# DEPARTMENT OF TRANSPORTATION

# Development of a Travel-Time Reliability Measurement System

# Eil Kwon, Principal Investigator

Department of Civil Engineering University of Minnesota Duluth

# September 2018

Research Report Final Report 2018-28 To request this document in an alternative format, such as braille or large print, call <u>651-366-4718</u> or <u>1-800-657-3774</u> (Greater Minnesota) or email your request to <u>ADArequest.dot@state.mn.us</u>. Please request at least one week in advance.

# **Technical Report Documentation Page**

|                                                                                                                      |                                        | rechnical Report Documentation Page                   |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| 1. Report No.                                                                                                        | 2.                                     | 3. Recipients Accession No.                           |
| MN/RC 2018-28                                                                                                        |                                        |                                                       |
| 4. Title and Subtitle                                                                                                |                                        | 5. Report Date                                        |
| Development of a Travel-Time Rel                                                                                     | liability Measurement System           | September 2018                                        |
|                                                                                                                      |                                        | 6.                                                    |
|                                                                                                                      |                                        |                                                       |
| 7. Author(s)                                                                                                         |                                        | 8. Performing Organization Report No.                 |
| Eil Kwon, Chongmyung Park                                                                                            |                                        |                                                       |
| 9. Performing Organization Name and Address                                                                          |                                        | 10. Project/Task/Work Unit No.                        |
| University of Minnesota Duluth                                                                                       |                                        | CTS#2016005                                           |
| 252 SCiv, 1405 University Dr.                                                                                        |                                        | 11. Contract (C) or Grant (G) No.                     |
| Duluth, MN 55812                                                                                                     |                                        |                                                       |
|                                                                                                                      |                                        | (C) 55008 (WO) 188                                    |
| 12 Sponsoring Organization Name and Addres                                                                           |                                        | 13 Type of Report and Period Covered                  |
| Minnesota Department of Transpo                                                                                      | ortation                               | Final Report                                          |
| Research Services & Library                                                                                          |                                        | 14. Sponsoring Agency Code                            |
| 395 John Ireland Boulevard, MS 3                                                                                     | 30                                     |                                                       |
| St Paul Minnesota 55155-1800                                                                                         | 30                                     |                                                       |
| 15. Supplementary Notes                                                                                              |                                        |                                                       |
| http://mndot.gov/research/repor                                                                                      | ts/2018/201828.pdf                     |                                                       |
| 16. Abstract (Limit: 250 words)                                                                                      |                                        |                                                       |
| This study has doublehed a ser                                                                                       | envitorized Trevel Time Delich         | ility Management Cystom (TTDMC) which can             |
| This study has developed a con                                                                                       | nputenzed Travel-Time Reliab           | inty Measurement System (TTRIVIS), which can          |
| automate the time-consuming p                                                                                        | rocess of gathering and mana           | ging data from multiple sources and calculating       |
| various types of reliability measures under user-specified conditio                                                  |                                        | ons for given corridors. The TTRMS adopts a server    |
| and client structure, where the main database and computational engines reside in the server, while the use          |                                        | nal engines reside in the server, while the user-     |
| clients are designed for entering the data and generating the output files. In particular, most of the external data |                                        |                                                       |
| clients are designed for entering the data and generating the output mes. In particular, most of the external data,  |                                        |                                                       |
| such as traffic and weather datasets, can be remotely downloaded following predefined time schedules. Further,       |                                        |                                                       |
| the travel-time calculation process                                                                                  | s developed in this study can ex       | plicitly reflect various lane-configurations at work  |
| zones for correctly calculating tra-                                                                                 | vel times of the routes with wo        | ork zones. The map-based user interfaces provide      |
| users with a flexible environment,                                                                                   | where the route selection and          | specification of operating conditions for reliability |
| estimation can be efficiently performed. The integrated TTPMS was tested in the Twin Cities' metro freeway           |                                        |                                                       |
| notwork by actimating the reliabil                                                                                   | ity management of solution and sourced | are with real data for a two wars paried 2012 12      |
| network by estimating the reliabil                                                                                   | ity measures of selected corrid        | ors with real data for a two-year period, 2012-13.    |
| The test results indicate that the T                                                                                 | TRMS can substantially reduce          | the time and effort in estimating various types of    |
| reliability measures under differer                                                                                  | nt operating conditions for pred       | defined corridors.                                    |
|                                                                                                                      |                                        |                                                       |
|                                                                                                                      |                                        |                                                       |
| 17 Document Analysis/Descriptors                                                                                     |                                        | 18 Availability Statement                             |
| Transportation operations Weath                                                                                      | ver conditions Snow                    | No restrictions. Document available from:             |

| Transportation operations, Weather conditions, Snow,        |                                                | No restrictions. Document available from: |           |
|-------------------------------------------------------------|------------------------------------------------|-------------------------------------------|-----------|
| Performance measurement, Traffic flow, Travel time, Traffic |                                                | National Technical Information Services,  |           |
| volume, Stopped time delays                                 |                                                | Alexandria, Virginia 22312                |           |
| 19. Security Class (this report)<br>Unclassified            | 20. Security Class (this page)<br>Unclassified | 21. No. of Pages 232                      | 22. Price |

# DEVELOPMENT OF A TRAVEL-TIME RELIABILITY MEASUREMENT SYSTEM

# **FINAL REPORT**

Prepared by:

Eil Kwon Chongmyung Park Department of Civil Engineering University of Minnesota Duluth

### SEPTEMBER 2018

Published by:

Minnesota Department of Transportation Research Services & Library 395 John Ireland Boulevard, MS 336 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation or the University of Minnesota Duluth. This report does not contain a standard or specified technique.

The authors, the Minnesota Department of Transportation, and the University of Minnesota Duluth do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

# ACKNOWLEDGEMENTS

This research was financially supported by the Minnesota Department of Transportation. The authors greatly appreciate the technical guidance and data support from the staff at the Regional Traffic Management Center, in particular, Brian Kary and Garrett Shreiner. Also, the administrative support from Nelson Cruz and Thomas Johnson-Kaiser is very much appreciated.

# TABLE OF CONTENTS

| CHAPTER 1: INTRODUCTION                                                                      |
|----------------------------------------------------------------------------------------------|
| 1.1 Background and Research Objectives1                                                      |
| 1.2 Report Organization1                                                                     |
| CHAPTER 2: DESIGN OF THE TRAVEL-TIME RELIABILITY MEASUREMENT SYSTEM                          |
| 2.1 Introduction                                                                             |
| 2.2 Overview of the TTRMS Architecture                                                       |
| 2.3 Design of TTRMS Server6                                                                  |
| 2.4 Design of User Client23                                                                  |
| 2.5 Design of the Admin Client                                                               |
| CHAPTER 3: ENHANCEMENT OF THE TRAVEL TIME ESTIMATION MODULE FOR WORK ZONE SITES32            |
| 3.1 Introduction                                                                             |
| 3.2 Design of the Route-Configuration Module for Work-Zones                                  |
| 3.3 Enhancement of the Travel-Time Calculation Module for Work-Zones                         |
| 3.3.1 Basic Methodology for Travel-time Estimation37                                         |
| 3.3.2 Design of the Modules for Calculating Work-Zone Route Travel-Time                      |
| 3.4 Development and Testing of the Route-Configuration and Travel-Time Calculation Modules43 |
| CHAPTER 4: DEVELOPMENT OF A DATA-CONVERSION AND ROUTE-CONFIGURATION MODULE                   |
| 4.1 Introduction                                                                             |
| 4.2 Development of an Internal Database for Managing and Storing Reliability-Related Data53  |
| 4.3 Development of Conversion Modules for External Non-Traffic Data                          |
| 4.3.1 Design of Data-Conversion Process                                                      |
| 4.3.2 Development of Data-Access Layer70                                                     |
| 4.3.3 Development of API Server73                                                            |

| 4.3.4 Development of External-Data Reader                                   | 76  |
|-----------------------------------------------------------------------------|-----|
| 4.4 Development of Administration-Client Module                             | 80  |
| 4.5 Development of Travel-Time Reliability-Route Configuration Modules      | 90  |
| CHAPTER 5: DEVELOPMENT OF THE TRAVEL TIME RELIABILITY COMPUTATION MODULE    | 96  |
| 5.1 Introduction                                                            | 96  |
| 5.2 Development of Weather and Incident Data Reader Modules                 | 98  |
| 5.2.1 Development of Additional Data Reader module for NOAA Weather Data    | 98  |
| 5.2.2 Development of Incident Data Reader module                            | 100 |
| 5.3 Development of Travel-Time Processing Module                            | 102 |
| 5.4 Development of Data Categorization Module                               | 103 |
| 5.4.1 Design of Data Categorization module                                  | 103 |
| 5.4.2 Development of Sub Modules for Categorizing Each Data Type            | 106 |
| 5.5 Development of Reliability Calculation Module                           | 117 |
| 5.5.1 Structure of Reliability Calculation module                           | 117 |
| 5.5.2 Development of Data Extraction module                                 | 118 |
| 5.5.3 Development of Reliability Calculation module                         | 121 |
| 5.5.4 Example of Reliability Calculation                                    | 123 |
| CHAPTER 6: DEVELOPMENT OF A TRAVEL-TIME INFORMATION MODULE                  | 127 |
| 6.1 Introduction                                                            | 127 |
| 6.2 Development of Travel-Time Information and Public Service API Modules   | 129 |
| 6.3 Development of an Example Webpage for MnDOT Driver-Information System   | 137 |
| CHAPTER 7: DEVELOPMENT OF THE USER-INTERFACE AND REPORT-GENERATION MODULE . | 141 |
| 7.1 Introduction                                                            | 141 |
| 7.2 Development of the User-Interface and User-Service Modules              | 144 |

| 7.2.1 Overview of the User-Interface and User-Service modules              | 144 |
|----------------------------------------------------------------------------|-----|
| 7.2.2 Development of the User-Interface module                             |     |
| 7.2.3 Development of the User-Service module                               |     |
| 7.3 Development of the Reliability-Estimation and Report-Generation Module | 155 |
| 7.3.1 Overview of the Reliability Estimation and Report module             | 155 |
| 7.3.2 Development of the Reliability-Estimation Process module             | 155 |
| 7.3.3 Development of the Report-Generation module                          |     |
| CHAPTER 8: SYSTEM INTEGRATION AND TESTING                                  | 167 |
| 8.1 Introduction                                                           |     |
| 8.2 Integration of the Entire System                                       |     |
| 8.2.1 Enhancement of the Admin-Client and Admin-Service module             |     |
| 8.2.2 Development of the Periodic Data-Processing module                   |     |
| 8.2.3 Development of the Task-Processing module                            |     |
| 8.3 Operating Process of the Integrated System                             |     |
| 8.4 Testing of the Integrated System                                       |     |
| CHAPTER 9: CONCLUSIONS                                                     | 211 |
| REFERENCES                                                                 | 213 |

# LIST OF FIGURES

| Figure 2.2.1 User Groups of TTRMS                                                                  | 4  |
|----------------------------------------------------------------------------------------------------|----|
| Figure 2.2.2 Main Modules of TTRMS                                                                 | 5  |
| Figure 2.3.1 Components of TTRMS Server                                                            | 6  |
| Figure 2.3.2 Database Model Diagram                                                                | 13 |
| Figure 2.4.1 Components of User Client                                                             | 23 |
| Figure 2.5.1 Components of Admin Client                                                            | 28 |
| Figure 3.1.1 Examples of Work-Zone Lane-configurations                                             | 32 |
| Figure 3.2.1 Framework for Travel-Time Reliability Measurement System                              | 33 |
| Figure 3.2.2 'RouteInfo' class for storing lane-configuration data                                 | 35 |
| Figure 3.2.3 Class-diagram for Route-Configuration                                                 | 36 |
| Figure 3.2.4 Process Diagram for Configuration of Travel-Routes                                    | 36 |
| Figure 3.3.1 Vehicle-trajectories leaving the first station in the beginning of each time interval | 38 |
| Figure 3.3.2 Pseudo-code of the travel-time function                                               | 40 |
| Figure 3.3.3 Class Diagram of travel-time calculation process                                      | 40 |
| Figure 3.3.4 Sequence-diagram of travel-time calculation process                                   | 41 |
| Figure 3.3.5 Sequence-diagram for developing station list                                          | 41 |
| Figure 3.3.6 Pseudo code of get_stations() function in RouteInfoHelper                             | 42 |
| Figure 3.3.7 Sequence-diagram for checking detectors                                               | 42 |
| Figure 3.3.8 Pseudo-code of the check_detector() function in RouteInfoHelper                       | 43 |
| Figure 3.4.1 Main script for operating TTRMS server                                                | 44 |
| Figure 3.4.2 Graphical User-Interface for Work-Zone Route/Lane-Configuration                       | 44 |
| Figure 3.4.3 Lane configuration of I-694 EB case                                                   | 45 |
| Figure 3.4.4 Screenshot of the I-694 EB route created in the client program                        | 46 |

| Figure 3.4.5 Lane configuration of I-35E NB case (June 18 <sup>th</sup> , 2013)                                                                                                                                                                                                                                                                                                                                                          | 47                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Figure 3.4.6 I-35E NB case (June 18 <sup>th</sup> , 2013) created in client program                                                                                                                                                                                                                                                                                                                                                      | 48                   |
| Figure 3.4.7 Lane configuration of I-35E NB work-zone (9 <sup>th</sup> July 2013)                                                                                                                                                                                                                                                                                                                                                        | 49                   |
| Figure 3.4.8 I-35E NB work-zone (9 <sup>th</sup> July 2013) created in client program                                                                                                                                                                                                                                                                                                                                                    | 50                   |
| Figure 4.2.1 The New Modules developed in Chapter4 in TTRMS Architecture                                                                                                                                                                                                                                                                                                                                                                 | 54                   |
| Figure 4.2.2 Relationship Diagram of Database                                                                                                                                                                                                                                                                                                                                                                                            | 55                   |
| Figure 4.2.3 Types of External Data in Client and Server                                                                                                                                                                                                                                                                                                                                                                                 | 63                   |
| Figure 4.2.4 Sample Database-Table Class for Special Event Data                                                                                                                                                                                                                                                                                                                                                                          | 64                   |
| Figure 4.2.5 Sample Python Data-Class for Special Event Data                                                                                                                                                                                                                                                                                                                                                                             | 64                   |
| Figure 4.2.6 Sample Java Data Class for Special Event                                                                                                                                                                                                                                                                                                                                                                                    | 65                   |
| Figure 4.3.1 Overview of Data-Conversion Process for External Data                                                                                                                                                                                                                                                                                                                                                                       | 66                   |
| Figure 4.3.2 Data-Conversion Modules for Type 1 External Data                                                                                                                                                                                                                                                                                                                                                                            | 67                   |
| Figure 4.3.3 An Example JSON String                                                                                                                                                                                                                                                                                                                                                                                                      | 68                   |
| Figure 4.3.4 An Example Sequence Diagram to Add a New Data                                                                                                                                                                                                                                                                                                                                                                               | 69                   |
| Figure 4.3.5 Data-Conversion Process and Modules for Type 2 Data                                                                                                                                                                                                                                                                                                                                                                         | 70                   |
| Figure 4.3.6 Structure of Data-Access Layer                                                                                                                                                                                                                                                                                                                                                                                              | 70                   |
| Figure 4.3.7 Data-Access Module for Special Event Data                                                                                                                                                                                                                                                                                                                                                                                   | 72                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                   |
| Figure 4.3.8 Data-Access-Base module                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Figure 4.3.8 Data-Access-Base module<br>Figure 4.3.9 DB Access-Module Test Results with an Incident Data                                                                                                                                                                                                                                                                                                                                 |                      |
| Figure 4.3.8 Data-Access-Base module<br>Figure 4.3.9 DB Access-Module Test Results with an Incident Data<br>Figure 4.3.10 Structure of API Server and Data Service Modules                                                                                                                                                                                                                                                               | 73                   |
| Figure 4.3.8 Data-Access-Base module.         Figure 4.3.9 DB Access-Module Test Results with an Incident Data.         Figure 4.3.10 Structure of API Server and Data Service Modules         Figure 4.3.11 Special-Event Data-Service module                                                                                                                                                                                           | 73<br>73<br>74<br>74 |
| Figure 4.3.8 Data-Access-Base module.         Figure 4.3.9 DB Access-Module Test Results with an Incident Data.         Figure 4.3.10 Structure of API Server and Data Service Modules         Figure 4.3.11 Special-Event Data-Service module         Figure 4.3.12 TeTRES-API Module.                                                                                                                                                  |                      |
| <ul> <li>Figure 4.3.8 Data-Access-Base module.</li> <li>Figure 4.3.9 DB Access-Module Test Results with an Incident Data.</li> <li>Figure 4.3.10 Structure of API Server and Data Service Modules</li> <li>Figure 4.3.11 Special-Event Data-Service module</li> <li>Figure 4.3.12 TeTRES-API Module.</li> <li>Figure 4.3.13 Structure of RWIS Data Reader.</li> </ul>                                                                    |                      |
| Figure 4.3.7 Data Access Base module.         Figure 4.3.8 Data-Access-Base module.         Figure 4.3.9 DB Access-Module Test Results with an Incident Data.         Figure 4.3.10 Structure of API Server and Data Service Modules         Figure 4.3.11 Special-Event Data-Service module         Figure 4.3.12 TeTRES-API Module.         Figure 4.3.13 Structure of RWIS Data Reader         Figure 4.3.14 RWIS Data Reader module. |                      |

| Figure 4.3.15 Detector station S73 and nearby RWIS site locations                        | 77 |
|------------------------------------------------------------------------------------------|----|
| Figure 4.3.16 Output Screen of Test Program                                              | 78 |
| Figure 4.3.17 Precipitation History Page in SCANWeb for the Same Duration with Test Code | 79 |
| Figure 4.3.18 Surface history page for the same duration with test code in SCANWeb site  | 79 |
| Figure 4.4.1 Structure of Administration-Client Module for Each Data Type                |    |
| Figure 4.4.2 DataAPI module for Special-Event data                                       |    |
| Figure 4.4.3 APIClient module                                                            | 82 |
| Figure 4.4.4 Work-Zone List Display Panel                                                | 84 |
| Figure 4.4.5 Dialog to Add a New Work-Zone                                               | 84 |
| Figure 4.4.6 Lane Configuration Edit Dialog                                              | 85 |
| Figure 4.4.7 Spreadsheet for Lane Configuration                                          |    |
| Figure 4.4.8 Main Window of Special-Event User Interface                                 |    |
| Figure 4.4.9 Dialog to add a New Special Event                                           |    |
| Figure 4.4.10 Snow Management Information panel                                          |    |
| Figure 4.4.11 Dialog for New Snow-Event and Management Data                              |    |
| Figure 4.4.12 Snow-Management Section List panel                                         |    |
| Figure 4.4.13 Dialog for New Snow-Management Section                                     |    |
| Figure 4.5.1 Travel-Time Route Configuration Process                                     | 90 |
| Figure 4.5.2 Reliability-Route Configuration Main User Interface                         | 91 |
| Figure 4.5.3 Dialog for New Reliability-Route                                            | 91 |
| Figure 4.5.4 Confirmation Dialog to Create Opposite Direction Route                      | 92 |
| Figure 4.5.5 Class definition for Reliability-Route in Client                            | 93 |
| Figure 4.5.6 Data API module for Reliability-Route in Client                             | 93 |
| Figure 4.5.7 Reliability-Route Service module in Server                                  | 94 |

| Figure 4.5.8 Data-Access module for Reliability-Route Data in Server                      | 95 |
|-------------------------------------------------------------------------------------------|----|
| Figure 4.5.9 Sample Reliability-Route Data stored in Database                             | 95 |
| Figure 4.5.10 "route" Field Data of Sample Reliability-Route Database                     | 95 |
| Figure 5.1.1 The Modules developed in Chapter 5 in TTRMS Architecture                     | 97 |
| Figure 5.2.1 Data Flow and Structure of Weather Data Reader Module                        |    |
| Figure 5.2.2 Weather Stations in the Twin Cities Metro Area                               |    |
| Figure 5.2.3 Incident Data Reader module                                                  |    |
| Figure 5.3.1 Structure of Travel-Time Processing module                                   |    |
| Figure 5.4.1 Data flows of Data Categorization module                                     |    |
| Figure 5.4.2 Relationship diagram of the database                                         |    |
| Figure 5.4.3 Example junction table between travel-time and weather tables                |    |
| Figure 5.4.4 Flow charts of Weather Categorization module                                 |    |
| Figure 5.4.5 Distance and offset-distance in incident data categorization                 |    |
| Figure 5.4.6 Flow charts of Incident Categorization module                                |    |
| Figure 5.4.7 Location type, distance and offset-distance in work zone data categorization |    |
| Figure 5.4.8 Flow chart of Work Zone Categorization module                                |    |
| Figure 5.4.9 Arrival and Departure Time Window in special event data categorization       |    |
| Figure 5.4.10 Flow charts of Special Event Categorization module                          |    |
| Figure 5.4.11 Flow chart of Snow-Management Categorization module                         |    |
| Figure 5.5.1 Structure and Data flow of the Reliability Calculation module                |    |
| Figure 5.5.2 Flow chart of Reliability Calculation process                                |    |
| Figure 5.5.3 Class diagram for data filter                                                |    |
| Figure 5.5.4 Class diagram of filter generation functions for each data type              |    |
| Figure 5.5.5 Flow chart of reliability calculation process                                |    |

| Figure 5.5.6 Example travel time route on I-35E (NB)                                               | 123               |
|----------------------------------------------------------------------------------------------------|-------------------|
| Figure 5.5.7 Example program to perform travel time reliability calculation                        | 125               |
| Figure 5.5.8 Output from example application                                                       | 126               |
| Figure 6.1.1 TTI and PS-APT Modules in the TTRMS Architecture                                      | 128               |
| Figure 6.2.1 The Relationship between Travel-Time Information and other relevant modules           | 130               |
| Figure 6.2.2 Process to Calculate Reliability Measures using Historical Data                       | 132               |
| Figure 6.2.3 Source code for Reliability Measure Calculation using Historical Data                 | 134               |
| Figure 6.2.4 A Sequence diagram of travel-time information service process                         | 135               |
| Figure 6.2.5 Source code of the travel-time information service function in the TTI Module         | 136               |
| Figure 6.3.1 An Example web page for travel-time information service                               | 138               |
| Figure 6.3.2 Example application results of the Travel-Time Information Module for a route on      | I-35E (NB)<br>139 |
| Figure 6.3.3 Example Application Results of the Travel-Time Information Module for a route or (NB) | ו I-35W<br>140    |
| Figure 7.1.1 Architecture of TTRMS and the User-Interface Modules                                  | 143               |
| Figure 7.2.1 Overview of User-Client and User-Service module structure                             | 144               |
| Figure 7.2.2 Estimation Panel of the User Interface                                                | 146               |
| Figure 7.2.3 Route-Selection Panel of the User Client                                              | 147               |
| Figure 7.2.4 Operating Condition-Configuration Panel of the User Interface                         | 149               |
| Figure 7.2.5 Combinations of the Operating Sub-Conditions                                          | 150               |
| Figure 7.2.6 Dialog to Add a Weather sub-Condition                                                 | 151               |
| Figure 7.2.7 API Client module structure                                                           | 151               |
| Figure 7.2.8 HttpClient class structure                                                            | 152               |
| Figure 7.2.9 Data Types used in API Client module                                                  | 152               |
| Figure 7.2.10 User-Service module structure                                                        | 153               |
| Figure 7.2.11 Source code of User-Service module                                                   | 154               |

| Figure 7.3.1 Estimation and Report module structure                                               | 155 |
|---------------------------------------------------------------------------------------------------|-----|
| Figure 7.3.2 Reliability-Estimation module structure                                              | 156 |
| Figure 7.3.3 Sequence Diagram of Reliability-Estimation Process                                   | 157 |
| Figure 7.3.4 Sequence Diagram of Reliability Estimation Process                                   | 158 |
| Figure 7.3.5 Output File Example of Whole-Time-Reliability Writer module                          | 159 |
| Figure 7.3.6 Output File Example of Whole Time Period Reliability Writer by Operating Conditions. | 160 |
| Figure 7.3.7 Output File Example of Time of Day Reliability Writer module                         | 161 |
| Figure 7.3.8 Output File Example of Travel Time Data Writer module                                | 161 |
| Figure 7.3.9 An Example Cumulative-Probability graph of Travel Time Rate                          | 162 |
| Figure 7.3.10 An Example Buffer-Index graph depending on Operating Conditions                     | 163 |
| Figure 7.3.11 An Example Graph for Yearly Buffer Index Variations                                 | 163 |
| Figure 7.3.12 An Example Graph for Yearly Multiple Indices Comparison                             | 163 |
| Figure 7.3.13 An Example Graph for Monthly Buffer Index Variations                                | 164 |
| Figure 7.3.14 An Example Graph for Monthly Multiple Indices Comparison                            | 164 |
| Figure 7.3.15 An Example Graph for Daily Buffer Index Variations                                  | 164 |
| Figure 7.3.16 Variations of Daily Travel-Time Rate vs. Buffer-Index                               | 165 |
| Figure 7.3.17 An Example graph for Travel-Time Variations by Time of Day                          | 165 |
| Figure 7.3.18 An Example graph for Yearly Planning-Time Index by Time of Day                      | 166 |
| Figure 7.3.19 An Example graph for Monthly Planning-Time Index by Time of Day                     | 166 |
| Figure 8.1.1 The Modules developed in Chapter 8 in the TTRMS Architecture                         | 169 |
| Figure 8.2.1 Updated and Added Modules for the System Integration                                 | 170 |
| Figure 8.2.2 User Interface of the Admin Client to Manage Non-Traffic Data                        | 171 |
| Figure 8.2.3 Data Change Log Management User Interface                                            | 172 |
| Figure 8.2.4 System-Configuration User Interface                                                  | 173 |

| Figure 8.2.5 Periodic Data Processing module1                                                                                  | .74      |
|--------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 8.2.6 Sub-modules in the Daily-Tasks module in Periodic Data Processing1                                                | .75      |
| Figure 8.2.7 Structure and Sequence for Weekly-Task processing in Periodic Data Processing module.1                            | .76      |
| Figure 8.2.8 Structure and Operational Sequence of the Monthly-Task module in Periodic Data Processing1                        | .76      |
| Figure 8.2.9 Structure of the Task-Processing module1                                                                          | .77      |
| Figure 8.2.10 Sub-modules in the Initial-Data Mark module1                                                                     | .78      |
| Figure 8.2.11 Flow Chart of Data Processor module1                                                                             | .79      |
| Figure 8.2.12 Flow Chart of Travel Time Data Checker module1                                                                   | .80      |
| Figure 8.3.1 Operating Process of the Integrated System1                                                                       | .81      |
| Figure 8.3.2 Screen Shot of Admin Client1                                                                                      | .82      |
| Figure 8.3.3 Screen Shot of User Client1                                                                                       | .83      |
| Figure 8.3.4 Example Web Page for Travel-Time Information Service1                                                             | .84      |
| Figure 8.4.1 Freeway Sections used for defining Travel-Time Routes1                                                            | .85      |
| Figure 8.4.2 Buffer Index (95 <sup>th</sup> -ile) by Operating Condition Types for I-35E NB1                                   | .90      |
| Figure 8.4.3 Yearly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All" of I-35E NB 1           | .90      |
| Figure 8.4.4 Monthly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All" of I-35E NB.1          | .91      |
| Figure 8.4.5 Cumulative Probability of Travel-Time Rate of I-35E NB1                                                           | .91      |
| Figure 8.4.6 Daily Buffer Index (95 <sup>th</sup> -ile) vs. Travel-Time Rate for Operating Condition Type "All" of I-35<br>NB1 | E<br>.91 |
| Figure 8.4.7 Time-of-Day Travel-Time Distribution of I-35E NB1                                                                 | .92      |
| Figure 8.4.8 Monthly TOD Buffer Index (95%-ile) of I-35E NB1                                                                   | .92      |
| Figure 8.4.9 Buffer Index (95 <sup>th</sup> -ile) by Operating Conditions of I-35W NB1                                         | .96      |
| Figure 8.4.10 Yearly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All" of I-35W NB.1          | .97      |
| Figure 8.4.11 Monthly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All" of I-35W NB           | }<br>197 |

| Figure 8.4.12 Cumulative Probability of Travel Time Rate of I-35W NB                                        | 197                  |
|-------------------------------------------------------------------------------------------------------------|----------------------|
| Figure 8.4.13 Daily Buffer Index (95 <sup>th</sup> -ile) vs. Travel-Time Rate for "All operating condition" | of I-35W NB<br>198   |
| Figure 8.4.14 Time-of-Day Travel Time Distribution of I-35W NB                                              | 198                  |
| Figure 8.4.15 Monthly TOD Buffer Index (95%-ile) of I-35W NB                                                |                      |
| Figure 8.4.16 Buffer Index (95 <sup>th</sup> -ile) by Operating Conditions of U.S.169 NB                    | 203                  |
| Figure 8.4.17 Yearly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All" of  | U.S.169 NB<br>203    |
| Figure 8.4.18 Monthly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All"    | of U.S.169 NB<br>203 |
| Figure 8.4.19 Cumulative Probability of Travel Time Rate of U.S.169 NB                                      | 204                  |
| Figure 8.4.20 Daily Buffer Index (95 <sup>th</sup> -ile) vs. Travel-Time Rate for "All operating condition" | of U.S.169 NB<br>204 |
| Figure 8.4.21 Time-of-Day Travel Time Distribution of U.S.169 NB                                            | 204                  |
| Figure 8.4.22 Monthly TOD Buffer Index (95%-ile) of U.S.169 NB                                              | 204                  |
| Figure 8.4.23 Buffer Index (95 <sup>th</sup> -ile) by Operating Condition of T.H.100 NB                     | 209                  |
| Figure 8.4.24 Yearly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All" of  | T.H.100 NB<br>209    |
| Figure 8.4.25 Monthly Buffer Index (95 <sup>th</sup> -ile) Variations for Operating Condition Type "All"    | of T.H.100 NB<br>209 |
| Figure 8.4.26 Cumulative Probability of Travel Time Rate of T.H.100 NB                                      | 210                  |
| Figure 8.4.27 Daily Buffer Index (95 <sup>th</sup> -ile) vs. Travel-Time Rate for "All operating condition" | of T.H.100 NB<br>210 |
| Figure 8.4.28 Time-of-Day Travel Time Distribution of T.H.100 NB                                            | 210                  |
| Figure 8.4.29 Monthly TOD Buffer Index (95%-ile) of T.H.100 NB                                              | 210                  |

# LIST OF TABLES

| Table 2.3.1 Components of TTRMS Server                                                                             | 7          |
|--------------------------------------------------------------------------------------------------------------------|------------|
| Table 2.3.2 Database Schema                                                                                        | 14         |
| Table 2.4.1 Components of User Client                                                                              | 24         |
| Table 2.5.1 Components of Admin Client                                                                             | 28         |
| Table 3.4.1 Selected Detectors and Speed Data on the Travel-route in I-694 EB work-zone                            | 46         |
| Table 3.4.2 Calculated travel-time of I-694 EB Work-Zone                                                           | 47         |
| Table 3.4.3 Selected Detectors and Speed Data on the travel-lanes of I-35E NB case (June 18 <sup>th</sup> , 2013)  | 48         |
| Table 3.4.4 Calculated travel time of I-35E NB case (June 18 <sup>th</sup> , 2013)                                 | 49         |
| Table 3.4.5 Selected Detectors and Speed Data on the travel-lanes of I-35E NB work-zone (July 9 <sup>th</sup> , 20 | 013)<br>50 |
| Table 3.4.6 Calculated travel time of I-35E NB work-zone (July 9 <sup>th</sup> , 2013)                             | 51         |
| Table 4.2.1 Database Tables                                                                                        | 56         |
| Table 4.2.2 Database Schema                                                                                        | 57         |
| Table 4.4.1 Symbols in Lane-Configuration Spreadsheet File                                                         | 83         |
| Table 5.2.1 Weather Data Table                                                                                     | 98         |
| Table 5.2.2 Incident Data Tables                                                                                   | . 101      |
| Table 5.3.1Travel-time table schema                                                                                | . 103      |
| Table 5.4.1 Weather data categorization scheme                                                                     | . 106      |
| Table 5.4.2 Junction-table schema between travel-time and weather tables                                           | . 107      |
| Table 5.4.3 Incident data categorization scheme                                                                    | . 108      |
| Table 5.4.4 Junction table schema between travel time and incident tables                                          | . 108      |
| Table 5.4.5 Work zone data categorization scheme                                                                   | . 110      |
| Table 5.4.6 Junction table schema between travel time and work zone tables                                         | . 110      |
| Table 5.4.7 Special event data categorization scheme                                                               | . 113      |

| Table 5.4.8 Junction table schema between travel time and work zone tables         11                | .3             |
|------------------------------------------------------------------------------------------------------|----------------|
| Table 5.4.9 Snow management data categorization scheme       11                                      | .5             |
| Table 5.4.10 Junction table schema between travel time and snow management tables                    | .5             |
| Table 6.2.1 Regimes used in the Travel-Time Information Module       12                              | 29             |
| Table 6.2.2 Database Table for Travel Time Information module       13                               | 30             |
| Table 8.4.1 Operating-Condition Types used in the Test                                               | 36             |
| Table 8.4.2 Estimated Reliability Measures by Operating Conditions of I-35E NB Route         18      | 36             |
| Table 8.4.3 Yearly Reliability Measures of Operating Condition Type "All" of I-35E NB                | 37             |
| Table 8.4.4 Monthly Reliability Measures in 2012 for Operating Condition Type "All" of I-35E NB 18   | 37             |
| Table 8.4.5 Monthly Reliability Measures in 2013 for Operating Condition Type "All" of I-35E NB 18   | 39             |
| Table 8.4.6 Reliability Measures by Operating Condition Type of I-35W NB         19                  | <del>)</del> 2 |
| Table 8.4.7 Yearly Reliability Measures for Operating Condition Type "All" of I-35W NB               | <del>)</del> 3 |
| Table 8.4.8 Monthly Reliability Measures in 2012 for Operating Condition Type "All" of I-35W NB 19   | <del>)</del> 4 |
| Table 8.4.9 Monthly Reliability Measures in 2013 for Operating Condition Type "All" of I-35W NB 19   | <del>)</del> 5 |
| Table 8.4.10 Reliability Measures by Operating Conditions of U.S.169 NB                              | 98             |
| Table 8.4.11 Yearly Reliability Measures for Operating Condition Type "All" of U.S.169 NB            | <del>)</del> 9 |
| Table 8.4.12 Monthly Reliability Measures in 2012 of Operating Condition Type "All" of U.S.169 NB 20 | )0             |
| Table 8.4.13 Monthly Reliability Measures in 2013 of Operating Condition Type "All" of U.S.169 NB 20 | )1             |
| Table 8.4.14 Reliability Measures by Operating Condition Types of T.H.100 NB         20              | )5             |
| Table 8.4.15 Yearly Reliability Measures for Operating Condition Type "All" of T.H.100 NB            | )5             |
| Table 8.4.16 Monthly Reliability Measures in 2012 for Operating Condition Type "All" of T.H.100 NB20 | )6             |
| Table 8.4.17 Monthly Reliability Measures in 2013 for Operating Condition Type "All" of T.H.100 NB20 | )7             |

# **EXECUTIVE SUMMARY**

Travel-time reliability has been emerging as one of the major measures in quantifying the operational effectiveness of transportation networks. While the importance of travel time reliability in measuring the performance of transportation systems has been well recognized by transportation professionals, the current state of the practice has not reached the point where various types of reliability measures under different operating conditions can be automatically generated using data from multiple sources. This study developed a computerized Travel-Time Reliability Measurement System (TTRMS), which can automate the time-consuming process of gathering and managing data from multiple sources and calculating various reliability measures under user-specified conditions for given corridors. The TTRMS adopts a server and client structure, where the main database and computational engines reside in the server, while the user-clients are designed for entering the data and generating the output files and reports. In particular, most of the external data, such as traffic and weather datasets, can be remotely downloaded following predefined time schedules. Further, the travel-time calculation process developed in this study can explicitly reflect the various lane-configurations at work zones for correctly calculating the travel times of the routes with work zones. The map-based user interfaces provide the users of TTRMS with a flexible environment, where the route selection and specification of operating conditions for reliability estimation can be efficiently performed. The integrated TTRMS was tested with real corridors in the metro freeway network in the Twin Cities, and the reliability measures for the selected corridors were estimated for a two-year period, 2012-13. The test results indicated that the TTRMS developed in this study can substantially reduce the time and effort in estimating the various types of the reliability measures under different operating conditions for the predefined corridors. Future research needs include the application of reliability measures in identifying and prioritizing the bottlenecks in the metro freeway network. The extension of reliability to new measures, which can quantify the vulnerability and resilience levels of the existing corridors in dealing with large-scale incidents and natural events, is also recommended. Such measures can be directly applicable for effectively allocating the operational resources to the priority routes and also for developing short- and long-term plans for freeway-network improvements.

# **CHAPTER 1: INTRODUCTION**

#### **1.1 BACKGROUND AND RESEARCH OBJECTIVES**

Travel time reliability is formally defined as the consistency or dependability in travel times, as measured from day-to-day and/or across different times of the day (1). While the importance of travel time reliability in measuring the performance of transportation systems has been well recognized by transportation professionals, its measurement and application is still an emerging practice. Recently a series of research projects under the SHRP2 program produced a set of the guidelines in measuring and applying travel-time reliability measures (2-4). However, the current state of the practice has not reached the point where various types of reliability measures under different operating conditions can be automatically generated using data from multiple sources. To be sure, most reliability estimations performed in the SHRP2 studies to date have employed spreadsheet-based, project-specific processes, which require extensive efforts for gathering and managing a large amount of data from various sources, such as traffic, weather, incident and work-zone databases. Such a labor-intensive process in estimating reliability measures has restricted the scope of the reliability applications.

This study develops a computerized Travel-Time Reliability Measurement System (TTRMS), which can automate the time-consuming process for gathering and managing data from multiple sources and calculating the various types of reliability measures under user-specified conditions for corridors in the metro freeway network in the Twin Cities. The specific objectives of this research include:

- Development of a data management system for incorporating different types of data from multiple sources,
- Development of a travel-time reliability computation module for the selected corridors under various operational conditions, e.g., weather, incidents and construction sites, etc.
- Development of a set of user interfaces that can facilitate the input and output processes for reliability estimation.

Further, a reliability-based, time-of-day travel-time estimation module was developed and its connectivity to the existing driver-information system of MnDOT was examined. The resulting TTRMS was tested with real data from the metro freeway network.

#### **1.2 REPORT ORGANIZATION**

Chapter 2 develops a detailed design of the TTRMS architecture, where a set of the main modules, their functionalities and interrelationships are identified. In Chapter 3, the existing travel-time estimation functions in TICAS (5), Traffic Information and Condition Analysis System, developed at the University of Minnesota Duluth, will be enhanced to be able to handle the travel-time estimation of the work zones with various types of lane configurations. Chapter 4 develops the travel-time reliability calculation

module, which is the main engine of the TTRMS. A reliability-based, time-of-day travel-time estimation module is developed in Chapter 5 to examine its connectivity to MnDOT's driver information system. Chapter 6 develops the user interfaces and report-generation modules for the system administrator and the general users. All the individual modules developed in this study are integrated in Chapter 7 and the resulting system is tested by estimating the reliability measures for the selected corridors with real data. Finally Chapter 8 includes the conclusions and future research needs.

# CHAPTER 2: DESIGN OF THE TRAVEL-TIME RELIABILITY MEASUREMENT SYSTEM

#### **2.1 INTRODUCTION**

In this chapter, the detailed design of the Travel-Time Reliability Estimation System (TTRMS) is developed. The main output from the TTRMS includes the estimates of travel-time reliability indices, such as travel time index, buffer index and semi-variances, for predefined corridors and time periods. The input to the system consists of a set of traffic and non-traffic data. The traffic data mainly contains the traffic flow data collected from detectors on the metro freeway network, while the non-traffic data includes the types of data indicating freeway operating conditions, such as weather, incident and work zones. Both traffic and non-traffic data are combined in the TTRMS and the reliability measures under different operating conditions are estimated for given corridors. In the current version of TTRMS, the reliability measures are estimated for a set of the fixed routes, which are pre-defined and stored by the system administrator in the server. The rest of this chapter summarizes the detailed architecture of TTRMS developed with a top-down design approach.

#### **2.2 OVERVIEW OF THE TTRMS ARCHITECTURE**

TTRMS provides users the travel time and reliability information for the freeway routes predefined by the users, who can be categorized into two group, as shown in Figure 2.2.1, i.e., the general users at the Minnesota Department of Transportation (MnDOT) and the TTRMS administrator. The system administrator manages the server and the interfaces of the TTRMS to the external systems to collect the data necessary for estimating the reliability measures. The traffic data needed to estimate travel times are collected from the traffic-data archive of IRIS, while the non-traffic data, such as weather, incident, work zone, etc., are obtained from external databases.



Figure 2.2.1 User Groups of TTRMS

Figure 2.2.2 shows the main modules of the TTRMS, which are consisted with three executable programs or containers, i.e., TTRMS Server, User Client and Admin Client. The travel time and reliability information, which are to be provided to the clients and the external services, are periodically stored into the database of the TTRMS Server. The server configuration and the non-traffic data sources are managed by the Admin Client. The MnDOT users can access the travel time reliability information and obtain the reliability reports by using the User Client, which can be used to configure freeway routes, calculate travel times and estimate the impacts of external factors on the travel-time reliability. The main functions of the major modules in TTRMS are as follows:



#### Figure 2.2.2 Main Modules of TTRMS

#### **TTRMS Server**

- Estimation of the travel times and the reliability measures for the pre-defined routes.
- Storage of the estimated information to the database.
- Provision of the API service to the external services and clients.

#### **User Client**

- Selection of the freeway routes, time periods and operating conditions for estimating reliability measures.
- Calculation of the travel times and reliability indices for the selected routes on the server.
- Estimation of the impacts of the non-traffic data on the travel time reliability for selected routes.

#### Admin Client

Server configuration, lane configuration of work zones and the management of the external data.

#### 2.3 DESIGN OF TTRMS SERVER

The TTRMS Server estimates the travel times and the reliability measures for predefined routes using historical data and provides the clients with the estimated information through the API services. Figure 2.3.1 shows the components of the server developed in this study. The Administrator sets the operational server configuration, such as target freeway routes, job schedule of the estimation process and non-traffic data source information. The non-traffic data are imported manually by the Administrator. All the requests from the Admin client are handled by the *Server-Configuration* component. The *Periodic-Job* component conducts the scheduled-estimation process by using the *Reliability-Engine* following the pre-defined schedule by the administrator. The User client and external service can access the stored information through the *Data-API* component via HTTP. The rest of this section describes the details of each component.



Figure 2.3.1 Components of TTRMS Server

### Table 2.3.1 Components of TTRMS Server

# Reliability Engine Component

| Responsibilities | Collect traffic and non-traffic data, Estimate and Categorize travel times<br>Analyze relation between operating conditions and travel-time reliability                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collaborators    | Periodic Job, Data Source, Traffic Data Categorization, Travel Time Estimation                                                                                            |
| Input            | Freeway route, Time period                                                                                                                                                |
| Output           | Impacts of different regimes, which are combination of various operational conditions such as demand, weather, incident and work zones, etc., on the reliability measures |

### Travel Time Estimation Component

| Responsibilities | Estimate travel time                                                                        |
|------------------|---------------------------------------------------------------------------------------------|
| Collaborators    | Reliability Engine, Reliability Service                                                     |
| Notes            | Lane configuration information of work zones should be considered in the estimation process |
| Input            | freeway route, time period, active detector list                                            |
| Output           | travel time list for each time interval                                                     |

# Traffic Data Categorization Component

| Responsibilities | categorize each travel time data based on operational conditions |
|------------------|------------------------------------------------------------------|
| Collaborators    | Non-Traffic Data, Data Source, Reliability Engine                |

| Notes  | must be used after traffic and non-traffic data are saved and prepared |
|--------|------------------------------------------------------------------------|
| Input  | freeway route, time period                                             |
| Output | Linkage between travel time data and operation conditions in database  |

### Data Source Component

| Responsibilities | read data from external data sources                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------|
| Collaborators    | Reliability Engine, Non-Traffic Data, Traffic Data Categorization                                                |
| Notes            | use asynchronous call with thread safe way due to delay by remote data access should consider using proxy server |
| Input            | time period                                                                                                      |
| Output           | data                                                                                                             |

# Periodic Job Component

| Responsibilities | manage and execute periodic jobs                            |
|------------------|-------------------------------------------------------------|
| Collaborators    | Reliability Engine                                          |
| Notes            | generalize job scheduling mechanism                         |
| Input            | job that needs to be conducted with predetermined schedules |
| Output           | N/A                                                         |

Data API Component

| Responsibilities | provide access mechanism to the reliability service component                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Collaborators    | Reliability Service, User Client, TTRMS Service Consumer                                                                           |
| Notes            | service method issue: 1. create a service thread for each request<br>2. one service thread and respond in FIFO or other scheduling |
| Input            | request from clients                                                                                                               |
| Output           | corresponding output from the service component                                                                                    |

# Reliability Service Component

| Responsibilities | retrieve pre-estimated travel time, reliability information and non-traffic data estimate travel time with the retrieved information and operational conditions |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collaborators    | Data API, Travel Time Estimation                                                                                                                                |
| Input            | freeway route, time period                                                                                                                                      |
| Output           | travel time, travel-time reliability indices, non-traffic data                                                                                                  |

\_

#### Server Configuration Component

| Responsibilities | handle requests from admin client, set server configurations             |
|------------------|--------------------------------------------------------------------------|
| Collaborators    | Admin Client, Non-Traffic Data                                           |
| Input            | requests (add, update, delete, etc.)<br>configurations, non-traffic data |
| Output           | updated configuration table of the database                              |

# Non-Traffic Data Component

| Responsibilities | manage non-traffic data<br>has data management modules for each non-traffic data type |
|------------------|---------------------------------------------------------------------------------------|
| Collaborators    | Server Configuration, Non-Traffic Data                                                |
| Input            | non-traffic data                                                                      |
| Output           | update non-traffic data tables                                                        |

# Roadway Network Component

| Responsibilities | load roadway network configurations from IRIS manage roadway network information such as detector, station and ramp             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Collaborators    | all other components in the system                                                                                              |
| Notes            | network configuration change issue : freeway network configuration on IRIS<br>changes<br>- keep metro network information daily |
|                  | <ul> <li>roadway network information should be loaded by time period,</li> <li>not loaded at system booting sequence</li> </ul> |
| Input            | roadway node name                                                                                                               |
| Output           | roadway node information such as lanes, speed limit and location of station                                                     |

# Logging Component

| Responsibilities | provide logging functions |
|------------------|---------------------------|
|                  |                           |

| Collaborators | all other components in the system |
|---------------|------------------------------------|
| Input         | message                            |
| Output        | write log message                  |

#### Database proxy Component

| Responsibilities | provide database access interface  |  |  |  |  |  |  |
|------------------|------------------------------------|--|--|--|--|--|--|
| Collaborators    | all other components in the system |  |  |  |  |  |  |
| Input            | query                              |  |  |  |  |  |  |
| Output           | update database                    |  |  |  |  |  |  |

#### Design of TTRMS Database

In this research, Postgresql is used as the database engine to store the travel-time data for predefined routes, non-traffic data, estimated data and system configurations. Figure 2.3.2 and Table 2.3.2 show the database-model diagram and schema respectively.







