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EXECUTIVE SUMMARY 
Geopolymer Cement (GPC) has drawn much attention in the recent years as an alternative to 
Ordinary Portland Cement (OPC) for soil stabilization, pavements, bridges, and other 
transportation structures due to their beneficial mechanical properties in comparison to OPC. In 
addition, GPC can be processed at room temperatures from aqueous solutions of waste materials 
(e.g. fly ash) or abundant natural sources (e.g. clay), thereby significantly reducing CO2 production 
associated with processing of OPC. This research explores methods to develop GPC with desired 
properties and evaluate their durability characteristics as part of their long-term performance based 
on real service conditions when exposed to significant water intake during flooding or torrential 
rainfall.  

Teams from Texas A&M University (TAMU) and University of Texas at Arlington (UTA) 
collaborated in this study to understand GPC, propose different methods to synthesize GPC, and 
to effectively synthesize a GPC composition. A wide range of GPC compositions were tested for 
their UCS, shrinkage, water loss, density, and porosity after a 14-day curing period. The GPCs 
were tested to observe the effect of various compositional parameters such as SiO2/Al2O3 ratio, 
water/solids ratio, and type of alkali cation. Even though these parameters have already been 
studied before, none has been done extensively for ambient-cured metakaolin (MK)-based GPC. 
While some compositions had very poor performance, others had performance comparable to that 
of OPC (e.g. Na421). It was observed that the open porosity is inversely correlated with density, 
however, denser samples do not always result in better UCS. Instead, GPC seems have an optimal 
density of ~1.5g/cm3 for maximizing strength. Overall, Na-based pure GPC outperformed K-based 
pure GPC with better UCS and lower shrinkage.  

Additionally, testing of GPC-treated subgrade soils was also conducted. GPC was applied to two 
subgrade soils at the application ratio of 4%, 10% and 15% by weight. One of them is classified 
as a low-plasticity clay and the other as a high-plasticity clay. Significant increase in compressive 
strength of geopolymer-treated soils was observed compared to untreated soils. It was observed 
that an increase in the geopolymer ratios increased the compressive strength of geopolymer-treated 
soils by 150-350% for the low-plasticity clay and by 90-400% for the high-plasticity clay over a 
period of 0 (6 hours), 7, and 28 days.  

Significant reduction in mass increase during 24-hour capillary soaking is observed in GPC-treated 
soil as compared to untreated soil. The untreated high-plasticity soil was observed to soak up more 
water than the untreated low-plasticity clay, although upon treatment with geopolymers the high-
plasticity clay reduces intake of water considerably in comparison with the low-plasticity clay. 
Appropriate reduction in mass gain is obtained by the seventh day of curing in both soil-types. The 
4% GPC is observed to be sufficient to significantly reduce mass change in the low-plasticity clay, 
while the 10% GPC ratio is observed to be more appropriate for significant decrease in mass 
change for the high-plasticity clay.  

The soils treated with the higher amount of GPC have higher pH in the range of 12-13 for both 
soils. The pH of geopolymer-treated soils decreases by about 6-8% over a period of 28 days. The 
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geopolymer-treated low-plasticity clay is observed to have slightly higher pH than the similar 
geopolymer treated high-plasticity clay. The pH of geopolymer-treated soils dips below the lime 
cut-off pH of 12.4 more rapidly in high-plasticity clay at 21 days than in the low-plasticity clay at 
28 days. 

The performance of GPC-treated soil clearly demonstrates its effectiveness in stabilizing clayey 
soils, thereby increasing strength and mitigating volume changes during 1D-swell and shrinkage 
tests. It was interesting to observe the rate of increase of strength of geopolymer-treated soils, 
which show potential to be used as stabilizers where the time for construction is very limited and 
lowest cost of stabilization is not essential.  Future studies on other problematic soils are suggested 
prior to be considered for field implementation. 

Last but not least, a significant improvement in strength is observed when sand is added to GPC 
for the formation of GPC mortar samples. It’s interesting to note that the best performing GPC did 
not necessarily result in the best performing GPC mortar. Instead, all the GPC mortar with low 
water content and high SiO2/Al2O3 ratio has similar UCS of ~30 MPa (4,300 psi). The GPC mortar 
samples were also observed to have low and improved shrinkage even for those made from GPC 
that had significantly high value of shrinkage (e.g. K421, and K431).  

Overall, pure ambient-cured MK-based GPC were demonstrated to have properties comparable to 
that of commercially available OPC. It was interesting to observe the improvement in properties 
notably UCS and shrinkage when sand is added to the system. Further studies on compositional 
effect, and structural characterizations are suggested to improve the competitiveness of GPC. 
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1. INTRODUCTION 
Over the last several of years, a new class of alumino-silicate-polymers, commonly referred to as 
Geopolymers has received much attention as an eco-friendly and sustainable alternative to 
Ordinary Portland Cements (OPC) (1-3). Geopolymers (GPs) harden at ambient temperatures in a 
relatively short amount of time (4) and can be synthesized by curing activated solutions of various 
alumino-silicate sources including natural minerals (e.g. clay), their products (e.g. metakaolin), 
and waste materials (e.g. fly ash, furnace slag, etc.). GPs are known for their high compressive 
strength and low shrinkage properties. GPs have a much lower carbon footprint than lime and OPC 
(5), and is therefore more environmentally friendly than other conventional additives used for soil 
stabilization.  

Geopolymer cements (GPCs) or binders has been investigated and/or used as alternative 
cementitious material for soil stabilization, pavements, bridges, and other transportation structures. 
Great interest in GPCs resides on the fact that they can be processed at room temperatures from 
aqueous solutions of waste materials (e.g. fly ash) or abounded natural sources (e.g. clay and other 
minerals) using , in best case scenario, only 10% of the energy required to make OPC (1). Recent 
studies on the life-cycle analysis of GPC discusses the complications behind clearly quantifying 
the eco-friendliness of GPC due to the wide range of potential feedstock sources: when compared 
to OPC, GPC can range from 97% lower to 14% higher in terms of emission (6, 7). However, an 
issue of particular importance is the lack of service history and absence of data on durability 
performance of GPC products, while OPC has been used for over 200 years. The later makes it 
clear that broader application of GPCs in transportation infrastructure requires further investigation 
on durability of different GPC structures. This report covers the work on durability of GPC 
concrete/mortar and GPC stabilized base and subgrade materials during long-term exposure to the 
service conditions typical for Region 6, especially during flooding and extreme rainfalls, to foster 
use of this new class of sustainable and eco-friendly materials for transportation infrastructure in 
Region 6. In addition, long-term performance testing of Geopolymer-treated subgrade soils is also 
studied. The use of sustainable materials or technology is highly encouraged to promote eco-
friendly construction of various types of infrastructure including pavements (8-13). Hence, use of 
geopolymer, which is an eco-friendly product may be considered as a green solution.  
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2. OBJECTIVES 
The overall objective of this study is to develop an innovative, sustainable, eco-friendly and 
durable GPC for transportation infrastructure in Region 6, more specifically for GPC for 
concrete/mortar structures (pavements, bridges, etc.) and stabilization of base and subgrade 
foundation support for pavements, using natural and waste materials that abound in the region.  

More specific objectives of the research are to: 
• Select composition of GPC with optimum workability and mechanical properties;  
• Characterize degradation of their structure and properties in condition simulating real 

weather conditions typical for Region 6, such as flooding, heavy rainfall or drought using 
extensive durability testing;  

• Conduct leachability studies, to study the volume of leachate generated and its chemical 
composition; 

• Provide guidance for the optimum composition of GPCs for extended durability of 
concrete/mortar structures and stabilized soil; and 

• Implement research results and develop the workforce with the expertise in using novel 
technologies for soil stabilization.  
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3. LITERATURE REVIEW 
The term ‘Geopolymers’ was coined by Joseph Davidovits in the 1970s for alumino-silicate 
polymers synthesized from rock-forming minerals (1), which were used as fire-resistant coating 
materials. This initial work was then expanded and is now present in various applications such as: 
fire protection for cruise ship (14), resin of high-temperature carbon-fiber composite (15), thermal 
protection for wooden structure (16), and more (6). Moreover, geopolymers have been further 
developed and now find a wide range of applications such as: construction material alternative to 
OPC (6), nuclear waste immobilization (17), water purification (heavy metal immobilization) (17), 
and low-energy processing route to ultra-refractory ceramics powder (such as SiC and Si3N4) (18). 
Geopolymer has often been hailed as the next-generation “green” alternative to OPC, however, 
this claim has not been properly backed up. In general, most of the geopolymer studies back up 
the claim with the significant reduction in CO2 emission as some of the environmental evaluation 
of geopolymer does as well (19, 20). However, as stated in Provis and Van Deventer’s book (6), 
life cycle analysis is much more than just evaluating the greenhouse gas emission (also referred to 
as global warming potential, GWP). There are also several other important parameters to evaluate 
in a life cycle analysis such as: depletion of resources, acidification, human toxicity…etc. The 
more completed studies (6, 7) that do look at all the parameters were both able to demonstrate the 
benefits of using geopolymer for their specified application and local conditions, but neither drew 
very definite conclusions. Instead, they concluded that the result will vary a lot case-by-case since 
geopolymer is a very complicated system that has a wide range of feedstock material, and many 
of these materials do not have well-established means of transportation either. 

