
Development of a Travel-Time
Reliability Measurement
System

Eil Kwon, Principal Investigator
Department of Civil Engineering
University of Minnesota Duluth

September 2018

Research Report
Final Report 2018-28

• mndot.gov/research

To request this document in an alternative format, such as braille or large print, call 651-366-4718 or 1-
800-657-3774 (Greater Minnesota) or email your request to ADArequest.dot@state.mn.us. Please
request at least one week in advance.

tel:651-366-4718
tel:1-800-657-3774
tel:1-800-657-3774
mailto:ADArequest.dot@state.mn.us

Technical Report Documentation Page
1. Report No. 2. 3. Recipients Accession No.

 MN/RC 2018-28
4. Title and Subtitle 5. Report Date

Development of a Travel-Time Reliability Measurement System September 2018
6.

7. Author(s) 8. Performing Organization Report No.

Eil Kwon, Chongmyung Park
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

University of Minnesota Duluth
252 SCiv, 1405 University Dr.
Duluth, MN 55812

CTS#2016005
11. Contract (C) or Grant (G) No.

(C) 99008 (WO) 188

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
Minnesota Department of Transportation
Research Services & Library
395 John Ireland Boulevard, MS 330
St. Paul, Minnesota 55155-1899

Final Report
14. Sponsoring Agency Code

15. Supplementary Notes
http://mndot.gov/research/reports/2018/201828.pdf
16. Abstract (Limit: 250 words)

This study has developed a computerized Travel-Time Reliability Measurement System (TTRMS), which can
automate the time-consuming process of gathering and managing data from multiple sources and calculating
various types of reliability measures under user-specified conditions for given corridors. The TTRMS adopts a server
and client structure, where the main database and computational engines reside in the server, while the user-
clients are designed for entering the data and generating the output files. In particular, most of the external data,
such as traffic and weather datasets, can be remotely downloaded following predefined time schedules. Further,
the travel-time calculation process developed in this study can explicitly reflect various lane-configurations at work
zones for correctly calculating travel times of the routes with work zones. The map-based user interfaces provide
users with a flexible environment, where the route selection and specification of operating conditions for reliability
estimation can be efficiently performed. The integrated TTRMS was tested in the Twin Cities’ metro freeway
network by estimating the reliability measures of selected corridors with real data for a two-year period, 2012-13.
The test results indicate that the TTRMS can substantially reduce the time and effort in estimating various types of
reliability measures under different operating conditions for predefined corridors.

17. Document Analysis/Descriptors 18. Availability Statement

Transportation operations, Weather conditions, Snow,
Performance measurement, Traffic flow, Travel time, Traffic
volume, Stopped time delays

No restrictions. Document available from:
National Technical Information Services,
Alexandria, Virginia 22312

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price
Unclassified Unclassified 232

DEVELOPMENT OF A TRAVEL-TIME RELIABILITY MEASUREMENT

SYSTEM

FINAL REPORT

Prepared by:

Eil Kwon

Chongmyung Park

Department of Civil Engineering

University of Minnesota Duluth

SEPTEMBER 2018

Published by:

Minnesota Department of Transportation

Research Services & Library

395 John Ireland Boulevard, MS 336

St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies

of the Minnesota Department of Transportation or the University of Minnesota Duluth. This report does not contain a standard

or specified technique.

The authors, the Minnesota Department of Transportation, and the University of Minnesota Duluth do not endorse products or

manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to this report.

ACKNOWLEDGEMENTS

This research was financially supported by the Minnesota Department of Transportation. The authors

greatly appreciate the technical guidance and data support from the staff at the Regional Traffic

Management Center, in particular, Brian Kary and Garrett Shreiner. Also, the administrative support

from Nelson Cruz and Thomas Johnson-Kaiser is very much appreciated.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ...1

1.1 Background and Research Objectives .. 1

1.2 Report Organization ... 1

CHAPTER 2: DESIGN OF THE TRAVEL-TIME RELIABILITY MEASUREMENT SYSTEM3

2.1 Introduction .. 3

2.2 Overview of the TTRMS Architecture ... 3

2.3 Design of TTRMS Server .. 6

2.4 Design of User Client .. 23

2.5 Design of the Admin Client ... 27

CHAPTER 3: ENHANCEMENT OF THE TRAVEL TIME ESTIMATION MODULE FOR WORK ZONE SITES 32

3.1 Introduction .. 32

3.2 Design of the Route-Configuration Module for Work-Zones ... 33

3.3 Enhancement of the Travel-Time Calculation Module for Work-Zones... 37

3.3.1 Basic Methodology for Travel-time Estimation ... 37

3.3.2 Design of the Modules for Calculating Work-Zone Route Travel-Time 37

3.4 Development and Testing of the Route-Configuration and Travel-Time Calculation Modules 43

CHAPTER 4: DEVELOPMENT OF A DATA-CONVERSION AND ROUTE-CONFIGURATION MODULE 52

4.1 Introduction .. 52

4.2 Development of an Internal Database for Managing and Storing Reliability-Related Data............. 53

4.3 Development of Conversion Modules for External Non-Traffic Data .. 66

4.3.1 Design of Data-Conversion Process... 66

4.3.2 Development of Data-Access Layer .. 70

4.3.3 Development of API Server ... 73

4.3.4 Development of External-Data Reader ... 76

4.4 Development of Administration-Client Module ... 80

4.5 Development of Travel-Time Reliability-Route Configuration Modules .. 90

CHAPTER 5: DEVELOPMENT OF THE TRAVEL TIME RELIABILITY COMPUTATION MODULE 96

5.1 Introduction .. 96

5.2 Development of Weather and Incident Data Reader Modules .. 98

5.2.1 Development of Additional Data Reader module for NOAA Weather Data 98

5.2.2 Development of Incident Data Reader module .. 100

5.3 Development of Travel-Time Processing Module .. 102

5.4 Development of Data Categorization Module.. 103

5.4.1 Design of Data Categorization module ... 103

5.4.2 Development of Sub Modules for Categorizing Each Data Type .. 106

5.5 Development of Reliability Calculation Module ... 117

5.5.1 Structure of Reliability Calculation module .. 117

5.5.2 Development of Data Extraction module.. 118

5.5.3 Development of Reliability Calculation module .. 121

5.5.4 Example of Reliability Calculation ... 123

CHAPTER 6: DEVELOPMENT OF A TRAVEL-TIME INFORMATION MODULE .. 127

6.1 Introduction .. 127

6.2 Development of Travel-Time Information and Public Service API Modules 129

6.3 Development of an Example Webpage for MnDOT Driver-Information System 137

CHAPTER 7: DEVELOPMENT OF THE USER-INTERFACE AND REPORT-GENERATION MODULE 141

7.1 Introduction .. 141

7.2 Development of the User-Interface and User-Service Modules .. 144

7.2.1 Overview of the User-Interface and User-Service modules .. 144

7.2.2 Development of the User-Interface module ... 145

7.2.3 Development of the User-Service module .. 153

7.3 Development of the Reliability-Estimation and Report-Generation Module 155

7.3.1 Overview of the Reliability Estimation and Report module .. 155

7.3.2 Development of the Reliability-Estimation Process module... 155

7.3.3 Development of the Report-Generation module .. 158

CHAPTER 8: SYSTEM INTEGRATION AND TESTING ... 167

8.1 Introduction .. 167

8.2 Integration of the Entire System .. 170

8.2.1 Enhancement of the Admin-Client and Admin-Service module ... 170

8.2.2 Development of the Periodic Data-Processing module .. 174

8.2.3 Development of the Task-Processing module .. 177

8.3 Operating Process of the Integrated System .. 181

8.4 Testing of the Integrated System ... 185

CHAPTER 9: CONCLUSIONS ... 211

REFERENCES .. 213

LIST OF FIGURES

Figure 2.2.1 User Groups of TTRMS .. 4

Figure 2.2.2 Main Modules of TTRMS ... 5

Figure 2.3.1 Components of TTRMS Server .. 6

Figure 2.3.2 Database Model Diagram ... 13

Figure 2.4.1 Components of User Client ... 23

Figure 2.5.1 Components of Admin Client .. 28

Figure 3.1.1 Examples of Work-Zone Lane-configurations ... 32

Figure 3.2.1 Framework for Travel-Time Reliability Measurement System ... 33

Figure 3.2.2 ‘RouteInfo’ class for storing lane-configuration data ... 35

Figure 3.2.3 Class-diagram for Route-Configuration .. 36

Figure 3.2.4 Process Diagram for Configuration of Travel-Routes ... 36

Figure 3.3.1 Vehicle-trajectories leaving the first station in the beginning of each time interval 38

Figure 3.3.2 Pseudo-code of the travel-time function .. 40

Figure 3.3.3 Class Diagram of travel-time calculation process ... 40

Figure 3.3.4 Sequence-diagram of travel-time calculation process ... 41

Figure 3.3.5 Sequence-diagram for developing station list .. 41

Figure 3.3.6 Pseudo code of get_stations() function in RouteInfoHelper... 42

Figure 3.3.7 Sequence-diagram for checking detectors ... 42

Figure 3.3.8 Pseudo-code of the check_detector() function in RouteInfoHelper 43

Figure 3.4.1 Main script for operating TTRMS server ... 44

Figure 3.4.2 Graphical User-Interface for Work-Zone Route/Lane-Configuration 44

Figure 3.4.3 Lane configuration of I-694 EB case .. 45

Figure 3.4.4 Screenshot of the I-694 EB route created in the client program .. 46

Figure 3.4.5 Lane configuration of I-35E NB case (June 18th, 2013) ... 47

Figure 3.4.6 I-35E NB case (June 18th, 2013) created in client program ... 48

Figure 3.4.7 Lane configuration of I-35E NB work-zone (9th July 2013) .. 49

Figure 3.4.8 I-35E NB work-zone (9th July 2013) created in client program ... 50

Figure 4.2.1 The New Modules developed in Chapter4 in TTRMS Architecture .. 54

Figure 4.2.2 Relationship Diagram of Database .. 55

Figure 4.2.3 Types of External Data in Client and Server .. 63

Figure 4.2.4 Sample Database-Table Class for Special Event Data ... 64

Figure 4.2.5 Sample Python Data-Class for Special Event Data .. 64

Figure 4.2.6 Sample Java Data Class for Special Event ... 65

Figure 4.3.1 Overview of Data-Conversion Process for External Data ... 66

Figure 4.3.2 Data-Conversion Modules for Type 1 External Data .. 67

Figure 4.3.3 An Example JSON String .. 68

Figure 4.3.4 An Example Sequence Diagram to Add a New Data ... 69

Figure 4.3.5 Data-Conversion Process and Modules for Type 2 Data .. 70

Figure 4.3.6 Structure of Data-Access Layer ... 70

Figure 4.3.7 Data-Access Module for Special Event Data ... 72

Figure 4.3.8 Data-Access-Base module ... 73

Figure 4.3.9 DB Access-Module Test Results with an Incident Data... 73

Figure 4.3.10 Structure of API Server and Data Service Modules .. 74

Figure 4.3.11 Special-Event Data-Service module .. 74

Figure 4.3.12 TeTRES-API Module... 75

Figure 4.3.13 Structure of RWIS Data Reader ... 76

Figure 4.3.14 RWIS Data Reader module .. 76

Figure 4.3.15 Detector station S73 and nearby RWIS site locations .. 77

Figure 4.3.16 Output Screen of Test Program .. 78

Figure 4.3.17 Precipitation History Page in SCANWeb for the Same Duration with Test Code 79

Figure 4.3.18 Surface history page for the same duration with test code in SCANWeb site 79

Figure 4.4.1 Structure of Administration-Client Module for Each Data Type ... 80

Figure 4.4.2 DataAPI module for Special-Event data .. 81

Figure 4.4.3 APIClient module .. 82

Figure 4.4.4 Work-Zone List Display Panel .. 84

Figure 4.4.5 Dialog to Add a New Work-Zone .. 84

Figure 4.4.6 Lane Configuration Edit Dialog ... 85

Figure 4.4.7 Spreadsheet for Lane Configuration ... 85

Figure 4.4.8 Main Window of Special-Event User Interface ... 86

Figure 4.4.9 Dialog to add a New Special Event .. 87

Figure 4.4.10 Snow Management Information panel ... 88

Figure 4.4.11 Dialog for New Snow-Event and Management Data .. 88

Figure 4.4.12 Snow-Management Section List panel ... 89

Figure 4.4.13 Dialog for New Snow-Management Section ... 89

Figure 4.5.1 Travel-Time Route Configuration Process .. 90

Figure 4.5.2 Reliability-Route Configuration Main User Interface.. 91

Figure 4.5.3 Dialog for New Reliability-Route ... 91

Figure 4.5.4 Confirmation Dialog to Create Opposite Direction Route .. 92

Figure 4.5.5 Class definition for Reliability-Route in Client .. 93

Figure 4.5.6 Data API module for Reliability-Route in Client .. 93

Figure 4.5.7 Reliability-Route Service module in Server ... 94

Figure 4.5.8 Data-Access module for Reliability-Route Data in Server ... 95

Figure 4.5.9 Sample Reliability-Route Data stored in Database ... 95

Figure 4.5.10 “route” Field Data of Sample Reliability-Route Database .. 95

Figure 5.1.1 The Modules developed in Chapter 5 in TTRMS Architecture .. 97

Figure 5.2.1 Data Flow and Structure of Weather Data Reader Module ... 99

Figure 5.2.2 Weather Stations in the Twin Cities Metro Area .. 100

Figure 5.2.3 Incident Data Reader module ... 101

Figure 5.3.1 Structure of Travel-Time Processing module .. 102

Figure 5.4.1 Data flows of Data Categorization module ... 103

Figure 5.4.2 Relationship diagram of the database .. 105

Figure 5.4.3 Example junction table between travel-time and weather tables 106

Figure 5.4.4 Flow charts of Weather Categorization module ... 107

Figure 5.4.5 Distance and offset-distance in incident data categorization .. 108

Figure 5.4.6 Flow charts of Incident Categorization module .. 109

Figure 5.4.7 Location type, distance and offset-distance in work zone data categorization 111

Figure 5.4.8 Flow chart of Work Zone Categorization module ... 112

Figure 5.4.9 Arrival and Departure Time Window in special event data categorization 113

Figure 5.4.10 Flow charts of Special Event Categorization module .. 114

Figure 5.4.11 Flow chart of Snow-Management Categorization module ... 116

Figure 5.5.1 Structure and Data flow of the Reliability Calculation module .. 117

Figure 5.5.2 Flow chart of Reliability Calculation process .. 118

Figure 5.5.3 Class diagram for data filter .. 119

Figure 5.5.4 Class diagram of filter generation functions for each data type .. 120

Figure 5.5.5 Flow chart of reliability calculation process.. 122

Figure 5.5.6 Example travel time route on I-35E (NB) .. 123

Figure 5.5.7 Example program to perform travel time reliability calculation .. 125

Figure 5.5.8 Output from example application... 126

Figure 6.1.1 TTI and PS-APT Modules in the TTRMS Architecture ... 128

Figure 6.2.1 The Relationship between Travel-Time Information and other relevant modules 130

Figure 6.2.2 Process to Calculate Reliability Measures using Historical Data .. 132

Figure 6.2.3 Source code for Reliability Measure Calculation using Historical Data 134

Figure 6.2.4 A Sequence diagram of travel-time information service process ... 135

Figure 6.2.5 Source code of the travel-time information service function in the TTI Module 136

Figure 6.3.1 An Example web page for travel-time information service .. 138

Figure 6.3.2 Example application results of the Travel-Time Information Module for a route on I-35E (NB)

 .. 139

Figure 6.3.3 Example Application Results of the Travel-Time Information Module for a route on I-35W

(NB) ... 140

Figure 7.1.1 Architecture of TTRMS and the User-Interface Modules ... 143

Figure 7.2.1 Overview of User-Client and User-Service module structure ... 144

Figure 7.2.2 Estimation Panel of the User Interface ... 146

Figure 7.2.3 Route-Selection Panel of the User Client .. 147

Figure 7.2.4 Operating Condition-Configuration Panel of the User Interface .. 149

Figure 7.2.5 Combinations of the Operating Sub-Conditions ... 150

Figure 7.2.6 Dialog to Add a Weather sub-Condition ... 151

Figure 7.2.7 API Client module structure .. 151

Figure 7.2.8 HttpClient class structure .. 152

Figure 7.2.9 Data Types used in API Client module .. 152

Figure 7.2.10 User-Service module structure ... 153

Figure 7.2.11 Source code of User-Service module .. 154

Figure 7.3.1 Estimation and Report module structure ... 155

Figure 7.3.2 Reliability-Estimation module structure ... 156

Figure 7.3.3 Sequence Diagram of Reliability-Estimation Process ... 157

Figure 7.3.4 Sequence Diagram of Reliability Estimation Process .. 158

Figure 7.3.5 Output File Example of Whole-Time-Reliability Writer module ... 159

Figure 7.3.6 Output File Example of Whole Time Period Reliability Writer by Operating Conditions 160

Figure 7.3.7 Output File Example of Time of Day Reliability Writer module .. 161

Figure 7.3.8 Output File Example of Travel Time Data Writer module .. 161

Figure 7.3.9 An Example Cumulative-Probability graph of Travel Time Rate ... 162

Figure 7.3.10 An Example Buffer-Index graph depending on Operating Conditions 163

Figure 7.3.11 An Example Graph for Yearly Buffer Index Variations .. 163

Figure 7.3.12 An Example Graph for Yearly Multiple Indices Comparison ... 163

Figure 7.3.13 An Example Graph for Monthly Buffer Index Variations .. 164

Figure 7.3.14 An Example Graph for Monthly Multiple Indices Comparison ... 164

Figure 7.3.15 An Example Graph for Daily Buffer Index Variations .. 164

Figure 7.3.16 Variations of Daily Travel-Time Rate vs. Buffer-Index .. 165

Figure 7.3.17 An Example graph for Travel-Time Variations by Time of Day ... 165

Figure 7.3.18 An Example graph for Yearly Planning-Time Index by Time of Day 166

Figure 7.3.19 An Example graph for Monthly Planning-Time Index by Time of Day 166

