a truck parking intelligent 
system survey [14] summarized the previous research on truck 
parking by pioneers. This paper analyzed different types of 
TPIMS sensors, including video-based sensors, laser-based 
sensors, radar-based sensors, magnetic-based sensors, etc. 
Furthermore, the survey also included the parking pattern 
modeling discussion with highly related factors, especially the 
spatial-temporal features and attributions, including parking lot 
location, time of day, week- day or weekend and weather 
conditions. To be continued, in this research, the authors 
establish a novel TPIMS system in Washington State and 
analyze the detailed truck parking pattern. Based on a 
quantified pattern aggregation, the internal correlation and 
distinction are further analyzed. 

 
B. Review on the Parking Availability Prediction Models 

Generally, the recent parking prediction research (sum- 
marized in Table I) can be classified into two categories, 
the traditional statistical approaches and machine learning 

approaches. The classical models were implemented for the 
truck parking prediction including Linear Regression [36], 
AutoRegressive Integrated Moving Average (ARIMA) [36], 
Non-Homogeneous Poisson model [14], [15], Trend switching 
model [15], Trend shifting model [15] and etc. These tradi- 
tional prediction algorithms are usually derived from statistical 
regression models, whose key idea is to fit the occupancy pat- 
tern according to the metadata and variables. The advantages of 
these classical methods are: 1) high computing efficiency and 
easy deployment; 2) not relying on large amounts of data to fit 
and calibrate. Therefore, the traditional models have also been 
deployed in some actual parking prediction systems and 
accumulated some application experience for managers. 
However, in real life, many parking related factors affect the 
prediction result directly or indirectly such as parking lot 
location, time of day, day of week, weather conditions, etc. To 
better integrate the related features, the applicability of 
traditional models is far from enough. 

With the booming of the machine learning methodologies in 
the transportation research community, neural networks also 
play significant roles in parking prediction. Several well-
known architectures were successfully implemented on the 
parking occupancy prediction tasks, including recurrent neural 
network (RNN) [15], [37], Long short-term mem- ory 
(LSTM) neural network [27], [32], Graph Convolu- tional 
Network (GCN) [25], [26], and surpassed most of the 
traditional models. In detail, [25] proposed a Hierarchical 
Recurrent Graph Convolutional Network (HRGCN) for the 
city-wide urban parking utility prediction and achieved the 
mean absolute error (MAE) less than 10.63 and 9.23 in two 
world-famous megalopolises. The model successfully inte- 
grates the spatio-temporal features, phone app information, and 
the trajectory records by the graph attention component. Also it 
inspires the researchers to design a special module to fuse the 
heterogeneous features in the truck parking prediction. The 
group from Carnegie Mellon University proposed a cus- 
tomized deep neural network based on GCN and LSTM [26], 
which can incorporate the traffic speed and weather condi- 
tions. The model achieves a testing mean absolute percentage 
error (MAPE) of 10.6% when predicting block-level park- 
ing occupancy for 30 minutes advanced periods. A team 
from Google Research proposed a parking difficulty estimator 
through a feed-forward neural network [33]. Even the variables 
and strategies of urban parking and truck parking predic- 
tion are very distinct, the research motivation and features 
extraction methods can be referred by the truck parking 
prediction. 

 
III. THE  PROPOSED  PILOT  TPIMS SYSTEM AND 

DATA COLLECTION 

In the research, the pilot TPIMS is implemented on truck 
parking rest areas in Washington State, showing in Fig. 1. Each 
parking lot is monitored by the TPIMS and the surveillance 
camera system. The TPIMS sensors are manufactured by the 
Sensys Networks, Inc. and the Smart Transportation Applica- 
tion and Research Lab (STAR Lab), University of Washington. 
Four different parts are integrated into the TPIMS: 



 

 

TABLE I 
REVIEW ON THE PARKING OCCUPANCY PREDICTION ALGORITHMS 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

Fig. 1. The architecture of the proposed TPIMS in the pilot project. Six different parts are included in the system as follows: (a) illustration of the pilot 
TPIMS architecture; (b) radar-based wireless in-ground sensor made by the Sensys network; (c) the finished installation illustration of the in-ground radar sensor; 
(d) the finished installation of the wireless repeaters’ on the light pole; (e) the real-time surveillance video stream; (f) the real-time slot level parking status 
visualization website. 