During the geopolymerization process, reactive alumino-silicate minerals dissolve in highly 
alkaline solutions in the presence of an alkali hydroxide and silicate solution to form common Si 
and Al species, which in turn form chains of Al-O-Si and Si-O-Si bonds during a polycondensation 
process during which water is expelled (1). The polycondensation process continues to develop 3-
D net like features, and ultimately into an amorphous rigid gel known as geopolymer (3). Previous 
research shows that GP-stabilized soil has unconfined compression strength (UCS) values ranging 
from 2-7 MPa after 7 days of curing (2, 21). However, it is difficult to reproduce these results due 
to the differences in both soil and precursor (e.g. fly ash) composition. Additionally, most 
methodologies from existing literature are heavily application-driven and does not thoroughly 
explore the fundamental science behind the results. It has proved challenging to create an 
experimental procedure that would allow a systematic study to thoroughly understand how the 
different parameters affect GP’s effectiveness as a soil stabilizer efficiently. In both papers by 
Zhang et al. (3, 21) the group conducted well-organized studies on GP’s effectiveness as a soil 
stabilizer, with the first paper finding an effective amount by focusing on mechanical properties, 
and the second paper further investigating other engineering soil properties at and around the 
effective amount. It is evident from previous literature that GP works as soil stabilizer and is 
superior to OPC and lime in terms of durability, but still lacks the attraction due to coming up short 
in terms of mechanical properties. Based on the review of literature, it is suggested that the usage 
of GP as soil stabilizer would be more attractive if the same mechanical properties can be achieved 
while utilizing equal or lesser amount of GP to that of OPC and lime. We have followed Zhang et 
al.’s (3, 21) work by starting out with metakaolin since their work contains the most description in 
methodology, and it is the better choice to gain fundamental understandings on how GP work as 
soil stabilizers.  
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Many parts of US, including region 6 have many issues due to low strength and high swell-
shrinkage characteristics of expansive soils (22-27). Excessive droughts often cause significant 
cracking at the surface of embankments and pavements (28-30). Various traditional chemical and 
some non-traditional stabilization techniques have been used in Region 6 and around the world to 
mitigate these issues (31-39). Texas and its surrounding states experience cycles of intense 
droughts and flooding, which induces significant volume changes and pavement distress (10, 37, 
40). Durability studies attempt to replicate real-world climate scenarios, so long-term performance 
of treated soils and cement mixtures can be understood more realistically. Several studies have 
been conducted on the durability testing of lime-treated soil, especially in Texas (41). The Texas 
Department of Transportation (TXDOT) has its own standards on conducting durability testing on 
lime-treated soil. On the other hand, there are very few studies conducted that have determined the 
durability of geopolymers or geopolymer-treated soil. A fly-ash based geopolymer submerged in 
a sulfuric acid-water solution (1:4 ratio) having pH =3.0 for a period of 120 days and was found 
to have a 40% decrease in unconfined compressive strength (42). Another study conducted 
durability tests as per ASTM D559 for fly ash-based geopolymer-treated soil and observed that it 
lasted for about 11 cycles (43). 

Although GPC concrete has been of interest since the early 2000s (44-46) and achieved strength 
that is on par with OPC concrete, a very limited work has been done on GPC processed from 
metakaolin and GPC mortar which only uses fine aggregate such as sand. The late is especially 
important for transportation infrastructure as GPC can be used as a pavement when mixed with 
sand, or for stabilization of sand rich soil or subgrade.  From the report summarized by Shayan in 
2016, most of the studies since then focuses on optimizing fly ash-based GPC concrete as well as 
the usage of elevated temperature curing (47), which are not ideal studies for implementation and 
commercialization. It is interesting to note that there’s a study that claim elevated temperature 
curing is viable for implementation since geopolymerization is an exothermic reaction, and when 
processing larger samples it will practically be self-heating (48). That being said, a construction 
company (Wagners) in Australia built an airport using GPC concrete using slag and fly ash as the 
precursor. This major project was made possible with 40,000 m3 of GPC concrete, however, it also 
took ~10 years of research and development (49). Even though utilizing fly ash increases the 
economic and environmental appeal, the variation of fly ash from source to source impacts the 
reproducibility of the results. In addition, increasing demand and prices of fly ash, tougher with its 
limited availability, makes metakaolin more attractive precursor material for GPC.  

Metakaolin (MK)-based GPC have been extensively studied to gain a better understanding of GPC 
on the fundamental level since it is a pure aluminosilicate source, which allows reproducibility 
regardless of source, for example: physical evolution with temperature (50-52), formation of 
crystalline phases (53, 54), and nuclear magnetic resonance (NMR) studies (55). Even so there are 
only a handful studies on mechanical properties (50, 51, 56-60) or long-term durability (61, 62) 
utilizing MK-based GPC compared to similar studies utilizing fly ash (FA)-based GPC. Few are 
actually well-organized, and the conclusions do not always agree across the studies. Recent studies 
suggest that wet-dry cycle of GPC could potentially affect durability of the GPC concrete 
structures (47, 61, 63, 64) and stabilized soil due to carbonation reaction (reaction with ambient 
CO2 in humid environment or high water content) (65-68), decomposition and leaching of the 
alkali activators (64, 69-73), alkali-aggregate reaction (64, 72, 74), volumetric changes and micro-
cracking (75), etc.  Reaction of GPC with environmental water not only affects durability of GPC 
products, but also could potentially have deleterious environmental effects due to leaching of alkali 
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activators from GPC into surrounding (70). Based on the limited studies from existing literature, 
there’s a need for a comprehensive parametric study that can be served as a baseline guidance for 
future GPC studies. Hence, this report will present a novel study to extensively study the effects 
of varying chemical composition parameters on MK-based GPC for pavement infrastructure. 
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4. METHODOLOGY 
The primary focus of this research is to develop GPC with desired properties and to evaluate the 
long- term performance of GPC and GP-treated soils in real service conditions found in Region 6. 
To this end, the research was categorized into five tasks: (1) synthesis and characterization of GP, 
(2) material development and characterization of GPC, (3) characterization of different soils 
typical for Region 6, (4) GP treatment of soils, and (5) long-term performance testing of 
geopolymer treated soil, and (6) characterization of GPC/sand. The following sections detail the 
procedures and outcomes of the tasks conducted to synthesize GPC and evaluate their long-term 
performance.  

4.1. Synthesis and Characterization of GP  
The GPs used in this research were synthesized by researchers using sodium or potassium 
hydroxide (Mallinckrodt Chemicals, NJ), amorphous fumed silicon (IV) oxide (Alfa Aesar, MA) 
with 350- 410 m2/g specific surface area, MetaMax® (BASF Catalysts LLC, NJ) metakaolin, and 
deionized water. Metakaolin is a purer alumino-silicate source than the more commonly used fly 
ash with higher impurities and was therefore used as a precursor for GP synthesis in this research.  

The sodium or potassium hydroxide was dissolved in deionized water to create a highly alkaline 
solution to process the alkali metal cations. The amorphous fumed silicon oxide was then added 
to adjust the SiO2/Al2O3 ratio of the final product as desired, to create the activating solution for 
the synthesis of geopolymer. The activating solution was then mixed with metakaolin, which is a 
high-purity activating aluminosilicate source in a high-sheared mixer for 6 minutes at 400 
revolutions per minute (RPM) to create a homogenized mixture, known as GP.  

4.2. Material Development and Characterization of GPC 

4.2.1. Parametric Study of GPC and GPC/Sand 
The framework behind the development of GPC for Group 1 and Group 2 samples in the Task 1 
is based on previous work by Lizcano et al. (4), in which the samples are small in size (i.e., 1 in. x 
1 in. cylinders) that allows a comprehensive parametric study of GPC composition to better 
understand the correct direction to maximize compressive strength. The important differences 
between this work and Lizcano et al. is that this study will evaluate the performance of both pure 
GPC binder samples and GPC/sand samples with varying percentages of testing sand according to 
ASTM C778 (76) while all curing under ambient temperature as oppose to elevated temperature. 
The second part of this study will then select few of the optimized compositions and test them 
according to ASTM C109 (2 in. cubes) (77) for better comparison to existing studies. However, 
the purpose of this study is to serve as a baseline and guidance for all future GPC mortar/concrete 
and GP soil stabilization studies. Therefore, the chosen raw materials and procedure have a heavy 
emphasis on reproducibility. Note that a total of 16 sets of pure GPC and GPC/sand and GPC soil 
samples with different composition were synthesized and tested instead of the proposed 8 set of 
samples (samples in Group 1 and Group 2). The 16 compositions are chosen to investigate the 
effect of cation (Na vs. K), SiO2/Al2O3 ratio (2-4), and the water/solids ratio. Note that all GPC 
samples with different compositions are labeled as KXYZ or NaXYZ, where the first letters denote 
potassium (K) or sodium (Na) while XYZ numbers denote SiO2/Al2O3 ratio, water to solid ratio 
used to prepare GPC, and Na/Al or K/Al ratio respectively. For example, GPC sample K421 is 
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sample prepared with K-activator, and SiO2/Al2O3=4, water/solid ratio=2, and K/Al=1. All the 
compositions used throughout the different studies are listed and summarized below in Table 1. 