Figure 2.3.2 Database Model Diagram

#### Table 2.3.2 Database Schema

| Configs       |              |              |         |              |              |           |         |
|---------------|--------------|--------------|---------|--------------|--------------|-----------|---------|
| config        |              |              |         |              |              |           |         |
| ColumnName    | DataType     | PrimaryKe    | ey NotN | ull Flags De | efault Value | Comment   | AutoInc |
| name          | VARCHAR(100  | <b>D)</b> PK | NN      |              |              |           | AI      |
| content       | TEXT         |              | NN      |              |              |           |         |
| IndexName     |              | Index        | Гуре    |              | Со           | lumns     |         |
| PRIMARY       |              | PRIMA        | ARY     |              | na           | me        |         |
| route         |              |              |         |              |              |           |         |
| ColumnName    | DataType     | PrimaryKey   | NotNull | Flags        | Default Valu | e Comment | AutoInc |
| id            | INTEGER      | РК           | NN      | UNSIGNED     | I            |           | AI      |
| name          | VARCHAR(255) |              | NN      |              |              |           |         |
| corridor      | VARCHAR(10)  |              | NN      |              |              |           |         |
| direction     | CHAR(2)      |              | NN      |              |              |           |         |
| start_station | VARCHAR(10)  |              | NN      |              |              |           |         |
| end_station   | VARCHAR(10)  |              | NN      |              |              |           |         |
| route_length  | FLOAT        |              | NN      |              |              |           |         |
| IndexName     |              | Index        | Гуре    |              | Co           | lumns     |         |
| PRIMARY       |              | PRIMA        | ARY     |              | id           |           |         |
|               |              |              |         |              |              |           |         |

# Non-Traffic Data

| incident   |             |            |         |          |               |         |         |
|------------|-------------|------------|---------|----------|---------------|---------|---------|
| ColumnName | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id         | INTEGER     | РК         | NN      | UNSIGNED |               |         | AI      |
| i_type_id  | INTEGER     | РК         | NN      | UNSIGNED |               |         |         |
| cdts       | DATETIME    |            | NN      |          |               |         |         |
| udts       | DATETIME    |            |         |          |               |         |         |
| xdts       | DATETIME    |            |         |          |               |         |         |
| lat        | FLOAT       |            | NN      |          |               |         |         |
| lon        | FLOAT       |            | NN      |          |               |         |         |
| xstreet1   | VARCHAR(50) |            |         |          |               |         |         |
| xstreet2   | VARCHAR(50) |            |         |          |               |         |         |
| efeatyp    | VARCHAR(10) |            |         |          |               |         |         |
| openevent  | BOOL        |            |         |          |               |         |         |
| IndexName  |             | Index      | Туре    |          | Colu          | mns     |         |

| PRIMARY         |                | PRIMA      | ARY      |           | id<br>i_type_id  |            |         |  |
|-----------------|----------------|------------|----------|-----------|------------------|------------|---------|--|
| incident_FKInd  | ex1            | Index      |          |           | i_               | i_type_id  |         |  |
| i_type          |                |            |          |           |                  |            |         |  |
| ColumnName      | DataType       | PrimaryKe  | ey NotNu | ull Flags | Default<br>Value | Comment    | AutoInc |  |
| id              | INTEGER        | РК         | NN       | UNSIGN    | ED               |            | AI      |  |
| name            | VARCHAR(100    | ))         | NN       |           |                  |            |         |  |
| sub_type        | VARCHAR(100    | ))         |          |           |                  |            |         |  |
| type_code       | VARCHAR(10)    |            |          |           |                  |            |         |  |
| classification  | VARCHAR(50)    |            |          |           |                  |            |         |  |
| blocking        | BOOL           |            |          |           |                  |            |         |  |
| occupied        | BOOL           |            |          |           |                  |            |         |  |
| rollover        | BOOL           |            |          |           |                  |            |         |  |
| injury          | BOOL           |            |          |           |                  |            |         |  |
| fatal           | BOOL           |            |          |           |                  |            |         |  |
| cars_type       | VARCHAR(50)    |            |          |           |                  |            |         |  |
| cars_evttypeco  | de VARCHAR(10) |            |          |           |                  |            |         |  |
| IndexName       |                | IndexT     | уре      |           | C                | Columns    |         |  |
| PRIMARY         |                | PRIMA      | RY       |           | ic               | b          |         |  |
| snowevent       |                |            |          |           |                  |            |         |  |
| ColumnName      | DataType P     | PrimaryKey | NotNull  | Flags     | Default Val      | ue Comment | AutoInc |  |
| id              | INTEGER P      | РК         | NN       | UNSIGNED  |                  |            | AI      |  |
| start_time      | DATETIME       |            | NN       |           |                  |            |         |  |
| end_time        | DATETIME       |            | NN       |           |                  |            |         |  |
| IndexName       |                | IndexT     | уре      |           | C                | Columns    |         |  |
| PRIMARY         |                | PRIMA      | ARY      |           | ic               | t          |         |  |
| snowmgmt        |                |            |          |           |                  |            |         |  |
| ColumnName      | DataType       | PrimaryKey | NotNul   | l Flags   | Default<br>Value | Comment    | AutoInc |  |
| id              | INTEGER        | РК         | NN       | UNSIGNE   | D                |            | AI      |  |
| snowevent_id    | INTEGER        | РК         | NN       | UNSIGNE   | D                |            |         |  |
| start_station   | VARCHAR(10)    |            |          |           |                  |            |         |  |
| end_station     | VARCHAR(10)    |            |          |           |                  |            |         |  |
| section_length  | FLOAT          |            |          |           |                  |            |         |  |
| lane_lost_time  | DATETIME       |            |          |           |                  |            |         |  |
| lane_regain_tir | ne DATETIME    |            |          |           |                  |            |         |  |
| IndexName       |                | IndexT     | уре      |           | C                | Columns    |         |  |

| PRIMARY            | PRIMARY |                                                             |        | RY     | id<br>snowevent_id |              |                  |                                       |         |
|--------------------|---------|-------------------------------------------------------------|--------|--------|--------------------|--------------|------------------|---------------------------------------|---------|
| snow_mgmt_FKIndex1 |         | Index                                                       |        |        |                    | snowevent_id |                  |                                       |         |
| specialevent       |         |                                                             |        |        |                    |              |                  |                                       |         |
| ColumnName         | DataT   | -уре                                                        | Prima  | уКеу   | NotNull            | Flags        | Default Valu     | ie Comment                            | AutoInc |
| id                 | INTEG   | GER                                                         | РК     |        | NN                 | UNSIGNED     |                  |                                       | AI      |
| name               | VARC    | HAR(100)                                                    |        |        | NN                 |              |                  |                                       |         |
| start_time         | DATE    | TIME                                                        |        |        | NN                 |              |                  |                                       |         |
| end_time           | DATE    | TIME                                                        |        |        | NN                 |              |                  |                                       |         |
| lat                | FLOA    | Т                                                           |        |        |                    |              |                  |                                       |         |
| lon                | FLOA    | Т                                                           |        |        |                    |              |                  |                                       |         |
| attendance         | INT     |                                                             |        |        |                    |              |                  |                                       |         |
| IndexName          |         |                                                             |        | IndexT | уре                |              | C                | olumns                                |         |
| PRIMARY            |         |                                                             |        | PRIMA  | RY                 |              | id               |                                       |         |
| weather            |         |                                                             |        |        |                    |              |                  |                                       |         |
| ColumnName         |         | DataType                                                    | e Prim | aryKey | NotNul             | l Flags      | Default<br>Value | Comment                               | AutoInc |
| id                 |         | INTEGER                                                     | РК     |        | NN                 | UNSIGNE      | D                |                                       | AI      |
| w_precip_type      | _id     | INTEGER                                                     | РК     |        | NN                 | UNSIGNE      | D                |                                       |         |
| w_surf_conditi     | ion_id  | INTEGER                                                     | РК     |        | NN                 | UNSIGNE      | D                |                                       |         |
| time               |         | DATETIM                                                     | E      |        | NN                 |              |                  |                                       |         |
| temp               |         | FLOAT                                                       |        |        |                    |              |                  |                                       |         |
| air_temp           |         | FLOAT                                                       |        |        |                    |              |                  |                                       |         |
| visibility         |         | FLOAT                                                       |        |        |                    |              |                  |                                       |         |
| wind_dir           |         | ENUM('E'<br>'W', 'S',<br>'N', 'NE',<br>'SE', 'SW',<br>'NW') | ,<br>, |        |                    |              |                  |                                       |         |
| wind_speed         |         | FLOAT                                                       |        |        |                    |              |                  |                                       |         |
| precip_amount      | :       | FLOAT                                                       |        |        |                    |              |                  |                                       |         |
| reg_time           |         | DATETIM                                                     | E      |        | NN                 |              |                  |                                       |         |
| IndexName          |         |                                                             |        | IndexT | уре                |              | C                | olumns                                |         |
| PRIMARY            |         |                                                             |        | PRIMA  | RY                 |              | id<br>w<br>w     | _precip_type_id<br>_surf_condition_id |         |
| weather_FKInd      | ex2     |                                                             |        | Index  |                    |              | w                | _precip_type_id                       |         |
| weather_FKInd      | ex3     |                                                             |        | Index  |                    |              | w                | _surf_condition_id                    |         |
| workzone           |         |                                                             |        |        |                    |              |                  |                                       |         |

| ColumnName       | DataType         | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|------------------|------------------|------------|---------|----------|---------------|---------|---------|
| id               | INTEGER          | РК         | NN      | UNSIGNED |               |         | AI      |
| corridor         | VARCHAR(20)      |            | NN      |          |               |         |         |
| direction        | CHAR(2)          |            | NN      |          |               |         |         |
| start_time       | DATETIME         |            | NN      |          |               |         |         |
| end_time         | DATETIME         |            | NN      |          |               |         |         |
| start_station    | VARCHAR(10)      |            | NN      |          |               |         |         |
| end_station      | VARCHAR(10)      |            | NN      |          |               |         |         |
| crossover        | BOOL             |            | NN      |          |               |         |         |
| origin_lanes     | INTEGER          |            | NN      | UNSIGNED |               |         |         |
| open_lanes       | INTEGER          |            | NN      | UNSIGNED |               |         |         |
| median_type      | VARCHAR(50)      |            |         |          |               |         |         |
| shoulder_type    | VARCHAR(50)      |            |         |          |               |         |         |
| alive_detectors  | 5 TEXT           |            |         |          |               |         |         |
| IndexName        |                  | Index      | Гуре    |          | Colu          | mns     |         |
| PRIMARY          |                  | PRIMA      | ARY     |          | id            |         |         |
| w_precip_type    |                  |            |         |          |               |         |         |
| ColumnName       | DataType         | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id               | INTEGER          | РК         | NN      | UNSIGNED |               |         | AI      |
| name             | VARCHAR(20)      |            | NN      |          |               |         |         |
| IndexName        |                  | Index      | Гуре    |          | Colu          | mns     |         |
| PRIMARY          |                  | PRIMA      | ARY     |          | id            |         |         |
| w_surf_condition | on               |            |         |          |               |         |         |
| ColumnName       | DataType         | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id               | INTEGER          | РК         | NN      | UNSIGNED |               |         | AI      |
| name             | VARCHAR(20)      |            | NN      |          |               |         |         |
| IndexName        |                  | Index      | Гуре    |          | Colu          | mns     |         |
| PRIMARY          |                  | PRIM       | ARY     |          | id            |         |         |
| Links of Non-Tro | affic Data and R | oute       |         |          |               |         |         |
| Ink_incident_ro  | oute             |            |         |          |               |         |         |
| ColumnName       | DataType         | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id               | INTEGER          | РК         | NN      | UNSIGNED |               |         | AI      |
| incident_i_type  | e_id INTEGER     | РК         | NN      | UNSIGNED |               |         |         |
| incident_id      | INTEGER          | РК         | NN      | UNSIGNED |               |         |         |
| route_id         | INTEGER          | РК         | NN      | UNSIGNED |               |         |         |
| IndexName        |                  | Index      | Гуре    |          | Colu          | mns     |         |
| PRIMARY           |              | F              | PRIMAR  | Y       |         |          | id<br>incident<br>incident<br>route_ic | _i_type_id<br>_id<br>I          |         |
|-------------------|--------------|----------------|---------|---------|---------|----------|----------------------------------------|---------------------------------|---------|
| incident_route_   | FKIndex1     | -KIndex1 Index |         |         |         |          | incident<br>incident                   | _id<br>_i_type_id               |         |
| incident_route_   | FKIndex2     | I              | ndex    |         |         |          | route_ic                               | I                               |         |
| Ink_snowmgmt_     | route        |                |         |         |         |          |                                        |                                 |         |
| ColumnName        | I            | DataType       | Primar  | уКеу І  | NotNull | Flags    | Default<br>Value                       | Comment                         | AutoInc |
| route_id          | l            | INTEGER        | РК      | I       | NN      | UNSIGNED |                                        |                                 |         |
| snowmgmt_id       | l            | INTEGER        | РК      | I       | NN      | UNSIGNED |                                        |                                 |         |
| snowmgmt_sno      | wevent_id I  | INTEGER        | РК      | 1       | NN      | UNSIGNED |                                        |                                 |         |
| IndexName         |              | I              | ndexTy  | ре      |         |          | Column                                 | 5                               |         |
| PRIMARY           |              | F              | PRIMAR  | Y       |         |          | route_ic<br>snowmg<br>snowmg           | l<br>;mt_id<br>;mt_snowevent_id |         |
| snow_route_FKI    | ndex1        | I              | ndex    |         |         |          | snowmg<br>snowmg                       | ;mt_id<br>;mt_snowevent_id      |         |
| snow_route_FKI    | ndex2        | I              | ndex    |         |         |          | route_ic                               | I                               |         |
| Ink_specialevt_re | oute         |                |         |         |         |          |                                        |                                 |         |
| ColumnName        | DataType     | Primary        | Key N   | otNull  | Flags   | Default  | Value Co                               | mment                           | AutoInc |
| specialevent_id   | INTEGER      | РК             | N       | N       | UNSIGN  | IED      |                                        |                                 |         |
| route_id          | INTEGER      | РК             | Ν       | N       | UNSIGN  | IED      |                                        |                                 |         |
| IndexName         |              | I              | ndexTy  | ре      |         |          | Column                                 | 5                               |         |
| PRIMARY           |              | F              | PRIMAR  | Y       |         |          | speciale<br>route_ic                   | vent_id<br>I                    |         |
| spetialevent_rou  | ute_FKIndex  | 1 I            | ndex    |         |         |          | speciale                               | vent_id                         |         |
| spetialevent_rou  | ute_FKIndex  | 2 I            | ndex    |         |         |          | route_ic                               | l                               |         |
| Ink_weather_rou   | ute          |                |         |         |         |          |                                        |                                 |         |
| ColumnName        |              | DataTy         | pe Prin | naryKey | NotNu   | II Flags | Default<br>Value                       | Comment                         | AutoInc |
| route_id          |              | INTEGE         | R PK    |         | NN      | UNSIGN   | ED                                     |                                 |         |
| weather_id        |              | INTEGE         | R PK    |         | NN      | UNSIGN   | ED                                     |                                 |         |
| weather_w_sur     | f_condition_ | _id INTEGE     | R PK    |         | NN      | UNSIGN   | ED                                     |                                 |         |
| weather_w_pre     | cip_type_id  | INTEGE         | R PK    |         | NN      | UNSIGN   | ED                                     |                                 |         |
| IndexName         |              | I              | ndexTy  | ре      |         |          | Column                                 | 5                               |         |
| PRIMARY           |              | F              | PRIMAR  | Y       |         |          | route_ic<br>weather                    | l<br>id                         |         |

|                        |       | weather_w_surf_condition_id<br>weather_w_precip_type_id               |
|------------------------|-------|-----------------------------------------------------------------------|
| weather_route_FKIndex2 | Index | route_id                                                              |
| weather_route_FKIndex2 | Index | weather_id<br>weather_w_precip_type_id<br>weather_w_surf_condition_id |

lnk\_wz\_route

| ColumnName    | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment             | AutoInc |
|---------------|----------|------------|---------|----------|---------------|---------------------|---------|
| workzone_id   | INTEGER  | РК         | NN      | UNSIGNED |               |                     |         |
| route_id      | INTEGER  | РК         | NN      | UNSIGNED |               |                     |         |
| IndexName     |          | Index      | Туре    |          | Col           | umns                |         |
| PRIMARY       |          | PRIM       | ARY     |          | wo<br>rou     | rkzone_id<br>ite_id |         |
| wz_route_FKIn | ndex1    | Index      |         |          | WO            | rkzone_id           |         |
| wz_route_FKIn | ndex2    | Index      |         |          | rou           | ite_id              |         |
|               | _        |            |         |          |               |                     |         |

Operating Condition

| Ink_tt_regime      |          |            |         |          |                                                            |                                                                                                                 |         |
|--------------------|----------|------------|---------|----------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|
| ColumnName         | DataType | PrimaryKey | NotNull | Flags    | Default Value                                              | e Comment                                                                                                       | AutoInc |
| id                 | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 | AI      |
| tt_route_id        | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| rg_demand_id       | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| tt_id              | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| rg_weather_id      | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| rg_incident_id     | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| rg_workzone_id     | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| rg_snowmgmt_id     | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| rg_specialevent_id | INTEGER  | РК         | NN      | UNSIGNED |                                                            |                                                                                                                 |         |
| IndexName          |          | Index      | Туре    |          | Co                                                         | lumns                                                                                                           |         |
| PRIMARY            |          | PRIM       | ARY     |          | id<br>tt_<br>rg_<br>tt_<br>rg_<br>rg_<br>rg_<br>rg_<br>rg_ | route_id<br>_demand_id<br>id<br>_weather_id<br>_incident_id<br>_workzone_id<br>_snowmgmt_id<br>_specialevent_id |         |
| Ink_tt_regime_FKIr | ndex1    | Index      |         |          | tt_<br>tt_                                                 | _id<br>_route_id                                                                                                |         |
| Ink_tt_regime_FKIr | ndex2    | Index      |         |          | rg_                                                        | _demand_id                                                                                                      |         |
|                    |          |            |         |          |                                                            |                                                                                                                 |         |

| lnk_tt_regime_            | _FKIndex3   | Index      |         |          | rg_v          | veather_id                          |         |
|---------------------------|-------------|------------|---------|----------|---------------|-------------------------------------|---------|
| <pre>Ink_tt_regime_</pre> | _FKIndex4   | Index      |         |          | rg_iı         | ncident_id                          |         |
| <pre>lnk_tt_regime_</pre> | _FKIndex5   | Index      |         |          | rg_v          | vorkzone_id                         |         |
| <pre>lnk_tt_regime_</pre> | _FKIndex6   | Index      |         |          | rg_s          | nowmgmt_id                          |         |
| <pre>lnk_tt_regime_</pre> | FKIndex7    | Index      |         |          | rg_s          | pecialevent_id                      |         |
| rg_demand                 |             |            |         |          |               |                                     |         |
| ColumnName                | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment                             | AutoInc |
| id                        | INTEGER     | РК         | NN      | UNSIGNED |               |                                     | AI      |
| name                      | VARCHAR(50) |            | NN      |          |               | Uncongested, Low,<br>Moderate, High |         |
| condition                 | TEXT        |            | NN      |          |               |                                     |         |
| IndexName                 |             | Index      | Туре    |          | Colu          | mns                                 |         |
| PRIMARY                   |             | PRIM       | ARY     |          | id            |                                     |         |
| rg_incident               |             |            |         |          |               |                                     |         |
| ColumnName                | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment                             | AutoInc |
| id                        | INTEGER     | РК         | NN      | UNSIGNED |               |                                     | AI      |
| name                      | VARCHAR(50) |            | NN      |          |               |                                     |         |
| condition                 | TEXT        |            |         |          |               |                                     |         |
| IndexName                 |             | Index      | Туре    |          | Colu          | mns                                 |         |
| PRIMARY                   |             | PRIM       | ARY     |          | id            |                                     |         |
| rg_snowmgmt               |             |            |         |          |               |                                     |         |
| ColumnName                | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment                             | AutoInc |
| id                        | INTEGER     | РК         | NN      | UNSIGNED |               |                                     | AI      |
| name                      | VARCHAR(50) |            | NN      |          |               |                                     |         |
| condition                 | TEXT        |            |         |          |               |                                     |         |
| IndexName                 |             | Index      | Туре    |          | Colu          | mns                                 |         |
| PRIMARY                   |             | PRIM       | ARY     |          | id            |                                     |         |
| rg_specialeven            | t           |            |         |          |               |                                     |         |
| ColumnName                | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment                             | AutoInc |
| id                        | INTEGER     | РК         | NN      | UNSIGNED |               |                                     | AI      |
| name                      | VARCHAR(50) |            | NN      |          |               |                                     |         |
| condition                 | TEXT        |            |         |          |               |                                     |         |
| IndexName                 |             | Index      | Туре    |          | Colu          | mns                                 |         |
| PRIMARY                   |             | PRIM       | ARY     |          | id            |                                     |         |
| rg_weather                |             |            |         |          |               |                                     |         |
| ColumnName                | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment                             | AutoInc |
| id                        | INTEGER     | РК         | NN      | UNSIGNED |               |                                     | AI      |

| name        | VARCHAR(50) |            | NN      |          |               |         |         |
|-------------|-------------|------------|---------|----------|---------------|---------|---------|
| condition   | TEXT        |            |         |          |               |         |         |
| IndexName   |             | Index      | Туре    |          | Colu          | mns     |         |
| PRIMARY     |             | PRIM       | ARY     |          | id            |         |         |
| rg_workzone |             |            |         |          |               |         |         |
| ColumnName  | DataType    | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id          | INTEGER     | РК         | NN      | UNSIGNED |               |         | AI      |
| name        | VARCHAR(50) |            | NN      |          |               |         |         |
| condition   | TEXT        |            |         |          |               |         |         |
| IndexName   |             | Index      | Туре    |          | Colu          | mns     |         |
| PRIMARY     |             | PRIM       | ARY     |          | id            |         |         |
|             |             |            |         |          |               |         |         |

| tt              |          |            |         |          |               |         |         |
|-----------------|----------|------------|---------|----------|---------------|---------|---------|
| ColumnName      | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id              | INTEGER  | РК         | NN      | UNSIGNED |               |         | AI      |
| route_id        | INTEGER  | РК         | NN      | UNSIGNED |               |         |         |
| departure_time  | DATETIME |            | NN      |          |               |         |         |
| tt              | FLOAT    |            | NN      |          |               |         |         |
| IndexName       |          | Index      | Туре    |          | Colu          | umns    |         |
| PRIMARY         |          | PRIM       | ARY     |          | id<br>rout    | te_id   |         |
| travel_time_FKI | ndex1    | Index      |         |          | rout          | te_id   |         |
| T 17 D /        |          |            |         |          |               |         |         |

| Travel Time Reliability |          |            |         |          |                  |                                           |         |
|-------------------------|----------|------------|---------|----------|------------------|-------------------------------------------|---------|
| Ink_ttrprofile_route    |          |            |         |          |                  |                                           |         |
| ColumnName              | DataType | PrimaryKey | NotNull | Flags    | Default<br>Value | Comment                                   | AutoInc |
| id                      | INTEGER  | РК         | NN      | UNSIGNED |                  |                                           | AI      |
| route_id                | INTEGER  | РК         | NN      | UNSIGNED |                  |                                           |         |
| ttr_profile_ttr_type_id | INTEGER  |            | NN      | UNSIGNED |                  |                                           |         |
| ttr_profile_id          | INTEGER  |            | NN      | UNSIGNED |                  |                                           |         |
| reliability             | INTEGER  |            |         | UNSIGNED |                  |                                           |         |
| IndexName               |          | IndexTy    | be      |          |                  | Columns                                   |         |
| PRIMARY                 |          | PRIMAR     | Y       |          |                  | id<br>route_id                            |         |
| Ink_ttrprofile_route_F  | (Index1  | Index      |         |          |                  | ttr_profile_id<br>ttr_profile_ttr_type_id |         |

| lnk_ttrprofile_ | route_FKIndex2 | Index      |         |          | rout          | :e_id   |         |
|-----------------|----------------|------------|---------|----------|---------------|---------|---------|
| ttr_profile     |                |            |         |          |               |         |         |
| ColumnName      | DataType       | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id              | INTEGER        | РК         | NN      | UNSIGNED |               |         | AI      |
| ttr_type_id     | INTEGER        | РК         | NN      | UNSIGNED |               |         |         |
| name            | VARCHAR(50)    |            | NN      |          |               |         |         |
| start_date      | DATE           |            | NN      |          |               |         |         |
| end_date        | DATE           |            | NN      |          |               |         |         |
| IndexName       |                | Index      | Туре    |          | Colu          | imns    |         |
| PRIMARY         |                | PRIM       | ARY     |          | id<br>ttr_    | type_id |         |
| ttr_profile_FKI | ndex1          | Index      |         |          | ttr_          | type_id |         |
| ttr_type        |                |            |         |          |               |         |         |
| ColumnName      | DataType       | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
| id              | INTEGER        | РК         | NN      | UNSIGNED |               |         | AI      |
| name            | VARCHAR(50)    |            |         |          |               |         |         |
| IndexName       |                | Index      | Туре    |          | Colu          | imns    |         |
| PRIMARY         |                | PRIM       | ARY     |          | id            |         |         |

#### 2.4 DESIGN OF USER CLIENT

The User Client retrieves the travel-time and reliability information from the server for predefined routes and generates a set of reports. In particular, the impacts of external operating factors, such as weather, incidents, etc., on reliability measures can be analyzed with the User Client for predefined routes. In the current version of TTRMS, the non-traffic data is stored only in the server. Therefore the client needs to use the Data API of the server to access the non-traffic data, while the traffic flow data can be directly accessible via HTTP. Figure 2.4.1 shows the components of the User Client, which reuses some modules developed for the server, such as the Reliability Engine, Traffic Data Categorization, Travel Time Estimation, Roadway Network and Logging components. In what follows, the detailed functionalities of each component in the User Client are described.



Figure 2.4.1 Components of User Client

## Table 2.4.1 Components of User Client

# User Interface Component

| Responsibilities | provide graphical user interface           |
|------------------|--------------------------------------------|
| Collaborators    | Main, user                                 |
| Notes            | support map-based freeway route definition |
| Input            | request from user                          |
| Output           | N/A                                        |

## Main Component

| Responsibilities | handle request from user                   |
|------------------|--------------------------------------------|
| Collaborators    | User Interface, Reliability Engine, Report |
| Notes            | should be thread-safe                      |
| Input            | request from user interface component      |
| Output           | N/A                                        |

#### Content Source Component

| Responsibilities | read data from traffic data archives of IRIS<br>read non-traffic data from server through data API |
|------------------|----------------------------------------------------------------------------------------------------|
| Collaborators    | Reliability Engine, Traffic Data Categorization                                                    |
| Input            | time period                                                                                        |

| Output | corresponding data to type |
|--------|----------------------------|
|--------|----------------------------|

# Report Component

| Responsibilities | generate report in spreadsheet and chart              |
|------------------|-------------------------------------------------------|
| Collaborators    | Main                                                  |
| Notes            | use open source library to make spreadsheet and chart |
| Input            | report type, results                                  |
| Output           | report file                                           |

# **Reliability Engine Component**

| Responsibilities | collect traffic and non-traffic data                                                                         |
|------------------|--------------------------------------------------------------------------------------------------------------|
|                  | estimate travel time and categorize it                                                                       |
|                  | analyze relation between unreliability sources and travel time reliability                                   |
| Collaborators    | Main, Content Source, Traffic Data Categorization, Travel Time Estimation                                    |
| Input            | freeway route, time period                                                                                   |
| Output           | impact of regimes that are combination of operational conditions such as demand, weather, incident and so on |

# Travel Time Estimation Component

| Responsibilities | estimate travel time |
|------------------|----------------------|
| Collaborators    | Reliability Engine   |

| Notes  | lane configuration information of work zones to be considered in estimation process get lane configuration information from the server |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|
| Input  | freeway route, time period, active detector list                                                                                       |
| Output | travel time list for each time interval                                                                                                |

# Traffic Data Categorization Component

| Responsibilities | categorize each travel time data based on operational conditions        |
|------------------|-------------------------------------------------------------------------|
| Collaborators    | Content Source, Reliability Engine                                      |
| Notes            | must be used after traffic and non-traffic data loaded                  |
| Input            | freeway route, time period                                              |
| Output           | make link between travel time data and operation conditions in database |

# Roadway Network Component

| Responsibilities | load roadway network configurations from IRIS manage roadway network information such as detector, station and ramp            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Collaborators    | all other components in the system                                                                                             |
| Notes            | network configuration change issue : freeway network configuration on IRIS changes                                             |
|                  | <ul> <li>keep metro network information daily</li> <li>roadway network information should be loaded by time period,</li> </ul> |

|        | not loaded at system booting sequence                                       |
|--------|-----------------------------------------------------------------------------|
| Input  | roadway node name                                                           |
| Output | roadway node information such as lanes, speed limit and location of station |

#### Logging Component

| Responsibilities | provide logging functions          |
|------------------|------------------------------------|
| Collaborators    | all other components in the system |
| Input            | message                            |
| Output           | write log message                  |

#### 2.5 DESIGN OF THE ADMIN CLIENT

The Admin Client of the TTRMS manages the location information of the external-data sources, such as server IP, port and protocol, so that the information from the external servers can be automatically collected by the server. In addition, the data-import function is provided by the Non-Traffic Data Configuration component for manually updating the data. In particular, the user-interface for the work zones on freeways is also developed to configure the lane-layout of each work-zone, so that the travel times with work zones can be estimated correctly. Figure 2.5.1 shows the components of the Admin Client, which reuses the Roadway Network and Logging components developed for the sever container. The rest of this section describes the details of each component.



#### Figure 2.5.1 Components of Admin Client

#### Table 2.5.1 Components of Admin Client

#### User Interface Component

| Responsibilities | provide graphical user interface |
|------------------|----------------------------------|
| Collaborators    | Main, admin                      |
| Input            | request from user                |
| Output           | N/A                              |

#### Main Component

| Responsibilities |
|------------------|
|------------------|

| Collaborators | User Interface, Server Configuration, Non-Traffic Data Configuration |
|---------------|----------------------------------------------------------------------|
| Input         | request from user interface component                                |
| Output        | N/A                                                                  |

# Non-Traffic Data Configuration Component

| Responsibilities | provide interface to set non-traffic data and information update database on server container |
|------------------|-----------------------------------------------------------------------------------------------|
| Collaborators    | Main, Communication                                                                           |
| Input            | non-traffic data                                                                              |
| Output           | N/A                                                                                           |

# Server Configuration Component

|                  | provide interface to set server configuration |  |  |  |  |  |  |  |
|------------------|-----------------------------------------------|--|--|--|--|--|--|--|
| Responsibilities | view server system log                        |  |  |  |  |  |  |  |
|                  | update database on server container           |  |  |  |  |  |  |  |
| Collaborators    | Main, Communication                           |  |  |  |  |  |  |  |
| Input            | configurations                                |  |  |  |  |  |  |  |
| Output           | view of data and logs                         |  |  |  |  |  |  |  |

## Communication Component

| Responsibilities | provide access mechanism to server |
|------------------|------------------------------------|
|------------------|------------------------------------|

| Collaborators | generalize communication mechanism<br>should consider using proxy server |
|---------------|--------------------------------------------------------------------------|
| Input         | method (add, update and delete)<br>data                                  |
| Output        | N/A                                                                      |

## Roadway Network Component

| Responsibilities | load roadway network configurations from IRIS manage roadway network information such as detector, station and ramp                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collaborators    | all other components in the system                                                                                                                                                                                                         |
| Notes            | network configuration change issue : freeway network configuration on IRIS<br>changes<br>- keep metro network information daily<br>- roadway network information should be loaded by time period,<br>not loaded at system booting sequence |
| Input            | roadway node name                                                                                                                                                                                                                          |
| Output           | roadway node information such as lanes, speed limit and location of station                                                                                                                                                                |

# Logging Component

| Responsibilities | provide logging functions          |
|------------------|------------------------------------|
| Collaborators    | all other components in the system |

| Input  | message           |
|--------|-------------------|
| Output | write log message |

# CHAPTER 3: ENHANCEMENT OF THE TRAVEL TIME ESTIMATION MODULE FOR WORK ZONE SITES

#### **3.1 INTRODUCTION**

In this chapter, the existing travel-time module in TICAS, Traffic Information and Condition Analysis System developed at the University of Minnesota Duluth, is enhanced to be able to calculate the traveltimes of the freeway work-zones, where various types of lane-configurations are implemented through time. Figure 3.1.1 shows the common examples of work-zone lane-configurations, which include a laneclosure, lane-shift and crossovers to opposing lanes. Further, multiple types of lane-configurations can be combined in a single work-zone, e.g., a lane-closure and a crossover, etc.



#### Figure 3.1.1 Examples of Work-Zone Lane-configurations

In this study, the following modules are developed to configure the travel-time routes with work-zones and to calculate the travel-times of those work-zone routes:

- 1) Work-zone Route-Configuration Module to construct the travel-time routes for given work-zones by identifying a list of detectors on the open-lanes for each direction,
- 2) Travel-time Calculation Module for new work-zone routes.

Figure 3.2.1 shows the framework of the TTRMS incorporating the above modules developed in this chapter. The geometric information for given work zones are entered through the user-interface client and the calculated travel-times are stored in the database to be used by the reliability estimation module. The rest of this chapter summarizes the details of the new work-zone route and travel-time modules along with their test results.

#### **3.2 DESIGN OF THE ROUTE-CONFIGURATION MODULE FOR WORK-ZONES**

In this research, the route-configuration module is first developed to identify a list of the detectors on the travel-route in each direction for a given work-zone.



Figure 3.2.1 Framework for Travel-Time Reliability Measurement System

#### Required Data for Work-Zone Route Configuration

The following types of the geometry data are needed for configuring the travel-time routes for a given work-zone. These data will be entered through the user-interface client and stored in JSON format for each work-zone.

- Location/IDs of lane-closure sections,
- Location/IDs of lane-shifting and shifted-lanes,
- Location of crossover points,
- Work-zone geometry data including type/width of Median and shoulder, speed limit,
- Ramp-closure information within a work-zone.

#### Design of Data Structure

To store the above data and configure the travel-time route for a given work-zone, the following classes were developed:

- *'Infra'*: a class containing all the geometry and detector information of the metro freewaynetwork, such as the ID information for each corridor, detector, station, entrance/exit ramp, meter and camera.
- 'Route': a class representing a freeway route,
- 'RouteInfo': a class storing the lane-configuration data for each work-zone,
- 'SubRoute': a class representing a sub-route in a Route, as shown in Figure 2,
- *RouteHelper, SubRouteHelper* and *RouteInfoHelper* are the classes to process the above classes.

Figure 3.2.2 includes the details of the RouteInfo class. The class-diagram showing the relationships among the above classes are presented in Figure 3.2.3.

#### **Route-Configuration Process**

Figure 3.2.4 shows the process to configure a travel-route in a work-zone. The step-by-step procedure to create a travel-route is as follows:

- Step 1: Using the map-based interface in the Client program, the sub-routes in a given workzone are defined by user.
- Step 2: For each sub-route defined in Step 1, user enters the lane-configuration information using the input dialog to be developed in this task.

- Step 3: The user-entered data regarding the sub-routes and their lane-configuration are converted to JSON format.
- Step 4: The route-data in JSON format are sent to the TTRMS server, where the data for each route are stored.
- Step 5: Using the JSON-format route-data, the TICAS service module in the TTRMS server creates the 'Route' instance, which is used by the Travel-Time calculation module.



Figure 3.2.2 'RouteInfo' class for storing lane-configuration data



Figure 3.2.3 Class-diagram for Route-Configuration

+serialize()



Figure 3.2.4 Process Diagram for Configuration of Travel-Routes

#### **3.3 ENHANCEMENT OF THE TRAVEL-TIME CALCULATION MODULE FOR WORK-ZONES**

#### 3.3.1 Basic Methodology for Travel-time Estimation

Figure 3.3.1 illustrates the principles of estimating the travel-time for a route in TICAS. Using the speed data from each detector station located on a travel-route, the travel-time estimation procedure first determines the speed estimates of the equal-length subsections between two stations for each time interval, whose value is defined by user. The speed values of each subsection for each time interval are then applied to determine the travel-trajectory of a vehicle leaving the first station at the beginning of each time interval until it reaches the last station of a given route. The travel-time is calculated as the difference between the departure time at the first station and the arrival time at the last station of a given route. Figure 3.3.2 includes the pseudo-code of the travel-time calculation function, *estimate\_travel\_time()*, developed in this study to determine the travel-time of a route including work-zones.

#### 3.3.2 Design of the Modules for Calculating Work-Zone Route Travel-Time

Figure 3.3.3 shows the classes developed for the travel-time calculation process, which is initiated by calling *estimate\_travel\_time()* in the Estimation module. The main functionalities of each module in this process are as follows:

- *Measure* module provides the functions to calculate the flow-measures, such as travel-time, speed, density, flow, and VMT, etc. Those measure-calculation functions are stored in *Measure* package.
- *MeasureHelper* module provides the data gathering methods to *Measure* module.
- *TravelTime* module calculates the travel-time of a given route.
- *RNodeData* is a class to organize travel- time calculation results. A *RNodeData* instance contains *RNode* instance, time-period, measurement-type, station data list and lane-by-lane data for a station. The results from *TravelTime* module are stored in an array (list) of *RNodeData* instance, which contains the travel-time value from the starting station to each downstream station along a route.
- *RNode* is a class representing a detector station.
- *ResultWriter* module stores the travel-time calculation results to a file in a spread- sheet format.





FUNCTION **estimate\_travel\_time**(*rnode\_list, period*): unn estimate travel time with the given rnode (station) list and time period information \* RNode represents station, entrance and exit *um* CALLget\_speed() WITH rnode\_list, period RETURN us\_data SET *tt\_data* TO list of float list # us\_data and tt\_data is list[ data list for a rnode ] (type: list[list[float]]) # e.g. us\_data = [ # [65, 63, 50, 51, 42, 40..] ← speed list of station 1 [ 70, 67, 48, 50, 45, 46.. ] ← speed list of station 2 # # [ 68, 60, 54, 52, 41, 43.. ] ← speed list of station 3 # ... #] SET *len\_data* TO length of data for a rnode FOR *tidx* TO *len\_data*: SET partial\_data TO data only after tidx CALL calculate\_tt() WITH partial\_data, period.interval RETURN tts FOR *ridx* TO lengh of *tt\_data*: SET tt\_data[ridx][tidx] TO tts[ridx] END FOR END FOR RETURN tt data END FUNCTION

```
FUNCTION calculate_tt(data, interval):
  unn
  calculate travel times from the first station to each station
   when vehicle start to travel at the first time step"""
  SET tts To list of float
  SET p To (0, 0, tts, 0)
  # p[0] = traveled time
  # p[1] = traveled distance
  # p[2] = traveled time list for each rnode
  # p[3] = current rnode index
  WHILE True:
     Call tt_next() WITH data, interval p; RETURN p
    #p[0] = None, when time index or rnode index is over its limit
    # traveled distance (P[1]) could not exceed length of route
     IF NOT p[0] OR p[1] \ge length of route:
        BREAK
     END IF
  END WHILE
  RETURN tts
END FUNCTION
FUNCTION tt_next(data, interval, p):
  unn
  store the travel time and find the travel time, distance to next time step"""
  ASSIGN (tt, td, tts, cur ridx) FROM p
  SET vd TO 0.1
                                # distance in mile between rnodes
  SET max_ridx TO len(data)
  SET max tidx TO len(data[0])
  SET ridx TO floor(td / vd)
                                 # rnode index
  SET tidx TO floor(tt / interval) # time index
  # check end condition
  IF it is over end of route or time data THEN
    RETURN (None, None, None, None)
  END IF
  # store travel time into the result list
  IF current rnode is not the end of route THEN
    tts[ridx] = tt / 60.0
  END IF
  # calculate remaining time and distance to next node
  SET remaining interval TO (interval * (tidx + 1)) - tt
```

SET remaining\_distance TO (vd \* (ridx + 1)) - td

# calculate travel time and distance to next node
SET u TO data[ridx][tidx]
SET tt\_for\_remaining\_distance TO remaining\_distance / u \* seconds\_per\_hour
SET tt\_to\_go TO min(remaining\_interval, tt\_for\_remaining\_distance)
SET d\_to\_go TO u \* tt\_to\_go / seconds\_per\_hour

RETURN (*tt* + *tt\_to\_go*, *td* + *d\_to\_go*, *tts*, *cur\_ridx*) END FUNCTION



Figure 3.3.2 Pseudo-code of the travel-time function

Figure 3.3.3 Class Diagram of travel-time calculation process

#### **Travel-Time Calculation Process**

Figure 3.3.4 shows the sequence-diagram of the travel-time calculation procedure, whose first step is to call the function, *travel\_time()*, in the *Measure* module with the following parameters:

• *RouteHelper* instance: an object including *Route* instance and the functions necessary for configuring a route, such as developing a list of the stations for a given route and identifying the detectors on the traveling-lanes.



• *Period* instance: the time period information including the duration and data interval in seconds

Figure 3.3.4 Sequence-diagram of travel-time calculation process

After *travel\_time()* is called, the *Measure* module develops the station-list for a given route by calling *get\_stations()*, which combines all the detector stations in the sub-routes of a work-zone. If there is a crossover to an opposite direction, the stations in the opposite lanes are returned. Figure 3.3.5 includes the detailed sequence-diagram for the *get\_stations()* function, whose pseudo-code is also presented in Figure 3.3.6.



Figure 3.3.5 Sequence-diagram for developing station list

#### FUNCTION get\_stations():

IF the sub-route does not have crossover OR the opposite direction crosses over to the route THEN RETURN station list of *RNodeInfo* class object ELSE THEN CALL *get\_opposite\_stations()* RETURN *opposite\_stations* RETURN *opposite\_stations* END IF END FUNCTION

FUNCTION get\_opposite\_stations():

SET *stations* TO station list of *RNodeInfo* class object SET *orn\_s* TO nearby station in the opposite direction for the first station SET *orn\_e* TO nearby station in the opposite direction for the last station RETURN station list from *orn\_s* to *orn\_e* END FUNCTION

#### Figure 3.3.6 Pseudo code of get\_stations() function in RouteInfoHelper

After the list of the stations for a given route is developed, the *RouteHelper* in Figure 3.3.7 creates the *check\_detector* function, which examines the validity of a detector by returning *False* if a given detector does not belong to any of sub-routes. The *'check\_detector'* function is also used to delete the detectors on the closed-lanes when the traffic-data is collected from each station in a given work-zone. Figure 3.3.7 shows the sequence-diagram of the *get\_detector\_checker()* function. The pseud-code of the *check\_detector()* function is presented in Figure 3.3.8.

Once all the detectors in the travel-lanes for a given route are identified and assembled, the travel-time calculation function, *estimate\_travel\_time()* in the *TravelTime* module, is called and the travel-times from the most upstream station to each station downstream in a route are calculated.



Figure 3.3.7 Sequence-diagram for checking detectors

FUNCTION check\_detector(det): IF it has lane close: RETURN True if the given detector exists in closed\_lane\_list of RouteInfo END IF IF it has lane shift: RETURN True if the given detector exists in shifted lane list of RouteInfo END IF IF it has cross over to opposite lane: IF the given detector does not exist in the opposite direction **RETURN** False END IF RETURN (det.lane > station.lanes - crossover lanes) END IF IF it has cross over from opposite lane: IF the given detector does not exist in the route **RETURN False** END IF RETURN (det.lane <= station.lanes - crossover lanes) END IF RETURN True if the given detector exists, or False END FUNCTION

#### Figure 3.3.8 Pseudo-code of the check\_detector() function in RouteInfoHelper

# 3.4 DEVELOPMENT AND TESTING OF THE ROUTE-CONFIGURATION AND TRAVEL-TIME CALCULATION MODULES

The route-configuration and the travel-time modules designed in the previous sections were implemented in Phython and incorporated into the TTRMS server, while the user-interface client was developed in Java. The server program consists of a main script and three Python packages: *pyticas*, *pyticas\_server*, *pyticas\_ttrms*. Figure 3.4.1 shows the main script, where the server instance is created and the TTRMS service is added to the server instance as an application. Figure 3.4.2 includes the screenshot of the graphical user-interface developed in this task for entering the lane-configuration data for a work-zone.

from pyticas\_server.server import TICASServer
from pyticas\_ttrms.app import TTRMSApp
# create server instance
ticasServer = TICASServer(data\_path="./data")
# add app
ticasServer.add\_app(TTRMSApp("TTRMS: Travel Time Reliability Management System"))
# start server
ticasServer.start(port=5000)

| 😹 TICAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🔬 Workzone Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit Plugin About DataExtraction Route Italia Route Lats Route Lats Detaile Create Route Select starting conder : ISSE (PD) SubRoutes :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Creasover  Creasover |
| and the second sec                                                                                                                                                                                                                                                         | Lane Shift  His Lane Shift  His Lane Shift  Shifed Lanes :  Shife Lanes :  Shife Lanes :  Shife Lanes form ends at  ft after the last station (or ramp)  Shift Direction  Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Route start from here<br>Make Sub-Section<br>Reade end to here<br>reader of there<br>received in the section of the section | Additional Medan : Unknown v Medan Width : ft Shoulder : Unknown v Shoulder Width : ft WiZ Speed Limit : mph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cancel OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cosed Ramps : Voice<br>Co Rd 42 (E, rnd_\$7573)<br>Co Rd 42 (E, rnd_\$7579)<br>Carcel OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Figure 3.4.1 Main script for operating TTRMS server

Figure 3.4.2 Graphical User-Interface for Work-Zone Route/Lane-Configuration

#### Testing Work-Zone Route-Configuration and Travel-Time Calculation Modules

In this section, the work-zone route-configuration and travel-time calculation modules were tested with the real work-zones in the metro freeway network. The main focus of the testing is to examine 1) if the route configuration module correctly identifies the detectors on the travel-lanes for given work-zones and 2) calculates the travel-times for the travel-routes with the speed data from selected detectors. Three work-zone cases with the different types of lane-configurations were used in this testing: a lane-closure, a lane-closure with a crossover to/from an opposing direction.

Figure 3.4.3 shows the lane-configuration of the I-694 EB work-zone that has one-lane closure in each direction without a crossover. The screenshot of the route-configuration panel applied for this site is included in Figure 3.4.4. First, the route-configuration module was applied to identify the detectors on the EB open-lane and the speed data from those detectors were collected. Table 3.4.1 shows the IDs

and speed data from those detectors on the travel-lane. Finally, the travel-time module calculated the travel-times of the travel-route for each time interval with those speed data. Table 3.4.2 includes the travel-time calculation results for the I-694 EB work-zone on June 19<sup>th</sup>, 2012. In this testing, the IDs of the selected detectors by the route-configuration module were validated through the manual comparison between those in Figure 3.4.3 and Table 3.4.1. Further, the station speed data in Table 3.4.1 were also verified with the data downloaded separately using the current TICAS. Finally, the travel-time results in Table 3.4.2 were confirmed with the manual calculation using the station speed and the distance data between stations.

The above testing process was also applied to the other two sites, which include

- I-35E NB (split to TH77), June 18<sup>th</sup>, 2013: One lane-closure with a crossover to the SB left-most lane,
- I-35E NB (split to TH77), July 9<sup>th</sup>, 2013: One-lane closure with a crossover from the SB traffic, i.e., the NB left-lane was used by the SB traffic flow.

In particular, the above two cases include the crossovers to or from an opposing lane and the identification of the correct detectors on the travel-route would be of critical importance for the accurate calculation of travel-times. Figures 3.4.5-3.4.8 show the lane-configurations of those two cases and the Tables 3.4.3-3.4.6 include the speed data and the travel-time calculation results for the travel-routes in those two cases. As in the first case, the IDs of the detectors automatically selected by the route-configuration module were manually verified with the actual lane-configuration data for both cases. Further, the speed data and the travel-time results for each case were also confirmed with the manual calculation results.

| RampNar | ne    |            |       | E:T.H.61 |       | X:T.H.61 |       | E:White B | ear Ave       | X:White B | ear Ave       | E:Century | Ave   | X:Century | Ave           | E:T.H.36 V | X:T.H.36 V | E:T.H.36 E | В     | X:T.H.36 E | В     |       |
|---------|-------|------------|-------|----------|-------|----------|-------|-----------|---------------|-----------|---------------|-----------|-------|-----------|---------------|------------|------------|------------|-------|------------|-------|-------|
| Ramp    |       |            |       | 0        |       | 0        |       | 0         |               | 0         |               | 0         |       | 0         |               | 0          | 0          | 0          |       | 0          |       |       |
| lane 1  |       |            | Х     |          | <-    |          | <-    |           | <-            |           | <b>&lt;-</b>  |           | <-    |           | <b>&lt;-</b>  |            |            |            | <-    |            | <-    | <-    |
| lane 2  |       |            | Х     |          | <-    |          | <-    |           | <b>&lt;</b> - |           | <b>&lt;</b> - |           | X     |           | <b>&lt;</b> - |            |            |            | <-    |            | <-    | <-    |
| lane 3  |       |            | Х     |          |       |          |       |           |               |           |               |           |       |           |               |            |            |            |       |            |       |       |
| WB <    |       |            | S1445 |          | S1456 |          | S1424 |           | S1423         |           | S1422         |           | S1421 |           | S1420         |            |            |            | S1419 |            | S1418 | S1417 |
| Div     |       |            |       |          |       |          |       |           |               |           |               |           |       |           |               |            |            |            |       |            |       |       |
| EB>     | S1454 |            |       |          | S1455 |          | S1393 |           | S1394         |           | S1395         |           | S1396 |           | S1397         |            |            |            | S1398 |            | S1399 | S1400 |
| lane 3  | X     |            |       |          | Х     |          |       |           |               |           |               |           |       |           |               |            |            |            |       |            |       |       |
| lane 2  | ->    |            |       |          | ->    |          | Х     |           | Х             |           | Х             |           | Х     |           | Х             |            |            |            | Х     |            | Х     | Х     |
| lane 1  | ->    |            |       |          | ->    |          | ->    |           | ->            |           | ->            |           | ->    |           | ->            |            |            |            | ->    |            | ->    | ->    |
| Ramp    |       | 0          |       | 0        |       | 0        |       | 0         |               | 0         |               | 0         |       | 0         |               | 0          | 0          | 0          |       | 0          |       |       |
| RampNar | ne    | E:I-35E SB |       | X:T.H.61 |       | E:T.H.61 |       | X:White B | lear Ave      | E:White B | ear Ave       | X:Century | Ave   | E:Century | Ave           | X:T.H.36 V | E:T.H.36 V | X:T.H.36 E | B     | E:T.H.36 E | В     |       |

#### I-694 EB (N Jct I-35E to 40th St): 7 to 8AM, 19th June 2012

#### Figure 3.4.3 Lane configuration of I-694 EB case



Figure 3.4.4 Screenshot of the I-694 EB route created in the client program

|           | N Jct I- | T.H.61  | E of    | White   | McKnig  | Century | W of    | T.H.36  | 50th St | 40th St |
|-----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|           | 35E      | (S1455) | T.H.61  | Bear    | ht Rd   | Ave     | T.H.36  | (S1398) | (S1399) | (S1400) |
|           | (S1454)  | 2/3     | (S1393) | Ave     | (S1395) | (S1396) | (S1397) | 1/2     | 1/2     | 1/2     |
|           | 2/3      | lanes   | 1/2     | (S1394) | 1/2     | 1/2     | 1/2     | lanes   | lanes   | lanes   |
|           | lanes    |         | lanes   | 1/2     | lanes   | lanes   | lanes   |         |         |         |
|           |          |         |         | lanes   |         |         |         |         |         |         |
| Used      | 1:5513   | 1:5517  | 1:6182  | 1:6185  | 1:6188  | 1:6191  | 1:6194  | 1:6200  | 1:6206  | 1:6208  |
| Detectors | 2:5514   | 2:5518  |         |         |         |         |         |         |         |         |
| (Lane:ID) |          |         |         |         |         |         |         |         |         |         |
| Distance  | 0        | 0.7     | 1.5     | 2.1     | 2.9     | 3.7     | 4.3     | 4.9     | 5.5     | 6.2     |
| 07:05:00  | 70.2450  | 70.4566 | 68.6751 | 54.0248 | 22.9619 | 31.3629 | 16.0908 | 22.0186 | 48.0953 | 64.5759 |
| 07:10:00  | 72.4638  | 68.4692 | 68.4821 | 58.0743 | 47.2945 | 11.8531 | 23.4647 | 24.9547 | 44.8192 | 68.3284 |
| 07:15:00  | 73.5799  | 75.2370 | 74.7033 | 68.8092 | 39.9132 | 27.0638 | 34.2688 | 17.7647 | 45.6441 | 60.2875 |
| 07:20:00  | 66.8569  | 63.1279 | 62.1610 | 63.4275 | 63.8496 | 18.7008 | 10.5475 | 16.7774 | 48.3223 | 61.3817 |
| 07:25:00  | 69.5400  | 64.2741 | 57.2482 | 59.0705 | 58.8898 | 7.5798  | 15.2840 | 24.5803 | 52.5885 | 74.3924 |
| 07:30:00  | 62.6898  | 65.7855 | 55.2284 | 49.2908 | 23.6904 | 18.1732 | 22.8312 | 22.1103 | 51.9969 | 75.2951 |
| 07:35:00  | 66.1267  | 68.1839 | 46.3186 | 26.3533 | 39.4983 | 11.3336 | 23.2600 | 16.1583 | 55.9254 | 72.5288 |
| 07:40:00  | 61.5135  | 56.5383 | 21.9269 | 58.4026 | 26.9005 | 21.7348 | 18.0034 | 15.0331 | 46.7167 | 68.4402 |
| 07:45:00  | 67.1471  | 14.5139 | 30.3370 | 43.0363 | 34.4891 | 5.6500  | 14.5203 | 14.7679 | 50.9065 | 71.0790 |
| 07:50:00  | 66.6978  | 18.5011 | 39.9961 | 48.9401 | 25.1016 | 7.6784  | 10.5887 | 15.3442 | 55.5585 | 77.9456 |
| 07:55:00  | 65.8537  | 41.9044 | 38.2130 | 28.0039 | 17.9319 | 7.8355  | 11.7924 | 15.7425 | 55.2021 | 77.3010 |
| 08:00:00  | 70.8903  | 66.0400 | 49.6674 | 11.2323 | 17.8833 | 9.3926  | 9.9907  | 16.1211 | 48.1276 | 74.9212 |

#### Table 3.4.1 Selected Detectors and Speed Data on the Travel-route in I-694 EB work-zone

|           | N Jct I- | T.H.61  | E of    | White   | McKnig  | Century | W of    | T.H.36  | 50th St | 40th St |
|-----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|           | 35E      | (S1455) | T.H.61  | Bear    | ht Rd   | Ave     | T.H.36  | (S1398) | (S1399) | (S1400) |
|           | (S1454)  | 2/3     | (S1393) | Ave     | (S1395) | (S1396) | (S1397) | 1/2     | 1/2     | 1/2     |
|           | 2/3      | lanes   | 1/2     | (S1394) | 1/2     | 1/2     | 1/2     | lanes   | lanes   | lanes   |
|           | lanes    |         | lanes   | 1/2     | lanes   | lanes   | lanes   |         |         |         |
|           |          |         |         | lanes   |         |         |         |         |         |         |
| Used      | 1:5513   | 1:5517  | 1:6182  | 1:6185  | 1:6188  | 1:6191  | 1:6194  | 1:6200  | 1:6206  | 1:6208  |
| Detectors | 2:5514   | 2:5518  |         |         |         |         |         |         |         |         |
| (Lane:ID) |          |         |         |         |         |         |         |         |         |         |
| Distance  | 0        | 0.7     | 1.5     | 2.1     | 2.9     | 3.7     | 4.3     | 4.9     | 5.5     | 6.2     |
| 07:05:00  | 0        | 0.5971  | 1.2861  | 1.8653  | 3.1887  | 5.0474  | 7.3348  | 8.8301  | 10.0000 | 10.7771 |
| 07:10:00  | 0        | 0.5938  | 1.2948  | 1.8578  | 2.7631  | 5.0000  | 6.1024  | 7.4822  | 8.8569  | 9.6725  |
| 07:15:00  | 0        | 0.5654  | 1.2054  | 1.7040  | 2.5974  | 4.0293  | 5.6939  | 8.5067  | 10.0000 | 10.5942 |
| 07:20:00  | 0        | 0.6438  | 1.4093  | 1.9836  | 2.7382  | 4.0979  | 6.6340  | 8.5663  | 9.6351  | 10.3204 |
| 07:25:00  | 0        | 0.6246  | 1.4105  | 2.0312  | 2.8449  | 5.1148  | 6.9159  | 8.5139  | 9.6578  | 10.3460 |
| 07:30:00  | 0        | 0.6562  | 1.4446  | 2.1281  | 3.4930  | 6.1517  | 8.5091  | 10.3328 | 11.8425 | 12.6038 |
| 07:35:00  | 0        | 0.6268  | 1.4643  | 2.4464  | 3.9800  | 5.7025  | 7.4938  | 10.0000 | 11.1215 | 11.8351 |
| 07:40:00  | 0        | 0.7078  | 2.0322  | 3.1304  | 4.3067  | 7.9915  | 12.6223 | 15.5166 | 16.8950 | 17.5522 |
| 07:45:00  | 0        | 1.1799  | 3.6183  | 4.6439  | 6.0189  | 10.0000 | 13.2836 | 16.0140 | 17.4433 | 18.1628 |
| 07:50:00  | 0        | 1.0676  | 2.9560  | 3.7834  | 5.1616  | 9.0940  | 12.9796 | 15.7608 | 17.1202 | 17.8965 |
| 07:55:00  | 0        | 0.7708  | 1.9638  | 3.0357  | 5.1317  | 8.7357  | 11.7947 | 13.9320 | 15.2807 | 16.0123 |
| 08:00:00  | 0        | 0.6107  | 1.4360  | 2.8029  | 5.5991  | 8.0015  | 11.3882 | 15.0516 | 16.2922 | 17.0398 |

#### Table 3.4.2 Calculated travel-time of I-694 EB Work-Zone

# I-35E NB (split to TH77): 7 to 8AM 18<sup>th</sup> June 2013

| RampName E:Co Rd 42 |      | X:Co Rd 42 | X:Co Rd 42 |            | E:Co Rd 11 |            | X:Co Rd 1 | 1    |            |      |            |
|---------------------|------|------------|------------|------------|------------|------------|-----------|------|------------|------|------------|
| Ramp                |      | 0          |            | 0          |            | 0          |           |      | 0          |      |            |
| lane 1              | <-   |            | <-         |            | <-         |            | <-        | <-   |            | <-   |            |
| lane 2              | <-   |            | <-         |            | ->         |            | ->        | ->   |            | ->   |            |
| lane 3              |      |            |            |            |            |            |           |      |            |      |            |
| SB <                | S905 |            | S904       |            | S903       |            | S902      | S901 |            | S900 |            |
| Div                 |      |            |            |            |            |            |           |      |            |      |            |
| NB>                 | S870 |            | S871       |            | S872       |            | S873      | S874 |            | S875 |            |
| lane 3              |      |            |            |            |            |            |           |      |            |      |            |
| lane 2              | ->   |            | Х          |            | Х          |            | Х         | Х    |            | Х    |            |
| lane 1              | х    |            | ->         |            | Х          |            | Х         | Х    |            | Х    |            |
| Ramp                |      | 0          |            | 0          |            | х          |           |      | х          |      | 0          |
| RampName            |      | X:Co Rd 42 | 2          | E:Co Rd 42 |            | X:Co Rd 11 |           |      | E:Co Rd 11 | 1    | X:I-35E CD |