• Radar-Based Wireless Ground Sensor: In each parking 
slot, two radar-based parking detectors are installed and 
sealed with industrial sealants. 

• Wireless Signal Repeater: The repeater was installed on 
the top of the street light pole and used to transmit the 
sensor signal to the server. 

• The Server System: The server is used to process and 
manage the real-time parking slot status. Databases are 
built in the server to store different kinds of data, includ- 
ing real-time weather information, the occupancy rate of 
parking lots, etc. In this research, the server is also used 
for collecting surveillance video data. 

• The User Interaction Application: In the pilot TPIMS 
system, the research team builds a website and a cell 

phone app to show the real-time parking availability and 
the future utility information on slot level. 

For truck parking pattern analysis and prediction model 
development, the team collected 49 truck parking spaces data 
in two truck rest areas adjacent to the I-5 freeway from Jan 
05st to Mar 15th of 2020. The data were summarized into 
parking lot occupancy by every minute. The team also collected 
the real-time weather information from the closest weather 
station1 and recorded per minute. Eight categories of weather 
conditions were summarized: cloudy, light rain, light snow, 
rain, snow, wintry mix, fair and fog. 

 
1By Traveler Information API: https://www.wsdot.com/traffic/api/ 

http://www.wsdot.com/traffic/api/
http://www.wsdot.com/traffic/api/


 

 

 

 
 
 
 

Fig. 2. The primary analysis of the truck parking occupancy distribution, 
including time of day (a), day of week (b, 0 represent Sunday), weather 
conditions (c) and combination of day of week and hour of day (d). 

 
IV. TRUCK  PARKING  OCCUPANCY  PATTERN  ANALYSIS 

A. Primary Analysis 
In this research, the truck parking pattern investigation is 

conducted by two steps: primary analysis and pattern 
aggregation. Both parts contain the parking pattern exploration 
with the general concerned factors: time of day, day of 
week and weather conditions. First and foremost, primary 
statistical analysis of is finished and visualized in Fig. 2. It 
can be seen that the truck parking occupancy rate fluctuates 
significantly throughout a day. In Fig. 2 (a), by calculating the 
average occupancy rate for each hour, the occupancy rate from 
21 o’clock to 4 o’clock the next day is above 90%. Among the 
24 hours of a day, the occupancy rate from one to two in the 
early morning was the highest (97.74%). During the daytime 
(from 8 AM to 6 PM), truck drivers can find parking spaces 
easily, and the average occupancy rate of the parking lot is less 
than 60%. Similarly, each week’s overall analysis shows a clear 
pattern distinction between working days and weekends, 
showing in Fig. 2 (b). The average parking lot occupancy 
rate on Friday night, Saturday and Sunday are less than 40%, 
and drivers can easily find parking spaces almost anytime. 
However, the average parking lot occupancy rate from Monday 
to Thursday is higher (all above 67%). Unfortunately, we did 
not find a clear relationship between weather conditions and 
parking occupancy (in Fig. 2 (c)). The next section will conduct 
a more detailed similarity measurement analysis and explain 
the potential reasons. 

To investigate the distributions of time of day as well as day 
of week on truck parking activities in detail, we combine 

Fig. 3.  Visualization of the periodical weekly pattern for truck parking. 
 

these two variables together as shown in Fig. 2 (d). Through 
a more detailed analysis, the team found that no matter which 
day is, the parking lot occupancy rate is generally low (below 
50%) during the daytime (9 AM to 5 PM). However, in the 
evening and nighttime (from 8 PM to 6 AM the next day), 
the occupancy pattern is closely linked to the day of week. The 
statistical result shows that the truck parking lot utility is very 
high in the evening and night time from Sunday to Thursday 
(above 95%). However, the occupancy rate from Friday to 
Saturday and Saturday to Sunday is very low (less than 
40%). Such a considerable difference represents the different 
behavior of truck drivers in workdays and weekends. 