Figure 8.1.1 The Modules developed in Chapter 8 in the TTRMS Architecture 169

Figure 8.2.1 Updated and Added Modules for the System Integration ... 170

Figure 8.2.2 User Interface of the Admin Client to Manage Non-Traffic Data ... 171

Figure 8.2.3 Data Change Log Management User Interface ... 172

Figure 8.2.4 System-Configuration User Interface ... 173

Figure 8.2.5 Periodic Data Processing module ... 174

Figure 8.2.6 Sub-modules in the Daily-Tasks module in Periodic Data Processing 175

Figure 8.2.7 Structure and Sequence for Weekly-Task processing in Periodic Data Processing module . 176

Figure 8.2.8 Structure and Operational Sequence of the Monthly-Task module in Periodic Data

Processing ... 176

Figure 8.2.9 Structure of the Task-Processing module ... 177

Figure 8.2.10 Sub-modules in the Initial-Data Mark module .. 178

Figure 8.2.11 Flow Chart of Data Processor module .. 179

Figure 8.2.12 Flow Chart of Travel Time Data Checker module ... 180

Figure 8.3.1 Operating Process of the Integrated System .. 181

Figure 8.3.2 Screen Shot of Admin Client ... 182

Figure 8.3.3 Screen Shot of User Client .. 183

Figure 8.3.4 Example Web Page for Travel-Time Information Service ... 184

Figure 8.4.1 Freeway Sections used for defining Travel-Time Routes .. 185

Figure 8.4.2 Buffer Index (95th-ile) by Operating Condition Types for I-35E NB 190

Figure 8.4.3 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35E NB 190

Figure 8.4.4 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35E NB . 191

Figure 8.4.5 Cumulative Probability of Travel-Time Rate of I-35E NB .. 191

Figure 8.4.6 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for Operating Condition Type “All” of I-35E

NB .. 191

Figure 8.4.7 Time-of-Day Travel-Time Distribution of I-35E NB ... 192

Figure 8.4.8 Monthly TOD Buffer Index (95%-ile) of I-35E NB .. 192

Figure 8.4.9 Buffer Index (95th-ile) by Operating Conditions of I-35W NB ... 196

Figure 8.4.10 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35W NB . 197

Figure 8.4.11 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35W NB

 .. 197

Figure 8.4.12 Cumulative Probability of Travel Time Rate of I-35W NB ... 197

Figure 8.4.13 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for “All operating condition” of I-35W NB

 .. 198

Figure 8.4.14 Time-of-Day Travel Time Distribution of I-35W NB .. 198

Figure 8.4.15 Monthly TOD Buffer Index (95%-ile) of I-35W NB .. 198

Figure 8.4.16 Buffer Index (95th-ile) by Operating Conditions of U.S.169 NB ... 203

Figure 8.4.17 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of U.S.169 NB

 .. 203

Figure 8.4.18 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of U.S.169 NB

 .. 203

Figure 8.4.19 Cumulative Probability of Travel Time Rate of U.S.169 NB .. 204

Figure 8.4.20 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for “All operating condition” of U.S.169 NB

 .. 204

Figure 8.4.21 Time-of-Day Travel Time Distribution of U.S.169 NB ... 204

Figure 8.4.22 Monthly TOD Buffer Index (95%-ile) of U.S.169 NB.. 204

Figure 8.4.23 Buffer Index (95th-ile) by Operating Condition of T.H.100 NB .. 209

Figure 8.4.24 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of T.H.100 NB

 .. 209

Figure 8.4.25 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of T.H.100 NB

 .. 209

Figure 8.4.26 Cumulative Probability of Travel Time Rate of T.H.100 NB .. 210

Figure 8.4.27 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for “All operating condition” of T.H.100 NB

 .. 210

Figure 8.4.28 Time-of-Day Travel Time Distribution of T.H.100 NB ... 210

Figure 8.4.29 Monthly TOD Buffer Index (95%-ile) of T.H.100 NB.. 210

LIST OF TABLES

Table 2.3.1 Components of TTRMS Server ... 7

Table 2.3.2 Database Schema ... 14

Table 2.4.1 Components of User Client .. 24

Table 2.5.1 Components of Admin Client ... 28

Table 3.4.1 Selected Detectors and Speed Data on the Travel-route in I-694 EB work-zone 46

Table 3.4.2 Calculated travel-time of I-694 EB Work-Zone .. 47

Table 3.4.3 Selected Detectors and Speed Data on the travel-lanes of I-35E NB case (June 18th, 2013) ... 48

Table 3.4.4 Calculated travel time of I-35E NB case (June 18th, 2013) ... 49

Table 3.4.5 Selected Detectors and Speed Data on the travel-lanes of I-35E NB work-zone (July 9th, 2013)

 .. 50

Table 3.4.6 Calculated travel time of I-35E NB work-zone (July 9th, 2013) ... 51

Table 4.2.1 Database Tables ... 56

Table 4.2.2 Database Schema ... 57

Table 4.4.1 Symbols in Lane-Configuration Spreadsheet File ... 83

Table 5.2.1 Weather Data Table ... 98

Table 5.2.2 Incident Data Tables ... 101

Table 5.3.1Travel-time table schema .. 103

Table 5.4.1 Weather data categorization scheme .. 106

Table 5.4.2 Junction-table schema between travel-time and weather tables ... 107

Table 5.4.3 Incident data categorization scheme ... 108

Table 5.4.4 Junction table schema between travel time and incident tables .. 108

Table 5.4.5 Work zone data categorization scheme ... 110

Table 5.4.6 Junction table schema between travel time and work zone tables 110

Table 5.4.7 Special event data categorization scheme ... 113

Table 5.4.8 Junction table schema between travel time and work zone tables 113

Table 5.4.9 Snow management data categorization scheme ... 115

Table 5.4.10 Junction table schema between travel time and snow management tables 115

Table 6.2.1 Regimes used in the Travel-Time Information Module ... 129

Table 6.2.2 Database Table for Travel Time Information module .. 130

Table 8.4.1 Operating-Condition Types used in the Test .. 186

Table 8.4.2 Estimated Reliability Measures by Operating Conditions of I-35E NB Route 186

Table 8.4.3 Yearly Reliability Measures of Operating Condition Type “All” of I-35E NB 187

Table 8.4.4 Monthly Reliability Measures in 2012 for Operating Condition Type “All” of I-35E NB 187

Table 8.4.5 Monthly Reliability Measures in 2013 for Operating Condition Type “All” of I-35E NB 189

Table 8.4.6 Reliability Measures by Operating Condition Type of I-35W NB ... 192

Table 8.4.7 Yearly Reliability Measures for Operating Condition Type “All” of I-35W NB 193

Table 8.4.8 Monthly Reliability Measures in 2012 for Operating Condition Type “All” of I-35W NB 194

Table 8.4.9 Monthly Reliability Measures in 2013 for Operating Condition Type “All” of I-35W NB 195

Table 8.4.10 Reliability Measures by Operating Conditions of U.S.169 NB .. 198

Table 8.4.11 Yearly Reliability Measures for Operating Condition Type “All” of U.S.169 NB 199

Table 8.4.12 Monthly Reliability Measures in 2012 of Operating Condition Type “All” of U.S.169 NB ... 200

Table 8.4.13 Monthly Reliability Measures in 2013 of Operating Condition Type “All” of U.S.169 NB ... 201

Table 8.4.14 Reliability Measures by Operating Condition Types of T.H.100 NB 205

Table 8.4.15 Yearly Reliability Measures for Operating Condition Type “All” of T.H.100 NB 205

Table 8.4.16 Monthly Reliability Measures in 2012 for Operating Condition Type “All” of T.H.100 NB .. 206

Table 8.4.17 Monthly Reliability Measures in 2013 for Operating Condition Type “All” of T.H.100 NB .. 207

EXECUTIVE SUMMARY

Travel-time reliability has been emerging as one of the major measures in quantifying the operational

effectiveness of transportation networks. While the importance of travel time reliability in measuring

the performance of transportation systems has been well recognized by transportation professionals,

the current state of the practice has not reached the point where various types of reliability measures

under different operating conditions can be automatically generated using data from multiple sources.

This study developed a computerized Travel-Time Reliability Measurement System (TTRMS), which can

automate the time-consuming process of gathering and managing data from multiple sources and

calculating various reliability measures under user-specified conditions for given corridors. The TTRMS

adopts a server and client structure, where the main database and computational engines reside in the

server, while the user-clients are designed for entering the data and generating the output files and

reports. In particular, most of the external data, such as traffic and weather datasets, can be remotely

downloaded following predefined time schedules. Further, the travel-time calculation process

developed in this study can explicitly reflect the various lane-configurations at work zones for correctly

calculating the travel times of the routes with work zones. The map-based user interfaces provide the

users of TTRMS with a flexible environment, where the route selection and specification of operating

conditions for reliability estimation can be efficiently performed. The integrated TTRMS was tested with

real corridors in the metro freeway network in the Twin Cities, and the reliability measures for the

selected corridors were estimated for a two-year period, 2012-13. The test results indicated that the

TTRMS developed in this study can substantially reduce the time and effort in estimating the various

types of the reliability measures under different operating conditions for the predefined corridors.

Future research needs include the application of reliability measures in identifying and prioritizing the

bottlenecks in the metro freeway network. The extension of reliability to new measures, which can

quantify the vulnerability and resilience levels of the existing corridors in dealing with large-scale

incidents and natural events, is also recommended. Such measures can be directly applicable for

effectively allocating the operational resources to the priority routes and also for developing short- and

long-term plans for freeway-network improvements.

1

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND AND RESEARCH OBJECTIVES

Travel time reliability is formally defined as the consistency or dependability in travel times, as

measured from day-to-day and/or across different times of the day (1). While the importance of travel

time reliability in measuring the performance of transportation systems has been well recognized by

transportation professionals, its measurement and application is still an emerging practice. Recently a

series of research projects under the SHRP2 program produced a set of the guidelines in measuring and

applying travel-time reliability measures (2-4). However, the current state of the practice has not

reached the point where various types of reliability measures under different operating conditions can

be automatically generated using data from multiple sources. To be sure, most reliability estimations

performed in the SHRP2 studies to date have employed spreadsheet-based, project-specific processes,

which require extensive efforts for gathering and managing a large amount of data from various

sources, such as traffic, weather, incident and work-zone databases. Such a labor-intensive process in

estimating reliability measures has restricted the scope of the reliability applications.

This study develops a computerized Travel-Time Reliability Measurement System (TTRMS), which can

automate the time-consuming process for gathering and managing data from multiple sources and

calculating the various types of reliability measures under user-specified conditions for corridors in the

metro freeway network in the Twin Cities. The specific objectives of this research include:

 Development of a data management system for incorporating different types of data from

multiple sources,

 Development of a travel-time reliability computation module for the selected corridors under

various operational conditions, e.g., weather, incidents and construction sites, etc.

 Development of a set of user interfaces that can facilitate the input and output processes for

reliability estimation.

Further, a reliability-based, time-of-day travel-time estimation module was developed and its

connectivity to the existing driver-information system of MnDOT was examined. The resulting TTRMS

was tested with real data from the metro freeway network.

1.2 REPORT ORGANIZATION

Chapter 2 develops a detailed design of the TTRMS architecture, where a set of the main modules, their

functionalities and interrelationships are identified. In Chapter 3, the existing travel-time estimation

functions in TICAS (5), Traffic Information and Condition Analysis System, developed at the University of

Minnesota Duluth, will be enhanced to be able to handle the travel-time estimation of the work zones

with various types of lane configurations. Chapter 4 develops the travel-time reliability calculation

2

module, which is the main engine of the TTRMS. A reliability-based, time-of-day travel-time estimation

module is developed in Chapter 5 to examine its connectivity to MnDOT’s driver information system.

Chapter 6 develops the user interfaces and report-generation modules for the system administrator and

the general users. All the individual modules developed in this study are integrated in Chapter 7 and the

resulting system is tested by estimating the reliability measures for the selected corridors with real data.

Finally Chapter 8 includes the conclusions and future research needs.

3

CHAPTER 2: DESIGN OF THE TRAVEL-TIME RELIABILITY

MEASUREMENT SYSTEM

2.1 INTRODUCTION

In this chapter, the detailed design of the Travel-Time Reliability Estimation System (TTRMS) is

developed. The main output from the TTRMS includes the estimates of travel-time reliability indices,

such as travel time index, buffer index and semi-variances, for predefined corridors and time periods.

The input to the system consists of a set of traffic and non-traffic data. The traffic data mainly contains

the traffic flow data collected from detectors on the metro freeway network, while the non-traffic data

includes the types of data indicating freeway operating conditions, such as weather, incident and work

zones. Both traffic and non-traffic data are combined in the TTRMS and the reliability measures under

different operating conditions are estimated for given corridors. In the current version of TTRMS, the

reliability measures are estimated for a set of the fixed routes, which are pre-defined and stored by the

system administrator in the server. The rest of this chapter summarizes the detailed architecture of

TTRMS developed with a top-down design approach.

2.2 OVERVIEW OF THE TTRMS ARCHITECTURE

TTRMS provides users the travel time and reliability information for the freeway routes predefined by

the users, who can be categorized into two group, as shown in Figure 2.2.1, i.e., the general users at the

Minnesota Department of Transportation (MnDOT) and the TTRMS administrator. The system

administrator manages the server and the interfaces of the TTRMS to the external systems to collect the

data necessary for estimating the reliability measures. The traffic data needed to estimate travel times

are collected from the traffic-data archive of IRIS, while the non-traffic data, such as weather, incident,

work zone, etc., are obtained from external databases.

4

Figure 2.2.1 User Groups of TTRMS

Figure 2.2.2 shows the main modules of the TTRMS, which are consisted with three executable

programs or containers, i.e., TTRMS Server, User Client and Admin Client. The travel time and reliability

information, which are to be provided to the clients and the external services, are periodically stored

into the database of the TTRMS Server. The server configuration and the non-traffic data sources are

managed by the Admin Client. The MnDOT users can access the travel time reliability information and

obtain the reliability reports by using the User Client, which can be used to configure freeway routes,

calculate travel times and estimate the impacts of external factors on the travel-time reliability. The

main functions of the major modules in TTRMS are as follows:

5

Figure 2.2.2 Main Modules of TTRMS

TTRMS Server

 Estimation of the travel times and the reliability measures for the pre-defined routes.

 Storage of the estimated information to the database.

 Provision of the API service to the external services and clients.

User Client

 Selection of the freeway routes, time periods and operating conditions for estimating reliability

measures.

 Calculation of the travel times and reliability indices for the selected routes on the server.

 Estimation of the impacts of the non-traffic data on the travel time reliability for selected routes.

Admin Client

 Server configuration, lane configuration of work zones and the management of the external data.

6

2.3 DESIGN OF TTRMS SERVER

The TTRMS Server estimates the travel times and the reliability measures for predefined routes using

historical data and provides the clients with the estimated information through the API services. Figure

2.3.1 shows the components of the server developed in this study. The Administrator sets the

operational server configuration, such as target freeway routes, job schedule of the estimation process

and non-traffic data source information. The non-traffic data are imported manually by the

Administrator. All the requests from the Admin client are handled by the Server-Configuration

component. The Periodic-Job component conducts the scheduled-estimation process by using the

Reliability-Engine following the pre-defined schedule by the administrator. The User client and external

service can access the stored information through the Data-API component via HTTP. The rest of this

section describes the details of each component.

Figure 2.3.1 Components of TTRMS Server

7

Table 2.3.1 Components of TTRMS Server

Reliability Engine Component

Responsibilities
Collect traffic and non-traffic data, Estimate and Categorize travel times

Analyze relation between operating conditions and travel-time reliability

Collaborators Periodic Job, Data Source, Traffic Data Categorization, Travel Time Estimation

Input Freeway route, Time period

Output

Impacts of different regimes, which are combination of various operational

conditions such as demand, weather, incident and work zones, etc., on the reliability

measures

Travel Time Estimation Component

Responsibilities Estimate travel time

Collaborators Reliability Engine, Reliability Service

Notes
Lane configuration information of work zones should be considered in the

estimation process

Input freeway route, time period, active detector list

Output travel time list for each time interval

Traffic Data Categorization Component

Responsibilities categorize each travel time data based on operational conditions

Collaborators Non-Traffic Data, Data Source, Reliability Engine

8

Notes must be used after traffic and non-traffic data are saved and prepared

Input freeway route, time period

Output Linkage between travel time data and operation conditions in database

Data Source Component

Responsibilities read data from external data sources

Collaborators Reliability Engine, Non-Traffic Data, Traffic Data Categorization

Notes
use asynchronous call with thread safe way due to delay by remote data access

should consider using proxy server

Input time period

Output data

Periodic Job Component

Responsibilities manage and execute periodic jobs

Collaborators Reliability Engine

Notes generalize job scheduling mechanism

Input job that needs to be conducted with predetermined schedules

Output N/A

Data API Component

9

Responsibilities provide access mechanism to the reliability service component

Collaborators Reliability Service, User Client, TTRMS Service Consumer

Notes
service method issue: 1. create a service thread for each request

 2. one service thread and respond in FIFO or other scheduling

Input request from clients

Output corresponding output from the service component

Reliability Service Component

Responsibilities
retrieve pre-estimated travel time, reliability information and non-traffic data

estimate travel time with the retrieved information and operational conditions

Collaborators Data API, Travel Time Estimation

Input freeway route, time period

Output travel time, travel-time reliability indices, non-traffic data

Server Configuration Component

Responsibilities handle requests from admin client, set server configurations

Collaborators Admin Client, Non-Traffic Data

Input
requests (add, update, delete, etc.)

configurations, non-traffic data

Output updated configuration table of the database

10

 Non-Traffic Data Component

Responsibilities
manage non-traffic data

has data management modules for each non-traffic data type

Collaborators Server Configuration, Non-Traffic Data

Input non-traffic data

Output update non-traffic data tables

Roadway Network Component

Responsibilities
load roadway network configurations from IRIS

manage roadway network information such as detector, station and ramp

Collaborators all other components in the system

Notes

network configuration change issue : freeway network configuration on IRIS

changes

- keep metro network information daily

- roadway network information should be loaded by time period,

 not loaded at system booting sequence

Input roadway node name

Output roadway node information such as lanes, speed limit and location of station

Logging Component

Responsibilities provide logging functions

11

Collaborators all other components in the system

Input message

Output write log message

Database proxy Component

Responsibilities provide database access interface

Collaborators all other components in the system

Input query

Output update database

Design of TTRMS Database

In this research, Postgresql is used as the database engine to store the travel-time data for predefined

routes, non-traffic data, estimated data and system configurations. Figure 2.3.2 and Table 2.3.2 show

the database-model diagram and schema respectively.

