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Executive Summary 
The many potentially transformative changes to the transportation system, such as automation, 
adoption of electric vehicles, increased telework, and new travel modes, are creating increasing future 
uncertainties.  Current travel demand models, with their definite input assumptions and long run times, 
may not be up to modeling a wide variety of potential futures.   

Accordingly, the planning and modeling community is showing an increasing interest in strategic 
planning tools, including models like VisionEval and frameworks such as the Travel Model Improvement 
Program’s Exploratory Modeling and Analysis Tool (TMIP-EMAT), which can quickly explore a wide 
scenario space.  Furthermore, there is an interest in models that can organize complex systems, making 
sense of the interactions among parts of the system that might produce unexpected outcomes.  

System dynamics (SD) methods hold promise in this regard. SD is a methodology with broad 
applicability, and has been applied in many areas, including business analysis (e.g., adoption of new 
mobility technologies) (Struben and Sterman 2008), and public health (e.g., spread and containment of 
pandemics) (Rubin et al. 2021).  SD has a qualitative side, including techniques such as group model 
building, which is useful for establishing a common understanding of the problem among stakeholders. 
It also has a quantitative side, bringing mathematical rigor to the causal relationships and simulating 
system behavior under various scenarios.  This report explores the use of SD in a transportation context, 
specifically for understanding the potential impacts of a shared automated mobility service, from 
perspectives of both the service provider and the household.     

On the qualitative side, in the immediately preceding project in this program, the Volpe team and 
several partners facilitated group model building (GMB) exercises with state and regional agencies 
(documented in further detail in (Smith et al. 2021)) . In the current project, Volpe shared this work with 
a broader audience at webinars and the 2021 Transportation Research Board (TRB) Planning 
Applications conference, as well as conducting a wider GMB workshop that brought staff of several U.S. 
and European cities and regions into the same virtual room to look at the role of automation in livability 
of cities (Harrison et al. 2022).  These efforts showed that one benefit of system dynamics GMB in the 
domain of transportation futures is that it speaks a language accessible to both planners and modelers, 
helping to bridge the gap between those two groups.  The resulting causal loop diagrams (CLDs) can be 
used to develop common mental models of a system, to help surface any miscommunications.  
Developing CLDs requires participants not only to think about the elements of the system, and how they 
affect each other, but also to express their thinking on these relationships non-equivocally on paper, 
thus leading to greater clarity on possible leverage points and differences in perspective. 

Several CLDs were developed for this project, covering the following dynamics: 

• Reinforcing effects of product adoption, as word-of-mouth from existing users leads to new 
users 
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• Balancing effects of the need for a sustainable business model, where it is not sustainable in the 
long term to have cost exceed revenue 

• Reinforcing effects of scale, where in many cases, as a business becomes larger, it is able to 
more efficiently and consistently match service provision to demand, thus offering shorter wait 
times 

• Balancing effects of congestion, through which mechanism as use of a product (e.g., use of 
shared mobility trips, space on a transit bus, or space on a road) increases, its use becomes less 
attractive (e.g., increased wait times for shared mobility trips, standees on a bus, or congestion 
on a road)   

On the quantitative side, the Volpe team constructed and tested a model of a shared automated 
mobility service, from both the traveler and service operator perspectives.  The baseline model was 
constructed using transportation network company (TNC) data from Massachusetts and Chicago, and 
then tested on several automation scenarios.  This analysis found that:  

• Given the higher density of trips in urban areas, all of the services were more attractive to both 
travelers and operators in urban areas (consistent with the spatial distribution of TNC use 
today) 

• There is an increase in vehicle-miles traveled (VMT), primarily driven by induced travel and 
affected by value of time 

• There is potential for high quality (i.e., low wait time) services in rural areas, except at the 
lowest population densities  

Proposed future work includes using SD to explore vehicle ownership, and the integration of SD 
techniques with existing strategic models for transportation.  



 

System Dynamics for Automated Vehicle Impact Assessment | 8 

1 Introduction 
A clearer understanding of impacts of automated driving system (ADS), and how adoption of ADS1 will 
affect the public interest, is of great importance to federal, state, and local policymaking. As the impacts 
of automation are far-reaching, complex, and uncertain, it is critical to have a systems-level framework 
for evaluating the potential implications of these new technologies on the transportation system.  

System dynamics (SD) has emerged as a research modeling focus area for changes to the transportation 
system which may have transformative impacts, including those from ADS. System dynamics provides 
both qualitative methods for bringing diverse stakeholders to a common understanding of the problem, 
and quantitative methods for modeling complex systems that consider feedback effects and changes 
over time.  

SD models support managing uncertain futures in performance-based planning and programming, with 
a focus on moving the models towards common usage at metropolitan planning organizations (MPOs), 
state DOTs, and cities as appropriate.   

This report includes three sections:  past work, qualitative modeling, and quantitative modeling.   

The section on past work briefly describes the impact assessment framework for automated driving 
systems published and tested in 2015-2018 ((Smith et al. 2015; 2017; 2018; Innamaa et al. 2018), 
analysis of specific automation applications, (Yanagisawa, Najm, and Rau 2017; A. Eilbert et al. 2018; A. 
Eilbert, Berg, and Smith 2019) and the motivation for using system dynamics.   

The qualitative modeling section discusses the techniques, such as group model building and causal loop 
diagrams, for bringing diverse stakeholders to a common understanding of the issues.  It reports on our 
use of these techniques, both in a large webinar setting and also in more focused sessions with state 
and regional governmental organizations in the U.S., as well as engagement with cities in Europe.   It 
presents several causal loop diagrams (CLDs) illustrating major outcomes of policy interest (e.g., mode 
choice and land use) associated with widespread adoption of ADS.   

The quantitative modeling section reviews several existing quantitative SD models, and then focuses on 
addressing a major gap in current models:  that of the business model for shared mobility services.  The 
report presents a quantitative model for such a service, integrating both the business side (financial 
sustainability) and the user side (a service attractive enough to be used).  Our several hundred model 
runs show the significantly different outcomes in urban, suburban, and rural areas, as well as the 
importance of induced travel.  This section concludes with a discussion of how a quantitative SD model 

 

1 ADS refers to SAE Level 3 to 5 automation (SAE International 2021). It is a more specific term than “automated 
vehicle”.  The potential impacts of ADS are the primary focus of this report.    
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can be integrated with existing models, such as the VisionEval strategic planning model from FHWA, and 
the POLARIS agent-based model from Argonne National Laboratory (U.S. Department of Energy).   
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2 Past Work 
This section provides a short summary of the earlier phases of this program.  Since 2015, the ITS JPO has 
sponsored work by the U.S. DOT Volpe Center to investigate the impacts of ADS on the transportation 
system. In close collaboration with international partners, our early research centered on developing a 
framework (Figure 2-1) for evaluating the impacts of ADS on safety, emissions, network efficiency, and 
travel behavior. Investigators also considered impacts beyond the transportation sector, such as land-
use patterns and public health. 

 

Figure 2-1 Impact assessment framework  

(Source: Volpe (Smith et al. 2018)) 

Subsequent research efforts included detailed modeling and socializing the results at industry meetings 
like the 2017 Automated Vehicles Symposium (Smith et al. 2017).   

As it became clear that most existing transportation planning and operations models were not designed 
to capture the potentially transformative impacts of ADS, the Volpe team moved from 2017 towards 
using system dynamics (Berg et al. 2020; Rakoff et al. 2020; Smith et al. 2021; Keith et al. 2022). System 
dynamics (SD) allows one to take simple causal interactions within a complex system and build a model 
that can demonstrate not-so-evident dynamic behavior. SD enables one to identify potential tipping 
points that could indicate a major change in how the transportation system might be used. System 
dynamics lends itself to both qualitative modeling (e.g., a group model building exercise among a variety 
of stakeholders to identify the causal relationships) and quantitative modeling (e.g., a model of how the 
system might evolve over time, starting from today’s situation and testing various scenarios). System 
dynamics models are often useful even without representing great levels of system detail; therefore, 
they often run much faster than large four-step or activity-based models and are thus a useful addition 
to the scenario planning and strategic modeling toolboxes.  
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Meta-analyses (Figure 2-2) also refined the impacts framework, especially as regards the network 
efficiency and energy/emissions areas.  In Figure 2-2, each dot represents the results of a study.  The 
larger black dots are the mean, with the whiskers representing one standard deviation.  

 

Figure 2-2 Meta-analysis of adaptive and cooperative adaptive cruise control applications  

(Source: Volpe (A. Eilbert, Berg, and Smith 2019)) 

Previous studies through this program have explicitly considered the environmental impacts of 
automated vehicles, and the differences between cooperative and adaptive cruise control systems in 
particular. These studies showed that cooperative adaptive cruise control (CACC) can effectively smooth 
driving by curbing excessive acceleration and braking events, more so than adaptive cruise control (ACC) 
alone. Smoother CACC driving results in less traffic congestion and delays but also in fuel savings and 
emission reductions over naturalistic driving. While we were able to confirm the operational benefits of 
connectivity and automation through instrumented vehicle testing through the CARMA Program, the 
environmental benefits were much more apparent in the traffic microsimulations. 

 In these simulations, the Volpe team implemented the well-known MIXIC model for CACC and the 
Intelligent Driver Model (IDM) for ACC. Volpe then developed emission estimates using the US 
Environmental Protection Agency’s latest regulatory model for highway vehicles, Motor Vehicle 
Emission Simulator (MOVES3).  

There may be a tradeoff between vehicle controllers; some optimize for environmental benefits and 
while others optimize for traffic capacity. In order to promote energy and emission reductions, the 
controller must allow for greater following distances and time gaps (A. Eilbert et al. 2018; A. Eilbert et al. 
2020). 
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3 Qualitative Modeling 
System dynamics (SD) is a methodology with broad applicability. Before effort is expended developing a 
quantitative SD model, it is helpful to engage with stakeholders in a structured process to define the 
problem and important causal relationships as well as the relevant scope of system to be considered.  

Group model building (GMB) is a stakeholder engagement method designed to surface the important 
variables and major causal relationships in a complex system, identifying feedback loops.  GMB also 
helps to bring stakeholders with a variety of perspectives to a common understanding of the system in 
play and the challenge or problem at hand.   

The stakeholder engagement eventually yields a qualitative model, often represented as a causal loop 
diagram (CLD). The resulting qualitative model, along with available data, forms the basis for building a 
quantitative model.  Section 3.1 introduces CLDs, section 3.2 describes the CLDs developed for this 
project, and section 3.3 describes several examples of stakeholder engagement.   

3.1 Introduction to Causal Loop Diagrams 
One important output of a group model building exercise is a CLD, which concisely represents the causal 
relationships in the system.  CLDs are discussed in (Berg et al. 2020).  Key points from that discussion are 
repeated here. 

CLDs are constructed using only a few elements:  variables, parameters, and causal links.  Variables or 
parameters are indicated just by their names, and causal links are indicated by arrows, with the arrow 
pointing from the independent variable to the dependent variable in the causal relationship. Every 
causal link has a positive or negative polarity to indicate the nature of the relationship, shown in Figure 
3-1. 2 

 
Source: Volpe Center 

Figure 3-1 Causal links with positive (left) and negative (right) polarities. 

A causal link with positive polarity from variable A to variable B means that an increase in A will cause B 
to be larger than it would otherwise be, and a decrease in A will cause B to be smaller than it otherwise 
would be.  It is important to note that this does not mean that an increase in A will cause an increase in 
B. B can still decrease but will decrease less than it otherwise would have. Similarly, a negative polarity 
means that an increase in variable A will cause variable B to be smaller than it would be all else equal, 
and a decrease in variable A will cause variable B to be larger than it otherwise would be.  Marks can also 

 

2 In addition to marking links with “plus” or “minus” signs, this report uses an additional distinction of color, with 
blue for a positive link and red for a negative one. 



 

System Dynamics for Automated Vehicle Impact Assessment | 15 

be added to causal links to indicate delayed causality (see Figure 3-2). Delay can have a powerful effect 
on the resulting dynamics. 

 
Source: Volpe Center 

Figure 3-2 Causal link with delay. 

Once these causal links are assembled, “loops” will arise when the causal links from one variable 
connect back to that variable, after connecting to one or more additional variables. These loops play a 
central role in the behavior of the system, so it is important to identify them. Indeed, highlighting causal 
relationships, as well as feedback loops, and how this system structure influences its behavior, is the key 
tenet of SD.  Loops are labeled to indicate: (a) the dynamic behavior that the loop illustrates – a simple 
name to refer to that loop and (b) whether the overall effect is reinforcing (where the net effect of all 
the links in the loop reinforces a change in any variable in the loop) or balancing (where the effect of all 
the links in the loop opposes a change to any variable in the loop).   In an isolated reinforcing loop, the 
variables will either increase exponentially3, or decay to zero.  In a balancing loop, they will tend to resist 
displacement from initial values, although oscillating behavior can ensue.  As will be seen later, the 
dynamics become more complex when reinforcing and balancing loops are combined. 

An example of a CLD on the provision of transit service (adapted from (Rakoff and Bettinardi 2021) ), is 
shown in Figure 3-3.  Note that the concepts in Figure 3-3 are applicable to any shared vehicle service 
(such as a shared automated vehicle service), where a balance must be found between financial 
sustainability for the service provider and an attractive service for the traveler.   

 

3Isolated reinforcing loops can also exhibit exponential decreases, in the case of a non-physical variable which can 
take on an exponentially large negative value. 
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Figure 3-3 CLD of transit use, demonstrating an archetypal behavior applicable to shared mobility 
(human-driven or automated) as well  

(Source: Volpe) 

There are two loops in this diagram.  First is the transit service and revenue reinforcing loop. All else 
equal, more ridership leads to more farebox revenue for the transit agency.  This, in turn, increases 
operating cash flow, which enables more service, albeit after a delay.  With more service, transit 
becomes more attractive, leading to greater mode choice for transit.  More travelers choosing transit 
leads to greater ridership, thus closing the loop.  This loop could also be a “death spiral”, with reduced 
ridership, revenue, etc.   

Second is the balancing loop of cash flow, service, and operating expense.  More cash flow enables more 
service (after some delay), which increases the operating expense, which reduces the cash flow, thus 
limiting the ability to add yet more service.    