After the statistical analysis was performed, the research 
team performed a rough quantification on the truck parking 
occupancy sequence pattern. We recorded the occupancy data 
by each minute summarized a total of 4 weeks of occupancy 
sequence for two parking lots. The details are shown in Fig. 3. 
There is no doubt that the distribution pattern of the different 
weeks is related and repeatable. The occupancy distribution of 
different parking lots also shows a similar pattern. Such 
findings encouraged us to carry a quantified sequence-based 
similarity analysis and cluster the pattern. Based on the result, 
a convinced pattern aggregation will help both the parking lot 
managers and the truck drivers. 

 
B. Pattern Aggregation 

1) ASAM Introduction: Before formally beginning to define 
ASAM, the traditional Sequence Alignment Method (SAM) 
[38] needs to be briefly introduced. In general, the SAM 
is proposed for the DNA sequence matching. SAM evaluates 
the workloads required to equalize the source sequence and the 
target sequence and treat the minimum 
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efforts as the measurement of the difference between them. The 
equalization efforts are calculated by the basic operation 
accumulation. In SAM, there are three kinds of operations: 
“Insert”, “Delete”, “Identify”. The principle of SAM is to 

As a result, the distance δAS AM between the source sequence 
S and target sequence T can be calculated as the sum of the 
efforts EF of all four kinds of operations IN , ID, DE, and 
SU : 

find out the set(s) of operations which can minimize the 
sum of operation efforts to equalize the two sequences. In a 
mathematical manner, we assume the source sequence of 

δAS AM = 
IN( j )∈O 

EFIN + 
ID(i)∈O 

EFID 

SAM is S = {Si }, i = {1, 2, . . .  , m}, and target sequence is 
T = {Tj }, j = {1, 2, . . .  , n}. Therefore, the “insert” operation 

+ 
DE(i)∈O 

EFDE + 
SU(i, j )∈O 

EFSU (5) 

IN( j ) indicates the insertion of the an element of target 
sequence into the j th position of the source sequence; the 
“delete” operation DE(i) indicates the deletion of the i th 
element of source sequence; the “identify” operation ID(i) 
indicates the identification of the i th element of both source and 
target sequences. As a result, the operation sets OSAM from the 
source sequence S to target sequence T can be represented in 
Equation (1): 

Based on the process mentioned in the previous paragraphs, 
we can get the distance δ between the two sequences S an T . 
Then, for the convenience for further comparison, the paper 
normalizes the similarity by a customized Sigmoid function, 
where “ξ ” denotes similarity, “δ” denotes the distance cal- 
culated after normalized by Gaussian function, and the Lsi 
represents the total length of the two sequences. 

1 

OSAM = {IN( j ) ∪ ID(i) ∪ DE(i)} (1) ξ = 1 −  
1 + e 

 
(2δ−Lsi )∗π 

Lsi −1 
(6) 

And the distance δSAM between the source sequence S and 
target sequence T can be calculated as the sum of the efforts 
EF of all three kinds of operations IN , ID, and DE: 

Obviously, from Equation (6) the larger distance indicates 
low similarity and the small distance indicates the high 
similarity. The largest distance is the sum of the length of the 

δSAM = 
IN( j )∈O 

EFIN + 
ID(i)∈O 

EFID + 
DE(i)∈O 

EFDE 
 

(2) 

two sequences (i.e., there is an operation on every position); 
therefore, the similarity is close to 0. Contrarily, the smallest 
distance is close to 0 (i.e., the two sequences are the 
same and there is no operation has been done); therefore, 