Figure 3.4.5 Lane configuration of I-35E NB case (June 18th, 2013)



## Figure 3.4.6 I-35E NB case (June 18<sup>th</sup>, 2013) created in client program

|           | Southcross Dr    | Co Rd 42 (S871) | McAndrews Rd     | S of Co Rd 11    | Co Rd 11 (S901) | N of Co Rd 11    |
|-----------|------------------|-----------------|------------------|------------------|-----------------|------------------|
|           | (S870) 1/2 lanes | 1/2 lanes       | (S903) 1/2 lanes | (S902) 1/2 lanes | 1/2 lanes       | (S900) 1/2 lanes |
| Used      | 2:3701           | 1:3703          | 2:3833           | 2:3830           | 2:3828          | 2:3825           |
| Detectors |                  |                 |                  |                  |                 |                  |
| (Lane:ID) |                  |                 |                  |                  |                 |                  |
| Distance  | 0                | 0.6             | 1.4              | 2                | 2.4             | 3                |
| 07:00:00  | 73.38738         | 80.4959         | 72.40175         | 74.85773         | 80.47823        | 73.5794          |
| 07:05:00  | 70.88932         | 82.81104        | 71.10476         | 73.14209         | 75.76596        | 77.08986         |
| 07:10:00  | 70.87189         | 77.86545        | 72.37777         | 65.41239         | 69.92276        | 70.09153         |
| 07:15:00  | 71.11661         | 84.2419         | 71.68507         | 71.44966         | 75.75714        | 74.56452         |
| 07:20:00  | 71.89279         | 79.75559        | 71.81819         | 72.94343         | 75.10264        | 71.24823         |
| 07:25:00  | 73.36661         | 85.28239        | 71.93161         | 69.80221         | 73.34179        | 76.87305         |
| 07:30:00  | 71.71628         | 82.42224        | 72.90091         | 72.95775         | 77.28061        | 77.23371         |
| 07:35:00  | 73.39112         | 78.68604        | 71.27584         | 75.51968         | 76.38476        | 72.22324         |
| 07:40:00  | 72.71953         | 85.71766        | 71.54477         | 72.85648         | 78.45469        | 72.86346         |
| 07:45:00  | 68.87064         | 70.32054        | 72.40661         | 71.99642         | 74.90305        | 69.29931         |
| 07:50:00  | 72.09765         | 88.01359        | 72.27133         | 72.57216         | 73.76587        | 75.49609         |
| 07:55:00  | 67.60372         | 81.84997        | 72.14625         | 74.45962         | 76.91878        | 79.29077         |
| 08:00:00  | 75.12775         | 72.54606        | 71.66609         | 75.58397         | 76.04802        | 73.00578         |

#### Table 3.4.3 Selected Detectors and Speed Data on the travel-lanes of I-35E NB case (June 18<sup>th</sup>, 2013)

|           | Southcross Dr    | Co Rd 42 (S871) | McAndrews Rd     | S of Co Rd 11    | Co Rd 11 (S901) | N of Co Rd 11    |
|-----------|------------------|-----------------|------------------|------------------|-----------------|------------------|
|           | (S870) 1/2 lanes | 1/2 lanes       | (S903) 1/2 lanes | (S902) 1/2 lanes | 1/2 lanes       | (S900) 1/2 lanes |
| Used      | 2:3701           | 1:3703          | 2:3833           | 2:3830           | 2:3828          | 2:3825           |
| Detectors |                  |                 |                  |                  |                 |                  |
| (Lane:ID) |                  |                 |                  |                  |                 |                  |
| Distance  | 0                | 0.6             | 1.4              | 2                | 2.4             | 3                |
| 07:00:00  | 0                | 0.471997338     | 1.096804667      | 1.587164972      | 1.899072748     | 2.363404758      |
| 07:05:00  | 0                | 0.475954054     | 1.095975553      | 1.596344911      | 1.920136957     | 2.391866719      |
| 07:10:00  | 0                | 0.488413011     | 1.124989219      | 1.643778553      | 2.001510582     | 2.515847498      |
| 07:15:00  | 0                | 0.471682514     | 1.083629093      | 1.58651446       | 1.915043576     | 2.393398157      |
| 07:20:00  | 0                | 0.479536315     | 1.109822501      | 1.60785132       | 1.933274406     | 2.423252545      |
| 07:25:00  | 0                | 0.46083268      | 1.067708556      | 1.574488097      | 1.911940258     | 2.393265257      |
| 07:30:00  | 0                | 0.473678077     | 1.088447592      | 1.582108252      | 1.903966867     | 2.369919547      |
| 07:35:00  | 0                | 0.476481851     | 1.113660072      | 1.606708635      | 1.923149204     | 2.405572411      |
| 07:40:00  | 0                | 0.46223421      | 1.068869817      | 1.568255976      | 1.888529973     | 2.361739626      |
| 07:45:00  | 0                | 0.518200352     | 1.192131299      | 1.690501735      | 2.018904766     | 2.51534199       |
| 07:50:00  | 0                | 0.459455884     | 1.054610742      | 1.551872163      | 1.880554279     | 2.363892168      |
| 07:55:00  | 0                | 0.49168717      | 1.111702538      | 1.604168293      | 1.922563531     | 2.384702746      |
| 08:00:00  | 0                | 0.486214552     | 1.15140824       | 1.642715447      | 1.959514282     | 2.441018135      |

Table 3.4.4 Calculated travel time of I-35E NB case (June 18<sup>th</sup>, 2013)

# I-35E NB (split to TH77), 9<sup>th</sup> July 2013

| RampName |      | E:Co Rd 42 |      | X:Co Rd 42 |      | E:Co Rd 11 |      |      | X:Co Rd 11 |      |
|----------|------|------------|------|------------|------|------------|------|------|------------|------|
| Ramp     |      | х          |      | 0          |      | х          |      |      | 0          |      |
| lane 1   | х    |            | <-   |            | X    |            | X    | X    |            | X    |
| lane 2   | х    |            | <-   |            | X    |            | X    | X    |            | X    |
| lane 3   |      |            |      |            |      |            |      |      |            |      |
| SB<      | S905 |            | S904 |            | S903 |            | S902 | S901 |            | S900 |
| Div      |      |            |      |            |      |            |      |      |            |      |
| NB>      | S870 |            | S871 |            | S872 |            | S873 | S874 |            | S875 |
| lane 3   |      |            |      |            |      |            |      |      |            |      |
| lane 2   | ->   |            | X    |            | <-   |            | <-   | <-   |            | <-   |
| lane 1   | X    |            | ->   |            | ->   |            | ->   | ->   |            | ->   |
| Ramp     |      | 0          |      | 0          |      | 0          |      |      | 0          |      |
| RampName |      | X:Co Rd    | 42   | E:CoRd4    | 12   | X:Co Rd    | 11   |      | E:Co Rd1   | 11   |

Figure 3.4.7 Lane configuration of I-35E NB work-zone (9<sup>th</sup> July 2013)



# Figure 3.4.8 I-35E NB work-zone (9th July 2013) created in client program

|           | Southcross Dr    | Co Rd 42 (S871) | McAndrews Rd     | S of Co Rd 11    | Co Rd 11 (S874) | N of Co Rd 11    |
|-----------|------------------|-----------------|------------------|------------------|-----------------|------------------|
|           | (S870) 0/2 lanes | 1/2 lanes       | (S872) 1/2 lanes | (S873) 1/2 lanes | 1/2 lanes       | (S875) 1/2 lanes |
| Used      | 2:3701           | 1:3703          | 1:3707           | 1:3709           | 1:3712          | 1:3716           |
| Detectors |                  |                 |                  |                  |                 |                  |
| (Lane:ID) |                  |                 |                  |                  |                 |                  |
| Distance  | 0                | 0.6             | 1.4              | 2                | 2.4             | 3                |
| 07:05:00  | 56.71865         | 68.23322        | 62.64995         | 65.34987         | 68.25299        | 63.84069         |
| 07:10:00  | 58.92379         | 68.55757        | 64.30286         | 69.55743         | 68.64977        | 65.48608         |
| 07:15:00  | 55.68993         | 58.72029        | 59.09189         | 61.63366         | 62.04305        | 57.97938         |
| 07:20:00  | 59.88649         | 63.75212        | 59.81076         | 41.36438         | 28.49986        | 18.39183         |
| 07:25:00  | 61.31178         | 69.04297        | 29.56312         | 24.97482         | 23.18537        | 42.11981         |
| 07:30:00  | 56.6512          | 25.41004        | 24.4194          | 34.13962         | 24.87503        | 47.85533         |
| 07:35:00  | 50.93543         | 9.329138        | 23.49624         | 28.37316         | 38.93668        | 48.32745         |
| 07:40:00  | 11.34843         | 9.145341        | 24.91671         | 23.96184         | 38.30469        | 44.61817         |
| 07:45:00  | 10.82176         | 8.108953        | 18.22778         | 27.88203         | 37.05413        | 50.87485         |
| 07:50:00  | 9.032855         | 7.209054        | 36.14239         | 19.8912          | 24.91597        | 48.94181         |
| 07:55:00  | 6.653098         | 9.987665        | 17.51786         | 22.77286         | 49.21652        | 48.84597         |
| 08:00:00  | 10.86724         | 4.549702        | 38.1972          | 43.03404         | 54.25733        | 50.92407         |

#### Table 3.4.5 Selected Detectors and Speed Data on the travel-lanes of I-35E NB work-zone (July 9<sup>th</sup>, 2013)

|           | Southcross Dr    | Co Rd 42 (S871) | McAndrews Rd     | S of Co Rd 11    | Co Rd 11 (S874) | N of Co Rd 11    |
|-----------|------------------|-----------------|------------------|------------------|-----------------|------------------|
|           | (S870) 0/2 lanes | 1/2 lanes       | (S872) 1/2 lanes | (S873) 1/2 lanes | 1/2 lanes       | (S875) 1/2 lanes |
| Used      | 2:3701           | 1:3703          | 1:3707           | 1:3709           | 1:3712          | 1:3716           |
| Detectors |                  |                 |                  |                  |                 |                  |
| (Lane:ID) |                  |                 |                  |                  |                 |                  |
| Distance  | 0                | 0.6             | 1.4              | 2                | 2.4             | 3                |
| 07:05:00  | 0                | 0.527602        | 1.257998         | 1.822603         | 2.183871        | 2.726206         |
| 07:10:00  | 0                | 0.525106        | 1.245237         | 1.787051         | 2.133789        | 2.668596         |
| 07:15:00  | 0                | 0.613076        | 1.428259         | 2.026879         | 2.41531         | 3.012153         |
| 07:20:00  | 0                | 0.564687        | 1.339013         | 2.040517         | 2.700854        | 4.215868         |
| 07:25:00  | 0                | 0.521414        | 1.553122         | 2.859366         | 3.847114        | 5.051392         |
| 07:30:00  | 0                | 1.416763        | 3.339022         | 4.620947         | 5.356591        | 6.201478         |
| 07:35:00  | 0                | 3.858877        | 7.342658         | 8.81118          | 9.639738        | 10.48305         |
| 07:40:00  | 0                | 3.93643         | 8.045514         | 9.699787         | 10.68023        | 11.77186         |
| 07:45:00  | 0                | 5               | 8.028878         | 9.305011         | 10.25525        | 10.98902         |
| 07:50:00  | 0                | 5               | 8.791534         | 10.32297         | 10.83242        | 11.51368         |
| 07:55:00  | 0                | 3.604446        | 7.04906          | 7.945823         | 8.45527         | 9.136526         |
| 08:00:00  | 0                | 7.09289         | 10.97833         | 11.83111         | 12.3658         | 13.38951         |

# Table 3.4.6 Calculated travel time of I-35E NB work-zone (July 9<sup>th</sup>, 2013)

# CHAPTER 4: DEVELOPMENT OF A DATA-CONVERSION AND ROUTE-CONFIGURATION MODULE

#### **4.1 INTRODUCTION**

This chapter develops the Data Conversion and Route Configuration Module, whose main functionalites include,

- Importing and converting non-traffic data from external sources and convert them into suitable formats for estimating travel-time reliability measures,
- Managing and storing converted data into the database developed in this chapter,
- Configuring travel-time reliability routes whose reliability measures will be estimated with traffic and external non-traffic data.

Figure 4.2.1 shows the overall architecture of the Travel-Time Reliability Measurement System (TTRMS) and the specific modules developed in this chapter. They include:

1) *Database*, which stores all the data necessary to calculate travel-time reliability measures.

2) Admin/WZ Clients, which manage input and edit process of external data.

3) *Reliability Services,* which handles the requests from the Client to manage external data.

4) DB Access Layer, which manages the functions to access the database, such as INSERT, DELETE, GET,

UPDATE and LIST.

5) *DB Connection and Model,* which defines the internal database structure and provides the database with connection to *DB Access Layer*.

6) External Data Reader, which imports weather and incident data.

7) *Route and Route Config,* which defines data structure and configuration method for travel-time routes.

8) Server and API server, which are accessed via HTTP.

The rest of this report describes the details of the above modules developed in this chapter.

# 4.2 DEVELOPMENT OF AN INTERNAL DATABASE FOR MANAGING AND STORING RELIABILITY-RELATED DATA

As noted in Figure 4.2.1, there are two types of external non-traffic data needed for estimating traveltime reliability measures. They are:

- Type 1: work zone, special event, winter-snow management data,
- Type 2: incident and weather data.

In this chapter, an internal database is first developed to store all the required data to estimate reliability measures. Next, the data-management modules necessary to import, convert and store external data are developed. The Type 2 data will be imported automatically by *External-Data Reader module*, while Type 1 data will be entered through the Client module by the system administrator, who also defines the travel-time routes for reliability estimation. Figure 4.2.2 shows the relational diagram of the database developed in this study and Table 4.2.1 includes the corresponding database tables. For example, '*tt* table' stores calculated travel-times for all the pre-defined routes, which are stored in '*ttr\_route*' table. Each data row of '*tt* table' has the foreign keys pointing to external data, so that calculated travel-times and its associated external-data can be retrieved efficiently. The specific database schema for the database table is included in Table 4.2.2.






Figure 4.2.2 Relationship Diagram of Database

## Table 4.2.1 Database Tables

| Table Name | Data Fields                                                                                                             |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | - name : route name                                                                                                     |  |  |  |  |  |
| ttr route  | - description : description<br>- corridor : corridor name that the route is located, if the route goes through multiple |  |  |  |  |  |
| -          | corridors it is comma senarated lists of the corridor names                                                             |  |  |  |  |  |
|            | - route : serialized route data (serialized <i>Route</i> object)                                                        |  |  |  |  |  |
|            | - dtime : timestamp                                                                                                     |  |  |  |  |  |
|            | - speed : average speed                                                                                                 |  |  |  |  |  |
|            | - vmt : VMT                                                                                                             |  |  |  |  |  |
|            | - precipitype : precipitation type                                                                                      |  |  |  |  |  |
|            | - precip intensity : precipitation intensity                                                                            |  |  |  |  |  |
|            | - inc_type: incident type                                                                                               |  |  |  |  |  |
| tt         | - inc_loc_type: incident location type (UP, DOWN and IN)                                                                |  |  |  |  |  |
|            | - inc_loc: distance from the TTR route                                                                                  |  |  |  |  |  |
|            | - wz_loc_type: location type of work zone                                                                               |  |  |  |  |  |
|            | <ul> <li>wz_loc: distance from the TTR route to the upstream of work zone</li> </ul>                                    |  |  |  |  |  |
|            | - wz_Incfg: lane configuration (e.g. 2to1, 3to2)                                                                        |  |  |  |  |  |
|            | - wz_features: features (e.g., crossover, lane shifted and ramp construction)                                           |  |  |  |  |  |
|            | - wz_length: length of work zone                                                                                        |  |  |  |  |  |
|            | - site_id: RWIS site id                                                                                                 |  |  |  |  |  |
|            | - sen_id: sensor id                                                                                                     |  |  |  |  |  |
|            | - time: timestamp                                                                                                       |  |  |  |  |  |
|            | - temp: surface temperature                                                                                             |  |  |  |  |  |
|            | - air_temp: air temperature                                                                                             |  |  |  |  |  |
| weather    | - visibility: visibility distance                                                                                       |  |  |  |  |  |
|            | - wind_dir: wind direction                                                                                              |  |  |  |  |  |
|            | - wind_speed: wind speed                                                                                                |  |  |  |  |  |
|            | - precip_type: precipitation type (e.g., RAIN, SNOW, MIXED, SLEET, HAIL)                                                |  |  |  |  |  |
|            | - precip_intens: precipitation intensity (e.g., LIGHT, WODERATE, HEAVY, SLIGHT)                                         |  |  |  |  |  |
|            | - precip_anount. precipitation anount                                                                                   |  |  |  |  |  |
|            | - incident_type: incident_type (e.g., CRASH_HAZARD)                                                                     |  |  |  |  |  |
|            | - cdts: created timestamp                                                                                               |  |  |  |  |  |
| incident   | - udts: updated timestamp                                                                                               |  |  |  |  |  |
| mciuem     | - xdts: closed timestamp                                                                                                |  |  |  |  |  |
|            | - lat: latitude                                                                                                         |  |  |  |  |  |
|            | - Ion: longitude                                                                                                        |  |  |  |  |  |
|            | - name: work zone name                                                                                                  |  |  |  |  |  |
|            | - description: description                                                                                              |  |  |  |  |  |
| workzone   | - start_time: start time of duration                                                                                    |  |  |  |  |  |
|            | - end_time: end time of duration                                                                                        |  |  |  |  |  |
|            | - section1: lane configuration information for a direction (serialized <i>Route</i> object)                             |  |  |  |  |  |
|            | - section2: lane configuration information for the other direction (serialized <i>Route</i> object)                     |  |  |  |  |  |
|            | - lane_lost_time : lane lost time according to snow management report                                                   |  |  |  |  |  |
| snowmgmt   | - lane_regain_time : lane regain time according to snow management report                                               |  |  |  |  |  |
|            | - duration: lane lost duration in hours                                                                                 |  |  |  |  |  |
| snowevent  | - start_time: snow start time                                                                                           |  |  |  |  |  |
|            | - end time: snow end time                                                                                               |  |  |  |  |  |

|              | - name: name of snow management section                                                   |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| snowsection  | <ul> <li>prj_id: project id of snow management section</li> </ul>                         |  |  |  |  |
|              | - description: description                                                                |  |  |  |  |
|              | - section: station and ramp information of the section (serialized Route object)          |  |  |  |  |
|              | - name: event name                                                                        |  |  |  |  |
|              | - description: description                                                                |  |  |  |  |
|              | - start_time: start time of the event                                                     |  |  |  |  |
| specialevent | - end_time: end time of the event                                                         |  |  |  |  |
|              | - lat: latitude of the location                                                           |  |  |  |  |
|              | - Ion: longitude of the location                                                          |  |  |  |  |
|              | - attendance: number of attendance                                                        |  |  |  |  |
|              | <ul> <li>ttr_type: reliability index type (e.g., buffer index, planning index)</li> </ul> |  |  |  |  |
| ttr result   | - reliability: calculated reliability index                                               |  |  |  |  |
|              | - start time: start time of the target duration                                           |  |  |  |  |
|              | <ul> <li>end_time: end time of the target duration</li> </ul>                             |  |  |  |  |

## Table 4.2.2 Database Schema

| Table Name :  | ttr_route |            |           |            |                  |                   |             |             |
|---------------|-----------|------------|-----------|------------|------------------|-------------------|-------------|-------------|
| ColumnName    | DataType  | PrimaryKey | NotNull   | Flags      | Default<br>Value | Comment           |             | AutoInc     |
| id            | INTEGER   | РК         | NN        | UNSIGNED   |                  |                   |             | AI          |
| name          | VARCHAR(2 | 55)        | NN        |            |                  |                   |             |             |
| description   | TEXT      |            |           |            |                  |                   |             |             |
| corridor      | VARCHAR(2 | 0)         |           |            |                  |                   |             |             |
| ttr_route     | LONGTEXT  |            |           |            |                  |                   |             |             |
| reg_date      | DATETIME  |            |           |            |                  |                   |             |             |
| IndexName     |           | IndexTy    | vpe       |            | Colu             | mns               |             |             |
| PRIMARY       |           | PRIMA      | RY        |            | id               |                   |             |             |
| Table Name :  | tt        |            |           |            |                  |                   |             |             |
| ColumnName    |           | DataType   | PrimaryKe | ey NotNull | Flags            | Defaul<br>t Value | Commen<br>t | Autoln<br>c |
| id            |           | INTEGER    | РК        | NN         | UNSIGNI<br>D     | E                 |             | AI          |
| ttr_route_id  |           | INTEGER    |           | NN         | UNSIGNI<br>D     | E                 |             |             |
| specialevent_ | id        | INTEGER    |           | NN         | UNSIGNI<br>D     | E                 |             |             |
| 1             |           |            |           |            |                  |                   |             |             |

| weather_id                | INTEGER          | NN | UNSIGNE<br>D                         |
|---------------------------|------------------|----|--------------------------------------|
| workzone_id               | INTEGER          | NN | UNSIGNE<br>D                         |
| snowmgmt_snowevent_i<br>d | INTEGER          | NN | UNSIGNE<br>D                         |
| snowmgmt_id               | INTEGER          | NN | UNSIGNE<br>D                         |
| incident_id               | INTEGER          | NN | UNSIGNE<br>D                         |
| dtime                     | DATETIME         | NN |                                      |
| tt                        | FLOAT            | NN |                                      |
| speed                     | FLOAT            | NN |                                      |
| vmt                       | FLOAT            | NN |                                      |
| precip_type               | INTEGER          | NN | UNSIGNE<br>D                         |
| precip_intensity          | INTEGER          |    | UNSIGNE<br>D                         |
| inc_impact                | INTEGER          |    | UNSIGNE<br>D                         |
| inc_type                  | INTEGER          | NN | UNSIGNE<br>D                         |
| inc_loc                   | INTEGER          |    | UNSIGNE<br>D                         |
| wz_loc_type               | INTEGER          |    | UNSIGNE<br>D                         |
| wz_loc                    | FLOAT            |    |                                      |
| wz_Incfg                  | VARCHAR(5)       |    |                                      |
| wz_features               | VARCHAR(100<br>) |    |                                      |
| wz_length                 | FLOAT            |    |                                      |
| IndexName                 | IndexType        |    | Columns                              |
| PRIMARY                   | PRIMARY          |    | id                                   |
| tt_FKIndex2               | Index            |    | incident_id                          |
| tt_FKIndex4               | Index            |    | snowmgmt_id<br>snowmgmt_snowevent_id |
| tt_FKIndex5               | Index            |    | workzone_id                          |
| tt_FKIndex6               | Index            |    | weather_id                           |

| tt_FKIndex6     |                             | Inde        | x       |       |              | spe            | cialevent_id  |         |
|-----------------|-----------------------------|-------------|---------|-------|--------------|----------------|---------------|---------|
| tt_FKIndex6     |                             | Inde        | x       |       |              | ttr_           | _route_id     |         |
|                 |                             |             |         |       |              |                |               |         |
| Table Name : ir | ncident                     |             |         |       |              |                |               |         |
| ColumnName      | DataTyp                     | e Primar    | yKey No | tNull | Flags        | Defau<br>Value | lt<br>Comment | AutoInc |
| id              | INTEGE                      | <b>R</b> PK | NN      | l     | UNSIGNE      | )              |               | AI      |
| incident_type_  | id INTEGER                  | 2           | NN      | I     | UNSIGNE      | )              |               |         |
| cdts            | DATETIN                     | ИE          | NN      | I     |              |                |               |         |
| udts            | DATETIN                     | ИE          |         |       |              |                |               |         |
| xdts            | DATETIN                     | ЛЕ          |         |       |              |                |               |         |
| lat             | FLOAT                       |             | NN      | 1     |              |                |               |         |
| lon             | FLOAT                       |             | NN      | I     |              |                |               |         |
| xstreet1        | VARCHA                      | R(50)       |         |       |              |                |               |         |
| xstreet2        | VARCHA                      | R(50)       |         |       |              |                |               |         |
| efeatyp         | VARCHA                      | AR(10)      |         |       |              |                |               |         |
| openevent       | BOOL                        |             |         |       |              |                |               |         |
| IndexName       |                             | Inde        | хТуре   |       |              | Col            | umns          |         |
| PRIMARY         |                             | PRIN        | /IARY   |       |              | id             |               |         |
| incident_FKInd  | ex1                         | Inde        | x       |       |              | inci           | ident_type_id |         |
| Table Name : s  | <b>nowevent</b><br>DataType | PrimaryKey  | NotNull | Flag  | Defa<br>Valu | ault           | Comment       | AutoInc |
| id I            | NTEGER                      | РК          | NN      | UNS   | IGNED        |                |               | AI      |
| start_time      | DATETIME                    |             | NN      |       |              |                |               |         |
| end_time [      | DATETIME                    |             | NN      |       |              |                |               |         |
| IndexName       |                             | Inde        | хТуре   |       |              | Col            | umns          |         |
| PRIMARY         |                             | PRIN        | /IARY   |       |              | id             |               |         |
| Table Name : s  | nowmgmt                     |             |         |       |              |                |               |         |

| ColumnName    | DataType     | PrimaryKey | NotNull | Flags    | Default<br>Value | Comment     | AutoInd |
|---------------|--------------|------------|---------|----------|------------------|-------------|---------|
| id            | INTEGER      | РК         | NN      | UNSIGNED | )                |             | AI      |
| snowevent_id  | d INTEGER    | РК         | NN      | UNSIGNED | )                |             |         |
| snowsection_  | id INTEGER   |            | NN      | UNSIGNED | )                |             |         |
| lane_lost_tim | e DATETIME   |            |         |          |                  |             |         |
| lane_regain_t | ime DATETIM  |            |         |          |                  |             |         |
| duration      | FLOAT        |            |         |          |                  |             |         |
| IndexName     |              | IndexTy    | /pe     |          | Colu             | umns        |         |
| PRIMARY       |              | PRIMA      | RY      |          | id               |             |         |
|               |              |            |         |          | snov             | wevent_id   |         |
| snow_mgmt_    | FKIndex1     | Index      |         |          | snov             | wevent_id   |         |
| snowmgmt_F    | KIndex2      | Index      |         |          | sno              | wsection_id |         |
|               |              |            |         |          |                  |             |         |
| Table Name :  | snowsaction  |            |         |          |                  |             |         |
|               | SHOWSECTION  |            |         |          | Default          |             |         |
| ColumnName    | DataType     | PrimaryKey | NotNull | Flags    | Value            | Comment     | AutoInd |
| id            | INTEGER      | РК         | NN      | UNSIGNED |                  |             | AI      |
| name          | VARCHAR(20)  |            |         |          |                  |             |         |
| prj_id        | VARCHAR(20)  |            |         |          |                  |             |         |
| description   | TEXT         |            |         |          |                  |             |         |
| section       | TEXT         |            |         |          |                  |             |         |
| IndexName     |              | IndexT     | /pe     |          | Colu             | umns        |         |
| PRIMARY       |              | PRIMA      | RY      |          | id               |             |         |
| snowroute_u   | nique        | Index      |         |          | nam              | ne          |         |
|               |              |            |         |          |                  |             |         |
|               |              |            |         |          |                  |             |         |
| Table Name :  | specialevent |            |         |          |                  |             |         |
| ColumnName    | DataType     | PrimaryKey | NotNull | Flags    | Default<br>Value | Comment     | AutoInd |
| id            | INTEGER      | РК         | NN      | UNSIGNE  | D                |             | AI      |
| name          | VARCHAR(100  | ))         | NN      |          |                  |             |         |
| description   | TEXT         |            |         |          |                  |             |         |
| start_time    | DATETIME     |            | NN      |          |                  |             |         |
| end_time      | DATETIME     |            | NN      |          |                  |             |         |
| lat           | FLOAT        |            |         |          |                  |             |         |
|               |              |            |         |          |                  |             |         |

| attendanceINTEGERUNSIGNEDIndexNameIndexTypeColumnsPRIMARYPRIMARYidTable Name : ttr_resultsColumnNameDataTypePrimaryKeyNotNullFlagsDefault<br>ValueCommentAutoincidINTEGERPKNNUNSIGNEDAlIttr_route_idINTEGERNNUNSIGNEDIttr_trypettr_typeINTEGERNNUNSIGNEDIttr_trypeINTEGERNNUNSIGNEDIttr_trypereliabilityINTEGERNNUNSIGNEDIttr_trypeIndexTypeColumnsIttr_trypereliabilityINTEGERIndexTypeColumnsIttr_trypeIndexTypeColumnsIttr_trypeIndexNameIndexTypeIndexTypeColumnsIttr_trypeIttr_foute_idIttr_foute_idPRIMARYIndexTypeNotNullFlagsDefault<br>ValueCommentAutoincIndexNameIndexTypeVotNullFlagsDefault<br>ValueAutoincresults_FKIndex1IndexUNSIGNEDAlittr_results_FKINNUNSIGNEDIttr_foute_ididINTEGERNNUNSIGNEDIttrypeidINTEGERNNUNSIGNEDIttrypeidINTEGERNNUNSIGNEDIttrypeidINTEGERUNSIGNEDIttrypeIttrypeinderINTEGERUNSIGNEDIttrypeinderINTEGERUNSIGNEDIttrypeinteniq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | attendance                                                                                                                                                                 | ILUAI                                                                                                                                                                                                                                                                              |                  |          |                                                                      |                  |             |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------------------------------------------------------------------|------------------|-------------|---------|
| IndexName IndexType Columns PRIMARY PRIMARY id Table Name : ttr_results ColumnName DataType PrimaryKey NotNull Flags Default Value Comment Autoinc id INTEGER PK NN UNSIGNED AI ttr_route_id INTEGER NN UNSIGNED ttr_type INTEGER NN UNSIGNED ttr_type INTEGER NN UNSIGNED ttr_type INTEGER NN UNSIGNED ttr_tresults_FKIndex1 IndexType Columns PRIMARY PRIMARY Id ttr_results_FKIndex1 Index ttr_route_id Table Name : ttr_route_id INTEGER PK NN UNSIGNED AI ttr_route_id INTEGER PK NN UNSIGNED Ttr_tresults_FKIndex1 Index VINI PRIMARY Id ttr_results_FKIndex1 NN UNSIGNED AI ttr_route_id INTEGER PK NN UNSIGNED AI ste_id INTEGER PK INTE VK I                                                                                                                                                                                                                |                                                                                                                                                                            | INTEGER                                                                                                                                                                                                                                                                            | INTEGER UNSIGNED |          |                                                                      |                  |             |         |
| PRIMARY     PRIMARY     id       Table Name : ttr_results       ColumnName     DataType     PrimaryKey     NotNull     Flags     Default<br>Value     Comment     AutoInc       id     INTEGER     PK     NN     UNSIGNED     AI       ttr_route_id     INTEGER     NN     UNSIGNED     AI       ttr_trype     INTEGER     NN     UNSIGNED     INTEGER       reliability     INTEGER     NN     UNSIGNED     INTEGER       off     DATETIME     UNSIGNED     INTEGER     IndexType     Columns       PRIMARY     PATETIME     IndexType     Columns     IndexType     Columns       PRIMARY     PRIMARY     IndexType     Value     AutoInc       Table Name:     IndexType     Value     Comment     AutoInc       results_FKIndex1     Index     ttr_route_id     Inter       Table Name:     PrimaryKey     NotNull     Flags     Default<br>Value     Comment     AutoInc       id     INTEGER     NN     UNSIGNED     AI     Inter     Inter       iside_id     INTEGER     NN     UNSIGNED     Inter     Inter       if     INTEGER     NN     UNSIGNED     Inter     Inter       i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IndexName                                                                                                                                                                  | IndexType                                                                                                                                                                                                                                                                          |                  |          |                                                                      |                  | columns     |         |
| Table Name : trr_results         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       Autoinc         id       INTEGER       PK       NN       UNSIGNED       All         ttr_route_id       INTEGER       PK       NN       UNSIGNED       INTEGER       All         ttr_trype       INTEGER       NN       UNSIGNED       INTEGER       IndexType       Columns       PRIMARY       Id       IndexType       Id       IndexType       IndexType       IndexType       Id       IndexType       IndexType       Id       IndexType       Id       IndexType       IndexType       Id       IndexType       Id       Id       IndexType       Id       Id       IndexType       Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRIMARY                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    | PRIN             | /IARY    |                                                                      | ic               | k           |         |
| ColumnName DataTypePrimaryKeyNotNullFlagsDefault<br>ValueCommentAutoincidINTEGERNNUNSIGNEDAlttr_route_idINTEGERNNUNSIGNEDImage: Second Sec                                                                                                                                                                                                                                                                                                                                                                                                  | Table Name : f                                                                                                                                                             | ttr_results                                                                                                                                                                                                                                                                        |                  |          |                                                                      |                  |             |         |
| idINTEGERPKNNUNSIGNEDAIttr_route_idINTEGERNNUNSIGNEDreliabilityINTEGERNNUNSIGNEDreliabilityINTEGERNNUNSIGNEDstart_timeDATETIME </td <td>ColumnName</td> <td>DataType</td> <td>PrimaryKey</td> <td>NotNull</td> <td>Flags</td> <td>Default<br/>Value</td> <td>Comment</td> <td>AutoInc</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ColumnName                                                                                                                                                                 | DataType                                                                                                                                                                                                                                                                           | PrimaryKey       | NotNull  | Flags                                                                | Default<br>Value | Comment     | AutoInc |
| ttr_route_id INTEGER NN UNSIGNED<br>ttr_type INTEGER NN UNSIGNED<br>reliability INTEGER NN UNSIGNED<br>start_time DATETIME<br>end_time DATETIME<br>IndexType Columns<br>PRIMARY PRIMARY id<br>ttr_results_FKIndex1 Index ttr_route_id<br>Table Name : weather<br>ColumnName DataType PrimaryKey NotNull Flags Default Comment AutoInc<br>id INTEGER PK NN UNSIGNED All<br>site_id INTEGER PK NN UNSIGNED All<br>sen_id INTEGER PK NN UNSIGNED All<br>iste_id INTEGER PK NN UNSIGNED All<br>iste_id INTEGER PK NN UNSIGNED All<br>sen_id INTEGER PK NN UNSIGNED INTEGER VNN<br>temp FLOAT INTEGER UNSIGNED INTEGER UNSIGNED INTEGER VNN<br>temp FLOAT INTEGER UNSIGNED INTEGER VNN<br>temp FLOAT INTEGER UNSIGNED INTEGER VNN<br>temp FLOAT INTEGER VNN UNSIGNED INTEGER VNN<br>temp FLOAT INTEGER VNN VNSIGNED INTEGER VNN<br>temp FLOAT INTEGER VNN VNSIGNED INTEGER VNN<br>temp FLOAT INTEGER VNN VNSIGNED INTEGER VNN<br>temp FLOAT INTEGER VNN<br>temp FLOAT INTEGER VNN VNSIGNED INTEGER VNN<br>temp FLOAT INTEGER VNN<br>integeR VNN<br>temp INTEGER VNN<br>integeR VNN<br>in | id                                                                                                                                                                         | INTEGER                                                                                                                                                                                                                                                                            | РК               | NN       | UNSIGNED                                                             |                  |             | AI      |
| ttr_typeINTEGERUNSIGNEDreliabilityINTEGERNNUNSIGNEDstart_timeDATETIMEColumnsend_timeDATETIMEIndexTypeColumnsIndexNameIndexTypeColumnsPRIMARYPRIMARYidresults_FKIndex1Indexttr_route_idTable Name:ColumnsTable Name:ColumnNamePrimaryKeyNotNullFlagsDefault<br>ValueComment<br>ValueAutoIncIdINTEGERPKNNUNSIGNEDAltsite_idINTEGERNNUNSIGNEDIsin_idINTEGERNNUNSIGNEDItimeDATETIMENNUNSIGNEDItimeFLOATUNSIGNEDIIwind_dirINTEGERUNSIGNEDIwind_speedFLOATUNSIGNEDIprecip_typeINTEGERUNSIGNEDIprecip_typeINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIprecip_intensINTEGERUNSIGNEDIp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ttr_route_id                                                                                                                                                               | INTEGER                                                                                                                                                                                                                                                                            |                  | NN       | UNSIGNED                                                             |                  |             |         |
| reliability INTEGER NN UNSIGNED start_time DATETIME and_time DATETIME indexType Columns IndexName IndexType Columns PRIMARY PRIMARY id tr_results_FKIndex1 Index Vtr_route_id Table Name : verther Table Name : verther ColumnName DataType PrimaryKey NotNull Flags Default Comment AutoInc id INTEGER PK NN UNSIGNED All site_id INTEGER PK NN UNSIGNED All site_id INTEGER V UNSIGNED time DATETIME NN temp FLOAT inf_temp FLOAT inf_te                                                                                                                                                                                                               | ttr_type                                                                                                                                                                   | INTEGER                                                                                                                                                                                                                                                                            |                  |          | UNSIGNED                                                             |                  |             |         |
| start_time       DATETIME         end_time       DATETIME         IndexName       IndexType       Columns         PRIMARY       PRIMARY       id         ttr_results_FKImex1       Index       ttr_route_id         Table Name : watter         ColumnName       DataType         DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       Autoinc         Id         Table Name : watter         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       Autoinc         IntegER       PK       NN       UNSIGNED       Al         Site_id       INTEGER       UNSIGNED       Integer       Al         sen_id       INTEGER       UNSIGNED       Integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | reliability                                                                                                                                                                | INTEGER                                                                                                                                                                                                                                                                            |                  | NN       | UNSIGNED                                                             |                  |             |         |
| end_time       DATETIME         IndexName       IndexType       Columns         PRIMARY       PRIMARY       id         ttr_results_FKIndex1       Index       ttr_route_id         Table Name : weather         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       AutoInc         id       INTEGER       PK       NN       UNSIGNED       Al         site_id       INTEGER       VN       UNSIGNED       Integen       Al         site_id       INTEGER       NN       UNSIGNED       Integen       In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | start_time                                                                                                                                                                 | DATETIME                                                                                                                                                                                                                                                                           |                  |          |                                                                      |                  |             |         |
| IndexName       IndexType       Columns         PRIMARY       PRIMARY       id         ttr_results_FKIndex1       Index       ttr_route_id         Table Name : wather         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       AutoInc         id       INTEGER       PK       NN       UNSIGNED       Al         site_id       INTEGER       VN       UNSIGNED       Integer       Al         site_id       INTEGER       NN       UNSIGNED       Integer       Integer         site_id       INTEGER       NN       UNSIGNED       Integer       Integer       Integer         site_id       INTEGER       NN       UNSIGNED       Integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | end_time                                                                                                                                                                   | DATETIME                                                                                                                                                                                                                                                                           |                  |          |                                                                      |                  |             |         |
| PRIMARY       id         ttr_results_FKIndex1       Index       ttr_route_id         Table Name : watter         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       AutoInc         id       INTEGER       PK       NN       UNSIGNED       Al         site_id       INTEGER       PK       UNSIGNED       Al         sine_id       INTEGER       NN       UNSIGNED       Image: Comment       Al         site_id       INTEGER       NN       UNSIGNED       Image: Comment       Al         sine_id       INTEGER       NN       UNSIGNED       Image: Comment       Al         sing_temp       FLOAT       UNSIGNED       Image: Comment       Image: Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IndexName                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    | Inde             | хТуре    |                                                                      | C                | columns     |         |
| ttr_route_id         ttr_route_id         Table Name : watter         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       AutoInc         id       INTEGER       PK       NN       Comment       AutoInc         id       INTEGER       PK       NN         sen_id       INTEGER       NN       INTEGER       INTEGER       VINSIGNED         sign_intens       FLOAT       INTEGER       UNSIGNED         intens       INTEGER       UNSIGNED         precip_intens       INTEGER       UNSIGNED         INTEGER       UNSIGNED         precip_anour       INTEGER       UNSIGNED         precip_anour       INTEGER       UNSIGNED         precip_anour       INTEGER       UNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRIMARY                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    | PRIN             | /IARY    |                                                                      | io               | k           |         |
| Table Name : weather         ColumnName       DataType       PrimaryKey       NotNull       Flags       Default<br>Value       Comment       AutoInc         id       INTEGER       PK       NN       UNSIGNED       All         site_id       INTEGER       PK       NN       UNSIGNED       Image: Comment       All         sen_id       INTEGER       NN       UNSIGNED       Image: Comment       All         time       DATETIME       NN       UNSIGNED       Image: Comment       Image: Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttr_results_FK                                                                                                                                                             | Index1                                                                                                                                                                                                                                                                             | Inde             | х        |                                                                      | t                | tr_route_id |         |
| Table Name : weather         DataType         PrimaryKey         NotNull         Flags         Default<br>Value         Comment         AutoInc           id         INTEGER         PK         NN         UNSIGNED         Al           site_id         INTEGER         PK         UNSIGNED         Al           site_id         INTEGER         UNSIGNED         Al           sen_id         INTEGER         UNSIGNED         INTEGER           time         DATETIME         NN         INTEGER         INTEGER           temp         FLOAT         INTEGER         INTEGER         INTEGER           wind_dir         INTEGER         UNSIGNED         INTEGER         INTEGER           wind_speed         FLOAT         UNSIGNED         INTEGER         INTEGER           precip_type         INTEGER         UNSIGNED         INTEGER         INTEGER           precip_amout         FLOAT         UNSIGNED         INTEGER         INTEGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |                  |          |                                                                      |                  |             |         |
| ColumnNameDataTypePrimaryKeyNotNullFlagsDefault<br>ValueCommentAutoIncidINTEGERPKNNUNSIGNEDAIsite_idINTEGERUNSIGNEDIntegerIntegerIntegerIntegersen_idINTEGERUNSIGNEDIntegerIntegerIntegerIntegerIntegertimeDATETIMENNIntegerIntegerIntegerIntegerIntegerIntegertimeDATETIMENNIntegerIntegerIntegerIntegerIntegerIntegertimeFLOATIntegerIntegerIntegerIntegerIntegerIntegerIntegerwind_dirINTEGERIntegerUNSIGNEDIntegerIntegerIntegerIntegerprecip_typeINTEGERUNSIGNEDIntegerIntegerIntegerIntegerprecip_amount FLOATIntegerUNSIGNEDIntegerIntegerIntegersurf_conditionINTEGERUNSIGNEDIntegerIntegerInteger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table Name : v                                                                                                                                                             | weather                                                                                                                                                                                                                                                                            |                  |          |                                                                      |                  |             |         |
| id         INTEGER         PK         NN         UNSIGNED         Al           site_id         INTEGER         UNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ColumnName                                                                                                                                                                 | DataType                                                                                                                                                                                                                                                                           | PrimaryKey       | NotNull  | Flags                                                                | Default<br>Value | Comment     | AutoInc |
| site_id INTEGER UNSIGNED<br>sen_id INTEGER UNSIGNED<br>time DATETIME NN<br>temp FLOAT<br>air_temp FLOAT<br>visibility FLOAT<br>wind_dir INTEGER UNSIGNED<br>wind_speed FLOAT<br>precip_type INTEGER UNSIGNED<br>precip_intens INTEGER UNSIGNED<br>precip_amount FLOAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : 4                                                                                                                                                                        |                                                                                                                                                                                                                                                                                    |                  | NINI     |                                                                      |                  |             |         |
| sen_idINTEGERUNSIGNEDtimeDATETIMENNtempFLOAT-air_tempFLOAT-visibilityFLOATUNSIGNEDwind_dirINTEGERUNSIGNEDwind_speedFLOAT-precip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amount FLOAT-surf_conditionINTEGERUNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IQ                                                                                                                                                                         | INTEGER                                                                                                                                                                                                                                                                            | РК               | ININ     | UNSIGNED                                                             | )                |             | AI      |
| timeDATETIMENNtempFLOATair_tempFLOATvisibilityFLOATwind_dirINTEGERUNSIGNEDwind_speedFLOATprecip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amourt FLOATUNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | site_id                                                                                                                                                                    | INTEGER                                                                                                                                                                                                                                                                            | РК               | ININ     | UNSIGNED<br>UNSIGNED                                                 | )                |             | AI      |
| tempFLOATair_tempFLOATvisibilityFLOATwind_dirINTEGERUNSIGNEDwind_speedFLOATprecip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amount FLOATsurf_conditionINTEGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | site_id<br>sen_id                                                                                                                                                          | INTEGER<br>INTEGER<br>INTEGER                                                                                                                                                                                                                                                      | РК               | ININ     | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| air_tempFLOATvisibilityFLOATwind_dirINTEGERUNSIGNEDwind_speedFLOATprecip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amount FLOATsurf_conditionINTEGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | site_id<br>sen_id<br>time                                                                                                                                                  | INTEGER<br>INTEGER<br>INTEGER<br>DATETIME                                                                                                                                                                                                                                          | РК               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| visibilityFLOATwind_dirINTEGERUNSIGNEDwind_speedFLOATUNSIGNEDprecip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amountFLOATUNSIGNEDsurf_conditionINTEGERUNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | site_id<br>sen_id<br>time<br>temp                                                                                                                                          | INTEGER<br>INTEGER<br>INTEGER<br>DATETIME<br>FLOAT                                                                                                                                                                                                                                 | PK               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| wind_dirINTEGERUNSIGNEDwind_speedFLOATprecip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amount FLOATsurf_conditionINTEGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | site_id<br>sen_id<br>time<br>temp<br>air_temp                                                                                                                              | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT                                                                                                                                                                                                                                   | PK               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| wind_speedFLOATprecip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amount FLOATsurf_conditionINTEGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility                                                                                                                | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>FLOAT                                                                                                                                                                                                                          | PK               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| precip_typeINTEGERUNSIGNEDprecip_intensINTEGERUNSIGNEDprecip_amount FLOATsurf_conditionINTEGERunsignedUNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir                                                                                                    | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>FLOAT<br>INTEGER                                                                                                                                                                                                               | РК<br>           | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| precip_intens INTEGER UNSIGNED precip_amount FLOAT surf_condition INTEGER UNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir<br>wind_speed                                                                                      | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>FLOAT<br>INTEGER<br>FLOAT                                                                                                                                                                                                      | РК               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED                                     | )                |             | AI      |
| precip_amount FLOAT<br>surf_condition INTEGER UNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir<br>wind_speed<br>precip_type                                                                       | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>FLOAT<br>INTEGER<br>INTEGER                                                                                                                                                                                                    | PK               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED                         | )                |             | AI      |
| surf_condition INTEGER UNSIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir<br>wind_speed<br>precip_type<br>precip_intens                                                      | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>INTEGER<br>INTEGER<br>INTEGER                                                                                                                                                                                                  | РК<br>           | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED             | )                |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ia<br>site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir<br>wind_speed<br>precip_type<br>precip_intens<br>precip_amour                                | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>FLOAT<br>INTEGER<br>INTEGER<br>INTEGER                                                                                                                                                                                         | PK               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED             | )                |             |         |
| IndexName IndexType Columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | site_id<br>site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir<br>wind_speed<br>precip_type<br>precip_intens<br>precip_amour<br>surf_conditior         | INTEGER           INTEGER           INTEGER           DATETIME           FLOAT           FLOAT           INTEGER           INTEGER           INTEGER           INTEGER           INTEGER           INTEGER           INTEGER           INTEGER           INTEGER           INTEGER | PK               | NN<br>NN | UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED | )                |             |         |
| PRIMARY PRIMARY id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ia<br>site_id<br>sen_id<br>time<br>temp<br>air_temp<br>visibility<br>wind_dir<br>wind_speed<br>precip_type<br>precip_intens<br>precip_amour<br>surf_condition<br>IndexName | INTEGER<br>INTEGER<br>DATETIME<br>FLOAT<br>FLOAT<br>FLOAT<br>INTEGER<br>INTEGER<br>INTEGER<br>NTEGER                                                                                                                                                                               | PK               | NN       | UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED<br>UNSIGNED |                  | iolumns     |         |

| Table Name : | workzone     |            |         |          |                  |         |         |
|--------------|--------------|------------|---------|----------|------------------|---------|---------|
| ColumnName   | DataType     | PrimaryKey | NotNull | Flags    | Default<br>Value | Comment | AutoInc |
| id           | INTEGER      | РК         | NN      | UNSIGNED |                  |         | AI      |
| name         | VARCHAR(255) |            | NN      |          |                  |         |         |
| description  | TEXT         |            | NN      |          |                  |         |         |
| years        | VARCHAR(255) |            | NN      |          |                  |         |         |
| start_time   | DATETIME     |            | NN      |          |                  |         |         |
| end_time     | DATETIME     |            | NN      |          |                  |         |         |
| corridors    | VARCHAR(255) |            | NN      |          |                  |         |         |
| section1     | TEXT         |            | NN      |          |                  |         |         |
| section2     | TEXT         |            | NN      |          |                  |         |         |
| reg_date     | DATETIME     |            | NN      |          |                  |         |         |
| IndexName    |              | IndexTy    | ре      |          | Colu             | imns    |         |
| PRIMARY      |              | PRIMAR     | Y       |          | id               |         |         |
| workzone_un  | ique         | Unique     | Index   |          | nam              | ie      |         |

### Definition of Classes for Data Types

Figure 4.2.3 shows the data types representing 'reliability routes' and non-traffic, external data used in TTRMS. To implement the database schema shown in Table 4.2.2, a set of classes are defined using Object Relational Mapper (ORM) for all the database tables in Table 4.2.1. I.e., a database table is represented by a class, which is used by *DB Access Layer* to access the database. Figure 4.2.4 shows an example database-table class defined for special-event data using ORM, which provides abstractions of data access and portability across different database systems.

Figures 4.2.5 and 4.2.6 show the example definitions of Python and Java data-classes for special-event data. It can be noted that the names of the member variables in both classes are same as with those in the data-table classes. In TTRMS, Python data-classes are used by other modules in the server, while data-table classes are only used to access the database. Further, Java data-classes are specifically used to manage external, non-traffic data in the client. For the Python Server to communicate with the Java Client, each instance of Python data-classes is serialized to JSON string by using the *json* module of Python library, while any instance in Java data-Classes is serialized to JSON string with *gson*, an open-source serialization library, and converted to a Java object.

In the system setup phase, the *SetUp* module in the *DB Connection and Data model* package creates all database tables by calling *create* functions in the ORM library.



Admin/WZ Client <Java>

TTRMS Server <Python>

Figure 4.2.3 Types of External Data in Client and Server

| # Database Table Class                                                     |
|----------------------------------------------------------------------------|
| class <i>Specialevent</i> (Base):                                          |
| tablename = 'specialevent'                                                 |
| id = Column(Integer, primary_key=True)                                     |
| name = Column(String(100), nullable=False)                                 |
| description = Column(Text, nullable=True)                                  |
| start_time = Column(DateTime, nullable=False)                              |
| end_time = Column(DateTime, nullable=False)                                |
| lat = Column(Float, nullable=False)                                        |
| lon = Column(Float, nullable=False)                                        |
| attendance = Column(Integer, nullable=True)                                |
| reg_date = Column(DateTime, nullable=False, default=datetime.datetime.now) |

# Figure 4.2.4 Sample Database-Table Class for Special Event Data

| # Pytho         | n Data Class                                                              |
|-----------------|---------------------------------------------------------------------------|
| class <b>Sp</b> | ecialEventInfo(InfoBase):                                                 |
| info            | type - 'special event'                                                    |
|                 | type_ = special event                                                     |
| _ut_a           | ttrs_=[start_time, end_time]                                              |
| def             | init(self):                                                               |
| self            | id = None                                                                 |
| self            | name = None                                                               |
| self            | description = None                                                        |
| self            | years = None                                                              |
| self            | start_time = None                                                         |
| self            | end_time = None                                                           |
| self            | lat = None                                                                |
| self            | lon = None                                                                |
| self            | attendance = None                                                         |
| def se          | t years(self):                                                            |
| star            | t time = datetime.datetime.strptime(self.start time, '%Y-%m-%d %H:%M:%S') |
| end             | _time = datetime.datetime.strptime(self.end_time, '%Y-%m-%d %H:%M:%S')    |
| self            | years = self.years_string(start_time.year, end_time.year)                 |
| L               |                                                                           |

Figure 4.2.5 Sample Python Data-Class for Special Event Data

```
// Java Data Class
package edu.umn.natsrl.ttrms.types;
public class SpecialEventInfo extends InfoBase {
  public String name;
  public String description;
  public String start_time;
  public String end_time;
  public Double lat;
  public Double lon;
  public Integer attendance;
  public String years;
  public SpecialEventInfo() {
    this.setTypeInfo(TTRMSConfig.INFO_TYPE_SPECIAL_EVNET);
  }
  // implementations of the below functions are omitted
  private Calendar toCalendar(String dts) { ... }
  public String getDuration() { ... }
  public void setDuration(Date sdt, Date edt) { ... }
  private String DateToString(Date dt) {... }
  public Date getEndDate() {... }
  public Date getStartDate() {... }
  @Override
  public String toString() {... }
  @Override
  public SpecialEventInfo clone() {... }
```

### Figure 4.2.6 Sample Java Data Class for Special Event

# 4.3 DEVELOPMENT OF CONVERSION MODULES FOR EXTERNAL NON-TRAFFIC DATA

## 4.3.1 Design of Data-Conversion Process

Figure 4.3.1 shows the overall process and the modules developed in this section to import non-traffic external data and convert/store them to the data types suitable for estimating travel-time reliability measures. The major features of the data conversion and storing process are as follows:

- Snow-management, special-event and work-zone data are entered and edited through the userinterfaces (UI) in *Admin/WZ Client*, which uses the data management services of the API server, such as *Data Insert*, *Update*, *Fetch*, *Delete and List*, developed for each data-type.
- *DB Access Layer* provides *API Server* and *External Data Reader* with the functions to access the external data stored in the database.
- The weather and incident data imported by *External Data Reader package* are stored in the database through *DB Access Layer*



Figure 4.3.1 Overview of Data-Conversion Process for External Data

Figure 4.3.2 shows the modules and interfaces developed to convert the Type 1 data, which are imported through the *Administration Client* module. The main features of this process are as follows:

1) Data service modules in *API Server* provide the *Client* with the interfaces, such as LIST, INSERT, GET, UPDATE and DELETE. Each interface has the entry point specified as HTTP URL.