To summarize, building a qualitative model is an essential first step to engage with stakeholders and can 
even be built in concert with them. It allows stakeholders (and the project team) to reach a common 
understanding of the problem being addressed. By building out the loops in one or a set of CLDs, a 
stakeholder can see how simple-looking problems can lead to possibly unexpected system behaviors as 
the interactions are built out.  This, by itself, has value (Smith et al. 2021). 
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The next section presents the building blocks of a qualitative SD model for a transportation system, as 
developed during this project.  Section 3.3 then presents several examples of stakeholder engagement, 
in 2020 – 2022, with qualitative modeling of different aspects of the automated vehicle ecosystem.  

3.2 Causal Loop Diagrams for Automated Transportation 
Causal loop diagrams represent the important causal links and feedback loops in a system. The system 
boundary needs to be large enough to capture all significant effects (Sterman 2000). For macro-scale 
impacts of ADS, that means the CLD needs to address transportation supply and demand as well as 
business models and infrastructure.    

This section presents some of the building blocks developed by this project in 2020-2021. They include 
technology adoption, business models, competition, scale effects (where more use leads to better 
service), congestion, and the long-term dynamics of vehicle ownership and land use (residential 
relocation). While conceived of in the context of modeling automated driving, these building blocks will 
have applicability to nearly any transportation innovation.   

Later, in Chapter 4, the report will present a detailed quantitative example for one possible business 
model of automation, that of a shared mobility service.   

3.2.1 Technology adoption 
Consumer adoption of an innovation, via word-of-mouth and other influencing factors, is a reinforcing 
loop, eventually limited by market saturation.  A technological innovation enables an innovative service 
to be launched. For example, in the case of transportation network companies, the enabling innovations 
included GPS and wide availability of smart phones.  Early adopters try the service, like it, and tell their 
friends.  Many of their friends then try the service, like it, and tell their friends, and so on (Figure 3-4). 



 

System Dynamics for Automated Vehicle Impact Assessment | 18 

 

Figure 3-4  CLD for social network effects on product adoption 

(Source: Volpe) 

One published example of the reinforcing effects of technology adoption comes from (Struben and 
Sterman 2008).  They first point to the historical transition, about a century ago, from horses to cars, 
and from steam/electric to internal combustion engines.  They then develop a model of electric vehicle 
adoption, which considers social exposure and the installed bases of services supporting internal 
combustion engines (e.g., gas stations) as significant influencing factors.     

Note that the loop holds equally well for a service that people try and don’t like, or a decrease in service 
quality perceived by consumers. Utility of the service is lower; fewer people like it; they tell their friends 
that the service is not good, or is less good than it was; and, all else equal, consumer interest decreases.  

It is also worth noting that, in a full model, this reinforcing loop would always be tempered by a 
balancing loop of a declining stock of people who have not yet adopted a service. This leads to the 
familiar S-curve of adoption of a new technology: at first, there are few users, so contacts between users 
and non-users are few and far between. As more people adopt the technology, the exponential growth 
takes off. At some point, however, rate of adoption slows as again there are few contacts between users 
and non-users, not because there are few users, but because few non-users remain. 
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3.2.2 Economically sustainable business models 
A transportation service provider, whether it is trucking company, a transit agency, a taxi company, a 
TNC, or even a bike share provider, needs to have sufficient utilization of their assets so that revenues 
can, in the long term, exceed costs.   

Figure 3-5 shows the fundamental CLD.  The key balancing loop is that an increase in service leads to an 
increase in overall operating cost, which (all else equal) reduces the operating cash flow, making a 
further increase in service unsustainable (absent some external factor, such as a large amount of 
external revenue).  Figure 3-5 is the generalization of Figure 3-3 to modes other than transit.  

 

 

 

Figure 3-5  Business model CLD 

(Source: Volpe)  

The balancing loop in Figure 3-5, labeled “Cash flow limits service,” runs from amount of service, which 
increases operating cost. Increase operating cost reduces operating cash flow.  After some lag, if 
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operating cash flow is reduced, then the amount of service must be adjusted downwards, to reduce 
costs.   

Of course, there is also a reinforcing loop in Figure 3-5: greater service increases mode choice and 
ridership, thus increasing revenue and allowing, all else equal, greater service provision. This loops is 
labeled “More service, more riders, more fares.” This figure thus shows in a microcosm how SD can 
highlight tipping points between scenario spaces. The results of competition between balancing and 
reinforcing loops in a model (known as loop dominance in SD analysis) often depend on the precise 
values of the parameters. In this case, for example, what is the ideal level of service which maximizes 
ridership? What is the ideal fare to maximize cash flow and thus continued ability to provide a good 
service?  

3.2.3 Competition among modes 
Automation is not being introduced in a vacuum.  Automated driving systems and shared ADS services 
will be competing with existing modes, including human driven vehicles, public transit, existing taxi / 
TNC services and non-motorized modes.  Mode choice models, described in (NCHRP 2012) and 
elsewhere, have been part of transportation planning practice for many years. Attributes of the choice 
typically include: 

 Out-of-pocket cost 
 Wait and access (walk) time 
 In-vehicle time 
 Comfort (Am I seated? Do I feel safe?) 
 Characteristics of the traveler (e.g., income, automobile access) 
 Traveler’s value of time (VOT) 

The deterministic component of the utility of a mode, V(mode), is the appropriately weighted sum of 
these attributes.  Figure 3-6 illustrates mode choices in the language of causal links.  It includes the 
multinomial logit equations.   
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Figure 3-6 Mode choice as a causal model 

(Source: Volpe) 

The factors influencing the share of a particular mode include 

• The utility of that mode, as experienced by the consumer.  Higher utility leads to an increase in 
mode share. 

• The combined utility of all the modes, including competing modes.  Here, a higher utility for 
competing modes leads to a decrease in mode share for the mode of interest.   

Note that, strictly speaking, Figure 3-6 is not a CLD as it does not contain any feedback loops. Once the 
mode competition building block is assembled with other building blocks of the transportation system, 
the causal links in this figure will slot into loops. For example, a loop can link the utility of a service in 
Figure 3-6 to the mode choice for that service (reinforcing loop in Figure 3-5),  to the financial 
sustainability of offering a good service for that mode (balancing loop in Figure 3-5), to the attributes of 
mode choice, described in this sub-section. 

3.2.4 Scale effects (more use leads to better service) 
These are the reinforcing effects of services and users, where greater usage of a service justifies adding 
more service and/or higher quality service.  In the long term, it may lead to more justification for 
infrastructure that supports the service.   

In fixed route transit service, higher ridership may justify more frequent service, with shorter wait times.  
For a shared mobility service, higher usage may enable a higher density of vehicles, thus leading to 
lower empty repositioning times and wait times.   
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Figure 3-7  CLD for scale effects  

(Source: Volpe) 

Figure 3-7 has four reinforcing loops.  The first two apply to shared mobility services.  The last two would 
also apply to privately owned automated vehicles: 

R1, More usage enables more service.  With an increased number of trips with the new mobility service, 
operating cash flow increases.  This enables more vehicles to be in service.  With more vehicles in 
service, vehicle density increases, leading a shorter empty repositioning distances and times. (In fixed-
route transit, more vehicles may lead to reduced headways or new routes closer to the traveler, a 
similar effect).  With the shorter empty repositioning times, wait and access time is reduced, thus 
increasing the car service utility for the traveler.  The increased car service utility leads to more trips 
with the new mobility service, thus closing the loop. 

R2, More vehicles in service enhances fleet operator capabilities.  With more vehicles in service, the 
fleet operator has more of an opportunity to learn how to run a more efficient service.  This will increase 
fleet operator capabilities (e.g., for matching vehicles and trips), thus leading to a further reduction in 
wait and access times.   

R3, More vehicles in service leads to more suitable vehicles.    With more vehicles in service, the vehicle 
makers have an incentive to provide vehicles that are more suited to the service (for example, more 
automated vehicles that can serve the operational design domain required, or more vehicles that are 
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accessible to allow persons with disabilities to use the system more easily).  It will take time to develop 
and commercialize better vehicles, so there is a delay mark on this loop. Increased vehicle capability 
(e.g., better accessibility and traveler amenities) may further increase the utility of the service.  

R4, More usage leads to improved infrastructure.  With a high number of trips and users invested in the 
service, infrastructure owner-operators will take notice, especially if a large number of users start 
demanding improved infrastructure.  This could take the form of dedicated curb space for pick-up/drop-
off or even dedicated lanes.  It usually takes time to change infrastructure, so there is a delay mark on 
this loop.     

3.2.5 Congestion 
Congestion leads to several balancing loops (Figure 3-8): 

• B1: More people, less space. More use of a shared journey service decreases comfort (e.g., 
standees on a bus). 

• B2: More people, longer wait. More use of a shared vehicle service increases vehicle utilization, 
which increases wait time for an available vehicle. 

• B3: More traffic, slower trip. For vehicles sharing a road, more traffic increases travel time. 
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Figure 3-8  CLD for Congestion 

(Source: Volpe) 

3.2.6 Land use 
The last sub-section of this chapter consists of two balancing loops that represent important 
relationships between travel utility and households’ decisions of residential location. 

Figure 3-9 shows the causal relationships affecting the desirability of living in an area X, where X might 
be urban, suburban, rural, or a regional center (a city, that is not the principal city, located in a major 
metropolitan area).  The boxes at the right in the figure represent both the population and housing 
stock4 in the region, items that will change over time. Note that both automation and telework 
frequency may reduce the disutility of the commute: travelers may value time spent traveling less if ADS 
enables them to be more productive during that time, and telework frequency reduces the disutility by 
reducing the time spent commuting.  The disutility of commuting is affected by telework frequency, 
automation, travel time and out of pocket cost.  The utility of living in a region is affected by the 
commute, housing space, school quality and housing cost.  Housing cost is affected by taxes, the 

 

4 “Stock” is a concept in system dynamics, explained later in section 4.1.1 of this report.  
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rent/mortgage and parking cost at home (the latter most notable in urban areas).  There is a balancing 
loop between the population and housing in a region: all else equal, more population/demand for a 
fixed supply of housing leads to higher housing prices, reducing the utility of living in the region.  There 
is another balancing loop between development and housing price.  If more housing is built than is 
demanded, the housing price might go down, making development less attractive.   

 

Figure 3-9 Relationships affecting the desirability of living in area X 

(Source: Volpe (Shaw and Smith 2022)) 

3.3 Modeling Exercises, Presentations, and Interim Deliverables 
This section sets the work outlined in sub-section 3.2 in the context of the Volpe Center team’s work, 
both in this project and in earlier phases of the program, with collaborators and researchers from other 
offices and projects. It explains how that collaboration enriched this project’s deliverables.   

3.3.1 Zephyr webinar (May 2020)  
After the 2020 TRB Innovations in Travel Modeling (ITM) conference was cancelled due to COVID-19, the 
Zephyr Foundation invited the project team to present a webinar, in lieu of the team’s accepted 
presentation at ITM.   

In response to this invitation, on May 27, 2020, a Volpe Center team (Hannah Rakoff, Ian Berg, Jingsi 
Shaw and Scott Smith) and Jeremy Raw of the FHWA Office of Planning presented a 90-minute 
interactive webinar on using system dynamics for transportation planning.  

This webinar kicked off the Zephyr Foundation’s spring 2020 series of webinars covering highlights of 
what would have been presented at the ITM conference. Volpe began with brief presentations on 
strategic transportation planning and the basics of system dynamics. The team then facilitated an 
interactive online group model building exercise in using system dynamics to consider the relationship 
between the COVID-19 pandemic and traffic fatality rates.   
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The nearly 90 attendees were a diverse and engaged group.  Most (80%) were from the U.S., but others 
came from Canada, Europe, Japan, Australia, and other places around the world.  The largest 
professional affiliations represented were state, MPO and local government in the U.S. (30%), private 
companies (30%), and academia (27%).   

The session recording and slides are available on the Zephyr website:  
https://zephyrtransport.org/events/2020-05-27-learning-system-dynamics/  

3.3.2 Europe – U.S. GMB exercise (February 2021) 
The Volpe Center team has built collaborations with European research partners beginning in 2015. 
These partners research automation impacts, user response, and SD applications in transportation at 
several European research institutes and universities and Volpe has had a number of joint publications 
with them over the years.  They include: 

• Smith, S., Innamaa, S., Barnard, Y., Gellerman, H., Horiguchi, R., & Rakoff, H. (2017, July 19). Where will 
Automated Vehicles take us? A Framework for Impact Assessment [Poster]. Automated Vehicles Symposium, 
San Francisco. https://higherlogicdownload.s3.amazonaws.com/AUVSI/14c12c18-fde1-4c1d-8548-
035ad166c766/UploadedImages/2017/PDFs/Proceedings/Posters/Wednesday_Poster%202.pdf 

• Innamaa, S., & Kuisma, S. (2018). Key performance indicators for assessing the impacts of automation in road 
transportation: Results of the Trilateral key performance indicator survey. 
https://www.vtt.fi/inf/julkaisut/muut/2018/VTT-R-01054-18.pdf  

• Rakoff, H. E., Smith, S., Innamaa, S., Barnard, Y., Harrison, G., & Shaw, J. (2020). Building feedback into 
modelling impacts of automated vehicles: Developing a consensus model and quantitative tool. Prepared for 
Transport Research Arena conference April 2020 (cancelled), Helsinki, Finland. 
https://rosap.ntl.bts.gov/view/dot/48969  

Given the interest in how driving automation will impact the livability of cities, members of the Volpe 
project team, along with these European partners, organized a group model building exercise that 
brought several U.S. and European cities and regions into the same virtual room. Volpe and its European 
partners published the resulting model and analysis in (Harrison et al. 2022).  The focus of the workshop 
was deliberately broad, looking at the potential effects of automation from the perspectives of a variety 
of city planners, rather than just professionals who work with emerging technology.   Quality of life was 
an important concern for this group, with specific technologies, such as ADS, only being of interest if 
they can support the goal of improved quality of life.  The causal loop diagram that came out of this 
workshop was complex and included: 

• Outcomes including sustainability, public health, community cohesion, and economic vitality  
• Competition for road space among various modes 
• How the use of public space affects livability in a city 
• Equity effects 
• City revenues   

The group model building workshop broadened the perspective of Volpe’s work assessing impacts of 
automated driving systems, by working with city and regional planning practitioners who are primarily 

https://zephyrtransport.org/events/2020-05-27-learning-system-dynamics/
https://higherlogicdownload.s3.amazonaws.com/AUVSI/14c12c18-fde1-4c1d-8548-035ad166c766/UploadedImages/2017/PDFs/Proceedings/Posters/Wednesday_Poster%202.pdf
https://higherlogicdownload.s3.amazonaws.com/AUVSI/14c12c18-fde1-4c1d-8548-035ad166c766/UploadedImages/2017/PDFs/Proceedings/Posters/Wednesday_Poster%202.pdf
https://www.vtt.fi/inf/julkaisut/muut/2018/VTT-R-01054-18.pdf
https://rosap.ntl.bts.gov/view/dot/48969
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focused on how to improve life in their city via goals such as sustainability, health, community cohesion, 
and economic vitality, rather than evaluating impacts from the perspective of a particular technology. 