Table 1. List of all GP compositions used throughout the different studies. 

Composition Pure GPC +  
GPC/Sand Study 

GP/CL 
Study 

GP/Soil 
Durability 

Na241 x   
Na251 x   

Na(2.5)31 x   
Na(2.5)41 x   

Na321 x   
Na331 x   
Na341 x   
Na421 x   
Na431 x   
Na441 x   
K231 x   
K241 x   

K(2.5)21 x   
K(2.5)31 x   

K321 x   
K3(2.5)1  x  

K331 x   
K(3.5)(2.23)1  x  

K421 x x  
K431 x x x 
K441 x x  

K(4.5)(1.82)1  x  
 
For GPC/sand samples, pure GPC was manually mixed with testing sand in the proportion amount 
varying from low percentage to standard percentage in terms of dry GPC to dry sand ratio, i.e. 
from 8% to 27% GPC into sand in a mixing bowl then the mixture was poured and manually 
compacted into 1 in. x 1 in. plastic cylindrical molds. Note that 27% GPC in sand has the same 
binder to sand ratio as standard OPC mortar according to ASTM C109 (1-part OPC with 2.75-part 
sand) (77).  

The samples’ dimensional and weight change throughout the curing process was documented to 
measure shrinkage and water loss. Shrinkage was calculated by assuming initial dimension of the 
sample is the same as the inner dimension of the mold, and the diameter of the sample is taken as 
the average of 3 measurements. The density and open porosity of the samples was measured 
through Archimedes’ principle after 7 days of curing in a sealed environment then demolded and 
dried for another 7 days in ambient conditions. Density and open porosity were calculated with 
Equations 1 and 2 as specified in ASTM C830-00 (78). To measure mwet, the samples were 
submerged in 200 proof ethanol, and placed into a vacuumed desiccator for 20 minutes. The 
samples were then removed, and the surface was dried with cloth towel to remove excess ethanol 
before measurement. The samples were then left in ambient condition for a day so the ethanol 
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would evaporate, after which they were tested with an 810 Materials Testing System (MTS System 
Corporation, MN) in compression mode with constant displacement rate of 0.60 mm/min. 

𝝆𝝆 =  𝒎𝒎𝒅𝒅𝒅𝒅𝒅𝒅∗𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆
𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘−𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔+𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘

 [1] 

where:  
ρ = Measured density (g/cm3); 
mdry = Dry mass (g); 
ρethanol = Density of ethanol (g/cm3); 
mwet = Mass of sample with ethanol occupying the open pores (g); 
msuspended = Mass of sample while suspended in ethanol (g); and 
mwire = Mass of the part of Archimedes’ set up that’s used to suspend sample in ethanol (g). 

𝑷𝑷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 =
𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘−𝒎𝒎𝒅𝒅𝒅𝒅𝒅𝒅

𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘−𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔+𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘
∗ 𝟏𝟏𝟏𝟏𝟏𝟏% [2] 

where:  
Popen = Open porosity (%). 

For comparison, small OPC samples were also processed using TXI Portland Cement Type I/II 
mix (TXI, TX) purchased from Home Depot using water/solids weight ratio of 0.42. All processing 
and characterization of OPC samples were kept consistent with GPC samples for best comparison. 

After the comprehensive parametric studies, the best performing, and the worst performing 
compositions will be selected for materials characterizations such as SEM, EDS, and NMR to get 
a better understanding of the underlying mechanisms behind the difference in properties. SEM 
analyses of all samples were carried out with the JEOL JSM-7500F (JEOL USA Inc, MA) FE-
SEM to study the microstructure of the samples. The characterized samples were not sputtered and 
characterized under low voltage to obtain the best representative morphology. 

4.2.2. Long-Term Performance Testing of GPC  
Once the parametric study on the UCS of GPC and GPC mortar is completed. The optimized 
compositions will be selected, and the samples will be processed to follow the sample size 
requirement for long-term performance test such as leaching and wet/dry cycle as proposed in Task 
3. No result is presented for this portion since the study is still in progress. 

4.3. Soil Characterization 
Two expansive clay subgrade soils commonly found in North Texas were obtained from 
Lewisville, TX and Alvarado, TX to be stabilized with GP. The main criterion for the selection of 
subgrade soils was based on their Plasticity Index (PI), which ranges between 10 to 60, ensuring 
the expansive characteristic of the soils. All subgrade soil testing was conducted on oven-dried, 
crushed and pulverized soil. 

Based on the particle size distribution tests, the clay from Lewisville, TX of the Eagle Ford 
geological formation was classified as a high-plasticity clay (CH), while the clay obtained from 
Alvarado, TX was classified as a low-plasticity clay (CL) as shown in Table 2. 
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Table 2. Summary of gradation tests: Sieve analysis and hydrometer tests. 

Soil Location Gravel Sand Silt Clay USCS Classification 
Lewisville 0.0% 9.8% 34.3% 56.0% CH 
Alvarado 0.0% 33.6% 33.9% 32.5% CL 

 
The Atterberg limits, which include the liquid limit (LL), plastic limit (PL), and PI of the cohesive 
subgrade soils, were determined on the soil fraction that passes the 425-µm (No. 40) sieve (see 
Table 3), as per ASTM D4318-17 (79). The specific gravity tests of the two untreated soils of this 
study were conducted as per ASTM D854-14 (80) and determined using a water pycnometer of 
soils passing the 4.75 mm (No. 4) sieve. The Atterberg limits and specific gravity values of the 
selected soils are shown in Table 3 and are found to be consistent with the expected values. Note 
that CH has a very high LL of 80% yielding a significantly high PI of 53%, while CL has a PI of 
17% that just qualifies the soils as highly plastic. 

Table 3. Summary of Atterberg limits and specific gravity tests. 

Soil Type LL (%) PL (%) PI (%) GS 
CH 80 27 53 2.78 
CL 42 25 17 2.69 

 
Moisture-density relationships of untreated soils were determined using standard proctor and 
Harvard Miniature compaction tests, as per ASTM D698-12 (81) and GR-84-14 (82) respectively. 
The compaction tests were conducted to determine the optimum moisture content (OMC) at which 
the soils are compacted to its maximum dry density (MDD). The compaction test results of the 
two untreated soils are given in Table 4. Note that, as expected CL has a higher MDD and lower 
OMC than CH. 

Table 4. Summary of moisture-density relationship tests of untreated soils. 

Soil Type MDD 
(g/cm3) OMC (%) 

CH 1.57 24.2 
CL 1.72 19.9 

 
X-ray diffraction (XRD) and X-ray fluorescence (XRF) were performed on both subgrade soils to 
identify the mineral and chemical compositions. XRD scan was done using Siemens D5000matic 
system (Siemens AG, Germany) equipped with a ceramic copper tube. The samples were prepared 
by first grinding to ~400 mesh then packed into a plastic holder and scanned over the range of 3-
61o 2θ using Cu-Kα radiation. Both the XRD scan and analyses (Table 5) were done through the 
service of The Mineral Lab (Golden, CO). XRF scan was done using Rigaku Supermini200 
(Rigaku Corporation, Japan), and each sample was scanned twice for qualitative and quantitative 
information (Table 6). As the name implies, qualitative scan gives a rough idea of the chemical 
composition of sample, but cannot detect light elements properly, hence the lack of Na2O. 
Quantitative scan gives a more accurate composition, but for each elements a standard is needed 
to obtain the data. Since we do not have a standard for TiO2, the quantity for it is missing. 
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Table 5. Mineral composition of soils from XRD. 

Mineral Name Chemical Formula CL (%) CH (%) 
Quartz SiO2 43 14 
Calcite CaCO3 40 17 

Kaolinite Al2Si2O5(OH)4 <5 5 
Smectite (Ca,Na)x(Al,Mg,Fe)4(Si,Al)8O20(OH,F)4•(OH,F)2 <10 38 

Mica/illite (K,Na,Ca)(Al,Mg,Fe)2(Si,Al)4O10(OH,F)2 - 18 
Plagioclase feldspar (Na,Ca)Al(Si,Al)3O8 <3? <5 

K-feldspar KAlSi3O8 <5 <3? 
Anatase TiO2 - <2? 

“Unidentified” ? <5 <5 

Table 6. Chemical composition of soils from XRF. 