However, in the truck parking scenario, the spatio-temporal 
sequences of occupancy rate are numerical values. In the 
traditional SAM method, only “Insert”, “Delete”, and “Iden- 
tify” are considered; therefore, the difference between “0” and 
“9” is the same as the difference between “0” and “1” (i.e., both 
of them need two operations: Delete and Insert), which is not 
reasonable. Therefore, the paper introduces a new operation, 
“Subtract” into the traditional SAM, which is designed for 
the numerical values in the sequences when calculating 
similarities. We name the new method as Advanced Sequence 
Alignment Method (ASAM). To apply the operation “Subtract” 
in the similarity calculation, a threshold must be determined 
based on the range and the importance of the value. The paper 
assumes the operation “Insert” and “Delete” are equal-
weighted, and sets their costs are both 1. Moreover, the cost of 
“Identify” is 0 because the operation does not change each 
sequence. If the difference between the two values exceeds the 
threshold, ASAM regards the difference as the sum costs of a 
“Delete” and an “Insert” operations. If the difference is under 
the threshold, the cost of the “Subtract” should be calculated 
based on the threshold. In the condition, 
the effort of operation “Subtract”, EFSU can be represented as 
the following Equation (3), where φ denotes the threshold. 

the similarity approaches to 1. In the truck parking scenario, 
usually, sequences with 0.4 to 0.8 similarity can be thought 
to have a similar pattern; sequences with 0.8 and higher 
similarity are highly related and dependent; the sequences with 
0.4 and lower similarity are thought to have different even 
unrelated patterns. By comparing the aggregation result with 
metadata, the research team believes that the ASAM can be 
well used for the truck parking occupancy sequence pattern 
aggregation for the three reasons: 1) The added operation 
“Subtract” enables the method on numerical sequences 
analysis. 2) ASAM can process the sequences with various 
length to deal with the missing data situations. 
3) ASAM can estimate the hidden correlations among the 
temporal sequence elements. 

2) Occupancy Pattern Aggregation: Through the ASAM, 
the research team calculated the sequences of time of day, day 
of week and weather conditions from the two parking lots. 
Several conclusions can be summarized and the regular 
periodical pattern can be quantified into daily and weekly 
pattern.2 Fig. 4 shows the results of pattern aggregation in 
detail. 

For daily occupancy sequences, the similarity result shows 
an obvious “cross X” pattern. There are two high parallelism 

EFSU = 2( A − B)/φ, i f  ( A − B)< φ 
2, i f  ( A − B) ≥ φ 

(3) 
clusters aggregated by ASAM through daily truck parking 
pattern. In general, “daily off-peak hour” starts from 8 o’clock 
to 16 o’clock. In this time period, the truck parking lot’s occu- 

The “Subtract” operation SU(i, j ) indicates the operation that replaces the i th element of the source sequence by the j 



 

 

th element of the target sequence. Therefore, the operation set 
of ASAM can be shown below in Equation (4): 

OASAM = {IN( j ) ∪ ID(i) ∪ DE(i) ∪ SU(i, j )} (4) 

pancy rate is usually low (generally less than 40%), and the 
average parking time is relatively short (within 20 minutes). 
Meanwhile, during such a period, the occupancy sequence 

2Due to drivers’ habit difference, the pattern mainly reflect truck activities 
in North America including: United States, Canada, Mexico, etc. 
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Fig. 4.  Pattern aggregation result of the time of day (a) and day of week 
(b). The sequence similarity calculation result is showed by the color display 
(the higher the similarity, the bluer the display in the Figure 4). 

 
similarity is very high (above 56.05%), and the pattern is highly 
repetitive. The “daily peak hour”, another high sim- ilarity 
cluster of the parking pattern, starts from 21:00 to 5:00 of 
the next day (especially from 22:00 to 4:00 of the next day). 
In the peak hour pattern, the parking lot occupancy rate is 
usually very high (more than 90%), and the average parking 
time is longer than two hours (with an average value of 145 
minutes). For weekly pattern, in general, every week’s truck 
parking pattern can be divided into two clusters: working mode 
and off-working mode. The working mode starts from Sunday 
night until Friday daytime. These days, the parking sequence 
similarity is very high (above 56%) and fits well with the daily 
peak-hour and off-peak hour pattern. The off-working mode, 
representing the relax time of truck drivers, usually starts on 
Friday night. On Saturday, Sunday or even sometimes Monday 
morning, the truck parking pattern similarity is low (less than 
35%), and the random and personalized parking activities are 
more frequent than workdays. 