12

A

13

Figure 2.3.2 Database Model Diagram

A

B

B

14

Table 2.3.2 Database Schema

Configs

config

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

name VARCHAR(100) PK NN AI

content TEXT NN

IndexName IndexType Columns

PRIMARY PRIMARY name

route

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(255) NN

corridor VARCHAR(10) NN

direction CHAR(2) NN

start_station VARCHAR(10) NN

end_station VARCHAR(10) NN

route_length FLOAT NN

IndexName IndexType Columns

PRIMARY PRIMARY id

Non-Traffic Data

incident

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

i_type_id INTEGER PK NN UNSIGNED

cdts DATETIME NN

udts DATETIME

xdts DATETIME

lat FLOAT NN

lon FLOAT NN

xstreet1 VARCHAR(50)

xstreet2 VARCHAR(50)

efeatyp VARCHAR(10)

openevent BOOL

IndexName IndexType Columns

15

PRIMARY PRIMARY id
i_type_id

incident_FKIndex1 Index i_type_id

i_type

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(100) NN

sub_type VARCHAR(100)

type_code VARCHAR(10)

classification VARCHAR(50)

blocking BOOL

occupied BOOL

rollover BOOL

injury BOOL

fatal BOOL

cars_type VARCHAR(50)

cars_evttypecode VARCHAR(10)

IndexName IndexType Columns

PRIMARY PRIMARY id

snowevent

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

start_time DATETIME NN

end_time DATETIME NN

IndexName IndexType Columns

PRIMARY PRIMARY id

snowmgmt

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

snowevent_id INTEGER PK NN UNSIGNED

start_station VARCHAR(10)

end_station VARCHAR(10)

section_length FLOAT

lane_lost_time DATETIME

lane_regain_time DATETIME

IndexName IndexType Columns

16

PRIMARY PRIMARY id
snowevent_id

snow_mgmt_FKIndex1 Index snowevent_id

specialevent

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(100) NN

start_time DATETIME NN

end_time DATETIME NN

lat FLOAT

lon FLOAT

attendance INT

IndexName IndexType Columns

PRIMARY PRIMARY id

weather

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

w_precip_type_id INTEGER PK NN UNSIGNED

w_surf_condition_id INTEGER PK NN UNSIGNED

time DATETIME NN

temp FLOAT

air_temp FLOAT

visibility FLOAT

wind_dir

ENUM('E',
'W', 'S',
'N', 'NE',
'SE', 'SW',
'NW')

wind_speed FLOAT

precip_amount FLOAT

reg_time DATETIME NN

IndexName IndexType Columns

PRIMARY PRIMARY id
w_precip_type_id
w_surf_condition_id

weather_FKIndex2 Index w_precip_type_id

weather_FKIndex3 Index w_surf_condition_id

workzone

17

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

corridor VARCHAR(20) NN

direction CHAR(2) NN

start_time DATETIME NN

end_time DATETIME NN

start_station VARCHAR(10) NN

end_station VARCHAR(10) NN

crossover BOOL NN

origin_lanes INTEGER NN UNSIGNED

open_lanes INTEGER NN UNSIGNED

median_type VARCHAR(50)

shoulder_type VARCHAR(50)

alive_detectors TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

w_precip_type

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(20) NN

IndexName IndexType Columns

PRIMARY PRIMARY id

w_surf_condition

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(20) NN

IndexName IndexType Columns

PRIMARY PRIMARY id

Links of Non-Traffic Data and Route

lnk_incident_route

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

incident_i_type_id INTEGER PK NN UNSIGNED

incident_id INTEGER PK NN UNSIGNED

route_id INTEGER PK NN UNSIGNED

IndexName IndexType Columns

18

PRIMARY PRIMARY id
incident_i_type_id
incident_id
route_id

incident_route_FKIndex1 Index incident_id
incident_i_type_id

incident_route_FKIndex2 Index route_id

lnk_snowmgmt_route

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

route_id INTEGER PK NN UNSIGNED

snowmgmt_id INTEGER PK NN UNSIGNED

snowmgmt_snowevent_id INTEGER PK NN UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY route_id
snowmgmt_id
snowmgmt_snowevent_id

snow_route_FKIndex1 Index snowmgmt_id
snowmgmt_snowevent_id

snow_route_FKIndex2 Index route_id

lnk_specialevt_route

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

specialevent_id INTEGER PK NN UNSIGNED

route_id INTEGER PK NN UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY specialevent_id
route_id

spetialevent_route_FKIndex1 Index specialevent_id

spetialevent_route_FKIndex2 Index route_id

lnk_weather_route

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

route_id INTEGER PK NN UNSIGNED

weather_id INTEGER PK NN UNSIGNED

weather_w_surf_condition_id INTEGER PK NN UNSIGNED

weather_w_precip_type_id INTEGER PK NN UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY route_id
weather_id

19

weather_w_surf_condition_id
weather_w_precip_type_id

weather_route_FKIndex2 Index route_id

weather_route_FKIndex2 Index weather_id
weather_w_precip_type_id
weather_w_surf_condition_id

lnk_wz_route

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

workzone_id INTEGER PK NN UNSIGNED

route_id INTEGER PK NN UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY workzone_id
route_id

wz_route_FKIndex1 Index workzone_id

wz_route_FKIndex2 Index route_id

Operating Condition

lnk_tt_regime

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

tt_route_id INTEGER PK NN UNSIGNED

rg_demand_id INTEGER PK NN UNSIGNED

tt_id INTEGER PK NN UNSIGNED

rg_weather_id INTEGER PK NN UNSIGNED

rg_incident_id INTEGER PK NN UNSIGNED

rg_workzone_id INTEGER PK NN UNSIGNED

rg_snowmgmt_id INTEGER PK NN UNSIGNED

rg_specialevent_id INTEGER PK NN UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY id
tt_route_id
rg_demand_id
tt_id
rg_weather_id
rg_incident_id
rg_workzone_id
rg_snowmgmt_id
rg_specialevent_id

lnk_tt_regime_FKIndex1 Index tt_id
tt_route_id

lnk_tt_regime_FKIndex2 Index rg_demand_id

20

lnk_tt_regime_FKIndex3 Index rg_weather_id

lnk_tt_regime_FKIndex4 Index rg_incident_id

lnk_tt_regime_FKIndex5 Index rg_workzone_id

lnk_tt_regime_FKIndex6 Index rg_snowmgmt_id

lnk_tt_regime_FKIndex7 Index rg_specialevent_id

rg_demand

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(50) NN
Uncongested, Low,
Moderate, High

condition TEXT NN

IndexName IndexType Columns

PRIMARY PRIMARY id

rg_incident

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(50) NN

condition TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

rg_snowmgmt

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(50) NN

condition TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

rg_specialevent

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(50) NN

condition TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

rg_weather

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

21

name VARCHAR(50) NN

condition TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

rg_workzone

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(50) NN

condition TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

Travel Time Data

tt

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

route_id INTEGER PK NN UNSIGNED

departure_time DATETIME NN

tt FLOAT NN

IndexName IndexType Columns

PRIMARY PRIMARY id
route_id

travel_time_FKIndex1 Index route_id

Travel Time Reliability

lnk_ttrprofile_route

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

route_id INTEGER PK NN UNSIGNED

ttr_profile_ttr_type_id INTEGER NN UNSIGNED

ttr_profile_id INTEGER NN UNSIGNED

reliability INTEGER UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY id
route_id

lnk_ttrprofile_route_FKIndex1 Index ttr_profile_id
ttr_profile_ttr_type_id

22

lnk_ttrprofile_route_FKIndex2 Index route_id

ttr_profile

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

ttr_type_id INTEGER PK NN UNSIGNED

name VARCHAR(50) NN

start_date DATE NN

end_date DATE NN

IndexName IndexType Columns

PRIMARY PRIMARY id
ttr_type_id

ttr_profile_FKIndex1 Index ttr_type_id

ttr_type

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(50)

IndexName IndexType Columns

PRIMARY PRIMARY id

23

2.4 DESIGN OF USER CLIENT

The User Client retrieves the travel-time and reliability information from the server for predefined

routes and generates a set of reports. In particular, the impacts of external operating factors, such as

weather, incidents, etc., on reliability measures can be analyzed with the User Client for predefined

routes. In the current version of TTRMS, the non-traffic data is stored only in the server. Therefore the

client needs to use the Data API of the server to access the non-traffic data, while the traffic flow data

can be directly accessible via HTTP. Figure 2.4.1 shows the components of the User Client, which reuses

some modules developed for the server, such as the Reliability Engine, Traffic Data Categorization,

Travel Time Estimation, Roadway Network and Logging components. In what follows, the detailed

functionalities of each component in the User Client are described.

Figure 2.4.1 Components of User Client

24

Table 2.4.1 Components of User Client

User Interface Component

Responsibilities provide graphical user interface

Collaborators Main, user

Notes support map-based freeway route definition

Input request from user

Output N/A

Main Component

Responsibilities handle request from user

Collaborators User Interface, Reliability Engine, Report

Notes should be thread-safe

Input request from user interface component

Output N/A

Content Source Component

Responsibilities
read data from traffic data archives of IRIS

read non-traffic data from server through data API

Collaborators Reliability Engine, Traffic Data Categorization

Input time period

25

Output corresponding data to type

Report Component

Responsibilities generate report in spreadsheet and chart

Collaborators Main

Notes use open source library to make spreadsheet and chart

Input report type, results

Output report file

Reliability Engine Component

Responsibilities

collect traffic and non-traffic data

estimate travel time and categorize it

analyze relation between unreliability sources and travel time reliability

Collaborators Main, Content Source, Traffic Data Categorization, Travel Time Estimation

Input freeway route, time period

Output
impact of regimes that are combination of operational conditions such as demand,

weather, incident and so on

Travel Time Estimation Component

Responsibilities estimate travel time

Collaborators Reliability Engine

26

Notes

lane configuration information of work zones to be considered in estimation

process

get lane configuration information from the server

Input freeway route, time period, active detector list

Output travel time list for each time interval

Traffic Data Categorization Component

Responsibilities categorize each travel time data based on operational conditions

Collaborators Content Source, Reliability Engine

Notes must be used after traffic and non-traffic data loaded

Input freeway route, time period

Output make link between travel time data and operation conditions in database

Roadway Network Component

Responsibilities
load roadway network configurations from IRIS

manage roadway network information such as detector, station and ramp

Collaborators all other components in the system

Notes

network configuration change issue : freeway network configuration on IRIS

changes

- keep metro network information daily

- roadway network information should be loaded by time period,

27

 not loaded at system booting sequence

Input roadway node name

Output roadway node information such as lanes, speed limit and location of station

Logging Component

Responsibilities provide logging functions

Collaborators all other components in the system

Input message

Output write log message

2.5 DESIGN OF THE ADMIN CLIENT

The Admin Client of the TTRMS manages the location information of the external-data sources, such as

server IP, port and protocol, so that the information from the external servers can be automatically

collected by the server. In addition, the data-import function is provided by the Non-Traffic Data

Configuration component for manually updating the data. In particular, the user-interface for the work

zones on freeways is also developed to configure the lane-layout of each work-zone, so that the travel

times with work zones can be estimated correctly. Figure 2.5.1 shows the components of the Admin

Client, which reuses the Roadway Network and Logging components developed for the sever container.

The rest of this section describes the details of each component.

28

Figure 2.5.1 Components of Admin Client

Table 2.5.1 Components of Admin Client

User Interface Component

Responsibilities provide graphical user interface

Collaborators Main, admin

Input request from user

Output N/A

Main Component

Responsibilities handle request from user

29

Collaborators User Interface, Server Configuration, Non-Traffic Data Configuration

Input request from user interface component

Output N/A

Non-Traffic Data Configuration Component

Responsibilities
provide interface to set non-traffic data and information

update database on server container

Collaborators Main, Communication

Input non-traffic data

Output N/A

Server Configuration Component

Responsibilities

provide interface to set server configuration

view server system log

update database on server container

Collaborators Main, Communication

Input configurations

Output view of data and logs

Communication Component

Responsibilities provide access mechanism to server

30

Collaborators
generalize communication mechanism

should consider using proxy server

Input
method (add, update and delete)

data

Output N/A

Roadway Network Component

Responsibilities
load roadway network configurations from IRIS

manage roadway network information such as detector, station and ramp

Collaborators all other components in the system

Notes

network configuration change issue : freeway network configuration on IRIS

changes

- keep metro network information daily

- roadway network information should be loaded by time period,

 not loaded at system booting sequence

Input roadway node name

Output roadway node information such as lanes, speed limit and location of station

Logging Component

Responsibilities provide logging functions

Collaborators all other components in the system

31

Input message

Output write log message

32

CHAPTER 3: ENHANCEMENT OF THE TRAVEL TIME ESTIMATION

MODULE FOR WORK ZONE SITES

3.1 INTRODUCTION

In this chapter, the existing travel-time module in TICAS, Traffic Information and Condition Analysis

System developed at the University of Minnesota Duluth, is enhanced to be able to calculate the travel-

times of the freeway work-zones, where various types of lane-configurations are implemented through

time. Figure 3.1.1 shows the common examples of work-zone lane-configurations, which include a lane-

closure, lane-shift and crossovers to opposing lanes. Further, multiple types of lane-configurations can

be combined in a single work-zone, e.g., a lane-closure and a crossover, etc.

Figure 3.1.1 Examples of Work-Zone Lane-configurations

 Lane-Closure Lane-Shift

 Crossover to Opposing-Lane Crossover from Opposing-Lane

 In this study, the following modules are developed to configure the travel-time routes with work-zones

and to calculate the travel-times of those work-zone routes:

1) Work-zone Route-Configuration Module to construct the travel-time routes for given work-zones by

identifying a list of detectors on the open-lanes for each direction,

2) Travel-time Calculation Module for new work-zone routes.

Figure 3.2.1 shows the framework of the TTRMS incorporating the above modules developed in this

chapter. The geometric information for given work zones are entered through the user-interface client

and the calculated travel-times are stored in the database to be used by the reliability estimation

module. The rest of this chapter summarizes the details of the new work-zone route and travel-time

modules along with their test results.

33

3.2 DESIGN OF THE ROUTE-CONFIGURATION MODULE FOR WORK-ZONES

In this research, the route-configuration module is first developed to identify a list of the detectors on

the travel-route in each direction for a given work-zone.

Figure 3.2.1 Framework for Travel-Time Reliability Measurement System

Server
<python>

User Input Data

Roadway Network Elements

Route

Route

Helper

Route Configuration Functions

SubRoute

Helper

Traffic MOE Functions

MOE

Result Writer

Travel Time

Metrics

Data Type and Function Library (package=pyticas)

Corridor RNode

Detector Meter

Camera . . .

SubRoute

VMT

. . .

I
n
f
r
a

Travel Time & Reliability Calculation (package=pyticas_ttrms)

DB Connection and Model

DB Connector Models Setup

Periodic Job Travel Time and Reliability

Scheduler

Daily TT Calc.

Jobs

. . .

Data

Categorizer
Reliability

Calculation

Travel Time
Calculation

Real-time

Travel Time
Calculation

API Service Register Reliability Services

User Service Admin Service

API Server (package=pyticas_server)

Detector Data Reader RWIS Data Reader Weather Sensor
Data Reader

External Data Reader Functions
Incident

Data Reader

Database

DB Access

Travel Time
Data

Route
Data . . .

Server

Client (TICAS)

UI and

Controller
Report

Generato

Local Service

Client
<java>

IRIS
<metro_config.xml> Traffic Data Archive SCANWeb

<export page>
Weather Sensor

Data Archive
Incident

(CAD)

Snow Management
Data

Special Event
Data

Static Travel Time Route

User Client Admin Client

Non-Traffic Data Config

UI and Controller

Work Zone Client

WZ Route Config
UI and Controller

Work Zone Data

Route

Info

Period

External Data

r

34

Required Data for Work-Zone Route Configuration

The following types of the geometry data are needed for configuring the travel-time routes for a given

work-zone. These data will be entered through the user-interface client and stored in JSON format for

each work-zone.

 Location/IDs of lane-closure sections,

 Location/IDs of lane-shifting and shifted-lanes,

 Location of crossover points,

 Work-zone geometry data including type/width of Median and shoulder, speed limit,

 Ramp-closure information within a work-zone.

Design of Data Structure

To store the above data and configure the travel-time route for a given work-zone, the following classes

were developed:

 ‘Infra’: a class containing all the geometry and detector information of the metro freeway-

network, such as the ID information for each corridor, detector, station, entrance/exit ramp,

meter and camera.

 ‘Route’: a class representing a freeway route,

 ‘RouteInfo’: a class storing the lane-configuration data for each work-zone,

 ‘SubRoute’: a class representing a sub-route in a Route, as shown in Figure 2,

 RouteHelper, SubRouteHelper and RouteInfoHelper are the classes to process the above classes.

Figure 3.2.2 includes the details of the RouteInfo class. The class-diagram showing the relationships

among the above classes are presented in Figure 3.2.3.

Route-Configuration Process

Figure 3.2.4 shows the process to configure a travel-route in a work-zone. The step-by-step procedure

to create a travel-route is as follows:

 Step 1: Using the map-based interface in the Client program, the sub-routes in a given work-

zone are defined by user.

 Step 2: For each sub-route defined in Step 1, user enters the lane-configuration information

using the input dialog to be developed in this task.

35

 Step 3: The user-entered data regarding the sub-routes and their lane-configuration are

converted to JSON format.