CL (wt%)          
 MgO Al2O3 SiO2 SO3 K2O CaO TiO2 Fe2O3 Na2O 

Qual 1.08 15.10 46.36 0.12 1.38 27.47 1.17 7.32 - 
Quan 0.83 15.88 42.85 -0.21 1.04 20.28 - 4.57 0.09 

CH (wt%)          
 MgO Al2O3 SiO2 SO3 K2O CaO TiO2 Fe2O3 Na2O 

Qual 1.70 20.57 50.67 1.33 2.83 10.54 1.35 11.02 - 
Quan 1.51 19.91 50.72 0.50 2.51 9.25 - 9.95 0.24 

4.4. Geopolymer-Treatment of Soils 
Since GP has multiple parameters (i.e. chemical composition, curing time and temperature) that 
depend on each other, the preliminary study primarily determined the relationship between 
mixability and water ratio for both sodium and potassium-based GP. It is worth noting that 
increasing water and silica content decreases viscosity and increases curing time, and that sodium-
based GP are more viscous than potassium-based GP at the same water content. Taking into 
account all these different parameters as well as the mechanical properties from Lizcano et al. (4), 
it was decided that GP with molar ratio of Si/Al = 2 and Al/K = 1 (GP-ID: K421, K431, K441) 
would produce the best candidates to maximize both strength and mixability/workability for soil 
stabilization. The details regarding the synthesis process has also been published by the authors 
(83, 84).  

The K431 GP mix was used to stabilize both selected soils at ratios of 4, 10, and 15% by weight 
of metakaolin to dry soil as proposed in Task 2 Group 3. Water was initially added to dry soil to 
bring it to its OMC, then covered and placed in a moisture room overnight so the moisture 
equilibrates throughout the soil. Once the soil was removed from the moisture room, the GP 
mixture at its appropriate ratio was added to the soil at OMC and mixed thoroughly. All treated 
soils were compacted at the OMC of the respective soil-GP mixtures and to 95% of their MDD. 
Treated samples were cured for a period of 0 (6-hour), 7 and 14 days and tested for durability. 
Curing of GP-treated soil was undertaken in a moisture room at 100% RH. Unconfined 
compressive strength, and pH tests were conducted on geopolymer-treated soil samples. 

However, it is still worth to investigate effect of each parameters in the GP-soil system. Therefore, 
parametric study is carried out to observe the effect of each parameters on UCS with CL. The 
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parameters include %MK, cation (Na vs. K), Si/Al ratio, H2O/Solids ratio in GP, and total H2O % 
(to dry soil). All the samples done in this parametric study are cylindrical with dimension of 
roughly 1 in. diameter by 2 in. height and have been cured at room temperature at 100% relative 
humidity (RH) for 7 days before testing. This study actually goes beyond the scope of what was 
proposed, since various clay minerals have been shown to geopolymerize in alkaline environment 
using either NaOH or KOH (85). Therefore, it would be critical to show how the baseline study 
done from Subsection 4.2.1. applies to a more complicated system.  

4.5. Long-Term Performance Testing of Geopolymer-Treated Soil 

4.5.1. Durability Testing  
Durability testing of soil-cement mixtures is usually conducted as per ASTM D559 method (86), 
where specimens are subjected to alternating cycles of wetting and drying to see how they perform 
in the long run. Soil-cement mixture are compacted to 95% of their MDD at their OMC and cured 
in a moisture-control room for seven days. After the seven-day curing period, the soil-cement 
mixtures are subjected to wet-dry cycles. For each wet-dry cycle, the specimen is submerged in 
water for a period of 5 hours and then placed in an oven at 70°C for 48 hours. This wetting and 
drying process is repeated for 12 cycles. After each wetting or drying cycle, the specimen is 
weighed, and its dimensions measure to mass and volume change respectively. In addition, the 
specimen is also brushed with a wire-scratch brush to estimate soil-cement loss. 

Geopolymer-treated soil specimens were tested as per the ASTM D559 standards (86), although 
they disintegrated during the first wetting cycle. As such, an alternative method known as the 
capillary soaking method was undertaken to address the effect of ingress of water into geopolymer-
treated specimen as part of durability testing for Task 3. The capillary soaking setup consisted of 
a container filled with coarse-grained sand filled with water up to the top of the sand layer (Figure 
1). A porous stone is placed on the water-filled sand and the soil specimen placed atop the porous 
stone.  

 
Figure 1. Durability setup by capillary soaking method. 
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After the prescribed days of curing, the GP-treated soil specimens are placed for capillary soaking 
for a period of 24 hours. The dimensions and mass of the soil sample are recorded just before and 
after the 24-hour period. After the capillary soaking period of 24 hours, the sample dimensions are 
recorded and then subjected to unconfined compressive strength testing.  

4.5.2. Leachate Testing  
In addition, leachate testing of geopolymer-treated samples was conducted as well using the setup 
as shown in Figure 2. This setup is a modified version of the one used by (87, 88). Both CL and 
CH soil are treated with the lowest and highest (4% MK, 15% MK GP) geopolymer application 
ratios in this study, cured for 7 and 28 days before being subject to leachate testing. The compacted 
soil specimen was placed within a latex membrane and submerged in water with porous stones at 
the top and bottom of the setup under a hydrostatic pressure of 4 ft. of water. The leachate is 
collected through the outlet at the base after a period of five hours. The purpose of the leachate 
test is to determine the leachability of the specimen based on the volume of leachate discharge as 
well as to determine the concentration of source alkali (potassium) ions in the discharged leachate.   

 
Figure 2. Leachate testing setup.  
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5. ANALYSIS AND FINDINGS  

5.1. Properties of Pure GPC 
Because GPC is often compared to the OPC. OPC samples were processed and characterized in 
the same conditions for the most accurate comparison. All the properties of the OPC samples are 
presented in Table 7 for later comparison with pure GPC. 

Table 7. Summarized properties of OPC. 

Property Result 
UCS at 14-day Curing 5923±865 psi (40.8±6.0 MPa) 

Shrinkage 0.86±0.11% 
Water Loss 29.58% to 28.67% to 21.25% (Week 0 to 2) 

Density 1.58±0.04 g/cm3 
Open Porosity 5.46±0.70% 

5.1.1. UCS of Pure GPC 
For the UCS study of pure GPC and GPC/sand, the original framework was to follow ASTM C109 
(77), which requires the samples to be 2 in. cubes. The limited results include the UCS from 3 
samples of Na331 and Na241 each and 1 sample of K241 (Figure 3). However, the testing was 
stopped at this point since the tests were approaching the limit of the load cell of the compression 
frame while the samples were expected to get even stronger as the test continues. Also, the values 
were lower than expected as the compositions were compared to the results from a previous study 
(56), so the hypothesis was that the GP did not fully cure within 7 days. Therefore, the new set of 
samples was prepared by a more extensive 2-step 14-day procedure starting with curing under 
sealed condition for 7 days followed by curing in ambient condition for another 7 days. 

 
Figure 3. UCS of pure GPC at 7-day curing according to ASTM C109. 

For a comprehensive parametric study of samples prepared using new curing conditions, it was 
necessary to test both Na-based and K-based GPC while ranging both the SiO2/Al2O3 and 
H2O/Solids ratios. Figure 4 shows preliminary compressive strength of pure GPC binder with 5 
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different compositions tested after the 2-step 14-days curing mentioned above. As expected, UCS 
increases with either decreasing water content in the GPC or increasing SiO2/Al2O3 molar ratio. 
However, these samples were tested without measuring water loss, density, and porosity; therefore, 
the test was restarted to ensure that all the proposed tests and measurements are carried out with 
the same set of samples. 

 
Figure 4. UCS of small GPC after 14-day curing. 

Because of large variability in compressive strength between samples with different composition, 
this study extended the 16 sets of pure GPC binder sample with different composition after 14-day 
curing that also included density/porosity measurements. Figure 5 and Figure 6 show the UCS 
results of those samples. As expected, the UCS decreases with increasing water/solids ratio while 
all the other parameters are constant. Diving deeper into Figure 5, it can be noticed that Na321 is 
an anomaly composition that does not follow the trend of better strength with higher SiO2/Al2O3 
ratio and lower water/solids ratio (compared to Na(2.5)31 and Na331). If Na321 were to follow 
the trend, it should have UCS of roughly 3 ksi or 20 MPa. This is because Na321 GPC gels quickly 
during processing and only allows the shear mixing for ~100 seconds even at the lowest speed 
(100 RPM), while all the other compositions are mixed for 300 seconds at much higher speed. 
This means Na321 is most likely not mixed properly due to low workability (i.e. not enough water 
in the system), and most likely has clumps of unreacted MK, which leads to the poor strength. It’s 
recommended that to fully optimize the strength for Na-based MK GPC, that compositions such 
as Na3(2.5)1, Na(3.5)21, and Na4(1.5)1 have to be explored in the future. 

One of the downsides of using non-standardized sample dimension is that the numbers presented 
here only provide a qualitative understanding, and they might not necessarily be reproducible. 
Therefore, it will be helpful to remake some of the selected compositions into a standardized 
dimension (2 in. cube for ASTM 109), so that future studies can make valid quantitative 
comparison with our results. Looking at Na241 and Na331 in Figures 3 and 5, it can be seen that 
the average values match up well. However, the variation on smaller Na331 in Figure 5 is much 
larger than that in Figure 3, which could be an indication that small samples resulted in the high 
variation. 
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Figure 5. UCS of Na-based small GPC after 14-day curing. 