After a careful sequence similarity investigation based on 
various weather conditions, the impact is negligible on the truck 
parking pattern. The possible reasons are: 1) the over- all 
weather in Washington State is relatively moderate, and 
extreme weather (heavy snow, dense fog) is not found in the 
research period. 2) the rich professional experience enables the 
truck drivers to eliminate the impacts of weather impacts. 

 
V. AVAILABILITY  PREDICTION  BASED  ON 

DEEP LEARNING 
In this research, a sequence-to-sequence deep learning model 

– Truck Parking Occupancy Prediction (TPOP) neural network 
is developed to predict the truck parking occupancy statuses, 
and successfully integrated into the pilot TPIMS system. Based 
on the truck parking occupancy pattern analy- sis and 
aggregation result, the attributes information has a great 
influence on the availability. By Integrating attri- butions and 
temporal-features together, the TPOP achieves multi-timescale 
truck parking occupancy prediction precisely. In this section, 
researchers describe the architecture of our proposed TPOP. 

 
 
 
 
 

Fig. 5. The architecture of the TPOP neural network. Three components are 
integrated including attribute embedding component (blue), temporal-learning 
component (green), and attributes-aware attention decoder (yellow). 

 
A. TPOP Preliminary 

The definitions and preliminaries are listed formally: 
1) Definitions: Definition 1 (Historical Occupancy Sequence 

(Oi )): The historical occupancy sequence (Oi ) is a sequence-
based continuous temporal occupancy records obtained from 
a parking lot. The time gap (tg) of the 
Oi is fixed. The length of the Oi is LOi . In this work, 
the Oi is used as the input of TPOP including the records 
of o1, o2 ...  Oi . 

Definition 2 (Prediction Sequence ( Pj )): The prediction 
sequence ( Pj ) is a sequence of future occupancy data for a 
parking lot. The time gap of the Pj is customized (need to 
be n times of tg and n is an integer (n > 0)). The length of 
the Pj is j . In this work, the Pj represents the output of the neural 
network and including the records of p1, p2 ...  p j . 

Definition 3 (Attributes Sequence ( Ai)): The attributes 
sequence ( Ai ) is a sequence-based attributes information that 
belongs to each occupancy status for a parking lot. In this work, 
the Ai includes the weather condition (weatherID), the day 
of week (WeekID) and time of day (timeID). 

2) Prediction Objective: The overall target of this section 
can be divided into two parts. During the training phase, 
the researchers train the neural network in a supervised manner 
to fit the Pj based on the input Oi and the Ai . In the testing 
phase, we test our model based on the given Oi and Ai , and 
generate the Pj . Then, evaluate the prediction result based on 
the ground truth data. 

 
B. TPOP Model Description 

TPOP neural network (as shown in Fig. 5.) is con- sists 
of three subcontinents: attribute embedding component, 
temporal-learning component, and attributes-aware attention 
decoder. The attribute embedding component is used to process 
the category factors (e.g. day of week and weather conditions) 
and the time information of the given sequence 
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(e.g. hourID). Its output is fed to the other two components as 
part of inputs. The temporal component is used to learn and 
memorize the temporal dependencies from Oi to Pj . Finally, 
the attributes-aware attention decoder is used to balance the 
trade-off between the historical dependency and the effective- 
ness of the attribute, and maps the previous two components 
outputs to the Pj . 