 Step 4: The route-data in JSON format are sent to the TTRMS server, where the data for each

route are stored.

 Step 5: Using the JSON-format route-data, the TICAS service module in the TTRMS server

creates the ‘Route’ instance, which is used by the Travel-Time calculation module.

Figure 3.2.2 ‘RouteInfo’ class for storing lane-configuration data

class RouteInfo(object):
def __init__(self):

self.has_crossover = None """:type: bool """
self.crossover_from = None """:type: str """
self.crossover_to = None """:type: str """
self.crossover_lanes = None """:type: int """
self.has_lane_close = None """:type: bool """
self.lane_close_from = None """:type: str """
self.closed_lanes = None """:type: int """
self.closed_lanes_list = [] """:type: list[int] """
self.has_lane_shift = None """:type: bool """
self.lane_shift_from = None """:type: str """
self.shifted_lanes = None """:type: int """
self.shifted_lanes_list = [] """:type: list[int] """
self.shift_direction = None """:type: str """
self.median_type = None """:type: str """
self.median_width = None """:type: int """
self.shoulder_type = None """:type: str """
self.shoulder_width = None """:type: int """
self.lane_width = None """:type: int """
self.speed_limit = None """:type: int """
self.closed_ramp_names = [] """:type: list[str] """
self.route_start_offset = None """:type: int """
self.route_end_offset = None """:type: int """
self.rnode_names = [] """:type: list[str] """
self.rnodes = [] """:type: list[RNodeObject] """

36

Figure 3.2.3 Class-diagram for Route-Configuration

Figure 3.2.4 Process Diagram for Configuration of Travel-Routes

37

3.3 ENHANCEMENT OF THE TRAVEL-TIME CALCULATION MODULE FOR WORK-ZONES

3.3.1 Basic Methodology for Travel -time Estimation

Figure 3.3.1 illustrates the principles of estimating the travel-time for a route in TICAS. Using the speed

data from each detector station located on a travel-route, the travel-time estimation procedure first

determines the speed estimates of the equal-length subsections between two stations for each time

interval, whose value is defined by user. The speed values of each subsection for each time interval are

then applied to determine the travel-trajectory of a vehicle leaving the first station at the beginning of

each time interval until it reaches the last station of a given route. The travel-time is calculated as the

difference between the departure time at the first station and the arrival time at the last station of a

given route. Figure 3.3.2 includes the pseudo-code of the travel-time calculation function,

estimate_travel_time(), developed in this study to determine the travel-time of a route including work-

zones.

3.3.2 Design of the Modules for Calculating Work -Zone Route Travel-Time

Figure 3.3.3 shows the classes developed for the travel-time calculation process, which is initiated by

calling estimate_travel_time() in the Estimation module. The main functionalities of each module in this

process are as follows:

 Measure module provides the functions to calculate the flow-measures, such as travel-time,

speed, density, flow, and VMT, etc. Those measure-calculation functions are stored in Measure

package.

 MeasureHelper module provides the data gathering methods to Measure module.

 TravelTime module calculates the travel-time of a given route.

 RNodeData is a class to organize travel- time calculation results. A RNodeData instance contains

RNode instance, time-period, measurement-type, station data list and lane-by-lane data for a

station. The results from TravelTime module are stored in an array (list) of RNodeData instance,

which contains the travel-time value from the starting station to each downstream station along

a route.

 RNode is a class representing a detector station.

 ResultWriter module stores the travel-time calculation results to a file in a spread- sheet format.

38

Figure 3.3.1 Vehicle-trajectories leaving the first station in the beginning of each time interval

Station 1

t1 t2 t3 t4 t5
Time

t0

Station 2

Station 3

Station 4

traffic

flow

direction

u
2

u
3

avg(u
2
, u

3
)

d
2,3

d
2,3

/ 3

d
2,3

/ 3

d
2,3

/ 3

Travel-Time during t0-t1

FUNCTION estimate_travel_time(rnode_list, period):

 “””

 estimate travel time with the given rnode (station) list and time period information

 * RNode represents station, entrance and exit

 “””

 CALLget_speed() WITH rnode_list, period RETURN us_data

 SET tt_data TO list of float list

 # us_data and tt_data is list[data list for a rnode] (type: list[list[float]])

 # e.g. us_data = [

 # [65, 63, 50, 51, 42, 40..] speed list of station 1

 # [70, 67, 48, 50, 45, 46..] speed list of station 2

 # [68, 60, 54, 52, 41, 43..] speed list of station 3

 # … #]

 SET len_data TO length of data for a rnode

 FOR tidx TO len_data:

 SET partial_data TO data only after tidx

 CALL calculate_tt() WITH partial_data, period.interval RETURN tts

 FOR ridx TO lengh of tt_data:

 SET tt_data[ridx][tidx] TO tts[ridx]

 END FOR

 END FOR

 RETURN tt_data

END FUNCTION

39

FUNCTION calculate_tt(data, interval):

 “””

 calculate travel times from the first station to each station

 when vehicle start to travel at the first time step“””

 SET tts To list of float

 SET p To (0, 0, tts, 0)

 # p[0] = traveled time

 # p[1] = traveled distance

 # p[2] = traveled time list for each rnode

 # p[3] = current rnode index

 WHILE True:

 Call tt_next() WITH data, interval p; RETURN p

 # p[0] = None, when time index or rnode index is over its limit

 # traveled distance (P[1]) could not exceed length of route

 IF NOT p[0] OR p[1] >= length of route:

 BREAK

 END IF

 END WHILE

 RETURN tts

END FUNCTION

FUNCTION tt_next(data, interval, p):

 “””

 store the travel time and find the travel time, distance to next time step“””

 ASSIGN (tt, td, tts, cur_ridx) FROM p

 SET vd TO 0.1 # distance in mile between rnodes

 SET max_ridx TO len(data)

 SET max_tidx TO len(data[0])

 SET ridx TO floor(td / vd) # rnode index

 SET tidx TO floor(tt / interval) # time index

 # check end condition

 IF it is over end of route or time data THEN

 RETURN (None, None, None, None)

 END IF

 # store travel time into the result list

 IF current rnode is not the end of route THEN

 tts[ridx] = tt / 60.0

 END IF

 # calculate remaining time and distance to next node

 SET remaining_interval TO (interval * (tidx + 1)) - tt

40

Figure 3.3.2 Pseudo-code of the travel-time function

 SET remaining_distance TO (vd * (ridx + 1)) - td

 # calculate travel time and distance to next node

 SET u TO data[ridx][tidx]

 SET tt_for_remaining_distance TO remaining_distance / u * seconds_per_hour

 SET tt_to_go TO min(remaining_interval, tt_for_remaining_distance)

 SET d_to_go TO u * tt_to_go / seconds_per_hour

 RETURN (tt + tt_to_go, td + d_to_go, tts, cur_ridx)

END FUNCTION

Figure 3.3.3 Class Diagram of travel-time calculation process

Travel-Time Calculation Process

Figure 3.3.4 shows the sequence-diagram of the travel-time calculation procedure, whose first step is to

call the function, travel_time(), in the Measure module with the following parameters:

41

 RouteHelper instance: an object including Route instance and the functions necessary for

configuring a route, such as developing a list of the stations for a given route and identifying the

detectors on the traveling-lanes.

 Period instance: the time period information including the duration and data interval in seconds

Figure 3.3.4 Sequence-diagram of travel-time calculation process

After travel_time() is called, the Measure module develops the station-list for a given route by calling

get_stations(), which combines all the detector stations in the sub-routes of a work-zone. If there is a

crossover to an opposite direction, the stations in the opposite lanes are returned. Figure 3.3.5 includes

the detailed sequence-diagram for the get_stations() function, whose pseudo-code is also presented in

Figure 3.3.6.

Figure 3.3.5 Sequence-diagram for developing station list

42

Figure 3.3.6 Pseudo code of get_stations() function in RouteInfoHelper

FUNCTION get_stations():

IF the sub-route does not have crossover OR the opposite direction crosses over to the route THEN

RETURN station list of RNodeInfo class object

ELSE THEN

CALL get_opposite_stations() RETURN opposite_stations

RETURN opposite_stations

END IF

END FUNCTION

FUNCTION get_opposite_stations():

SET stations TO station list of RNodeInfo class object

SET orn_s TO nearby station in the opposite direction for the first station

SET orn_e TO nearby station in the opposite direction for the last station

RETURN station list from orn_s to orn_e

END FUNCTION

After the list of the stations for a given route is developed, the RouteHelper in Figure 3.3.7 creates the

check_detector function, which examines the validity of a detector by returning False if a given detector

does not belong to any of sub-routes. The ‘check_detector’ function is also used to delete the detectors

on the closed-lanes when the traffic-data is collected from each station in a given work-zone. Figure

3.3.7 shows the sequence-diagram of the get_detector_checker() function. The pseud-code of the

check_detector() function is presented in Figure 3.3.8.

Once all the detectors in the travel-lanes for a given route are identified and assembled, the travel-time

calculation function, estimate_travel_time() in the TravelTime module, is called and the travel-times

from the most upstream station to each station downstream in a route are calculated.

Figure 3.3.7 Sequence-diagram for checking detectors

43

Figure 3.3.8 Pseudo-code of the check_detector() function in RouteInfoHelper

FUNCTION check_detector(det):

 IF it has lane close:

 RETURN True if the given detector exists in closed_lane_list of RouteInfo

 END IF

 IF it has lane shift:

 RETURN True if the given detector exists in shifted_lane_list of RouteInfo

 END IF

 IF it has cross over to opposite lane:

 IF the given detector does not exist in the opposite direction

 RETURN False

 END IF

 RETURN (det.lane > station.lanes – crossover lanes)

 END IF

 IF it has cross over from opposite lane:

 IF the given detector does not exist in the route

 RETURN False

 END IF

 RETURN (det.lane <= station.lanes – crossover lanes)

 END IF

 RETURN True if the given detector exists, or False

END FUNCTION

3.4 DEVELOPMENT AND TESTING OF THE ROUTE-CONFIGURATION AND TRAVEL-TIME

CALCULATION MODULES

The route-configuration and the travel-time modules designed in the previous sections were

implemented in Phython and incorporated into the TTRMS server, while the user-interface client was

developed in Java. The server program consists of a main script and three Python packages: pyticas,

pyticas_server, pyticas_ttrms. Figure 3.4.1 shows the main script, where the server instance is created

and the TTRMS service is added to the server instance as an application. Figure 3.4.2 includes the

screenshot of the graphical user-interface developed in this task for entering the lane-configuration data

for a work-zone.

44

Figure 3.4.1 Main script for operating TTRMS server

from pyticas_server.server import TICASServer

from pyticas_ttrms.app import TTRMSApp

create server instance

ticasServer = TICASServer(data_path=”./data”)

add app

ticasServer.add_app(TTRMSApp("TTRMS: Travel Time Reliability Management System"))

start server

ticasServer.start(port=5000)

Figure 3.4.2 Graphical User-Interface for Work-Zone Route/Lane-Configuration

Testing Work-Zone Route-Configuration and Travel-Time Calculation Modules

In this section, the work-zone route-configuration and travel-time calculation modules were tested with

the real work-zones in the metro freeway network. The main focus of the testing is to examine 1) if the

route configuration module correctly identifies the detectors on the travel-lanes for given work-zones

and 2) calculates the travel-times for the travel-routes with the speed data from selected detectors.

Three work-zone cases with the different types of lane-configurations were used in this testing: a lane-

closure, a lane-closure with a crossover to/from an opposing direction.

Figure 3.4.3 shows the lane-configuration of the I-694 EB work-zone that has one-lane closure in each

direction without a crossover. The screenshot of the route-configuration panel applied for this site is

included in Figure 3.4.4. First, the route-configuration module was applied to identify the detectors on

the EB open-lane and the speed data from those detectors were collected. Table 3.4.1 shows the IDs

45

and speed data from those detectors on the travel-lane. Finally, the travel-time module calculated the

travel-times of the travel-route for each time interval with those speed data. Table 3.4.2 includes the

travel-time calculation results for the I-694 EB work-zone on June 19th, 2012. In this testing, the IDs of

the selected detectors by the route-configuration module were validated through the manual

comparison between those in Figure 3.4.3 and Table 3.4.1. Further, the station speed data in Table 3.4.1

were also verified with the data downloaded separately using the current TICAS. Finally, the travel-time

results in Table 3.4.2 were confirmed with the manual calculation using the station speed and the

distance data between stations.

The above testing process was also applied to the other two sites, which include

 I-35E NB (split to TH77), June 18th, 2013: One lane-closure with a crossover to the SB left-most

lane,

 I-35E NB (split to TH77), July 9th, 2013: One-lane closure with a crossover from the SB traffic, i.e.,

the NB left-lane was used by the SB traffic flow.

In particular, the above two cases include the crossovers to or from an opposing lane and the

identification of the correct detectors on the travel-route would be of critical importance for the

accurate calculation of travel-times. Figures 3.4.5-3.4.8 show the lane-configurations of those two cases

and the Tables 3.4.3-3.4.6 include the speed data and the travel-time calculation results for the travel-

routes in those two cases. As in the first case, the IDs of the detectors automatically selected by the

route-configuration module were manually verified with the actual lane-configuration data for both

cases. Further, the speed data and the travel-time results for each case were also confirmed with the

manual calculation results.

I-694 EB (N Jct I-35E to 40th St): 7 to 8AM, 19th June 2012

Figure 3.4.3 Lane configuration of I-694 EB case

46

Figure 3.4.4 Screenshot of the I-694 EB route created in the client program

Table 3.4.1 Selected Detectors and Speed Data on the Travel-route in I-694 EB work-zone

N Jct I-
35E
(S1454)
2/3
lanes

T.H.61
(S1455)
2/3
lanes

E of
T.H.61
(S1393)
1/2
lanes

White
Bear
Ave
(S1394)
1/2
lanes

McKnig
ht Rd
(S1395)
1/2
lanes

Century
Ave
(S1396)
1/2
lanes

W of
T.H.36
(S1397)
1/2
lanes

T.H.36
(S1398)
1/2
lanes

50th St
(S1399)
1/2
lanes

40th St
(S1400)
1/2
lanes

Used
Detectors
(Lane:ID)

1:5513
2:5514

1:5517
2:5518

1:6182 1:6185 1:6188 1:6191 1:6194 1:6200 1:6206 1:6208

Distance 0 0.7 1.5 2.1 2.9 3.7 4.3 4.9 5.5 6.2

07:05:00 70.2450 70.4566 68.6751 54.0248 22.9619 31.3629 16.0908 22.0186 48.0953 64.5759

07:10:00 72.4638 68.4692 68.4821 58.0743 47.2945 11.8531 23.4647 24.9547 44.8192 68.3284

07:15:00 73.5799 75.2370 74.7033 68.8092 39.9132 27.0638 34.2688 17.7647 45.6441 60.2875

07:20:00 66.8569 63.1279 62.1610 63.4275 63.8496 18.7008 10.5475 16.7774 48.3223 61.3817

07:25:00 69.5400 64.2741 57.2482 59.0705 58.8898 7.5798 15.2840 24.5803 52.5885 74.3924

07:30:00 62.6898 65.7855 55.2284 49.2908 23.6904 18.1732 22.8312 22.1103 51.9969 75.2951

07:35:00 66.1267 68.1839 46.3186 26.3533 39.4983 11.3336 23.2600 16.1583 55.9254 72.5288

07:40:00 61.5135 56.5383 21.9269 58.4026 26.9005 21.7348 18.0034 15.0331 46.7167 68.4402

07:45:00 67.1471 14.5139 30.3370 43.0363 34.4891 5.6500 14.5203 14.7679 50.9065 71.0790

07:50:00 66.6978 18.5011 39.9961 48.9401 25.1016 7.6784 10.5887 15.3442 55.5585 77.9456

07:55:00 65.8537 41.9044 38.2130 28.0039 17.9319 7.8355 11.7924 15.7425 55.2021 77.3010

08:00:00 70.8903 66.0400 49.6674 11.2323 17.8833 9.3926 9.9907 16.1211 48.1276 74.9212

47

Table 3.4.2 Calculated travel-time of I-694 EB Work-Zone

N Jct I-
35E
(S1454)
2/3
lanes

T.H.61
(S1455)
2/3
lanes

E of
T.H.61
(S1393)
1/2
lanes

White
Bear
Ave
(S1394)
1/2
lanes

McKnig
ht Rd
(S1395)
1/2
lanes

Century
Ave
(S1396)
1/2
lanes

W of
T.H.36
(S1397)
1/2
lanes

T.H.36
(S1398)
1/2
lanes

50th St
(S1399)
1/2
lanes

40th St
(S1400)
1/2
lanes

Used
Detectors
(Lane:ID)

1:5513
2:5514

1:5517
2:5518

1:6182 1:6185 1:6188 1:6191 1:6194 1:6200 1:6206 1:6208

Distance 0 0.7 1.5 2.1 2.9 3.7 4.3 4.9 5.5 6.2

07:05:00 0 0.5971 1.2861 1.8653 3.1887 5.0474 7.3348 8.8301 10.0000 10.7771

07:10:00 0 0.5938 1.2948 1.8578 2.7631 5.0000 6.1024 7.4822 8.8569 9.6725

07:15:00 0 0.5654 1.2054 1.7040 2.5974 4.0293 5.6939 8.5067 10.0000 10.5942

07:20:00 0 0.6438 1.4093 1.9836 2.7382 4.0979 6.6340 8.5663 9.6351 10.3204

07:25:00 0 0.6246 1.4105 2.0312 2.8449 5.1148 6.9159 8.5139 9.6578 10.3460

07:30:00 0 0.6562 1.4446 2.1281 3.4930 6.1517 8.5091 10.3328 11.8425 12.6038

07:35:00 0 0.6268 1.4643 2.4464 3.9800 5.7025 7.4938 10.0000 11.1215 11.8351

07:40:00 0 0.7078 2.0322 3.1304 4.3067 7.9915 12.6223 15.5166 16.8950 17.5522

07:45:00 0 1.1799 3.6183 4.6439 6.0189 10.0000 13.2836 16.0140 17.4433 18.1628

07:50:00 0 1.0676 2.9560 3.7834 5.1616 9.0940 12.9796 15.7608 17.1202 17.8965

07:55:00 0 0.7708 1.9638 3.0357 5.1317 8.7357 11.7947 13.9320 15.2807 16.0123

08:00:00 0 0.6107 1.4360 2.8029 5.5991 8.0015 11.3882 15.0516 16.2922 17.0398

I-35E NB (split to TH77): 7 to 8AM 18th June 2013

Figure 3.4.5 Lane configuration of I-35E NB case (June 18th, 2013)