- For example, Work Zone Data Service module has the entry point of "/ttrms/admin/workzone/list" and the Client obtains work-zone information by accessing the URL in HTTP GET method.
- Similarly, "/ttrms/admin/workzone/insert" is the entry point for INSERT, which is accessible through HTTP POST for work-zone information.

2) *DB Access* Modules in *Data Access Layer* have also the interfaces of LIST, INSERT, GET, UPDATE and DELETE, which are accessed by calling specific functions. For example, *Work Zone DB Access Module* has the functions named as *insert()*, *list()*, *get()*, *update()* and *delete()*, which are called by *Work Zone Data Service* module as needed.

3) *DB Access* Modules request query to the database via 3<sup>rd</sup> party SQL library.



### Figure 4.3.2 Data-Conversion Modules for Type 1 External Data

The general sequence of the conversion process for Type 1 data is as follows:

1) The external data and parameters entered by an administrator are converted to JSON (JavaScript Object Notation) string and packed to the body of HTTP POST request.

- HTTP GET method is used if additional data are not required, e.g., *listing*.
- An example JSON string that represents a snow-event is shown in Figure 4.3.3.

```
"id" : 1,
"start_time" : "2016-02-12 05:00:00",
"end_time" : "2016-02-12 12:00:00",
"
```

#### Figure 4.3.3 An Example JSON String

2) The packed, requested data is sent to the entry point of the API server.

3) *Data Service* Module converts received JSON data to corresponding data-object, which is used in the server, and calls corresponding function of *DB Access* Module.

4) The Client receives the data from the *Data Service* Module.

- When the *Client* requests Delete or Update service and no data is returned, the service-process status code is returned.

5) The converted data is updated and shown in the User Interface by the *Client*.

Figure 4.3.4 illustrates an example data-conversion sequence to add a new data:

1) User enters the data through the User Interface of the Client program.

- 2) The entered data are converted to JSON object and serialized to string.
- 3) The serialized data are sent to the entry point of insertion in the API Server.
- 4) Data Service Module converts the serialized string to the corresponding data object.
- 5) Converted data object are passed to INSERT function of DB Access Module.
- 6) DB Access Module inserts data to the database.
- 7-8) Data are returned to Data Service Module.
- 9-10) Returned data and status code are converted to JSON string and sent to the Client.
- *11) The Client receives the data and converts to the data object used in the Client.*
- 12) User Interface of the Client is updated.



Figure 4.3.4 An Example Sequence Diagram to Add a New Data

Figure 4.3.5 shows the specific modules and interfaces developed to convert the Type 2 data, i.e., weather and incident data. As noted earlier, the Type 2 data are directly imported through the *External-Data Reader* module. The conversion process for the Type 2 data can be summarized as follows:

- 1) Data Pre-fetch module calls the data-reading function in Data Reader.
- 2) Data Reader checks the cached data in Local Disk.
  - The cached data are returned if they exist.
- 3) Data Reader module sends a request to the external data server if cached data are not found.

- The received data are stored to Local Disk for future access.

4) The requested data are saved in the *Database* by *Data Pre-fetch* module through *DB Access Modules*.

\*The Incident Data Access module in the DB Access Layer has been developed in this chapter, while the Incident Data Reader will be developed when the API server for CAD data is available.



Figure 4.3.5 Data-Conversion Process and Modules for Type 2 Data

# 4.3.2 Development of Data-Access Layer

Figure 4.3.6 shows the internal structure and individual modules of the *Data-Access Layer, which* contains *Data-Access Modules* for different types of external data. The *Data-Access Modules* are designed to delegate the database-access functions to the *Data-Access-Base* module. If additional functions are needed for specific types of data, those functions can be implemented in corresponding *Data Access Modules*. Figures 4.3.7 and 4.3.8 include the source codes for the *Special Event Data Access* and the *Data-Access-Base* modules.



Figure 4.3.6 Structure of Data-Access Layer

## **Testing Data-Access Modules**

The database-access functions in the above Database-Access modules, i.e., *Insert, Update, List* and *Delete*, were tested using a test program with a set of hypothetical incident data. The following procedure was used for this testing:

- 1) Create and Insert incident types
- 2) Get 'List' of incident types
- 3) Update incident types
- 4) Create and Insert incident data (incident has dependency to incident type)
- 5) Get 'List' incident data
- 6) Update incident data
- 7) Delete incident data and Get 'List' to check if data are deleted
- 8) Delete incident types and Get 'List' to check if incident types are deleted

Figure 4.3.9 shows the results of the test program with the above procedure. As shown in this figure, each function performed correctly as expected.

```
class DataAccess(object):
 def __init__(self, **kwargs):
    self.da base = DataAccessBase(model.Specialevent, SpecialEventInfo, **kwargs)
  def exist(self, name, start time, end time):
    if isinstance(start_time, str):
      start_time = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S')
    if isinstance(end time, str):
      end_time = datetime.datetime.strptime(end_time, '%Y-%m-%d %H:%M:%S')
    exs = self.da_base.search([('name', name), ('start_time', start_time), ('end_time', end_time)], op='and',
                   cond='match')
    return exs
  def list(self):
    return self.da_base.list()
  def list_by_year(self, years):
    wheres = [('years', y) for y in years]
    return self.da_base.search(wheres, op='or', cond='like')
  def years(self):
    ys = []
    for sei in self.da_base.list():
      for y in sei.years.split(','):
```

| iy = int(y)                                                          |
|----------------------------------------------------------------------|
| if iy not in ys:                                                     |
| ys.append(iy)                                                        |
| return sorted(ys)                                                    |
| def <b>get_by_id</b> (self, se_id):                                  |
| return self.da_base.get_data_by_id(se_id)                            |
| <pre>def delete(self, se_id, autocommit=False):</pre>                |
| return self.da_base.delete(se_id, autocommit=autocommit)             |
| def <b>insert</b> (self, sei, autocommit=False):                     |
| return self.da_base.insert(sei, autocommit=autocommit)               |
| <pre>def update(self, se_id, field_data, autocommit=False):</pre>    |
| return self.da_base.update(se_id, field_data, autocommit=autocommit) |
| def <b>rollback</b> (self):                                          |
| self.da_base.session.rollback()                                      |
| def <b>commit</b> (self):                                            |
| self.da_base.commit()                                                |
| def <b>close</b> (self):                                             |
| self.da_base.close()                                                 |

#### Figure 4.3.7 Data-Access Module for Special Event Data

class DataAccessBase(object): def \_\_init\_\_(self, dbModel, dataInfoType, \*\*kwargs): ..... :param dbModel: DB model defined in `pyticas\_ttrms.db.model` :param dataInfoType: corresponding class to DB model defined in `pyticas\_ttrms.ttrms\_types` ..... self.dbModel = dbModel self.dataInfoType = dataInfoType self.dt\_attrs = dataInfoType.\_dt\_attrs\_ if hasattr(dataInfoType, '\_dt\_attrs\_') else [] self.route\_attrs = dataInfoType.\_route\_attrs\_ if hasattr(dataInfoType, '\_route\_attrs\_') else [] self.rel\_attrs = dataInfoType.\_rel\_attrs\_ if hasattr(dataInfoType, '\_rel\_attrs\_') else {} self.session = kwargs.get('session', conn.get\_session()) """:type: sqlalchemy.orm.Session """ # implementations of the below function are omitted def get\_model\_by\_name(self, name): def get\_model\_by\_id(self, id): def get\_data\_by\_name(self, name): def get\_data\_by\_id(self, id): def insert(self, data, autocommit=False): def list(self, \*\*kwargs): def **delete**(self, id, autocommit=False): def update(self, id, field\_data, autocommit=False):

def search(self, searches, op='and', cond='match', \*\*kwargs):
 def search\_date\_range(self, sinfo, einfo):
 def to\_info(self, model\_data, data\_info\_type = None):
 def to\_model(self, info\_data, data\_info\_type = None):
 def commit(self):
 def close(self):



Figure 4.3.9 DB Access-Module Test Results with an Incident Data

### 4.3.3 Development of API Server

Figure 4.3.10 shows the internal structure of the API server, which is consisted with *Request Dispatcher*, *Data Services* and *TeTRES-API* modules. The functions handling data-service requests are built into the TeTRES-API module. In the beginning of the system operation, the *Data Services* are registered to the *Request Dispatcher*. When the *Client* requests data services, *Request Dispatcher* runs the corresponding services. Each *Data Service* delegates the data requests to the *TeTRES-Api* module, while each *Data Service* module can have additional functions to handle different types of data requests. Figure 4.3.11 shows the source code for *Special Event Data Service* module. The source code for *TeTRES-API* module is included in Figure 4.3.12.





def register\_api(app):
TTRMSApi(app, 'specialevent', json2sei, SpecialEventDataAccess, {
 'insert': (api\_urls.SE\_INSERT, ['POST']),
 'list': (api\_urls.SE\_LIST, ['GET']),
 'list\_by\_year': (api\_urls.SE\_LIST\_BY\_YEAR, ['POST']),
 'get\_by\_id': (api\_urls.SE\_GET, ['POST']),
 'update': (api\_urls.SE\_UPDATE, ['POST']),
 'delete': (api\_urls.SE\_DELETE, ['POST']),
 'years': (api\_urls.SE\_YEARS, ['GET']),
}).register()

Figure 4.3.11 Special-Event Data-Service module

```
def __init__(self, app, name, json2obj, da_class, uris):
    self.app = app
    self.name = name
    self.json2obj = json2obj
    self.data_access_class = da_class
    self.uris = uris
```

#### def register(self):

class TTRMSApi(object):

```
autodoc = get_autodoc()
for fname, (uri, methods) in self.uris.items():
    if not hasattr(self, fname):
        continue
    self.app.add_url_rule(uri,
            'ttrms_%s_%s' % (self.name, fname),
            getattr(self, fname),
            methods=methods)
```

```
# implementations of the below functions are omitted
def insert(self):
def insert_all(self):
def list(self):
def list_by_year(self):
def get_by_id(self):
def get_by_name(self):
def update(self):
def delete(self):
def years(self):
```

Figure 4.3.12 TeTRES-API Module

# 4.3.4 Development of External-Data Reader

The External-Data Reader package includes the data-importing modules for both RWIS and Incident data. Figure 4.3.13 shows the structure of the External-Data Reader developed to import the RWIS Data. The *RWIS-Data Reader* module provides RWIS site information and the functions to get weather information. The *Web Page Parser* module reads the export page of the SCANWeb site with user-specified parameters, such as time duration and RWIS site, and extracts weather information from HTML, while the *RWIS Data Cache* module is used to save weather information to local disk for a quick access. Figure 4.3.14 includes the some of the source code for the RWIS Data Reader module.



Figure 4.3.13 Structure of RWIS Data Reader

| import datetime, enum                                              |
|--------------------------------------------------------------------|
| from pyticas import cfg, logger                                    |
| from pyticas.dr.rwis_reader import scanweb_export, scanweb_html    |
| from pyticas.tool import distance                                  |
| from pyticas.tool.cache import lru_cache                           |
| from pyticas.ttypes import RWISData, RWISSiteInfo, Period          |
| logging = logger.getDefaultLogger(name)                            |
| class RWIS_READER(enum.Enum):                                      |
| SCANWEB_EXPORT = scanweb_export                                    |
| SCANWEB_HTML = scanweb_html                                        |
| # implementations of the below functions are omitted               |
| def <b>find_nearby_sites</b> (s_lat, s_lon):                       |
| def <b>get_site_by_id</b> (site_id):                               |
| def get_all_rwis_sites():                                          |
| def <b>get_weather_by_site</b> (group_id, site_id, prd, **kwargs): |
| def get_weather(site, prd, **kwargs):                              |

#### Figure 4.3.14 RWIS Data Reader module

# Testing RWIS Data-Reader module

The RWIS-Data Rader module was tested by importing the RWIS data for a detector station and comparing the imported data with those from the SCANWeb site. In this testing, the RWIS-Data Reader module was applied to import the RWIS data for the detector station S73 on I-35W. Specifically, the following functions of the RWIS-Data Rader module were tested:

- find\_nearby\_sites(lat, lon) : find the RWIS site information close to a given coordinate

- *get\_weather(site, time\_period)* : read weather data from SCANWeb site for a given RWIS site and time period

Figure 4.3.15 shows the location of the RWIS site, I-35@ Minnesota River, found by the RWIS-Data Reader module for the test station S73. The Figure 4.3.16 includes the RWIS data imported from this site, while Figures 4.3.17 and 4.3.18 show the data from the SCANWeb site for the same RWIS site. As can be noted from these figures, the imported data from the RWIS-Data Reader module exactly match those from the SCANWeb site for the same RWIS site.



Figure 4.3.15 Detector station S73 and nearby RWIS site locations

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:38:48) [MSC v.1900 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

station=**S73**, label=I-35W, lat=44.774990, lon=-93.288440

site name=I-35 @ Minnesota River, site id=330085, distance to station=4.414634 mile

# Weather Data

DateTime ['03/15/2016 07:05', '03/15/2016 07:10', '03/15/2016 07:15', '03/15/2016 07:20',
'03/15/2016 07:25', '03/15/2016 07:30', '03/15/2016 07:35', '03/15/2016 07:40', '03/15/2016 07:45',
'03/15/2016 07:50', '03/15/2016 07:55', '03/15/2016 08:00', '03/15/2016 08:05', '03/15/2016 08:10',
'03/15/2016 08:15', '03/15/2016 08:20', '03/15/2016 08:25', '03/15/2016 08:30', '03/15/2016
08:35', '03/15/2016 08:40', '03/15/2016 08:45', '03/15/2016 08:50', '03/15/2016 08:55']

SfStatus ['Trace Moisture', 'Trace Moisture', 'Trace

- **SfTemp** [55.6, 55.9, 55.8, 55.8, 55.9, 55.9, 55.8, 55.6, 55.6, 55.4, 55, 55.2, 54.9, 54.9, 54.7, 54.9, 54.9, 54.7, 54.5, 54.3, 54.5, 54.3, 54.1]

- **PrecipType** ['Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', None, None, None, None, None, None, None, 'Yes', '**Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'**]

Figure 4.3.16 Output Screen of Test Program

| Metro Sites<br>I-35 @ Minnesota River(330085)<br>Precipitation History<br>03/14/2016 09:00 to 3/15/2016 09:00 |                                                                                                                 |        |         |                     |                     |                  |                       |                       |                       |                        |                 |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|---------|---------------------|---------------------|------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------|
|                                                                                                               | Surface/Precip.     Surface/Atmos.     Surface History     History     History     Graph     History     Export |        |         |                     |                     |                  |                       |                       |                       |                        |                 |
| Change End Date: 3/15/2016 09:00 Go <>                                                                        |                                                                                                                 |        |         |                     |                     |                  |                       |                       |                       |                        |                 |
| Date/Time<br>( CDT )                                                                                          | <u>Type</u>                                                                                                     | Intens | Rate    | <u>Start Time</u>   | End Time            | 10 min.<br>Accum | <u>1 hr.</u><br>Accum | <u>3 hr.</u><br>Accum | <u>6 hr.</u><br>Accum | <u>12 hr.</u><br>Accum | 24 hr.<br>Accum |
| 03/15/2016<br>08:55                                                                                           | Yes                                                                                                             | -      | 0.2 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:50                                                                                           | Yes                                                                                                             | -      | 0.4 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:45                                                                                           | Yes                                                                                                             | -      | 0.3 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:40                                                                                           | Yes                                                                                                             | -      | 0.5 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:35                                                                                           | Yes                                                                                                             | -      | 0.3 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:30                                                                                           | Yes                                                                                                             | -      | 0.0 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:25                                                                                           | Yes                                                                                                             | -      | 0.0 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:20                                                                                           | Yes                                                                                                             | -      | 0.0 iph | 03/15/2016<br>08:19 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:15                                                                                           | Yes                                                                                                             | -      | 0.0 iph | 03/15/2016<br>08:12 | -                   | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:10                                                                                           | None                                                                                                            | -      | 0.0 iph | 03/15/2016<br>07:34 | 03/15/2016<br>07:36 | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016<br>08:05                                                                                           | None                                                                                                            | -      | 0.0 iph | 03/15/2016<br>07:34 | 03/15/2016<br>07:36 | -                | -                     | -                     | -                     | -                      | -               |
| 03/15/2016                                                                                                    |                                                                                                                 |        |         | 03/15/2016          | 03/15/2016          |                  |                       |                       |                       |                        |                 |

# Figure 4.3.17 Precipitation History Page in SCANWeb for the Same Duration with Test Code

|                                        | Metro Sites<br>I-35 @ Minnesota River - 35W Minnesota River (330085.0)<br>Surface/Atmospheric History |                                                                                                           |            |            |     |           |     |        |        |     |      |               |
|----------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|------------|-----|-----------|-----|--------|--------|-----|------|---------------|
| 03/14/2016 09:00 to 3/15/2016 09:00    |                                                                                                       |                                                                                                           |            |            |     |           |     |        |        |     |      |               |
|                                        | <ul> <li>Surface/Pre<br/>History</li> </ul>                                                           | Surface/Precip.      Surface History     History     Graph     History     History     History     Export |            |            |     |           |     |        |        |     |      |               |
| Change End Date: 3/15/2016 09:00 Go <> |                                                                                                       |                                                                                                           |            |            |     |           |     |        |        |     |      |               |
| Date/Time                              | Sur                                                                                                   | face                                                                                                      | 1          |            |     | Air       |     |        | Wind   |     | Pr   | ecip          |
| (CDT)                                  | <u>Status</u>                                                                                         | Sfc                                                                                                       | <u>Pvt</u> | <u>Sub</u> | Air | <u>RH</u> | Dew | Ava    | Gust   | Dir | Type | <u>Intens</u> |
| 03/15/2016<br>08:55                    | Trace<br>Moisture                                                                                     | 54.1F                                                                                                     | -          | 50F        | 50F | 97%       | 52F | 13 mph | 17 mph | Е   | Yes  | -             |
| 03/15/2016<br>08:50                    | Trace<br>Moisture                                                                                     | 54.3F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 9 mph  | 16 mph | Е   | Yes  | -             |
| 03/15/2016<br>08:45                    | Trace<br>Moisture                                                                                     | 54.5F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 9 mph  | 20 mph | SE  | Yes  | -             |
| 03/15/2016<br>08:40                    | Trace<br>Moisture                                                                                     | 54.3F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 13 mph | 20 mph | E   | Yes  | -             |
| 03/15/2016<br>08:35                    | Trace<br>Moisture                                                                                     | 54.5F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 9 mph  | 16 mph | SE  | Yes  | -             |
| 03/15/2016<br>08:30                    | Trace<br>Moisture                                                                                     | 54.7F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 6 mph  | 14 mph | SE  | Yes  | -             |
| 03/15/2016<br>08:25                    | Trace<br>Moisture                                                                                     | 54.9F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 7 mph  | 12 mph | SE  | Yes  | -             |
| 03/15/2016<br>08:20                    | Trace<br>Moisture                                                                                     | 54.9F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | Calm   | 8 mph  | E   | Yes  | -             |
| 03/15/2016<br>08:15                    | Trace<br>Moisture                                                                                     | 54.7F                                                                                                     | -          | 50F        | 50F | 96%       | 52F | 4 mph  | 6 mph  | E   | Yes  | -             |
| 03/15/2016<br>08:10                    | Trace<br>Moisture                                                                                     | 54.9F                                                                                                     | -          | 50F        | 50F | 95%       | 52F | Calm   | 6 mph  | NE  | None | -             |
| 03/15/2016<br>08:05                    | Trace<br>Moisture                                                                                     | 54.9F                                                                                                     | -          | 50F        | 50F | 95%       | 52F | Calm   | 6 mph  | SE  | None | -             |
| 03/15/2016<br>08:00                    | Trace<br>Moisture                                                                                     | 55.2F                                                                                                     | -          | 50F        | 50F | 95%       | 52F | 4 mph  | 6 mph  | SE  | None | -             |
| 03/15/2016<br>07:55                    | Trace<br>Moisture                                                                                     | 55.0F                                                                                                     | -          | 50F        | 50F | 95%       | 52F | Calm   | 4 mph  | E   | None | -             |
| 03/15/2016<br>07:50                    | Trace<br>Moisture                                                                                     | 55.4F                                                                                                     | -          | 50F        | 50F | 95%       | 52F | Calm   | 4 mph  | Е   | None | -             |
| 03/15/2016                             | Trace                                                                                                 | 55.6F                                                                                                     | -          | 50F        | 50F | 95%       | 52F | Calm   | 4 mph  | SE  | None | -             |

Figure 4.3.18 Surface history page for the same duration with test code in SCANWeb site

## 4.4 DEVELOPMENT OF ADMINISTRATION-CLIENT MODULE

Figure 4.4.1 shows the structure of the Administration-Client module developed for each of Type 1 data, i.e., work zone, special event and snow management data. The main features of the internal process shown in this figure can be summarized as follows:

- The DataAPI module extends the APIClient module, whose functions are inherited by the DataAPI module. The interfaces to access the external data in the server are built into the APIClient module, while the *HttpClient* module has the functions to send the request of HTTP GET and POST to server.
- *The DataAPI* module sends the request from *User Interface* to server through the *HttpClient* module and triggers the corresponding events after receiving a response from the server.
- The Event handler updating status in *User Interface* module is executed by the events from the *DataAPI* module.

Figures 4.4.2 and 4.4.3 include the source codes of the *DataAPI* module for special-event data and the *APIClient* module. The rest of this section describes the user-interfaces developed in this task for different types of Type 1 data.



Figure 4.4.1 Structure of Administration-Client Module for Each Data Type

public class SpecialEvent extends APIClient<SpecialEventInfo> {

```
public SpecialEvent() {
```

this.RESPONSE\_LIST\_TYPE = new TypeToken<ListResponse<SpecialEventInfo>>(){}.getType(); this.RESPONSE\_TYPE = new TypeToken<ObjectResponse<SpecialEventInfo>>(){}.getType(); this.DATA\_TYPE = SpecialEventInfo.class;

```
this.URL_DELETE = Config.getAPIUrl(ApiURIs.URI.SE_DELETE);
this.URL_YEARS = Config.getAPIUrl(ApiURIs.URI.SE_YEARS);
this.URL_LIST = Config.getAPIUrl(ApiURIs.URI.SE_LIST);
this.URL_LIST_BY_YEAR = Config.getAPIUrl(ApiURIs.URI.SE_LIST_BY_YEAR);
this.URL_INSERT = Config.getAPIUrl(ApiURIs.URI.SE_INSERT);
this.URL_UPDATE = Config.getAPIUrl(ApiURIs.URI.SE_UPDATE);
this.URL_GET = Config.getAPIUrl(ApiURIs.URI.SE_GET);
}
@Override
```

protected Comparator<SpecialEventInfo> getComparator() { ... }

public abstract class APIClient<T extends InfoBase> {

}

#### Figure 4.4.2 DataAPI module for Special-Event data

```
protected String URL DELETE;
protected String URL_LIST;
protected String URL_LIST_BY_YEAR;
protected String URL INSERT;
protected String URL_INSERT_ALL;
protected String URL_UPDATE;
protected String URL GET;
protected String URL YEARS;
protected Type RESPONSE_LIST_TYPE;
protected Type RESPONSE TYPE;
protected Type DATA_TYPE;
protected Gson gsonBuilder = new GsonBuilder().create();
public final ArrayList<T> dataList;
protected List<AbstractDataChangeListener<T>> changeListeners = new ArrayList<>();
protected boolean isLoadingList = false;
protected Logger logger;
// implementations of the below functions are omitted
public APIClient() { ... }
```

public void list() { ... } public void listByYear(Integer year) { ... } private T getDataById(int id) { ... } public void delete(final List<Integer> ids) { ... } public void insert(final T obj) { ... } public void insertAll(final List<T> dataList) { ... } public void get(final String id) { ... } public T getSynced(String id) { ... } public T getByNameSynced(final String name) { ... } public void update(T exData, final T newData) { ... } private IHttpResultCallback getListCallback() { ... } private void notSupportedAPI(String name) { ... } public String toJson(Object obj) { ... } protected abstract Comparator<T> getComparator(); public void addChangeListener(AbstractDataChangeListener<T> listener) { ... } public void **removeChangeListener**(AbstractDataChangeListener<T> listener) { ... } protected void fireListSuccess() { ... } protected void fireListFailed(HttpResult httpResult) { ... } protected void **fireGetSuccess**(T obj) { ... } protected void fireGetFailed(HttpResult httpResult, int id) { ... } protected void fireGetFailed(HttpResult httpResult, String id) { ... } protected void fireUpdateSuccess(int id) { ... } protected void fireUpdateFailed(HttpResult httpResult, T obj) { ... } protected void fireDeleteSuccess(List<Integer> ids) { ... } protected void **fireDeleteFailed**(HttpResult httpResult, List<Integer> ids) { ... } protected void **fireInsertSuccess**(Integer insertedId) { ... } protected void fireInsertFailed(HttpResult httpResult, T obj) { ... } protected void fireYearsSuccess(List<Integer> obj) { ... } protected void fireYearsFailed(HttpResult httpResult) { ... } protected void **fireInsertAllSuccess()** { ... } protected void fireInsertAllFailed(HttpResult result, List<T> dataList) { ... }

### Figure 4.4.3 APIClient module

# User Interface for Work-Zone Data

Figures 4.4.4-4.4.7 show the screenshots of the user-interface developed for entering work-zone data. The major features of the User Interface for editing work-zone data are as follows:

• Figure 4.4.4 shows the map-based Work-Zone List Panel, which displays the list and location of the work-zones for selected corridors and construction time-periods. In this panel, user can edit the information on specific work-zones or add/delete work-zones. The example screen shown in Figure 4.4.4 includes two work-zones selected on the I-35W NB and SB.

• Figure 4.4.5 is a dialog to add a new work-zone. This dialog pops up when the 'add' button in the List Panel is clicked. In this dialog, user can enter general information of a new work-zone, such as name, description and construction duration.

-User also can define a 'Work-zone route', i.e., the direction and boundaries of a work zone in terms of detector station IDs. When user specifies a work-zone route for one direction, the interface automatically creates a second route in an opposing direction with the same upstream/downstream boundaries as with the first route.

- The detailed lane-configuration within a work-zone can be specified by clicking '*Edit Lane-Configuration*' button, which displays a dialog with two choice buttons as shown in Figure 4.4.6.

- To create a new lane-configuration file, click '*Create New Lane-Configuration File*' button, which will open a spread-sheet file with a set of default information for current work zone, such as mile points, station/ramp ids and open/closure status of ramps, etc. The detailed lane-closure conditions of a given work zone can be entered by user in this spreadsheet using the symbols shown in Table 4.4.1.

| Symbol                | Remarks                            |
|-----------------------|------------------------------------|
| $\downarrow,\uparrow$ | traffic flow direction on mainline |
| ↓~~, ~~↓, ↑~~, ~~↑    | lane shifted                       |
| ↓X, ↑X,               | lane closed                        |
| 0                     | ramp opened                        |
| Х                     | ramp closed                        |
| ↓ (A), 个 (A)          | auxiliary lane                     |
| ↓ (H) <i>,</i> 个 (H)  | HOV(T) lane                        |
| S <number></number>   | Station ID                         |
| E: <label></label>    | Entrance ID                        |
| X: <label></label>    | Exit ID                            |

#### Table 4.4.1 Symbols in Lane-Configuration Spreadsheet File



Figure 4.4.4 Work-Zone List Display Panel



Figure 4.4.5 Dialog to Add a New Work-Zone



## Figure 4.4.6 Lane Configuration Edit Dialog

| F   | ILE HC    | r ⊘~ ÷<br>DME INSER | Т    | PAGE L       | AYOUT        | FC   | DRMULAS   | DATA REV  | I-35 N<br>IEW VII | B - | Micros<br>TE | oft Excel C | R) -        |             |      |              | C          | )    | ? 🗹        | ung Park 🔻 | ×          |
|-----|-----------|---------------------|------|--------------|--------------|------|-----------|-----------|-------------------|-----|--------------|-------------|-------------|-------------|------|--------------|------------|------|------------|------------|------------|
| P1  | .0        | • : ×               | ~    |              |              |      | ]         |           |                   |     |              |             |             |             |      |              | -          |      |            |            | ~          |
|     | Δ         | B                   | С    | . se         | ectio        | n 1  | F         | G         | н                 | 1   |              | 1           | ĸ           |             | sect | IOr          | 12         | 0    | p          | 0          |            |
| 1   | MilePoint | RampStatus          | Lane | Lane         | Lane         |      | NBJ       | RNodeName | Corridor          |     | ·            | Corridor    | RNodeName   | <u>ተ se</u> |      | ane          | Lane       | Lane | RampStatus | MilePoint  |            |
| 2   | 0         |                     |      | $\downarrow$ | 4            |      | S1585     | rnd 95210 | I-35 (NB)         |     |              | I-35 (SB)   | rnd 95214   | S1584       | 1    | $\uparrow$   | $\uparrow$ |      |            | 6          |            |
| 3   | 0.1       |                     | 0    | J.           | J~~          | E:21 | 0th St WB | rnd 95021 | I-35 (NB)         |     |              | I-35 (SB)   | rnd 95031   | X:210th     | St   | Ť.           | ↑          | 0    |            | 5.9        |            |
| 4   | 0.2       |                     |      | Ψ.           | ↓~~          |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   | _           |             |      | Ť.           | ́          |      |            | 5.8        |            |
| 5   |           |                     |      | $\downarrow$ | √~~          | -    | lane      | shifted 🛛 | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | ↑            | $\uparrow$ |      |            | 5.7        |            |
| 6   | entran    | ce opene            | d    | $\downarrow$ | √~~          |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | ↑            | $\uparrow$ |      |            | 5.6        |            |
| 7   |           |                     |      | $\downarrow$ | √~~          |      |           |           | I-35 (NB)         |     |              | 1-3e (cp)   |             |             |      | ↑            | $\uparrow$ |      |            | 5.5        |            |
| 8   | 0.6       |                     |      | $\downarrow$ | $\downarrow$ |      | s         | P         | I-35 (NB)         |     |              | I-3 Cro     | ossover lan | e 🔍         |      | ↑            | $\uparrow$ |      |            | 5.4        |            |
| 9   | 0.6       |                     |      | $\downarrow$ | $\downarrow$ |      | s lane    | closed    | I-35 (NB)         |     |              | 1-3         |             | S158        | 3    | ↑            | $\uparrow$ |      |            | 5.4        |            |
| 10  | 0.6       |                     |      | ∕↓x          | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   | rnd_95035   | S1582       | 2    | $\downarrow$ | $\uparrow$ |      |            | 5.4        |            |
| 11  | 0.7       |                     |      | ∕↓x          | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | ↑          |      |            | 5.3        |            |
| 12  | 0.8       |                     |      | ∕tx          | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | ↑          |      |            | 5.2        |            |
| 13  | 0.9       |                     |      | Υψ           | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | ↑          |      |            | 5.1        |            |
| 14  | 1         |                     |      | ∕tx          | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | $\uparrow$ |      |            | 5          |            |
| 15  | 1.1       |                     |      | Υψ           | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | ↑          |      |            | 4.9        |            |
| 16  | 1.2       |                     |      | Υψ           | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | ↑          |      |            | 4.8        |            |
| 17  | 1.3       |                     |      | ↓x           | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | 1          |      |            | 4.7        |            |
| 18  | 1.4       |                     |      | √x           | √x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | $\downarrow$ | 1          |      |            | 4.6        |            |
| 19  | 1.5       |                     |      | ↓x           | √x           |      | S1588     | rnd_95027 | I-35 (NB)         |     |              | I-35 (SB)   | rnd_95029   | S1581       | L    | $\downarrow$ | ↑          |      |            | 4.5        |            |
| 20  | 1.6       |                     |      | ↓x           | ↓x           |      |           |           | I-35 (NB)         |     |              | I-35 (SB)   |             |             |      | ¥            | <b>↑</b>   |      |            | 4.4        |            |
| 21  | 1.7       |                     |      | ΨX           | ΨX           |      |           |           | I-35 (NB)         |     |              | 1-35 (SB)   |             |             |      | ¥            | <b>↑</b>   |      |            | 4.3        | _          |
| 22  | 1.8       |                     |      | ΨX           | ΨX           |      |           |           | I-35 (NB)         | -   |              | I-35 (SB)   |             |             |      | ¥            | Ť          |      |            | 4.2        | -          |
| 23  | 1.9       |                     |      | ΨX           | ΨX           |      |           |           | I-35 (NB)         |     |              | 1-35 (SB)   |             |             |      | ¥            | Ť          |      |            | 4.1        |            |
| 24  | 2         |                     |      | ΨX           | ↓X           |      |           |           | 1-35 (NB)         |     |              | 1-35 (SB)   |             |             |      | ¥            | Ť          |      |            | 4          |            |
| 25  | 2.1       |                     | 0    | ↓X           | ↓X           |      |           | and organ | 1-35 (NB)         |     |              | 1-35 (SB)   |             |             |      | ¥            | Ť          |      |            | 3.9        | -          |
| 26  | 2.2       |                     | 0    | ↓X           | ΨX           | X:0  | LO KO 60  | rnd_95025 | 1-35 (NB)         |     |              | 1-35 (SB)   |             |             |      | ¥.           | T          |      |            | 3.8        |            |
| 2/  | 2.3       |                     |      | ΨX<br>LY     | ↓X<br>↓ Y    |      |           |           | 1-35 (INB)        |     |              | 1-35 (SB)   |             |             |      | ¥            | T          |      |            | 3.7        | -          |
| 28  | 2.4       |                     | 0    |              | ΨX<br>L V    | E.C. |           | rnd 05027 | 1-35 (IVB)        |     |              | 1-35 (SB)   | and 05042   | FiCe Rd     | 60   | ¥            | <b></b>    | 0    |            | 3.0        | -          |
| 29  | 2.5       |                     | 0    |              | ΨX<br>LX     | E:CC | NU OU EB  | mu_95037  | 1-33 (IVB)        |     |              | 1-35 (SB)   | rpd 95043   | E:CO R0     | 00   | ¥            | 1          | 0    |            | 3.3        |            |
| 21  | 2.0       |                     |      | ¥^           | - ¥X         |      | C1500     | rpd 95022 | 1-55 (INB)        |     |              | 1-55 (SB)   | rpd 95041   | \$1580      | ,    | *            |            |      |            | 3.4        |            |
| 31  | 2.0       | RouteCor            | fig  |              |              |      | 51365     |           | 1-33 (IND)        |     |              | (35)        | : 4         | 5137        | ·    |              | !          |      |            | 3.4        | H.         |
| REA |           | RouteCon            | iig  | 9            |              | _    |           |           | _                 |     |              | _           | : [4]       |             | E    |              | II         | m    |            |            | P<br>196 – |

Figure 4.4.7 Spreadsheet for Lane Configuration

# User Interface for Special-Event Data

Figure 4.4.8 shows the Special-Event data user-interface, where user can add, edit and delete specialevent data. Further, a list of special events selected by user for a specific year can be shown in this panel in a table format. Figure 4.4.9 is a dialog to add a new special-event data, which include name, location and event duration. In particular, the location of a new event can be entered from the background map of the user interface.



Figure 4.4.8 Main Window of Special-Event User Interface





### User Interface for Snow Management Data

The user interface for managing snow-management data consists of two tabs, "Snow Management Information" and "Snow Management Section" tabs as shown in Figure 4.4.10. The past snow-event data can be entered and edited in the 'Snow Management Information' tab, where user can retrieve a set of past snow events in a table format. The specific information on a selected snow event, such as snow start/end time and lane regain time, can also be seen in this panel. Figure 4.4.11 shows the dialogs where user can enter new snow-event data, which include event duration, snow management section boundaries, lane lost and regain times.

Figure 4.4.12 shows "Snow Management Section" tab, where detailed information regarding snowmanagement sections can be entered, edited and deleted by user. Further, a list of snow-management sections on each freeway corridor can be generated in this panel in a table format that also includes specific information on each snow-management section. Figure 4.4.13 shows a dialog to add a new snow management section, whose data includes section boundaries in terms of detector station IDs, name, description and snow-route ID managed by MnDOT. Each Snow-Management section consists of two routes, i.e., one for each direction. When a route for one direction is created, the other route for an opposing direction is created automatically by the user interface.

| Traver Time Reliability Mea     Tools Help     Route Work Zone Speical Ev     Snow Management Informati | ents Snow Management            | Snow M        | lgmt. tab<br>Add butte | on (snow even                | t) Ac                              | dd button (snow ma   | nagement)                      |
|---------------------------------------------------------------------------------------------------------|---------------------------------|---------------|------------------------|------------------------------|------------------------------------|----------------------|--------------------------------|
| A                                                                                                       | dd Snow Event                   | Snow          | Management Inform      | ation Add Snow M             | anagement Info                     |                      |                                |
| Filter<br>Select Year                                                                                   |                                 | Snov<br>2016- | v Event<br>01-02 ~ 03  | Snow Section<br>I-35 NB - 01 | Lane Lost Time<br>2016-02-02 07:40 | Lane Regain Time     | Lane Lost Duration (ho<br>12.3 |
| Snow Event List                                                                                         |                                 |               | snow eve               | ent year filter              | ]                                  |                      |                                |
| Start Time<br>2016-02-02 07:20:00                                                                       | End Time<br>2016-02-03 02:00:00 | -             | snow eve               | nt list table                |                                    |                      |                                |
|                                                                                                         | snow management I               | ist table     |                        |                              |                                    |                      |                                |
|                                                                                                         |                                 |               | Edit and I             | Delete buttons               | s (snow mgmt                       | t.)                  |                                |
| De                                                                                                      | ete Snow Event                  | -             | Delete bu              | itton (snow ev               | ent)                               | Edit Management Info | Delete Management Info         |

Figure 4.4.10 Snow Management Information panel

| 🔊 New Snow Event 🛛 🕹       | 🔬 New Snow Managment Data                                                                    | × |
|----------------------------|----------------------------------------------------------------------------------------------|---|
| Start Date Time Snow Start | Select Snow Management Sections Management Information Corridor Lane Lost Time All Corridors |   |
| End Date Time snow end     | Secton Lane Regain Time Lane Regain Time                                                     |   |
| Cancel Save                | snow section list lane lost and regain time                                                  |   |
|                            | Cancel Save                                                                                  |   |

Figure 4.4.11 Dialog for New Snow-Event and Management Data








# 4.5 DEVELOPMENT OF TRAVEL-TIME RELIABILITY-ROUTE CONFIGURATION MODULES

In this section, a set of the modules are developed to be used for configuring travel-time routes, whose reliability measures will be calculated by TTRMS. Figure 4.5.1 shows the travel-time route configuration process, which includes two sub-processes, i.e., route-configuration through the map-based user interface and the conversion and storing of user-specified route data into the database. The route-configuration process with the user interface is managed by the Administration Client, while the data-conversion process uses those modules developed in the previous chapter.



Figure 4.5.1 Travel-Time Route Configuration Process

### User Interface for Route Configuration

Figure 4.5.2 shows the main-panel of the user interface, where user can add, edit and delete reliability routes. Further, a list of existing routes can be displayed in a table format including detailed information on a selected route. Figures 4.5.3 and 4.5.4 show a dialog for adding a new reliability route, e.g., a route between the southern boundary of I-35 and I-35E NB/TH 77. As shown in this example, if an exit ramp is included in a multi-corridor route, an additional dialog is used to specify a corresponding corridor. Also, a second route in an opposing direction can be automatically created depending on user choice.

| Fravel Time Reliability Measure System Client         | 1.0.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Route Work Zone Speical Events Snow Manager           | g=*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Add Travel Time Route                                 | Add button Name : Route I-35 NB to TH77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ^ |
| Filter by Corridor                                    | Corridor filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Pre-defined Travel Time Route List Name               | (06) (X) Co Rd 60 (rnd_55025)           (07) (E) Co Rd 60 (rnd_55025)           (07) (E) Co Rd 60 (rnd_55025)           (08) (S) Co Rd 60 (Stars)           (09) (S) Co Rd 60 (Stars)           (09) (S) Co Rd 60 (Stars)           (09) (S) Co Rd 60 (Stars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Route I-35 NB to TH77 Route I-35W NB Route I-494 WB T | TT route list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Route US-169 NB                                       | Image: Section of the sectio | カ |
|                                                       | (E) 1-35 MB (md 91017)<br>(S) Southcres by (S870)<br>(C) Co Rd 42 (md 87575)<br>(C) Co Rd 42 (md 87575)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                                       | Of the selected route in the route list       (S) Co Rd 42 (S871)         Co Rd 42 (S871)       (S) Co Rd 42 (S872)         Addendary       (S) Co Rd 42 (S873)         Delete and Edit button       (S) Co Rd 11 (S873)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Delete Edit Route Info                                | [29] (E) Co Rd 11 (md 87589)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ |

Figure 4.5.2 Reliability-Route Configuration Main User Interface



Figure 4.5.3 Dialog for New Reliability-Route



Figure 4.5.4 Confirmation Dialog to Create Opposite Direction Route

# **Route-Data Conversion Process**

The route-specific data entered by user, i.e., system administrator, are converted and stored in the database with the same process developed in the previous chapter for external non-traffic data. The route-specific data, including a list of stations, ramps and corridor IDs, are first converted into a JSON string in the Administration Client, which sends them to the entry point of the Reliability Route Service of the API Server using the HTTP POST method. The entry point to insert a reliability route is specified as the URL of *"/ttrms/admin/ reliability\_route/insert"*. The JSON-string data are then converted to Python objects in the *Reliability Route Service* for the *Reliability Route DB Access* modules to interface with the database. Figure 30 includes the class definition for 'Reliability Route' in the Administration Client and Figures 4.5.5-8 show the source codes of the modules used for the route-data conversion process, i.e., Data API, Reliability-Route Service and Data Access modules. Further, Figure 4.5.9 shows a reliability-route database table entered through the user interface for the example route in Figure 4.5.2. The freeway route created in Figure 4.5.2 is saved as JSON string to 'route' field of the database table, whose freeway section data including the list of stations and ramps are shown in Figure 4.5.10.

```
public class ReliabilityRouteInfo extends InfoBase {
    public String name;
    public String description;
    public String corridor;
    public Route route;
    public ReliabilityRouteInfo() {
        this.setTypeInfo(TTRMSConfig.INFO_TYPE_TTROUTE);
    }
    // implementations of the below functions are omitted
    public ReliabilityRouteInfo(Route r) { ... }
}
```

#### Figure 4.5.5 Class definition for Reliability-Route in Client

```
public class ReliabilityRoute extends APIClient<ReliabilityRouteInfo> {
    public ReliabilityRoute() {
        this.RESPONSE_LIST_TYPE = new TypeToken<ListResponse<ReliabilityRouteInfo>>() {}.getType();
        this.RESPONSE_TYPE = new TypeToken<ObjectResponse<ReliabilityRouteInfo>>() {}.getType();
        this.DATA_TYPE = ReliabilityRouteInfo.class;
        this.URL_DELETE = Config.getAPIUrl(ApiURIs.URI.ROUTE_DELETE);
        this.URL_LIST = Config.getAPIUrl(ApiURIs.URI.ROUTE_LIST);
        this.URL_UPDATE = Config.getAPIUrl(ApiURIs.URI.ROUTE_UPDATE);
        this.URL_OPDATE = Config.getAPIUrl(ApiURIs.URI.ROUTE_UPDATE);
        this.URL_GET = Config.getAPIUrl(ApiURIs.URI.ROUTE_GET);
        }
        // implementations of the below functions are omitted
        public Route opposingRoute(int id) { ... }
        @Override
        protected Comparator<ReliabilityRouteInfo> getComparator() { ... }
}
```

Figure 4.5.6 Data API module for Reliability-Route in Client

def register\_api(app):
 autodoc = get\_autodoc()

```
TTRMSApi(app, 'ttroute', json2ttri, RouteDataAccess, {
    'insert': (api_urls.ROUTE_INSERT, ['POST']),
    'list': (api_urls.ROUTE_LIST, ['GET']),
    'get_by_id': (api_urls.ROUTE_GET, ['POST']),
    'get_by_name': (api_urls.ROUTE_GET, ['POST']),
    'update': (api_urls.ROUTE_UPDATE, ['POST']),
    'delete': (api_urls.ROUTE_DELETE, ['POST']),
}).register()
@app.route(api_urls.ROUTE_OPPOSITE_ROUTE, methods=['POST'])
@autodoc.doc()
```

# def ttrms\_route\_opposite\_route():

route\_id = request.form.get('id')

da = RouteDataAccess()
ttri = da.get\_by\_id(route\_id)
da.close()

class DataAccess(object):

```
route_setup(ttri.route)
opposite_route = route.opposite_route(ttri.route)
if not isinstance(opposite_route, Route):
    return prot.response_fail('fail to load route configuration file')
return prot.response_success(opposite_route)
```

#### Figure 4.5.7 Reliability-Route Service module in Server

def \_\_init\_\_(self, \*\*kwargs): self.da\_base = DataAccessBase(model.TTRoute, TTRouteInfo, \*\*kwargs) def list(self): return self.da\_base.list() def get\_by\_id(self, route\_id): return self.da\_base.get\_data\_by\_id(route\_id) def get\_by\_name(self, route\_name): return self.da\_base.get\_data\_by\_name(route\_name) def delete(self, id, autocommit=False): return self.da\_base.delete(id, autocommit=autocommit) def insert(self, r, autocommit=False): return self.da\_base.insert(r, autocommit=autocommit)

| def <b>update</b> (self, id, field_data, autocommit=False):       |
|-------------------------------------------------------------------|
| return self.da_base.update(id, field_data, autocommit=autocommit) |
| def <b>rollback</b> (self):                                       |
| self.da_base.session.rollback()                                   |
| def <b>commit</b> (self):                                         |
| self.da_base.commit()                                             |
|                                                                   |
| def <b>close</b> (self):                                          |
| self.da_base.close()                                              |
|                                                                   |

# Figure 4.5.8 Data-Access module for Reliability-Route Data in Server

| id | name                       | description             | corridor     | route                                                 |        |
|----|----------------------------|-------------------------|--------------|-------------------------------------------------------|--------|
|    | Filter                     | Filter                  | Filter       | Filter                                                | Filter |
| 1  | Route I-35W NB             | Route created at 2016-0 | I-35W (NB)   | {"rnodes": ["rnd_86379", "rnd_86383", "rnd_86381", "r | 2016-  |
| 2  | Route I-494 WB             | Route created at 2016-0 | I-494 (WB)   | {"rnodes": ["rnd_87009", "rnd_89027", "rnd_87047", "r | 2016-  |
| 3  | Route US-169 NB            | Route created at 2016-0 | U.S.169 (NB) | {"rnodes": ["rnd_84663", "rnd_84665", "rnd_84671", "r | 2016-  |
| 4  | Route I-35 NB to TH77      |                         | I-35 (NB)    | {"rnodes": ["rnd_95210", "rnd_95021", "rnd_95039", "r | 2016-  |
| 5  | I-35 NB to TH77            |                         | I-35 (NB)    | {"rnodes": ["rnd_95767", "rnd_95210", "rnd_95021", "r | 2016-  |
| 6  | Opposite Direction of I-35 |                         | I-35E (SB)   | {"rnodes": ["rnd_86891", "rnd_86877", "rnd_85977", "r | 2016-  |

# Figure 4.5.9 Sample Reliability-Route Data stored in Database

| {                  |                      |                      |                      |                      |  |
|--------------------|----------------------|----------------------|----------------------|----------------------|--|
| "rnodes": [        |                      |                      |                      |                      |  |
| "rnd_95767",       | "rnd_95210",         | "rnd_95021",         | "rnd_95039",         | "rnd_95023",         |  |
| "rnd_95027",       | "rnd_95025" <i>,</i> | "rnd_95037",         | "rnd_95033" <i>,</i> | "rnd_88687",         |  |
| "rnd_88689",       | "rnd_88691" <i>,</i> | "rnd_88693",         | "rnd_88695" <i>,</i> | "rnd_88699",         |  |
| "rnd_88705",       | "rnd_88701",         | "rnd_88707",         | "rnd_88709",         | "rnd_89591",         |  |
| "rnd_91017",       | "rnd_87573",         | "rnd_87575",         | "rnd_87577",         | "rnd_87579",         |  |
| "rnd_87581",       | "rnd_87583" <i>,</i> | "rnd_87585" <i>,</i> | "rnd_87587" <i>,</i> | "rnd_87589" <i>,</i> |  |
| "rnd_87591",       | "rnd_90763",         | "rnd_88521" ]        | ,                    |                      |  |
| "desc": "",        |                      |                      |                      |                      |  |
| "name": "I-35 NB 1 | to TH77",            |                      |                      |                      |  |
| "class": "Rout     | te",                 |                      |                      |                      |  |
| "cfg": null,       |                      |                      |                      |                      |  |
| "module": "p       | yticas.ttypes"       |                      |                      |                      |  |
| }                  |                      |                      |                      |                      |  |



# CHAPTER 5: DEVELOPMENT OF THE TRAVEL TIME RELIABILITY COMPUTATION MODULE

# **5.1 INTRODUCTION**

In this chapter, the *Travel-Time Reliability Computation module (TTRCM)* is developed as the main computational engine of the TTRMS, Travel-Time Reliability Measurement System, being developed in this research. The main functionalities of the TTRCM developed in this chapter include,

- Calculation of the travel times for selected routes during given time periods,
- Association of calculated travel times to corresponding operating conditions specified by non-traffic data,
- Calculation of travel-time reliability indices for given operating conditions.

Further, to address the needs for long-term, stable accessibility of weather data, the *Weather-Data Reader*, developed in the previous chapter, has been enhanced to be able to download the data from the National Oceanic and Atmospheric Administration (NOAA). A new Incident-Data Reader module that can read the incident data stored in the CAD and IRIS databases is also developed in this chapter.

Figure 5.1.1 shows the TTRCM and its sub-modules developed in this chapter in the overall architecture of the TTRMS. They include:

1) *Weather Data Reader,* which reads weather data and stores those into the TTRMS database.

2) *Incident Data Reader,* which reads the incident data from the CAD/IRIS databases and combines/stores them into the TTRMS database.

3) *Travel Time Calculation,* which calculates the travel times for given corridors and time periods explicitly reflecting the lane configurations of work zones if applicable.

4) *Data Categorization*, which categorizes travel times by linking them to different operating conditions specified with non-traffic data.

5) *Reliability Calculation,* which calculates the values of the travel-time reliability indices, whose types are pre-defined.

The rest of this chapter describes the details of the above modules.





# **5.2 DEVELOPMENT OF WEATHER AND INCIDENT DATA READER MODULES**

# 5.2.1 Development of Additional Data Reader module for NOAA Weather Data

In this section, the Weather-Data-Reader module, developed in the previous chapter for the MnDOT RWIS database, was enhanced by adding an additional module to access the weather data from NOAA, where diverse types of weather data are expected to be available on a long-term basis. Figure 5.2.1 shows the data flow among the submodules developed in this chapter to import and process the weather data from the NOAA's Integrated Surface Data (ISD) archive. The weather data imported by the Weather Data Reader module are further processed by the Daily Data Processing (DDP) module, which stores them into the TTRMS database on a daily basis. Table 5.2.1 shows the database table designed in this study to store the NOAA weather data. The DDP module also processes/stores the incident and travel time data into the database, which can be accessed by other modules, such as the Reliability estimation module. The DDP module is scheduled to be developed in the subsequent task in this study.

The main functions of the submodules in the Weather Data Reader module shown in Figure 5.2.1 are as follows:

- *ISD Station Information Reader* module downloads the list of the available weather stations from the NOAA FTP site and parses them.
- *ISD Data Reader* module downloads the archived weather data from NOAA FTP site for the selected stations and parses them.
- NOAA Weather Data Read Interface module contains a set of functions needed by other modules, e.g., *ISD Station Information Reader* and *ISD Data Reader*, for processing the weather data, such as for finding near-by weather stations for given coordinates and also for identifying weather data for given time periods. It can be noted that the current weather stations located in the Twin Cities' metro area are pre-configured for TTRMS with the *ISD Station Information Reader*. Figure 5.2.2 shows the locations of the 7 weather stations currently being used by NOAA for the Twin Cities metro area.

| Table Name   | Data Fields                                                                      |
|--------------|----------------------------------------------------------------------------------|
|              | - id : (int) sequential number                                                   |
|              | - usaf : (string) identification of U.S. Air Force for weather station           |
|              | - wban: (string) identification of Weather-Bureau-Army-Navy for weather station  |
| nona weather | - dtime: (datetime) timestamp                                                    |
| noua_weather | - precip: (float) precipitation for one hour (inch)                              |
|              | - precip_type: (string) precipitation type e.g. No Precip, Drizzle, Raion, Snow  |
|              | - precip_intensity: (string) precipitation intensity e.g. Light, Moderate, Heavy |
|              | <ul> <li>relative_humidity: (float) relative humidity (%)</li> </ul>             |

### Table 5.2.1 Weather Data Table

| - visibility: (float) visibility (mile)    |
|--------------------------------------------|
| - air_temp: (float) air temperature (F)    |
| - dew_point: (float) dew point (mile)      |
| - wind_dir: (int) wind direction (0 – 360) |
| - wind_speed: (float) wind speed (mph)     |
| - wind_gust: (float) wind gust (mph)       |







(b) Detailed Structure of Weather Data Reader module

Figure 5.2.1 Data Flow and Structure of Weather Data Reader Module



Figure 5.2.2 Weather Stations in the Twin Cities Metro Area

# 5.2.2 Development of Incident Data Reader module

Figure 5.2.3 shows the structure of the *Incident Data Reader* module developed in this chapter to import the incident-related data for the Twin Cities' metro freeway network from two external data sources, i.e., CAD (Computer-Aided Dispatch) system from the Department of Public Safety and IRIS of RTMC, MnDOT.