1) Attribute Embedding Component: Based on the truck 
parking pattern analysis, the occupancy is highly affected by 

to a vector and then send into the stacked LSTM layers. The 
output of the LSTM layers can be shown in Equation (9). 
Where, the W O

nl 
, W and W are all learnable parameter matrices 

used in the LSTM. The σrnn is the activation function. 
The hi is the hidden state after processed the ith records of 
the combination of Onl sequence and Ai . After the temporal 
module, we obtained a sequence hi to represent the association 
temporal features, which consists of (h1, h2, . . . ,  hi ). 

the attribute information, including hour of day, day of week h 
and mode of working or off-working. To better use such infor- 

nl 

i = σrnn(Wi 
i  · Oi  + W · hi−1 + W A · Ai + ε(i) ) (9) 

mation, the TPOP neural network includes and integrates the 
attributes set into the parking occupancy prediction process. 
Here, the set includes weatherID (rainy, snowy, sunny, etc.), 
weekID (from Monday to Sunday), and the timeID (hourID and 
MinuteID). 

However, the attribute information format is always discrete 
categorical values, which cannot be fully used and under- stood 
by sequential-oriented neural networks [39]. Meanwhile, the 
impact of the attribute information on the output sequences 

3) Attributes-Aware Attention Decoder: The researchers 
finally introduce a sequential decoder component that com- 
bines the previously captured features and estimates the 
occupancy level for various time slots ahead. In this work, 
an attribute mechanism is incorporated with the sequential 
decoder architecture to improve the TPOP flexibility and accu- 
racy for multi-timescale prediction. In our model, the TPOP has 
the ability to predict the parking lot occupancy status at eight 
different time intervals in the prediction sequence, from tg, to 8tg. Here, We use p0, p1, . . .  to p7 to represent the eight 

is always complicated and multifaceted. Thus, a learnable i i 

procedure incorporated with the network is necessary. Inspired 
by feature learning techniques in using natural language 
processing (NLP), mapping the words or phrases from the 
vocabulary to vectors of real numbers, embedding becomes a 
bridge to connect these discrete values to a vector dimension. 
In the framework, we adopted the low dimension embedding 
method proposed by [40] to transform categorical factors into 
a neural network input sequence. Using Ai represents the 
attributes sequence after embedding. The overall output of the 
attribute component is: 

Ai = Eα(weatheri ) ◦ Eβ (weeki) ◦ Eγ (timei )   (7) 

2) Temporal Learning Component: Based on the literature 
review and the section of truck parking pattern analysis, the 
temporal dependency is the key factor to the prediction result. 
To better capture the temporal relationship among the input 
and output sequences, the researcher team firstly introduced a 
non linear mapping where map the ith historical occupancy 
record into a R16 vector. 

Onl = tanh(W  nl  · Oi ) (8) 
i 

occupancy status of eight different time gaps. The features set 
we used to represents Pj are FPj . 

In fact, the actual challenge of occupancy prediction of 
different time intervals is caused by various critical time 
records. Even each record using in hi are treated all equally 
while they are used as input; however, they are more like to 
contribute differently for the prediction result. For example, 
if the parking lot is fully occupied at late night, the neural 
network should pay more attention to the status since such 
a status might last for several hours. To achieve an effective 
feature fusion, we adopt the attention mechanism instead of the 
mean pooling. The attention mechanism is essentially the 
weighted sum of the sequence hi , where the weights are 
parameters learned by the model. Formally, we have the 
attention-aware FPj calculated by Equation (10): 

Lhi 

FPj  = μi ∗ hi (10) 
i=1 

where μi is the weight for the ith input historical occu- 
pancy sequence record. To obtain μi , the team combined the 
attributes information and the historical occupancy information 

In the Equation (8), the Hnl means the output of the in the following Equations (11) and (12): 

non-linear mapping map result. The W(Onl ) is the learnable 
weight matrix which is used to transform the input sequence 

FAtti = ( M( Ai ) Oi ) (11) 
eFAtti 

records into the R16 dimension vector. The tanh is used here 
to normalize the input size of the original value. 