48

Figure 3.4.6 I-35E NB case (June 18th, 2013) created in client program

Table 3.4.3 Selected Detectors and Speed Data on the travel-lanes of I-35E NB case (June 18th, 2013)

Southcross Dr
(S870) 1/2 lanes

Co Rd 42 (S871)
1/2 lanes

McAndrews Rd
(S903) 1/2 lanes

S of Co Rd 11
(S902) 1/2 lanes

Co Rd 11 (S901)
1/2 lanes

N of Co Rd 11
(S900) 1/2 lanes

Used
Detectors
(Lane:ID)

2:3701 1:3703 2:3833 2:3830 2:3828 2:3825

Distance 0 0.6 1.4 2 2.4 3

07:00:00 73.38738 80.4959 72.40175 74.85773 80.47823 73.5794

07:05:00 70.88932 82.81104 71.10476 73.14209 75.76596 77.08986

07:10:00 70.87189 77.86545 72.37777 65.41239 69.92276 70.09153

07:15:00 71.11661 84.2419 71.68507 71.44966 75.75714 74.56452

07:20:00 71.89279 79.75559 71.81819 72.94343 75.10264 71.24823

07:25:00 73.36661 85.28239 71.93161 69.80221 73.34179 76.87305

07:30:00 71.71628 82.42224 72.90091 72.95775 77.28061 77.23371

07:35:00 73.39112 78.68604 71.27584 75.51968 76.38476 72.22324

07:40:00 72.71953 85.71766 71.54477 72.85648 78.45469 72.86346

07:45:00 68.87064 70.32054 72.40661 71.99642 74.90305 69.29931

07:50:00 72.09765 88.01359 72.27133 72.57216 73.76587 75.49609

07:55:00 67.60372 81.84997 72.14625 74.45962 76.91878 79.29077

08:00:00 75.12775 72.54606 71.66609 75.58397 76.04802 73.00578

49

Table 3.4.4 Calculated travel time of I-35E NB case (June 18th, 2013)

Southcross Dr
(S870) 1/2 lanes

Co Rd 42 (S871)
1/2 lanes

McAndrews Rd
(S903) 1/2 lanes

S of Co Rd 11
(S902) 1/2 lanes

Co Rd 11 (S901)
1/2 lanes

N of Co Rd 11
(S900) 1/2 lanes

Used
Detectors
(Lane:ID)

2:3701 1:3703 2:3833 2:3830 2:3828 2:3825

Distance 0 0.6 1.4 2 2.4 3

07:00:00 0 0.471997338 1.096804667 1.587164972 1.899072748 2.363404758

07:05:00 0 0.475954054 1.095975553 1.596344911 1.920136957 2.391866719

07:10:00 0 0.488413011 1.124989219 1.643778553 2.001510582 2.515847498

07:15:00 0 0.471682514 1.083629093 1.58651446 1.915043576 2.393398157

07:20:00 0 0.479536315 1.109822501 1.60785132 1.933274406 2.423252545

07:25:00 0 0.46083268 1.067708556 1.574488097 1.911940258 2.393265257

07:30:00 0 0.473678077 1.088447592 1.582108252 1.903966867 2.369919547

07:35:00 0 0.476481851 1.113660072 1.606708635 1.923149204 2.405572411

07:40:00 0 0.46223421 1.068869817 1.568255976 1.888529973 2.361739626

07:45:00 0 0.518200352 1.192131299 1.690501735 2.018904766 2.51534199

07:50:00 0 0.459455884 1.054610742 1.551872163 1.880554279 2.363892168

07:55:00 0 0.49168717 1.111702538 1.604168293 1.922563531 2.384702746

08:00:00 0 0.486214552 1.15140824 1.642715447 1.959514282 2.441018135

I-35E NB (split to TH77), 9th July 2013

Figure 3.4.7 Lane configuration of I-35E NB work-zone (9th July 2013)

50

Figure 3.4.8 I-35E NB work-zone (9th July 2013) created in client program

Table 3.4.5 Selected Detectors and Speed Data on the travel-lanes of I-35E NB work-zone (July 9th, 2013)

Southcross Dr
(S870) 0/2 lanes

Co Rd 42 (S871)
1/2 lanes

McAndrews Rd
(S872) 1/2 lanes

S of Co Rd 11
(S873) 1/2 lanes

Co Rd 11 (S874)
1/2 lanes

N of Co Rd 11
(S875) 1/2 lanes

Used
Detectors
(Lane:ID)

2:3701 1:3703 1:3707 1:3709 1:3712 1:3716

Distance 0 0.6 1.4 2 2.4 3

07:05:00 56.71865 68.23322 62.64995 65.34987 68.25299 63.84069

07:10:00 58.92379 68.55757 64.30286 69.55743 68.64977 65.48608

07:15:00 55.68993 58.72029 59.09189 61.63366 62.04305 57.97938

07:20:00 59.88649 63.75212 59.81076 41.36438 28.49986 18.39183

07:25:00 61.31178 69.04297 29.56312 24.97482 23.18537 42.11981

07:30:00 56.6512 25.41004 24.4194 34.13962 24.87503 47.85533

07:35:00 50.93543 9.329138 23.49624 28.37316 38.93668 48.32745

07:40:00 11.34843 9.145341 24.91671 23.96184 38.30469 44.61817

07:45:00 10.82176 8.108953 18.22778 27.88203 37.05413 50.87485

07:50:00 9.032855 7.209054 36.14239 19.8912 24.91597 48.94181

07:55:00 6.653098 9.987665 17.51786 22.77286 49.21652 48.84597

08:00:00 10.86724 4.549702 38.1972 43.03404 54.25733 50.92407

51

Table 3.4.6 Calculated travel time of I-35E NB work-zone (July 9th, 2013)

Southcross Dr
(S870) 0/2 lanes

Co Rd 42 (S871)
1/2 lanes

McAndrews Rd
(S872) 1/2 lanes

S of Co Rd 11
(S873) 1/2 lanes

Co Rd 11 (S874)
1/2 lanes

N of Co Rd 11
(S875) 1/2 lanes

Used
Detectors
(Lane:ID)

2:3701 1:3703 1:3707 1:3709 1:3712 1:3716

Distance 0 0.6 1.4 2 2.4 3

07:05:00 0 0.527602 1.257998 1.822603 2.183871 2.726206

07:10:00 0 0.525106 1.245237 1.787051 2.133789 2.668596

07:15:00 0 0.613076 1.428259 2.026879 2.41531 3.012153

07:20:00 0 0.564687 1.339013 2.040517 2.700854 4.215868

07:25:00 0 0.521414 1.553122 2.859366 3.847114 5.051392

07:30:00 0 1.416763 3.339022 4.620947 5.356591 6.201478

07:35:00 0 3.858877 7.342658 8.81118 9.639738 10.48305

07:40:00 0 3.93643 8.045514 9.699787 10.68023 11.77186

07:45:00 0 5 8.028878 9.305011 10.25525 10.98902

07:50:00 0 5 8.791534 10.32297 10.83242 11.51368

07:55:00 0 3.604446 7.04906 7.945823 8.45527 9.136526

08:00:00 0 7.09289 10.97833 11.83111 12.3658 13.38951

52

CHAPTER 4: DEVELOPMENT OF A DATA-CONVERSION AND

ROUTE-CONFIGURATION MODULE

4.1 INTRODUCTION

This chapter develops the Data Conversion and Route Configuration Module, whose main functionalites

include,

 Importing and converting non-traffic data from external sources and convert them into suitable

formats for estimating travel-time reliability measures,

 Managing and storing converted data into the database developed in this chapter,

 Configuring travel-time reliability routes whose reliability measures will be estimated with traffic

and external non-traffic data.

Figure 4.2.1 shows the overall architecture of the Travel-Time Reliability Measurement System (TTRMS)

and the specific modules developed in this chapter. They include:

1) Database, which stores all the data necessary to calculate travel-time reliability measures.

2) Admin/WZ Clients, which manage input and edit process of external data.

3) Reliability Services, which handles the requests from the Client to manage external data.

4) DB Access Layer, which manages the functions to access the database, such as INSERT, DELETE, GET,

 UPDATE and LIST.

5) DB Connection and Model, which defines the internal database structure and provides the database

with connection to DB Access Layer.

6) External Data Reader, which imports weather and incident data.

7) Route and Route Config, which defines data structure and configuration method for travel-time

routes.

8) Server and API server, which are accessed via HTTP.

The rest of this report describes the details of the above modules developed in this chapter.

53

4.2 DEVELOPMENT OF AN INTERNAL DATABASE FOR MANAGING AND STORING

RELIABILITY-RELATED DATA

As noted in Figure 4.2.1, there are two types of external non-traffic data needed for estimating travel-

time reliability measures. They are:

 Type 1: work zone, special event, winter-snow management data,

 Type 2: incident and weather data.

In this chapter, an internal database is first developed to store all the required data to estimate

reliability measures. Next, the data-management modules necessary to import, convert and store

external data are developed. The Type 2 data will be imported automatically by External-Data Reader

module, while Type 1 data will be entered through the Client module by the system administrator, who

also defines the travel-time routes for reliability estimation. Figure 4.2.2 shows the relational diagram

of the database developed in this study and Table 4.2.1 includes the corresponding database tables. For

example, ‘tt table’ stores calculated travel-times for all the pre-defined routes, which are stored in

‘ttr_route’ table. Each data row of ‘tt table’ has the foreign keys pointing to external data, so that

calculated travel-times and its associated external-data can be retrieved efficiently. The specific

database schema for the database table is included in Table 4.2.2.

54

Figure 4.2.1 The New Modules developed in Chapter4 in TTRMS Architecture

Server
<python>

User Input Data

Roadway Network Management Traffic MOE

MOE

Result Writer

Travel Time

Metrics

Data Type and Function Library (package=pyticas)

VMT

Speed

Travel Time & Reliability Calculation (package=pyticas_ttrms)

DB Connection and Model

DB Connector Models Setup

Periodic Job Travel Time and Reliability

Scheduler

Daily TT Calc.

Jobs

. . .

Data

Categorizer
Reliability

Calculation

Travel Time
Calculation

Realtime

Travel Time
Calculation

API Service Register Reliability Services

User Service Admin Service

API Server (package=pyticas_server)

Detector Data Reader RWIS Data Reader Weather Sensor
Data Reader

External Data Reader
Incident

Data Reader

Database

DB Access Layer

Travel Time
DB Access

Module

Work Zone

DB Access

Module
. . .

Server

Client (TICAS)

UI and

Controller
Report

Generato

Local Service

Client
<java>

IRIS
<metro_config.xml> Traffic Data Archive SCANWeb

<export page>
Weather Sensor

Data Archive
Incident

(CAD)

Snow Management
Data

Special Event
Data Travel Time Route

User Client Admin Client

Non-Traffic Data Config

UI and Controller

Work Zone Client

WZ Route Config
UI and Controller

Work Zone Data

External Data

Infra
Route

Route Config
VHT

LVMT . . .

Infra Loader

module package data

Modules already developed

Package or module developed in Chapter 3

r

55

Figure 4.2.2 Relationship Diagram of Database

56

Table 4.2.1 Database Tables

Table Name Data Fields

ttr_route

- name : route name
- description : description
- corridor : corridor name that the route is located, if the route goes through multiple

corridors, it is comma separated lists of the corridor names
- route : serialized route data (serialized Route object)

tt

- dtime : timestamp
- speed : average speed
- vmt : VMT
- precip_type : precipitation type
- precip_intensity : precipitation intensity
- inc_type: incident type
- inc_loc_type: incident location type (UP, DOWN and IN)
- inc_loc: distance from the TTR route
- wz_loc_type: location type of work zone
- wz_loc: distance from the TTR route to the upstream of work zone
- wz_lncfg: lane configuration (e.g. 2to1, 3to2)
- wz_features: features (e.g., crossover, lane shifted and ramp construction)
- wz_length: length of work zone

weather

- site_id: RWIS site id
- sen_id: sensor id
- time: timestamp
- temp: surface temperature
- air_temp: air temperature
- visibility: visibility distance
- wind_dir: wind direction
- wind_speed: wind speed
- precip_type: precipitation type (e.g., RAIN, SNOW, MIXED, SLEET, HAIL)
- precip_intens: precipitation intensity (e.g., LIGHT, MODERATE, HEAVY, SLIGHT)
- precip_amount: precipitation amount
- surf_condition: surface condition (e.g., DRY, WET, FROST, SNOW_ICE_WATCH)

incident

- incident_type: incident type (e.g., CRASH, HAZARD)
- cdts: created timestamp
- udts: updated timestamp
- xdts: closed timestamp
- lat: latitude
- lon: longitude

workzone

- name: work zone name
- description: description
- start_time: start time of duration
- end_time: end time of duration
- section1: lane configuration information for a direction (serialized Route object)
- section2: lane configuration information for the other direction (serialized Route object)

snowmgmt
- lane_lost_time : lane lost time according to snow management report
- lane_regain_time : lane regain time according to snow management report
- duration: lane lost duration in hours

snowevent - start_time: snow start time
- end_time: snow end time

57

snowsection

- name: name of snow management section
- prj_id: project id of snow management section
- description: description
- section: station and ramp information of the section (serialized Route object)

specialevent

- name: event name
- description: description
- start_time: start time of the event
- end_time: end time of the event
- lat: latitude of the location
- lon: longitude of the location
- attendance: number of attendance

ttr_result

- ttr_type: reliability index type (e.g., buffer index, planning index)
- reliability: calculated reliability index
- start_time: start time of the target duration
- end_time: end time of the target duration

Table 4.2.2 Database Schema

Table Name : ttr_route

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(255) NN

description TEXT

corridor VARCHAR(20)

ttr_route LONGTEXT

reg_date DATETIME

IndexName IndexType Columns

PRIMARY PRIMARY id

Table Name : tt

ColumnName DataType
PrimaryKey

NotNull

Flags
Defaul
t Value

Commen
t

AutoIn
c

id INTEGER PK NN
UNSIGNE
D

 AI

ttr_route_id INTEGER NN
UNSIGNE
D

specialevent_id INTEGER NN
UNSIGNE
D

58

weather_id INTEGER NN
UNSIGNE
D

workzone_id INTEGER NN
UNSIGNE
D

snowmgmt_snowevent_i
d

INTEGER NN
UNSIGNE
D

snowmgmt_id INTEGER NN
UNSIGNE
D

incident_id INTEGER NN
UNSIGNE
D

dtime DATETIME NN

tt FLOAT NN

speed FLOAT NN

vmt FLOAT NN

precip_type INTEGER NN
UNSIGNE
D

precip_intensity INTEGER
UNSIGNE
D

inc_impact INTEGER
UNSIGNE
D

inc_type INTEGER NN
UNSIGNE
D

inc_loc INTEGER
UNSIGNE
D

wz_loc_type INTEGER
UNSIGNE
D

wz_loc FLOAT

wz_lncfg VARCHAR(5)

wz_features
VARCHAR(100
)

wz_length FLOAT

IndexName IndexType Columns

PRIMARY PRIMARY id

tt_FKIndex2 Index incident_id

tt_FKIndex4 Index snowmgmt_id
snowmgmt_snowevent_id

tt_FKIndex5 Index workzone_id

tt_FKIndex6 Index weather_id

59

tt_FKIndex6 Index specialevent_id

tt_FKIndex6 Index ttr_route_id

Table Name : incident

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

incident_type_id INTEGER NN UNSIGNED

cdts DATETIME NN

udts DATETIME

xdts DATETIME

lat FLOAT NN

lon FLOAT NN

xstreet1 VARCHAR(50)

xstreet2 VARCHAR(50)

efeatyp VARCHAR(10)

openevent BOOL

IndexName IndexType Columns

PRIMARY PRIMARY id

incident_FKIndex1 Index incident_type_id

Table Name : snowevent

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

start_time DATETIME NN

end_time DATETIME NN

IndexName IndexType Columns

PRIMARY PRIMARY id

Table Name : snowmgmt

60

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

snowevent_id INTEGER PK NN UNSIGNED

snowsection_id INTEGER NN UNSIGNED

lane_lost_time DATETIME

lane_regain_time DATETIME

duration FLOAT

IndexName IndexType Columns

PRIMARY PRIMARY id
snowevent_id

snow_mgmt_FKIndex1 Index snowevent_id

snowmgmt_FKIndex2 Index snowsection_id

Table Name : snowsection

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(20)

prj_id VARCHAR(20)

description TEXT

section TEXT

IndexName IndexType Columns

PRIMARY PRIMARY id

snowroute_unique Index name

Table Name : specialevent

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(100) NN

description TEXT

start_time DATETIME NN

end_time DATETIME NN

lat FLOAT

61

lon FLOAT

attendance INTEGER UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY id

Table Name : ttr_results

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

ttr_route_id INTEGER NN UNSIGNED

ttr_type INTEGER UNSIGNED

reliability INTEGER NN UNSIGNED

start_time DATETIME

end_time DATETIME

IndexName IndexType Columns

PRIMARY PRIMARY id

ttr_results_FKIndex1 Index ttr_route_id

Table Name : weather

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

site_id INTEGER UNSIGNED

sen_id INTEGER UNSIGNED

time DATETIME NN

temp FLOAT

air_temp FLOAT

visibility FLOAT

wind_dir INTEGER UNSIGNED

wind_speed FLOAT

precip_type INTEGER UNSIGNED

precip_intens INTEGER UNSIGNED

precip_amount FLOAT

surf_condition INTEGER UNSIGNED

IndexName IndexType Columns

PRIMARY PRIMARY id

62

Table Name : workzone

ColumnName DataType PrimaryKey NotNull Flags
Default
Value

Comment AutoInc

id INTEGER PK NN UNSIGNED AI

name VARCHAR(255) NN

description TEXT NN

years VARCHAR(255) NN

start_time DATETIME NN

end_time DATETIME NN

corridors VARCHAR(255) NN

section1 TEXT NN

section2 TEXT NN

reg_date DATETIME NN

IndexName IndexType Columns

PRIMARY PRIMARY id

workzone_unique Unique Index name

63

Definition of Classes for Data Types

Figure 4.2.3 shows the data types representing ‘reliability routes’ and non-traffic, external data used in

TTRMS. To implement the database schema shown in Table 4.2.2, a set of classes are defined using

Object Relational Mapper (ORM) for all the database tables in Table 4.2.1. I.e., a database table is

represented by a class, which is used by DB Access Layer to access the database. Figure 4.2.4 shows an

example database-table class defined for special-event data using ORM, which provides abstractions of

data access and portability across different database systems.