3.3.3 Industry Studies and SCAG – teleworking and its impacts on land use (2021-
2022) 

Existing studies often use proxy modes, such as app-based ride-hailing and bike-sharing systems (Berg et 
al. 2020), to shed light on the impacts of ADS on the demand and supply of mobility service. The 
potential impacts include induced trip demand, curbside congestion, equity, system sizing and other 
questions of local or operational importance. However, they are less useful for understanding 
automation’s long-term consequences on land use. The large-scale adoption of teleworking in 2020 as a 
response to the COVID-19 pandemic can serve as a living lab for researchers to better understand the 
implications of ADS on urban form and employment. The research team identified similarities between 
how ADS and teleworking could influence households’ travel decisions and residential location choices, 
and presented the work at two occasions: the Industry Studies Association (ISA) Annual conference in 
June 2021 and a meeting of the Southern California Association of Governments (SCAG) modeling task 
force in January 2022 (Shaw and Smith 2022).  

At the ISA annual conference, Hannah Rakoff and Jingsi Shaw presented initial causal loops 
demonstrating similarities between teleworking and future automated vehicle adoption, as both could 
lead to less disutility associated with commuting for workers. In addition, Rakoff and Shaw sketched out 
the potential impacts of teleworking, together with ADS, on the benefits of working in an office setting, 
spatial clustering of innovation, and urban vitality.  

The presentation at the SCAG meeting showed how qualitative system dynamics modeling offers a way 
to capture the multifaced impacts of disruptive changes, such as teleworking, on transportation and 
land use. One CLD example illustrates the basic agglomeration effect driven by reinforcing loops 
between employment and urban amenities (e.g., restaurants) that rely on a high daytime population 
density. The example further demonstrates how teleworking and traffic congestion play a role in 
forming several balancing loops, which limit the agglomeration effect and could have negative impacts 
on economic development in the urban core. Another example shows how teleworking could lead to 
more households considering moving to less dense areas – population decentralization. This trend could 
have important implications on land use planning in different types of regions and for how (and 
whether) mobility services serve suburbs and rural areas, a question that has important links to the 
business sustainability of ADS for shared mobility services in suburban and rural areas. The study shows 
that an SD model can provide value to modelers by developing shared mental models and a common 
language for all stakeholders, facilitating modeling and policymaking, and identifying new directions to 
explore.     

The presentation slides for SCAG meeting can be found at: 
https://scag.ca.gov/modeling-task-force 
 

https://scag.ca.gov/modeling-task-force
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3.4 Summary 
In addition to the three exercises summarized above, the project team worked with several state and 
local planning organizations, work summarized in (Berg et al. 2020).  These efforts showed the value of 
group model building.  GMB in the transportation domain speaks a language accessible to both planners 
and modelers, helping to bridge that gap.  The CLDs can be used to develop common mental models of a 
system, to help surface any miscommunications and to sustain interagency collaborations over a period 
of months or years.  Developing CLDs requires participants to think about the elements of the system, 
and how they affect each other, thus leading to greater clarity on possible leverage points.  

CLDs developed by the core SD modeling team may also provide a useful outreach tool.  GMB is also a 
helpful way to structure engagement with a larger group, as the Zephyr webinar demonstrated.   

The engagement with a variety of stakeholders also reveals insights about attitudes towards ADS, and its 
possible effect on communities.  With the city and regional planners in the joint U.S.-Europe workshop, 
in particular, ADS was viewed as a means to an end, only desirable if it can serve the goal of improved 
urban livability.   

Unlike traffic microsimulation or static planning models, which have a long history and are limited to a 
few domain areas, system dynamics is a much more general methodology.  This has the advantage of 
potentially revealing new insights, important when a new mode with potentially transformative effects 
is introduced.  For example, SD can easily encompass safety, access to destinations and feelings of social 
inclusion or exclusion, all in one model (Harrison et al. 2022). To help develop a new SD model, it’s 
useful to keep in mind that certain archetypal behaviors, such as those shown in section 3.2, often apply 
across modes and even across disciplines. An essential first step is to work with stakeholders to define 
the problem, via a qualitative model building exercise.  Once there is a common understanding of the 
problem, it becomes possible to build, calibrate and use a quantitative model, which is the topic of the 
next chapter.   
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4 Quantitative Modeling 
4.1 Introduction to Quantitative SD Modeling 
Quantitative SD is a modeling and simulation approach that is well suited for complex systems that 
evolve over time.  It applies ideas from control systems theory to complex technological, social, and 
economic problems. Key elements 5 include 

• Causality:  What are the causes and effects in the system? For example, as travel becomes less 
expensive, people travel more.  

• Feedback: How do the effects become causes in their own right, sometimes linking back to their 
own causes? For example, as people travel more, all else equal, the cost of travel also changes, 
in this instance becoming more expensive as demand rises. 

• Structure of a system:  How do these causes and effects influence the system’s behavior? It is a 
key tenet of SD that a system’s structure determines its behavior – if one wants to effect 
change, one must address system structure, such as by changing incentives, rather than insist on 
the people in the system acting differently within an unchanged system. 

• Levels and rates (also known as stocks and flows):  What are the attributes of the system that 
change over time?  

• Modeling and simulation:  Computer models to show outcomes, often for many scenarios 
• Policy design:  using the understanding gained to make better decisions 

There are many possible business models for ADS.  In this chapter, SD is used to address one form of 
ADS commercialization, that of a shared automated car service. We build a quantitative SD model of the 
interaction of service provision with demand for that service. The model builds upon concepts of supply 
and demand with the building blocks presented in section 3.2 to represent the structure of the system 
and answer the question of how such a system is likely to perform in the various scenarios of travel 
demand (trip density) that may arise in urban, suburban and rural contexts. 

4.1.1 Stocks and flows 
In addition to the causal relationships discussed in chapter 3 of this report, an important concept 
needed to create quantitative models is that of stocks and flows (Figure 4-1).  A stock is an accumulation 
of something.  It might be cash on hand, the size of a vehicle fleet, or a stock of information.  A stock 
does not change instantaneously but rather via its flows.  A flow is what goes into or out of a stock, with 
an accompanying rate.  In the figure, income represents flow in, and expense represents flow out. 
Stocks and flows provide a way to rigorously model the key attributes over the system that change over 
time.   

 

5 https://systemdynamics.org/what-is-system-dynamics/ 
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Figure 4-1 Stocks and flows 

(Source: Volpe)  

Table 4-1 shows some examples of stocks and flows.  

Table 4-1 Examples of stocks and flows 

Stock Flows increasing the stock Flows reducing the stock 

Cash on hand • Receiving income 
• Selling assets 
• Borrowing 

• Paying expenses 
• Buying assets 
• Repaying loans 

Population in a region • Births 
• Immigration 

• Deaths 
• Emigration 

Vehicles of a certain type 
owned by consumers 

• Rate of initial sales of vehicles 
by dealer to consumers 

• Vehicles wearing out 

Persons familiar with 
automated driving systems 

• Persons becoming familiar via 
experience with ADS trips or 
marketing 

• Persons forgetting 
• Persons departing (death, 

out-migration) 

Auto-maker technical 
knowledge 

• Gaining experience from 
manufacturing, sales, and 
vehicle maintenance (learning 
by doing) 

• Gaining experience via 
investment to increase 
technical knowledge via staff 
recruitment or otherwise 

• Knowledge loss through 
staff departures 

• Knowledge becoming 
obsolete 

 

4.2 Review of Relevant Literature on SD for Transportation 
Modeling   

This project’s work draws on elements of work from a number of other researchers published over the 
past 30 years. 
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(Abbas and Bell 1994) reviewed the strengths and weaknesses of SD with respect to transportation 
modeling. They found that SD models are more useful for improved understanding and policy analysis, 
rather than for point predictions.  SD, unlike static approaches, has the advantage of directly addressing 
the dynamic behavior of systems.  They conclude that, “The SD methodology can offer a lot in terms of 
better planning and solving transport related problems. SD should not be thought of as a methodology 
to replace or substitute for the traditional transport modeling approaches. Rather it should complement 
and be integrated with the existing approaches, to contribute, in a collective manner, to solving 
transport problems.” 

(Shepherd 2014) reviewed some 50 peer-reviewed papers published since 1994, finding that fields of 
application include take-up of alternate fuel vehicles, supply change management affecting transport, 
highway maintenance, airport infrastructure, airline business cycles, and several emerging application 
areas.  

(Struben and Sterman 2008) modeled the transition to alternative fueled vehicles, focusing on the social 
exposure dynamics that influence adoption.  Components of their model include consumers, the 
automotive industry, automotive services (e.g., repair), energy production/distribution, and other fields 
relevant to energy development.  Important stocks in their model included installed base of vehicles, 
driver familiarity, and auto-maker production experience.  Although this paper is obviously applicable to 
electric vehicle (EV) adoption, it is also relevant for automated vehicles, as it models industry learning, 
consumer learning, and vehicle fleet transitions.   

(Naumov, Keith, and Sterman 2022) looked at policies to accelerate the replacement of internal 
combustion engine (ICE) vehicles with EVs, via a cash-for-clunkers (C4C) program.  They concluded that 
simply promoting sales of EVs will not be enough to meet 2050 climate goals.  Incentives (such as C4C) 
will lead to a greater emissions reduction.   Major elements of their SD model included the vehicle fleet, 
total fleet emissions per mile, and market formation (social exposure, learning-by-doing, research & 
development, and marketing) for EVs.  

(Pfaffenbichler, Emberger, and Shepherd 2010) and (Pfaffenbichler 2011) reported on their 
development of the integrated transportation and land use model MARS.  Components of MARS include 

1. Scenario input 
2. Policy input 
3. Transport model, with commuting and other trips 
4. Land use model, with housing and workplace development and relocation submodels 
5. Fleet composition and emission module 
6. Evaluation and assessment module 
7. Output representation modules 

After initial calibration in Vienna, the MARS model was tested in Leeds, UK and several other cities 
around the world.  
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In a conference paper, (Gühnemann et al. 2018) reported testing of several automated vehicle scenarios 
in the MARS model.  Two scenarios integrated AVs with public transport, while the privately owned AV 
scenario leads to an increase in car mileage traveled.   

(Nieuwenhuijsen et al. 2018) simulated the diffusion of AVs in the Netherlands, finding that market 
penetration would vary greatly depending on assumed scenario and policies.  Components of their 
model for various levels of automation included technology maturity, vehicle purchase price, perceived 
utility by the end consumer, fleet size/adoption, and the interaction between car-ownership and car 
sharing.  

Building on the model from (Nieuwenhuijsen et al. 2018),  (Harrison, Shepherd, and Chen 2021) looked 
at uptake sensitivities for connected and automated vehicles.  Attributes of their scenarios include 
Internet of Things Quality (the quality of connectivity, which influences comfort and safety), utility 
(comfort, safety, and acceptance of new technologies), safety value (weighting of safety versus 
comfort), and car-sharing.   They concluded that although car-sharing and safety value had little impact, 
the utility had a great effect on uptake.  Poor quality Internet of Things connectivity could inhibit market 
uptake. 

4.3 Car Service Model   
The Volpe team developed a car service model which can apply to any shared fleet, e.g., taxi, 
transportation network company (TNC), and bike share.  It balances the needs of the business (to make 
money via sufficient vehicle utilization in revenue service) and the user (affordable service with 
acceptable delay).  Figure 4-2 shows a simplified causal loop diagram. As before, the blue links (marked 
with plus signs) are positive effects, and the red links (with minus signs) are negative effects.  Fare is 
treated as exogenous.  There are three feedback loops: 

• B1: Net revenue limits service.  For the business to be sustainable, the amount of service 
provided needs to be consistent with the net revenue (revenue minus cost).  Providing more 
service increases the cost.  If net revenue becomes negative, then the business is not 
sustainable.  This loop corresponds to the balancing loop in Figure 3-3. 

• B2: Tradeoffs between vehicle utilization and service utility. For riders to use the service, the 
vehicle utilization needs to be consistent with ridership.  If there are too many riders for the 
service provided, the utility of the service decreases (via crowding or long wait times), thus 
leading to reduced ridership. 

• R: Better service, more riders, more revenue, more service.  There is a reinforcing loop around 
the outside of the balancing loops, via which more ridership leads to more revenue, enabling 
more service, increasing the utility of the service, leading to more ridership.  The negative side 
of this loop is the transit death spiral, with less ridership leading to less revenue, leading to less 
service, with lower utility.  This loop corresponds to the reinforcing loop in Figure 3-3. 
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Figure 4-2  Car service model: high level structure  

(Source: Volpe) 

Figure 4-3 shows the full model.  Exogenous input parameters are those with no inputs themselves; they 
are shown in green in the next several figures for convenience. The other variables are calculated. 
Appendix 2 contains the text representation (Vensim “mdl” file) of this model.   
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Figure 4-3  Car service model:  full model view  

(Source: Volpe) 

The two balancing and one reinforcing loops depicted in the high level model structure (Figure 4-2) are 
also labeled on this figure. They are: 

• B1: Net revenue limits service.  All else equal, a higher number of vehicles decreases the 
trips/vehicle-month, which also decreases vehicle utilization, decreases the average wait time 
for a vehicle to become empty and available, and decreases average total wait time for the 
traveler. This in turn increases mobility service utility, which increases mobility service mode 
share, increases indicated trips, and increases the trips gap – the gap between indicated trips 
which are feasible with the number of vehicles in service, and actual trips satisfied by the 
mobility service. A higher trips gap leads to a greater net increase in trips, the flow to the stock 
of trips satisfied by the mobility service. In turn, this increases monthly cash outflow, which 
decreases net monthly income, and then decreases the service provider’s desired additional 
vehicles. That decreases their reception rate in, which is the inflow to the stock of number of 
vehicles. For a given junk rate (outflow from the number of vehicles), a decrease in the inflow 
will lead to a decrease in the number of vehicles. 