As shown in Figure 6, K-based GPCs do not follow the hypothesized trend as the Na-based GPCs 
do for SiO2/Al2O3 ratio. This could be due to the inherently slower geopolymerization kinetics 
between K-based GPCs and Na-based GPCs. Therefore, it would be interesting to revisit the 
composition after a longer period of curing (i.e. 28 days, or even 90 days) and then once again 
compare the strength. Since previous work (89) has demonstrated K-based MK GPCs cured at 
elevated temperature with better mechanical properties comparing to Na-based MK GPCs. For 
further optimizing the early strength of K-based GPC, it is worth investigating additional water 
reduction at higher SiO2/Al2O3 ratio with compositions such as K3(2.5)1, Na(3.5)(1.5)1, and 
K4(1.25)1.  

Comparing K421 and K431 values between Figures 4 and 6, the values differ drastically. The only 
significant difference in processing between these 2 sets of samples is that the K421 and K431 
with lower values from Figure 6 were tested after density and porosity measurements. Since the 
samples were submerged in ethanol and had ethanol forced into the open porosity under vacuumed 
condition, it’s possible that the process resulted in the formation of internal cracks for some 
composition. This can be easily tested by retesting some of the compositions without 
density/porosity measurements. 
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Figure 6. UCS of K-based small GPC after 14-day curing. 

It’s clear that OPC and GPCs cured at elevated temperatures (47) have better strength when 
compared to almost all the GPC compositions except for Na421 after 14-day curing at ambient 
conditions. However, GPC can still have significant strength development into the range of 20-35 
MPa as it was showed in the previous study (47) when cured at elevated temperature for just 1-2 
days. Therefore, it will be worth investigating the 28-day ambient-cured strength of GPC 
compositions with high SiO2/Al2O3 ratio and low water/solids ratio, as well as investigate the 
proposed compositions above for further optimization. 

5.1.2. Shrinkage and Water Loss of Pure GPC 
As shown in Figure 7, most of the compositions shrink on average for only 0.55-0.65% during 
curing of 14 days, except for Na421, which is slightly higher, and Na241/Na251 which have low 
shrinkage. However, Na241/Na251 are weak and most likely have incomplete geopolymerization. 

 
Figure 7. Shrinkage of Na-GPC. 
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Interestingly, K-based GPC shows a slightly different behavior. From Figure 8, most of the 
compositions shrink between 0.65% and 0.75% during curing. Samples with high SiO2/Al2O3 ratio 
compositions (K421 and K431) have extremely high shrinkage values in comparison. When 
compared to OPC (Table 7), it’s clear that all Na-based GPC have advantage over OPC, except 
Na421; the latter happens to have the highest UCS value. On the contrary, K-based GPC’s 
shrinkage values are within the standard deviation of shrinkage measured in OPC during curing, 
with exception of K421 and K431, which shrinkage during curing is well above that of OPC. 

 
Figure 8. Shrinkage of K-GPC. 

Water loss of Na-based GPCs during curing for 14 days determined from the mass changes of the 
samples and results are summarized in Figure 9. It is interesting to note that most of the 
compositions are around 20wt.% water after 2 weeks after mixing, similar to OPC (Table 7), 
regardless of their initial water content. With the exceptions of Na241 and Na421 which had very 
minimal water loss for the reason that are not clear at this moment.  
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Figure 9. Water loss curve of Na-GPC. 

On the contrary, since K-based GPCs have less initial water %, they also end up with less water in 
the system. The majority of the compositions contain ~10-15wt.% of water (see Figure 10). This 
difference in the water content between Na- and K-based GPC can account for higher shrinkage 
of the K-based GPC when compared to Na-based ones and OPC. 

 
Figure 10. Water loss curve of K-GPC. 

5.1.3. Density and Open Porosity of Pure GPC 
Density and open porosity are properties that are closely related. If the bulk sample has low 
porosity, then it most likely has higher density, and vice versa. From Figure 11, all the GPC 
samples are plotted in relation to porosity and density. All but one outlier (this sample contained 
entrapped air bubbles) follows a clear trend. It can also be noted that all the points in the top left 
corner, i.e. low density and porosity samples, are GPC with low SiO2/Al2O3 ratio and high 
water/solids ratio.  
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Figure 11. Porosity vs. density plot for pure GPC binder. 

Conventionally, it’s expected that higher density results in better mechanical properties for GPCs 
(47). However, as Figure 12 shows, the UCS of the pure GPC binder samples peaked at ~1.5 g/cm3, 
and any samples with higher density exhibits drastic decrease in UCS. The two specific 
compositions are Na321 and K231, which coincidentally have been the outlier compositions in all 
the other properties. A possible explanation could be that these two compositions did not have 
enough water in the system for complete geopolymerization and sufficient workability, which then 
left large pores within the paste caused by entrapped air during mixing.  

 
Figure 12. UCS vs. density plot of pure GPC binder. 

5.2. Properties of GPC/Sand  

5.2.1. UCS of GPC/Sand samples 
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Figure 13 shows UCS of GPC/sand samples (i.e. GPC mortar) with various amount of GPC 
(namely 8, 15, and 27wt.%) and various GPC compositions (namely K441, Na341, and Na441). 
Figure 13 clearly indicates that adding more GPC to GPC/sand mixture leads to significant 
increase in compressive strength. At 8% GPC, the UCS does not vary significantly among samples 
with different GPC compositions; however, at 27% GPC, the effect of composition becomes more 
significant. The size of the error bars increases significantly as UCS increases. This could indicate 
that a larger samples size is needed to obtain more statistically representative results according to 
Weibull distribution (90) and recommendations in the literature (91).  

 
Figure 13. UCS of small GPC/sand at various % after 14-day curing. 

For further compositional study, GPC/sand samples with 27wt.% of GPC of various compositions 
(total of 8 different GPC compositions for both Na and K activated GPCs) were processed and 
tested in compression after curing for 14 days. Results in Figure 14 for Na-based GPC/sand 
samples show higher UCS values, when compared to pure GPC (Figure 5). However, values only 
follow the expected trend for the lower SiO2/Al2O3 ratio. Once SiO2/Al2O3 ratio is above 3, the 
UCS seems to saturate and even show some decrease for Na421, which is the pure GPC 
composition with the highest strength in this study. One possible explanation for this behavior is 
the alkali-aggregate reaction: since Na421 activator has a higher pH, it can easily lead to solution 
of SiO2 from the surface of the sand particles into the system and increase the SiO2/Al2O3 ratio in 
the GPC binder. As Lizcano pointed out in her work (56), SiO2/Al2O3 ratio > 4 greatly decreases 
the UCS. Another composition with interesting behavior is Na321, which was pointed out to be 
the anomaly composition; however, when sand is added, the additional mixing most likely allowed 
the system to geopolymerize fully. In addition, alkali-aggregate reaction most likely occurred in 
this system, but in this case, it actually helps make the system more workable (easier diffusion and 
transport of units) resulting in a higher UCS. 
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Figure 14. UCS of small 27% Na-GPC mortar at 14-day curing. 

From Figure 15, it can be seen that the UCS value of K-based GPC/sand samples also increased 
significantly when compared to pure K-based GPC (Figure 6) by addition of 27wt% of sand to the 
system. 

 
Figure 15. UCS of small 27% K-GPC mortar at 14-day curing. 

5.2.2. Shrinkage and Water Loss of GPC/Sand  
Across the board, the shrinkage of GPC/sand during the 14-day curing at the ambient temperature 
decreased with the addition of sand, when compared to the pure GPC. This observation is valid for 
both Na-based (Figure 16) and K-based (Figure 17) GPC/sand samples. The large error bars 
observed in both figures below are most likely from the combination of small sample size (25.4 
mm), low shrinkage values, and measurement tool resolution (caliper with 0.01 mm resolution). 

0

5

10

15

20

25

30

35

40

0

1

2

3

4

5

6

Na 241 Na 251 Na
(2.5)31

Na
(2.5)41

Na 321 Na 331 Na 421 Na 431

U
CS

 (M
Pa

)

U
CS

 (k
si

)

GPC Composition

0

5

10

15

20

25

30

35

40

0

1

2

3

4

5

6

K 231 K 241 K (2.5)21 K (2.5)31 K 321 K 331 K 421 K 431

U
CS

 (M
Pa

)

U
CS

 (k
si

)

GPC Composition



22 

 
Figure 16. Shrinkage of 27% Na-GPC/Sand. 

 
Figure 17. Shrinkage of 27% K-GPC/Sand. 

Water loss data for GPC mortar is not presented here, since the trend is very similar to pure GPC 
binder but at a smaller percentage of the overall sample. 