 Figures 4.2.5 and 4.2.6 show the example definitions of Python and Java data-classes for special-event

data. It can be noted that the names of the member variables in both classes are same as with those in

the data-table classes. In TTRMS, Python data-classes are used by other modules in the server, while

data-table classes are only used to access the database. Further, Java data-classes are specifically used

to manage external, non-traffic data in the client. For the Python Server to communicate with the Java

Client, each instance of Python data-classes is serialized to JSON string by using the json module of

Python library, while any instance in Java data-Classes is serialized to JSON string with gson, an open-

source serialization library, and converted to a Java object.

 In the system setup phase, the SetUp module in the DB Connection and Data model package creates all

database tables by calling create functions in the ORM library.

Figure 4.2.3 Types of External Data in Client and Server

TTRoute
WorkZone

Incident
IncidentType
SpecialEvent
SnowSection
SnowEvent

SnowManagement

DB Table Classes Python Data Classes

TTRouteInfo
WorkZoneInfo

IncidentInfo
IncidentTypeInfo
SpecialEventInfo
SnowSectionInfo
SnowEventInfo

SnowManagementInfo

Java Data Classes

TTRouteInfo
WorkZoneInfo

IncidentInfo
IncidentTypeInfo
SpecialEventInfo
SnowSectionInfo
SnowEventInfo

SnowManagementInfo

Admin/WZ Client <Java> TTRMS Server <Python>

query exchangable g

s

o

n

j

s

o

n

represent

Database

ttroute
workzone
incident

Incident_type
specialevent
snowsection
snowevent
snowmgmt

64

Figure 4.2.4 Sample Database-Table Class for Special Event Data

Database Table Class

class Specialevent(Base):

 __tablename__ = 'specialevent'

 id = Column(Integer, primary_key=True)

 name = Column(String(100), nullable=False)

 description = Column(Text, nullable=True)

 start_time = Column(DateTime, nullable=False)

 end_time = Column(DateTime, nullable=False)

 lat = Column(Float, nullable=False)

 lon = Column(Float, nullable=False)

 attendance = Column(Integer, nullable=True)

 reg_date = Column(DateTime, nullable=False, default=datetime.datetime.now)

Figure 4.2.5 Sample Python Data-Class for Special Event Data

Python Data Class

class SpecialEventInfo(InfoBase):

 _info_type_ = 'special event'

 _dt_attrs_ = ['start_time', 'end_time']

 def __init__(self):

 self.id = None

 self.name = None

 self.description = None

 self.years = None

 self.start_time = None

 self.end_time = None

 self.lat = None

 self.lon = None

 self.attendance = None

 def set_years(self):

 start_time = datetime.datetime.strptime(self.start_time, '%Y-%m-%d %H:%M:%S')

 end_time = datetime.datetime.strptime(self.end_time, '%Y-%m-%d %H:%M:%S')

 self.years = self.years_string(start_time.year, end_time.year)

65

Figure 4.2.6 Sample Java Data Class for Special Event

// Java Data Class

package edu.umn.natsrl.ttrms.types;

public class SpecialEventInfo extends InfoBase {

 public String name;

 public String description;

 public String start_time;

 public String end_time;

 public Double lat;

 public Double lon;

 public Integer attendance;

 public String years;

 public SpecialEventInfo() {

 this.setTypeInfo(TTRMSConfig.INFO_TYPE_SPECIAL_EVNET);

 }

 // implementations of the below functions are omitted

 private Calendar toCalendar(String dts) { … }

 public String getDuration() { … }

 public void setDuration(Date sdt, Date edt) { … }

 private String DateToString(Date dt) {… }

 public Date getEndDate() {… }

 public Date getStartDate() {… }

 @Override

 public String toString() {… }

 @Override

 public SpecialEventInfo clone() {… }

66

4.3 DEVELOPMENT OF CONVERSION MODULES FOR EXTERNAL NON-TRAFFIC DATA

4.3.1 Design of Data-Conversion Process

Figure 4.3.1 shows the overall process and the modules developed in this section to import non-traffic

external data and convert/store them to the data types suitable for estimating travel-time reliability

measures. The major features of the data conversion and storing process are as follows:

 Snow-management, special-event and work-zone data are entered and edited through the user-

interfaces (UI) in Admin/WZ Client, which uses the data management services of the API server,

such as Data Insert, Update, Fetch, Delete and List, developed for each data-type.

 DB Access Layer provides API Server and External Data Reader with the functions to access the

external data stored in the database.

 The weather and incident data imported by External Data Reader package are stored in the

database through DB Access Layer

Figure 4.3.1 Overview of Data-Conversion Process for External Data

Snow

Management

Data

Special Event

Data

Work Zone

Data

Snow Mgmt. Data

Service

Special Event Data

Service

Work Zone Data

Service

Snow Mgmt. Data

Management Module

Special Event Data

Management Module

Work Zone Data

Management Module

Snow Mgmt. Data

Access Module

Special Event Data

Access Module

Work Zone Data

Access Module

Administration

Client
External Data API Server DB Access Layer

Da

t

a

b

a

s

e
Weather Data

Access Module

Incident Data

Access Module

RWIS Data Reader

Incident

Data Reader

RWIS Weather

Data

(SCANWeb)

Incident

Data

(CAD)

External Data Reader

67

Figure 4.3.2 shows the modules and interfaces developed to convert the Type 1 data, which are

imported through the Administration Client module. The main features of this process are as follows:

1) Data service modules in API Server provide the Client with the interfaces, such as LIST, INSERT, GET,

UPDATE and DELETE. Each interface has the entry point specified as HTTP URL.

 For example, Work Zone Data Service module has the entry point of

“/ttrms/admin/workzone/list” and the Client obtains work-zone information by accessing the

URL in HTTP GET method.

 Similarly, “/ttrms/admin/workzone/insert” is the entry point for INSERT, which is accessible

through HTTP POST for work-zone information.

2) DB Access Modules in Data Access Layer have also the interfaces of LIST, INSERT, GET, UPDATE and

DELETE, which are accessed by calling specific functions. For example, Work Zone DB Access Module has

the functions named as insert(), list(), get(), update() and delete(), which are called by Work Zone Data

Service module as needed.

3) DB Access Modules request query to the database via 3rd party SQL library.

Figure 4.3.2 Data-Conversion Modules for Type 1 External Data

insert

get

update

delete

list

Data

Services

insert

get

update

delete

list
DB

Access

Modules

Data

Management

Modules

Data

base

SQL

query

Function call HTTP using JSON

Administration Client API Server DB Access Layer

The general sequence of the conversion process for Type 1 data is as follows:

1) The external data and parameters entered by an administrator are converted to JSON (JavaScript

Object Notation) string and packed to the body of HTTP POST request.

- HTTP GET method is used if additional data are not required, e.g., listing.

- An example JSON string that represents a snow-event is shown in Figure 4.3.3.

68

Figure 4.3.3 An Example JSON String

{

 “id” : 1,

 “start_time” : “2016-02-12 05:00:00”,

 “end_time” : “2016-02-12 12:00:00”,

}

2) The packed, requested data is sent to the entry point of the API server.

3) Data Service Module converts received JSON data to corresponding data-object, which is used in

the server, and calls corresponding function of DB Access Module.

4) The Client receives the data from the Data Service Module.

- When the Client requests Delete or Update service and no data is returned, the service-

process status code is returned.

5) The converted data is updated and shown in the User Interface by the Client.

Figure 4.3.4 illustrates an example data-conversion sequence to add a new data:

1) User enters the data through the User Interface of the Client program.

2) The entered data are converted to JSON object and serialized to string.

3) The serialized data are sent to the entry point of insertion in the API Server.

4) Data Service Module converts the serialized string to the corresponding data object.

5) Converted data object are passed to INSERT function of DB Access Module.

6) DB Access Module inserts data to the database.

7-8) Data are returned to Data Service Module.

9-10) Returned data and status code are converted to JSON string and sent to the Client.

11) The Client receives the data and converts to the data object used in the Client.

12) User Interface of the Client is updated.

69

Figure 4.3.4 An Example Sequence Diagram to Add a New Data

Client Data Service Module DB Access Module Database

 : admin
1 : enter data()

2 : convert to JSON()

3 : HTTP POST()

4 : convert to data object()

5 : call insert()

6 : insert query()

7 : done8 : done

9 : convert data to JSON()10 : response

11 : convert to data object()

12 : update UI()

Figure 4.3.5 shows the specific modules and interfaces developed to convert the Type 2 data, i.e.,

weather and incident data. As noted earlier, the Type 2 data are directly imported through the External-

Data Reader module. The conversion process for the Type 2 data can be summarized as follows:

1) Data Pre-fetch module calls the data-reading function in Data Reader.

2) Data Reader checks the cached data in Local Disk.

 - The cached data are returned if they exist.

3) Data Reader module sends a request to the external data server if cached data are not found.

 - The received data are stored to Local Disk for future access.

4) The requested data are saved in the Database by Data Pre-fetch module through DB Access

Modules.

*The Incident Data Access module in the DB Access Layer has been developed in this chapter, while the

Incident Data Reader will be developed when the API server for CAD data is available.

70

Figure 4.3.5 Data-Conversion Process and Modules for Type 2 Data

Data Reader

insert

get

update

delete

list

DB

Access
Module

Incident/

Weather Data
Data

base

SQL

query

function call

External Data External Data Reader DB Access Layer

Local Disk

cache

Data

Pre-fetch

Module function

call

HTTP

4.3.2 Development of Data-Access Layer

Figure 4.3.6 shows the internal structure and individual modules of the Data-Access Layer, which

contains Data-Access Modules for different types of external data. The Data-Access Modules are

designed to delegate the database-access functions to the Data-Access-Base module. If additional

functions are needed for specific types of data, those functions can be implemented in corresponding

Data Access Modules. Figures 4.3.7 and 4.3.8 include the source codes for the Special Event Data Access

and the Data-Access-Base modules.

Figure 4.3.6 Structure of Data-Access Layer

Work Zone Data Access Module

Special Event Data Access Module

Data-Access-

Base Module

+ insert()
+ list()
+ get()
+ update()
+ delete()
+ search()

D

A

T

A

B

A

S

E

<<Data Access Modules>>

Snow Management Data
Access Module

Weather Data Access Module

Incident Access Module

delegate

query

71

Testing Data-Access Modules

The database-access functions in the above Database-Access modules, i.e., Insert, Update, List and

Delete, were tested using a test program with a set of hypothetical incident data. The following

procedure was used for this testing:

1) Create and Insert incident types

2) Get ‘List’ of incident types

3) Update incident types

4) Create and Insert incident data (incident has dependency to incident type)

5) Get ‘List’ incident data

6) Update incident data

7) Delete incident data and Get ‘List’ to check if data are deleted

8) Delete incident types and Get ‘List’ to check if incident types are deleted

Figure 4.3.9 shows the results of the test program with the above procedure. As shown in this figure,

each function performed correctly as expected.

class DataAccess(object):

 def __init__(self, **kwargs):

 self.da_base = DataAccessBase(model.Specialevent, SpecialEventInfo, **kwargs)

 def exist(self, name, start_time, end_time):

 if isinstance(start_time, str):

 start_time = datetime.datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S')

 if isinstance(end_time, str):

 end_time = datetime.datetime.strptime(end_time, '%Y-%m-%d %H:%M:%S')

 exs = self.da_base.search([('name', name), ('start_time', start_time), ('end_time', end_time)], op='and',

 cond='match')

 return exs

 def list(self):

 return self.da_base.list()

 def list_by_year(self, years):

 wheres = [('years', y) for y in years]

 return self.da_base.search(wheres, op='or', cond='like')

 def years(self):

 ys = []

 for sei in self.da_base.list():

 for y in sei.years.split(','):

72

Figure 4.3.7 Data-Access Module for Special Event Data

 iy = int(y)

 if iy not in ys:

 ys.append(iy)

 return sorted(ys)

 def get_by_id(self, se_id):

 return self.da_base.get_data_by_id(se_id)

 def delete(self, se_id, autocommit=False):

 return self.da_base.delete(se_id, autocommit=autocommit)

 def insert(self, sei, autocommit=False):

 return self.da_base.insert(sei, autocommit=autocommit)

 def update(self, se_id, field_data, autocommit=False):

 return self.da_base.update(se_id, field_data, autocommit=autocommit)

 def rollback(self):

 self.da_base.session.rollback()

 def commit(self):

 self.da_base.commit()

 def close(self):

 self.da_base.close()

class DataAccessBase(object):

 def __init__(self, dbModel, dataInfoType, **kwargs):

 """

 :param dbModel: DB model defined in `pyticas_ttrms.db.model`

 :param dataInfoType: corresponding class to DB model defined in `pyticas_ttrms.ttrms_types`

 """

 self.dbModel = dbModel

 self.dataInfoType = dataInfoType

 self.dt_attrs = dataInfoType._dt_attrs_ if hasattr(dataInfoType, '_dt_attrs_') else []

 self.route_attrs = dataInfoType._route_attrs_ if hasattr(dataInfoType, '_route_attrs_') else []

 self.rel_attrs = dataInfoType._rel_attrs_ if hasattr(dataInfoType, '_rel_attrs_') else {}

 self.session = kwargs.get('session', conn.get_session())

 """:type: sqlalchemy.orm.Session """

 # implementations of the below function are omitted

 def get_model_by_name(self, name):

 def get_model_by_id(self, id):

 def get_data_by_name(self, name):

 def get_data_by_id(self, id):

 def insert(self, data, autocommit=False):

 def list(self, **kwargs):

 def delete(self, id, autocommit=False):

 def update(self, id, field_data, autocommit=False):

73

Figure 4.3.8 Data-Access-Base module

 def search(self, searches, op='and', cond='match', **kwargs):

 def search_date_range(self, sinfo, einfo):

 def to_info(self, model_data, data_info_type = None):

 def to_model(self, info_data, data_info_type = None):

 def commit(self):

 def close(self):

Figure 4.3.9 DB Access-Module Test Results with an Incident Data

inserted incident types

updated data

inserted incident data

updated data

no incident data
after deleting

4.3.3 Development of API Server

Figure 4.3.10 shows the internal structure of the API server, which is consisted with Request Dispatcher,

Data Services and TeTRES-API modules. The functions handling data-service requests are built into the

TeTRES-API module. In the beginning of the system operation, the Data Services are registered to the

Request Dispatcher. When the Client requests data services, Request Dispatcher runs the corresponding

services. Each Data Service delegates the data requests to the TeTRES-Api module, while each Data

Service module can have additional functions to handle different types of data requests. Figure 4.3.11

shows the source code for Special Event Data Service module. The source code for TeTRES-API module is

included in Figure 4.3.12.

74

Figure 4.3.10 Structure of API Server and Data Service Modules

Request

Dispatcher

TeTRES-API

+ register()
+ insert()
+ list()
+ years()
+ list_by_year()
+ get_by_id()
+ get_by_name()
+ update()
+ delete()

DB
Access
Layer

register/

call

Client

Work Zone
Data Service

Special Event
Data Service

Snow Management

Data Service

<<Web Server>>
delegate

query

HTTP
<<Data Services>>

Figure 4.3.11 Special-Event Data-Service module

def register_api(app):

 TTRMSApi(app, 'specialevent', json2sei, SpecialEventDataAccess, {

 'insert': (api_urls.SE_INSERT, ['POST']),

 'list': (api_urls.SE_LIST, ['GET']),

 'list_by_year': (api_urls.SE_LIST_BY_YEAR, ['POST']),

 'get_by_id': (api_urls.SE_GET, ['POST']),

 'update': (api_urls.SE_UPDATE, ['POST']),

 'delete': (api_urls.SE_DELETE, ['POST']),

 'years': (api_urls.SE_YEARS, ['GET']),

 }).register()

75

Figure 4.3.12 TeTRES-API Module

class TTRMSApi(object):

 def __init__(self, app, name, json2obj, da_class, uris):

 self.app = app

 self.name = name

 self.json2obj = json2obj

 self.data_access_class = da_class

 self.uris = uris

 def register(self):

 autodoc = get_autodoc()

 for fname, (uri, methods) in self.uris.items():

 if not hasattr(self, fname):

 continue

 self.app.add_url_rule(uri,

 'ttrms_%s_%s' % (self.name, fname),

 getattr(self, fname),

 methods=methods)

 # implementations of the below functions are omitted

 def insert(self):

 def insert_all(self):

 def list(self):

 def list_by_year(self):

 def get_by_id(self):

 def get_by_name(self):

 def update(self):

 def delete(self):

 def years(self):

76

4.3.4 Development of External-Data Reader

The External-Data Reader package includes the data-importing modules for both RWIS and Incident

data. Figure 4.3.13 shows the structure of the External-Data Reader developed to import the RWIS Data.

The RWIS-Data Reader module provides RWIS site information and the functions to get weather

information. The Web Page Parser module reads the export page of the SCANWeb site with user-

specified parameters, such as time duration and RWIS site, and extracts weather information from

HTML, while the RWIS Data Cache module is used to save weather information to local disk for a quick

access. Figure 4.3.14 includes the some of the source code for the RWIS Data Reader module.