• B2: Tradeoffs between vehicle utilization and service utility. All else equal, the more trips that 
are satisfied by the mobility service, the higher the trips/vehicle-month and vehicle utilization 
rises. This increases the average wait time for a vehicle to become empty and available, and 
increases average total wait time for the traveler. This in turn decreases mobility service utility, 
which decreases mobility service mode share, decreases indicated trips, and decreases the trips 
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gap. This reduces the change in trips – the net flow to the stock of trips satisfied by mobility 
service – so that stock’s value decreases. 

• R: Better service, more riders, more revenue, more service.  Finally, all else equal, a higher 
number of vehicles increases vehicle density, which decreases the average distance to the 
nearest empty and available vehicle and in turn decreases average empty-vehicle repositioning 
time. This then leads to a decrease in average total wait time for the traveler, which means and 
increase in mobility service utility. That leads to an increase in mobility service mode share, 
more indicated trips, a higher trips gap, a greater net inflow to the stock of trips satisfied by the 
mobility service, a higher value for that stock (i.e., more trips), a greater monthly cash inflow, 
higher net monthly income, more desired additional vehicles on the part of the service provider, 
and a greater inflow to the stock of number of vehicles, leading to more vehicles.  
 

The model has three major sections:   

• Business model of providing the service 
• The service as seen by riders 
• Rider response 

The business model of providing the service is depicted in the top of the stock-flow diagram (Figure 4-3, 
with close-up view in Figure 4-4).  The stock, and key output, of this part of the model is Number of 
Vehicles.  If the net monthly income is positive, and the vehicle utilization is higher than the target 
utilization, then the service provider increases the number of vehicles.  If these conditions do not hold, 
then the number of vehicles declines as vehicles wear out (Junk Rate).   The number of vehicles 
influences both vehicle density and vehicle utilization, both important causal inputs to the service as 
seen by riders.  
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Figure 4-4  Business model section of car service model 

(Source: Volpe) 

The service as seen by riders is show in the lower right part of Figure 4-3,with close-up view in Figure 
4-5.  Important inputs to this part of the model include vehicle utilization and vehicle density. The key 
output of this section of the model is the average total wait time for the traveler, which has two 
components:  the wait for a vehicle to become available, and the amount of time it takes for an empty 
vehicle to travel to the rider. All else equal, the greater the density of vehicles in the system, the less 
time a traveler must wait for a vehicle. On the other hand, the higher the utilization of those vehicles, 
the longer the traveler must wait. 
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Figure 4-5  Service as seen by riders 

(Source: Volpe) 

Finally, rider response is shown in the lower left part of the diagram (Figure 4-3,with close-up view in 
Figure 4-6).  There is a three-step process leading to an output of trips satisfied by the mobility service.   

The first step is a simple logit model that calculates the utility of the mobility service (see section 4.3.1.6 
for the equations) and compares it to the utilities of transit and privately owned vehicle (POV).  The 
transit and POV utilities are set when the initial model is calibrated to current conditions.  The mobility 
service mode share is calculated based on these utilities.  The second steps adds induced trips to the 
new mobility service (see section 4.3.1.7 for the equations).  These are trips not being made today, but 
that will be made if a new mode is offered that is sufficiently attractive in terms of price or wait time.  
The mobility service mode share, multiplied by current total trips in the service area, plus induced trips 
(called new trips in the figure), gives the indicated trips on the mobility service.  Finally, since travelers 
won’t switch to or abandon a new mode immediately, the actual trips satisfied by the mobility service, is 
given by a smoothing function that seeks to match indicated trips.   
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Figure 4-6  Rider response section of car service model 

(Source: Volpe)  

Table 4-2 summarizes the inputs to the model.  These are the exogenous items in the above diagrams, 
shown in green and with no inputs themselves.  

Table 4-2  Inputs to the car service model6 

Exogenous inputs Initial Value Units Comment 

Fixed public 
support 

0 $ / month asserted; used for sensitivity testing 

Per rider public 
support 

0 $/ trip asserted; used for sensitivity testing 

 

6 These inputs were developed in 2021.  With the recent (May 2022) rapid rise in fuel and other prices, operating 
costs and fares would be a bit higher today.   
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Exogenous inputs Initial Value Units Comment 

Vehicle operating 
cost (cost per 
minute) 

0.35 or 0.17 $ / minute AAA driving costs. 8  FlexCar pricing 9 

Fixed vehicle cost 400 $ / month AAA driving costs.   FlexCar pricing 
Fare 10 to 12 or 3 to 

4 
$ / trip asserted 

Avg trip distance 5 Mile (mi) Massachusetts TNC data; National 
Household Travel Survey (NHTS) for all 
trips with assumption about TNC trip 
length distribution 

Target utilization 
(rho) 

0.6 dimensionless Asserted.  This is the fraction of time a 
shared vehicle is serving travelers. It 
includes both the time that vehicles are 
repositioning themselves, empty, to 
pick up a traveler, and time with the 
traveler(s) on-board. 

max reception 
rate (acquiring 
vehicles) 

300 vehicle / month asserted 

Initial vehicle 
stock per 1000 
population 

1 vehicle / 1000 
persons 

The overall initial vehicle stock is then 
calculated based on 
- Initial stock per 1000 population (set 
at 1) 
- Population 
For example, a population of 40k would 
lead to an initial vehicle stock of 40.  

vehicle useful life 
(tripwise) 

10000 trips asserted 

Size of service 
area 

varies mi*mi Census or community information 

vehicle speed 20 mi /hour Can assert a plausible value or could be 
an output from a model that considers 
congestion. For now, asserted 

wait time 
coefficient 

-0.05 dimensionless Obtain from travel demand model. For 
now, asserted. 

value of time 5 minutes / $ Corresponds to $12/hour, which is in 
the range of values from literature on 

 

7 The $0.35 per minute includes driver pay.  The $0.10 per minute is the vehicle operating cost (without driver) 
8 For a small sedan, AAA estimated operating cost of $0.1567/mile.  At 3 minutes / mile, this is $0.05 per minute.  
Ownership cost was estimated at $4,880 / year, or about $407 / month.  https://newsroom.aaa.com/wp-
content/uploads/2021/08/2021-YDC-Brochure-Live.pdf .   
9 FlexCar is currently offering short term leases (by the week) for members at $60 / week (~$250 / month) and 
$0.39 / mile (at 3 minutes / mile, this is about $0.13 / minute).  (May 2022) 

https://newsroom.aaa.com/wp-content/uploads/2021/08/2021-YDC-Brochure-Live.pdf
https://newsroom.aaa.com/wp-content/uploads/2021/08/2021-YDC-Brochure-Live.pdf
https://www.flexcar.com/
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Exogenous inputs Initial Value Units Comment 

travel demand models.  The SD model 
uses the inverse (minutes / $). 

Transit utility -1 dimensionless Used to calibrate the model 
POV utility 2 dimensionless Used to calibrate the model 
Maximum 
induced trips 

0.2 Percentage of total 
trips in service area 

From the potential increase in trips by 
transportation disadvantaged 
populations 10 

Utility for zero 
induced trips 

-3 dimensionless Matches the utility of human-driven 
mobility service.   

Trips / person / 
month 

varies trips/(person*month) NHTS; This model uses values between 
90 and 110.  

Population 
density 

varies persons / mi*mi Census 

smoothing factor 
for increasing 
trips 

6 month asserted 

smoothing factor 
for decreasing 
trips 

1 month asserted 

Empty distance 
constant 

0 mi Asserted (could optionally be used to 
increase empty miles, to account for 
inefficiency in vehicle assignment or 
repositioning)  

Empty distance 
multiplier 

1 dimensionless Asserted (could optionally be used to 
increase empty miles, to account for 
inefficiency in vehicle assignment or 
repositioning) 

 

Outputs are listed in Table 4-3.   

Table 4-3  Car service model outputs 

OUTPUT Units 
Fleet size for shared service vehicles 
Wait time for the traveler minutes 
Net monthly income to the service operator $ / month 
mode share  dimensionless 

 

10 (Stephens et al. 2016) suggest a potential 20-percent increase in overall travel resulting from increased travel by 
the transportation-disadvantaged.  (Harper et al. 2016) reviewed data from the 2009 National Household Travel 
Survey, comparing overall travel with the amount of travel by the elderly, non-motorists, and those with travel-
restrictive conditions. If ADS enables the amount of travel by these populations to increase to the amount of travel 
(VMT) observed in the remainder of the population, overall annual light-duty VMT would increase by 14 percent. 
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OUTPUT Units 
trips per month using the service trips / month 
Mobility service VMT miles / month 
POV VMT miles / month 
Transit trips trips / month 

 

4.3.1 Important relationships in the model 
The model includes a number of important relationships:  

• net monthly income of the mobility service provider, based on revenue and costs 
• desired additional vehicles, based on demand and monthly income of service provider 
• vehicle utilization as fraction of trips made over trips possible during service availability time 
• average distance to the nearest vehicle that is empty and available 
• average total wait time for traveler, based on queuing theory 
• mobility service mode share and utility, and 
• and induced trips, based on utility of the new service. 

4.3.1.1 Net Monthly Income 

Determines if the car service can expand, and is equal to 

Net Monthly Income = Monthly cash inflow – Monthly cash outflow, where 

Monthly cash inflow = (Fare x Trips) + External Funding, and 

Monthly cash outflow = (Fixed Cost x Vehicles) + (Variable Cost x Trips) 

Variable Cost = Cost per minute x (Loaded trip time + Empty vehicle repositioning time) 

4.3.1.2 Desired Additional Vehicles 

Drives expansion of the car service and seeks to match vehicle utilization to target utilization.  Note that 
unless new vehicles are acquired, the car service will shrink, due to the vehicle junk rate.   

𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑙𝑙 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≤ 0,𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0, otherwise 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 (max (0,𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 −
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)). 

For example, if the system now has 100 vehicles, target utilization = 0.6, and vehicle utilization = 0.8, 
then Desired Additional Vehicles = 20 = 100 x (0.8-0.6) 
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4.3.1.3 Vehicle Utilization 

𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ

𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

where 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ =  
10 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑𝑑𝑑
 𝑥𝑥 30 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ
 𝑥𝑥 60𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

ℎ𝑜𝑜𝑜𝑜𝑜𝑜

1 +𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+ 𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

The denominator is the minutes consumed by each trip, where the “1” is a constant to allow for 
dispatch time.  It is assumed that each vehicle operates 10 hours / day.   

4.3.1.4 Avg. distance to nearest empty/available vehicle 

In a situation where vehicles are randomly and evenly distributed over a region, the expected distance 
to the nearest empty vehicle is proportional to a constant divided by the square root of the number of 
vehicles.  This is 0.5 / Square root of n (straight line distance), or approximately 0.625 / Square root of n 
(right angle distance) where n is the number of empty vehicles per square mile (Larson and Odoni 1981, 
p. 151).  However, in reality, the distance traveled will usually be larger, for two reasons: (1) road 
circuity (actual on-road distance is larger than the straight-line or even right-angle distance) and (2) 
imbalance of trips.  For example, early in the morning, there are typically far more trips to an airport 
than from the airport, leading to empty distances almost as great as the loaded distances, as vehicles 
return from the airport to pick up additional passengers. Therefore, Volpe developed two parameters 
are used to adjust the average empty distance: 

EmptyDistanceConstant – a constant added to all empty movements 

EmptyDistanceMultiplier – a multiplier applied to empty movements, to account for inefficiency. If the 
empty movements matched the theoretical value, this multiplier would be 0.5 for straight line 
movements, and 0.625 for right angle movements. 

The equation for Avg. distance to nearest empty/available vehicle is  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ((1− 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) ∗ 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

4.3.1.5 Avg. total wait time for traveler 

This has two components, the Avg. wait time for a vehicle to become empty/available, and the Avg. 
empty-vehicle positioning time 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, where 

 the wait for the empty vehicle is proportional to:  1
1−𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

   (a fundamental result from 

queuing theory).  
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In the model, to avoid divide-by-zero issues,  

  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 2
max (𝑎𝑎𝑎𝑎𝑎𝑎(1−𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈),0.01)

 

The empty vehicle repositioning time is proportional to the average distance to the nearest empty 
vehicle (see 4.3.1.4). 

4.3.1.6 Mobility service mode share and utility 

Mode share comes from a simple logit equation, where V(x) is the deterministic component of the utility 
of x: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =  
exp (𝑉𝑉(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠))

exp (𝑉𝑉(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)) + exp (𝑉𝑉(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡)) + exp (𝑉𝑉(𝑃𝑃𝑃𝑃𝑃𝑃)) 

The utility of the mobility service is as follows.   

𝑉𝑉(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) =  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑥𝑥 (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

In the model, WaitTimeCoefficient  = -0.05 and invValueOfTime = 5 minutes / $.  For a human-driven 
service, values of the utility typically range from -2 to -4.   

In travel demand modeling, the utility of a traveler using a mode combines the factors that may make 
use of the mode desirable or undesirable:  fare, in-vehicle travel time, wait time, out-of-vehicle travel 
time, reliability, and intangible factors such as perceived safety and comfort.  By itself, the numerical 
value of utility means very little, except that lower (more negative) values mean that use of a mode is 
less desirable.  It is the difference between utility values for the different modes that is important and is 
used to calculate the mode share values.   

In model calibration, V(transit) and V(POV) are adjusted so that transit and mobility service mode shares 
match observed conditions.   

4.3.1.7 Induced trips 

If the automated mobility service has a lower fare than the taxi/TNC that preceded it, then, all else 
equal, there will be some induced trips.  These are represented via a linear relationship with respect to 
the mobility service utility (Figure 4-7) 

The induced trips fraction is governed by two parameters: 

• Maximum induced trip fraction =fraction of total trips that would be induced with a perfect 
mobility service (free service with zero wait time, leading to a utility of 0).  In our model, 0.2 is 
used, based on the (Stephens et al. 2016) suggestion of a potential 20-percent increase in 
overall travel resulting from increased travel by the transportation-disadvantaged. Additionally, 
(Harper et al. 2016) reviewed data from the 2009 National Household Travel Survey, comparing 
overall travel with the amount of travel by the elderly, non-motorists, and those with travel-
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restrictive conditions. If ADS-equipped vehicles enable the amount of travel by these 
populations to increase to the amount of travel (VMT) observed in the remainder of the 
population, overall annual light-duty VMT could increase by 14 percent. 
 