5.2.3. Density and Open Porosity of GPC/Sand 
Unlike the clear trend with pure GPC binder, Figure 18 does not show a clear trend initially. 
However, with a closer investigation of the Na-based GPC mortar (circle) points, it can be 
observed that they follow the expected downward (increasing density results in lower porosity). 
Although the K-based GPC mortar (triangle) have 5 points with a clear trend, the other 3 points 
are scattered. This could be due to processing of GPC mortar samples; if not well-packed, can lead 
to variance. 
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Figure 18. Porosity vs. density plot of 27% GPC mortar. 

Similarly, Figure 19 does not exhibit a clear trend. Most likely due to a similar reason as above, 
where the GPC mortar samples contain a small amount of GPC. Another factor could be poor 
processing during sample fabrication. 

 
Figure 19. UCS vs. density plot of 27% GPC mortar. 

5.3. SEM of GPC/Sand 
To fully understand the behavior between the aggregate (sand) and GPC, it is important to 
investigate the morphology at the interface of the 2 phases. Selected and typical SEM images, 
GPC, sand, and GPC/sand samples are shown in Figure 20 GPC has a nanoporous morphology as 
expected from previous published results (92).  
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Figure 20.  SEM micrograph of GPC in: (a) Low Magnification - 5.5kX, (b) High Magnification - 27kX; Sand in (c) Low 
Magnification - 37X, (d) High Magnification - 2.7kX; GPC mortar in (e) Low Magnification - 40X, (f) High Magnification 
- 7.5kX 

On the contrary, sand particles have a dense morphology, and the average size is on the order of 
100 μm. As shown, we cannot observe the interface of the GPC mortar due to the apparent good 
adhesion between GPC and sand. In order to observe the interface morphology between the two 
phases, it will be necessary to use high-precision sectioning instruments such as a high-speed saw 
to view a clean cross-section of the GPC/sand specimen. From there, another SEM can be 

Na 341 
GPC 

 
(a) (b) 

Sand 

 
(c) (d) 

Na341 
GPC/Sand 

 
(e) (f) 

1μm 500nm 

500μm 5μm 

100μm 1μm 



25 

performed and possibly in situ mechanical testing, such as micro/nano indentation to understand 
the adhesion behavior quantitatively. 

5.4. Parametric Study of UCS in GP-CL System 
From the effect of %MK in Figure 21, it agrees with the results on K431 that there’s a significant 
increase when increasing the dosage above 4%; however, increasing from 7.5% to 10% resulted 
in a small decrease. This could be due a low H2O%, resulting in the GP not having enough H2O to 
fully geopolymerize. 

 
Figure 21. UCS trend with varying %MK from K421 at 7-day curing. 

For the SiO2/Al2O3 ratio test in Figure 22, the sample set are all using 4% MK with K421 GP while 
keeping the H2O/Al2O3 ratio constant at 10. Keeping this ratio constant will result in similar 
viscosity, according to Lizcano et al. (4). As expected with all the other literature findings, 
SiO2/Al2O3 ratio is most optimal around 3.5 to 4, since the UCS from the 2 values are do not have 
any statistical significance. However, for the sake of the study, SiO2/Al2O3 equal to 4 is concluded 
to be the most optimal value and used to further in the study. 
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Figure 22. Effect of SiO2/Al2O3 ratio at 4% MK and H2O/A2O3=10 on UCS. 

The effect of H2O/Solids ratio for GP is not easy to predict, since it dictates viscosity, workability, 
and porosity significantly. For example, if the ratio is too low, then the GP will not mix well with 
the soil; on the other hand, if the ratio is too high, the resulted GP will be porous and weak. From 
Figure 23, it is shown that the optimal H2O/Solids ratio is 3 for the K4_1 composition. 

Figure 23 shows the effect on strength when GP-soil is dried. As expected, the strength increases; 
however, K431 did not exhibit the expected behavior. This is likely an anomaly and needs to be 
repeated to obtain results that are more statistically representative.  

 
Figure 23. Effect of H2O/Solids ratio and drying with 4% MK + CL at 7-day curing. 

Continuing the testing with K431, Figure 24 demonstrates the parabolic behavior with total H2O% 
and the significant increase in strength upon drying (except at 20% which is an anomaly as 
mentioned above). The effect of total H2O% is expected: there is a change in maximum dry density 
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with the change of H2O%. Therefore, UCS in relation to the total H2O% exhibits a similar 
behavior, and in the case of 4% MK K431 + CL, 20% H2O seems to be the closest to the optimal. 
Interestingly, it appears that dried samples exhibit roughly the same UCS value no matter what the 
UCS percentage while wet. This could mean that the total H2O% does not matter during the process 
and that geopolymerization happens as long as the sample dries.  

 
Figure 24. Effect of total H2O% on UCS with 4% MK K431 + CL at 7-day curing. 

5.5. UCS of GP-Treated Soil 
The UCS of K431 geopolymer-treated soil samples cured in 100% RH for a period of 0, 7, and 28 days 
were tested. These tests were conducted at a strain rate of 0.03 in/min, so as to negate the influence of 
the shearing rate on the peak stress (25, 93). Figure 25 shows the UCS of geopolymer-treated CL at 
the ratio of 4%, 10%, and 15% Metakaolin in geopolymer to dry soil. All UCS samples were compacted 
at 95% of their respective MDDs and OMCs. The untreated CL specimen shows a UCS value of 15 
psi, while the 4% MK geopolymer treated CL specimens have a UCS of 44 psi after 28 days of curing, 
which is about a 190% increase in its UCS value compared to the untreated CL. The 10% and 15% 
MK geopolymer-treated CL also show significant increase in UCS in the range of 350-750%. It is 
observed that for the lower geopolymer treatment (4% MK GP), strength increase is almost immediate, 
while for the higher geopolymer treatments, the highest UCS is observed to be on the 28th day of curing.  
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Figure 25. UCS of geopolymer-treated CL soil. 

Similarly, UCS of geopolymer-treated CH is shown in Figure 26. The untreated CH shows a UCS 
value of 20 psi, while the 4% MK geopolymer-treated CH has a UCS of 40 psi after 28 days of curing, 
which is a 100% increase in its UCS value compared to the untreated CH. The 10% and 15% MK 
geopolymer-treated CH also show significant increases in UCS in the range of 200-500%. As observed 
in geopolymer-treated CL, strength increase in the lower geopolymer treatment (4% MK GP) is almost 
immediate, while for the higher geopolymer treatments, the highest UCS is observed to be on the 28th 
day of curing. On comparing both soil types, CL is observed to have much higher UCS values for the 
higher percentages of geopolymer application (10% MK, 15% MK) than CH for those sample 
application ratios of the same geopolymer. Note that for 15% MK geopolymer-treatment of both soils, 
significant strength increase is not attained until day 7 of curing. 

 
Figure 26.  UCS of geopolymer-treated CH soil. 
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5.6. pH of GP-Treated Soil 
Geopolymer-treated soils were tested for pH after a curing period of 0, 7, 14, 21, and 28 days. 
Conventionally, the lowest percentage of lime required to stabilize a soil is 12.4, which is the pH 
of a saturated lime solution. Elevated pH levels are known to significantly boost the dissolution of 
silica and alumina in clay, thus enabling them to interact with available cations. The subsequent 
consumption of the cations from the reactive solution releases H+ ions into the solution resulting 
in a decrease in pH.  As such, it is important to establish that a high-alkaline environment is 
provided for the initiation of required physico-chemical reactions. In addition, it is essential to 
determine that the pH does not drop drastically before the appropriate curing time to ensure enough 
reaction time.  Figure 27 and Figure 28 shows the variation in pH for GP-treated CL and CH 
respectively for different curing periods. The lime-cutoff pH of 12.4 is also shown in the plots for 
comparison. 

 
Figure 27. Variation of pH with curing time for geopolymer treated CL. 

From Figure 27, we observe that the higher application ratios (10% and 15% MK-GP) have pH 
around 13 at 0 and 7 days, while the 4% MK-GP has a lower starting pH of around 11.5. An overall 
6-8% decrease in pH is observed for all GP application ratios after 28 days. It is important to note 
that pH is observed to be below the lime-cutoff of 12.4 after 28 days. 
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Figure 28. Variation of pH with curing time for geopolymer treated CH. 

From Figure 28, we observe that overall pH of GP-treated CH is slightly lower as compared with 
GP-treated CL. The higher application ratios (10% and 15% MK-GP) have pH around 12.5 at 0 
and 7 days, while the 4% MK-GP has a lower starting pH of around 10.5. An overall 6-8.5% 
decrease in pH is observed for all GP application ratios after 28 days.  

5.7. Effects of Capillary Soaking on GP-treated Soil 
Durability testing using 24-hour capillary soaking of geopolymer-treated soil samples was 
conducted. The structural characterization of GP-stabilized soils that underwent durability testing 
are shown below in plots detailing changes in UCS after curing periods of 0, 3, 7, 14, and 28 days. 
Figure 29 shows the UCS of geopolymer-treated CL and CH after capillary soaking. 