Figure 4.3.13 Structure of RWIS Data Reader

RWIS Data Reader

Local Disk

External

Data

Web Page

Parser
RWIS Data

Cache

Data Pre-

fetch

Module
HTTP

cache

Figure 4.3.14 RWIS Data Reader module

import datetime, enum

from pyticas import cfg, logger

from pyticas.dr.rwis_reader import scanweb_export, scanweb_html

from pyticas.tool import distance

from pyticas.tool.cache import lru_cache

from pyticas.ttypes import RWISData, RWISSiteInfo, Period

logging = logger.getDefaultLogger(__name__)

class RWIS_READER(enum.Enum):

 SCANWEB_EXPORT = scanweb_export

 SCANWEB_HTML = scanweb_html

implementations of the below functions are omitted

def find_nearby_sites(s_lat, s_lon):

def get_site_by_id(site_id):

def get_all_rwis_sites():

def get_weather_by_site(group_id, site_id, prd, **kwargs):

def get_weather(site, prd, **kwargs):

77

Testing RWIS Data-Reader module

The RWIS-Data Rader module was tested by importing the RWIS data for a detector station and

comparing the imported data with those from the SCANWeb site. In this testing, the RWIS-Data Reader

module was applied to import the RWIS data for the detector station S73 on I-35W. Specifically, the

following functions of the RWIS-Data Rader module were tested:

- find_nearby_sites(lat, lon) : find the RWIS site information close to a given coordinate

- get_weather(site, time_period) : read weather data from SCANWeb site for a given RWIS site and time

period

Figure 4.3.15 shows the location of the RWIS site, I-35@ Minnesota River, found by the RWIS-Data

Reader module for the test station S73. The Figure 4.3.16 includes the RWIS data imported from this

site, while Figures 4.3.17 and 4.3.18 show the data from the SCANWeb site for the same RWIS site. As

can be noted from these figures, the imported data from the RWIS-Data Reader module exactly match

those from the SCANWeb site for the same RWIS site.

Figure 4.3.15 Detector station S73 and nearby RWIS site locations

78

Figure 4.3.16 Output Screen of Test Program

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:38:48) [MSC v.1900 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

=========== RESTART: test_rwis.py ======================

station=S73, label=I-35W, lat=44.774990, lon=-93.288440

site name=I-35 @ Minnesota River, site id=330085, distance to station=4.414634 mile

Weather Data

- DateTime ['03/15/2016 07:05', '03/15/2016 07:10', '03/15/2016 07:15', '03/15/2016 07:20',

'03/15/2016 07:25', '03/15/2016 07:30', '03/15/2016 07:35', '03/15/2016 07:40', '03/15/2016 07:45',

'03/15/2016 07:50', '03/15/2016 07:55', '03/15/2016 08:00', '03/15/2016 08:05', '03/15/2016 08:10',

'03/15/2016 08:15', '03/15/2016 08:20', '03/15/2016 08:25', '03/15/2016 08:30', '03/15/2016

08:35', '03/15/2016 08:40', '03/15/2016 08:45', '03/15/2016 08:50', '03/15/2016 08:55']

 - SfStatus ['Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture',

'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace

Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture',

'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace Moisture', 'Trace

Moisture', 'Trace Moisture']

 - SfTemp [55.6, 55.9, 55.8, 55.8, 55.9, 55.9, 55.8, 55.6, 55.6, 55.4, 55, 55.2, 54.9, 54.9, 54.7, 54.9,

54.9, 54.7, 54.5, 54.3, 54.5, 54.3, 54.1]

- PrecipRate [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.5, 0.3, 0.4, 0.2]

- PrecipType ['Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', None, None, None, None, None, None, None,

'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes']

79

Figure 4.3.17 Precipitation History Page in SCANWeb for the Same Duration with Test Code

Figure 4.3.18 Surface history page for the same duration with test code in SCANWeb site

80

4.4 DEVELOPMENT OF ADMINISTRATION-CLIENT MODULE

Figure 4.4.1 shows the structure of the Administration-Client module developed for each of Type 1 data,

i.e., work zone, special event and snow management data. The main features of the internal process

shown in this figure can be summarized as follows:

 The DataAPI module extends the APIClient module, whose functions are inherited by the

DataAPI module. The interfaces to access the external data in the server are built into the

APIClient module, while the HttpClient module has the functions to send the request of HTTP

GET and POST to server.

 The DataAPI module sends the request from User Interface to server through the HttpClient

module and triggers the corresponding events after receiving a response from the server.

 The Event handler updating status in User Interface module is executed by the events from the

DataAPI module.

Figures 4.4.2 and 4.4.3 include the source codes of the DataAPI module for special-event data and the

APIClient module. The rest of this section describes the user-interfaces developed in this task for

different types of Type 1 data.

Figure 4.4.1 Structure of Administration-Client Module for Each Data Type

User Interface

DataAPI

APIClient<T>

+ insert()
+ list()
+ years()
+ list_by_year()
+ get_by_id()
+ get_by_name()

Server

Administration Client (for a Data Type)

HTTP

extends

HttpClient

+ post()
+ get()

HTTP

+ update()

+ delete()

81

Figure 4.4.2 DataAPI module for Special-Event data

public class SpecialEvent extends APIClient<SpecialEventInfo> {

 public SpecialEvent() {

 this.RESPONSE_LIST_TYPE = new TypeToken<ListResponse<SpecialEventInfo>>(){}.getType();

 this.RESPONSE_TYPE = new TypeToken<ObjectResponse<SpecialEventInfo>>(){}.getType();

 this.DATA_TYPE = SpecialEventInfo.class;

 this.URL_DELETE = Config.getAPIUrl(ApiURIs.URI.SE_DELETE);

 this.URL_YEARS = Config.getAPIUrl(ApiURIs.URI.SE_YEARS);

 this.URL_LIST = Config.getAPIUrl(ApiURIs.URI.SE_LIST);

 this.URL_LIST_BY_YEAR = Config.getAPIUrl(ApiURIs.URI.SE_LIST_BY_YEAR);

 this.URL_INSERT = Config.getAPIUrl(ApiURIs.URI.SE_INSERT);

 this.URL_UPDATE = Config.getAPIUrl(ApiURIs.URI.SE_UPDATE);

 this.URL_GET = Config.getAPIUrl(ApiURIs.URI.SE_GET);

 }

 @Override

 protected Comparator<SpecialEventInfo> getComparator() { … }

}

public abstract class APIClient<T extends InfoBase> {

 protected String URL_DELETE;

 protected String URL_LIST;

 protected String URL_LIST_BY_YEAR;

 protected String URL_INSERT;

 protected String URL_INSERT_ALL;

 protected String URL_UPDATE;

 protected String URL_GET;

 protected String URL_YEARS;

 protected Type RESPONSE_LIST_TYPE;

 protected Type RESPONSE_TYPE;

 protected Type DATA_TYPE;

 protected Gson gsonBuilder = new GsonBuilder().create();

 public final ArrayList<T> dataList;

 protected List<AbstractDataChangeListener<T>> changeListeners = new ArrayList<>();

 protected boolean isLoadingList = false;

 protected Logger logger;

 // implementations of the below functions are omitted

 public APIClient() { … }

 public void years() { ... }

82

Figure 4.4.3 APIClient module

 public void list() { … }

 public void listByYear(Integer year) { … }

 private T getDataById(int id) { … }

 public void delete(final List<Integer> ids) { … }

 public void insert(final T obj) { … }

 public void insertAll(final List<T> dataList) { … }

 public void get(final String id) { … }

 public T getSynced(String id) { … }

 public T getByNameSynced(final String name) { … }

 public void update(T exData, final T newData) { … }

 private IHttpResultCallback getListCallback() { … }

 private void notSupportedAPI(String name) { … }

 public String toJson(Object obj) { … }

 protected abstract Comparator<T> getComparator();

 public void addChangeListener(AbstractDataChangeListener<T> listener) { … }

 public void removeChangeListener(AbstractDataChangeListener<T> listener) { … }

 protected void fireListSuccess() { … }

 protected void fireListFailed(HttpResult httpResult) { … }

 protected void fireGetSuccess(T obj) { … }

 protected void fireGetFailed(HttpResult httpResult, int id) { … }

 protected void fireGetFailed(HttpResult httpResult, String id) { … }

 protected void fireUpdateSuccess(int id) { … }

 protected void fireUpdateFailed(HttpResult httpResult, T obj) { … }

 protected void fireDeleteSuccess(List<Integer> ids) { … }

 protected void fireDeleteFailed(HttpResult httpResult, List<Integer> ids) { … }

 protected void fireInsertSuccess(Integer insertedId) { … }

 protected void fireInsertFailed(HttpResult httpResult, T obj) { … }

 protected void fireYearsSuccess(List<Integer> obj) { … }

 protected void fireYearsFailed(HttpResult httpResult) { … }

 protected void fireInsertAllSuccess() { … }

 protected void fireInsertAllFailed(HttpResult result, List<T> dataList) { … }

User Interface for Work-Zone Data

Figures 4.4.4-4.4.7 show the screenshots of the user-interface developed for entering work-zone data.

The major features of the User Interface for editing work-zone data are as follows:

 Figure 4.4.4 shows the map-based Work-Zone List Panel, which displays the list and location of

the work-zones for selected corridors and construction time-periods. In this panel, user can edit

the information on specific work-zones or add/delete work-zones. The example screen shown in

Figure 4.4.4 includes two work-zones selected on the I-35W NB and SB.

83

 Figure 4.4.5 is a dialog to add a new work-zone. This dialog pops up when the ‘add’ button in

the List Panel is clicked. In this dialog, user can enter general information of a new work-zone,

such as name, description and construction duration.

-User also can define a ‘Work-zone route’, i.e., the direction and boundaries of a work zone in terms of

detector station IDs. When user specifies a work-zone route for one direction, the interface

automatically creates a second route in an opposing direction with the same upstream/downstream

boundaries as with the first route.

- The detailed lane-configuration within a work-zone can be specified by clicking ‘Edit Lane-

Configuration’ button, which displays a dialog with two choice buttons as shown in Figure 4.4.6.

- To create a new lane-configuration file, click ‘Create New Lane-Configuration File’ button, which will

open a spread-sheet file with a set of default information for current work zone, such as mile points,

station/ramp ids and open/closure status of ramps, etc. The detailed lane-closure conditions of a given

work zone can be entered by user in this spreadsheet using the symbols shown in Table 4.4.1.

Table 4.4.1 Symbols in Lane-Configuration Spreadsheet File

Symbol Remarks

↓,↑ traffic flow direction on mainline

↓~~, ~~↓, ↑~~, ~~↑ lane shifted

↓X, ↑X, lane closed

O ramp opened

X ramp closed

↓ (A), ↑ (A) auxiliary lane

↓ (H), ↑ (H) HOV(T) lane

S<Number> Station ID

E:<Label> Entrance ID

X:<Label> Exit ID

84

Figure 4.4.4 Work-Zone List Display Panel

Add button

construction year and corridor filter

work zone list

Delete, Copy and Edit button

section1 info

section2 info

Figure 4.4.5 Dialog to Add a New Work-Zone

name

construction duration

corridor selector

stations and ramps included WZ

“Edit Lane Configuration” button

save button

description (optional)

85

Figure 4.4.6 Lane Configuration Edit Dialog

Figure 4.4.7 Spreadsheet for Lane Configuration

lane shifted

section 1 section 2

lane closed

entrance opened

crossover lane

86

User Interface for Special-Event Data

Figure 4.4.8 shows the Special-Event data user-interface, where user can add, edit and delete special-

event data. Further, a list of special events selected by user for a specific year can be shown in this

panel in a table format. Figure 4.4.9 is a dialog to add a new special-event data, which include name,

location and event duration. In particular, the location of a new event can be entered from the

background map of the user interface.

Figure 4.4.8 Main Window of Special-Event User Interface

Add button

year filter

list table

Delete and Edit button

location of the selected event

87

Figure 4.4.9 Dialog to add a New Special Event

event name

event duration

attendance (optional)

description (optional)

location
(right click on map)

User Interface for Snow Management Data

The user interface for managing snow-management data consists of two tabs, “Snow Management

Information” and “Snow Management Section” tabs as shown in Figure 4.4.10. The past snow-event

data can be entered and edited in the ‘Snow Management Information’ tab, where user can retrieve a

set of past snow events in a table format. The specific information on a selected snow event, such as

snow start/end time and lane regain time, can also be seen in this panel. Figure 4.4.11 shows the dialogs

where user can enter new snow-event data, which include event duration, snow management section

boundaries, lane lost and regain times.

Figure 4.4.12 shows “Snow Management Section” tab, where detailed information regarding snow-

management sections can be entered, edited and deleted by user. Further, a list of snow-management

sections on each freeway corridor can be generated in this panel in a table format that also includes

specific information on each snow-management section. Figure 4.4.13 shows a dialog to add a new

snow management section, whose data includes section boundaries in terms of detector station IDs,

name, description and snow-route ID managed by MnDOT. Each Snow-Management section consists of

two routes, i.e., one for each direction. When a route for one direction is created, the other route for an

opposing direction is created automatically by the user interface.

88

Figure 4.4.10 Snow Management Information panel

snow event list table

Add button (snow event)

Delete button (snow event)

snow management list table

snow event year filter

Add button (snow management)

Edit and Delete buttons (snow mgmt.)

Snow Mgmt. tab

Figure 4.4.11 Dialog for New Snow-Event and Management Data

snow start

snow end

corridor filter

snow section list lane lost and regain time

time

time

89

Figure 4.4.12 Snow-Management Section List panel

Section tab

corridor filter

section list

Delete and Edit button

section1 info

section2 info

Add button

Figure 4.4.13 Dialog for New Snow-Management Section

Section name

Route Id

Description

Corridor

Buttons

90

4.5 DEVELOPMENT OF TRAVEL-TIME RELIABILITY-ROUTE CONFIGURATION MODULES

In this section, a set of the modules are developed to be used for configuring travel-time routes, whose

reliability measures will be calculated by TTRMS. Figure 4.5.1 shows the travel-time route configuration

process, which includes two sub-processes, i.e., route-configuration through the map-based user

interface and the conversion and storing of user-specified route data into the database. The route-

configuration process with the user interface is managed by the Administration Client, while the data-

conversion process uses those modules developed in the previous chapter.

Figure 4.5.1 Travel-Time Route Configuration Process

Reliability

Route

 Data

Administration Client API Server DB Access Layer

DB
insert
get
update

delete

list

Reliability

 Route

Data
Service

insert
get

update

delete

list

function call HTTP

using JSON

Reliability

 Route
DB Access

 Module

Route Configuration

User Interface

for

Route

User Interface for Route Configuration

Figure 4.5.2 shows the main-panel of the user interface, where user can add, edit and delete reliability

routes. Further, a list of existing routes can be displayed in a table format including detailed information

on a selected route. Figures 4.5.3 and 4.5.4 show a dialog for adding a new reliability route, e.g., a route

between the southern boundary of I-35 and I-35E NB/TH 77. As shown in this example, if an exit ramp is

included in a multi-corridor route, an additional dialog is used to specify a corresponding corridor. Also,

a second route in an opposing direction can be automatically created depending on user choice.

Management

Configuration

Route-Data Conversion

91

Figure 4.5.2 Reliability-Route Configuration Main User Interface

Add button

corridor filter

TT route list

Delete and Edit button

route info

stations and ramps
of the selected route in the route list

Figure 4.5.3 Dialog for New Reliability-Route

1. select corridor

2. right click on a first station
 and select “Route start from here”

4. right click on a last station
 and select “Route end to here”

3. right click on exit to other corridor
 and select “Through this exit”

92

Figure 4.5.4 Confirmation Dialog to Create Opposite Direction Route

confirmation dialog to create the

opposite direction route that is shown

after saving a route
created opposite direction route

Route-Data Conversion Process

The route-specific data entered by user, i.e., system administrator, are converted and stored in the

database with the same process developed in the previous chapter for external non-traffic data. The

route-specific data, including a list of stations, ramps and corridor IDs, are first converted into a JSON

string in the Administration Client, which sends them to the entry point of the Reliability Route Service

of the API Server using the HTTP POST method. The entry point to insert a reliability route is specified as

the URL of “/ttrms/admin/ reliability_route/insert”. The JSON-string data are then converted to Python

objects in the Reliability Route Service for the Reliability Route DB Access modules to interface with the

database. Figure 30 includes the class definition for ‘Reliability Route’ in the Administration Client and

Figures 4.5.5-8 show the source codes of the modules used for the route-data conversion process, i.e.,

Data API, Reliability-Route Service and Data Access modules. Further, Figure 4.5.9 shows a reliability-

route database table entered through the user interface for the example route in Figure 4.5.2. The

freeway route created in Figure 4.5.2 is saved as JSON string to ‘route’ field of the database table, whose

freeway section data including the list of stations and ramps are shown in Figure 4.5.10.