• Utility for zero induced trips = the baseline (human-driven) mobility service utility, which is a 
function of fare and wait time.   Table 4-4 shows some examples of the utility and induced trips 
calculation, assuming that the human driven baseline service has a fare of $10 and a wait time 
of 10 minutes, resulting in a utility of -3.   

The utility calculation comes from section 4.3.1.6 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = −0.05 𝑥𝑥 (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+ 5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

$  𝑥𝑥 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

Induced trip fraction is calculated as  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈− 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
  

Table 4-4  Utility and induced trip fraction examples 

Fare 
($) 

Wait time 
(minutes) 

Calculated 
Utility 

Calculated Induced 
trip fraction 

Comment 

0 0 0 0.2 Theoretical perfect 
service (0 fare, 0 wait) 

0 5 -0.25 0.183333  
0 10 -0.5 0.166667  
3 0 -0.75 0.15  
3 5 -1 0.133333  
3 10 -1.25 0.116667  

10 0 -2.5 0.033333  
10 5 -2.75 0.016667  
10 10 -3 0 Baseline utility for zero 

induced trips 
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Figure 4-7  Induced trip fraction, assuming a human driven mobility service utility of -3  

(Source: Volpe) 

4.3.2 Potential sensitivity tests 
The model described above is a strategic model: it is an aggregate model that runs in less than one 
second.  It is designed to quickly assess the viability of a shared mobility service from the standpoints of 
both the service provider and the traveler.  Such a fast model lends itself to sensitivity and scenario 
analysis.  Potential sensitivity tests include:   

• The effect of public support.  A local, state or national government might conclude that 
providing a mobility service is in the public interest, and may choose to provide either a monthly 
stipend, or a fixed amount of public support per person-trip, similar to what is done with transit 
today. 

• Changes in vehicle fixed and operating costs.  Vehicle costs are modeled as a fixed cost per 
month, plus an operating cost per minute that the vehicle is running loaded or empty.  
Automation can reduce the cost of driver labor to reduce the vehicle operating cost.   

• Changes in fare, since automation may allow a lower fare.   
• Type of region (urban/suburban/rural).  This affects several parameters: 

o Trip distance 
o Population density 
o Size of service area 
o Vehicle speed 
o Trips / person / month 
o Transit utility (and mode share) 

• Value of time, which affects the sensitivity to fare changes. 
• Induced trips.  If a low-cost mobility service is introduced, how many new trips will it attract? 
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• Empty travel per trip.  There is a simple mathematical relationship that relates density of 
available vehicles to the average distance to the nearest vehicle.  However, a real service may 
not be able to achieve the theoretical minimum in empty vehicle miles, due to imbalance of 
trips (e.g., trips to the airport vs. from the airport in early morning), or other inefficiencies.   

The next few sections explore a few of these factors:   

• Type of region 
• Operating cost and fare for human-driven versus automated 
• Value of time 
• Whether induced trips are allowed.   

4.4 Applications of the Car Service Model 
Three sets of applications are presented in this section.  First is an application to generic urban, 
suburban, and rural areas.  The second uses TNC data from Chicago.  The third is a sensitivity test for a 
rural mobility service.   

4.4.1 Experiments with three types of regions  
Initial experiments were conducted using a fairly low value of time (5 minutes per dollar, or 12 dollars 
per hour).   In these initial experiments, target utilization was set at 0.5.  

Based on Massachusetts TNC data, Massachusetts employment data for selected communities, and 
NHTS trip-making data, the Volpe team created parameters for three generic types of communities: 
urban, suburban, and rural.  

Table 4-5  Region-specific SD model inputs and calibration targets 

Type of 
community 

Input:  
Pop Density 

(persons / sq mi) 

Input:  
Service area 

(sq M) 

Input:  
Total Trips / 

resident/month 

Target: 
TNC trips / 

month 

Target: 
Transit mode 

share 
City 10000 10 110 600000 0.25 
Suburb 2000 20 90 20000 0.05 
Rural (Exurb) 200 40 90 640 0 

 

The model was calibrated to existing TNC usage, assuming a fare of $10/trip in city and suburb, and 
$14/trip in rural areas.  Vehicle variable operating cost was $0.35 / minute.  With the utility of TNC being 
a function of wait time and fare, calibration was performed by adjusting the utilities for POV and transit 
to yield the transit mode shares in Table 4-5.  In the rural model, the utility of transit was set to be much 
less than zero, to reflect the absence of transit service. This calibration process yielded initial values for 
mobility service trips, as well as average traveler wait times for each scenario. Figure 4-8 illustrates the 
calibration process, and  Table 4-6 shows the initial results. 
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Figure 4-8  Calibration process  

(Source: Volpe)  

 

Table 4-6  Initial calibration results 

 City TNC Suburb TNC Rural TNC  
Monthly trips satisfied by the service 623218 19162 670 
Transit mode share 0.254 0.049 0 
Avg. total wait time (min) 6 8.6 9.6 
Vehicles 1012 37 7.9 
Net income for the service operator ($ / month) 2463320 55300 1207 
Net income per vehicle  ($ / month) 2434 1495 153 
Mobility service mode share 0.057 0.005 0.001 

 

The cost and fare structure was then changed to reflect a Level 5 automated driving service (ADS).  
Variable cost was changed from $0.35 / minute to $0.10 / minute.  Fare was changed from $10 and $14 
for urban/suburban and rural trips to $3 for urban/suburban trips and $4 for rural.   Outcomes absent 
induced trips are shown in Table 4-7.  

Table 4-7  Comparison of ADS and human-driven TNC cases – no induced trips 

 City 
TNC 

City 
ADS 

Suburb 
TNC 

Suburb 
ADS 

Rural 
TNC 

Rural 
ADS 

Fare ($/trip) 10 3 10 3 14 4 
Monthly trips satisfied by the 
service (1000s) 

623 2827 19 117 0.7 8 

New trips (induced travel) 0 0 0 0 0 0 
Transit mode share 0.254 0.20 0.049 0.048 0 0 
Avg. total wait time (min) 6 5.8 8.6 6.9 9.6 9.8 
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 City 
TNC 

City 
ADS 

Suburb 
TNC 

Suburb 
ADS 

Rural 
TNC 

Rural 
ADS 

Vehicles 1012 4482 37 202 7.9 16.5 
Net monthly income ($1000) 2463 2392 55 79 1.2 9.8 
Monthly income per vehicle ($) 2434 534  1495 391 153  596 
Mobility service mode share 0.057 0.257 0.005 0.032 0.001 0.011 

 

When induced trips are allowed, the numbers of ADS trips increase significantly.   

Table 4-8  Comparison and ADS scenarios without and with induced trips  

 City ADS:  
No 

Induced 
Trips 

City 
ADS:  

Induced 
Trips 

Suburb 
ADS: No 
Induced 

Trips 

Suburb 
ADS: 

Induced 
Trips 

Rural 
ADS: No 
Induced 

Trips 

Rural 
ADS: 

Induced 
Trips 

Fare ($) 3 3 3 3 4 4 
Total monthly trips satisfied by the 
service (1000s) 

2827 4233 117 580 8 105 

New trips (induced travel) (1000s) 0 1382 0 459 0 95 
Transit mode share 0.2 0.2 0.048 0.048 0 0 
Avg. total wait time (min) 5.8 5.7 6.9 6.2 9.8 6.9 
Vehicles 4482 6755 202 955 16.5 181 
Net monthly income ($1000) 2392 3578 79 453 9.8 175 
Monthly income per vehicle 534 530 391 474 596 969 
Mobility service mode share 0.257 0.342 0.032 0.143 0.011 0.128 

A low value of time implies that travelers will be comparatively more sensitive to fare changes than to 
reductions in wait or travel time.  As expected, the ADS service (with a fare substantially lower than the 
TNC fare) attracts a large number of riders.  In the urban area, these trips are largely drawn from other 
modes. In the suburban and rural areas, induced trips are more significant.  

4.4.2 Increasing the value of time (VOT) 
The previous experiments used a value of time for waiting of $12 / hour.   Although this is in the range of 
values-of-time reported in (NCHRP 2012)11, the more recent Benefit Cost Analysis Guidance for 
Discretionary Grant Program (Office of the Secretary 2022) suggests that a higher value should be used.  
Accordingly, in the next set of experiments, a value of time for waiting of $30 / hour (2 minutes / dollar), 
was used.  The calibration targets (Table 4-5) were the same. The model was again calibrated to existing 
TNC and transit usage.   

 

11 See table 4.9 in the report, noting that the value of out-of-vehicle time (e.g., wait time) is typically 2 to 3 times as 
high as the value of in-vehicle time.   
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Table 4-9  Initial calibration results – higher VOT 

 City TNC Suburb TNC Rural TNC  
Monthly trips satisfied by the service 615140 19212 654 
Transit mode share 0.26 0.047 0 
Avg. total wait time (min) 6 8.6 18 
Vehicles 1000 37 2 
Net monthly Income ($1000s) 2431 56 2 
Income per vehicle ($ / month) 2431 1500 1007 
Mobility service mode share 0.057 0.005 0.001 

Similar to the previous experiment, the cost and fare structure was then changed to reflect a Level 5 
ADS.  Variable cost was changed from $0.35 / minute to $0.10 / minute.  Fare was changed from $10 
and $14 for urban/suburban and rural trips to $3 for urban/suburban trips and $4 for rural.   Outcomes 
without induced trips are shown in Table 4-7.   The availability of low-cost ADS leads to an increase in 
trip-making, but not nearly as much as that shown in the low VOT case represented in Table 4-7. 

Table 4-10  Comparison of ADS and human-driven TNC cases – higher VOT, no induced trips 

 City 
TNC 

City ADS Suburb 
TNC 

Suburb 
ADS 

Rural 
TNC 

Rural 
ADS 

Fare ($) 10 3 10 3 14 4 
Monthly trips satisfied by the service 
(1000s) 615 1178 19 40 0.7 2.2 

New trips (induced travel) 0 0 0 0 0 0 
Transit mode share 0.26 0.25 0.047 0.048 0 0 
Avg. total wait time (min) 6 5.9 8.6 7.7 18 13 
Vehicles 1000 1899 37 73 2 5.5 
Net monthly income ($1000s) 2431 971 56 22 2 1.8 
Monthly income per vehicle 2431 511 1500 302 1007 321 
Mobility service mode share 0.056 0.107 0.005 0.011 0.001 0.003 

 

When induced trips are allowed, the numbers of ADS trips increase significantly, but not as much as for 
the low VOT case (Table 4-8).  

Table 4-11  Comparison and ADS scenarios without and with induced trips, higher VOT 

 City ADS:  
No 

Induced 
Trips 

City ADS:  
Induced 

Trips 

Suburb 
ADS: No 
Induced 

Trips 

Suburb 
ADS: 

Induced 
Trips 

Rural ADS: 
No 

Induced 
Trips 

Rural ADS: 
Induced 

Trips 

Fare ($) 3 3 3 3 4 4 
Total monthly trips satisfied 
by the service (1000s) 1178 2377 

40 423 
2.3 92 
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 City ADS:  
No 

Induced 
Trips 

City ADS:  
Induced 

Trips 

Suburb 
ADS: No 
Induced 

Trips 

Suburb 
ADS: 

Induced 
Trips 

Rural ADS: 
No 

Induced 
Trips 

Rural ADS: 
Induced 

Trips 

New trips (induced travel) 
(1000s) 0 1195 0 380 0 89 
Transit mode share 0.25 0.25 0.048 0.048 0 0 
Avg. total wait time (min) 5.9 5.8 7.7 6.3 13 6.9 
Vehicles 1899 3808 73 702 5.5 160 
Net monthly income 
($1000s) 971 1991 22 324 1.8 153 
Monthly income per vehicle 511 523 302 462 321 956 
Mobility service mode 
share 0.107 0.195 0.011 0.106 0.003 0.114 

 

4.4.3 Discussion 
All of the models reached equilibrium values after a period of several years where service providers 
adjusted their services and travelers responded.  Models used the reference mode of TNC trips as a 
starting point, and then adjusted in response to the asserted changed cost and fare structure with ADS.  
Figure 4-9 shows the evolution of trips for the suburban models.   

The factors leading to increased trip making with automation include 

- The reduced fare for the consumer leads to a shift away from other modes, to the automated 
mobility service. 

- Increased ridership on the automated mobility service allows (and incites) the service provider 
to buy more vehicles. This is because the reinforcing loops associated with increases in net 
monthly income (arising from more rides and lower cost per mile) and increases in vehicle 
utilization, outweigh balancing loops associated with decrease in fare revenue on a per-ride 
basis. 

- Wait times decrease in the rural scenarios, as the increase in vehicles available outweigh the 
increase in trip demand (recall that larger systems more efficiently assign vehicles to trips). 

- Increased ridership and lower rural wait times lead to new travel, particularly in the rural and 
suburban scenarios.   

Because the higher value of time scenarios imply a reduced sensitivity to fare reductions, the increase in 
trip making with automation is lower with these higher value of time scenarios.    
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Figure 4-9  Evolution of mobility service trips – suburban models  

(Source: Volpe)  

The lines in Figure 4-9, working from bottom to top, are as follows: 

• Human-driven vehicle (baseline case) – Sep2HDVSuburban 
• ADS with high value of time, and no induced trips – Sep2AVSuburbanHighVOT 
• ADS with low value of time, and no induced trips – Sep2AVSuburbanNoInd 
• ADS with high value of time and induced trips – Sep2SuburbanHighVOTInduc 
• ADS with low value of time and induced trips – Sep2AVSuburbanInduc 

As demand for the mobility service increases, the service provider responds by acquiring more vehicles 
(Figure 4-10). 
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Figure 4-10  Evolution of number of vehicles - suburban models  

(Source: Volpe)  

4.4.4 Chicago urban and suburban model 
As part of an ongoing inter-agency collaboration between U.S. DOT, the U.S. Department of Energy, and 
the Environmental Protection Agency, the team obtained urban and suburban TNC data from Chicago 
that was used in the Polaris model of Argonne National Laboratory (ANL).  The Volpe car service model 
was run using these datasets (Table 4-12).   