μi = .
i eFAtti 

(12) 

After the mapping, the LSTM is introduced in this model to 
“memorize” the history in the processed sequence. Generally, 
each LSTM neural contains three gates [41], which are input 
gate i (t), output gate o(t) and forget gate f (t) inside a neural. 
Each gate is controlled by their own weight w(t) and the 

previous hidden neural output h(t−1). In the TPOP model, 
the input of the stacked LSTM layers can be divided into 
two parts. One is the historical occupancy sequence O(nl) and 
another is the attribute information sequence after embedding Ai 
. The matching records in both sequences are concatenated 



 

 

In Equation (11), the M( Ai ) is the non-linear mapping map 
the attributes record of Ai into the same dimension of the Oi . 
The ( , ) represents the inner product space operator. After 
the attention component, the team used fully connected layers 
mapping the Oi into a 2-dimension vector to represent the 
occupancy level in Pi . 

4) Loss Function: The research team trained the TPOP 
end to end. During the training phase, we use MAPE (M) 
as our objective function and optimized using RMSprop. 
Furthermore, we used multiple standards to evaluate our 
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model, including the rooted mean squared error (RMSE) 
and the MAE. The mathematical equation of MAPE is in 
equation (13): 

traditional method for parking availability prediction. 
Here, researchers calculated the average occupancy rate of 
the input sequence and used as outputs. Then estimate 

N ˆ the errors based on real occupancy and the average value 
1 

MPj = N 

C. Experiment 

· | Pj − Pj |∗  100% (13) 
P ĵ − ε 

of the input sequence. 
• RNN [37]: RNN can use internal memory units to process 

arbitrary sequences of inputs, and thus grants the RNN the 
capability of learning temporal sequence. In the 

1) Environment Description: The TPOP was implemented 
with PyTorch. The work station for training and testing is 
equipped with two GPUs (NVIDIA TITAN Xp) and the CPU 
is Intel Core i7 8700. The operation system is Linux Ubuntu 
16.04. 

2) Parameters: The parameters in the TPOP experiment are 
in the follows: 

• For the input historical occupancy sequence in the defin- 
ition 1, the length of LOi using as TPOP input sequence is 
fixed as 32. The time gap tg of the two records in the Oi 
is 2 minutes. 

• For the prediction occupancy sequence in definition 2, The 
length of the prediction sequence LPi is 8. The future 
records ( p0, p1, . . . ,  p7) represent the occupancy 
information of 2 min, 4min, until 16 min later parking 
occupancy status. 

• The size of the embedding vector for each attribute (in 
equation (7)) is settled as follows: weatherID mapping into 
R3, weekID mapping into R3 and time ID mapping into 
R10. The total dimension size of Ai is R16. 

• In the temporal learning component, the number of hid- 
den neural in the stacked LSTM is fixed as 32 and two 
hidden layers are used. 

• The activation function in the equation (9) σrnn is tanh 
function. The mathematical expression of tanh is tanh(x) 
= ex − e−x /ex + e−x . 

• In the attention-aware attention decoder, the number of 
fully connected layers for each prediction record is fixed 
as two. The layers downsample the 32 dimension vector to 
represent the predicted future occupancy level Pi . 

 
D. Result and Comparison 

In prediction evaluation, we trained our model based on two 
parking lot data and evaluated it separately. The final result is 
the weighted average value of two parking lots based on the slot 
numbers. For the evaluation of different time slots ahead, we 
trained the neural network based on the input sequence with the 
same time gap. 

• AVG [42]: Calculating the average value for each input 
sequence and use as the output sequence is the most 

comparing process, the authors used a basic RNN to 
predict the parking occupancy and compared with the real 
availability record. Here, we set the neural number of 
RNN as 32 and using one hidden layers. 

• LSTM [43]: For comparing, the authors used LSTM neural 
network to predict the occupancy directly. We set the 
number of hidden units as 32 and in one hidden layer. 
Based on the LSTM output, then estimate the errors based 
on ground truth and the predicted sequence. 