As shown in Figure 5.2.3, the imported data from each data source are integrated into a combined data format by the Incident-Data-Integration submodule. In this study, the Incident-Impact data, i.e., laneclosure status, and Lane-type information from the IRIS-Incident database are extracted and merged onto the data from the CAD system, which is considered as the main data source for incidents. The integrated- incident data is then accessed and stored in the main database of TTRMS by the Incident-Data-Import submodule in the 'Daily Data Processing' module. The incident-data tables of TTRMS are shown in Table 5.2.2.



### Figure 5.2.3 Incident Data Reader module

### Table 5.2.2 Incident Data Tables

| Table Name    | Data Fields                                                                             |
|---------------|-----------------------------------------------------------------------------------------|
|               | - id: (int) sequential number                                                           |
|               | <ul> <li>incident_type_id: (int) foreign key referring incident type</li> </ul>         |
|               | <ul> <li>- cad_pkey: (int) pky field of CAD table</li> </ul>                            |
|               | <ul> <li>- iris_event_id: (int) event_id field of IRIS incident table</li> </ul>        |
|               | <ul> <li>- iris_event_name: (string) event_name field of IRIS incident table</li> </ul> |
|               | - cdts: (datetime) created timestamp                                                    |
| incident      | - udts: (datetime) updated timestamp                                                    |
| incluent      | - xdts: (datetime) closed timestamp                                                     |
|               | - lat: (float) latitude                                                                 |
|               | - Ion: (float) longitude                                                                |
|               | - road: (string) corridor name                                                          |
|               | - direction: (string) direction e.g. NB, SB, WB, EB                                     |
|               | - impact: (string) closed lane information                                              |
|               | <ul> <li>lane_type: (string) lane type e.g. MAINLINE, EXIT, ENTRANCE</li> </ul>         |
|               | - id: (int) sequential number                                                           |
|               | - eventtype: (string) event type name                                                   |
|               | <ul> <li>eventsubtype: (string) event sub-type name</li> </ul>                          |
| incident_type | <ul> <li>eventtypecode: (string) event type code</li> </ul>                             |
|               | <ul> <li>eventsubtypecode: (string) event sub-type code</li> </ul>                      |
|               | - classification: (string) incident classification                                      |
|               | <ul> <li>- iris_class: (string) incident classification used in IRIS</li> </ul>         |

- iris\_detail: (string) incident details used in IRIS
- blocking: (boolean) true if there is lane blocking
- occupied: (boolean) true if road is occupied
- rollover: (boolean) true if there is rollover
- injury: (boolean) true if there is personal injury
- fatal: (boolean) true if there is fatal injury
- cars\_eventtype: (string) event type for cars e.g. FATALITY CRASH, VEHICLE SPINOUT
- cars\_eventcode: (string) event type code for cars

# **5.3 DEVELOPMENT OF TRAVEL-TIME PROCESSING MODULE**

The *Travel-Time Processing Module* calculates the travel times for given routes and time periods specified by user. The calculated travel times are then stored in the main database through the Database Access Layer. In particular, the specific lane-configuration of each work zone is explicitly reflected in calculating the travel times for work-zone routes. Further, the current version of TTRMS is designed to process the travel-times for pre-defined routes on a daily basis. Figure 5.3.1 shows the structure and data flow of the Travel-Time Processing Module, which includes the following submodules:

- Work Zone Lane Configuration module collects the lane-closure information stored in the main database for the work zones in a given route, and configures the travel-time route with appropriate detector stations.
- **Travel-Time Calculation (TTC)** module calculates the travel times for a given route and time period by calling the travel-time routine in the *Traffic MOE* module. The TTC module also manages the calculation of Vehicle-Miles Traveled (VMT) and average speed for a given route using the VMT and Speed routines of the *Traffic MOE* module. The calculated travel-time, VMT and average speed data for a given route are then sent to the main database through the DB Access Layer. Table 5.3.1 shows the database table schema with a foreign key linking to corresponding travel-time routes.



Figure 5.3.1 Structure of Travel-Time Processing module

#### Table 5.3.1Travel-time table schema

### Table Name : tt

| ColumnName | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|------------|----------|------------|---------|----------|---------------|---------|---------|
| id         | INTEGER  | РК         | NN      | UNSIGNED | )             |         | AI      |
| route_id   | INTEGER  | РК         | NN      | UNSIGNED |               |         |         |
| time       | DATETIME |            | NN      |          |               |         |         |
| tt         | FLOAT    |            | NN      |          |               |         |         |
| vmt        | FLOAT    |            | NN      |          |               |         |         |
| speed      | FLOAT    |            | NN      |          |               |         |         |

# **5.4 DEVELOPMENT OF DATA CATEGORIZATION MODULE**

# 5.4.1 Design of Data Categorization module

*The Data-Categorization* module defines the relationships between travel-time data and the non-traffic data, such as weather and incident, for every time interval for each route. Figure 5.5.1 shows the simplified structure and the data flow with the Data-Categorization module, which consists of:

- *Categorization-Management* sub-module provides the access point for other modules and runs the categorization functions of the sub-modules.
- Individual Categorization sub-modules for each type of non-traffic data, i.e., *Weather, Incident, Work Zone, Special Event and Snow,* categorize each type of the non-traffic data.



Figure 5.4.1 Data flows of Data Categorization module

# **Data-Categorization Process**

As shown in Figure 5.4.1, the *Data Categorization* process follows the following steps.

Step 1: *Categorization* module is called with the route and time duration information by *Daily Data Processing* module.

Step 2: Categorization module reads travel time data from database.

Step 3: Sub categorization modules are called with the route, time duration and loaded travel time data.

Step 4: Each sub-categorization module reads the corresponding non-traffic data from the database and makes relationships between travel time and non-traffic data.

Step5: Categorized data are saved in the database by each sub-categorization module.

# Database Tables

Figure 5.4.2 shows the relationship diagram of the database used by the Data-Categorization module. The main features of the database can be summarized as follows:

- "tt" table stores travel time data for each time interval, with foreign keys linking to travel time routes.
- non-traffic data are stored in "noaa\_weather", "incident", "specialevent", "workzone" and "snowmgmt" tables.
- there are junction tables to connect trave -time table and non-traffic data tables, which are named with prefix "tt", such as "tt\_weather", as shown in Figure 5.5.3.
- Travel-time data can be connected to multiple non-traffic data of same type by junction table, for example, one travel time data can be related to multiple incidents, special events or work zones.



Figure 5.4.2 Relationship diagram of the database

#### "tt" table

| 1                           |                 |                                                                                                                                                                                                                                     | id       | route_id     | time         | tt           | vmt    | spe       |
|-----------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------------|--------------|--------|-----------|
| Junction table "tt_weather" |                 | Filter                                                                                                                                                                                                                              | Filter   | Filter       | Filter       | Filter       | Filter |           |
| between                     | i travel time a | nd weather                                                                                                                                                                                                                          | 22       | 1            | 2013-01-01 0 | 4.9491847015 | 234.6  | 74.0435   |
| id<br>Filter                | Filter          | Filter                                                                                                                                                                                                                              | 23       | 1            | 2013-01-01 0 | 4.8819570813 | 206.65 | 74.7915   |
| 22                          | 22              | 39882                                                                                                                                                                                                                               | 24       | 1            | 2013-01-01 0 | 4.9892203005 | 205.15 | 74.1046   |
| 23                          | 23              | 39883                                                                                                                                                                                                                               |          |              |              |              |        |           |
| 24                          | 24              | 39883                                                                                                                                                                                                                               | "noaa we | ather" table |              |              |        |           |
|                             |                 | N                                                                                                                                                                                                                                   | id       | usaf         | wban         | dtime        | precip | precip_ty |
|                             |                 | i de la companya de l<br>Companya de la companya de la company | Filter   | Filter       | Filter       | Filter       | Filter | Filter    |
|                             |                 |                                                                                                                                                                                                                                     | 39882    | 726580       | 14922        | 2013-01-01 0 | 0.0    | 99        |
|                             |                 |                                                                                                                                                                                                                                     | 39883    | 726580       | 14922        | 2013-01-01 0 | 0.0    | 99        |
|                             |                 |                                                                                                                                                                                                                                     | 39884    | 726580       | 14977        | 2013-01-01 0 | 0 0    | ρρ        |



# 5.4.2 Development of Sub Modules for Categorizing Each Data Type

Each Categorization sub-module has a common 'Categorize' function, which implements the categorization of travel-time data of each route by connecting them to non-traffic data.

# Weather Categorization module

Table 5.4.1 shows the weather-data categorization scheme, whose data fields include Precipitation Type and Intensity. These data fields are also shared by te imported weather data from NOAA, therefore, the *Weather Categorization* module only stores the foreign keys for travel time and weather data as shown in Table 5.4.2.

| Data Field                                   | Values                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Precipitation Type - SNOW, RAIN, OTHER, NONE |                                                                                                                                                                                                                                            |  |  |  |
| Precipitation<br>Intensity                   | <ul> <li>HEAVY : Precipitation Rate &gt; 7.6 mm(0.3 in)/hour</li> <li>MODERATE</li> <li>: 2.5 mm(0.098 in)/hour &lt;= Precipitation Rate &lt; 7.6 mm(0.3 in)/hour</li> <li>LIGHT : Precipitation Rate &lt; 2.5mm(0.098 in)/hour</li> </ul> |  |  |  |
|                                              | * Glossary of Meteorology (June 2000), <u>Rain</u> , American Meteorological Society                                                                                                                                                       |  |  |  |

# Table 5.4.1 Weather data categorization scheme

#### Table 5.4.2 Junction-table schema between travel-time and weather tables

| ColumnName      | DataType  | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|-----------------|-----------|------------|---------|----------|---------------|---------|---------|
| tt_route_id     | INTEGER   |            | NN      | UNSIGNED | )             |         |         |
| tt_id           | INTEGER   |            | NN      | UNSIGNED | )             |         |         |
| noaa_weather_id | I INTEGER |            | NN      | UNSIGNED | )             |         |         |

### Table Name : tt\_weather

Figure 5.4.4 shows the weather data processing steps, which can be summarized as follows:

- 1) Calculate center coordinates of a given route to calculate the distance to weather stations.
- 2) Find a nearby weather station, whose weather data exists during a given time period.
- 3) Repeat the following steps for all time intervals:
  - i) Find a weather data for a specific time interval
  - ii) Insert link information between travel time and weather data into the junction table.



Figure 5.4.4 Flow charts of Weather Categorization module

### Incident Categorization module

Table 5.4.3 shows the Incident-data categorization scheme, whose main parameters include Type, Severity, Impact and Distance. Incident type, Severity and Impact information are obtained from the incident database, which also contains additional information, such as event type and bool values named as "blocking", "fatal", "injury" and "rollover", as shown in Table 5.5.3. The location of an incident in a travel –time route is represented by 'Distance' or 'Offset-distance' as shown in Figure 5.5.5. Those distance values are determined by the Weather Categorization module, which saves those calculated distance values with foreign keys into the data-table shown in Table 5.4.5.

#### Table 5.4.3 Incident data categorization scheme

| Data Field      | Values                                                                        |
|-----------------|-------------------------------------------------------------------------------|
| Туре            | Crash, Hazard, Stall, Roadwork                                                |
| Severity        | Property Damage, Fatal, Injury, Other                                         |
| Impact          | 2+ Lanes Closed, Lane Closed, Blocking, Not Blocking, Wrong Way, Run-Off Road |
| Distance        | Distance from upstream boundary of a route                                    |
| Offset-Distance | Distance from upstream or downstream boundary of route                        |

#### Table 5.4.4 Junction table schema between travel time and incident tables

#### Table Name : tt\_incident

| ColumnName       | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|------------------|----------|------------|---------|----------|---------------|---------|---------|
| tt_route_id      | INTEGER  |            | NN      | UNSIGNED | )             |         |         |
| tt_id            | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| incident_type_id | INTEGER  |            | NN      | UNSIGNED | )             |         |         |
| incident_id      | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| distance         | FLOAT    |            | NN      |          |               |         |         |
| offset_distance  | FLOAT    |            | NN      |          |               |         |         |





Figure 5.4.6 shows the flow chart of the *Incident-Categorization* module, which follows the following steps:

1) Read all incident data from the database in a given route for a given time period in a same corridor.

2) Calculate the 'distance' and 'offset-distance' for each incident in a given route.

3) Repeat the following steps for all the time intervals:

i) Find an incident data for a specific time interval using "cdts (created)", "udts (updated)" and "xdts (closed)" field of the incident data.

ii) Insert the foreign keys between travel time and incident data into the junction table, named as tt\_incident, with the calculated distances.



Figure 5.4.6 Flow charts of Incident Categorization module

# Work-Zone Categorization module

Table 5.4.5 shows the work-zone data categorization scheme, whose data fields include Location Type, Lane configuration, Work zone characteristics, Closed-lane length, Distance and Offset Distance. The Work-zone categorization module determines Location type, Distance and Offset-Distance, while the data for other fields are collected from the database. The junction table schema to store the data connection information is included in Table 5.4.6, while Figure 5.4.7 illustrates the definitions of distances.

| Data Field         | Values                                                                                                                                                                |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location Type      | UP_OVERLAPPED, IN, DN_OVERLAPPED, DN, WRAP                                                                                                                            |
| Lane Configuration | 2To0, 2To1, 2To2, 3To0, 3To1, 3To2, 3To3, 4To0, 4To1,                                                                                                                 |
| Characteristics    | USE_OPPOSING_LANE: when using opposing lanes<br>USED_BY_OPPOSING_LANE: when lanes are used by the opposing traffic<br>SHIFTED : when lanes are shifted but not closed |
| Length             | work zone length in mile                                                                                                                                              |
| Distance           | Distance from upstream boundary of a route to upstream boundary of work zone                                                                                          |
| Offset-Distance    | Distance from upstream or downstream boundary of route to upstream or downstream boundary of work zone                                                                |

# Table 5.4.5 Work zone data categorization scheme

#### Table 5.4.6 Junction table schema between travel time and work zone tables

### Table Name : tt\_workzone

| ColumnName      | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|-----------------|----------|------------|---------|----------|---------------|---------|---------|
| tt_route_id     | INTEGER  |            | NN      | UNSIGNED | )             |         |         |
| tt_id           | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| workzone_id     | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| loc_type        | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| distance        | FLOAT    |            | NN      |          |               |         |         |
| offset_distance | e FLOAT  |            | NN      |          |               |         |         |



Figure 5.4.7 Location type, distance and offset-distance in work zone data categorization

The flow chart of the *Work Zone Categorization* module is shown in Figure 5.4.8, which shows the following steps:

1) Read all the work-zone data from the database for a given route and a time period in a same corridor.

2) Determine Location Type, Distance and Offset-distance for each work zone in a given route.

3) Repeat the following steps for all time intervals:

- Find a work zone data for a specific time interval.

- Insert the foreign keys into the junction table, "tt\_workzone", between travel time and work zone data with the location type, distance and offset-distance determined by the Work-zone Categorization module.



Figure 5.4.8 Flow chart of Work Zone Categorization module

# Special Event Categorization module

Table 5.4.7 shows special event data categorization scheme, which uses Attendance, Distance and Event type for categorization. The Attendance data is obtained from the database, while the Distance and Event Type are determined by the Special-Event Categorization module with the following definitions:

- Distance: is the minimum distance from a given travel time route to a special event location.
- Event type: can be either "A" or "D", which indicates "Arrival" and "Departure". The Event Type is determined with the following parameters whose definitions are illustrated in Figure 5.4.9.
  - ARRIVAL\_TIME\_WINDOW: hours before starting event
  - DEPARTURE\_TIME\_WINDOW1: hours after an event starts
  - DEPARTURE\_TIME\_WINDOW2: lasting hours after departure starts (event start time +

# DEPARTURE\_TIME\_WINDOW1)

The Distance and Event Type data are stored into the database table shown in Table 5.4.8, which has the foreign keys to travel time and special event data.

# Table 5.4.7 Special event data categorization scheme

| Data Field | Values                                                                                                                                                                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attendance | Number of attendance                                                                                                                                                                                                                                                                                 |
| Distance   | Line distance between special event location and TTR route                                                                                                                                                                                                                                           |
| Event Type | <ul> <li>"A" : Arrival</li> <li>"D" : Departure</li> <li>* Parameter <ul> <li>Arrival time window</li> <li>n<sub>a</sub> hours before starting event</li> <li>Departure time window</li> <li>: last n<sub>d1</sub> hours beginning n<sub>d2</sub> hours after an event starts</li> </ul> </li> </ul> |
|            |                                                                                                                                                                                                                                                                                                      |

# Table 5.4.8 Junction table schema between travel time and work zone tables

### Table Name : tt\_specialevent

| ColumnName      | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|-----------------|----------|------------|---------|----------|---------------|---------|---------|
| tt_route_id     | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| tt_id           | INTEGER  |            | NN      | UNSIGNED |               |         |         |
| specialevent_id | INTEGER  |            | NN      | UNSIGNED | I             |         |         |
| distance        | FLOAT    |            |         |          |               |         |         |
| event_type      | CHAR     |            |         |          |               |         |         |



Figure 5.4.9 Arrival and Departure Time Window in special event data categorization

The flow chart of the *Special Event Categorization* module is shown in Figure 5.4.10, which has the following steps:

- 1) Read all special event data during a given time period from the database.
- 2) Calculate the distance between a given route and a special event location.
- 3) Repeat the following steps for all time intervals:
- Find a special event data and determine event type for a specific time interval.

- Between travel time and special event data, insert the connection information into the junction table, "tt\_specialevent", with the event type and distance.



Figure 5.4.10 Flow charts of Special Event Categorization module

# Snow-Management Categorization module

Table 5.4.9 shows the data-categorization scheme of the snow-management module, which uses Location type, Distance, Offset-distance and Road status for categorization. Table 5.4.10 includes the junction table with the foreign keys, which connect travel time and snow management data with the following information determined by the *Snow Management Categorization* module:

- Location Type indicates the location of a snow-plow truck route relative to a given travel-time route.
- Distance is from the upstream boundary of a travel-time route to the upstream boundary of a truck route.
- Offset-distance is from the upstream or downstream boundary of a travel time route to the upstream or downstream boundary of a snow-plow truck route.
- Road status is a binary value (0 or 1) depending on whether lane is lost or regained during snow event.

| Data Field      | Values                                                                       |  |  |  |  |
|-----------------|------------------------------------------------------------------------------|--|--|--|--|
| Location Type   | UP_OVERLAPPED, IN, DN_OVERLAPPED, DN, WRAP                                   |  |  |  |  |
| Distance        | Distance from upstream boundary of travel time route to upstream boundary of |  |  |  |  |
| Distance        | truck route                                                                  |  |  |  |  |
| Offset Distance | Distance from upstream or downstream boundary of travel time route           |  |  |  |  |
| Unset-Distance  | to upstream or downstream boundary of truck route                            |  |  |  |  |
| Road Status     | LOST, REGAINED                                                               |  |  |  |  |

# Table 5.4.9 Snow management data categorization scheme

#### Table 5.4.10 Junction table schema between travel time and snow management tables

#### Table Name : tt\_snowmgmt

| ColumnName      | DataType | PrimaryKey | NotNull | Flags    | Default Value | Comment | AutoInc |
|-----------------|----------|------------|---------|----------|---------------|---------|---------|
| tt_route_id     | INTEGER  |            | NN      | UNSIGNED | )             |         |         |
| tt_id           | INTEGER  |            | NN      | UNSIGNED | )             |         |         |
| snowmgmt_id     | INTEGER  |            | NN      | UNSIGNED | )             |         |         |
| loc_type        | INTEGER  |            |         | UNSIGNED | )             |         |         |
| distance        | FLOAT    |            |         |          |               |         |         |
| offset_distance | FLOAT    |            |         |          |               |         |         |
| road_status     | INT      |            |         |          |               |         |         |

Figure 5.4.11 shows the flow chart of the *Snow-Management Categorization* module, which has the following steps:

- Read all the snow management data during a given time period from the database.
- Determine Location type, Distance and Offset-distance for all loaded snow-management data.
- Repeat the following steps for all time intervals:
  - Find a snow-management data and determine the road status for specific time duration.

- Insert the connection information between travel time and snow-management data in the junction table, "tt\_snowmgmt", with the Location type, Distance, Off-distance and Road status.



Figure 5.4.11 Flow chart of Snow-Management Categorization module

# **5.5 DEVELOPMENT OF RELIABILITY CALCULATION MODULE**

# 5.5.1 Structure of Reliability Calculation module

The *Reliability Calculation* module determines various types of reliability indices using travel-time data and related non-traffic data for given routes and time periods. Figure 5.5.1 shows the simplified structure and data flow of the Reliability Calculation module that has the following sub-modules:

- Data Extraction module reads all the travel time and non-traffic data stored by the Data Categorization module for a given route and time duration. The loaded data are organized according to given filters, such as "incident-only" and/or "rainy day only" filter. Multiple data filters are acceptable so that the reliability indices under different operating conditions can be calculated.
- *Reliability* module calculates various reliability indices such as travel time index, buffer index and planning time index. Figure 5.5.2 shows the flow chart of the reliability calculation module.



Figure 5.5.1 Structure and Data flow of the Reliability Calculation module



Figure 5.5.2 Flow chart of Reliability Calculation process

# 5.5.2 Development of Data Extraction module

To facilitate the reliability calculation process under different operating conditions, the Data Extraction module needs to have the filtering functions that can collect the data specific to given operating conditions.

Figure 5.5.3 shows a class diagram to filter the travel-time data with non-traffic, operating condition data. In this diagram,

- ExtData is the data type to contain travel time data and related non-traffic data, such as weather and incidents. One ExtData object is for travel time data at a time interval.
- IExtFilter is an interface which has a "check" function to be called by Data Extraction module.
- ExtFilter, ExtFilterGroup, And\_ and Or\_ are implementation of this IExtFilter interface.
- ExtFilter is a unit of filtering which is responsible for one kind of non-traffic data.
- ExtFilterGroup consists of several ExtFilters and filtered ExtData list. For example, one ExtFilterGroup can have ExtFilter for weather, ExtFilter for incident and ExtFilter for work zone.
- All filtered ExtData are put into the result list named as "results" of this class.

• And\_ and OR\_ are designed for logical operation among IExtFilters, which can be ExtFilter or another And\_ or Or\_.



# Figure 5.5.3 Class diagram for data filter

Figure 5.5.4 shows a class diagram of the filter-generation functions, which create *ExtFilter* for each non-traffic data type. Further, each module has the following functions to create 'filtered non-traffic data' described in *Data Categorization* module.

- *no\_incident()* function of the *incident* module returns a filter object (instance of *ExtFilter* class) to pass only if there is no incident at the specific time interval,
- *type\_rain()* function of the *weather* module returns a filter object to pass only if precipitation type of weather data is *RAIN*.

Using these functions, filter objects can be created and these filters are combined into *ExtFilterGroup* in order to collect data with respect to multiple operating conditions. Further, these filter objects can be combined into the logical operator *And\_* and *Or\_* 

|                                                                                                                                                                                                                                                                                                                                                    | < <pre>&lt;<pre>c<package>&gt; filter helper</package></pre></pre>                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| < <module>&gt; incident</module>                                                                                                                                                                                                                                                                                                                   | < <module>&gt; weather</module>                                                                                                                                                                                                                                                                                                   | < <module>&gt; normalday</module>                                                                                                                                                                                                                                                   |  |  |
| +no_incident(): ExtFilter<br>+has_incident(): ExtFilter<br>+serverity_property_damage(): ExtFilter                                                                                                                                                                                                                                                 | +normal_explicit(): ExtFilter<br>+normal_implicit(): ExtFilter<br>+intensity_light(): ExtFilter                                                                                                                                                                                                                                   | +explicit_normalday(): ExtFilterGroup<br>+implicit_normalday_filter(): ExtFilterGroup                                                                                                                                                                                               |  |  |
| +serverity_fatal(): ExtFilter<br>+serverity_injury(): ExtFilter<br>+serverity_stalled(): ExtFilter                                                                                                                                                                                                                                                 | +intensity_moderate(): ExtFilter<br>+intensity_heavy(): ExtFilter<br>+type_rain(): ExtFilter                                                                                                                                                                                                                                      | < <module>&gt; specialevent</module>                                                                                                                                                                                                                                                |  |  |
| +serverity_debris(): ExtFilter<br>+serverity_other(): ExtFilter<br>+impact_ROR(): ExtFilter<br>+impact_blocking(): ExtFilter<br>+impact_no_blocking(): ExtFilter<br>+impact_wrongway(): ExtFilter<br>+impact_road_closed(): ExtFilter<br>+impact_lane_dosed(): ExtFilter<br>+impact_tow_plus_lane_dosed(): ExtFilter<br>+loc_upstream(): ExtFilter | +type_snow(): ExtFilter<br>+type_hail(): ExtFilter<br>+precip(minp, maxp): ExtFilter                                                                                                                                                                                                                                              | +no_specialevent(): ExtFilter<br>+has_specialevent(): ExtFilter<br>+type_arrival(): ExtFilter                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                    | < <module>&gt; workzone</module>                                                                                                                                                                                                                                                                                                  | +type_departure(): ExtFilter<br>+type_all(): ExtFilter<br>+attendance(mina, maxa): ExtFilter<br>+distance(minl, maxl): ExtFilter<br>< <module>&gt;</module>                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                    | +no_workzone(): ExtFilter                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |  |  |
| +loc_inside(): ExtFilter<br>+loc_downstream(): ExtFilter                                                                                                                                                                                                                                                                                           | +loc_upstream(): ExtFilter                                                                                                                                                                                                                                                                                                        | snowmanagement                                                                                                                                                                                                                                                                      |  |  |
| +id_downsteam(): ExtFilter<br>+iris_impact_blocked(): ExtFilter<br>+iris_type_crash(): ExtFilter<br>+iris_type_hazard(): ExtFilter<br>+iris_type_roadwork(): ExtFilter<br>+off_distance(dlimit): ExtFilter                                                                                                                                         | +ioc_upoverlapped(): ExtFilter<br>+loc_inside(): ExtFilter<br>+loc_downstream(): ExtFilter<br>+loc_wrap(): ExtFilter<br>+has_crossover(): ExtFilter<br>+has_dosed(): ExtFilter<br>+has_shifted(): ExtFilter<br>+dosed_length(minl, maxl): ExtFilter<br>+lane_config(originl, openl): ExtFilter<br>+off_distance(dimit): ExtFilter | +no_snowmanagement(): ExtFilter<br>+has_snowmanagement(): ExtFilter<br>+loc_upstream(): ExtFilter<br>+loc_upoverlapped(): ExtFilter<br>+loc_inside(): ExtFilter<br>+loc_downstream(): ExtFilter<br>+loc_wrap(): ExtFilter<br>+road_lost(): ExtFilter<br>+road_not_lost(): ExtFilter |  |  |

Figure 5.5.4 Class diagram of filter generation functions for each data type

# 5.5.3 Development of Reliability Calculation module

The *Reliability-Calculation* (RC) module calculates the travel-time reliability indices with those data collected by the Data Extraction module. The current version of the RC module developed in this research can determine the following reliability indices:

• Travel Time Index (TTI) =  $\frac{TT_{avg} during congested hours}{TT_{Free Flow}}$ ,

where  $TT_{avg}$  = Average Travel Time,  $TT_{Free-Flow}$  = Travel Time under free-flow condition.

- Planning Time Index (PTI) =  $\frac{TT_{n\%}}{TT_{Free Flow}}$ , where  $TT_{n\%}$  = nth %-ile travel time.
- Buffer Index (BI) =  $\frac{TT_{n\%} TT_{avg}}{TT_{avg}}$
- Misery Index (MI) =  $\frac{TT_{97.5\%}}{TT_{Free Flow}}$
- On-Time-Arrival =  $\frac{C(TT_i > 1.5 * TT_{avg}, i=1->n)}{n}$ , where C(x) = number of occurrence of x

• Semi-Variance = 
$$\frac{1}{n}\sum_{i=1}^{n}(TT_i - TT_{avg})^2$$
,  $\exists TT_i > TT_{avg}$ 

In the above formulations, *free-flow travel time* is calculated with the posted speed limit on each route. Further, the 'congested hours' for TTI is defined as the time duration satisfying the following condition,

TT<sub>i</sub> > TT<sub>free-flow</sub> \* CH\_FACTOR

where, CH\_FACTOR is a user-defined parameter and currently set to 1.3. Further, PTI and BI can be calculated with 80 – 95<sup>th</sup> %-ile travel times.

Figure 5.5.5 shows the internal process of the travel-time reliability calculation module, whose data list includes both travel time and non-traffic data. First, only travel time data are extracted from the data list, which is the list of *ExtData* described in the previous section. Next, from the travel-time data list, average speed, *n*-th percentile travel times and travel times during congested hours are collected.



Figure 5.5.5 Flow chart of reliability calculation process

# 5.5.4 Example of Reliability Calculation

The reliability calculation module is tested by calculating a set of indices for an example travel-time route on I-35E NB shown in Figure 5.5.6. Figure 5.5.7 shows the source code developed in this task to calculate the travel time reliability indices. The non-traffic operating conditions tested in this example include 'normal weather', 'incident' and 'rain or snow'. Further, the VMT-based categorization is also conducted and included in the output. Figure 5.5.8 shows the output results, which include all the calculated travel-time indices categorized for each type of operating condition as well as the VMT level.



#### Travel Time Reliability Measure System Client - 1.0.0

#### File Tools Help

Figure 5.5.6 Example travel time route on I-35E (NB)

```
# DB Access module
da_route = route.TTRouteDataAccess()
# select the first route (to test)
ttri = da_route.list()[0]
da_route.close()
# data categorization filters
filters = [
    normalday.implicit_normalday_filter(label='Only Normal Day'),
  ExtFilterGroup([
    # no-workzone days
    workzone.no_workzone(),
    # incidents which offset distance is less than 2 mile
    incident.has_incident(distance_limit=2),
    # no-special-event days
    specialevent.no_specialevent(),
    # normal day (not reported weather condition is considered as normal)
    weather.normal_implicit(),
  ], 'Incident'),
  ExtFilterGroup([
    Or_(
      # snow days
      weather.type_snow(),
      # or rainy days
      weather.type_rain()
    ),
  ], 'Rain or Snow'),
1
# time duration
sdate = datetime.date(2013, 1, 1)
edate = datetime.date(2013, 12, 31)
stime = datetime.time(5, 0, 0)
etime = datetime.time(11, 0, 0)
# optional parameters
target_days = [0, 1, 2, 3, 4] # Mon - Fri
remove_holiday = True
# extract all traffic and non-traffic data
# (filters are applied in this function)
extraction.extract_tt(ttri, sdate, edate, stime, etime, filters,
            target_days=target_days, remove_holiday=remove_holiday)
# each `ExtFilterGroup` has filtered `ExtData` list
for filter in filters:
  print('# ', filter.label)
  # call "Reliability" module
```

| res = <i>reliability</i> .calculate(ttri, filter.results)                              |
|----------------------------------------------------------------------------------------|
| pprint.pprint(res)                                                                     |
| print(' > Demand Cutlines', filtervmt())                                               |
| L, M, H = filter.results_by_demand()                                                   |
| print(' > Low : ')                                                                     |
| for idx, extdata in enumerate(L):                                                      |
| print(' : <b>id=%s, time=%s, vmt=%s, tt=%s, speed=%s' %</b> (                          |
| extdata.tti.id, extdata.tti.time, extdata.tti.vmt, extdata.tti.tt, extdata.tti.speed)) |
| print(' > Moderate : ')                                                                |
| for idx, extdata in enumerate(M):                                                      |
| print(' : id=%s, time=%s, vmt=%s, tt=%s, speed=%s' % (                                 |
| extdata.tti.id, extdata.tti.time, extdata.tti.vmt, extdata.tti.tt, extdata.tti.speed)) |
| print(' > High : ')                                                                    |
| for idx, extdata in enumerate(H):                                                      |
| print(' : id=%s, time=%s, vmt=%s, tt=%s, speed=%s' % (                                 |
| extdata.tti.id, extdata.tti.time, extdata.tti.vmt, extdata.tti.tt, extdata.tti.speed)) |
|                                                                                        |

### Figure 5.5.7 Example program to perform travel time reliability calculation

# # Incident

{'avg\_tt': 5.898422216373923, 'buffer\_index': {80: 0.05933045569987334, 85: 0.12079556770020708, 90: 0.30066387580050313, 95: 0.5970637489832032}, 'congested\_avg\_tt': 7.676708768762868, 'congested\_count': 91, 'congested\_hour\_factor': 1.1, 'count': 329, 'misery\_index': 2.123753990475553, 'on\_time\_arrival': 0.9057750759878419, 'on\_time\_arrival\_count': 298, 'planning\_time\_index': {80: 1.1757701091578348, 85: 1.2439913531116722, 90: 1.4436304544999148, 95: 1.772610056069236}, 'semi\_variance': 3.7783484521146713, 'semi\_variance\_count': 88, 'travel\_time\_index': 1.4445419726166666, 'tt\_by\_ffs': 5.314285714285722} > Demand Cutlines (192.27010498823893, 1375.8428571428572, 2559.4156092974754)
|                                                                                                 | _ |
|-------------------------------------------------------------------------------------------------|---|
| > Low :                                                                                         |   |
| : id=27038, time=2013-04-05 05:00:00, vmt=157.3, tt=5.644760145333022, speed=65.31044109010875  |   |
| : id=56025, time=2013-07-15 05:00:00, vmt=171.55, tt=5.531120949181454, speed=67.19233026486648 |   |
| > Moderate :                                                                                    |   |
| : id=1824, time=2013-01-07 08:30:00, vmt=1463.5, tt=5.142052733644625, speed=71.58372613402621  |   |
| : id=1825, time=2013-01-07 08:35:00, vmt=1405.65, tt=5.929287093800081, speed=75.25099445497403 |   |
| : id=1826, time=2013-01-07 08:40:00, vmt=1315.6500000000008, tt=5.0676565653823396,             |   |
| speed=72.40713706601464                                                                         |   |
| : id=1827, time=2013-01-07 08:45:00, vmt=1423.299999999999995, tt=5.133540132677518,            |   |
| speed=71.37316550993613                                                                         |   |
| : id=1828, time=2013-01-07 08:50:00, vmt=1495.1500000000005, tt=5.32814191253344,               |   |
| speed=69.52230072998147                                                                         |   |
| : id=1829, time=2013-01-07 08:55:00, vmt=1303.99999999999998, tt=5.00060983611013,              |   |
| speed=73.0741272852253                                                                          |   |
| : id=1830, time=2013-01-07 09:00:00, vmt=1167.05, tt=5.830640308125936, speed=75.93197463580118 |   |
| : id=1831, time=2013-01-07 09:05:00, vmt=977.4000000000001, tt=5.9419823849146285,              |   |
| speed=75.20242524950046                                                                         |   |
| : id=1832, time=2013-01-07 09:10:00, vmt=1072.200000000003, tt=5.178616587708128,               |   |
| speed=70.96455602004282                                                                         |   |
| : id=1833, time=2013-01-07 09:15:00, vmt=1033.6499999999994, tt=5.079442284365358,              |   |
| speed=72.30713324913864                                                                         |   |
| : id=1834, time=2013-01-07 09:20:00, vmt=1026.59999999999997, tt=5.231895906617949,             |   |
| speed=70.23874890121296                                                                         |   |
|                                                                                                 |   |
| > High :                                                                                        |   |
| : id=15876, time=2013-02-25 07:35:00, vmt=2585.749999999999, tt=5.014524242197838,              |   |
| speed=73.19709787462331                                                                         |   |
| : id=30228, time=2013-04-16 07:45:00, vmt=2621.8, tt=5.08946883590134, speed=71.25368634418763  |   |
| : id=38265, time=2013-05-14 07:50:00, vmt=2635.099999999999995, tt=6.777045113148593,           |   |
| speed=60.572141710624805                                                                        |   |
| : id=38266, time=2013-05-14 07:55:00, vmt=2633.6, tt=6.497281606780513, speed=60.90148652210063 |   |
|                                                                                                 |   |

Figure 5.5.8 Output from example application

# CHAPTER 6: DEVELOPMENT OF A TRAVEL-TIME INFORMATION MODULE

#### **6.1 INTRODUCTION**

This chapter develops *the Travel Time Information module (TTIM),* whose main objective is to estimate the expected travel times for predefined routes using reliability measures. Further, the connectivity of the TTIM to the existing driver-information system of MnDOT is also examined by developing an example travel-time webpage that can be used by the MnDOT system. The types and the functionalities of the major modules developed in this task are as follows:

- Travel-Time Information (TTI) Module
  - Calculates travel-time reliability measures for each time of day (TOD) for all pre-defined routes depending on weather and dates.
  - Estimates expected travel times for a given route and departure time using the average travel time and TOD travel-time reliability measures.
  - Public Service API (PS-API) Module
  - Receives and conveys the travel time information requests from the external clients, i.e., the users of MnDOT's driver-information system.
  - Returns the travel-time estimation results from the TTIM to the clients.

In addition to the above modules, a web application is developed to demonstrate the travel-time information service by using an open-source chart library and external-map service.

Figure 6.1.1 shows the locations of the TTI and the PS-API modules in the overall architecture of Travel-Time Reliability Measurement System (TTRMS). The rest of this chapter describes the details of the above modules and the example travel-time webpage developed to be embedded into the existing driver-information system of MnDOT.



Figure 6.1.1 TTI and PS-APT Modules in the TTRMS Architecture

#### 6.2 DEVELOPMENT OF TRAVEL-TIME INFORMATION AND PUBLIC SERVICE API MODULES

The TTI module developed in this chapter uses the travel-time data stored in the TTRMS database for each predefined route for the past year and calculates the following travel times for each time of day, i.e., every 5 minute, for each combined type of weather and date:

- Average travel time
- 95% buffer travel time
- 85% buffer travel time

Table 6.2.1 includes 12 regime types used in the travel-time calculation by the TTI module developed in this chapter.

| Code | Description            | Code | Description            |
|------|------------------------|------|------------------------|
| 1    | Dry, Monday            | 7    | Rain, Friday           |
| 2    | Dry, Tuesday-Thursday  | 8    | Rain, Saturday-Sunday  |
| 3    | Dry, Friday            | 9    | Snow, Monday           |
| 4    | Dry, Saturday-Sunday   | 10   | Snow, Tuesday-Thursday |
| 5    | Rain, Monday           | 11   | Snow, Friday           |
| 6    | Rain, Tuesday-Thursday | 12   | Snow, Saturday-Sunday  |

#### Table 6.2.1 Regimes used in the Travel-Time Information Module

Figure 6.2.1 shows the interrelationship between the TTI and the PS-API modules along with the other modules relevant to the calculation of expected travel times for given corridors and departure times. The main functionalities of each module in Figure 6.2.1 are summarized as follows:

- *The TTI* Module is responsible for the calculation of the TOD reliability measures as a pre-process and extracts the stored information in the database according to a given request.
- *The Periodic Job* module runs the function of the TOD reliability calculation in the TTI Module and the calculated data are stored into the database through the DB Access Layer.
- The Public Travel Time Information Service, a client of the TTI Module, is an external service to provide travel-time information to public. In this task, an example webpage for a client is developed to examine the feasibility of this service.
- *The API* module receives the request from a client and performs the process by calling the TTIM.
- *The Reliability Calculation* module developed in the previous task is used in the pre-process to calculate TOD reliability measures.

- *The Weather Reader* module provides weather information near a given route for a given date.
- *The MOE* module is used to produce current travel times of a given route.
- The Database stores the travel-time calculation results for each route for each regime. Table 6.2.2 shows the database table description used for the TTI Module.

| Table Name  | Data Fields                                                                      |  |  |  |  |
|-------------|----------------------------------------------------------------------------------|--|--|--|--|
|             | - route_id : route ID                                                            |  |  |  |  |
|             | - regime_type : regime type, e.g. Dry-Monday, Rain-Tue./Wed./Thu, Snow-Saturday  |  |  |  |  |
| tod results | - hour : hour in time of day                                                     |  |  |  |  |
| lou_resuits | - minute : minute in time of day                                                 |  |  |  |  |
|             | - result : JSON string containing travel time information at each time of day    |  |  |  |  |
|             | such as average travel time and 95percentile / 85percentile travel time for each |  |  |  |  |

#### Table 6.2.2 Database Table for Travel Time Information module





#### Procedure for Calculating Historical Reliability Measures

Figure 6.2.2 shows the process to calculate the reliability measures for a given predefined route. The source code of this process is included in Figure 6.2.3.

(1) Retrieve the travel-time route list from the database.

- The reliability measures are calculated for all the predefined routes using the historical data.

(2) Determine a route to process.

(3) Determine a regime to process.

(4) Read the route's travel-time data calculated by the *Periodic Job* module on a daily basis for the regime.

- Travel-time data are stored with weather information in the database.

(5) Calculate the travel-time reliability for the route by using the *Reliability Calculation* module.

(6) Save the calculated reliability measures in the database.

(7) Go to step (3) if calculation for all regimes are not completed.

(8) Got to step (2) if calculation for all routes are not completed.



Figure 6.2.2 Process to Calculate Reliability Measures using Historical Data

```
def calculate_TOD_reliabilities(ttr_id, today):
  .....
  :type ttr_id: int
  :type today: datetime.datetime
  .....
  ttri = _tt_route(ttr_id)
  sdate, edate, stime, etime = time period(today)
  _calculate_for_a_regime(ttri, TOD_REGIME_N_0, sdate, edate, stime, etime, (0,)) # Normal, Monday
  _calculate_for_a_regime(ttri, TOD_REGIME_N_123, sdate, edate, stime, etime, (1, 2, 3)) # Normal, Tuesday-
Thursday
  calculate for a regime(ttri, TOD REGIME N 4, sdate, edate, stime, etime, (4,)) # Normal, Friday
  _calculate_for_a_regime(ttri, TOD_REGIME_N_56, sdate, edate, stime, etime, (5, 6)) # Normal, Saturday-
Sunday
  _calculate_for_a_regime(ttri, TOD_REGIME_R_0, sdate, edate, stime, etime, (0,)) # Rain, Monday
  calculate for a regime(ttri, TOD REGIME R 123, sdate, edate, stime, etime, (1, 2, 3)) # Rain, Tuesday-
Thursday
  _calculate_for_a_regime(ttri, TOD_REGIME_R_4, sdate, edate, stime, etime, (4,)) # Rain, Friday
  _calculate_for_a_regime(ttri, TOD_REGIME_R_56, sdate, edate, stime, etime, (5, 6)) # Rain, Saturday-Sunday
  _calculate_for_a_regime(ttri, TOD_REGIME_S_0, sdate, edate, stime, etime, (0,)) # Snow, Monday
  _calculate_for_a_regime(ttri, TOD_REGIME_S_123, sdate, edate, stime, etime, (1, 2, 3)) # Snow, Tuesday-
Thursday
  _calculate_for_a_regime(ttri, TOD_REGIME_S_4, sdate, edate, stime, etime, (4,)) # Snow, Friday
  _calculate_for_a_regime(ttri, TOD_REGIME_S_56, sdate, edate, stime, etime, (5, 6)) # Snow, Saturday-
Sunday
def calculate for a regime(ttri, regime type, sdate, edate, stime, etime,
               target_days=(1, 2, 3), except_dates=(), remove_holiday=True):
  ......
  :type ttri: pyticas ttrms.ttrms types.TTRouteInfo
  :type regime type: int
  :type sdate: datetime.date
  :type edate: datetime.date
  :type stime: datetime.time
  :type etime: datetime.time
  :type target_days: tuple[int]
  .....
  # Regime Filter
  ext_filter = _ext_filter(regime_type)
  # Retrieve travel time data for a regime from DB
  extractor.extract tt(ttri, sdate, edate, stime, etime, [ext filter],
             target_days=target_days,
              remove holiday=remove holiday,
```

| except_dates=except_dates)                                                                                   |
|--------------------------------------------------------------------------------------------------------------|
| # create DB Access module instance                                                                           |
| da = TODReliabilityDataAccess()                                                                              |
|                                                                                                              |
| # delete existings                                                                                           |
| <pre>for ttwi in da.list_by_route(ttri.id, regime_type):</pre>                                               |
| da.delete(ttwi.id, autocommit= <b>False</b> )                                                                |
| da.commit()                                                                                                  |
|                                                                                                              |
| # iterate for time of day                                                                                    |
| cursor = datetime.datetime.combine(datetime.date.today(), stime) # indicator of TOD                          |
| cursor += datetime.timedelta(seconds=cfg.TT_DATA_INTERVAL)                                                   |
| edatetime = datetime.datetime.combine(datetime.date.today(), etime)                                          |
| while cursor <= edatetime:                                                                                   |
| ctime = cursor.strftime( <b>'%H:%M:00'</b> )                                                                 |
| # collect data for a regime                                                                                  |
| res = [ extdata <b>for</b> extdata <b>in</b> ext_filter.results <b>if</b> ctime <b>in</b> extdata.tti.time ] |
| # calculate reliabilities                                                                                    |
| ttr_res = reliability.calculate(ttri, res)                                                                   |
| # put the result into DB                                                                                     |
| todri = TODReliabilityInfo()                                                                                 |
| todri.regime_type = regime_type                                                                              |
| todri.route_id = ttri.id                                                                                     |
| todri.hour = cursor.hour                                                                                     |
| todri.minute = cursor.minute                                                                                 |
| todri.result = json.dumps(ttr_res)                                                                           |
| da.insert(todri, autocommit= <b>True</b> )                                                                   |
| # move the cursor                                                                                            |
| cursor += datetime.timedelta(seconds=cfg.TT_DATA_INTERVAL)                                                   |
|                                                                                                              |
| da.close()                                                                                                   |

#### Figure 6.2.3 Source code for Reliability Measure Calculation using Historical Data

#### Procedure for Travel-Time Information Service

Figure 6.2.4 shows the sequence diagram of the travel-time information service, which provides estimated travel times to public for given routes and departure times. Figure 6.2.5 includes the source code of the information service function in the TTI Module. The process can be summarized as follows:

(1) User accesses the public travel-time information (TTI) service, which requests predefined travel-time route list.

(2) The API in the server receives the request and produces the results by calling the corresponding function in the TTI Module. The TTI Module retrieves the travel-time route list from the database.

(3) User selects a travel-time route and departure time, then requests travel-time information.

(4) The API module receives the request from the TTI service and calls the corresponding function in the TTI Module, which performs the following steps:

- Calculates travel times for current time.
- Get current weather information through the Weather Data Reader module
- Retrieves the travel-time reliability measures for a given route and regime from the database.
- The reliability measures are sent back to the TTI service in a Jason format.

(5) The TTI Service displays the reliability measures.



Figure 6.2.4 A Sequence diagram of travel-time information service process

| <pre>def traveltime_info(ttr_id, weather_type, depart_time):     """</pre> |
|----------------------------------------------------------------------------|
| :type ttr_id: int                                                          |
| :type weather_type: int                                                    |
| :type depart_time: datetime.datetime                                       |
| <b>:rtype</b> : list[dict], list[float]                                    |
| # create DB Access module instance for travel time route                   |

```
ttrda = TTRouteDataAccess()
ttri = ttrda.get_by_id(ttr_id)
ttrda.close()
# get weather information
if not weather_type or weather_type not in [WC_NORMAL, WC_RAIN, WC_SNOW]:
  weather_type = _weather(depart_time, ttri.route)
# decide regime according to weather and departure time
regime_type = _regime_type(weather_type, depart_time)
# create DB Access module instance for travel time reliability
da = TODReliabilityDataAccess()
# retrieve reliability data from DB and pack to list
tods = da.list by route(ttr id, regime type)
res = []
for idx, tod in enumerate(tods):
  tod res = json.loads(tod.result)
  res.append({'hour' : tod.hour, 'minute' : tod.minute, 'avg_tt' : _roundup(tod_res['avg_tt']),
        'p95_tt' : _roundup(tod_res['percentile_tts']['95']),
        'p90_tt' : _roundup(tod_res['percentile_tts']['90']),
        'p85_tt' : _roundup(tod_res['percentile_tts']['85']),
        'p80_tt' : _roundup(tod_res['percentile_tts']['80']),
        'count' : tod_res['count']
        })
# calculate travel time until the current time
today to = depart time
now = datetime.datetime.now()
if today_to >= now:
  today to = now
today_from = datetime.datetime.combine(today_to.date(), datetime.time(0, 0, 0))
prd = period.Period(today_from, today_to, cfg.TT_DATA_INTERVAL)
tts = moe.travel_time(ttri.route, prd)
tts = moe.imputation(tts, imp_module=time_avg)
traveltimes = data_util.moving_average(tts[-1].data, 5)
traveltimes = _roundup(traveltimes)
return res[60:-12], traveltimes[60:-12]
```

Figure 6.2.5 Source code of the travel-time information service function in the TTI Module

## 6.3 DEVELOPMENT OF AN EXAMPLE WEBPAGE FOR MNDOT DRIVER-INFORMATION SYSTEM

Figure 6.3.1 shows the example webpage developed in this chapter to examine the connectivity of the TTI Module to the existing driver-information system in MnDOT. The example travel-time webpage is developed as a single web application, so that it can be embedded efficiently into the existing web site of the MnDOT driver-information system. The process to obtain expected travel times for a route is as follows:

1) User can select a route and specify expected departure time using the combo box.

2) The selected travel time route is shown in the map.

3) The expected travel times for the selected route, including average, 95<sup>th</sup> and 85<sup>th</sup> %-ile travel times, are displayed in the screen in both graphical and text formats. The travel time of current day and time when the request was made for a selected route is also displayed in the travel-time graph along with the reliability-based, expected travel times.

Figure 6.3.2 shows the results from an example application of the TTI Module with a route on the 35E NB corridor from the split point to the 494 interchange. Figure 6.3.2a is for a day under dry weather condition, while Figure 6.3.2b shows the expected travel times for a snow day in November 2017. The estimation results for a route on the I-35W NB for dry and snow days in November 2017 are shown in Figures 6.3.3a and 6.3.3b.



Figure 6.3.1 An Example web page for travel-time information service



#### (a) Travel-time estimation results for a route on I-35E NB on a dry day



(b) Travel-time estimation results for a route on the I-35E NB during a snow day

Figure 6.3.2 Example application results of the Travel-Time Information Module for a route on I-35E (NB)



#### (a) Travel-time estimation results for a route on the I-35W NB for a dry day



#### (b) Travel-time estimation results for a route on I-35W NB during a snow day

#### Figure 6.3.3 Example Application Results of the Travel-Time Information Module for a route on I-35W (NB)

### CHAPTER 7: DEVELOPMENT OF THE USER-INTERFACE AND REPORT-GENERATION MODULE

#### 7.1 Introduction

In this chapter, the *User-Interface and Report-Generation Module* is developed to facilitate the input and output processes of TTRMS. Using the User-Interface, the user can specify a set of freeway routes, time periods and specific operating conditions for reliability estimation. Further, the report-generation module produces reliability measures for selected corridors following user-specified format. Figure 7.1.1 shows the relationships between the new modules developed in this chapter and the other modules in the *Travel-Time Reliability Measurement System (TTRMS)*. The major functionalities of the new modules are as follows:

- User- Interface Module:
  - Manages of the identification and grouping process for the routes whose reliability measures need to be estimated,
  - Manages of the configuration process to specify operating conditions for reliability estimation, such as weather, incident, work-zone and special events,
  - Manages the input process of the user-specified data necessary to estimate reliability measures, such as selection of a route or route groups for reliability estimation, time-periods, and operating conditions.
- User-Service Module:
  - Facilitates reliability estimation process by providing user-specified input parameters to the Reliability Estimation module.
- Reliability-Estimation Module:
  - Creates a set of the operating-condition filters using user-specified operating conditions from the Client,
  - Retrieves the travel-time data for specified routes from the database using the filter functions and time-duration data,
  - Conducts the reliability-measures estimation process using retrieved travel time data and the reliability calculation module developed in Task 4.
- Report-Writing Module:

- Generates a set of spread-sheet files with the estimated reliability measures and travel-time data for user-specified routes,
- Generates a set of the graphs with the reliability measures for user-specified operating condition for given routes.

The rest of this chapter describes the details of the above modules.



Packages or modules developed in Chapter 6

#### Figure 7.1.1 Architecture of TTRMS and the User-Interface Modules

#### 7.2 DEVELOPMENT OF THE USER-INTERFACE AND USER-SERVICE MODULES

#### 7.2.1 Overview of the User-Interface and User-Service modules

Figure 7.2.1 shows the simplified structure of the User-Interface and User-Service modules and their interrelationships. The User-Interface, written in Java, has three submodules:

- *Reliability Estimation Panel* receives user-specified input parameters needed to run the reliability estimation process, such as reliability-route selection, time periods, and operating conditions.

- *Route Identification-Configuration Panel* manages the selection process of a route or route-group whose reliability would be estimated.

- Operating Condition-Configuration Pane manages the configuration process of the specific operating conditions for reliability estimation, e.g. weather, incident and work zone conditions.

The user-specified data through the user interface are serialized to JSON string and delivered to the *User Service* module using HTTP by the API client modules as shown in Figure 7.2.1.

The *User service* module receives the JSON strings from the User-Interface and converts them to the Python objects to be used by other modules in TTRMS. The main functions of the two submodules in the User-Service module are as follows:

- *Reliability Estimation Handler* performs the reliability estimation process for user-specified conditions,



- Travel Time Route Data Handler provides travel-time route list for given corridors.