Table 4-12 Chicago model inputs 

Input City Suburban Units Comment 
Avg trip distance 4.2 7.7 mi from ANL  
Initial vehicle stock per 
1000 population 

33 4 vehicle / 1000 
persons 

from ANL (includes 
part-time vehicles) 

vehicle speed 14.6 26.2 mi /hour from ANL 
Size of service area 236 2380 mi*mi from ANL 
Trips / person / month 93 93  from ANL 
Population density 12154 2396 persons / mi*mi from ANL 
Fare 13.6 19.1 $ / trip from ANL 
Calibration target 9000000 1080000 trips / month From Chicago TNC 

data and ANL 
Transit mode share 
calibration target 

0.12 0.017 
 

From 2019 CTA, 
METRA, and PACE 

ridership data 
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City and suburban models were created using steps similar to those in section 4.4.   

Results for baseline TNC, ADS and ADS with induced traffic are shown in Table 4-13.   

Table 4-13  Chicago model outputs, low VOT 

 City TNC City ADS City ADS: 
Induced 

Suburb TNC Suburb ADS Suburb ADS: 
Induced 

Fare ($) 13.6 3 3 19.1 5 5 
Monthly trips satisfied 
by the service 

9.2M 90.7M 129.3M 1.1M 32.4M 104.7M 

New trips (induced 
travel) 

0 0 38.5M 0 0 71.9M 

Transit mode share 0.1151 0.079 0.079 0.017 0.016 0.016 
Avg. total wait time 
(min) 

6.1 5.7 5.7 7 8.3 8 

Vehicles 17480 168213 239150 11834 71032 226265 
Monthly income per 
vehicle 

2431 276 279 663 946 976 

Mobility service mode 
share 

0.034 0.34 0.341 0.002 0.06 0.062 

Figure 4-11 shows the mobility service (MS) trips, normalized to initial total trips, for both the generic 
urban model (section 4.4, the left three columns) and the Chicago city model (the right three columns).  

 

Figure 4-11  Mobility service trips, urban, low VOT  

(Source: Volpe) 
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Figure 4-12 shows the mobility service trips, normalized to initial total trips, for both the generic 
suburban model (section 4.4) and the Chicago suburban model. 

 

Figure 4-12 Mobility service trips, suburban low VOT  

(Source: Volpe)  

Again, a low VOT leads to greater increases in trips caused by reduction in fare, as utility of the 
automated mobility service depends relatively more on cost and less on time. 

The next set of experiments changed the value of time from 5 minutes per dollar ($12 / hour) to 2 
minutes per dollar ($30 / hour).  Results for baseline TNC, ADS and ADS with induced traffic are shown in 
Table 4-14. 

Table 4-14  Chicago model outputs, high VOT 

 City TNC City ADS City 
ADS: 

Induced 

Suburb 
TNC 

Suburb 
ADS 

Suburb ADS: 
Induced 

Fare ($) 13.6 3 3 19.1 5 5 
Monthly trips satisfied by 
the service 

9.1M 24.9M 59.7M 1.1M 39.8M 67.8M 

New trips (induced travel) 0 0 34.6M 0 0 63.6M 
Transit mode share 0.115 0.108 0.108 0.018 0.018 0.018 
Avg. total wait time (min) 6.1 5.9 5.8 7 9.3 8.2 
Vehicles 17313 46768 110939 11698 9192 147174 
Monthly income per 
vehicle 

3444 258 271 69 832 97 
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 City TNC City ADS City 
ADS: 

Induced 

Suburb 
TNC 

Suburb 
ADS 

Suburb ADS: 
Induced 

Mobility service mode 
share 0.034 0.094 0.094 0.002 0.008 0.008 

Figure 4-13 shows the mobility service trips, normalized to initial total trips, for both the generic urban 
model (section 4.4, the left three columns) and the Chicago city model (the right three columns).  

 

 

Figure 4-13 Mobility service trips - urban high VOT  

(Source: Volpe) 

Figure 4-14 shows the mobility service trips, normalized to initial total trips, for both the generic 
suburban model (section 4.4) and the Chicago suburban model. 
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Figure 4-14 Mobility service trips - suburban high VOT 

(Source: Volpe) 

Because a high value of time means less sensitivity to a lower fare, the number of increased trips is 
lower with the high VOT model.   

Graphs of the evolution of the system for the Chicago model are similar to those for the generic model, 
with one important difference:  the Chicago model started with too many vehicles (presumably many of 
these registered TNC vehicles in the current human-driven baseline are only used part time), but the 
model adjusted itself to an equilibrium leading to a lower number of full-time vehicle equivalents in the 
human-driven baseline case.   
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Figure 4-15  Evolution of trips, Chicago Urban 

(Source: Volpe) 
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Figure 4-16  Evolution of vehicles, Chicago Urban 

(Source: Volpe) 

4.4.5 Sensitivity analysis for rural areas 
Rural areas often lack travel options other than privately-owned vehicle, with little transit, and TNC 
services often not being available. 12  The earlier analysis (see Table 4-6) showed a lower income per 
vehicle in rural areas than in either urban or suburban areas.   

The Volpe car service model runs in less than one second, and thus lends itself to sensitivity analysis.  
This section presents the results of some 600 model runs, for human driven services, automated 
services without induced travel, and automated services with induced travel, for population densities 
ranging from 13 to 398 persons per square mile.   Average trip distance was set at 10 miles, average 
speed to 30 mph, and human-driven vehicle fare to $20.   The automated mobility service fare was set at 
$5.   

 

12 “Transportation experts see Uber and Lyft as the future. But rural communities still don’t use them”, 
in vox.com (2019), https://www.vox.com/the-goods/2019/1/11/18179036/uber-lyft-rural-areas-
subscription-model 

https://www.vox.com/the-goods/2019/1/11/18179036/uber-lyft-rural-areas-subscription-model
https://www.vox.com/the-goods/2019/1/11/18179036/uber-lyft-rural-areas-subscription-model
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With a service area of 100 square miles, 90 trips per person per month, and a baseline density of 100 
persons per square mile, the number of baseline trips was 900,000.   The baseline human-driven vehicle 
run yielded 672 mobility service trips per month, like the rural result in Table 4-10.  Key findings were as 
follows: 

• With population densities below approximately 30 persons / square mile, none of the services 
had positive operating revenue.  There is a discontinuity when the density rises above 
approximately 30 persons / square mile, where all the services shift from being non-viable to 
viable, with positive net income.   

• Given the assumption of a lower fare, usage was much higher for the automated services than 
for the human-driven services. 

• Wait times declined as population densities increased, and were lower for the automated 
services (with their efficiencies of scale in assigning vehicles to trips) 

• With their higher usage, the automated services could support larger fleets.   

Figure 4-17 shows the average traveler wait time as a function of rural population density, for a total of 
600 model runs:   

• The orange circles (labeled HDV_IncPerVeh) are the model runs for idealized full-time human 
driven vehicles (with $20 fare).  

• The blue triangles (labeled AV_IncPerVeh) are for an automated service, with $5 fare and no 
induced travel.   

• The red diamonds (labeled AVInd_IncPerVeh) are for an automated service with induced travel. 
 

 

Figure 4-17 Traveler wait time as a function of rural population density  

(Source: Volpe) 
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Below 30 persons per square mile, wait times for the automated services were extremely high (off the 
chart), indicating a non-viable service, as the model reduced the number of vehicles in an unsuccessful 
attempt to make the service financially sustainable (similar to a classic transit death spiral).   

Figure 4-18 shows the number of vehicles as a function of rural population density, with the same 
symbols and color coding as in Figure 4-17.  The y-axis is on a logarithmic scale in this figure, because the 
number of vehicles for the automated services is much higher than the number of vehicles for the 
human-driven service. The discontinuity in the trends for the automated services at about 30 
persons/square mile represents the same “death spiral” behavior explained above, showing where the 
model reduces the vehicles sharply. 

 

Figure 4-18 Vehicles as a function of rural population density  

(Source: Volpe) 
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4.5 Connections to Existing Models 

4.5.1 VisionEval 
In 2021-2022, FHWA sponsored a project to add connected and automated vehicle capabilities to 
VisionEval.  The household vehicle model now has level 3 and level 5 automated vehicles, in addition to 
level 0 human-driven vehicles. 13  Changes include: 

- Household drivers, to change the percentage of age cohorts who could now be “drivers” (e.g., 
travel independently in an automated vehicle) 

- Propensity for using car service 
- Propensity for using L5 automated vehicles 
- Updates to household models for number of vehicles owned (including zero) 
- L5 and car service deadhead inputs and calculation 
- Capacity factors for automation.   

Car service availability is still an asserted input but may now be set by detailed zone (Bzone).  This is a 
gap that the SD model could help fill, by identifying areas where car services are likely to be viable.        

4.5.2 Polaris 
Polaris is a detailed agent-based transportation model developed by Argonne National Laboratory that 
has been tested with the UrbanSim land use model in several urban areas.  It has been tested using 
shared mobility services as a mode (the inputs to the Chicago model presented in this report), but the 
availability of shared mobility service is still asserted, a gap similar to that for VisionEval.   

4.6 Lessons Learned 
As was stated earlier, system dynamics is a much more general methodology than traffic 
microsimulation and static planning models.  This has the advantage of potentially revealing new 
insights, important when a new mode with potentially transformative effects is introduced.  One can 
build a model that includes causal effects that cannot be represented by traditional transportation 
planning models, for example, the service provider view of a shared mobility service.   

Another benefit of building an SD model is that one can provide explanations of results in terms of the 
causal structure of the system. This is very different from, for example, any model that makes 
predictions based on correlation, so SD models can offer complementary insights to correlation-based 
models. 

 

13 See (SAE International 2021) for definitions of the levels of driving automation. 
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Conceptually, the steps are similar to that for building a traditional transportation model.  One starts 
with a baseline to demonstrate that the model can replicate existing conditions.  Once that first step is 
complete, future scenarios can be explored. The system dynamics model runs very fast (a set of 200 runs 
was completed in a few seconds) and can explore a wide variety of questions not well handled by 
traditional models.  Given that the model is a highly aggregate model (though could be disaggregated 
into multiple instances), it should not be viewed as a substitute for traditional planning models, but 
rather as a complement, to provide insights into the characteristics of future scenarios that might go 
into the more detailed traditional models.     
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5 Conclusion 
Many potentially transformative changes to the transportation system, such as automation, electric 
vehicle adoption, increased telework, and new travel modes, are creating increasing future 
uncertainties.  Accordingly, the planning and modeling community is showing an increasing interest in 
strategic models that can quickly explore a wide scenario space.  Furthermore, there is an interest in 
models that can organize complex systems, making sense of the interactions among parts of the system 
that might produce unexpected outcomes.  

System dynamics (SD) is a methodology with broad applicability that has seen application in 
transportation and land use.  SD has both a qualitative and quantitative side.  The qualitative modeling 
section of this report showed how techniques, such as group model building and causal loop diagrams, 
can bring diverse stakeholders, including both planners and modelers, to a common understanding of a 
complex problem.  

The quantitative modeling section reviewed several existing quantitative SD models, and then focuses 
on a major gap in current models:  that of the business model for shared mobility services.  It presents 
our quantitative model for such a service, integrating both the business side (financial sustainability) and 
the user side (a service attractive enough to be used).  Our several hundred model runs showed the 
significantly different outcomes in urban, suburban, and rural areas, as well as the importance of 
induced travel.  This section concludes with a discussion of how a quantitative SD model can be 
integrated with existing models, such as the VisionEval strategic planning model from FHWA, and the 
POLARIS agent-based model from Argonne National Laboratory (DOE).   

This report analyzed the short-to-medium term choice for a shared mobility service.  A remaining gap is 
to evaluate the longer-term impacts of automation, shared mobility services, and other changes to the 
transportation / land use system.  These changes can lead to significant shifts over time, which affect 
travelers’ choice sets, not only their daily travel choices. How will household behavior evolve over a 
multi-year time horizon as legacy vehicles wear out? Will new transportation choices, options and 
tradeoffs change vehicle purchase behavior? The household vehicle ownership decision, already a gap in 
existing models, will become increasingly important to understand for the transportation system of the 
future, as more travel choices become available giving more households the option not to own a vehicle.  
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Appendix 1:  Massachusetts TNC Data 
 

The Massachusetts Department of Public Utilities (Massachusetts DPU 2019) requires TNCs to share 
data, reporting TNC rides for each of the state’s 351 cities and towns, ranging in size from Boston to 
small towns with populations less than 1000.   (Note:  every location in Massachusetts is part of a city or 
town.  A rural town may comprise a few villages along with a substantial surrounding area).   

The 2018 data show that TNC use, measured in annual trips per resident, correlates strongly with 
population density.  TNC use is primarily focused in the Boston metropolitan area, with very low usage in 
rural communities.  Exceptions include resort areas, such as Nantucket, which have significant numbers 
of non-resident visitors during the summer.  

 

Figure A-1-0-1  Mass. TNC data from 2018 (Source: Derived from Rideshare Data Report from 
Mass.gov) 

Data from 2019 show a similar story.    Rideshare Data Report | Mass.gov   

https://tnc.sites.digital.mass.gov/
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Figure A-1-0-2  Mass TNC map from 2019  (Source: Rideshare Data Report | Mass.gov )  

 

Figure A-1-0-3 Mass TNC 2019 data (Source: Derived from Rideshare Data Report from Mass.gov) 

Observations:  communities in the Boston metropolitan area have higher TNC usage.  Wealthy 
communities have higher TNC usage.   

Figure A-1-0-4 focuses on rural areas.   
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Figure A-1-0-4  Mass TNC 2019 data, focus on rural areas (Source: Derived from Rideshare Data Report 
from Mass.gov) 

The rural areas with high TNC trip making include 

• Resort areas (Nantucket, towns on Martha’s Vineyard and Cape Cod). These areas have higher 
summer populations than year-round residents.  Two are islands where visitors are discouraged 
from bringing their own cars by high ferry fares and the need to make vehicle reservations.   

• A small community (Hadley) located near a larger college town (Amherst). 

To calibrate the car service model, data from six communities were chosen (Table A-1-1). 

Table A-1-1  Communities for car service model 

TOWN SQ MI POP 
(K) 

POP 
DENSITY 

BOSTON 
METRO 

JOBS 
(K) 

AVG WEEKLY 
WAGE 

ANNUAL TNC ORIGIN 
TRIPS  / RESIDENT 

CAMBRIDGE 7.11 105 14801 Y 137 2551 74.92 
LAWRENCE 7.43 76 10284 N 28 1070 7.40 
LEXINGTON 16.64 31 1887 Y 23 2219 6.65 
METHUEN 23.00 47 2055 N 16 874 4.17 
STOW 18.00 7 366 Y 2 1297 0.85 
ASHBURNHAM 40.95 6 148 N 1 943 0.15 

 

The first step is to set the model inputs for TNC-like service in these communities.  The total number of 
trips is calculated based on population, jobs and overall trip-making data from NHTS.  The numbers of 
trips come from the 2017 NHTS (Table 10a, annual person trips per person).  Associations with jobs and 
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residents are asserted, with commuting trips split evenly, work-related travel associated with jobs, 
shopping travel is split, and other travel is associated with residents.   