 
Figure 29. UCS of geopolymer-treated soils after durability testing. 
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From the above plot, we see that untreated soils have significantly low UCS (of 3 psi or lower) 
after durability testing. Geopolymer treatment of both soils shows significantly higher UCS values 
as compared to untreated soils. As expected, the higher the geopolymer application ratio, the higher 
the UCS value. The 4% MK geopolymer-treated soils both have a UCS of around 20 psi after 28 days 
of curing and are also observed to show a similar strength increase pattern. The 10% MK geopolymer-
treated CL and CH show UCS of around 30 psi and 40 psi respectively, after 28 days of curing. CL is 
found to have lower UCS value than CH when treated with 10% MK geopolymer. On the other hand, 
15% MK geopolymer-treated CL has slightly higher UCS than CH for the same application ratio. It is 
interesting to note that there is a difference of 30 psi in the 0-day UCS value of 15% MK geopolymer-
treated CL and CH, and then CL exponentially increases to obtain a higher psi than CH at 28 days. 
Compared to the untreated soils subjected to durability testing, geopolymer-treated CL and CH 
subjected to the same durability treatment show momentous increase in UCS after final curing: in the 
order of 450-3,600% and 1600-10,400%, respectively.  

Figure 30 and Figure 31 below show a comparison plot of UCS values for CL and CH respectively, 
with and without durability testing. Note that the bars with black-dotted borders indicate the UCS 
values after durability testing. 

 
Figure 30. UCS comparison of geopolymer-treated CL with and without durability testing. 

From Figure 30, there is a reduction in UCS values for CL specimens after being subjected to durability 
testing. As expected, the reduction in UCS values is significant for untreated CL. Higher GP 
application ratios show lower reduction in UCS values as compared to those CL specimens not 
subjected durability testing. The final percent decrease in UCS values of 4%MK, 10%MK, and 
15%MK GP-treated CL specimen subjected to durability testing is about 55%, 60% and, 15% 
respectively. A curing period of 28 days is observed to provide peak strength for all GP application 
ratios. The 28-day curing period is found to be most crucial for the highest GP application ratio (15% 
MK GP), while a 7-day curing period results in UCS values similar to those from a 28-day curing 
period for both the lower GP application ratios (4% and 10% MK GP). 
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Figure 31. UCS comparison of geopolymer-treated CH with and without durability testing. 

Similar to the trend n CL, there is reduction in UCS values for CH specimens (Figure 31) as well. As 
expected, the reduction in UCS values after durability testing is significant for untreated CH. Higher 
GP application ratios show significantly lower reduction in UCS values as compared to those CH 
specimens not subjected to durability testing. The final percent decrease in UCS values of 4%MK, 
10%MK, and 15%MK GP-treated CH specimens subjected to durability testing is 57%, 3%, and 12%, 
respectively. Unlike what was observed in CL, a 7-day curing period is found to be sufficient for all 
GP application ratios, as a 28-day curing period does not result in significantly higher UCS values for 
CH specimen subjected to durability testing. From Figure 30 and Figure 31, it is observed that the 
reduction in UCS of untreated CL and CH subjected to durability testing is in the range of 80% and 
95% respectively, when compared to untreated soils that did not undergo durability testing. 

 
Figure 32. Percent change in mass of geopolymer-treated soils after durability testing. 
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From Figure 32, we see that untreated CL and CH is observed to have roughly 7% and 20% 
increase in mass, respectively, due to 24-hour capillary soaking. It is observed that GP-treatment 
of soils reduces their capacity for water intake and total mass increase is observed to be under 2% 
for both GP-treated CL and CH. While immediate decrease of water intake is noted at 0 days, 
curing time of 7 days is found to be sufficient in reducing water intake. Note that 4% MK GP-
treatment on CH takes about 7 days for effective decrease in water intake unlike other treated 
specimens which have an immediate decrease. The highest application ratio of 15% MK-GP is 
observed to have the lowest percent change in mass for both treated CL and CH.  

 
Figure 33. Percent change in diameter of geopolymer-treated soils after durability testing. 

From Figure 33, untreated CL and CH is observed to have roughly 2% and 9% increase in 
diameter, respectively, due to 24-hour capillary soaking. Total diameter increase is observed to be 
under 0.5% for both GP-treated CL and CH. A curing time of 7 days is found to be sufficient in 
reducing diameter increase. It is observed that increased percent application ratios of GP, decreases 
the percent change in mass and diameter by decreasing its ability to draw water. 4% MK-GP 
application is observed to be sufficient to significantly reduce mass change and diameter increase 
in both treated CL and CH. Overall, geopolymer-treated soils are observed to significantly reduce 
the ability of soil to draw water as compared to untreated soils. 

5.8. Leachate Analysis of GP-Treated Soil 
Leachate testing was conducted on both soil types with the lowest and highest (4%, 15% MK) GP-
treatment applications after 7 and 28 days. Leachate was collected for a period of 5 hours to 
observe the rate at which the leachate was discharged. All leachate collected was tested for 
potassium ion concentration. Results of the leachate test are presented in Table 8. While it is 
difficult to recognize a distinct trend between the volume of leachate and geopolymer treatment, 
increasing dosages of geopolymer treatments larger curing periods are mostly observed to lower 
the volume of leachate produced. An anomalous spike in leachate is observed for GP-treated CL 
and CH at 7 and 28 days respectively. Overall, GP-treated CL soil was observed to produce less 
leachate that GP-treated CH. It is possible that the lower amounts of leachate produced correspond 
to specimens where the soil bonded well with the geopolymer, resulting in less voids and therefore 
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less pathways for water to leach through. Untreated CL and CH soils were found to have 24 and 
18 ppm of K+ in their respective leachates. K+ ion concentration was observed to be under 22,000 
ppm for both soils after 4% MK GP treatment, while it escalated exponentially in the 15% MK 
GP-treated leachate of both soils, especially after a curing period of 7 days. GP-treated CH was 
observed to have much lower K+ ion concentration was observed to be much lower for GP treated 
CH than for GP treated CL soils. It could be concluded that as curing time increases the 
concentration of K+ ions decreases due to lesser availability of K+ ions with reaction with clay 
minerals. 

Table 8. Summary of Leachate test: Leachate volume and K+ ion concentration in leachate. 

Soil 
Type 

GP 
Treatment 

Curing 
Time 
(days) 

Sample 
Mass (g) 

Leachate 
per hour 

(ml) 

K+ ion 
(ppm) 

CL 0%  0 1173 19 24 
CL 4% MK 7 1120 14 22,000 
CL 4% MK 28 1119 20 19,000 
CL 15% MK 7 1195 42 165,000 
CL 15% MK 28 1198 13 117,500 
CH 0% 0 1108 32 18 
CH 4% MK 7 1074 25 13,500 
CH 4% MK 28 1075 18 12,000 
CH 15% MK 7 1137 27 155,000 
CH 15% MK 28 1139 78 57,000 

 

5.9. Evaluation of Sustainable Benefits, Life Cycle Assessment, and Service 
Life Enhancement for Pavement Infrastructure 
A sustainable benefit and cost analysis were attempted. However, upon review of the cost of 
ingredients used to manufacture geopolymer, it was evident that the cost of these ingredients are 
at a level that when compared to that of cement or lime, an analysis would always lead to the 
selection of more commonly used products. The reduction of cost of geopolymer is estimated to 
occur with increase in demand, but this reduction cannot be estimated as many intangible variables 
are involved. Also, information regarding the distance from the manufacturing unit to the site has 
significant influence on the cost and sustainable benefits, and future development of manufacturing 
units of raw materials is difficult to predict. Due to these factors, it is difficult to complete such 
analysis. A field implementation project involving geopolymer-stabilized soil may be helpful in 
performing such an analysis. 

A hypothetical scenario is presented wherein, as a typical pavement is considered which is built 
on native high-plasticity soil. The benefits of geopolymer treatment in the form of service life are 
presented. The traffic criteria assumed for the study and the pavement design characteristics used 
are given in Table 9 and Table 10, respectively. The annual daily traffic (ADT) data was obtained 
from the Texas Department of Transportation for a roadway in the Dallas-Fort Worth area, which 
has significant distress due to presence of expansive soil.  
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Table 9. Traffic characteristics applied for sustainable benefit study. 

Traffic Criteria Assumption 
Annual Daily Traffic (ADT) 2500 vehicles/day 

Truck percentage 1.7% 
Annual growth in traffic 3% 

18-kip Equivalent Single Axle Load (ESAL) 1 million 
Initial Serviceability Index 4.5 
Final Serviceability Index 3.0 

Serviceability Index after overlay 4.2 
 

Table 10. Pavement design characteristics for sustainable benefit study. 

Case 
No. 

Hot Mix Asphalt (HMA) 
Layer Thickness (in.) 

Base Layer 
Thickness (in.) 

Stabilized subgrade 
Thickness (in.) 