Figure 7.2.1 Overview of User-Client and User-Service module structure

#### 7.2.2 Development of the User-Interface module

#### Development of the Reliability-Estimation Panel

Figure 7.2.2 shows the Reliability-Estimation Panel, which is the main user interface for entering a set of the input parameters required to estimate reliability measures. The types of the parameters that can be entered through this panel are as follows:

- Travel time routes: the pre-defined travel time routes in the *Route Identification Configuration Panel* or a single route can be selected for reliability estimation.
- Date and time information: start/end dates, time period, week day.
- Type of Reliability to be estimated:
  - Reliability for Whole-Time-Period (WTP Reliability)

:Reliability measures calculated with all the travel time data during a given time period including Yearly, Monthly and Daily reliability measures.

- Time of Day Reliability (TOD Reliability)

:Reliability measures calculated for each time interval for a given time period, e.g., Reliability at 5:00, 5:05, etc., are calculated.

• Operating Conditions: specific operating conditions under which reliability measures are calculated for given corridors, e.g., weather, existence of incidents and work zones.

| Fravel Time Reliability Estimation System Client - 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ile Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Travel Time Reliability Estimation System Client - 1.0.0<br>Travel Time Reliability Estimation Route Identification Configuration Operating Condition Configuration<br>Fige (82/nd 50) - [M35WN26]<br>Ext (82/nd 50) - [M35WN26]<br>Ext (82/nd 50) - [M35WN24]<br>Ext (90/h 50) - [M35WN22]<br>Ext (90/h 50) - [M35WN20]<br>Ext (90/h 50) - | - □ >                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13         ERC +1/R135 E07 - [M35WN17]         ERC +1/R135 E07 - [M35WN16]           13         ERC +0/R15 + 1/R15           14         ERC +0/R15 + 1/R15           15         ERC +0/R15 + 1/R15           16         ERC +0/R15           17         ERC +0/R15           18         ERC +0/R15           19         ERC +0/R15           10         ERC +0/R15           11         ERC +0/R15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Operating Conditions                                                                                                                                                                                                                                                                                                                                                                                                              |
| S1600  Start                                                                                                                                                         | Name         Description           All         all data during the time periods           DryDay         dryday, no incident, no workzone, no specialevent, no sno           Normal-Incident         dryday, incident, no workzone, no specialevent, no snowm           Normal-Workzone         dryday, no incident, workzone, no specialevent, no snowm           OnlyIncident         incident (does not care other conditions) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OnlySpecialevent         special event (does not care other conditions)         V                                                                                                                                                                                                                                                                                                                                                 |

Figure 7.2.2 Estimation Panel of the User Interface

#### Development of the Route-Selection Panel

Figure 7.2.3 shows the screenshot of the Route-Selection Panel, where user can select a route or a route group from pre-defined routes by the Administrator Client. The predefined reliability routes for a selected corridor can be shown in the Panel as illustrated in Figure 7.2.3. Further, the list of the selected routes in a group is stored in a local disk and can be retrieved for future use.



#### Figure 7.2.3 Route-Selection Panel of the User Client

#### Development of the Operating-Condition Configuration Panel

Figure 7.2.4 shows the screenshot of the Operating-Condition Configuration Panel, where user can specify a set of operating conditions under which reliability measures would be calculated. The operating conditions to be specified include types of weather, existence and types of incident, work-zone and special event. Also, the road conditions during snow events can be specified with this panel. As shown in Figure 5, the operating conditions can be specified in two ways:

(1) Specific conditions can be added by using "Add Condition" button in each tab in Figure 7.2.4.

(2) Check boxes of "Without any < *condition name*>" and "With < *condition name*>" are used for binary selection.

In the current version of the User Interface, the operating conditions specified by user are applied as follows:

• If there are multiple sub-conditions checked in a same operating condition, "OR" operator is applied.

- e.g. if "Light Rain", "Moderate Rain" and "Heavy Rain" are checked in the weather tab, all rainy day data are used in the estimation process .

• If multiple operating conditions are set, "AND" operator is applied:

- e.g. if "Normal Dry Day" is selected in the weather tab and "Property Damage of Crash" are checked in the incident tab, only the travel-time data under normal dry-weather condition and incident(s) with property damage will be used to calculate reliability measures.

• If a certain operating condition is not specified, that operation condition is not considered when filtering travel-time data for reliability estimation.

- e.g. if "Normal Dry Day" is selected in the weather tab and any other operating condition, e.g., incident or work-zone, is not set, the travel- time data under normal dry day are used regardless of incident or work zone conditions.

Figure 7.2.5 shows various types and levels of sub-conditions for each operating condition and their possible combinations that can be specified in the current version. Figure 7.2.6 also shows one example dialog to add a sub-condition.

| 2    | Travel Time Reliability Estimation System Clie          | nt - 1.0.0       |                                                                 | _ |   | х |
|------|---------------------------------------------------------|------------------|-----------------------------------------------------------------|---|---|---|
| FIIE |                                                         |                  |                                                                 |   |   |   |
| •    | Travel Time Reliability Estimation Route Identification | on Configuration | Operating Condition Configuration                               |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      | List of Defined Operating Conditions +                  | Name DryD        | ау                                                              |   |   |   |
|      | All<br>DryDay<br>Normal-Incident                        | Description      | dryday, no incident, no workzone, no specialevent, no snowmgmt  |   | ^ |   |
|      | Normal-Workzone                                         |                  |                                                                 |   | ~ |   |
|      | OnlyIncident                                            |                  |                                                                 |   |   |   |
|      | OnlyWorkzone                                            | Weather I        | ncident Workzone Special Event Lane Condition during Snow Event |   |   |   |
|      | Rainy-Incident                                          |                  |                                                                 |   |   |   |
|      | Rainy-Workzone<br>RainyDay                              | Add Co           | ndition Delete Condition Vinormal dry day                       |   |   |   |
|      |                                                         | Туре             | Intensity                                                       |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      | Copy Delete                                             |                  | Update                                                          |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |
|      |                                                         |                  |                                                                 |   |   |   |

Figure 7.2.4 Operating Condition-Configuration Panel of the User Interface





Before

During-After



(~20k)

Medium

(20-40k)

Large

(40k+)

(~3mi)

Middle

(3-5mi)

Far

(5+mi)

**Special** 

**Event** 

| 🚳 Weather Filter Dialog |       |        |  |  |  |
|-------------------------|-------|--------|--|--|--|
| Туре                    | Rain  | $\sim$ |  |  |  |
| Intensity               | Light | $\sim$ |  |  |  |
| Close                   | Ok    |        |  |  |  |

Figure 7.2.6 Dialog to Add a Weather sub-Condition

#### Development of API Client module

Figure 7.2.7 shows the structure of the *API Client* module, which facilitates the data exchange between the User-Interface and other modules. The main functionalities of each submodule of the API client module are as follows;

- *Reliability-Estimation Client* module delivers the user parameters from the *Reliability Estimation Panel* to the server through the *HTTP Client* module.

- *Travel-Time Route Client* module retrieves the travel-time route list from the server. The route list is then used in the *Reliability Estimation Panel* and the *Route Identification Configuration Panel* 

- *HTTP-Client* module implements the POST and GET method of HTTP in both synchronous and asynchronous ways. The methods of the HTTP Client are described in Figure 7.2.8.

- Data Types module contains the related data types such as *ReliabilityRoute*, *OperatingConditionsInfo* and *EstimationRequestInfo* classes as shown in Figure 7.2.9.



Figure 7.2.7 API Client module structure

public class HttpClient {
 public static HttpURLConnection getConnection(String target\_url);
 public static void get(String target\_url, IHttpResultCallback callback);
 public static HttpResult get\_synced(String target\_url);
 public static <T extends Response> void get(String target\_url, IResponseCallback<T> callback, Class<T> type);
 public static <T extends Response> T get\_synced(String target\_url, <T> type);
 public static void post(String uri\_path, PostData pd, IHttpResultCallback<T> callback, <T> type);
 public static <T extends Response> void post(String target\_url, PostData pd, IResponseCallback<T> callback, <T> type);
 public static <T extends Response> T post\_synced(String target\_url, PostData pd, IResponseCallback<T> callback, <T> type);
 public static <T extends Response> T post\_synced(String target\_url, pd, Class<T> type);
 public static <T extends Response> T post\_synced(String target\_url, PostData pd, Type type);
 }
}

#### Figure 7.2.8 HttpClient class structure

| public class EstimationRequestInfo extends InfoBase {                                              |
|----------------------------------------------------------------------------------------------------|
| public ReliabilityRouteInfo travel_time_route;                                                     |
| public String start_date;                                                                          |
| public String end_date;                                                                            |
| public String start_time;                                                                          |
| public String end_time;                                                                            |
| public WeekdayConditionInfo weekdays;                                                              |
| public Boolean except_holiday;                                                                     |
| public ReliabilityEstimationModeInfo estmation_mode;                                               |
| public List <operatingconditionsinfo> operating_conditions;</operatingconditionsinfo>              |
| }                                                                                                  |
| public class OperatingConditionsInfo extends InfoBase {                                            |
| public String name;                                                                                |
| public String desc;                                                                                |
| public List <weatherconditioninfo> weather_conditions;</weatherconditioninfo>                      |
| public List <incidentconditioninfo> incident_conditions;</incidentconditioninfo>                   |
| public List <workzoneconditioninfo> workzone_conditions;</workzoneconditioninfo>                   |
| public List <specialeventconditioninfo> specialevent_conditions;</specialeventconditioninfo>       |
| public List <snowmanagementconditioninfo> snowmanagement_conditions;</snowmanagementconditioninfo> |
| }                                                                                                  |
| public class ReliabilityRouteInfo extends InfoBase {                                               |
| public String name;                                                                                |
| public String description;                                                                         |
| public String corridor;                                                                            |
| public Route route;                                                                                |
|                                                                                                    |

Figure 7.2.9 Data Types used in API Client module

#### 7.2.3 Development of the User-Service module

Figure 7.2.10 shows the structure of the *User Service* module, which facilitates the data exchanges between the User-Interface module and the Reliability-Estimation-Report Generation module. The main functionalities of the two submodules are as follows:

- *Reliability Estimation Handler* module receives the user-specified parameters from the user interface and executes the travel-time reliability estimation process implemented in the *Reliability-Estimation and Report-Generation module.* 

- *Travel-Time Route Data Handler* module receives the request of travel-time route list, retrieves the pre-defined travel time routes through the *DB Access Layer* module and returns the list to the client.



Figure 7.2.11 includes the source code of the User Service module.

Figure 7.2.10 User-Service module structure

| # Reliability Estimation Handler                                                               |
|------------------------------------------------------------------------------------------------|
| <pre>@app.route(api_urls_user.ESTIMATION, methods=['POST'])</pre>                              |
| def tetres_user_estimation():                                                                  |
| # parse user parameter                                                                         |
| routes = request.form.get('routeIDs')                                                          |
| route_ids = json.loads(routes)                                                                 |
| param = request.form.get('param')                                                              |
| eparam = json.loads(param)                                                                     |
| setattr(eparam, 'travel_time_route', None)                                                     |
| # run estimation process for all the given routes                                              |
| ttr_da = TTRouteDataAccess()                                                                   |
| for a_route_id in route_ids:                                                                   |
| eparam.travel_time_route = ttr_da.get_by_id(a_route_id)                                        |
| if not eparam.travel_time_route:                                                               |
| return prot.response_error('The travel time route does not exist')                             |
| estimation.estimation(eparam)                                                                  |
| # return the success message to the client                                                     |
| return prot.response_success()                                                                 |
|                                                                                                |
| # Travel Time Route Data Handler                                                               |
| <pre>@app.route(api_urls_user.ROUTE_LIST, methods=['POST'])</pre>                              |
| def tetres_user_route_list():                                                                  |
| # parse user parameter                                                                         |
| corridor_name = request.form.get( <b>'corridor</b> ')                                          |
| # retrieve route list for the given corridor through DB access module                          |
| da = TTRouteDataAccess()                                                                       |
| ttris = list(da.list_by_corridor(corridor_name, order_by=('name', 'desc'), window_size=10000)) |
| da.close()                                                                                     |
|                                                                                                |
| # return the list as JSON                                                                      |
| return prot.response_success({'list': ttris})                                                  |
|                                                                                                |

Figure 7.2.11 Source code of User-Service module

#### 7.3 DEVELOPMENT OF THE RELIABILITY-ESTIMATION AND REPORT-GENERATION MODULE

#### 7.3.1 Overview of the Reliability Estimation and Report module

Figure 7.3.1 shows the structure of the Reliability Estimation and Report Generation Module, which performs the reliability estimation process for user-specified conditions delivered through the User-Service module. After the calculation is completed, it calls the Report-Generation module, which creates a set of the output files in the spreadsheet and graph formats.



Figure 7.3.1 Estimation and Report module structure

#### 7.3.2 Development of the Reliability-Estimation Process module

Figure 7.3.2 shows the structure of the *Reliability Estimation* process module, where the *Operating-Condition Filter Creator* first creates the filter functions for each operating-condition group specified by user in the User-Interface. Then the Reliability-Estimation module calls the *Travel Time and Reliability* module, developed in the previous chapter, and calculates the reliability measures with the filtered data for the given set of operating conditions.



Figure 7.3.2 Reliability-Estimation module structure

Figure 7.3.3 shows the sequence diagram of the reliability estimation process performed in the Reliability-Estimation process module. The step-by-step process is as follows:

(1) Make the operating condition filter functions using the *Operating Condition Filter Creator* module.

- The filters are defined as a class containing callable function and travel-time data list for storing the travel-time data passed the filter created for the operating conditions specified by user.

(2) Retrieve travel-time data and operating condition data, such as weather and incident, during the given time period from the database.

(3) Iterate the following steps for all the given operating conditions:

(i) Iterate for all travel time data and check if it is passed by the filter function.

(ii) Store the travel time data and operating conditions data to the data list of the filter if it is passed

(4) Make yearly, monthly and daily data set with the filtered data

(5) Calculates the reliability measures with all data set including yearly, monthly and daily data sets for all the given operating conditions, depending on the selected type of the reliability measure, i.e., whole time period reliability or time of day reliability

(6) Write output files using the *Report Generation* module.



Figure 7.3.3 Sequence Diagram of Reliability-Estimation Process

#### 7.3.3 Development of the Report-Generation module

The *Report-Generation* module saves the reliability measures calculated by the *Reliability-Estimation* module in the form of spread sheet and graph images. Specifically, the following spread-sheet and graph writers have been developed and included in this module.

*Whole Time Reliability Writer* creates a spread-sheet file with the reliability measures of whole-timeperiod data. Figure 7.3.4 shows an example spreadsheet file:

- The first sheet shows the given operating conditions as defined in the User Interface.

- The other sheets contain the reliability measures with all data, yearly data, monthly data and daily data sets estimated for given operating conditions.





|    | A     | в                     | С                                | D                                                            | E | F | G | н | 1   | J | К |
|----|-------|-----------------------|----------------------------------|--------------------------------------------------------------|---|---|---|---|-----|---|---|
| 1  | Index | Name                  | Descriptio                       | n                                                            |   |   |   |   |     |   |   |
| 2  | 0     | All                   | all data during the time periods |                                                              |   |   |   |   |     |   |   |
| з  | 1     | DryDay                | dryday, no                       | incident,                                                    |   |   |   |   |     |   |   |
| 4  | 2     | Normal-Incident       | dryday, in                       | ryday, incident, no workzone, no specialevent, no snowmgmt.  |   |   |   |   |     |   |   |
| 5  | 3     | Normal-Workzone       | dryday, no                       | dryday, no incident, workzone, no specialevent, no snowmgmt. |   |   |   |   |     |   |   |
| 6  | 4     | OnlyIncident          | incident (                       | incident (does not care other conditions)                    |   |   |   |   |     |   |   |
| 7  | 5     | Rainy-Incident        | rain, incid                      | ain, incident, no workzone, no specialevent, no snowmgmt.    |   |   |   |   |     |   |   |
| 8  | 6     | RainyDay              | rain, no in                      | ain, no incident, no workzone, no specialevent, no snowmgmt. |   |   |   |   |     |   |   |
| 9  |       |                       |                                  |                                                              |   |   |   |   |     |   |   |
| 10 |       |                       |                                  |                                                              |   |   |   |   |     |   |   |
| 11 |       |                       |                                  |                                                              |   |   |   |   |     |   |   |
| 17 |       | Our section of Cardin |                                  | and the let the                                              |   |   |   |   | · · |   |   |

A B C D E F G H I

|    | ~        | D          | C .      |            | <b>C</b>  | E C       | 0        |           | 1 I I I I I I I I I I I I I I I I I I I |    |
|----|----------|------------|----------|------------|-----------|-----------|----------|-----------|-----------------------------------------|----|
| 1  | OC Index | OC Name    | Avg TT   | Travel Tim | Data Cour | Free-Flow | Congeste | Congestee | 80th %-ile                              | 85 |
| 2  | 0        | All        | 8.680025 | 0.859317   | 48494     | 8.657143  | 16.26591 | 2344      | 8.612107                                | 8  |
| 3  | 1        | DryDay     | 8.444492 | 0.835999   | 38991     | 8.657143  | 16.14746 | 1054      | 8.486433                                | 8  |
| 4  | 2        | Normal-In  | 9.105886 | 0.901477   | 3012      | 8.657143  | 17.63299 | 226       | 8.816319                                | 9  |
| 5  | 3        | Normal-W   | 11.2232  | 1.11109    | 1227      | 8.657143  | 14.76384 | 414       | 13.49159                                | 1  |
| 6  | 4        | OnlyIncid  | 9.393259 | 0.929926   | 3608      | 8.657143  | 17.95111 | 351       | 9.04143                                 | 9  |
| 7  | 5        | Rainy-Inci | 9.986566 | 0.988663   | 47        | 8.657143  | 14.36758 | 9         | 10.94764                                |    |
| 8  | 6        | RainyDay   | 9.237043 | 0.914461   | 339       | 8.657143  | 17.7238  | 26        | 9.200508                                | 9  |
| 9  |          |            |          |            |           |           |          |           |                                         |    |
| 10 |          |            |          |            |           |           |          |           |                                         |    |
| 11 |          |            |          |            |           |           |          |           |                                         |    |
| 12 |          |            |          |            |           |           |          |           |                                         |    |

Operating Coditions (OC)
 reliabilities
 yearly (OC=0)
 yearly (OC=1) ... (

| 1 | A                    | в        | С          | D         | E         | F         | G         | н          |
|---|----------------------|----------|------------|-----------|-----------|-----------|-----------|------------|
| 1 | Operating Condition: | All      |            |           |           |           |           |            |
| 2 | Year                 | Avg TT   | Travel Tim | Data Coun | Free-Flow | Congestee | Congestee | 80th %-ile |
| 3 | 2012                 | 8.325107 | 0.82418    | 12078     | 8.657143  | 14.47084  | 308       | 8.403668   |
|   | 2013                 | 9.08496  | 0.899405   | 12077     | 8.657143  | 15.19982  | 1203      | 9.215048   |
|   | 2014                 | 8.763819 | 0.867612   | 12139     | 8.657143  | 18.74535  | 498       | 8.62815    |
|   | 2015                 | 8.547166 | 0.846164   | 12200     | 8.657143  | 18.05883  | 335       | 8.547203   |
|   |                      |          |            |           |           |           |           |            |
|   |                      |          |            |           |           |           |           |            |
|   |                      |          |            |           |           |           |           |            |
| D |                      |          |            |           |           |           |           |            |
| 1 |                      |          |            |           |           |           |           |            |
| 2 |                      |          |            |           |           |           |           |            |

|    | A                    | В        | С          | D         | E         | F        | G          | н          |
|----|----------------------|----------|------------|-----------|-----------|----------|------------|------------|
| 1  | Operating Condition: | All      |            |           |           |          |            |            |
| 2  | Month                | Avg TT   | Travel Tim | Data Coun | Free-Flow | Congeste | Congester  | 80th %-ile |
| з  | 2012-01              | 8.609097 | 0.852295   | 976       | 8.657143  | 16.75262 | 57         | 8.348761   |
| 4  | 2012-02              | 8.183108 | 0.810122   | 976       | 8.657143  | 12.80277 | 19         | 8.340704   |
| 5  | 2012-03              | 8.07191  | 0.799114   | 1037      | 8.657143  | 14.43168 | 9          | 8.24018    |
| 6  | 2012-04              | 8.191574 | 0.81096    | 1037      | 8.657143  | 13.81949 | 8          | 8.391909   |
| 7  | 2012-05              | 8.262629 | 0.817995   | 1098      | 8.657143  | 14.67636 | 17         | 8.419395   |
| 8  | 2012-06              | 8.158563 | 0.807692   | 976       | 8.657143  | 11.69879 | 4          | 8.372985   |
| 9  | 2012-07              | 8.117252 | 0.803603   | 1037      | 8.657143  | -1       | 0          | 8.328329   |
| 10 | 2012-08              | 8.338566 | 0.825513   | 1098      | 8.657143  | 13.89817 | 31         | 8.400275   |
| 11 | 2012-09              | 8.608523 | 0.852238   | 915       | 8.657143  | 12.55323 | 58         | 8.637377   |
| 12 | 2012 10              | 0 462145 | 0 007046   | 1000      | 9 6571/2  | 15 10252 | 20         | 0 555126   |
|    | ↔ monthly            | (OC=0)   | monthly    | (OC=1)    | monthly ( | OC=2)    | monthly (C | OC=3)      |

|    | А                    | В        | С          | D         | E          | F               | G        | н          |          |
|----|----------------------|----------|------------|-----------|------------|-----------------|----------|------------|----------|
| 1  | Operating Condition: | All      |            |           |            |                 |          |            |          |
| 2  | Date                 | Avg TT   | Travel Tim | Data Cour | Free-Flow  | Congeste        | Congeste | 80th %-ile | 85th     |
| з  | 2012-01-03           | 7.94016  | 0.786071   | 61        | 8.657143   | -1              | 0        | 8.055566   | 8.0      |
| 4  | 2012-01-04           | 7.91225  | 0.783307   | 61        | 8.657143   | -1              | 0        | 8.082325   | 8.0      |
| 5  | 2012-01-05           | 7.914535 | 0.783534   | 61        | 8.657143   | -1              | 0        | 8.031764   | 8.0      |
| 6  | 2012-01-09           | 7.915031 | 0.783583   | 61        | 8.657143   | -1              | 0        | 8.102116   | 8.1      |
| 7  | 2012-01-10           | 7.89106  | 0.78121    | 61        | 8.657143   | -1              | 0        | 8.049554   | 8.0      |
| 8  | 2012-01-11           | 7.95658  | 0.787696   | 61        | 8.657143   | -1              | 0        | 8.174802   | 8.2      |
| 9  | 2012-01-12           | 8.112981 | 0.80318    | 61        | 8.657143   | -1              | 0        | 8.324667   | 8.3      |
| 10 | 2012-01-17           | 10.31598 | 1.021275   | 61        | 8.657143   | 15.00181        | 17       | 13.10364   | 14.      |
| 11 | 2012-01-18           | 8.016247 | 0.793603   | 61        | 8.657143   | -1              | 0        | 8.206631   | 8.2      |
| 12 | 2012 01 19           | 0 11604  | 0 000100   | 63        | 0 657140   | 1               | 0        | 0 354256   | 0        |
|    | ← → … monthly        | (OC=5)   | monthly    | (OC=6)    | daily (OC: | = <b>0)</b> dai | y (OC=1) | da         | $\oplus$ |

Figure 7.3.5 Output File Example of Whole-Time-Reliability Writer module

*Whole Time Reliability (WTP) Writer by Operating Conditions* writes a spread-sheet file with the WTP reliability measures for pre-specified operating conditions. Figure 7.3.6 shows an output example from this module:

- The first sheet shows the given operating conditions specified in the User-Interface same as in the previous module.

- The other sheets contain the reliability estimates from each data set, i.e., all data, yearly data, monthly data and daily data set, for each operating condition.

|   | A B                                    |                   | С                                      | D          | E                                              | F          | G                   | G          |                      |                   |
|---|----------------------------------------|-------------------|----------------------------------------|------------|------------------------------------------------|------------|---------------------|------------|----------------------|-------------------|
|   | ос                                     | Index             | OC Name                                |            | Avg TT                                         | Travel Tin | Data Cou            | n Free-Fl  | ow Conge             | stee              |
|   |                                        | 0                 | All                                    |            | 8.680025                                       | 0.859317   | 4849                | 4 8.6571   | 43 16.26             | 591               |
|   |                                        | 1                 | DryDay                                 |            | 8.444492                                       | 0.835999   | 3899                | 8.6571     | 43 16.14             | 746               |
|   |                                        | 2                 | Normal-Inc                             | ident      | 9.105886                                       | 0.901477   | 301                 | 8.6571     | 43 17.632            | 299               |
|   |                                        | 3                 | Normal-Wo                              | orkzone    | 11.2232                                        | 1.11109    | 122                 | 8.6571     | 43 14.76             | 384               |
|   |                                        | 4                 | OnlyIncide                             | nt         | 9.393259                                       | 0.929926   | 360                 | 8.6571     | 43 17.95             | 111               |
|   |                                        | 5                 | Rainy-Incid                            | ent        | 9.986566                                       | 0.988663   | 4                   | 8.6571     | 43 14.36             | 758               |
| _ | 6 RainyDay                             |                   |                                        | 9.237043   | 0.914461                                       | 33         | 8.6571              | 43 17.72   | 238                  |                   |
| _ |                                        |                   |                                        |            |                                                |            |                     |            |                      |                   |
|   |                                        |                   |                                        |            |                                                |            |                     |            |                      |                   |
| _ |                                        |                   |                                        |            |                                                |            |                     |            |                      |                   |
|   | •                                      | +                 | Operati                                | ng Coditio | ons (OC)                                       | reliabili  | ities y             | early Avg  | TT yea               | arly <sup>-</sup> |
|   |                                        | А                 | В                                      | С          | D                                              | E          | E F                 |            | н                    |                   |
|   | 1                                      | Year              | All                                    | DryDay     | Normal-In                                      | Normal-W   | OnlyIncid           | Rainy-Inci | RainyDay             |                   |
|   | 2                                      | 201               | .2 0.135341                            | 0.078949   | 0.463777                                       | -1         | 0.533973            | -1         | 0.044097             |                   |
|   | 2                                      |                   |                                        | 0 325698   | 0.561849                                       | 0.595935   | 0 61397             | 0 10144    | 0 114606             |                   |
|   | -                                      | 201               | .3 0.522338                            | 0.525050   |                                                |            | 0.01057             | 0.10144    | 0.11.1000            |                   |
|   | 4                                      | 201               | .3 0.522338<br>.4 0.20161              | 0.102919   | 0.327847                                       | -1         | 0.50182             | 0.586869   | 0.170514             |                   |
|   | 4<br>5                                 | 201<br>201<br>201 | 0.522338<br>4 0.20161<br>5 0.1397      | 0.102919   | 0.327847                                       | -1         | 0.50182             | 0.586869   | 0.170514             |                   |
|   | 4<br>5<br>6                            | 201<br>201<br>201 | .3 0.522338<br>.4 0.20161<br>.5 0.1397 | 0.102915   | 0.327847                                       | -1<br>-1   | 0.50182<br>0.361485 | 0.586869   | 0.170514             |                   |
|   | 4<br>5<br>6<br>7                       | 201<br>201<br>201 | .3 0.522338<br>.4 0.20161<br>.5 0.1397 | 0.102919   | 0.327847                                       | -1<br>-1   | 0.50182<br>0.361485 | 0.586869   | 0.170514<br>0.266406 |                   |
|   | 4<br>5<br>6<br>7<br>8                  | 201<br>201<br>201 | 3 0.522338<br>4 0.20161<br>5 0.1397    | 0.102919   | 0.327847<br>0.410631                           | -1<br>-1   | 0.50182             | 0.586869   | 0.170514<br>0.266406 |                   |
|   | 4<br>5<br>6<br>7<br>8<br>9             | 201<br>201<br>201 | 3 0.522338<br>4 0.20161<br>5 0.1397    | 0.102919   | 0.327847                                       | -1<br>-1   | 0.50182             | 0.586869   | 0.170514<br>0.266406 |                   |
|   | 4<br>5<br>6<br>7<br>8<br>9<br>10       | 201<br>201<br>201 | 3 0.522338<br>4 0.20161<br>5 0.1397    | 0.102919   | 0.327847                                       | -1<br>-1   | 0.50182             | 0.586869   | 0.170514<br>0.266406 |                   |
|   | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 201 201 201       | 3 0.522338<br>4 0.20161<br>5 0.1397    | 0.102915   | <ul> <li>0.327847</li> <li>0.410631</li> </ul> | -1         | 0.50182             | 0.586869   | 0.170514<br>0.266406 |                   |

|    | A       | В        | C            | D         | E        | F           | G          | H        |    | A          | В        | С           | D         | E           | F         | G          | н           |   |
|----|---------|----------|--------------|-----------|----------|-------------|------------|----------|----|------------|----------|-------------|-----------|-------------|-----------|------------|-------------|---|
| 1  | Month J | All      | DryDay       | Normal-Ir | Normal-W | OnlyIncid   | Rainy-Inci | RainyDay | 1  | Date       | All      | DryDay      | Normal-In | Normal-W    | OnlyIncid | Rainy-Inci | RainyDay    | Γ |
| 2  | 2012-01 | 0.449268 | 0.063659     | 0.239152  | -1       | 0.179842    | -1         | -1       | 2  | 2012-01-03 | 0.03584  | 0.03584     | -1        | -1          | -1        | -1         | -1          |   |
| 3  | 2012-02 | 0.122798 | 0.070863     | 0.138592  | -1       | 0.373489    | -1         | -1       | 3  | 2012-01-04 | 0.04634  | 0.04634     | -1        | -1          | -1        | -1         | -1          |   |
| 4  | 2012-03 | 0.058885 | 0.059196     | 0.056554  | -1       | 0.66339     | -1         | -1       | 4  | 2012-01-05 | 0.032909 | 0.032909    | -1        | -1          | -1        | -1         | -1          |   |
| 5  | 2012-04 | 0.067675 | 0.064568     | 0.568564  | -1       | 0.568564    | -1         | -1       | 5  | 2012-01-09 | 0.030625 | 0.030517    | -1        | -1          | -1        | -1         | -1          |   |
| 6  | 2012-05 | 0.075286 | 0.069207     | 0.140977  | -1       | 0.128482    | -1         | 0.058796 | 6  | 2012-01-10 | 0.044486 | 0.044486    | -1        | -1          | -1        | -1         | -1          |   |
| 7  | 2012-06 | 0.075009 | 0.063653     | 0.044499  | -1       | 0.046374    | -1         | -1       | 7  | 2012-01-11 | 0.056348 | 0.058033    | -1        | -1          | -1        | -1         | -1          |   |
| 8  | 2012-07 | 0.058787 | 0.056349     | 0.039285  | -1       | 0.039285    | -1         | -1       | 8  | 2012-01-12 | 0.054634 | 0.064078    | -1        | -1          | -1        | -1         | -1          |   |
| 9  | 2012-08 | 0.135421 | 0.064431     | 0.207198  | -1       | 0.311578    | -1         | 0.027291 | 9  | 2012-01-17 | 0.67085  | 0.111667    | 0.07895   | -1          | 0.068359  | -1         | -1          |   |
| 10 | 2012-09 | 0.363985 | 0.365936     | 0.451728  | -1       | 0.389409    | -1         | -1       | 10 | 2012-01-18 | 0.057066 | 0.05642     | -1        | -1          | -1        | -1         | -1          |   |
| 11 | 2012-10 | 0.188961 | 0.195181     | 1.134463  | -1       | 1.100776    | -1         | -1       | 11 | 2012-01-19 | 0.050893 | 0.050893    | -1        | -1          | -1        | -1         | -1          |   |
| 12 | 2012 11 | 0.067620 | 0 06000      | 0 05/000  | 1        | 0 05/000    | 1          | 1        | 12 | 2012 01 22 | 0.6166   | 1           | 1         | 1           | 1         | 1          | 1           | [ |
|    | 4 F     | month    | ly Buffering | dex(90%)  | monthl   | v BufferInd | lex(95%)   | monthly  |    | 4 +        | daily Bu | fferIndex(9 | 0%) da    | ilv Bufferl | ndex(95%) | daily      | PlanningTin | n |

Figure 7.3.6 Output File Example of Whole Time Period Reliability Writer by Operating Conditions

*Time of Day (TOD) Reliability Writer* writes TOD reliability measures with all data set, yearly data set and monthly data set, for each operating condition as shown in Figure 7.3.7.

|    | A         | в        | С            | D         | E          | F             | G         | н           | 1          | J          | к          | L          | м                 | N                 | 0                 | Р          |     |
|----|-----------|----------|--------------|-----------|------------|---------------|-----------|-------------|------------|------------|------------|------------|-------------------|-------------------|-------------------|------------|-----|
| 1  | Operating | All      |              |           |            |               |           |             |            |            |            |            |                   |                   |                   |            |     |
| 2  | Time      | Avg TT   | Travel Tin   | Data Cour | Free-Flow  | Congeste      | Congester | 80th %-ile  | 85th %-ile | 90th %-ile | 95th %-ile | Buffer Ind | <b>Buffer Ind</b> | <b>Buffer Ind</b> | <b>Buffer Ind</b> | Planning 1 | Ρ   |
| з  | 06:00     | 8.040384 | 0.795993     | 795       | 8.657143   | 12.1454       | 9         | 8.172637    | 8.284777   | 8.478063   | 8.961146   | 0.016449   | 0.030396          | 0.054435          | 0.114517          | 0.944034   | (   |
| 4  | 06:05     | 8.03064  | 0.795028     | 795       | 8.657143   | 12.08002      | 10        | 8.150427    | 8.259143   | 8.413118   | 8.918956   | 0.014916   | 0.028454          | 0.047627          | 0.110616          | 0.941468   | (   |
| 5  | 06:10     | 8.057226 | 0.79766      | 795       | 8.657143   | 12.33521      | 10        | 8.177978    | 8.28657    | 8.445861   | 9.14233    | 0.014987   | 0.028464          | 0.048234          | 0.134675          | 0.944651   | (   |
| 6  | 06:15     | 8.096678 | 0.801566     | 795       | 8.657143   | 12.39459      | 14        | 8.173175    | 8.294543   | 8.537933   | 9.168277   | 0.009448   | 0.024438          | 0.054498          | 0.13235           | 0.944096   |     |
| 7  | 06:20     | 8.14166  | 0.806019     | 795       | 8.657143   | 12.73564      | 15        | 8.192073    | 8.33011    | 8.603415   | 9.369656   | 0.006192   | 0.023146          | 0.056715          | 0.150829          | 0.946279   | (   |
| 8  | 06:25     | 8.200268 | 0.811821     | 795       | 8.657143   | 12.92633      | 17        | 8.265009    | 8.378842   | 8.661321   | 9.500081   | 0.007895   | 0.021777          | 0.056224          | 0.158509          | 0.954704   | (   |
| 9  | 06:30     | 8.241194 | 0.815873     | 795       | 8.657143   | 13.42034      | 17        | 8.311078    | 8.41888    | 8.78201    | 9.590109   | 0.00848    | 0.021561          | 0.065624          | 0.16368           | 0.960026   | (   |
| 10 | 06:35     | 8.276562 | 0.819374     | 795       | 8.657143   | 13.84924      | 18        | 8.288002    | 8.418634   | 8.861882   | 9.948592   | 0.001382   | 0.017166          | 0.07072           | 0.20202           | 0.95736    | (   |
| 11 | 06:40     | 8.307545 | 0.822441     | 795       | 8.657143   | 13.57953      | 25        | 8.307132    | 8.435013   | 8.919399   | 10.36325   | -5E-05     | 0.015344          | 0.07365           | 0.24745           | 0.95957    | (   |
| 12 | 06.45     | 0 265300 | n 070150     | 705       | 9 657149   | 12 05504      | 20        | 0 210472    | 0 500000   | 0 152015   | 10 01700   | 0.00656    | 0.017206          | 0 004262          | 0 2022            | 0 05005    |     |
|    | 4         | Opera    | ting Coditie | ons (OC)  | reliabilit | $e_{c}(OC=0)$ | reliabil  | ites (OC=1) | re         | (+) :      | 4          |            |                   |                   |                   |            | - N |

| 4                                                                                           | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                                                                                                                              | D                                                                                                                                                                                                                                                                  | E                                                                                      | F                                                                                                                                                         | G                                                                                                                                                          | Н                                                                                           | 1                                                                                                                                                       | J                                                                                                                                                  | K                                                                                                                                                                                                                                               | L                                                                                                                                       | М                                                                                                                            | Ν                                                                                                                                       | 0                                                                                                                                                                                | P                                                                                                                                                  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                           | Operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gAll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                           |                                                                                                                                                            |                                                                                             |                                                                                                                                                         |                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                              |                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                    |
| 2                                                                                           | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avg TT                                                                                                                                                         | Travel Tim                                                                                                                                                                                                                                                         | Data Cour                                                                              | Free-Flow                                                                                                                                                 | Congestee                                                                                                                                                  | Congester                                                                                   | 80th %-ile                                                                                                                                              | 85th %-ile                                                                                                                                         | 90th %-ile                                                                                                                                                                                                                                      | 95th %-ile                                                                                                                              | Buffer Ind                                                                                                                   | Buffer Ind B                                                                                                                            | Buffer Ind I                                                                                                                                                                     | Buffer Ind I                                                                                                                                       |
| 3                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.895986                                                                                                                                                       | 0.781697                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 11.75676                                                                                                                                                   | 2                                                                                           | 7.993566                                                                                                                                                | 8.054325                                                                                                                                           | 8.141896                                                                                                                                                                                                                                        | 8.428826                                                                                                                                | 0.012358                                                                                                                     | 0.020053                                                                                                                                | 0.031144                                                                                                                                                                         | 0.067482                                                                                                                                           |
| 4                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.879351                                                                                                                                                       | 0.78005                                                                                                                                                                                                                                                            | 198                                                                                    | 8.657143                                                                                                                                                  | 11.85472                                                                                                                                                   | 2                                                                                           | 7.970346                                                                                                                                                | 8.012473                                                                                                                                           | 8.135868                                                                                                                                                                                                                                        | 8.344852                                                                                                                                | 0.011549                                                                                                                     | 0.016895                                                                                                                                | 0.032556                                                                                                                                                                         | 0.059079                                                                                                                                           |
| 5                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.915806                                                                                                                                                       | 0.78366                                                                                                                                                                                                                                                            | 198                                                                                    | 8.657143                                                                                                                                                  | 12.52266                                                                                                                                                   | 2                                                                                           | 8.040111                                                                                                                                                | 8.088145                                                                                                                                           | 8.135175                                                                                                                                                                                                                                        | 8.338135                                                                                                                                | 0.015703                                                                                                                     | 0.021771                                                                                                                                | 0.027713                                                                                                                                                                         | 0.053353                                                                                                                                           |
| 6                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.922109                                                                                                                                                       | 0.784284                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 12.19403                                                                                                                                                   | 2                                                                                           | 7.978602                                                                                                                                                | 8.024165                                                                                                                                           | 8.140941                                                                                                                                                                                                                                        | 8.483616                                                                                                                                | 0.007131                                                                                                                     | 0.012882                                                                                                                                | 0.027623                                                                                                                                                                         | 0.070878                                                                                                                                           |
| 7                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.958014                                                                                                                                                       | 0.787838                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 13.03028                                                                                                                                                   | 2                                                                                           | 8.020534                                                                                                                                                | 8.055473                                                                                                                                           | 8.122399                                                                                                                                                                                                                                        | 8.373583                                                                                                                                | 0.007856                                                                                                                     | 0.012247                                                                                                                                | 0.020657                                                                                                                                                                         | 0.05222                                                                                                                                            |
| 8                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.988188                                                                                                                                                       | 0.790825                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 12.42181                                                                                                                                                   | 3                                                                                           | 8.06605                                                                                                                                                 | 8.131385                                                                                                                                           | 8.229493                                                                                                                                                                                                                                        | 8.376901                                                                                                                                | 0.009747                                                                                                                     | 0.017926                                                                                                                                | 0.030208                                                                                                                                                                         | 0.048661                                                                                                                                           |
| 9                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.003223                                                                                                                                                       | 0.792314                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 12.90381                                                                                                                                                   | 3                                                                                           | 8.037365                                                                                                                                                | 8.092477                                                                                                                                           | 8.147831                                                                                                                                                                                                                                        | 8.430112                                                                                                                                | 0.004266                                                                                                                     | 0.011152                                                                                                                                | 0.018069                                                                                                                                                                         | 0.05334                                                                                                                                            |
| 0                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.001226                                                                                                                                                       | 0.792116                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 13.02715                                                                                                                                                   | 3                                                                                           | 8.066626                                                                                                                                                | 8.116173                                                                                                                                           | 8.170146                                                                                                                                                                                                                                        | 8.488028                                                                                                                                | 0.008174                                                                                                                     | 0.014366                                                                                                                                | 0.021112                                                                                                                                                                         | 0.060841                                                                                                                                           |
| 1                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 06:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.028814                                                                                                                                                       | 0.794847                                                                                                                                                                                                                                                           | 198                                                                                    | 8.657143                                                                                                                                                  | 12.90593                                                                                                                                                   | 4                                                                                           | 8.042651                                                                                                                                                | 8.110929                                                                                                                                           | 8.272081                                                                                                                                                                                                                                        | 8.420832                                                                                                                                | 0.001723                                                                                                                     | 0.010228                                                                                                                                | 0.030299                                                                                                                                                                         | 0.048826                                                                                                                                           |
| 2                                                                                           | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.070219                                                                                                                                                       | 0 70005.6                                                                                                                                                                                                                                                          | 100                                                                                    | 0.6571/0                                                                                                                                                  | 10 14740                                                                                                                                                   | A                                                                                           | 9 070274                                                                                                                                                | 9 142010                                                                                                                                           | 0 010000                                                                                                                                                                                                                                        | 0 575077                                                                                                                                | 0.00111                                                                                                                      | n nneees                                                                                                                                | 0.019450                                                                                                                                                                         | 0.062545                                                                                                                                           |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                           |                                                                                                                                                            |                                                                                             |                                                                                                                                                         | ~                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                              |                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                    |
|                                                                                             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | relia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bilites (OC=5                                                                                                                                                  | i) reliat                                                                                                                                                                                                                                                          | pilites (OC=                                                                           | :6) year                                                                                                                                                  | rly (OC=0)                                                                                                                                                 | yearly (                                                                                    | OC=1)                                                                                                                                                   | (+) :                                                                                                                                              | •                                                                                                                                                                                                                                               |                                                                                                                                         |                                                                                                                              |                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                    |
|                                                                                             | < → .<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | relia<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bilites (OC=5<br>C                                                                                                                                             | i) reliat                                                                                                                                                                                                                                                          | bilites (OC=<br>E                                                                      | =6) year<br>F                                                                                                                                             | fly (OC=0)<br>G                                                                                                                                            | yearly (                                                                                    | OC=1)                                                                                                                                                   | (+) i i                                                                                                                                            | K                                                                                                                                                                                                                                               | L                                                                                                                                       | м                                                                                                                            | N                                                                                                                                       | 0                                                                                                                                                                                | P                                                                                                                                                  |
| 0                                                                                           | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | relia<br>B<br>All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bilites (OC=5<br>C                                                                                                                                             | i) reliat<br>D                                                                                                                                                                                                                                                     | bilites (OC=<br>E                                                                      | F (6) (7)                                                                                                                                                 | fly (OC=0)<br>G                                                                                                                                            | yearly (<br>H                                                                               | I (0C=1)                                                                                                                                                | (†) : .<br>J                                                                                                                                       | K                                                                                                                                                                                                                                               | L                                                                                                                                       | М                                                                                                                            | N                                                                                                                                       | 0                                                                                                                                                                                | P                                                                                                                                                  |
| C                                                                                           | A<br>Dperating A<br>Nonth T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | relia<br>B<br>All<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C<br>C<br>Avg TT                                                                                                                                               | i) reliab<br>D<br>Travel Tim D                                                                                                                                                                                                                                     | E<br>Data Cour                                                                         | F<br>F<br>Free-Flow                                                                                                                                       | G<br>G<br>Congester                                                                                                                                        | yearly (<br>H<br>Congester                                                                  | 0C=1)<br>I<br>80th %-ile                                                                                                                                | (+) :<br>J<br>85th %-ile                                                                                                                           | K<br>90th %-ile                                                                                                                                                                                                                                 | L<br>95th %-ile                                                                                                                         | M<br>Buffer Inc                                                                                                              | N<br>Buffer Inc                                                                                                                         | 0<br>I Buffer In                                                                                                                                                                 | P<br>d Buffer Ir                                                                                                                                   |
| C<br>N<br>2                                                                                 | A<br>Dperating A<br>Nonth 1<br>012-01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | relia<br>B<br>All<br>Time<br>06:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C<br>C<br>Avg TT<br>8.068372                                                                                                                                   | i) reliat<br>D<br>Travel Tim D<br>0.798763                                                                                                                                                                                                                         | E<br>Data Cour<br>16                                                                   | <ul> <li>F</li> <li>Free-Flow</li> <li>8.657143</li> </ul>                                                                                                | G<br>G<br>Congester<br>11.30002                                                                                                                            | H<br>Congester<br>1                                                                         | 0C=1)<br>I<br>80th %-ile<br>8.137909                                                                                                                    | (+) :<br>J<br>85th %-ile<br>8.23685                                                                                                                | <ul> <li>K</li> <li>90th %-ile</li> <li>8.287287</li> </ul>                                                                                                                                                                                     | L<br>95th %-ile<br>9.053562                                                                                                             | M<br>Buffer Inc<br>0.008618                                                                                                  | N<br>Buffer Inc<br>0.020881                                                                                                             | 0<br>Buffer In<br>0.027132                                                                                                                                                       | P<br>d Buffer Ir<br>2 0.12210                                                                                                                      |
| C<br>N<br>2<br>2                                                                            | A<br>Operating A<br>Nonth 1<br>012-01 0<br>012-01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | relia<br>B<br>All<br>Time<br>06:00<br>06:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C<br>C<br>Avg TT<br>8.068372<br>8.049434                                                                                                                       | ) reliat<br>D<br>Travel Tim D<br>0.798763<br>0.796889                                                                                                                                                                                                              | E<br>Data Cour<br>16                                                                   | F<br>F<br>Free-Flow<br>8.657143<br>8.657143                                                                                                               | G<br>Congester<br>11.30002<br>11.33584                                                                                                                     | H<br>Congester<br>1<br>1                                                                    | 0C=1)<br>I<br>80th %-ile<br>8.137909<br>7.983531                                                                                                        | (+) :<br>J<br>85th %-ile<br>8.23685<br>8.191818                                                                                                    | K<br>90th %-ile<br>8.287287<br>8.305004                                                                                                                                                                                                         | L<br>95th %-ile<br>9.053562<br>9.095531                                                                                                 | M<br>Buffer Inc<br>0.008618<br>-0.00819                                                                                      | N<br>Buffer Inc<br>0.020881<br>0.017689                                                                                                 | 0<br>Buffer In<br>0.027132<br>0.03175                                                                                                                                            | P<br>d Buffer Ir<br>2 0.12210<br>5 0.12995                                                                                                         |
| C<br>N<br>2<br>2<br>2                                                                       | A<br>Dperating A<br>Nonth 1<br>012-01 0<br>012-01 0<br>012-01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | relia<br>B<br>All<br>Time<br>06:00<br>06:05<br>06:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586                                                                                                                | D<br>Travel Tim D<br>0.798763<br>0.796889<br>0.80027                                                                                                                                                                                                               | E<br>Data Cour<br>16<br>16<br>16                                                       | F<br>F<br>Free-Flow<br>8.657143<br>8.657143<br>8.657143                                                                                                   | G<br>Congester<br>11.30002<br>11.33584<br>11.93522                                                                                                         | H<br>Congester<br>1<br>1<br>1                                                               | 0C=1)<br>I<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982                                                                                            | (+) :<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384                                                                                        | K<br>90th %-ile<br>8.287287<br>8.305004<br>8.169829                                                                                                                                                                                             | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159                                                                                     | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628                                                                          | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.00027                                                                                     | 0<br>Buffer In<br>0.027132<br>0.03175                                                                                                                                            | P<br>d Buffer Ir<br>2 0.12210<br>6 0.12995<br>9 0.13132                                                                                            |
| 0<br>N<br>2<br>2<br>2                                                                       | A<br>Operating A<br>Nonth 1<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>All<br>Time<br>06:00<br>06:10<br>06:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031                                                                                                    | D<br>Travel Tim 0<br>0.798763<br>0.796889<br>0.80027<br>0.810412                                                                                                                                                                                                   | E<br>Data Cour<br>16<br>16<br>16<br>16                                                 | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143                                                                                                 | G<br>Congester<br>11.30002<br>11.33584<br>11.93522<br>11.90569                                                                                             | H<br>Congester<br>1<br>1<br>1<br>1                                                          | 0C=1)<br>I<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247                                                                                | (+) :<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.188224                                                                            | K<br>90th %-ile<br>8.287287<br>8.305004<br>8.169829<br>8.359028                                                                                                                                                                                 | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802                                                                         | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.00022                                                              | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.00027<br>0.000268                                                                         | 0<br>Buffer In<br>0.027132<br>0.03175<br>0.010665<br>0.021133                                                                                                                    | P<br>d Buffer Ir<br>2 0.12210<br>5 0.12995<br>9 0.13132<br>8 0.14497                                                                               |
| 2<br>2<br>2<br>2<br>2                                                                       | A<br>Dperating J<br>Aonth 1<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B<br>All<br>Time<br>06:00<br>06:05<br>06:10<br>06:15<br>06:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031<br>8.241967                                                                                        | i) reliab<br>D<br>Travel Tim 0<br>0.798763<br>0.796889<br>0.80027<br>0.810412<br>0.815949                                                                                                                                                                          | E<br>Data Cour<br>16<br>16<br>16<br>16<br>16                                           | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143                                                                                     | G<br>Congester<br>11.30002<br>11.33584<br>11.93522<br>11.90569<br>12.4674                                                                                  | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1                                    | 0C=1)<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864                                                                         | <ul> <li>(+) ::</li> <li>J</li> <li>85th %-ile</li> <li>8.23685</li> <li>8.191818</li> <li>8.081384</li> <li>8.188224</li> <li>8.200464</li> </ul> | K<br>90th %-ile<br>8.287287<br>8.305004<br>8.169829<br>8.359028<br>8.603806                                                                                                                                                                     | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309                                                             | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.01663                                                              | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.00027<br>0.000268<br>-0.00504                                                             | 0<br>Buffer In:<br>0.027132<br>0.03175<br>0.010665<br>0.021133<br>0.043902                                                                                                       | P<br>d Buffer Ir<br>2 0.12210<br>5 0.12295<br>9 0.13132<br>8 0.14497<br>2 0.19489                                                                  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2                                                             | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Image: relia           B           All           Time           06:00           06:05           06:10           06:15           06:20           06:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bilites (OC=5<br>C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031<br>8.241967<br>8.199537                                                           | D<br>Travel Tim D<br>0.798763<br>0.80027<br>0.810412<br>0.815949<br>0.811749                                                                                                                                                                                       | E<br>Data Cour<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                         | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143                                                             | G<br>Congester<br>11.3002<br>11.33584<br>11.93522<br>11.90569<br>12.4674<br>12.1247                                                                        | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 0C=1)<br>1<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864<br>8.260919                                                        | (+) ::<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.188224<br>8.200464<br>8.301323                                                   | <ul> <li>K</li> <li>90th %-ile</li> <li>8.287287</li> <li>8.305004</li> <li>8.169829</li> <li>8.359028</li> <li>8.603806</li> <li>8.585483</li> </ul>                                                                                           | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309<br>9.673306                                                 | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.00022<br>-0.01663<br>0.007486                                      | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.000268<br>-0.000268<br>-0.00504<br>0.012414                                               | 0<br>Buffer In:<br>0.027132<br>0.03175<br>0.010665<br>0.021133<br>0.043902<br>0.043902                                                                                           | P<br>d Buffer In<br>2 0.12210<br>5 0.12995<br>9 0.13132<br>8 0.14497<br>2 0.19489<br>9 0.17973                                                     |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | A<br>Deperating A<br>Month 1<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0<br>012-01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | relia B All Time 06:00 06:05 06:10 06:15 06:20 06:25 06:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031<br>8.241967<br>8.199537<br>8.305444                                                                | D<br>D<br>Travel Tim D<br>0.798763<br>0.796889<br>0.80027<br>0.810412<br>0.815949<br>0.811749<br>0.822233                                                                                                                                                          | E<br>Data Cour<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                   | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143                                                 | G<br>Congester<br>11.30002<br>11.33584<br>11.93522<br>11.90569<br>12.4674<br>12.1247<br>13.28149                                                           | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | OC=1)<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864<br>8.260919<br>8.139707                                                 | (+) ::<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.198224<br>8.200464<br>8.301323<br>8.158652                                       | <ul> <li>K</li> <li>90th %-ile</li> <li>8.287287</li> <li>8.305004</li> <li>8.169829</li> <li>8.359028</li> <li>8.603806</li> <li>8.585483</li> <li>8.393814</li> </ul>                                                                         | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309<br>9.673306<br>9.787369                                     | M<br>8uffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.00022<br>-0.01663<br>0.007486<br>-0.01996                          | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.00027<br>0.000268<br>-0.00504<br>0.012414<br>-0.01767                                     | 0<br>Buffer In<br>0.027132<br>0.03175<br>0.010665<br>0.021135<br>0.043902<br>0.043902<br>0.047065                                                                                | P<br>d Buffer In<br>2 0.12210<br>5 0.12995<br>9 0.13132<br>8 0.14497<br>2 0.19489<br>9 0.17973<br>4 0.17842                                        |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | A<br>)perating J<br>Aonth 1<br>012-01 (<br>012-01 (<br>0 | relia B All Time 06:00 06:05 06:10 06:15 06:20 06:25 06:30 06:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031<br>8.241967<br>8.199537<br>8.305444<br>8.30041                                                     | ) reliab<br>D<br>Travel Tim (0<br>0.798763<br>0.796889<br>0.80027<br>0.810412<br>0.810412<br>0.815949<br>0.811749<br>0.822233<br>0.824668                                                                                                                          | E<br>Data Coun<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16             | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143                                     | dy (OC=0)<br>G<br>Congestec<br>11.30002<br>11.33584<br>11.93522<br>11.90569<br>12.4674<br>12.1247<br>13.28149<br>13.75378                                  | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | OC=1)<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864<br>8.260919<br>8.139707<br>8.192797                                     | (+) ::<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.188224<br>8.200464<br>8.301323<br>8.158652<br>8.250949                           | K<br>90th %-ile<br>8.287287<br>8.305004<br>8.169829<br>8.359028<br>8.603806<br>8.585483<br>8.393814<br>8.481761                                                                                                                                 | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309<br>9.673306<br>9.787369<br>9.787369                         | M<br>Buffer Inc<br>0.008618<br>-0.01628<br>-0.01628<br>-0.00022<br>-0.01663<br>0.007486<br>-0.01996<br>-0.01654              | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.000268<br>-0.000268<br>-0.000268<br>-0.00504<br>0.012414<br>-0.01767<br>-0.00949          | 0<br>Buffer In<br>0.027132<br>0.03175<br>0.010669<br>0.021133<br>0.043902<br>0.043902<br>0.047069<br>0.01064                                                                     | P<br>dBuffer In<br>2 0.12210<br>5 0.12295<br>9 0.13133<br>8 0.14497<br>2 0.19485<br>9 0.17973<br>4 0.17842<br>4 0.19545                            |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | A<br>)perating A<br>Aonth 1<br>012-01 (<br>012-01 (<br>0 | relia B All Time 06:00 06:05 06:10 06:15 06:20 06:25 06:25 06:30 06:35 06:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031<br>8.241967<br>8.199537<br>8.305444<br>8.330041<br>8.330041                                        | ) reliat<br>D<br>Travel Tim (0<br>0.798763<br>0.796889<br>0.80027<br>0.810412<br>0.810412<br>0.815949<br>0.811749<br>0.822233<br>0.824668<br>0.830975                                                                                                              | E<br>Data Cour<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143             | dy (OC=0)<br>G<br>Congester<br>11.30002<br>11.33584<br>11.93522<br>11.90569<br>12.4674<br>12.1247<br>13.28149<br>13.75378<br>14.39633                      | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | OC=1)<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864<br>8.260919<br>8.139707<br>8.192297<br>8.209454                         | (+) ::<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.081384<br>8.188224<br>8.200464<br>8.301323<br>8.158652<br>8.250949<br>8.280664   | <ul> <li>K</li> <li>90th %-ile</li> <li>8.287287</li> <li>8.305004</li> <li>8.169829</li> <li>8.359028</li> <li>8.603806</li> <li>8.585483</li> <li>8.393814</li> <li>8.481761</li> <li>8.540673</li> </ul>                                     | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309<br>9.673306<br>9.787369<br>9.958212<br>10.18179             | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.00022<br>-0.01663<br>0.007486<br>-0.01996<br>-0.01654<br>-0.019654 | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.000268<br>-0.00504<br>0.012414<br>-0.01267<br>-0.00949<br>-0.01347                        | 0<br>Buffer Int<br>0.027132<br>0.03175<br>0.010669<br>0.021133<br>0.043902<br>0.043902<br>0.047069<br>0.01064                                                                    | P<br>d Buffer In<br>2 0.12210<br>5 0.12995<br>9 0.13132<br>8 0.14497<br>2 0.19489<br>9 0.17973<br>4 0.17973<br>4 0.17842<br>4 0.19545<br>5 0 21307 |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | A<br>Dperating A<br>Nonth 1<br>012-01 0<br>012-01 0<br>002-01 0<br>0 | Image: second | C<br>C<br>Avg TT<br>8.068372<br>8.049434<br>8.083586<br>8.186031<br>8.241967<br>8.199537<br>8.305444<br>8.3305444<br>8.330541<br>8.399743                      | ) reliat<br>D<br>Travel Tim D<br>0.798763<br>0.796889<br>0.80027<br>0.810412<br>0.815949<br>0.811749<br>0.822233<br>0.824668<br>0.830975<br>0.824067                                                                                                               | E<br>Data Cour<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16             | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143                                     | dy (OC=0)<br>G<br>Congester<br>11.30002<br>11.33584<br>11.93522<br>11.90569<br>12.4674<br>12.1247<br>13.28149<br>13.75378<br>14.39639                      | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | OC=1)<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864<br>8.260919<br>8.139707<br>8.19297<br>8.29297                           | (+) ::<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.200464<br>8.301323<br>8.158652<br>8.250949<br>8.280664                           | <ul> <li>K</li> <li>90th %-ile</li> <li>8.287287</li> <li>8.305004</li> <li>8.169829</li> <li>8.359028</li> <li>8.603806</li> <li>8.585483</li> <li>8.393814</li> <li>8.481761</li> <li>8.540673</li> <li>9.20205</li> </ul>                    | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309<br>9.673306<br>9.787369<br>9.958212<br>10.18179             | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.00022<br>-0.01663<br>0.007486<br>-0.01996<br>-0.01654<br>-0.02196  | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.00027<br>0.000268<br>-0.00504<br>0.012414<br>-0.01767<br>-0.00949<br>-0.01347             | 0<br>Buffer In:<br>0.027132<br>0.03175<br>0.010669<br>0.021133<br>0.043902<br>0.043902<br>0.047065<br>0.01064<br>0.01064<br>0.01064                                              | P<br>d Buffe<br>2 0.12<br>3 0.14<br>2 0.19<br>9 0.17<br>4 0.17<br>4 0.19<br>5 0.21                                                                 |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | A<br>Dperating A<br>Nonth 1<br>012-01 0<br>012-01 0<br>0 | relia  B All Time 06:00 06:05 06:10 06:15 06:20 06:25 06:30 06:35 06:40 06:45 vearly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>C<br>Avg TT<br>8.068372<br>8.049434<br>8.08386<br>8.186031<br>8.241967<br>8.199537<br>8.305444<br>8.3305444<br>8.330341<br>8.393745<br>9.57465<br>0.57465 | <ul> <li>reliat</li> <li>reliat</li> <li>D</li> <li>Travel Tim D</li> <li>0.798763</li> <li>0.796889</li> <li>0.80027</li> <li>0.810412</li> <li>0.815949</li> <li>0.811749</li> <li>0.822233</li> <li>0.824668</li> <li>0.8346975</li> <li>vearly (OC:</li> </ul> | E<br>Data Cour<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16       | Free-Flow<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143<br>8.657143 | dy (OC=0)<br>G<br>Congester<br>11.30002<br>11.33584<br>11.93522<br>11.90569<br>12.4674<br>12.1247<br>13.28149<br>13.75378<br>14.39633<br>15 octroc<br>mont | yearly (<br>H<br>Congester<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | OC=1)<br>80th %-ile<br>8.137909<br>7.983531<br>7.951982<br>8.184247<br>8.104864<br>8.260919<br>8.139707<br>8.192297<br>8.209454<br>9.196445<br>0.196445 | (+) ::<br>J<br>85th %-ile<br>8.23685<br>8.191818<br>8.081384<br>8.200464<br>8.301323<br>8.158652<br>8.250949<br>8.280664<br>9.544738<br>(+) ::     | <ul> <li>K</li> <li>90th %-ile</li> <li>8.287287</li> <li>8.305004</li> <li>8.169829</li> <li>8.359028</li> <li>8.603806</li> <li>8.585483</li> <li>8.393814</li> <li>8.481761</li> <li>8.540673</li> <li>9.607385</li> <li>9.607385</li> </ul> | L<br>95th %-ile<br>9.053562<br>9.095531<br>9.145159<br>9.372802<br>9.848309<br>9.673306<br>9.787369<br>9.958212<br>10.18179<br>10.94561 | M<br>Buffer Inc<br>0.008618<br>-0.00819<br>-0.01628<br>-0.00022<br>-0.01663<br>-0.01996<br>-0.01654<br>-0.02196<br>-0.01554  | N<br>Buffer Inc<br>0.020881<br>0.017689<br>-0.00027<br>0.000268<br>-0.00504<br>0.012414<br>-0.01267<br>-0.00949<br>-0.01347<br>-0.00949 | 0<br>Buffer Ini<br>0.027132<br>0.03175<br>0.010669<br>0.021133<br>0.043902<br>0.043902<br>0.043902<br>0.047065<br>0.01066<br>0.01066<br>0.01066<br>0.01066<br>0.01066<br>0.01066 | P<br>d Buffe<br>2 0.12:<br>5 0.12:<br>5 0.13:<br>8 0.14<br>2 0.19:<br>9 0.17:<br>4 0.17:<br>4 0.19:<br>5 0.21:<br>2 0.1                            |