Table A-1-2  Trip making (from NHTS) 

Trips per person To/From work Work related Shopping School Social Other 
Annual 214 20 473 134 339 50 

Monthly 18 2 39 11 28 4 
Associated with jobs 0.5 1 0.3 0 0 0 

Associated with residents 0.5 0 0.7 1 1 1 
 

Table A-1-3  Community-specific SD model inputs 

TOWN POP 
DENSITY 

(PER SQ MI) 

SERVICE AREA 
(SQ MI) 

TOTAL TRIPS / 
PERSON/MONTH14 

TNC TRIPS / 
PERSON/MONTH 

TNC TRIPS 
/ 

MONTH15 
CAMBRIDGE 14801 7.11 109 6.24 656603 
LAWRENCE 10284 7.43 88 0.62 47077 
LEXINGTON 1887 16.64 97 0.55 17408 
METHUEN 2055 23.00 88 0.35 16433 
STOW 366 18.00 88 0.07 469 
ASHBURNHAM 148 40.95 84 0.01 75 

 

References 

• Massachusetts DPU. 2019. “Rideshare Data Report | Mass.Gov.” 2019. 
https://tnc.sites.digital.mass.gov/. 

• Employment data 
https://data.bls.gov/cew/apps/table_maker/v4/table_maker.htm#type=2&st=25&year=2019&q
tr=A&own=0&ind=10&supp=0 
https://lmi.dua.eol.mass.gov/lmi/EmploymentAndWages# 
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Appendix 2:  Vensim Model 
{UTF-8} 
Per rider public support= 
 0 
 ~ Dollar/Trip 
 ~  | 
 
Fixed public support= 
 0 
 ~ Dollar/Month 
 ~  | 
 
Fare= 
 13.6 
 ~  
 ~  | 
 
Cost per minute= 
 0.35 
 ~ Dollar/minutes 
 ~  | 
 
Fixed vehicle cost= 
 400 
 ~ Dollar/Month 
 ~  | 
 
Avg trip distance= 
 4.2 
 ~ mi 
 ~  | 
 
Target utilization= 
 0.5 
 ~  
 ~  | 
 
Initial vehicle stock per 1000 population= 
 1 
 ~  
 ~  | 
 
Max reception rate= 
 15000 
 ~ Vehicle/Month 
 ~  | 
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"Vehicle useful life (tripwise)"= 
 10000 
 ~ Trip/Vehicle 
 ~ How many trips does an Vehicle last? 
 | 
 
Size of service area= 
 236 
 ~ mi*mi 
 ~  | 
 
EmptyDistanceConstant= 
 1 
 ~ mi 
 ~  | 
 
EmptyDistanceMultiplier= 
 1 
 ~  
 ~  | 
 
Vehicle speed= 
 14.6 
 ~ mi/hour 
 ~  | 
 
wait time coefficient= 
 -0.05 
 ~  
 ~  | 
 
"Value of time(min/$)"= 
 5 
 ~ minute/Dollar 
 ~  | 
 
POV utility= 
 -0.7 
 ~  
 ~  | 
 
Transit utility= 
 -2.7 
 ~  
 ~  | 
 
Utility for zero induced trips= 
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 -3.9 
 ~  
 ~  | 
 
maximum induced trips= 
 0.2 
 ~  
 ~ Maximum percent of Total Trips that can be added as induced trips 
 | 
 
"Trips / person / month"= 
 93 
 ~ Trip/(person*Month) 
 ~  | 
 
Population density= 
 12154 
 ~ person/(mi*mi) 
 ~  | 
 
smoothing factor for increasing trips= 
 6 
 ~ Month 
 ~  | 
 
smoothing factor for decreasing trips= 
 1 
 ~ Month 
 ~  | 
 
"Avg. distance to nearest empty/available vehicle"= 
 EmptyDistanceConstant + EmptyDistanceMultiplier/SQRT((1-Target utilization)*Vehicle density\ 
  ) 
 ~ mi 
 ~  | 
 
Mobility service utility= 
 wait time coefficient*("Avg. total wait time for traveler"+"Value of time(min/$)"*Fare\ 
   ) 
 ~  
 ~  | 
 
Monthly cash inflow= 
 Fare*Trips satisfied by mobility service+External funding 
 ~  
 ~  | 
 
new trips= 
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 Total Trips in Service Area*MAX( 0 , maximum induced trips*((Utility for zero induced trips\ 
   -Mobility service utility)/Utility for zero induced trips 
 )) 
 ~  
 ~  | 
 
Initial Vehicle stock= 
 Initial vehicle stock per 1000 population*Population/1000 
 ~ Vehicle 
 ~  | 
 
Population= 
 Population density*Size of service area 
 ~  
 ~  | 
 
Net monthly income= 
 Monthly cash inflow-Monthly cash outflow 
 ~ Dollar/Month 
 ~ 100 = $/vehicle/month, 15 = loaded trip time, 0.10 = cost / vehicle minute 
 | 
 
Monthly cash outflow= 
 Number of Vehicles*Fixed vehicle cost+Trips satisfied by mobility service*Variable vehicle cost 
 ~  
 ~  | 
 
Desired Additional Vehicles= ACTIVE INITIAL ( 
 IF THEN ELSE(Net monthly income>0, Number of Vehicles*MAX(Vehicle utilization-Target 
utilization\ 
  , 0 ) , 0 ), 
  0) 
 ~ Vehicle 
 ~  | 
 
indicated trips= 
 Total Trips in Service Area*Mobility service mode share+new trips 
 ~ Trip/Month 
 ~  | 
 
 
Avg loaded trip time= 
 Avg trip distance/(Vehicle speed/60) 
 ~ minutes 
 ~  | 
 
Mobility service VMT= 
 (Avg trip distance+"Avg. distance to nearest empty/available vehicle")*indicated trips 



 

System Dynamics for Automated Vehicle Impact Assessment | 75 

 ~ mi 
 ~  | 
 
POV VMT= 
 Avg trip distance*(POV mode share*Total Trips in Service Area) 
 ~ mi 
 ~  | 
 
Transit trips= 
 Total Trips in Service Area*Transit mode share 
 ~ Trip/Month 
 ~  | 
 
 
POV mode share= 
 EXP(POV utility) / (EXP(Mobility service utility)+EXP(POV utility)+EXP(Transit utility\ 
  )) 
 ~  
 ~  | 
 
 
Transit mode share= 
 EXP(Transit utility) / (EXP(Mobility service utility)+EXP(POV utility)+EXP(Transit utility\ 
  )) 
 ~  
 ~  | 
 
Mobility service mode share= 
 EXP(Mobility service utility) / (EXP(Mobility service utility)+EXP(POV utility)+EXP(\ 
  Transit utility)) 
 ~ Dmnl 
 ~  | 
 
 
Total Trips in Service Area= 
 Population density*Size of service area*"Trips / person / month" 
 ~ Trip/Month 
 ~  | 
 
trips gap= 
 MIN( indicated trips , Number of Vehicles * "Max trips/ vehicle-month" )-Trips satisfied by 
mobility service 
 ~ Trip/Month 
 ~  | 
 
"Max trips/ vehicle-month"= ACTIVE INITIAL ( 
 10*30*60 / (1 + Avg loaded trip time + "Avg. empty-vehicle repositioning time"), 
  450) 
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 ~ Trip/(Month*Vehicle) 
 ~ 10*30*60 = available minutes / month,  1 = dispatch, 
 | 
 
Variable vehicle cost= 
 Cost per minute*(Avg loaded trip time+"Avg. empty-vehicle repositioning time") 
 ~ Dollar/Trip 
 ~  | 
 
External funding= 
 Fixed public support+ Per rider public support*Trips satisfied by mobility service 
 ~ Dollar/Month 
 ~  | 
 
Change in trips= 
 IF THEN ELSE(trips gap>=0, trips gap / smoothing factor for increasing trips , trips gap\ 
   / smoothing factor for decreasing trips ) 
 ~ Trip/Month/Month 
 ~  | 
 
Number of Vehicles= INTEG ( 
 Reception rate in-Junk rate, 
  Initial Vehicle stock) 
 ~ Vehicle 
 ~  | 
 
Reception rate in= 
 MIN(Desired Additional Vehicles, Max reception rate ) 
 ~ Vehicle/Month 
 ~  | 
 
"Avg. wait time for a vehicle to become empty/available"= 
 2/MAX(ABS( 1-Vehicle utilization ), 0.01 ) 
 ~ minutes 
 ~ The 2 is a queuing parameter 
 | 
 
Trips satisfied by mobility service= INTEG ( 
 Change in trips, 
  1.08e+06) 
 ~ Trip/Month 
 ~  | 
 
"Trips/ vehicle-month"= 
 Trips satisfied by mobility service/Number of Vehicles 
 ~ Trip/(Vehicle*Month) 
 ~  | 
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"Avg. total wait time for traveler"= 
 1+"Avg. empty-vehicle repositioning time"+"Avg. wait time for a vehicle to become 
empty/available" 
 ~ minutes 
 ~ The 1 is a dispatch time constant 
 | 
 
Vehicle utilization= 
 "Trips/ vehicle-month"/"Max trips/ vehicle-month" 
 ~ Dmnl 
 ~  | 
 
"Avg. empty-vehicle repositioning time"= 
 "Avg. distance to nearest empty/available vehicle"/(Vehicle speed/60) 
 ~ minutes 
 ~  | 
 
"Vehicle useful life (timewise)"= 
 "Vehicle useful life (tripwise)"/"Trips/ vehicle-month" 
 ~ Month 
 ~ At current trips/Vehicle/mo rate and # of Vehicles, how long will it take \ 
  for a Vehicle to wear out? 
 | 
 
Junk rate= 
 Number of Vehicles/"Vehicle useful life (timewise)" 
 ~ Vehicle/Month 
 ~ "Death rate" 
 | 
 
Vehicle density= 
 Number of Vehicles/Size of service area 
 ~ Vehicle / (mi*mi) 
 ~  | 
 
******************************************************** 
 .Control 
********************************************************~ 
  Simulation Control Parameters 
 | 
 
FINAL TIME  = 100 
 ~ Month 
 ~ The final time for the simulation. 
 | 
 
INITIAL TIME  = 0 
 ~ Month 
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 ~ The initial time for the simulation. 
 | 
 
SAVEPER  =  
        TIME STEP 
 ~ Month [0,?] 
 ~ The frequency with which output is stored. 
 | 
 