1 2 8 12 
2 3 6 12 
3 2 7 12 

 
The control section has a 4-layer system, where the traditionally stabilized subgrade modulus E 
was assumed to be 22 ksi, while untreated subgrade has a modulus of 11 ksi. For all the cases, the 
modulus of the geopolymer-stabilized soil was assumed to be 27 ksi. The HMA (E = 500 ksi) and 
base layer (E = 50 ksi) properties remain the same as mentioned for each case. A software named 
FPS-21 was used to perform the analysis to compute service life of pavements. The details 
regarding the calculation are shown in Appendix A. 

From this case study, it was estimated that the use of geopolymer-stabilized subgrade of 12” 
thickness has approximately 10% increase in the overall service life, with an increase in rutting 
life of around 13% as compared to those for a typical pavement section which have subgrades 
stabilized using traditional stabilizers. Hence, geopolymer stabilized subgrade has great potential 
to enhance the performance of pavement infrastructure built on expansive soils. 
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6. CONCLUSIONS 
Geopolymer has showed promise as stabilizer for clayey soil in terms of volumetric expansion and 
shrinkage. In terms of UCS, the treated soil showed an increase of up to 400% compare to untreated 
soil with up to 15% MK. When looking at the trend of strength improvement throughout different 
%MK, there seems to be a significant increase in strength when increasing the %MK above 4%. 
It’s interesting that the GP treated soil showed significant immediate strength increase within 6 
hours of treatment, and then reaches maximum strength within 7 days of treatment. Similarly, the 
pH test also showed that the treated soil specimens also had a significant increase when %MK is 
raised above 4%. The trend and results from UCS do match the results from pH test of the different 
%MK treated soil specimens since GP should have a more completed reaction at higher pH and 
result in a better strength.  

From the parametric study of the GP-soil system for CL, the best-performing parameter 
combination is concluded to be K431 at 20% water for 4% MK. However, the GP-soil system is 
complicated and contains many parameters that are dependent on each other. One of the possible 
ways to improve this study is to go through the various parameters but at a higher %MK, since it 
is shown that higher %MK past 4% shows significant increase, which can then produce results that 
are more statistically different and comparable with each other. 

Geopolymer-based cement/sand also shows similar behavior to that of GP-soil system in the sense 
that larger GPC% shows a more significance difference between the different variations. Across 
the different compositions, the UCS mostly follows the expected trend except for when the mixture 
does not have enough water to be mixed properly. It’s also noted that curing for 14 days under 
ambient condition is most likely not enough to demonstrate that K-based geopolymer follows the 
expected trend. For shrinkage, most of the compositions perform on par with OPC with a few 
showing significant shrinkage. However, the significant shrinkage is not present when these 
specific compositions are added into sand. Most of the compositions also shows the expected trend 
in terms of density, porosity, and UCS. On the other hand, when it comes to GPC/sand, most of 
the expected trends were not observed, this is most likely due to alkali-aggregate reaction, and this 
will need to be further studied to confirm. From the SEM characterizations, it is shown that GPC 
has good apparent adhesion with sand particles. But additional characterizations such as in-situ 
indentation testing can provide us a better quantitative understanding. 

In terms of durability, more tests are still needed for treated soil specimen and GPC mortar, such 
as swelling, shrinkage, and leaching tests. The performance of GPC-treated soil clearly 
demonstrates its effectiveness in stabilizing clayey soils – the quick curing, significant increase in 
strength, and minimal volumetric changes during 1D-swell and shrinkage tests. GPC shows great 
potentials to be used as stabilizers where the time for construction is very limited and lowest cost 
of stabilization is not essential.  Future studies on other problematic soils are suggested prior to be 
considered for field implementations. 
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APPENDIX A: SUSTAINABLE BENEFITS STUDY 
The benefits of Geopolymer treatment in the form of service life are presented in this section. A 
hypothetical scenario is presented, as a typical pavement is considered which is built on native 
high-plasticity soil.  

A.1. Traffic Data and Basic Design Criteria 
The traffic characteristics assumed for the study are as follows: 

• ADT = 2500 vehicles/day; 
• Truck percentage = 1.7%; 
• Annual growth in traffic = 3%; 
• 18-kip ESAl = 1 million; 
• Initial Serviceability Index = 4.5; 
• Final Serviceability Index = 3.0; and 
• Serviceability Index after overlay = 4.2. 

Three designs have been considered for this case study as follows: 
1. HMA layer 2” thick; Base layer 8” thick; Stabilized subgrade 12” thick; 
2. HMA layer 3” thick; Base layer 6” thick; Stabilized subgrade 12” thick; and 
3. HMA layer 2” thick; Base layer 7” thick; Stabilized subgrade 12” thick. 

The control section also has a 4-layer system, where for the traditionally stabilized subgrade 
modulus E was assumed to be 22 ksi, while untreated subgrade has a modulus of 11 ksi. For all 
the cases, the modulus of the geopolymer-stabilized soil was assumed to be 27 ksi. The HMA (E 
= 500 ksi) and base layer (E = 50 ksi) properties remain the same as mentioned for each case. 

The details of each case are presented below. 

A.2. Case Study Results 

A.2.1. Case 1: HMA Layer 2” Thick, Base Layer 8” Thick 
Pavement thickness and material properties: 

• HMA – 2” (E = 500 ksi); 
• Base Material – 8” (E = 50 ksi); 
• Stabilized Subgrade – 12” (E = 27 ksi for Geopolymer stabilized soil and E = 22 ksi for 

traditionally stabilized soil); and 
• Subgrade below these layers (E = 11 ksi). 

Geopolymer stabilized section: 
• Service Life = 12.5 years (without overlay) and 23.4 years (with 2” overlay); 
• Traffic to first overlay = 0.552 million ESALs; 
• Crack life = 0.59 million ESALs; and 
• Rutting Life = 4.51 million ESALs. 

Traditionally stabilized section (current practice): 
• Service Life = 11.4 years (without overlay) and 21.6 years (with 2” overlay); 
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• Traffic to first overlay = 0.497 million ESALs; 
• Crack life = 0.57 million ESALs; and 
• Rutting Life = 3.96 million ESALs. 

As compared to traditionally stabilized soil, an increase in service life from 11.4 years to 12.5 
years (without overlay), which accounts for a 9.6% increase, was predicted in the case of 
geopolymer-stabilized soil. Rutting life was also estimated to increase by 13.9%. 

A.2.2. Case 2: HMA Layer 3” Thick, Base Layer 6” Thick 
Pavement thickness and material properties: 

• HMA – 3” (E = 500 ksi); 
• Base Material – 6” (E = 50 ksi); 
• Stabilized Subgrade – 12” (E = 27 ksi for Geopolymer stabilized soil and E = 22 ksi for 

traditionally stabilized soil); and 
• Subgrade below these layers (E = 11 ksi). 

Geopolymer stabilized section: 
• Service Life = 13.5 years (without overlay) and 25.2 years (with 2” overlay); 
• Traffic to first overlay = 0.611 million ESALs; 
• Crack life = 0.82 million ESALs; and 
• Rutting Life = 3.86 million ESALs. 

Traditionally stabilized section (current practice): 
• Service Life = 12.3 years (without overlay) and 23.1 years (with 2” overlay); 
• Traffic to first overlay = 0.542 million ESALs; 
• Crack life = 0.75 million ESALs; and 
• Rutting Life = 3.45 million ESALs. 

As compared to traditionally stabilized soil, an increase in service life from 12.3 years to 13.5 
years (without overlay), which accounts for a 9.8% increase, was predicted in the case of 
geopolymer-stabilized soil. Rutting life was also predicted to increase by 11.9%. 

A.2.3. Case 3: HMA Layer 2” Thick, Base Layer 7” Thick 
Pavement thickness and material properties: 

• HMA – 2” (E = 500 ksi); 
• Base Material – 7” (E = 50 ksi); 
• Stabilized Subgrade – 12” (E = 27 ksi for Geopolymer stabilized soil and E = 22 ksi for 

traditionally stabilized soil); and 
• Subgrade below these layers (E = 11 ksi). 

Geopolymer stabilized section: 
• Service Life = 11.7 years (without overlay) and 22.0 years (with 2” overlay); 
• Traffic to first overlay = 0.511 million ESALs; 
• Crack life = 0.57 million ESALs; and 
• Rutting Life = 3.21 million ESALs. 
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Traditionally stabilized section (current practice): 
• Service Life = 10.5 years (without overlay) and 20.0 years (with 2” overlay); 
• Traffic to first overlay = 0.452 million ESALs; 
• Crack life = 0.55 million ESALs; and 
• Rutting Life = 2.81 million ESALs. 

As compared to traditionally stabilized soil, an increase in service life from 10.5 years to 11.7 
years (without overlay), which accounts for a 11.4% increase. Rutting life was also predicted to 
increase by 14.2%. 

A.3. Conclusion 
From this study, it was observed that the use of geopolymer-stabilized subgrade of 12” thickness 
has approximately 10% increase in the overall service life of a typical pavement as described 
above, with an increase in rutting life of around 13%. Hence, geopolymer stabilized subgrade has 
great potential to enhance the performance of pavement infrastructure built on expansive 
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