Figure 7.3.7 Output File Example of Time of Day Reliability Writer module

*Travel-Time Data Writer* writes travel-time data and the related non-traffic data, such weather and incident, depending on the specified operating conditions as shown in Figure 7.3.8. Using this data set, user can calculate different types of reliability measures not defined in the current version of TTRMS.

|    | A                            | В           | С        | D         | E       | F      | G          | Н      | - I         | J         | K      | L         | M         | N          | 0        |
|----|------------------------------|-------------|----------|-----------|---------|--------|------------|--------|-------------|-----------|--------|-----------|-----------|------------|----------|
| 1  | Operating Condition:         | Normal-In   | cident   |           |         |        |            |        |             |           |        |           |           |            |          |
| 2  |                              |             |          |           | weather |        |            |        |             | incident  |        |           |           |            |          |
| 3  | time                         | tt          | speed    | vmt       | usaf    | wban   | precip_typ | precip | precip_int  | type      | impact | cdts      | udts      | xdts       | distance |
| 4  | 2012-01-09 07:15             | 7.712595    | 78.82043 | 3444.1    | 726580  | 14922  |            | (      | 0 Missing   | PROPERTY  | DAMAGE | 2012-01-0 | 2012-01-0 | 2012-01-0  | 12.76    |
| 5  | 2012-01-12 08:30             | 7.943758    | 76.68258 | 2467.75   | 726580  | 14922  |            | (      | 0 Missing   | DEBRIS ON | ROADWA | 2012-01-1 | 2012-01-1 | 2012-01-1  | 10.15    |
| 6  | 2012-01-17 07:55             | 17.65751    | 44.34509 | 3249.65   | 726580  | 14922  |            | (      | 0 Missing   | MEDICAL   |        | 2012-01-1 | 2012-01-1 | 2012-01-1  | 12.76    |
| 7  | 2012-01-17 08:00             | 17.23645    | 44.34085 | 3212.25   | 726580  | 14922  |            | (      | 0 Missing   | MEDICAL   |        | 2012-01-1 | 2012-01-1 | 2012-01-1  | 12.76    |
| 8  | 2012-01-17 08:05             | 17.33997    | 46.58603 | 3157.95   | 726580  | 14922  |            | (      | 0 Missing   | MEDICAL   |        | 2012-01-1 | 2012-01-1 | 2012-01-1  | 12.76    |
| 9  | 2012-01-17 08:10             | 17.48691    | 48.28028 | 2879.5    | 726580  | 14922  |            | (      | 0 Missing   | MEDICAL   |        | 2012-01-1 | 2012-01-1 | 2012-01-1  | 12.76    |
| 10 | 2012-01-17 08:15             | 14.49533    | 49.71594 | 2753.7    | 726580  | 14922  |            | (      | 0 Missing   | MEDICAL   |        | 2012-01-1 | 2012-01-1 | 2012-01-1  | 12.76    |
| 11 | 2012-01-17 08:20             | 13.73941    | 51.82852 | 2614.7    | 726580  | 14922  |            | (      | 0 Missing   | MEDICAL   |        | 2012-01-1 | 2012-01-1 | 2012-01-1  | 12.76    |
| 12 | 2012-02-02 07:30             | 9.727437    | 65.88184 | 3595.8    | 726580  | 14922  |            | (      | 0 Not Repor | PROPERTY  | DAMAGE | 2012-02-0 | 2012-02-0 | 2012-02-03 | 14.17    |
| 13 | 2012-02-02 07:35             | 9.594685    | 64.42435 | 3580.2    | 726580  | 14922  |            | (      | 0 Not Repor | PROPERTY  | DAMAGE | 2012-02-0 | 2012-02-0 | 2012-02-02 | 14.17    |
| 14 | 2012-02-02 07:40             | 9.724336    | 64.03348 | 3571.4    | 726580  | 14922  |            | (      | 0 Not Repor | PROPERTY  | DAMAGE | 2012-02-0 | 2012-02-0 | 2012-02-02 | 14.17    |
| 15 | 2012-02-02 07:45             | 9.280591    | 64.33515 | 3627.65   | 726580  | 14922  |            | (      | Not Repor   | PROPERTY  | DAMAGE | 2012-02-0 | 2012-02-0 | 2012-02-0  | 14.17    |
|    | <ul> <li>Operatir</li> </ul> | ng Codition | s (OC)   | data (OC= | 0) data | (OC=1) | data (OC:  | =2)    | + : •       |           |        |           |           |            | Þ        |

Figure 7.3.8 Output File Example of Travel Time Data Writer module
**Whole-Time-Reliability (WTP) Graph Writer** develops a set of multiple graph-image files with WTP reliability measures. Figures 7.3.9 - 16 show the types of the output graphs currently available. It needs to be noted that the number of graph files depends on the number of operating conditions specified by user.

The types of graphs currently available are as follows:

- Cumulative probability of travel time rate for each operating condition (Figure 7.3.9)
- Reliability index for each operating condition (Figure 7.3.10)
- Yearly reliability index variations (Figure 7.3.11)
- Yearly multiple reliability indices comparison (Figure 7.3.12)
- Monthly reliability index variations (Figure 7.3.13)
- Monthly multiple reliability indices comparison (Figure 7.3.14)
- Daily reliability index variations (Figure 7.3.15)
- Relationship of travel time rate and buffer index using daily data (Figure 7.3.16)



Figure 7.3.9 An Example Cumulative-Probability graph of Travel Time Rate



Figure 7.3.10 An Example Buffer-Index graph depending on Operating Conditions



Figure 7.3.11 An Example Graph for Yearly Buffer Index Variations



Figure 7.3.12 An Example Graph for Yearly Multiple Indices Comparison



Figure 7.3.13 An Example Graph for Monthly Buffer Index Variations



Figure 7.3.14 An Example Graph for Monthly Multiple Indices Comparison



Figure 7.3.15 An Example Graph for Daily Buffer Index Variations



Figure 7.3.16 Variations of Daily Travel-Time Rate vs. Buffer-Index

*Time of Day Reliability (TOD) Graph Writer* creates TOD reliability graphs for each time interval for each operating condition with each data set, i.e., whole data set, yearly data set and monthly data set as shown in Figure 7.3.17-19. The graph types currently available are as follows:

- Travel time variations by time of day (Figure 7.3.17)

- Yearly TOD reliability indices (Figure 7.3.18)

- Monthly TOD reliability indices (Figure 7.3.19)







Figure 7.3.18 An Example graph for Yearly Planning-Time Index by Time of Day



Figure 7.3.19 An Example graph for Monthly Planning-Time Index by Time of Day

# **CHAPTER 8: SYSTEM INTEGRATION AND TESTING**

## 8.1 INTRODUCTION

In this chapter, all the individual modules developed in the previous chapters are integrated and the combined system is tested with real data from the metro freeway network in Twin Cities. To facilitate the integration and the data-exchange process among various modules, a set of the new functions and modules were developed. Figure 8.1.1 shows the locations and interrelationships of the new functions and modules, developed in this chapter, with the other modules in the TTRMS architecture.

First, the *Admin Client* module, developed in the previous chapter to manage non-traffic data, was enhanced with the new functions that can be used to configure the system parameters and to apply the updated data into the database. Next, the *Task Processing* module was developed for implementing the functions, including the procedures to handle the request from the *Admin Client*, to operate the entire system. The Admin Service module was also updated to connect the *Admin Client* and the *Task Processing* module. Finally, the Periodic *Data Processing* module was developed to perform the reserved tasks at pre-configured times on each day, week and month.

The functionalities of the major modules newly developed and/or enhanced in this chapter are as follows:

- Admin Client module, enhanced with a set of new functions:
  - provides the data-change log to the administrator.
  - sends the requests to apply the changed-data into the database,
  - configures the system parameters.
- Periodic Data Processing module, newly developed:
  - Performs daily, weekly and monthly tasks to prepare for travel-time data and time-ofday reliability measures, and to check missing data.
- *Task Processing* module, newly developed:
  - prepares for initial-data including weather, incident, travel times and categorization data for given-time period,
  - calculates time-of-day (TOD) reliability measures for all routes
  - calculates or categorizes travel time data for updated or inserted non-traffic data or route,

- checks if there are missing travel-time data.

The rest of this chapter summarizes the details of the above modules and the operating process of the integrated system, including initial data preparation, post processing for updated data and performing periodic tasks.





#### **8.2 INTEGRATION OF THE ENTIRE SYSTEM**

Figure 8.2.1 shows the modules developed and updated in this chapter for the system integration. The *Admin Client* module is updated with the new functions to configure the system parameters and manage the data changes by administrator. The *Task Processing* module is developed to process the requests from the *Admin Client* and the *Periodic Data Processing* module, which performs the daily, weekly and monthly tasks. The main modules in Figure 8.2.1 for calculating travel-time reliability measures have been developed in the previous chapters.



Figure 8.2.1 Updated and Added Modules for the System Integration

#### 8.2.1 Enhancement of the Admin-Client and Admin-Service module

Figure 8.2.2 shows, the screen shot of the Admin Client, developed in the previous chapter, to manage the non-traffic data, which include travel-time route, work-zone, special-event and road condition during snow events. In this chapter, two new tabs, the *Data-Change Log Tab* and the *System-Configuration Tab*, are added to the Admin Client to facilitate the data-update and the system configuration processes. The main functionalities of each tab are as follows:

- The **Data-Change Log Tab**, shown in Figure 8.2.3, displays all the data-change activity logs, created in the *Admin Client* and stored in the database, in the following format:
  - Time: the time when data is changed
  - Action: type of data change action, i.e., "insert", "delete", or "update"

- Data: the description of changed data
- Finished: flag showing whether the processing of the subject data change is finished or not
- Status: the status of the corresponding data processing.

"in queue" indicates the corresponding data is waiting to be processed.

"running" denotes the changed data is being processed.

In this tab, the administrator can send the request to process all the changed data to the server by clicking "Update Database with Changed Data" button.



#### (a) Travel Time Route Configuration User Interface



(b) Operating Condition Data Input User Interface

Figure 8.2.2 User Interface of the Admin Client to Manage Non-Traffic Data

| Tools Help           |             |                                                                       |     |                   |                                              |
|----------------------|-------------|-----------------------------------------------------------------------|-----|-------------------|----------------------------------------------|
| oute Config Operatin | g Condition | Data Input Data Change Log System Configurations                      |     |                   |                                              |
|                      |             |                                                                       |     |                   | 100                                          |
|                      |             |                                                                       |     |                   | 100 0                                        |
| Time                 | Actio       | un ale a al cala da tra unu at le a unu a a a a a d                   | Fit | inished           | Status                                       |
| 018-02-01 16:00:55   | delete      | unchecked data must be processed                                      | -   |                   | deleted at 2018-02-01 16:00:55               |
| 018-02-01 15:39:37   | insert      | •                                                                     |     |                   | in queue                                     |
| 018-02-01 11:39:51   | delete      | (e.g. calculate travel times and categorize)                          |     |                   | deleted at 2018-02-01 11:39:51               |
| 18-02-01 11:39:43    | delete      | (C.S. calculate (id=77, name=01135E to TH62)                          |     |                   | deleted at 2018-02-01 11:39:43               |
| 18-02-01 11:39:39    | update      | Travel Time Route (id=96, name=01TH62 to CR38)                        |     |                   | updated and processed at 2018-02-01 11:39:39 |
| 18-02-01 11:39:30    | insert      | Travel Time Route (id=96, name=Opposite Direction of 01 CR38 to TH62) |     | <b>H</b>          | in queue                                     |
| 018-02-01 11:39:29   | insert      | Travel Time Route (id=95, name=01 CR38 to TH62)                       |     | Π –               | in queue                                     |
| 18-02-01 11:38:37    | delete      | Travel Time Route (id=72, name=011694 to 135E)                        |     | Z                 | deleted at 2018-02-01 11:38:37               |
| 18-02-01 11:38:17    | delete      | Travel Time Route (id=71, name=02 I35E to I694)                       |     |                   | deleted at 2018-02-01 11:38:17               |
| 018-02-01 11:38:10   | update      | Travel Time Route (id=94, name=01 TH5 to I35E)                        |     |                   | updated and processed at 2018-02-01 11:38:10 |
| 018-02-01 11:38:01   | insert      | Travel Time Route (id=94, name=Opposite Direction of 02 I35E to TH5)  |     | $\overline{\Box}$ | in queue                                     |
| 018-02-01 11:38:00   | insert      | Travel Time Route (id=93, name=02 I35E to TH5)                        |     | Ē                 | in queue                                     |
| 018-02-01 11:04:50   | update      | Travel Time Route (id=92, name=01 TH55 to I35W)                       |     |                   | updated and processed at 2018-02-01 11:04:50 |
| 018-02-01 11:04:43   | insert      | Travel Time Route (id=92, name=Opposite Direction of 02 I35W to TH55) |     |                   | in queue                                     |
| 018-02-01 11:04:42   | insert      | Travel Time Route (id=91, name=02 I35W to TH55)                       |     |                   | in queue                                     |
| 018-02-01 11:04:01   | update      | Travel Time Route (id=90, name=02 I35W to I494)                       |     | $\sim$            | updated and processed at 2018-02-01 11:04:01 |
| 018-02-01 11:03:52   | insert      | Travel Time Route (id=90, name=Opposite Direction of 01 I494 to I35W) |     |                   | in queue                                     |
| 018-02-01 11:03:51   | insert      | Travel Time Route (id=89, name=01 I494 to I35W)                       |     |                   | in queue                                     |
| 018-02-01 11:01:24   | update      | Travel Tim                                                            |     |                   | updated and processed at 2018-02-01 11:01:24 |
| 018-02-01 11:01:13   | insert      | Travel Tim Doquest to proceed the unfinished do                       | +-> |                   | in queue                                     |
| 018-02-01 11:01:12   | insert      | Travel Tim Request to proceed the uninished da                        | ld  |                   | in queue                                     |
| 018-02-01 10:51:54   | update      | Travel Tim                                                            |     | $\leq$            | updated and processed at 2018-02-01 10:51:54 |
| 018-02-01 10:51:45   | insert      | Travel Tim                                                            |     |                   | in queue                                     |
| 018-02-01 10:51:44   | insert      | Travel Tim                                                            |     |                   | in queue                                     |
| 018-01-31 16-44-20   | delete      | Travel Time Route (id=83, name=test)                                  |     | $\leq$            | deleted at 2018-01-31 16:44:29               |

Figure 8.2.3 Data Change Log Management User Interface

- The *System-Configuration Tab,* shown in Figure 8.2.4, contains two sub-tabs to configure 1) the periodic-job scheduling and 2) the categorization parameters.
  - In the periodic-job setting tab, an administrator can set the following parameters:
    - Data Archive-Start Year: the start year to produce travel-time data for pre-defined routes.
    - Daily Job-Start Time: the time when daily tasks are performed/
    - Daily Job Offset: the offset in number of days to calculate travel-time in daily tasks
    - Weekly Job Start Time: the week day and time when weekly tasks are performed.
    - *Monthly Job Start Time*: the date and time when monthly tasks are performed.

- In the categorization-parameter setting tab, an administrator can set the parameters used in categorization process as shown in Figure 8.2.4(b).

| 🙆 Travel Time Reliability Estimation System Client - 1.0.0                                    |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| File Tools Help                                                                               |  |  |  |  |  |  |  |  |  |
|                                                                                               |  |  |  |  |  |  |  |  |  |
| Route Config Operating Condition Data Input Data Change Log System Configurations             |  |  |  |  |  |  |  |  |  |
| Periodic Job Setting Categorization Parameter Setting                                         |  |  |  |  |  |  |  |  |  |
| Data Archive Start Year: 2010 ~ *Travel times will be calculated from the given year          |  |  |  |  |  |  |  |  |  |
| Daily Job Start Time: 11:00pm 🔻                                                               |  |  |  |  |  |  |  |  |  |
| Daily Job Offset: 3 v days * Travel times of (today - N days) will be calculated in daily job |  |  |  |  |  |  |  |  |  |
| Weekly Job Start Time: Sunday V 11:00pm                                                       |  |  |  |  |  |  |  |  |  |
| Monthly Job Start Time: 1 v 11:00pm                                                           |  |  |  |  |  |  |  |  |  |
|                                                                                               |  |  |  |  |  |  |  |  |  |

# (a) Periodic-Job Configuration Tab

| 실 Travel Time F                          | keliability Estimation System Client - 1.0.0                                                                                                                                    |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Route Config C                           | Perating Condition Data Input Data Change Log System Configurations                                                                                                             |
| Periodic Job Set                         | ting Categorization Parameter Setting                                                                                                                                           |
| Incident Wo                              | rkzone Special Event                                                                                                                                                            |
| Maximum d                                | istance affected by an incident                                                                                                                                                 |
| Maximum                                  | distance from downstream boundary of a given route : 10.0 mile                                                                                                                  |
| Maximum                                  | distance from upstream boundary of a given route : 10.0 mile                                                                                                                    |
| Incident Worka                           | one Special Event                                                                                                                                                               |
| Maximum dist<br>Maximum di<br>Maximum di | ance affected by a work zone<br>itance from downstream boundary of a given route : [10.0] mile<br>itance from upstream boundary of a given route : 10.0 mile                    |
| Incident Workz                           | one Special Event                                                                                                                                                               |
| Time Window                              | Parameter                                                                                                                                                                       |
| - Arrival Win                            | dow: [150 minutes * Travel time data from (event_start_time - arrival_window) to event_start_time<br>are categorized 'Arrival' type                                             |
| - Departure                              | Window1:         120         minutes         * Travel time data from (event_start_time + departure_window_1)<br>to (event_start_time + departure_window_1 + departure_window_2) |
| - Departure                              | Window2: 150 minutes are categorized 'Departure' type                                                                                                                           |

(b) Categorization-Parameter Configuration Tab

Figure 8.2.4 System-Configuration User Interface

### 8.2.2 Development of the Periodic Data-Processing module

Figure 8.2.5 shows the structure of the *Periodic Data-Processing* module, which is responsible for executing the tasks to calculate and categorize travel times at scheduled times for all pre-defined routes. This module interacts with *Admin Services, Task Processing* and *Travel Time and Reliability* modules. Further, all the functions that perform the tasks are implemented in the *Task Processing* and *Travel Time and Reliability* modules. The operational sequence of the *Periodic Data Processing* module is as follows:

- 1) Task-Scheduler and Worker-Process modules are started during the boot sequence of the system.
- 2) Task-Scheduler puts daily, weekly and monthly tasks to the shared queue with the Worker Process at each scheduled time.
- 3) Worker-Process, a separated process from the server process, receives the tasks from the shared queue and executes the tasks using the *Task Processing* and *Travel Time and Reliability* module.
- 4) Time schedules are updated by the *Admin Client* module. The updated-time information is saved in the database and applied to currently running scheduler through the *Admin Services* module.



Figure 8.2.5 Periodic Data Processing module

## Daily-Task Processing

In the current version of TTRMs, the travel times for all pre-defined routes are calculated on a daily basis and those travel times calculated for every day are categorized according to the operating conditions, such as weather and incident, for each day. Further, the incident and weather data for each day are loaded automatically before the categorization of the travel times is performed. Figure 8.2.6 shows the sub-modules for processing the daily tasks, whose operational sequence is as follows:

- *Scheduler* module runs the *Daily-Task* module, which calls the individual task modules in the *Daily Tasks* module in a specific order.
- Individual task modules use the *Task Processing* module and *Travel Time and Reliability* module developed in the previous tasks





## Weekly-Task Processing

In the current version of TTRMS, the Time-of-Day (TOD) reliability measures for all pre-defined routes are calculated on a weekly basis. Those TOD reliability measures are used as the basis for the Travel-Time Information Service, which is designed to provide public an expected travel time d for a selected route in real time. Figure 8.2.7 shows the structure and operational sequence for the Weekly-Tasks module, whose main work is performed by the *TOD Reliabilities Pre-Calculation Task* module.



#### Figure 8.2.7 Structure and Sequence for Weekly-Task processing in Periodic Data Processing module

## Monthly-Task Processing

The main function of the Monthly-Task module is to check if there is any missing data in the travel times calculated by the Daily-Tasks module. If any missing data are found, it runs the travel-time calculation and categorization procedures. Figure 8.2.8 shows the structure and operational sequence of the Monthly-Tasks module.



#### Figure 8.2.8 Structure and Operational Sequence of the Monthly-Task module in Periodic Data Processing

## 8.2.3 Development of the Task-Processing module

Figure 8.2.9 shows the structure of the Task-Processing module, whose main responsibility is to execute the functions that operate the entire system. The main functionalities of each submodule are as follows:

*Initial-Data Maker* module calculates the travel-times for all predefined routes and categorizes them for given time periods before the entire system is executed.

- In the current version, the weather and incident data are imported automatically from the CAD/IRIS database and the NOAA data archives by the *Incident-Data Loader* and the *NOAA-Weather Data Loader* submodules before the travel-time data are categorized, while other non-traffic data, such as work zone, special event and road condition during snow events, are entered manually by administrator. The structure of those two submodules is shown in Figure 8.2.10.

-The calculation and categorization of the travel-time data is performed by the *Travel-Time and Reliability* module developed in the previous chapters.



Figure 8.2.9 Structure of the Task-Processing module



Figure 8.2.10 Sub-modules in the Initial-Data Mark module

**TOD Reliability Calculator module** calculates the time of day (TOD) reliability measures for given dates and for all predefined routes by using the *pre-calculation* functions of the *Real-Time Travel-Time Calculation* module.

**Data-Processor** module calculates and categorizes travel-time data with updated/inserted non-traffic data, such as work zone, special event and winter-road status, and also for updated routes. Figure 8.2.11 shows the flow chart of the process of this module, which has the following sequence:

- 1) Retrieving the data-change logs to be processed from the database.
- 2) Extracting the change item from the database according to the data-change log.
- 3) Preparing the handler to process the retrieved data.
- 4) Running the fetched handler with the retrieved data item

The above process is iterated for all data-change logs.



Figure 8.2.11 Flow Chart of Data Processor module

*Travel-Time Data Checker* module checks if there are missing travel-time data, and, if there are, it calculates and categorizes the travel-time data for those missing data.

- Checking any missing data is performed by comparing the expected number of the travel-time data for given time periods and the number of stored travel-time data. It first divides the whole data set into yearly, monthly and daily data sets and checks the existence of any missing travel-time data in a sequential manner, as shown in Figure 8.2.11.



Figure 8.2.12 Flow Chart of Travel Time Data Checker module

### 8.3 OPERATING PROCESS OF THE INTEGRATED SYSTEM

Figure 8.3.1 shows the operating process of the integrated system, which has the following sequence:

- 1) Editing of non-traffic data by the Admin Client, where insert/update/delete-operations of routes, weather, incident, work-zone and road-condition data are performed.
- 2) Performing a set of scheduled tasks in the Server.
- 3) User-specification of operating conditions in the User Client and Calculation of the travel-time reliability measures for given conditions.
- 4) Travel-Time information service based on time-of-day reliability measures.



Figure 8.3.1 Operating Process of the Integrated System

#### Editing operations of non-traffic data in the Admin Client

In the current version of TTRMS, an administrator manages the non-traffic data, such as travel-time reliability routes, work zone, special event and road condition data, which are entered manually. Further, the system parameters, e.g., periodic job schedule, are configured in the *Admin Client*, whose screen shot is shown in Figure 8.3.2. In addition, the administrator can send the request to process the changed data to the server.



Figure 8.3.2 Screen Shot of Admin Client

## Performing Scheduled Tasks in the server

The scheduled tasks described in the previous chapter are executed automatically at specified time schedules:

Daily-tasks Processing: The calculation and categorization of the travel times for all pre-defined routes are performed on a daily basis after the weather data from NOAA and the incident data from CAD and IRIS are imported.

Weekly-tasks Processing: The calculation of Time of Day (TOD) reliability measures are conducted on a weekly basis and those TOD reliability measures are stored into the database for all pre-defined routes.

Monthly-tasks Processing: The examination of any missing travel-time data is performed every month. If any travel-time data are missing, they are calculated and categorized by appropriate functions.

## Travel-time reliability estimation with the user client

The travel-time reliability estimation process is triggered by the user client, whose screen shot is shown in Figure 8.3.3. The user client enables a user to set the parameters required to estimate reliability measures. Those parameters include routes, time periods, types of reliability measures, output types and operating conditions. Once user specifies those parameters, the server executes the estimation process and produces output in the format of spreadsheets and graphs.

| Saint Anthony           | MN 51 Kollars                  | Travel Time Route and Time Frame                                                                                                                            |
|-------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24                      | Marine<br>Seaplane             | Route Group Single Route                                                                                                                                    |
| 13<br>234               | SW SE ATTAC                    | I-35E and I-35W NB (south split to I-494) $$\sim$$                                                                                                          |
| 214                     | Roseville MN 36                | Start Date January 1, 2012 End Date December 31, 2013                                                                                                       |
| Lauderdale              | Falcon Heights                 | Start Time 6:00am   End Time 11:00am                                                                                                                        |
|                         | MUSI                           | Week Days: Sun. Mon. Tue. Weed. Thu. Fri. Sat.<br>Holidays: except holidays                                                                                 |
| 54 2358<br>236/236<br>2 | <sup>33</sup> 238 2398 240 Sai | Parameter for Reliability Estimation<br>Reliability Type :  Whole Time Period Reliability Time of Day Reliability Output Type :  Spreadsheets  Graph Images |
| or gfellow              | MN 51                          | Operating Conditions                                                                                                                                        |
|                         | 705                            | Name Description                                                                                                                                            |
|                         | MN 51                          | All all data during the time periods<br>DryDay dryday, no incident, no workzone, no specialevent, no sno                                                    |
|                         | 103B                           | Normal-Incident dryday, incident, no workzone, no specialevent, no snowm                                                                                    |
| nis                     | Lilydale MN 51                 | OnlyIncident incident (does not care other conditions)                                                                                                      |
|                         | 1034                           | OnlySpecialevent special event (does not care other conditions)                                                                                             |
|                         |                                |                                                                                                                                                             |

Figure 8.3.3 Screen Shot of User Client

## Travel-time information service

As part of the TTRMS operations, a web page has been developed to investigate the feasibility of providing public expected travel-times for selected routes in real time. The expected travel-times are determined with the time-of-day reliability measures, which are generated by TTRMS. Figure 8.3.4 shows a screenshot of the current version of the web page, where user selects a route and enters a departure time. Then the server calculates expected travel-time for user-selected route and departure time using the time-of-day reliability measures.

# **Travel Time Information Service**

Example Web Page to Show Travel Time Information from Travel Time Reliability Measurement System



© 2017, Transportation Research Lab @ University of Minnesota Duluth, All rights reserved

Figure 8.3.4 Example Web Page for Travel-Time Information Service

#### 8.4 TESTING OF THE INTEGRATED SYSTEM

The integrated system is tested with real data from the metro freeway network in Twin Cities for a twoyear period, i.e., from January 1, 2012, to December 31, 2013. For this testing, a total of 87 travel-time routes have been defined covering most of the metro freeway network. Figure 8.4.1 shows the freeway sections used as the basis for defining the travel-time routes in this testing, i.e., two directional routes are defined for each freeway section.



Figure 8.4.1 Freeway Sections used for defining Travel-Time Routes

In this report, the reliability estimation results for the following four routes are included. The estimation results for the other routes are available upon request.

- Selected Routes:
  - I-35E NB and I-35W NB from south split to I-494
  - U.S.169 NB and T.H.100 NB from I-494 to I-394
- Duration: 1/1/2012 -12/31/2013 (2 years)
- Time Period for Reliability Estimation: 05:00 11:00 a.m.
- Dates included: Tuesday Thursday (except holiday)

Table 8.4.1 shows the types of the operating conditions used for categorizing the travel-time data for this testing. The reliability estimation results for the above 4 routes are presented in Tables 8.4.2 – 8.4.17 for each operating condition. Further, the graphical presentations of those reliability estimates

are shown in Figures 8.4.2-8.2.29, which can be used for comparing the reliability measures for different operating conditions as well as analyzing the variations of reliability measures through time.

#### Table 8.4.1 Operating-Condition Types used in the Test

| Index | Name            | Description                                                                   |
|-------|-----------------|-------------------------------------------------------------------------------|
| 0     | All             | all data during the time periods                                              |
| 1     | DryDay          | dryday, no incident, no work zone, no special event, no winter road condition |
| 2     | Normal-Incident | dryday, incident, no work zone, no special event, no winter road condition    |
| 3     | Normal-Workzone | dryday, no incident, work zone, no special event, no winter road condition    |

#### Estimation Results for I-35E NB Route

#### Table 8.4.2 Estimated Reliability Measures by Operating Conditions of I-35E NB Route

| Operating Condition (OC) Index   | 0        | 1        | 2               | 3               |
|----------------------------------|----------|----------|-----------------|-----------------|
| OC Name                          | All      | DryDay   | Normal-Incident | Normal-Workzone |
| Avg TT                           | 9.39     | 9.05     | 9.50            | 9.87            |
| Travel Time Rate (minute/mile)   | 0.85     | 0.82     | 0.86            | 0.90            |
| Data Count                       | 22191.00 | 13884.00 | 2448.00         | 4416.00         |
| Free-Flow TT using Speed Limit   | 9.43     | 9.43     | 9.43            | 9.43            |
| Congested Avg. TT                | 16.66    | 18.12    | 18.46           | 15.71           |
| Congested Data Count             | 1128.00  | 261.00   | 124.00          | 435.00          |
| 80th %-ile TT                    | 9.38     | 9.13     | 9.31            | 10.22           |
| 85th %-ile TT                    | 9.62     | 9.23     | 9.46            | 10.98           |
| 90th %-ile TT                    | 10.21    | 9.39     | 9.95            | 12.20           |
| 95th %-ile TT                    | 12.31    | 9.87     | 12.31           | 15.07           |
| Buffer Index (80th %-ile)        | -        | 0.01     | -               | 0.04            |
| Buffer Index (85th %-ile)        | 0.02     | 0.02     | -               | 0.11            |
| Buffer Index (90th %-ile)        | 0.09     | 0.04     | 0.05            | 0.24            |
| Buffer Index (95th %-ile)        | 0.31     | 0.09     | 0.30            | 0.53            |
| Planning Time Index (80th %-ile) | 0.99     | 0.97     | 0.99            | 1.08            |
| Planning Time Index (85th %-ile) | 1.02     | 0.98     | 1.00            | 1.16            |
| Planning Time Index (90th %-ile) | 1.08     | 1.00     | 1.06            | 1.29            |
| Planning Time Index (95th %-ile) | 1.31     | 1.05     | 1.31            | 1.60            |
| Travel Time Index                | 1.77     | 1.92     | 1.96            | 1.67            |
| Level of Travel Time Reliability | 1.06     | 1.04     | 1.04            | 1.13            |
| Semi-Variance                    | 13.41    | 8.50     | 24.64           | 9.28            |
| Semi-Variance Data Count         | 4335.00  | 3549.00  | 351.00          | 1094.00         |
| On-Time Arrival                  | 0.96     | 0.98     | 0.96            | 0.93            |
| On-Time Arrival Data Count       | 21318.00 | 13668.00 | 2338.00         | 4115.00         |
| Misery Index                     | 1.64     | 1.20     | 1.82            | 1.87            |

| Year                             | 2012     | 2013     |
|----------------------------------|----------|----------|
| Avg TT                           | 9.04     | 9.75     |
| Travel Time Rate (minute/mile)   | 0.82     | 0.88     |
| Data Count                       | 11169.00 | 11022.00 |
| Free-Flow TT using Speed Limit   | 9.43     | 9.43     |
| Congested Avg. TT                | 15.48    | 18.02    |
| Congested Data Count             | 261.00   | 866.00   |
| 80th %-ile TT                    | 9.15     | 9.77     |
| 85th %-ile TT                    | 9.25     | 10.23    |
| 90th %-ile TT                    | 9.44     | 11.49    |
| 95th %-ile TT                    | 10.19    | 14.37    |
| Buffer Index (80th %-ile)        | 0.01     | 0.00     |
| Buffer Index (85th %-ile)        | 0.02     | 0.05     |
| Buffer Index (90th %-ile)        | 0.04     | 0.18     |
| Buffer Index (95th %-ile)        | 0.13     | 0.47     |
| Planning Time Index (80th %-ile) | 0.97     | 1.04     |
| Planning Time Index (85th %-ile) | 0.98     | 1.09     |
| Planning Time Index (90th %-ile) | 1.00     | 1.22     |
| Planning Time Index (95th %-ile) | 1.08     | 1.52     |
| Travel Time Index                | 1.64     | 1.80     |
| Level of Travel Time Reliability | 1.04     | 1.09     |
| Semi-Variance                    | 3.93     | 18.13    |
| Semi-Variance Data Count         | 3030.00  | 2252.00  |
| On-Time Arrival                  | 0.98     | 0.94     |
| On-Time Arrival Data Count       | 10966.00 | 10368.00 |
| Misery Index                     | 1.27     | 1.89     |

## Table 8.4.3 Yearly Reliability Measures of Operating Condition Type "All" of I-35E NB

# Table 8.4.4 Monthly Reliability Measures in 2012 for Operating Condition Type "All" of I-35E NB

| Year                              | 2012 |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Month                             | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
| Avg TT                            | 8.96 | 9.03 | 8.78 | 8.92 | 9.00 | 8.92 | 8.86 | 9.06 | 9.28 | 9.26 | 8.85 | 9.61 |
| Travel Time Rate<br>(minute/mile) | 0.81 | 0.82 | 0.80 | 0.81 | 0.82 | 0.81 | 0.80 | 0.82 | 0.84 | 0.84 | 0.80 | 0.87 |
| Data Count                        | 949  | 949  | 949  | 876  | 1095 | 876  | 876  | 1022 | 876  | 1022 | 876  | 803  |
| Free-Flow TT<br>using Speed Limit | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 | 9.43 |

| Congested Avg.     | 18.9     | 14.0     | 15.1     | 15.3     | 15.7 | 13.6  | 1.00  | 15.1     | 13.3     | 16.7  | 1.00  | 16.8      |
|--------------------|----------|----------|----------|----------|------|-------|-------|----------|----------|-------|-------|-----------|
| тт                 | 2        | 5        | 9        | 4        | 8    | 1     | -1.00 | 4        | 8        | 5     | -1.00 | 4         |
| Congested Data     | 18.0     | 33.0     | 9.00     | 6.00     | 18.0 | 6.00  | 0.00  | 28.0     | 49.0     | 30.0  | 0.00  | 64.0      |
| Count              | 0        | 0        | 9.00     | 0.00     | 0    | 0.00  | 0.00  | 0        | 0        | 0     | 0.00  | 0         |
| 80th %-ile TT      | 9.03     | 9.15     | 8.92     | 9.14     | 9.18 | 9.14  | 9.09  | 9.14     | 9.33     | 9.35  | 9.07  | 9.46      |
| 85th %-ile TT      | 9 1 2    | a 2a     | 9.01     | 9.21     | 9.26 | 9.21  | 9 17  | 9.24     | 9 5 7    | 9 5 1 | 9 1 7 | 10.1      |
|                    | 5.12     | 5.25     | 5.01     | 5.21     | 5.20 | 5.21  | 5.17  | 5.24     | 5.57     | 5.51  | 5.17  | 0         |
| 90th %-ile TT      | 9 27     | 9 59     | 9 10     | 9 32     | 943  | 9 36  | 9 26  | 9 38     | 10.7     | 9 87  | 9 2 9 | 11.0      |
|                    |          |          |          |          |      |       |       |          | 5        |       |       | 4         |
| 95th %-ile TT      | 9.48     | 10.6     | 9.24     | 9.51     | 9.74 | 9.64  | 9.45  | 10.0     | 12.4     | 11.1  | 9.59  | 14.3      |
|                    |          | 7        |          |          |      |       |       | 8        | 2        | 8     |       | 6         |
| Buffer Index (80th | 0.01     | 0.01     | 0.02     | 0.03     | 0.02 | 0.02  | 0.03  | 0.01     | 0.01     | 0.01  | 0.02  | 0.00      |
| %-ile)             |          |          |          |          |      |       |       |          |          |       | ļ     |           |
| Buffer Index (85th | 0.02     | 0.03     | 0.03     | 0.03     | 0.03 | 0.03  | 0.03  | 0.02     | 0.03     | 0.03  | 0.04  | 0.05      |
| %-ile)             | <b>_</b> | <b>_</b> | <b> </b> | <b> </b> |      |       |       |          |          |       |       |           |
| Buffer Index (90th | 0.03     | 0.06     | 0.04     | 0.04     | 0.05 | 0.05  | 0.04  | 0.04     | 0.16     | 0.07  | 0.05  | 0.15      |
| %-ile)             |          |          |          |          |      | ļ     |       |          | ļ        |       |       |           |
| Buffer Index (95th | 0.06     | 0.18     | 0.05     | 0.07     | 0.08 | 0.08  | 0.07  | 0.11     | 0.34     | 0.21  | 0.08  | 0.49      |
| %-ile)             | <u> </u> | <u> </u> | <u> </u> | <u> </u> |      |       | -     |          |          | -     |       |           |
| Planning Time      | 0.96     | 0.97     | 0.95     | 0.97     | 0.97 | 0.97  | 0.96  | 0.97     | 0.99     | 0.99  | 0.96  | 1.00      |
| Index (80th %-ile) | <u> </u> | <u> </u> | <u> </u> | <u> </u> |      |       |       |          |          |       |       |           |
| Planning Time      | 0.97     | 0.99     | 0.96     | 0.98     | 0.98 | 0.98  | 0.97  | 0.98     | 1.02     | 1.01  | 0.97  | 1.07      |
| Index (85th %-ile) |          |          |          |          |      |       |       |          |          |       |       |           |
| Planning Time      | 0.98     | 1.02     | 0.96     | 0.99     | 1.00 | 0.99  | 0.98  | 0.99     | 1.14     | 1.05  | 0.99  | 1.17      |
| Index (90th %-IIe) |          |          |          |          |      |       |       |          |          |       |       |           |
| Planning Time      | 1.01     | 1.13     | 0.98     | 1.01     | 1.03 | 1.02  | 1.00  | 1.07     | 1.32     | 1.19  | 1.02  | 1.52      |
| Travel Time Index  | 1.00     | 1 40     | 1.01     | 1.02     | 1.07 | 1 4 4 | 1.00  | 1.01     | 1 4 2    | 1 70  | 1.00  | 1 70      |
| Travel Time Index  | 1.90     | 1.49     | 1.61     | 1.63     | 1.67 | 1.44  | -1.00 | 1.61     | 1.42     | 1.78  | -1.00 | 1.79      |
| Level of Travel    | 1.03     | 1.05     | 1.03     | 1.04     | 1.04 | 1.04  | 1.03  | 1.04     | 1.05     | 1.05  | 1.04  | 1.07      |
| Time Reliability   |          |          |          |          |      |       |       |          |          |       |       | 105       |
| Semi-Variance      | 6.42     | 2.71     | 1.13     | 0.94     | 2.39 | 0.50  | 0.13  | 3.60     | 2.75     | 6.80  | 0.22  | 16.5<br>9 |
| Semi-Variance      | +        | +        | ł        | ł        |      |       | ł     | <u> </u> | <u> </u> | ł     |       | 5         |
| Data Count         | 243      | 263      | 343      | 330      | 358  | 335   | 387   | 267      | 195      | 240   | 342   | 143       |
| On-Time Arrival    | 0.98     | 0.97     | 0.99     | 0.99     | 0.99 | 1.00  | 1.00  | 0.98     | 0.97     | 0.98  | 1.00  | 0.94      |
| On-Time Arrival    |          |          |          |          |      |       |       |          |          |       |       |           |
| Data Count         | 932      | 919      | 942      | 870      | 1080 | 872   | 876   | 999      | 854      | 998   | 876   | 753       |
|                    |          |          |          |          |      |       |       |          |          |       |       |           |

| Year                                | 2013      |           |           |           |           |           |           |           |           |           |           |           |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Month                               | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        |
| Avg TT                              | 9.50      | 9.72      | 9.62      | 9.45      | 9.04      | 10.0<br>6 | 11.9<br>6 | 9.80      | 9.00      | 8.95      | 8.99      | 11.1<br>3 |
| Travel Time Rate<br>(minute/mile)   | 0.86      | 0.88      | 0.87      | 0.86      | 0.82      | 0.91      | 1.08      | 0.89      | 0.82      | 0.81      | 0.82      | 1.01      |
| Data Count                          | 1021      | 876       | 876       | 949       | 1022      | 876       | 949       | 876       | 876       | 1095      | 803       | 803       |
| Free-Flow TT<br>using Speed Limit   | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      | 9.43      |
| Congested Avg.<br>TT                | 16.6<br>4 | 19.5<br>9 | 18.8<br>3 | 20.8<br>1 | 14.0<br>4 | 14.0<br>9 | 16.6<br>3 | 14.6<br>7 | 12.6<br>4 | 15.8<br>0 | 12.3<br>3 | 19.5<br>1 |
| Congested Data<br>Count             | 73        | 62        | 67        | 42        | 17        | 101       | 292       | 71        | 5         | 8         | 1         | 127       |
| 80th %-ile TT                       | 9.35      | 9.34      | 9.22      | 9.34      | 9.30      | 10.9<br>0 | 15.0<br>7 | 10.8<br>3 | 9.20      | 9.12      | 9.23      | 11.3<br>1 |
| 85th %-ile TT                       | 9.58      | 9.61      | 9.48      | 9.53      | 9.42      | 11.4<br>7 | 16.5<br>7 | 11.7<br>9 | 9.31      | 9.21      | 9.37      | 12.5<br>4 |
| 90th %-ile TT                       | 10.2<br>6 | 10.2<br>1 | 11.6<br>1 | 9.83      | 9.57      | 12.6<br>6 | 18.9<br>6 | 12.1<br>1 | 9.49      | 9.34      | 9.57      | 15.6<br>7 |
| 95th %-ile TT                       | 14.1<br>3 | 14.4<br>0 | 13.7<br>6 | 11.4<br>8 | 10.0<br>0 | 13.8<br>1 | 19.5<br>0 | 12.6<br>5 | 9.97      | 9.65      | 10.0<br>2 | 21.2<br>7 |
| Buffer Index<br>(80th %-ile)        | 0.00      | 0.00      | 0.00      | 0.00      | 0.03      | 0.08      | 0.26      | 0.11      | 0.02      | 0.02      | 0.03      | 0.02      |
| Buffer Index<br>(85th %-ile)        | 0.01      | 0.00      | 0.00      | 0.01      | 0.04      | 0.14      | 0.38      | 0.20      | 0.03      | 0.03      | 0.04      | 0.13      |
| Buffer Index<br>(90th %-ile)        | 0.08      | 0.05      | 0.21      | 0.04      | 0.06      | 0.26      | 0.50      | 0.24      | 0.05      | 0.04      | 0.06      | 0.41      |
| Buffer Index<br>(95th %-ile)        | 0.49      | 0.48      | 0.43      | 0.21      | 0.11      | 0.37      | 0.63      | 0.29      | 0.11      | 0.08      | 0.11      | 0.91      |
| Planning Time<br>Index (80th %-ile) | 0.99      | 0.99      | 0.98      | 0.99      | 0.99      | 1.16      | 1.60      | 1.15      | 0.98      | 0.97      | 0.98      | 1.20      |
| Planning Time<br>Index (85th %-ile) | 1.02      | 1.02      | 1.01      | 1.01      | 1.00      | 1.22      | 1.76      | 1.25      | 0.99      | 0.98      | 0.99      | 1.33      |
| Planning Time<br>Index (90th %-ile) | 1.09      | 1.08      | 1.23      | 1.04      | 1.01      | 1.34      | 1.90      | 1.28      | 1.01      | 0.99      | 1.02      | 1.66      |
| Planning Time<br>Index (95th %-ile) | 1.50      | 1.53      | 1.46      | 1.22      | 1.06      | 1.46      | 2.07      | 1.34      | 1.06      | 1.02      | 1.06      | 2.26      |
| Travel Time<br>Index                | 1.76      | 2.08      | 1.89      | 2.21      | 1.49      | 1.49      | 1.76      | 1.56      | 1.34      | 1.68      | 1.31      | 2.07      |
| Level of Travel<br>Time Reliability | 1.05      | 1.05      | 1.05      | 1.06      | 1.04      | 1.15      | 1.48      | 1.20      | 1.04      | 1.03      | 1.04      | 1.20      |