• LSTM (2-Layer) [27]: For comparing, the authors also 
used two layers stacked LSTM neural network to predict 
the occupancy directly. We set the number of LSTM 
hidden units as 32 in two hidden layers. 

• Periodic Weather-Aware LSTM (PewLSTM) [35]: 
PewLSTM is proposed in 2020, which is a novel 
sequential model incorporating the weather conditions and 
periodic patterns for parking occupancy prediction. By 
integrating a weather-aware gating mechanism into 
traditional the LSTM neuron, the PewLSTM successfully 
surpass the LSTM models in various weather conditions 
and environments. Here, we set the number of PewLSTM 
hidden neural as 32 in one hidden layer. 

From the comparison of Table II, we can see that the 
TPOP prediction accuracy is significantly better than other 
parking prediction methods. Comparing with the traditional 
temporal learning model like RNN and LSTM, the attribute 
feature extraction module do extract more useful attributes 
representations and show positively impact on the prediction 
sequence. To show the prediction result, the research team uses 
a week data and visualize the comparison between the predic- 
tion result with ground truth in Fig. 6. The general prediction 
result is auspicious and encouraging. Also, we found that the 
attributes-aware decoder does help the performs of different 
prediction time slots. A more detailed analysis of the TPOP 
components can be found in the next section. 

 
E. Effect of Attributes Information Incorporation 

In our pattern analysis, the attributes information fusion is 
crucial because the truck parking sequence is highly related to 
the factors. To thoroughly show the effectiveness of different 



 

 

 

 
Fig. 6.  Comparison of TPOP prediction result with metadata at 2min, 4min, 8min and 16min ahead. 

TABLE III 
ATTRIBUTES INTEGRATION COMPARISON 

 
     

             

             

             

             

             

 

attributes, including the weather condition, day of week and 
time of day, we devise a set of controlled experiments on 
our trucking parking dataset. The results are summarized in 
Table III. 

We eliminate exactly one attribute with the same testing 
dataset and test our well-trained model for each experiment. 
Then, we summarize the before and after MAE, MAPE, and 
RMSE for the same week for comparison in Table III. From the 
experiment, it can be found that day of week and time of day 
affect the estimation significantly. Eliminating such two 
attributes causes an error growth of 1.94% and 1.12%, respec- 
tively. This also conforms to our intuitive sense, i.e., based on 
the pattern aggregation and similarity analysis, the time of day 
and day of the week shows an obvious impact on truck parking 
activity. The working mode and off working mode, daily peak 
hour and off-peak hour, are recognized and distinguished by the 
attributes embedding component and integrated into the final 
prediction result. Meanwhile, eliminating the weather 
information causes an error increment of 0.19% which seems 
not significant. However, we stress the data in the Washington 
state, most of the weather conditions are light rain and cloudy. 
For other states and countries, the weather information might 
be more helpful in estimating parking patterns. We leave it as 
an intriguing direction for the future work. 

VI. CONCLUSION  AND FUTURE WORK 
In this paper, comprehensive advanced truck parking 

research was conducted with WSDOT. A slot-based truck 
parking dataset was collected, and a novel method ASAM was 
proposed to aggregate the parking pattern. A path- breaking 
sequence-to-sequence learning neural network TPOP was 
trained and tested for real-time truck parking occupancy 

prediction for multi-timescales, which achieved state-of-the- art 
results. The achievements of this research are used to build 
the pilot TPIMS and served truck drivers in Washington State. 
This research can better help the CV operators transport 
shipments and schedule routes and contribute to the govern- 
ment agencies to improve the level of service for parking 
operation and management. In the future, more parking lots will 
be selected as the test site of the research. Also, more external 
attributes information and driver’s preference will be 
considered as the input of the occupancy prediction task. 
Network-level parking occupancy patterns and predictions will 
be investigated. 
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