TIME STEP  = 1 
 ~ Month [0,?] 
 ~ The time step for the simulation. 
 | 
 
\\\---/// Sketch information - do not modify anything except names 
V300  Do not put anything below this section - it will be ignored 
*View 1 
$192-192-192,0,Calibri|12|B|0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,85,0 
10,1,Number of Vehicles,979,197,45,25,3,131,0,8,0,0,0,0,-1--1--1,0-0-0,|14||0-0-0,0,0,0,0,0,0 
12,2,48,780,189,12,8,0,3,0,0,-1,0,0,0,0,0,0,0,0,0 
11,3,48,867,188,8,8,2,3,0,0,1,0,0,0,0,0,0,0,0,0 
1,4,3,1,4,0,0,22,0,0,0,-1--1--1,,1|(904,188)| 
1,5,3,2,100,0,0,22,0,0,0,-1--1--1,,1|(824,188)| 
1,6,8,3,4,0,0,22,0,0,0,-1--1--1,,1|(867,188)| 
1,7,8,3,100,0,0,22,0,0,0,-1--1--1,,1|(867,188)| 
11,8,48,867,188,8,8,34,3,0,0,1,0,0,0,0,0,0,0,0,0 
10,9,Reception rate in,867,215,37,19,40,131,0,0,-1,0,0,0,0,0,0,0,0,0 
12,10,48,1124,193,12,8,0,3,0,0,-1,0,0,0,0,0,0,0,0,0 
1,11,13,10,4,0,0,22,0,0,0,-1--1--1,,1|(1092,193)| 
1,12,13,1,100,0,0,22,0,0,0,-1--1--1,,1|(1037,193)| 
11,13,48,1059,193,8,8,34,3,0,0,1,0,0,0,0,0,0,0,0,0 
10,14,Junk rate,1059,212,36,11,40,131,0,0,-1,0,0,0,0,0,0,0,0,0 
1,15,1,13,1,0,0,0,0,128,0,-1--1--1,,1|(984,165)| 
10,16,"Vehicle useful life (timewise)",884,316,63,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
10,17,Trips satisfied by mobility service,371,381,55,32,3,131,0,8,0,0,0,0,-1--1--1,0-0-0,|14|B|0-0-
0,0,0,0,0,0,0 
10,18,Vehicle density,1079,437,59,12,8,131,0,8,0,0,0,0,-1--1--1,0-0-0,|14||0-0-0,0,0,0,0,0,0 
1,19,1,18,1,0,0,0,0,128,0,-1--1--1,,1|(1091,333)| 
10,20,Size of service area,1215,425,43,21,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12|B|0-128-0,0,0,0,0,0,0 
1,21,20,18,1,0,0,0,0,128,0,-1--1--1,,1|(1152,421)| 
1,22,17,26,1,0,0,0,0,128,0,-1--1--1,,1|(464,357)| 
10,23,Mobility service mode share,408,652,63,24,8,131,0,8,0,0,0,0,-1--1--1,0-0-0,|14||0-0-0,0,0,0,0,0,0 
1,24,1,26,1,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(656,332)| 
1,25,16,13,1,0,0,0,0,128,0,-1--1--1,,1|(1047,212)| 
10,26,"Trips/ vehicle-month",567,348,53,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
10,27,"Vehicle useful life (tripwise)",952,385,57,25,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12|B|0-128-
0,0,0,0,0,0,0 
1,28,27,16,1,0,0,0,0,128,0,-1--1--1,,1|(908,345)| 
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10,29,Initial Vehicle stock,967,96,24,27,8,131,0,8,0,0,0,0,-1--1--1,0-0-0,|10||0-128-0,0,0,0,0,0,0 
1,30,29,1,1,0,0,0,0,128,1,-1--1--1,,1|(968,140)| 
10,31,Desired Additional Vehicles,643,128,69,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
1,32,1,31,1,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(775,101)| 
10,33,"Trips/ vehicle-month",1100,28,53,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
1,34,26,16,1,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(748,345)| 
10,35,"Avg. empty-vehicle repositioning time",820,660,69,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
10,36,"Avg. total wait time for traveler",640,677,80,24,8,3,0,8,0,0,0,0,-1--1--1,0-0-0,|14||0-0-
0,0,0,0,0,0,0 
1,37,18,40,1,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(1032,524)| 
1,38,35,36,1,0,0,0,0,128,0,-1--1--1,,1|(712,680)| 
10,39,Net monthly income,523,185,48,25,8,131,0,8,0,0,0,0,-1--1--1,0-0-0,|14||0-0-0,0,0,0,0,0,0 
10,40,"Avg. distance to nearest empty/available vehicle",1000,557,88,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
10,41,"Avg. wait time for a vehicle to become 
empty/available",651,589,71,28,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
1,42,40,35,1,0,0,0,0,128,0,-1--1--1,,1|(935,640)| 
1,43,41,36,1,0,0,0,0,128,0,-1--1--1,,1|(652,640)| 
10,44,Vehicle speed,1031,665,41,24,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12|B|0-128-0,0,0,0,0,0,0 
1,45,44,35,0,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(948,663)| 
10,46,Max reception rate,864,132,37,20,8,131,0,10,0,0,0,0,-1--1--1,0-0-0,|10||0-128-0,0,0,0,0,0,0 
10,47,"Max trips/ vehicle-month",859,544,53,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
10,48,Vehicle utilization,755,413,40,24,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
1,49,26,48,1,0,0,0,0,128,0,-1--1--1,,1|(692,372)| 
1,50,47,48,1,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(812,449)| 
1,51,48,41,1,0,0,0,0,128,0,-1--1--1,,1|(723,488)| 
1,52,39,31,1,0,0,0,0,128,0,-1--1--1,,1|(555,148)| 
1,53,48,31,1,0,0,0,0,128,0,-1--1--1,,1|(704,217)| 
10,54,Total Trips in Service Area,232,612,47,19,8,131,0,0,-1,0,0,0,0,0,0,0,0,0 
12,55,48,171,373,12,8,0,3,0,0,-1,0,0,0,0,0,0,0,0,0 
1,56,58,17,4,0,0,22,0,0,0,-1--1--1,,1|(285,372)| 
1,57,58,55,68,0,0,22,2,0,0,-1--1--1,|12||0-0-0,1|(212,372)| 
11,58,48,247,372,8,8,34,3,0,0,1,0,0,0,0,0,0,0,0,0 
10,59,Change in trips,247,397,53,11,40,3,0,0,-1,0,0,0,0,0,0,0,0,0 
10,60,smoothing factor for increasing trips,304,308,44,27,8,131,0,10,0,0,0,0,-1--1--1,0-0-0,|10||0-128-
0,0,0,0,0,0,0 
10,61,smoothing factor for decreasing trips,223,312,40,25,8,131,0,10,0,0,0,0,-1--1--1,0-0-0,|10||0-128-
0,0,0,0,0,0,0 
1,62,61,59,0,0,0,0,1,128,0,160-160-160,|12||0-0-0,1|(236,356)| 
1,63,60,59,0,0,0,0,1,128,0,160-160-160,|12||0-0-0,1|(276,356)| 
10,64,trips gap,240,481,32,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,65,indicated trips,319,557,52,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
1,66,23,65,1,0,0,0,0,128,0,-1--1--1,,1|(351,601)| 
1,67,54,65,0,0,0,0,0,128,0,-1--1--1,,1|(275,584)| 
1,68,65,64,1,0,0,0,0,128,0,-1--1--1,,1|(275,529)| 
1,69,17,64,1,0,0,0,0,128,0,-1--1--1,,1|(372,465)| 
1,70,64,59,1,0,0,0,0,128,0,-1--1--1,,1|(236,429)| 
1,71,35,47,1,0,0,0,0,128,0,-1--1--1,,1|(863,601)| 
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1,72,46,8,0,0,0,0,0,64,0,-1--1--1,,1|(865,159)| 
1,73,31,8,1,0,0,0,0,64,0,-1--1--1,,1|(787,141)| 
12,74,0,520,484,36,36,4,135,0,27,-1,0,0,0,128-128-0,0-0-0,|24|B|128-128-0,0,0,0,0,0,0 
B1 
12,75,0,1007,320,31,31,4,135,0,27,-1,0,0,0,128-64-0,0-0-0,|24|B|128-64-0,0,0,0,0,0,0 
R1 
10,76,"Max trips/ vehicle-month",148,513,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
1,77,76,64,0,0,0,0,0,128,0,-1--1--1,,1|(200,496)| 
10,78,External funding,235,192,59,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
1,79,17,78,0,0,0,0,0,128,0,-1--1--1,,1|(299,281)| 
10,80,Fixed public support,76,100,40,21,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
10,81,Per rider public support,75,172,52,24,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,82,80,78,0,0,0,0,0,128,0,-1--1--1,,1|(157,147)| 
1,83,81,78,0,0,0,0,0,128,0,-1--1--1,,1|(144,180)| 
10,84,Fixed vehicle cost,287,65,60,11,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
10,85,Variable vehicle cost,423,37,57,19,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,86,Avg loaded trip time,548,-12,52,19,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,87,"Avg. empty-vehicle repositioning time",560,53,76,25,8,130,0,3,-1,0,0,0,128-128-128,0-0-
0,|12||128-128-128,0,0,0,0,0,0 
1,88,86,85,0,0,0,0,0,128,0,-1--1--1,,1|(492,12)| 
1,89,87,85,0,0,0,0,0,128,0,-1--1--1,,1|(488,47)| 
10,90,Cost per minute,280,1,56,11,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,91,90,85,0,0,0,0,0,128,0,-1--1--1,,1|(337,15)| 
10,92,Avg loaded trip time,863,456,56,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
1,93,92,47,0,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(861,493)| 
10,94,Number of Vehicles,139,453,41,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
1,95,94,64,0,0,0,0,0,128,0,-1--1--1,,1|(187,468)| 
10,96,"Value of time(min/$)",716,808,44,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12|B|0-128-0,0,0,0,0,0,0 
10,97,Population density,63,569,41,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
10,98,"Trips / person / month",67,616,56,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
10,99,Size of service area,68,677,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128,0,0,0,0,0,0 
1,100,97,54,0,0,0,0,0,128,0,-1--1--1,,1|(137,587)| 
1,101,98,54,0,0,0,0,0,128,0,-1--1--1,,1|(147,616)| 
1,102,99,54,0,0,0,0,0,128,0,-1--1--1,,1|(143,648)| 
10,103,wait time coefficient,732,757,56,15,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
12,104,0,535,625,40,20,8,3,0,0,-1,0,0,0,0,0,0,0,0,0 
10,105,Transit mode share,349,751,48,19,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,106,POV mode share,351,821,59,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,107,Mobility service utility,559,732,60,19,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,108,Transit utility,559,781,48,11,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
10,109,POV utility,559,833,39,11,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||64-160-98,0,0,0,0,0,0 
1,110,108,23,0,0,0,0,0,128,0,-1--1--1,,1|(496,727)| 
1,111,109,23,0,0,0,0,0,128,0,-1--1--1,,1|(493,756)| 
1,112,107,105,0,0,0,0,0,128,0,-1--1--1,,1|(456,740)| 
1,113,108,105,0,0,0,0,0,128,0,-1--1--1,,1|(460,767)| 
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1,114,108,106,0,0,0,0,0,128,0,-1--1--1,,1|(468,800)| 
1,115,109,106,0,0,0,0,0,128,0,-1--1--1,,1|(471,827)| 
1,116,109,105,0,0,0,0,0,128,0,-1--1--1,,1|(472,800)| 
1,117,36,107,0,0,45,0,3,64,0,255-0-0,|12||0-0-0,1|(601,703)| 
1,118,96,107,0,0,0,0,0,64,0,-1--1--1,,1|(643,773)| 
1,119,103,107,0,0,0,0,0,64,0,-1--1--1,,1|(656,745)| 
1,120,107,23,0,0,0,0,0,128,0,-1--1--1,,1|(496,697)| 
1,121,107,106,0,0,0,0,0,64,0,-1--1--1,,1|(451,777)| 
10,122,Avg trip distance,688,-27,31,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,123,122,86,0,0,0,0,0,128,0,-1--1--1,,1|(635,-21)| 
10,124,Vehicle speed,711,24,57,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128,0,0,0,0,0,0 
1,125,124,86,0,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(637,7)| 
10,126,Mobility service VMT,1500,461,60,19,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,127,POV VMT,1508,584,36,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,128,Transit trips,1495,673,43,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,129,Avg trip distance,1356,557,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
10,130,"Avg. distance to nearest empty/available vehicle",1357,452,76,28,8,2,0,3,-1,0,0,0,128-128-
128,0-0-0,|12||128-128-128,0,0,0,0,0,0 
10,131,indicated trips,1356,516,60,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128,0,0,0,0,0,0 
10,132,Total Trips in Service Area,1283,672,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
10,133,POV mode share,1356,620,43,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
10,134,Transit mode share,1357,731,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
1,135,130,126,0,0,0,0,0,128,0,-1--1--1,,1|(1429,455)| 
1,136,131,126,0,0,0,0,0,128,0,-1--1--1,,1|(1412,496)| 
1,137,129,126,0,0,0,0,0,128,0,-1--1--1,,1|(1421,512)| 
1,138,129,127,0,0,0,0,0,128,0,-1--1--1,,1|(1424,568)| 
1,139,133,127,1,0,0,0,0,128,0,-1--1--1,,1|(1412,595)| 
1,140,132,127,1,0,0,0,0,128,0,-1--1--1,,1|(1368,612)| 
1,141,134,128,0,0,0,0,0,128,0,-1--1--1,,1|(1428,700)| 
1,142,132,128,0,0,0,0,0,128,0,-1--1--1,,1|(1388,672)| 
10,143,new trips,216,712,36,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
1,144,54,143,0,0,0,0,0,128,0,-1--1--1,,1|(224,659)| 
1,145,143,65,1,0,0,0,0,128,0,-1--1--1,,1|(280,649)| 
10,146,maximum induced trips,131,784,48,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,147,146,143,0,0,0,0,0,128,0,-1--1--1,,1|(172,748)| 
10,148,Utility for zero induced trips,131,844,48,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-
0,0,0,0,0,0,0 
1,149,148,143,1,0,0,0,0,128,0,-1--1--1,,1|(207,789)| 
10,150,Target utilization,635,224,37,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,151,150,31,0,0,0,0,0,128,0,-1--1--1,,1|(637,184)| 
1,152,150,40,1,0,0,0,0,128,0,-1--1--1,,1|(847,376)| 
10,153,Monthly cash inflow,360,200,41,19,8,131,0,0,0,0,0,0,0,0,0,0,0,0 
10,154,Monthly cash outflow,419,129,49,19,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
1,155,85,154,0,0,0,0,0,128,0,-1--1--1,,1|(421,76)| 
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1,156,84,154,0,0,0,0,0,128,0,-1--1--1,,1|(337,89)| 
1,157,78,153,0,0,0,0,0,128,0,-1--1--1,,1|(299,195)| 
1,158,17,153,0,0,0,0,0,128,0,-1--1--1,,1|(365,292)| 
1,159,1,154,1,0,0,0,0,128,0,-1--1--1,,1|(763,60)| 
1,160,154,39,0,0,45,0,3,128,0,255-0-0,|12||0-0-0,1|(460,152)| 
1,161,153,39,0,0,0,0,0,128,0,-1--1--1,,1|(431,193)| 
1,162,17,154,0,0,0,0,0,64,0,-1--1--1,,1|(396,255)| 
10,163,Population,1065,84,40,11,8,3,0,0,0,0,0,0,0,0,0,0,0,0 
10,164,Population density,1160,57,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
10,165,Size of service area,1167,128,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-
128,0,0,0,0,0,0 
1,166,164,163,0,0,0,0,0,128,0,-1--1--1,,1|(1115,68)| 
1,167,165,163,0,0,0,0,0,128,0,-1--1--1,,1|(1112,104)| 
1,168,163,29,0,0,0,0,0,128,0,-1--1--1,,1|(1016,89)| 
10,169,Initial vehicle stock per 1000 population,964,15,73,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12|B|0-128-
0,0,0,0,0,0,0 
1,170,169,29,0,0,0,0,0,128,0,-1--1--1,,1|(964,44)| 
1,171,107,143,1,0,0,0,0,128,0,-1--1--1,,1|(377,700)| 
10,172,Fare,267,128,17,11,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,173,172,153,0,0,0,0,0,128,0,-1--1--1,,1|(304,155)| 
10,174,Fare,716,729,25,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128,0,0,0,0,0,0 
1,175,174,107,0,0,0,0,0,128,0,-1--1--1,,1|(661,729)| 
10,176,EmptyDistanceConstant,1145,520,88,9,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
10,177,EmptyDistanceMultiplier,1145,607,92,9,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0,0,0,0,0,0,0 
1,178,176,40,0,0,0,0,0,128,0,-1--1--1,,1|(1100,531)| 
1,179,177,40,0,0,0,0,0,128,0,-1--1--1,,1|(1093,589)| 
///---\\\ 
:L�<%^E!@ 
4:Time 
5:"Avg. distance to nearest empty/available vehicle" 
9:ChicagoUrbanHDV2_TS1 
19:85,0 
24:0 
25:100 
26:100 
60:AVRural2SensitivityInduc 
61:65001 
62:1 
63:1 
64:0 
65:1 
66:0 
67:0 
68:0 
69:0 
70:1 
23:0 



 

System Dynamics for Automated Vehicle Impact Assessment | 83 

18:VehicleUtilization_v7.vsc 
20:VehicleUtilization_v7.lst 
15:0,0,0,0,0,0 
27:0, 
34:0, 
42:1 
72:0 
73:0 
35:Date 
36:YYYY-MM-DD 
37:2000 
38:1 
39:1 
40:2 
41:0 
95:0 
96:0 
77:1 
78:0 
93:0 
94:0 
92:0 
91:0 
90:0 
87:0 
75: 
43: 
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