# Table 8.4.5 Monthly Reliability Measures in 2013 for Operating Condition Type "All" of I-35E NB

| Sami Varianca   | 16.6 | 41.4 | 28.3 | 30.8 | 1 10 | 2 27 | 8 GO | 6.20 | 0.51 | 1 10 | 0.25       | 41.3 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------------|------|
| Serni-variance  | 1    | 6    | 1    | 8    | 1.10 | 3.37 | 0.09 | 0.59 | 0.51 | 1.19 | 0.55       | 3    |
| Semi-Variance   | 162  | 110  | 122  | 167  | 202  | 206  | 300  | 220  | 210  | 265  | 208        | 176  |
| Data Count      | 102  | 110  | 125  | 107  | 303  | 290  | 300  | 220  | 210  | 303  | 290        | 170  |
| On-Time Arrival | 0.94 | 0.94 | 0.94 | 0.96 | 0.99 | 0.96 | 0.81 | 0.97 | 1.00 | 0.99 | 1.00       | 0.88 |
| On-Time Arrival | 050  | 072  | 072  | 011  | 1010 | 020  | 769  | 946  | 976  | 1097 | <u>802</u> | 706  |
| Data Count      | 333  | 025  | 025  | 911  | 1010 | 020  | 708  | 640  | 870  | 1087 | 805        | 700  |
| Misery Index    | 1.80 | 2.28 | 1.94 | 1.96 | 1.16 | 1.65 | 2.21 | 1.57 | 1.13 | 1.11 | 1.11       | 2.91 |



Figure 8.4.2 Buffer Index (95<sup>th</sup>-ile) by Operating Condition Types for I-35E NB



Figure 8.4.3 Yearly Buffer Index (95<sup>th</sup>-ile) Variations for Operating Condition Type "All" of I-35E NB



Figure 8.4.4 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type "All" of I-35E NB



Figure 8.4.5 Cumulative Probability of Travel-Time Rate of I-35E NB



Figure 8.4.6 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for Operating Condition Type "All" of I-35E NB



Figure 8.4.7 Time-of-Day Travel-Time Distribution of I-35E NB



Figure 8.4.8 Monthly TOD Buffer Index (95%-ile) of I-35E NB

## Estimation Results of I-35W NB

| OC Index                       | 0        | 1        | 2               |
|--------------------------------|----------|----------|-----------------|
| OC Name                        | All      | DryDay   | Normal-Incident |
| Avg TT                         | 9.00     | 8.71     | 8.80            |
| Travel Time Rate (minute/mile) | 1.06     | 1.02     | 1.03            |
| Data Count                     | 22119.00 | 14714.00 | 10398.00        |
| Free-Flow TT using Speed Limit | 8.96     | 8.96     | 8.96            |
| Congested Avg. TT              | 13.44    | 12.86    | 13.45           |
| Congested Data Count           | 4798.00  | 2742.00  | 2051.00         |
| 80th %-ile TT                  | 10.64    | 10.10    | 10.30           |
| 85th %-ile TT                  | 11.58    | 11.01    | 11.35           |
| 90th %-ile TT                  | 12.63    | 12.00    | 12.46           |
| 95th %-ile TT                  | 14.25    | 13.37    | 14.00           |
| Buffer Index (80th %-ile)      | 0.18     | 0.16     | 0.17            |
| Buffer Index (85th %-ile)      | 0.29     | 0.26     | 0.29            |
| Buffer Index (90th %-ile)      | 0.40     | 0.38     | 0.42            |
| Buffer Index (95th %-ile)      | 0.58     | 0.54     | 0.59            |

#### Table 8.4.6 Reliability Measures by Operating Condition Type of I-35W NB

| Planning Time Index (80th %-ile) | 1.34     | 1.27     | 1.29    |
|----------------------------------|----------|----------|---------|
| Planning Time Index (85th %-ile) | 1.46     | 1.38     | 1.43    |
| Planning Time Index (90th %-ile) | 1.59     | 1.51     | 1.57    |
| Planning Time Index (95th %-ile) | 1.79     | 1.68     | 1.76    |
| Travel Time Index                | 1.69     | 1.62     | 1.69    |
| Level of Travel Time Reliability | 1.38     | 1.32     | 1.36    |
| Semi-Variance                    | 13.80    | 8.60     | 11.86   |
| Semi-Variance Data Count         | 6590.00  | 4223.00  | 2903.00 |
| On-Time Arrival                  | 0.85     | 0.88     | 0.85    |
| On-Time Arrival Data Count       | 18799.00 | 12883.00 | 8863.00 |
| Misery Index                     | 2.03     | 1.83     | 2.01    |

## Table 8.4.7 Yearly Reliability Measures for Operating Condition Type "All" of I-35W NB

| Year                             | 2012     | 2013     |
|----------------------------------|----------|----------|
| Avg TT                           | 8.84     | 9.17     |
| Travel Time Rate (minute/mile)   | 1.04     | 1.07     |
| Data Count                       | 11023.00 | 11096.00 |
| Free-Flow TT using Speed Limit   | 8.96     | 8.96     |
| Congested Avg. TT                | 12.82    | 14.06    |
| Congested Data Count             | 2388.00  | 2409.00  |
| 80th %-ile TT                    | 10.65    | 10.63    |
| 85th %-ile TT                    | 11.57    | 11.58    |
| 90th %-ile TT                    | 12.48    | 12.91    |
| 95th %-ile TT                    | 13.83    | 14.80    |
| Buffer Index (80th %-ile)        | 0.21     | 0.16     |
| Buffer Index (85th %-ile)        | 0.31     | 0.26     |
| Buffer Index (90th %-ile)        | 0.41     | 0.41     |
| Buffer Index (95th %-ile)        | 0.56     | 0.61     |
| Planning Time Index (80th %-ile) | 1.34     | 1.34     |
| Planning Time Index (85th %-ile) | 1.45     | 1.46     |
| Planning Time Index (90th %-ile) | 1.57     | 1.62     |
| Planning Time Index (95th %-ile) | 1.74     | 1.86     |
| Travel Time Index                | 1.61     | 1.77     |
| Level of Travel Time Reliability | 1.39     | 1.37     |
| Semi-Variance                    | 5.49     | 21.86    |
| Semi-Variance Data Count         | 3339.00  | 3241.00  |
| On-Time Arrival                  | 0.85     | 0.85     |
| On-Time Arrival Data Count       | 9344.00  | 9458.00  |
| Misery Index                     | 1.91     | 2.26     |

| Year                                | 2012      |           |           |           |           |           |           |           |           |           |           |           |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Month                               | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        |
| Avg TT                              | 8.44      | 8.40      | 8.06      | 8.91      | 8.86      | 8.96      | 8.62      | 8.93      | 10.3<br>6 | 9.20      | 8.25      | 9.13      |
| Travel Time Rate<br>(minute/mile)   | 0.99      | 0.98      | 0.95      | 1.04      | 1.04      | 1.05      | 1.01      | 1.05      | 1.21      | 1.08      | 0.97      | 1.07      |
| Data Count                          | 949       | 949       | 949       | 876       | 102<br>2  | 803       | 876       | 102<br>2  | 876       | 102<br>2  | 876       | 803       |
| Free-Flow TT using<br>Speed Limit   | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      |
| Congested Avg. TT                   | 12.7<br>7 | 12.7<br>8 | 12.2<br>9 | 12.7<br>7 | 11.9<br>4 | 12.2<br>1 | 12.2<br>3 | 12.8<br>6 | 13.8<br>7 | 12.6<br>1 | 11.7<br>9 | 14.6<br>4 |
| Congested Data Count                | 160       | 144       | 87        | 207       | 249       | 201       | 159       | 236       | 368       | 295       | 117       | 165       |
| 80th %-ile TT                       | 9.56      | 9.33      | 8.68      | 10.9<br>5 | 11.0<br>1 | 11.1<br>3 | 9.97      | 10.6<br>6 | 13.5<br>4 | 11.5<br>7 | 9.06      | 10.4<br>6 |
| 85th %-ile TT                       | 10.6<br>6 | 10.4<br>0 | 9.34      | 11.8<br>3 | 11.5<br>9 | 11.8<br>7 | 10.9<br>3 | 11.9<br>0 | 14.1<br>9 | 12.0<br>3 | 9.97      | 12.1<br>8 |
| 90th %-ile TT                       | 11.7<br>5 | 11.3<br>8 | 10.1<br>7 | 12.8<br>6 | 12.0<br>8 | 12.4<br>2 | 11.9<br>0 | 12.9<br>7 | 14.9<br>0 | 12.6<br>7 | 10.9<br>9 | 14.3<br>8 |
| 95th %-ile TT                       | 13.1<br>3 | 13.1<br>3 | 11.4<br>1 | 14.0<br>3 | 12.6<br>4 | 13.1<br>5 | 12.8<br>5 | 14.1<br>2 | 16.4<br>0 | 14.0<br>2 | 12.0<br>9 | 16.5<br>8 |
| Buffer Index (80th %-<br>ile)       | 0.13      | 0.11      | 0.08      | 0.23      | 0.24      | 0.24      | 0.16      | 0.19      | 0.31      | 0.26      | 0.10      | 0.15      |
| Buffer Index (85th %-<br>ile)       | 0.26      | 0.24      | 0.16      | 0.33      | 0.31      | 0.32      | 0.27      | 0.33      | 0.37      | 0.31      | 0.21      | 0.33      |
| Buffer Index (90th %-<br>ile)       | 0.39      | 0.36      | 0.26      | 0.44      | 0.36      | 0.39      | 0.38      | 0.45      | 0.44      | 0.38      | 0.33      | 0.57      |
| Buffer Index (95th %-<br>ile)       | 0.55      | 0.56      | 0.42      | 0.57      | 0.43      | 0.47      | 0.49      | 0.58      | 0.58      | 0.52      | 0.47      | 0.82      |
| Planning Time Index<br>(80th %-ile) | 1.20      | 1.17      | 1.09      | 1.38      | 1.38      | 1.40      | 1.25      | 1.34      | 1.70      | 1.45      | 1.14      | 1.31      |
| Planning Time Index<br>(85th %-ile) | 1.34      | 1.31      | 1.17      | 1.49      | 1.46      | 1.49      | 1.37      | 1.50      | 1.78      | 1.51      | 1.25      | 1.53      |
| Planning Time Index<br>(90th %-ile) | 1.48      | 1.43      | 1.28      | 1.62      | 1.52      | 1.56      | 1.50      | 1.63      | 1.87      | 1.59      | 1.38      | 1.81      |
| Planning Time Index<br>(95th %-ile) | 1.65      | 1.65      | 1.43      | 1.76      | 1.59      | 1.65      | 1.62      | 1.78      | 2.06      | 1.76      | 1.52      | 2.08      |
| Travel Time Index                   | 1.61      | 1.61      | 1.54      | 1.60      | 1.50      | 1.54      | 1.54      | 1.62      | 1.74      | 1.59      | 1.48      | 1.84      |
| Level of Travel Time<br>Reliability | 1.28      | 1.25      | 1.17      | 1.43      | 1.41      | 1.41      | 1.29      | 1.38      | 1.54      | 1.47      | 1.20      | 1.37      |

# Table 8.4.8 Monthly Reliability Measures in 2012 for Operating Condition Type "All" of I-35W NB

| Semi-Variance                 | 6.02 | 5.89 | 4.32 | 4.12 | 1.85 | 2.28 | 3.04 | 4.51 | 8.62 | 4.00 | 2.35 | 11.5<br>6 |
|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|-----------|
| Semi-Variance Data<br>Count   | 243  | 248  | 259  | 275  | 366  | 277  | 265  | 307  | 366  | 356  | 241  | 216       |
| On-Time Arrival               | 0.87 | 0.89 | 0.94 | 0.83 | 0.86 | 0.84 | 0.89 | 0.84 | 0.78 | 0.82 | 0.91 | 0.83      |
| On-Time Arrival Data<br>Count | 829  | 847  | 895  | 726  | 883  | 678  | 778  | 856  | 683  | 838  | 799  | 664       |
| Misery Index                  | 1.85 | 1.82 | 1.59 | 1.90 | 1.67 | 1.72 | 1.71 | 1.91 | 2.36 | 1.92 | 1.59 | 2.34      |

## Table 8.4.9 Monthly Reliability Measures in 2013 for Operating Condition Type "All" of I-35W NB

| Month                               | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Avg TT                              | 8.71      | 9.51      | 8.42      | 9.54      | 8.90      | 9.71      | 9.04      | 9.43      | 8.30      | 8.22      | 8.61      | 12.1<br>2 |
| Travel Time Rate<br>(minute/mile)   | 1.02      | 1.11      | 0.99      | 1.12      | 1.04      | 1.14      | 1.06      | 1.11      | 0.97      | 0.96      | 1.01      | 1.42      |
| Data Count                          | 102<br>2  | 876       | 876       | 949       | 102<br>2  | 876       | 949       | 949       | 876       | 109<br>5  | 803       | 803       |
| Free-Flow TT using<br>Speed Limit   | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      | 8.96      |
| Congested Avg. TT                   | 13.4      | 15.1      | 13.2      | 16.9      | 12.4      | 13.7      | 12.5      | 12.8      | 11.7      | 11.7      | 12.8      | 18.9      |
|                                     | 5         | 9         | 1         | 3         | 0         | 1         | 6         | 7         | 9         | 7         | 1         | 7         |
| Congested Data Count                | 179       | 203       | 102       | 182       | 236       | 276       | 237       | 291       | 103       | 121       | 141       | 338       |
| 80th %-ile TT                       | 9.85      | 10.8<br>7 | 9.32      | 10.2<br>5 | 10.8<br>2 | 12.1<br>4 | 11.1<br>1 | 12.3<br>7 | 9.03      | 8.94      | 9.96      | 18.4<br>7 |
| 85th %-ile TT                       | 10.9<br>4 | 11.7<br>2 | 9.95      | 11.0<br>1 | 11.5<br>2 | 13.3<br>2 | 11.9<br>1 | 13.1<br>0 | 9.90      | 9.82      | 10.7<br>5 | 19.3<br>3 |
|                                     | 12.1      | 12.8      | 10.5      | 12.4      | 12.3      | 14.2      | 12.6      | 13.6      | 10.6      | 10.4      | 11.6      | 21.1      |
| 90th %-lie 11                       | 8         | 9         | 2         | 8         | 1         | 6         | 5         | 2         | 3         | 6         | 2         | 9         |
| 95th %-ile TT                       | 14.5<br>4 | 16.3<br>8 | 12.8<br>4 | 14.8<br>8 | 13.5<br>7 | 15.4<br>7 | 13.9<br>5 | 14.1<br>9 | 11.6<br>1 | 11.3<br>2 | 12.6<br>4 | 24.5<br>8 |
| Buffer Index (80th %-<br>ile)       | 0.13      | 0.14      | 0.11      | 0.07      | 0.22      | 0.25      | 0.23      | 0.31      | 0.09      | 0.09      | 0.16      | 0.44      |
| Buffer Index (85th %-<br>ile)       | 0.26      | 0.23      | 0.18      | 0.15      | 0.30      | 0.37      | 0.32      | 0.39      | 0.19      | 0.19      | 0.25      | 0.60      |
| Buffer Index (90th %-<br>ile)       | 0.40      | 0.35      | 0.25      | 0.31      | 0.38      | 0.47      | 0.40      | 0.44      | 0.28      | 0.27      | 0.35      | 0.75      |
| Buffer Index (95th %-<br>ile)       | 0.67      | 0.72      | 0.53      | 0.56      | 0.53      | 0.59      | 0.54      | 0.51      | 0.40      | 0.38      | 0.47      | 1.03      |
| Planning Time Index<br>(80th %-ile) | 1.24      | 1.37      | 1.17      | 1.29      | 1.36      | 1.53      | 1.40      | 1.56      | 1.13      | 1.12      | 1.25      | 2.20      |

| Planning Time Index<br>(85th %-ile) | 1.37 | 1.47      | 1.25 | 1.38       | 1.45 | 1.67 | 1.50 | 1.65 | 1.24 | 1.23     | 1.35 | 2.43      |
|-------------------------------------|------|-----------|------|------------|------|------|------|------|------|----------|------|-----------|
| Planning Time Index<br>(90th %-ile) | 1.53 | 1.62      | 1.32 | 1.57       | 1.55 | 1.79 | 1.59 | 1.71 | 1.34 | 1.32     | 1.46 | 2.66      |
| Planning Time Index<br>(95th %-ile) | 1.83 | 2.06      | 1.61 | 1.87       | 1.71 | 1.94 | 1.75 | 1.78 | 1.46 | 1.42     | 1.59 | 3.09      |
| Travel Time Index                   | 1.69 | 1.91      | 1.66 | 2.13       | 1.56 | 1.72 | 1.58 | 1.62 | 1.48 | 1.48     | 1.61 | 2.26      |
| Level of Travel Time<br>Reliability | 1.30 | 1.41      | 1.23 | 1.34       | 1.38 | 1.51 | 1.41 | 1.54 | 1.18 | 1.17     | 1.31 | 1.98      |
| Semi-Variance                       | 8.77 | 41.4<br>9 | 6.77 | 100.<br>65 | 3.41 | 8.93 | 3.45 | 3.01 | 2.45 | 2.74     | 9.23 | 29.5<br>2 |
| Semi-Variance Data<br>Count         | 282  | 255       | 250  | 224        | 343  | 309  | 318  | 362  | 266  | 309      | 229  | 286       |
| On-Time Arrival                     | 0.87 | 0.84      | 0.92 | 0.87       | 0.87 | 0.79 | 0.84 | 0.79 | 0.95 | 0.95     | 0.88 | 0.68      |
| On-Time Arrival Data<br>Count       | 888  | 739       | 805  | 830        | 891  | 695  | 801  | 745  | 830  | 104<br>3 | 710  | 544       |
| Misery Index                        | 2.08 | 2.97      | 1.93 | 3.39       | 1.85 | 2.19 | 1.88 | 1.84 | 1.62 | 1.58     | 1.74 | 3.77      |



Figure 8.4.9 Buffer Index (95<sup>th</sup>-ile) by Operating Conditions of I-35W NB



Figure 8.4.10 Yearly Buffer Index (95<sup>th</sup>-ile) Variations for Operating Condition Type "All" of I-35W NB







Figure 8.4.12 Cumulative Probability of Travel Time Rate of I-35W NB


Figure 8.4.13 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for "All operating condition" of I-35W NB



Figure 8.4.14 Time-of-Day Travel Time Distribution of I-35W NB



Figure 8.4.15 Monthly TOD Buffer Index (95%-ile) of I-35W NB

#### Estimation Results for U.S.169 NB

| OC Index                       | 0        | 1        | 2               |
|--------------------------------|----------|----------|-----------------|
| OC Name                        | All      | DryDay   | Normal-Incident |
| Avg TT                         | 8.51     | 8.18     | 8.88            |
| Travel Time Rate (minute/mile) | 0.96     | 0.92     | 1.01            |
| Data Count                     | 22264.00 | 13755.00 | 1854.00         |

| Free-Flow TT using Speed Limit   | 8.51     | 8.51     | 8.51    |
|----------------------------------|----------|----------|---------|
| Congested Avg. TT                | 18.90    | 16.83    | 18.60   |
| Congested Data Count             | 805.00   | 206.00   | 112.00  |
| 80th %-ile TT                    | 8.36     | 8.25     | 8.50    |
| 85th %-ile TT                    | 8.55     | 8.34     | 8.82    |
| 90th %-ile TT                    | 8.19     | 8.51     | 8.94    |
| 95th %-ile TT                    | 10.02    | 8.34     | 11.91   |
| Buffer Index (80th %-ile)        | -        | 0.01     | -       |
| Buffer Index (85th %-ile)        | 0.01     | 0.02     |         |
| Buffer Index (90th %-ile)        | 0.09     | 0.05     | 0.13    |
| Buffer Index (95th %-ile)        | 0.33     | 0.16     | 0.51    |
| Planning Time Index (80th %-ile) | 0.87     | 0.85     | 0.88    |
| Planning Time Index (85th %-ile) | 0.89     | 0.86     | 0.92    |
| Planning Time Index (90th %-ile) | 0.96     | 0.88     | 1.05    |
| Planning Time Index (95th %-ile) | 1.18     | 0.98     | 1.40    |
| Travel Time Index                | 2.10     | 1.98     | 2.19    |
| Level of Travel Time Reliability | 1.05     | 1.04     | 1.06    |
| Semi-Variance                    | 32.12    | 8.86     | 59.76   |
| Semi-Variance Data Count         | 3526.00  | 3526.00  | 269.00  |
| On-Time Arrival                  | 0.96     | 0.98     | 0.93    |
| On-Time Arrival Data Count       | 21299.00 | 13508.00 | 1730.00 |
| Misery Index                     | 1.50     | 1.13     | 1.75    |

#### Table 8.4.11 Yearly Reliability Measures for Operating Condition Type "All" of U.S.169 NB

| Year                           | 2012     | 2013     |
|--------------------------------|----------|----------|
| Avg TT                         | 8.23     | 8.78     |
| Travel Time Rate (minute/mile) | 0.92     | 0.99     |
| Data Count                     | 11169.00 | 11095.00 |
| Free-Flow TT using Speed Limit | 8.51     | 8.51     |
| Congested Avg. TT              | 16.05    | 18.61    |
| Congested Data Count           | 224.00   | 581.00   |
| 80th %-ile TT                  | 8.29     | 8.54     |
| 85th %-ile TT                  | 8.38     | 8.08     |
| 90th %-ile TT                  | 8.57     | 9.16     |
| 95th %-ile TT                  | 8.42     | 11.22    |
| Buffer Index (80th %-ile)      | 0.01     | 0.00     |
| Buffer Index (85th %-ile)      | 0.02     | 0.04     |

| Buffer Index (90th %-ile)        | 0.05     | 0.18     |
|----------------------------------|----------|----------|
| Buffer Index (95th %-ile)        | 0.16     | 0.44     |
| Planning Time Index (80th %-ile) | 0.86     | 0.89     |
| Planning Time Index (85th %-ile) | 0.87     | 0.95     |
| Planning Time Index (90th %-ile) | 0.89     | 1.08     |
| Planning Time Index (95th %-ile) | 0.99     | 1.32     |
| Travel Time Index                | 1.89     | 2.19     |
| Level of Travel Time Reliability | 1.04     | 1.08     |
| Semi-Variance                    | 8.28     | 45.63    |
| Semi-Variance Data Count         | 2695.00  | 1905.00  |
| On-Time Arrival                  | 0.98     | 0.94     |
| On-Time Arrival Data Count       | 10916.00 | 10383.00 |
| Misery Index                     | 1.19     | 1.73     |

### Table 8.4.12 Monthly Reliability Measures in 2012 of Operating Condition Type "All" of U.S.169 NB

| Month                             | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Avg TT                            | 8.06      | 8.91      | 6.88      | 6.85      | 8.02      | 8.07      | 8.14      | 8.09      | 8.22      | 8.74      | 8.17      | 8.67      |
| Travel Time Rate<br>(minute/mile) | 0.90      | 1.01      | 0.88      | 0.88      | 0.90      | 0.90      | 0.91      | 0.91      | 0.92      | 0.99      | 0.92      | 0.98      |
| Data Count                        | 949       | 949       | 949       | 876       | 109<br>5  | 876       | 876       | 102<br>2  | 876       | 102<br>2  | 876       | 803       |
| Free-Flow TT using<br>Speed Limit | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      |
| Congested Avg. TT                 | 14.9<br>0 | 20.9<br>4 | 12.9<br>9 | -<br>1.00 | 13.0<br>7 | 13.3<br>5 | 11.3<br>1 | 11.4<br>1 | 14.0<br>0 | 14.0<br>6 | 11.9<br>4 | 15.2<br>2 |
| Congested Data Count              | 4         | 59        | 2         | 0         | 6         | 3         | 1         | 1         | 7         | 77        | 7         | 57        |
| 80th %-ile TT                     | 8.18      | 8.27      | 8.07      | 8.08      | 8.23      | 8.30      | 8.35      | 8.31      | 8.40      | 8.66      | 8.38      | 8.53      |
| 85th %-ile TT                     | 8.25      | 8.42      | 8.11      | 8.13      | 8.29      | 8.37      | 8.44      | 8.36      | 8.52      | 8.00      | 8.47      | 8.87      |
| 90th %-ile TT                     | 8.38      | 8.77      | 8.20      | 8.19      | 8.41      | 8.49      | 8.62      | 8.45      | 8.75      | 9.20      | 8.70      | 9.03      |
| 95th %-ile TT                     | 8.21      | 12.1<br>8 | 8.33      | 8.29      | 8.70      | 8.83      | 8.13      | 8.67      | 8.18      | 12.8<br>1 | 8.67      | 13.5<br>6 |
| Buffer Index (80th %-<br>ile)     | 0.02      | 0.00      | 0.03      | 0.04      | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.00      | 0.03      | 0.00      |
| Buffer Index (85th %-<br>ile)     | 0.03      | 0.00      | 0.03      | 0.04      | 0.04      | 0.04      | 0.04      | 0.04      | 0.04      | 0.03      | 0.04      | 0.03      |
| Buffer Index (90th %-<br>ile)     | 0.05      | 0.11      | 0.05      | 0.05      | 0.06      | 0.06      | 0.07      | 0.05      | 0.07      | 0.19      | 0.07      | 0.18      |
| Buffer Index (95th %-<br>ile)     | 0.16      | 0.54      | 0.07      | 0.07      | 0.10      | 0.11      | 0.14      | 0.08      | 0.13      | 0.66      | 0.21      | 0.77      |

| Planning Time Index<br>(80th %-ile) | 0.84 | 0.85      | 0.83 | 0.83      | 0.85     | 0.86 | 0.86 | 0.86     | 0.87 | 0.90 | 0.87 | 0.88      |
|-------------------------------------|------|-----------|------|-----------|----------|------|------|----------|------|------|------|-----------|
| Planning Time Index<br>(85th %-ile) | 0.85 | 0.87      | 0.84 | 0.84      | 0.86     | 0.87 | 0.87 | 0.86     | 0.88 | 0.94 | 0.88 | 0.92      |
| Planning Time Index<br>(90th %-ile) | 0.87 | 1.03      | 0.85 | 0.84      | 0.87     | 0.88 | 0.90 | 0.88     | 0.91 | 1.08 | 0.91 | 1.06      |
| Planning Time Index<br>(95th %-ile) | 0.96 | 1.43      | 0.86 | 0.86      | 0.91     | 0.92 | 0.95 | 0.90     | 0.96 | 1.51 | 1.02 | 1.59      |
| Travel Time Index                   | 1.75 | 2.46      | 1.53 | -<br>1.00 | 1.54     | 1.57 | 1.33 | 1.34     | 1.65 | 1.65 | 1.40 | 1.79      |
| Level of Travel Time<br>Reliability | 1.04 | 1.05      | 1.03 | 1.03      | 1.04     | 1.04 | 1.04 | 1.04     | 1.04 | 1.07 | 1.05 | 1.08      |
| Semi-Variance                       | 1.36 | 71.6<br>6 | 0.23 | 0.04      | 0.65     | 0.52 | 0.47 | 0.38     | 1.15 | 9.41 | 0.92 | 14.1<br>2 |
| Semi-Variance Data<br>Count         | 295  | 108       | 413  | 441       | 467      | 396  | 350  | 458      | 322  | 184  | 299  | 139       |
| On-Time Arrival                     | 0.99 | 0.93      | 1.00 | 1.00      | 0.99     | 0.99 | 1.00 | 1.00     | 0.99 | 0.92 | 0.99 | 0.92      |
| On-Time Arrival Data<br>Count       | 943  | 887       | 947  | 876       | 108<br>9 | 870  | 872  | 101<br>8 | 867  | 943  | 868  | 742       |
| Misery Index                        | 1.04 | 2.74      | 0.88 | 0.87      | 0.97     | 0.98 | 1.05 | 1.01     | 1.01 | 1.71 | 1.11 | 1.84      |

#### Table 8.4.13 Monthly Reliability Measures in 2013 of Operating Condition Type "All" of U.S.169 NB

| Month                             | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Avg TT                            | 8.26      | 8.26      | 8.36      | 8.81      | 8.29      | 9.20      | 6.89      | 6.82      | 8.16      | 8.41      | 8.34      | 11.2<br>5 |
| Travel Time Rate<br>(minute/mile) | 0.93      | 1.06      | 0.94      | 1.00      | 0.93      | 1.18      | 0.88      | 0.87      | 0.91      | 0.95      | 0.94      | 1.44      |
| Data Count                        | 102<br>1  | 876       | 876       | 949       | 102<br>2  | 876       | 949       | 949       | 876       | 109<br>5  | 803       | 803       |
| Free-Flow TT using<br>Speed Limit | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      | 8.51      |
| Congested Avg. TT                 | 12.2<br>1 | 25.9<br>7 | 12.8<br>7 | 20.4<br>9 | 11.9<br>1 | 16.2<br>4 | -<br>1.00 | -<br>1.00 | 14.0<br>7 | 12.9<br>7 | 14.0<br>5 | 22.2<br>8 |
| Congested Data Count              | 33        | 52        | 33        | 50        | 7         | 118       | 0         | 0         | 14        | 39        | 40        | 195       |
| 80th %-ile TT                     | 8.36      | 8.76      | 8.30      | 8.43      | 8.48      | 10.3<br>0 | 8.11      | 8.04      | 8.28      | 8.38      | 8.20      | 13.0<br>3 |
| 85th %-ile TT                     | 8.57      | 8.22      | 8.83      | 8.89      | 8.66      | 10.8<br>2 | 8.15      | 8.10      | 8.37      | 8.57      | 8.33      | 15.6<br>6 |
| 90th %-ile TT                     | 8.10      | 9.04      | 9.15      | 8.82      | 8.37      | 11.9<br>2 | 8.25      | 8.16      | 8.48      | 8.71      | 8.82      | 21.1<br>1 |

| 95th %-ile TT                       | 9.67 | 11.9<br>5  | 10.5<br>3 | 11.3<br>4 | 9.54     | 15.3<br>2 | 8.41      | 8.26      | 8.94 | 10.5<br>9 | 10.8<br>7 | 28.3<br>6  |
|-------------------------------------|------|------------|-----------|-----------|----------|-----------|-----------|-----------|------|-----------|-----------|------------|
| Buffer Index (80th %-<br>ile)       | 0.01 | 0.00       | 0.00      | 0.00      | 0.03     | 0.12      | 0.03      | 0.03      | 0.02 | 0.00      | 0.00      | 0.16       |
| Buffer Index (85th %-<br>ile)       | 0.04 | 0.00       | 0.06      | 0.01      | 0.05     | 0.18      | 0.04      | 0.04      | 0.03 | 0.02      | 0.00      | 0.39       |
| Buffer Index (90th %-<br>ile)       | 0.12 | 0.09       | 0.24      | 0.13      | 0.15     | 0.30      | 0.05      | 0.05      | 0.05 | 0.18      | 0.06      | 0.88       |
| Buffer Index (95th %-<br>ile)       | 0.33 | 0.45       | 0.43      | 0.45      | 0.31     | 0.67      | 0.08      | 0.07      | 0.11 | 0.43      | 0.48      | 1.52       |
| Planning Time Index<br>(80th %-ile) | 0.86 | 0.91       | 0.86      | 0.87      | 0.88     | 1.21      | 0.84      | 0.83      | 0.86 | 0.87      | 0.85      | 1.53       |
| Planning Time Index<br>(85th %-ile) | 0.89 | 0.97       | 0.92      | 0.93      | 0.90     | 1.27      | 0.84      | 0.83      | 0.87 | 0.89      | 0.86      | 1.84       |
| Planning Time Index<br>(90th %-ile) | 0.95 | 1.06       | 1.08      | 1.04      | 0.98     | 1.40      | 0.85      | 0.84      | 0.88 | 1.02      | 0.92      | 2.48       |
| Planning Time Index<br>(95th %-ile) | 1.14 | 1.40       | 1.24      | 1.33      | 1.12     | 1.80      | 0.87      | 0.85      | 0.93 | 1.24      | 1.28      | 3.33       |
| Travel Time Index                   | 1.44 | 3.05       | 1.51      | 2.41      | 1.40     | 1.91      | -<br>1.00 | -<br>1.00 | 1.65 | 1.52      | 1.65      | 2.62       |
| Level of Travel Time<br>Reliability | 1.06 | 1.12       | 1.06      | 1.07      | 1.06     | 1.28      | 1.04      | 1.04      | 1.04 | 1.05      | 1.04      | 1.67       |
| Semi-Variance                       | 2.87 | 126.<br>67 | 3.97      | 46.3<br>9 | 1.30     | 22.9<br>7 | 0.13      | 0.05      | 2.64 | 4.42      | 9.85      | 119.<br>95 |
| Semi-Variance Data<br>Count         | 245  | 127        | 161       | 148       | 311      | 296       | 435       | 434       | 270  | 207       | 118       | 193        |
| On-Time Arrival                     | 0.96 | 0.94       | 0.94      | 0.94      | 0.99     | 0.91      | 1.00      | 1.00      | 0.98 | 0.95      | 0.95      | 0.77       |
| On-Time Arrival Data<br>Count       | 979  | 821        | 827       | 890       | 100<br>9 | 794       | 947       | 949       | 858  | 103<br>6  | 760       | 618        |
| Misery Index                        | 1.35 | 3.42       | 1.41      | 2.32      | 1.19     | 2.43      | 0.89      | 0.87      | 1.15 | 1.38      | 1.63      | 4.81       |







Figure 8.4.17 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type "All" of U.S.169 NB



Figure 8.4.18 Monthly Buffer Index (95<sup>th</sup>-ile) Variations for Operating Condition Type "All" of U.S.169 NB











Figure 8.4.21 Time-of-Day Travel Time Distribution of U.S.169 NB



Figure 8.4.22 Monthly TOD Buffer Index (95%-ile) of U.S.169 NB

### Estimation Results for T.H.100 NB

| OC Index                         | 0        | 1        | 2               |
|----------------------------------|----------|----------|-----------------|
| OC Name                          | All      | DryDay   | Normal-Incident |
| Avg TT                           | 8.43     | 8.26     | 8.67            |
| Travel Time Rate (minute/mile)   | 1.05     | 1.03     | 1.08            |
| Data Count                       | 22264.00 | 19144.00 | 2050.00         |
| Free-Flow TT using Speed Limit   | 8.75     | 8.75     | 8.75            |
| Congested Avg. TT                | 13.96    | 13.20    | 13.83           |
| Congested Data Count             | 1395.00  | 939.00   | 170.00          |
| 80th %-ile TT                    | 8.28     | 8.08     | 8.00            |
| 85th %-ile TT                    | 8.06     | 8.59     | 8.61            |
| 90th %-ile TT                    | 8.97     | 8.58     | 9.65            |
| 95th %-ile TT                    | 10.57    | 10.03    | 11.89           |
| Buffer Index (80th %-ile)        | -        | -        | 0.04            |
| Buffer Index (85th %-ile)        | 0.09     | 0.05     | 0.12            |
| Buffer Index (90th %-ile)        | 0.21     | 0.18     | 0.26            |
| Buffer Index (95th %-ile)        | 0.42     | 0.38     | 0.55            |
| Planning Time Index (80th %-ile) | 0.94     | 0.91     | 1.03            |
| Planning Time Index (85th %-ile) | 1.04     | 0.98     | 1.11            |
| Planning Time Index (90th %-ile) | 1.16     | 1.11     | 1.25            |
| Planning Time Index (95th %-ile) | 1.37     | 1.29     | 1.54            |
| Travel Time Index                | 1.80     | 1.70     | 1.79            |
| Level of Travel Time Reliability | 1.07     | 1.04     | 1.17            |
| Semi-Variance                    | 14.45    | 10.01    | 10.80           |
| Semi-Variance Data Count         | 4166.00  | 3278.00  | 468.00          |
| On-Time Arrival                  | 0.94     | 0.95     | 0.92            |
| On-Time Arrival Data Count       | 20941.00 | 18251.00 | 1893.00         |
| Misery Index                     | 1.66     | 1.47     | 1.95            |

#### Table 8.4.14 Reliability Measures by Operating Condition Types of T.H.100 NB

#### Table 8.4.15 Yearly Reliability Measures for Operating Condition Type "All" of T.H.100 NB

| Year                           | 2012     | 2013     |
|--------------------------------|----------|----------|
| Avg TT                         | 8.31     | 8.55     |
| Travel Time Rate (minute/mile) | 1.03     | 1.07     |
| Data Count                     | 11169.00 | 11095.00 |
| Free-Flow TT using Speed Limit | 8.75     | 8.75     |
| Congested Avg. TT              | 13.67    | 14.16    |

| Congested Data Count             | 568.00   | 828.00   |
|----------------------------------|----------|----------|
| 80th %-ile TT                    | 8.13     | 8.57     |
| 85th %-ile TT                    | 8.67     | 8.36     |
| 90th %-ile TT                    | 8.61     | 9.36     |
| 95th %-ile TT                    | 10.09    | 11.24    |
| Buffer Index (80th %-ile)        | 0.00     | 0.00     |
| Buffer Index (85th %-ile)        | 0.05     | 0.11     |
| Buffer Index (90th %-ile)        | 0.18     | 0.24     |
| Buffer Index (95th %-ile)        | 0.38     | 0.49     |
| Planning Time Index (80th %-ile) | 0.92     | 0.98     |
| Planning Time Index (85th %-ile) | 0.99     | 1.08     |
| Planning Time Index (90th %-ile) | 1.11     | 1.21     |
| Planning Time Index (95th %-ile) | 1.30     | 1.45     |
| Travel Time Index                | 1.77     | 1.83     |
| Level of Travel Time Reliability | 1.05     | 1.11     |
| Semi-Variance                    | 13.52    | 15.07    |
| Semi-Variance Data Count         | 1939.00  | 2230.00  |
| On-Time Arrival                  | 0.95     | 0.93     |
| On-Time Arrival Data Count       | 10632.00 | 10314.00 |
| Misery Index                     | 1.50     | 1.83     |

#### Table 8.4.16 Monthly Reliability Measures in 2012 for Operating Condition Type "All" of T.H.100 NB

| Year                              | 2012      |           |           |           |           |           |           |           |           |           |           |           |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Month                             | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        |
| Avg TT                            | 8.40      | 8.03      | 6.96      | 8.03      | 8.38      | 6.88      | 8.00      | 6.92      | 8.35      | 8.51      | 8.08      | 8.23      |
| Travel Time Rate<br>(minute/mile) | 1.05      | 1.14      | 0.98      | 0.99      | 1.04      | 0.97      | 0.99      | 0.98      | 1.04      | 1.06      | 1.00      | 1.16      |
| Data Count                        | 949       | 949       | 949       | 876       | 109<br>5  | 876       | 876       | 102<br>2  | 876       | 102<br>2  | 876       | 803       |
| Free-Flow TT using<br>Speed Limit | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      | 8.75      |
| Congested Avg. TT                 | 12.3<br>0 | 16.7<br>1 | 11.8<br>6 | 10.3<br>3 | 12.4<br>8 | 10.4<br>3 | 13.1<br>2 | 11.0<br>2 | 10.9<br>3 | 12.5<br>4 | 10.5<br>7 | 19.0<br>2 |
| Congested Data<br>Count           | 67        | 97        | 16        | 5         | 69        | 5         | 18        | 27        | 75        | 83        | 29        | 77        |
| 80th %-ile TT                     | 8.40      | 8.20      | 6.93      | 8.03      | 8.53      | 6.96      | 8.00      | 6.91      | 8.49      | 8.51      | 6.95      | 8.95      |
| 85th %-ile TT                     | 8.26      | 8.84      | 8.01      | 8.31      | 8.36      | 8.01      | 8.12      | 6.98      | 8.68      | 8.62      | 8.78      | 8.74      |
| 90th %-ile TT                     | 9.23      | 10.0<br>8 | 8.33      | 8.24      | 9.18      | 8.24      | 8.34      | 8.11      | 9.67      | 9.72      | 8.51      | 9.76      |

| 95th %-ile TT                       | 10.8<br>7 | 13.1<br>1 | 8.48 | 8.96 | 10.4<br>7 | 8.04 | 8.17 | 8.26 | 10.7<br>7 | 11.3<br>7 | 9.75 | 18.4<br>7 |
|-------------------------------------|-----------|-----------|------|------|-----------|------|------|------|-----------|-----------|------|-----------|
| Buffer Index (80th %-<br>ile)       | 0.00      | 0.02      | 0.00 | 0.00 | 0.02      | 0.01 | 0.00 | 0.00 | 0.02      | 0.00      | 0.00 | 0.00      |
| Buffer Index (85th %-<br>ile)       | 0.12      | 0.10      | 0.01 | 0.04 | 0.13      | 0.02 | 0.02 | 0.01 | 0.18      | 0.15      | 0.10 | 0.06      |
| Buffer Index (90th %-<br>ile)       | 0.25      | 0.26      | 0.05 | 0.17 | 0.24      | 0.05 | 0.05 | 0.03 | 0.32      | 0.29      | 0.20 | 0.19      |
| Buffer Index (95th %-<br>ile)       | 0.47      | 0.63      | 0.22 | 0.28 | 0.42      | 0.17 | 0.17 | 0.19 | 0.47      | 0.51      | 0.38 | 1.12      |
| Planning Time Index<br>(80th %-ile) | 0.95      | 1.06      | 0.89 | 0.91 | 0.97      | 0.90 | 0.90 | 0.89 | 0.97      | 0.97      | 0.90 | 1.03      |
| Planning Time Index<br>(85th %-ile) | 1.07      | 1.14      | 0.91 | 0.94 | 1.08      | 0.91 | 0.92 | 0.90 | 1.12      | 1.11      | 1.00 | 1.13      |
| Planning Time Index<br>(90th %-ile) | 1.19      | 1.30      | 0.95 | 1.06 | 1.19      | 0.94 | 0.95 | 0.92 | 1.25      | 1.25      | 1.10 | 1.26      |
| Planning Time Index<br>(95th %-ile) | 1.40      | 1.69      | 1.09 | 1.16 | 1.35      | 1.04 | 1.05 | 1.07 | 1.39      | 1.47      | 1.26 | 2.25      |
| Travel Time Index                   | 1.59      | 2.16      | 1.53 | 1.33 | 1.61      | 1.35 | 1.69 | 1.42 | 1.41      | 1.62      | 1.36 | 2.46      |
| Level of Travel Time<br>Reliability | 1.09      | 1.21      | 1.03 | 1.04 | 1.10      | 1.03 | 1.03 | 1.02 | 1.10      | 1.10      | 1.03 | 1.16      |
| Semi-Variance                       | 5.52      | 40.9<br>3 | 2.21 | 0.89 | 4.97      | 0.63 | 3.85 | 2.07 | 1.58      | 5.45      | 1.23 | 51.0<br>3 |
| Semi-Variance Data<br>Count         | 190       | 197       | 168  | 178  | 231       | 254  | 180  | 189  | 182       | 205       | 152  | 143       |
| On-Time Arrival                     | 0.93      | 0.90      | 0.98 | 1.00 | 0.94      | 1.00 | 0.98 | 0.98 | 0.92      | 0.92      | 0.97 | 0.91      |
| On-Time Arrival Data<br>Count       | 887       | 858       | 933  | 872  | 103<br>0  | 872  | 859  | 997  | 807       | 940       | 848  | 730       |
| Misery Index                        | 1.54      | 2.97      | 1.18 | 1.22 | 1.60      | 1.11 | 1.20 | 1.30 | 1.43      | 1.68      | 1.33 | 3.08      |

### Table 8.4.17 Monthly Reliability Measures in 2013 for Operating Condition Type "All" of T.H.100 NB

| Year                              | 2013     |      |      |      |          |      |      |      |      |          |      |      |  |
|-----------------------------------|----------|------|------|------|----------|------|------|------|------|----------|------|------|--|
| Month                             | 1        | 2    | 3    | 4    | 5        | 6    | 7    | 8    | 9    | 10       | 11   | 12   |  |
| Avg TT                            | 8.38     | 8.26 | 8.39 | 8.53 | 8.25     | 8.57 | 6.91 | 6.87 | 8.45 | 8.35     | 8.21 | 9.81 |  |
| Travel Time Rate<br>(minute/mile) | 1.04     | 1.17 | 1.05 | 1.07 | 1.03     | 1.07 | 0.98 | 0.97 | 1.05 | 1.04     | 1.02 | 1.39 |  |
| Data Count                        | 102<br>1 | 876  | 876  | 949  | 102<br>2 | 876  | 949  | 949  | 876  | 109<br>5 | 803  | 803  |  |
| Free-Flow TT using<br>Speed Limit | 8.75     | 8.75 | 8.75 | 8.75 | 8.75     | 8.75 | 8.75 | 8.75 | 8.75 | 8.75     | 8.75 | 8.75 |  |

|                                     | 12.7      | 15.1      | 13.8      | 18.0      | 11.2      | 12.2      | 11.0 | 10.9 | 12.6      | 12.5      | 11.6      | 18.0      |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------|------|-----------|-----------|-----------|-----------|
| Congested Avg. 11                   | 8         | 5         | 5         | 1         | 7         | 5         | 9    | 4    | 7         | 8         | 8         | 7         |
| Congested Data<br>Count             | 59        | 121       | 46        | 45        | 77        | 79        | 5    | 16   | 65        | 67        | 50        | 197       |
| 80th %-ile TT                       | 8.35      | 8.62      | 8.23      | 8.35      | 8.12      | 8.14      | 6.96 | 6.91 | 8.82      | 8.31      | 6.98      | 11.5<br>1 |
| 85th %-ile TT                       | 8.85      | 9.78      | 8.06      | 8.93      | 8.99      | 9.00      | 8.03 | 6.96 | 8.71      | 8.26      | 8.88      | 13.4<br>2 |
| 90th %-ile TT                       | 8.81      | 11.1<br>9 | 9.06      | 8.83      | 8.89      | 9.91      | 8.18 | 8.03 | 9.59      | 9.06      | 9.02      | 16.9<br>5 |
| 95th %-ile TT                       | 10.4<br>3 | 16.2<br>5 | 10.1<br>7 | 10.0<br>2 | 10.7<br>1 | 11.9<br>1 | 8.49 | 8.91 | 10.8<br>6 | 10.4<br>4 | 10.6<br>1 | 23.5<br>6 |
| Buffer Index (80th<br>%-ile)        | 0.00      | 0.04      | 0.00      | 0.00      | 0.00      | 0.08      | 0.01 | 0.01 | 0.05      | 0.00      | 0.00      | 0.17      |
| Buffer Index (85th<br>%-ile)        | 0.06      | 0.18      | 0.09      | 0.05      | 0.10      | 0.19      | 0.02 | 0.01 | 0.17      | 0.12      | 0.09      | 0.37      |
| Buffer Index (90th<br>%-ile)        | 0.19      | 0.35      | 0.23      | 0.17      | 0.23      | 0.31      | 0.04 | 0.02 | 0.29      | 0.23      | 0.25      | 0.73      |
| Buffer Index (95th<br>%-ile)        | 0.41      | 0.97      | 0.38      | 0.33      | 0.48      | 0.57      | 0.23 | 0.15 | 0.46      | 0.42      | 0.47      | 1.40      |
| Planning Time<br>Index (80th %-ile) | 0.95      | 1.11      | 0.93      | 0.95      | 0.92      | 1.05      | 0.90 | 0.89 | 1.01      | 0.94      | 0.90      | 1.49      |
| Planning Time<br>Index (85th %-ile) | 1.01      | 1.26      | 1.04      | 1.02      | 1.03      | 1.16      | 0.91 | 0.90 | 1.12      | 1.07      | 1.02      | 1.73      |
| Planning Time<br>Index (90th %-ile) | 1.14      | 1.44      | 1.17      | 1.14      | 1.15      | 1.28      | 0.93 | 0.91 | 1.24      | 1.17      | 1.16      | 2.19      |
| Planning Time<br>Index (95th %-ile) | 1.35      | 2.10      | 1.31      | 1.29      | 1.38      | 1.54      | 1.10 | 1.02 | 1.40      | 1.35      | 1.37      | 3.04      |
| Travel Time Index                   | 1.65      | 1.96      | 1.79      | 2.32      | 1.45      | 1.58      | 1.43 | 1.41 | 1.64      | 1.62      | 1.51      | 2.20      |
| Level of Travel<br>Time Reliability | 1.07      | 1.25      | 1.06      | 1.09      | 1.05      | 1.18      | 1.03 | 1.03 | 1.15      | 1.08      | 1.04      | 1.52      |
| Semi-Variance                       | 8.26      | 20.3<br>8 | 9.07      | 26.7<br>0 | 2.64      | 4.10      | 0.86 | 1.28 | 5.27      | 6.07      | 3.12      | 34.6<br>6 |
| Semi-Variance Data<br>Count         | 202       | 212       | 167       | 166       | 189       | 220       | 263  | 254  | 188       | 215       | 146       | 208       |
| On-Time Arrival                     | 0.95      | 0.87      | 0.95      | 0.95      | 0.93      | 0.92      | 0.99 | 0.98 | 0.93      | 0.94      | 0.94      | 0.79      |
| On-Time Arrival<br>Data Count       | 967       | 764       | 832       | 904       | 950       | 807       | 944  | 934  | 815       | 103<br>1  | 753       | 637       |
| Misery Index                        | 1.54      | 2.51      | 1.68      | 2.17      | 1.49      | 1.71      | 1.16 | 1.22 | 1.81      | 1.59      | 1.50      | 3.25      |







Figure 8.4.24 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type "All" of T.H.100 NB



Figure 8.4.25 Monthly Buffer Index (95<sup>th</sup>-ile) Variations for Operating Condition Type "All" of T.H.100 NB



#### Figure 8.4.26 Cumulative Probability of Travel Time Rate of T.H.100 NB



Figure 8.4.27 Daily Buffer Index (95<sup>th</sup>-ile) vs. Travel-Time Rate for "All operating condition" of T.H.100 NB



Figure 8.4.28 Time-of-Day Travel Time Distribution of T.H.100 NB



Figure 8.4.29 Monthly TOD Buffer Index (95%-ile) of T.H.100 NB

## **CHAPTER 9: CONCLUSIONS**

Travel-time reliability has been emerging as one of the major measures in quantifying the operational effectiveness of transportation networks. While the importance of travel time reliability in measuring the performance of transportation systems has been well recognized by transportation professionals, the current state of the practice has not reached the point where various types of reliability measures under different operating conditions can be automatically generated using data from multiple sources.

This research has developed a computerized Travel-Time Reliability Measurement System (TTRMS), which can automate the time-consuming process of gathering and managing a large amount of data from multiple sources and calculating a set of reliability indices for the predefined corridors in the metro freeway network. The TTRMS developed in this study employed a top-down approach, where the detailed system architecture was first designed. Further, a comprehensive data-management system was also developed before the development of individual modules. In particular, a set of data-import functions developed and incorporated into the data-management system can automatically download both traffic and non-traffic data from external sources, such as MnDOT's traffic data and NOAA's weather data archives. A travel-time calculation function to determine the travel times at work zones with various lane-configurations was then developed by enhancing the existing travel-time function in TICAS (Traffic Information and Condition Analysis System), developed in the previous research. Next, the reliability estimation module, the main computational engine of TTRMS, was developed to calculate a set of predetermined reliability indices following user-specified operating conditions for predefined corridors and time periods. A reliability-based, time-of-day travel-time estimation module was also developed in a webpage format, whose connectivity to the existing MnDOT's driver information system has shown promise. The development of the user-interfaces for both system administrator and general users was followed. Finally, all the individual modules were integrated, and the resulting TTRMS was tested by applying it for estimating the reliability measures for the selected corridors in the metro freeway network.

The test results using real data indicate that the TTRMS developed in this study can substantially reduce the time and effort in estimating the various types of reliability measures under different operating conditions for the predefined corridors. Further, the map-based graphical user-interfaces of the TTRMS provide both the system administrator and the general users with a flexible environment in defining corridors and specifying the operating conditions for reliability estimation. The modular approach adopted in developing TTRMS allows the addition of new reliability measures and data sources without any major modification of its structure.

The enhancement needs of TTRMS include the automation of the input process for the work-zone laneconfiguration data, such as lane-closure and shifting locations and time periods. In the current version of TTRMS, the lane-configuration data for each work-zone are entered manually by users. The availability of the electronic version of work zone data can substantially improve the efficiency and accuracy of the data input process for the work-zone routes. The future research possibilities with TTRMS can include the identification and prioritization of bottlenecks in the metro freeway network. The extension of reliability to new measures, which can quantify the vulnerability and resilience levels of the existing corridors in dealing with large-scale incidents and natural events, is also recommended. Such measures can be directly applicable for effectively allocating the operational resources to the priority routes and also for developing short- and long-term plans for freeway-network improvements.

# REFERENCES

- Texas Transportation Institute and Cambridge Systems, Inc. (2005), *Travel Time Reliability: Making It There on Time, All the time*, FHWA-HOP-06-070, Retrieved from <u>http://ops.fhwa.dot.gov/publications/tt\_reliability</u>, Federal Highway Administration, Washington, D.C.
- Transportation Research Board (2015), Retrieved from http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Pages/Reliability\_Projects\_302. aspx.
- 3. Kuhn, B., Higgins, L., Nelson, A., Finley, M., Ullman, G., Chrysler, S., Wunderlich, C., Shah, V., Dudek, C. (2014), *A Lexicon for Conveying Travel Time Reliability Information*, SHRP2 Report, S2-L14-RW-2, Transportation Research Board, Washington, D.C.
- 4. List, G., Williams, B. and Rouphail, N. (2014), *Guide to Establishing Monitoring Programs for Travel Time Reliability*, SHRT2 Report, S2-LO2-RR-1, Transportation Research Board, Washington, D.C.
- Kwon, E. and Park, C. (2012), *Development of Freeway Operational Strategies with IRIS-In-Loop Simulation*, Final Report, 2012-04, Minnesota Department of Transportation, St. Paul, Minnesota.