93

Figure 4.5.5 Class definition for Reliability-Route in Client

public class ReliabilityRouteInfo extends InfoBase {

 public String name;

 public String description;

 public String corridor;

 public Route route;

 public ReliabilityRouteInfo() {

 this.setTypeInfo(TTRMSConfig.INFO_TYPE_TTROUTE);

 }

 // implementations of the below functions are omitted

 public ReliabilityRouteInfo(Route r) { … }

}

Figure 4.5.6 Data API module for Reliability-Route in Client

public class ReliabilityRoute extends APIClient<ReliabilityRouteInfo> {

 public ReliabilityRoute() {

 this.RESPONSE_LIST_TYPE = new TypeToken<ListResponse<ReliabilityRouteInfo>>() {}.getType();

 this.RESPONSE_TYPE = new TypeToken<ObjectResponse<ReliabilityRouteInfo>>() {}.getType();

 this.DATA_TYPE = ReliabilityRouteInfo.class;

 this.URL_DELETE = Config.getAPIUrl(ApiURIs.URI.ROUTE_DELETE);

 this.URL_LIST = Config.getAPIUrl(ApiURIs.URI.ROUTE_LIST);

 this.URL_INSERT = Config.getAPIUrl(ApiURIs.URI.ROUTE_INSERT);

 this.URL_UPDATE = Config.getAPIUrl(ApiURIs.URI.ROUTE_UPDATE);

 this.URL_GET = Config.getAPIUrl(ApiURIs.URI.ROUTE_GET);

 }

 // implementations of the below functions are omitted

 public Route opposingRoute(int id) { … }

 @Override

 protected Comparator<ReliabilityRouteInfo> getComparator() { … }

}

94

Figure 4.5.7 Reliability-Route Service module in Server

def register_api(app):

 autodoc = get_autodoc()

 TTRMSApi(app, 'ttroute', json2ttri, RouteDataAccess, {

 'insert': (api_urls.ROUTE_INSERT, ['POST']),

 'list': (api_urls.ROUTE_LIST, ['GET']),

 'get_by_id': (api_urls.ROUTE_GET, ['POST']),

 'get_by_name': (api_urls.ROUTE_GET, ['POST']),

 'update': (api_urls.ROUTE_UPDATE, ['POST']),

 'delete': (api_urls.ROUTE_DELETE, ['POST']),

 }).register()

 @app.route(api_urls.ROUTE_OPPOSITE_ROUTE, methods=['POST'])

 @autodoc.doc()

 def ttrms_route_opposite_route():

 route_id = request.form.get('id')

 da = RouteDataAccess()

 ttri = da.get_by_id(route_id)

 da.close()

 route_setup(ttri.route)

 opposite_route = route.opposite_route(ttri.route)

 if not isinstance(opposite_route, Route):

 return prot.response_fail('fail to load route configuration file')

 return prot.response_success(opposite_route)

class DataAccess(object):

 def __init__(self, **kwargs):

 self.da_base = DataAccessBase(model.TTRoute, TTRouteInfo, **kwargs)

 def list(self):

 return self.da_base.list()

 def get_by_id(self, route_id):

 return self.da_base.get_data_by_id(route_id)

 def get_by_name(self, route_name):

 return self.da_base.get_data_by_name(route_name)

 def delete(self, id, autocommit=False):

 return self.da_base.delete(id, autocommit=autocommit)

 def insert(self, r, autocommit=False):

 return self.da_base.insert(r, autocommit=autocommit)

95

Figure 4.5.8 Data-Access module for Reliability-Route Data in Server

 def update(self, id, field_data, autocommit=False):

 return self.da_base.update(id, field_data, autocommit=autocommit)

 def rollback(self):

 self.da_base.session.rollback()

 def commit(self):

 self.da_base.commit()

 def close(self):

 self.da_base.close()

Figure 4.5.9 Sample Reliability-Route Data stored in Database

Figure 4.5.10 “route” Field Data of Sample Reliability-Route Database

{

 "rnodes": [

 "rnd_95767", "rnd_95210", "rnd_95021", "rnd_95039", "rnd_95023",

 "rnd_95027", "rnd_95025", "rnd_95037", "rnd_95033", "rnd_88687",

 "rnd_88689", "rnd_88691", "rnd_88693", "rnd_88695", "rnd_88699",

 "rnd_88705", "rnd_88701", "rnd_88707", "rnd_88709", "rnd_89591",

 "rnd_91017", "rnd_87573", "rnd_87575", "rnd_87577", "rnd_87579",

 "rnd_87581", "rnd_87583", "rnd_87585", "rnd_87587", "rnd_87589",

 "rnd_87591", "rnd_90763", "rnd_88521"],

 "desc": "",

 "name": "I-35 NB to TH77",

 "__class__": "Route",

 "cfg": null,

 "__module__": "pyticas.ttypes"

}

96

CHAPTER 5: DEVELOPMENT OF THE TRAVEL TIME RELIABILITY

COMPUTATION MODULE

5.1 INTRODUCTION

In this chapter, the Travel-Time Reliability Computation module (TTRCM) is developed as the main

computational engine of the TTRMS, Travel-Time Reliability Measurement System, being developed in

this research. The main functionalities of the TTRCM developed in this chapter include,

 Calculation of the travel times for selected routes during given time periods,

 Association of calculated travel times to corresponding operating conditions specified by non-

traffic data,

 Calculation of travel-time reliability indices for given operating conditions.

Further, to address the needs for long-term, stable accessibility of weather data, the Weather-Data

Reader, developed in the previous chapter, has been enhanced to be able to download the data from

the National Oceanic and Atmospheric Administration (NOAA). A new Incident-Data Reader module that

can read the incident data stored in the CAD and IRIS databases is also developed in this chapter.

Figure 5.1.1 shows the TTRCM and its sub-modules developed in this chapter in the overall architecture

of the TTRMS. They include:

1) Weather Data Reader, which reads weather data and stores those into the TTRMS database.

2) Incident Data Reader, which reads the incident data from the CAD/IRIS databases and

combines/stores them into the TTRMS database.

3) Travel Time Calculation, which calculates the travel times for given corridors and time

periods explicitly reflecting the lane configurations of work zones if applicable.

4) Data Categorization, which categorizes travel times by linking them to different operating

conditions specified with non-traffic data.

5) Reliability Calculation, which calculates the values of the travel-time reliability indices, whose

types are pre-defined.

The rest of this chapter describes the details of the above modules.

97

Figure 5.1.1 The Modules developed in Chapter 5 in TTRMS Architecture

Server
<python>

User Input Data

Roadway Network Management Traffic MOE

MOE

Result Writer

Travel Time

Metrics

Data Type and Function Library (package=pyticas)

VMT

Speed

Travel Time & Reliability Calculation (package=pyticas_ttrms)

DB Connection and Model

DB Connector Models Setup

Periodic Job Travel Time and Reliability

Scheduler

Daily TT Calc.

Jobs

. . .

Data

Categorization
Reliability

Calculation

Travel Time
Calculation

Realtime

Travel Time
Calculation

API Service Register Reliability Services

User Service Admin Service

API Server (package=pyticas_server)

Detector Data Reader Weather Data

Reader
Weather Sensor

Data Reader

External Data Reader
Incident

Data Reader

Database

DB Access Layer

Travel Time
Data Acess

Module

Work Zone

Data Access

Module
. . .

Server

Client (TICAS)

UI and

Controller
Report

Generato

Local Service

Client
<java>

IRIS
<metro_config.xml> Traffic Data Archive NOAA Weather Sensor

Data Archive
Incident

(CAD / IRIS)

Snow Management
Data

Special Event
Data

Static Travel Time Route

User Client Admin Client

Non-Traffic Data Config

UI and Controller

Work Zone Client

WZ Route Config
UI and Controller

Work Zone Data

External Data

Infra
Route

Route Config
VHT

LVMT . . .

Infra Loader

module package data

Modules developed in the previous tasks.

Packages or modules developed in Chapter 5

r

98

5.2 DEVELOPMENT OF WEATHER AND INCIDENT DATA READER MODULES

5.2.1 Development of Additional Data Reader module for NOAA Weather Data

In this section, the Weather-Data-Reader module, developed in the previous chapter for the MnDOT

RWIS database, was enhanced by adding an additional module to access the weather data from NOAA,

where diverse types of weather data are expected to be available on a long-term basis. Figure 5.2.1

shows the data flow among the submodules developed in this chapter to import and process the

weather data from the NOAA’s Integrated Surface Data (ISD) archive. The weather data imported by the

Weather Data Reader module are further processed by the Daily Data Processing (DDP) module, which

stores them into the TTRMS database on a daily basis. Table 5.2.1 shows the database table designed in

this study to store the NOAA weather data. The DDP module also processes/stores the incident and

travel time data into the database, which can be accessed by other modules, such as the Reliability

estimation module. The DDP module is scheduled to be developed in the subsequent task in this study.

The main functions of the submodules in the Weather Data Reader module shown in Figure 5.2.1 are as

follows:

 ISD Station Information Reader module downloads the list of the available weather stations

from the NOAA FTP site and parses them.

 ISD Data Reader module downloads the archived weather data from NOAA FTP site for the

selected stations and parses them.

 NOAA Weather Data Read Interface module contains a set of functions needed by other

modules, e.g., ISD Station Information Reader and ISD Data Reader, for processing the weather

data, such as for finding near-by weather stations for given coordinates and also for identifying

weather data for given time periods. It can be noted that the current weather stations located in

the Twin Cities’ metro area are pre-configured for TTRMS with the ISD Station Information

Reader. Figure 5.2.2 shows the locations of the 7 weather stations currently being used by NOAA

for the Twin Cities metro area.

Table 5.2.1 Weather Data Table

Table Name Data Fields

noaa_weather

- id : (int) sequential number

- usaf : (string) identification of U.S. Air Force for weather station

- wban: (string) identification of Weather-Bureau-Army-Navy for weather station

- dtime: (datetime) timestamp

- precip: (float) precipitation for one hour (inch)

- precip_type: (string) precipitation type e.g. No Precip, Drizzle, Raion, Snow

- precip_intensity: (string) precipitation intensity e.g. Light, Moderate, Heavy

- relative_humidity: (float) relative humidity (%)

99

- visibility: (float) visibility (mile)

- air_temp: (float) air temperature (F)

- dew_point: (float) dew point (mile)

- wind_dir: (int) wind direction (0 – 360)

- wind_speed: (float) wind speed (mph)

- wind_gust: (float) wind gust (mph)

Figure 5.2.1 Data Flow and Structure of Weather Data Reader Module

(a) Data Flow for Weather Data Processing

(b) Detailed Structure of Weather Data Reader module

Weather Data

Reader

NOAA

RWIS Database

Daily Data
Processing TeTRES DB

NOAA Weather Data Read Interface

ISD Station

Information Reader
ISD Data Reader

Archived Data

NOAA Data Reader

TTRMS DB

ISD Station List

NOAA

Weather Data Reader

RWIS Data Reader

RWIS Database

Daily Data Processing

Incident

Data Import
Weather Data Import Travel Time

Calculation
Data

Categorization

station info
request daily data
with weather station info
and time period

call read function

weather
data
list

parsed data

Request
archived
yearly data file
for a station

Yearly Station

Weather

Data file

request
station
info

request station list

Request
station list file

Station
list file

station list

100

Figure 5.2.2 Weather Stations in the Twin Cities Metro Area

ANOKA CO-BLNE AP(JNS FD) AP

CRYSTAL AIRPORT

FLYING CLOUD AIRPORT

AIRLAKE AIRPORT

MINNEAPOLIS-ST PAUL
INTERNATIONAL AP

ST PAUL DWTWN

HOLMAN FD AP

SOUTH ST PAUL MUNI-RICHARD
E FLEMING FLD ARPT

5.2.2 Development of Incident Data Reader module

Figure 5.2.3 shows the structure of the Incident Data Reader module developed in this chapter to import

the incident-related data for the Twin Cities’ metro freeway network from two external data sources,

i.e., CAD (Computer-Aided Dispatch) system from the Department of Public Safety and IRIS of RTMC,

MnDOT.

 As shown in Figure 5.2.3, the imported data from each data source are integrated into a combined data

format by the Incident-Data-Integration submodule. In this study, the Incident-Impact data, i.e., lane-

closure status, and Lane-type information from the IRIS-Incident database are extracted and merged

onto the data from the CAD system, which is considered as the main data source for incidents. The

101

integrated- incident data is then accessed and stored in the main database of TTRMS by the Incident-

Data-Import submodule in the ‘Daily Data Processing’ module. The incident-data tables of TTRMS are

shown in Table 5.2.2.

Figure 5.2.3 Incident Data Reader module

CAD DB IRIS Incident DB

Incident Data Reader

CAD Access Module
IRIS Incident

Access Module

Incident Data Integration

Daily Data

Processing

Incident Data

Import

Weather Data

Import

Travel Time

Processing

Data

Categorization

TTRMS DB request

daily

data

merged

data

request

daily

data

request

daily

data

IRIS

data

CAD

data

readdata listreaddata list

Table 5.2.2 Incident Data Tables

Table Name Data Fields

incident

- id: (int) sequential number

- incident_type_id: (int) foreign key referring incident type

- cad_pkey: (int) pky field of CAD table

- iris_event_id: (int) event_id field of IRIS incident table

- iris_event_name: (string) event_name field of IRIS incident table

- cdts: (datetime) created timestamp

- udts: (datetime) updated timestamp

- xdts: (datetime) closed timestamp

- lat: (float) latitude

- lon: (float) longitude

- road: (string) corridor name

- direction: (string) direction e.g. NB, SB, WB, EB

- impact: (string) closed lane information

- lane_type: (string) lane type e.g. MAINLINE, EXIT, ENTRANCE

incident_type

- id: (int) sequential number

- eventtype: (string) event type name

- eventsubtype: (string) event sub-type name

- eventtypecode: (string) event type code

- eventsubtypecode: (string) event sub-type code

- classification: (string) incident classification

- iris_class: (string) incident classification used in IRIS

102

- iris_detail: (string) incident details used in IRIS

- blocking: (boolean) true if there is lane blocking

- occupied: (boolean) true if road is occupied

- rollover: (boolean) true if there is rollover

- injury: (boolean) true if there is personal injury

- fatal: (boolean) true if there is fatal injury

- cars_eventtype: (string) event type for cars e.g. FATALITY CRASH, VEHICLE SPINOUT

- cars_eventcode: (string) event type code for cars

5.3 DEVELOPMENT OF TRAVEL-TIME PROCESSING MODULE

The Travel-Time Processing Module calculates the travel times for given routes and time periods

specified by user. The calculated travel times are then stored in the main database through the

Database Access Layer. In particular, the specific lane-configuration of each work zone is explicitly

reflected in calculating the travel times for work-zone routes. Further, the current version of TTRMS is

designed to process the travel-times for pre-defined routes on a daily basis. Figure 5.3.1 shows the

structure and data flow of the Travel-Time Processing Module, which includes the following

submodules:

 Work Zone Lane Configuration module collects the lane-closure information stored in the main

database for the work zones in a given route, and configures the travel-time route with appropriate

detector stations.

 Travel-Time Calculation (TTC) module calculates the travel times for a given route and time period

by calling the travel-time routine in the Traffic MOE module. The TTC module also manages the

calculation of Vehicle-Miles Traveled (VMT) and average speed for a given route using the VMT and

Speed routines of the Traffic MOE module. The calculated travel-time, VMT and average speed data

for a given route are then sent to the main database through the DB Access Layer. Table 5.3.1 shows

the database table schema with a foreign key linking to corresponding travel-time routes.

Figure 5.3.1 Structure of Travel-Time Processing module

Travel Time

Traffic MOE

4 TT Calculation
DB

Access

Layer

Travel Time Processing Module

TTRMS DB

Work Zone

Lane Configuration

Speed VMT

request

travel time

calculation

Daily Data

Processing

Weather Data

Import

Travel Time

Processing

Incident Data

Import

Data

Categorization

request TT routes

TT routes

request WZ data

work zone list
apply

lane configurations

calculate MOEs save results calculation

results

updated

route

103

Table 5.3.1Travel-time table schema

Table Name : tt

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

id INTEGER PK NN UNSIGNED AI

route_id INTEGER PK NN UNSIGNED

time DATETIME NN

tt FLOAT NN

vmt FLOAT NN

speed FLOAT NN

5.4 DEVELOPMENT OF DATA CATEGORIZATION MODULE

5.4.1 Design of Data Categorization module

The Data-Categorization module defines the relationships between travel-time data and the non-traffic

data, such as weather and incident, for every time interval for each route. Figure 5.5.1 shows the

simplified structure and the data flow with the Data-Categorization module, which consists of:

 Categorization-Management sub-module provides the access point for other modules and runs

the categorization functions of the sub-modules.

 Individual Categorization sub-modules for each type of non-traffic data, i.e., Weather, Incident,

Work Zone, Special Event and Snow, categorize each type of the non-traffic data.

Figure 5.4.1 Data flows of Data Categorization module

Data Categorization

Weather Categorization

Categorization

Management

Module

TeTRES DB
Incident Categorization

Work Zone Categorization

Special Event Categorization

Snow Mgmt. Categorization

DB

Access

Layer

Daily

Data

Processi

ng

Module

1

2

3

4 5

104

Data-Categorization Process

As shown in Figure 5.4.1, the Data Categorization process follows the following steps.

Step 1: Categorization module is called with the route and time duration information by Daily Data

Processing module.

Step 2: Categorization module reads travel time data from database.

Step 3: Sub categorization modules are called with the route, time duration and loaded travel time data.

Step 4: Each sub-categorization module reads the corresponding non-traffic data from the database and

makes relationships between travel time and non-traffic data.

Step5: Categorized data are saved in the database by each sub-categorization module.

Database Tables

Figure 5.4.2 shows the relationship diagram of the database used by the Data-Categorization module.

The main features of the database can be summarized as follows:

 “tt” table stores travel time data for each time interval, with foreign keys linking to travel time

routes.

 non-traffic data are stored in “noaa_weather”, “incident”, “specialevent”, “workzone” and

“snowmgmt” tables.

 there are junction tables to connect trave -time table and non-traffic data tables, which are

named with prefix “tt”, such as “tt_weather”, as shown in Figure 5.5.3.

 Travel-time data can be connected to multiple non-traffic data of same type by junction table,

for example, one travel time data can be related to multiple incidents, special events or work

zones.

105

Figure 5.4.2 Relationship diagram of the database

106

Figure 5.4.3 Example junction table between travel-time and weather tables

“tt” table

“noaa_weather” table

Junction table “tt_weather”
between travel time and weather

5.4.2 Development of Sub Modules for Categorizing Each Data Type

Each Categorization sub-module has a common ‘Categorize’ function, which implements the

categorization of travel-time data of each route by connecting them to non-traffic data.

Weather Categorization module

Table 5.4.1 shows the weather-data categorization scheme, whose data fields include Precipitation Type

and Intensity. These data fields are also shared by te imported weather data from NOAA, therefore, the

Weather Categorization module only stores the foreign keys for travel time and weather data as shown

in Table 5.4.2.

Table 5.4.1 Weather data categorization scheme

Data Field Values

Precipitation Type - SNOW, RAIN, OTHER, NONE

Precipitation

Intensity

- HEAVY : Precipitation Rate > 7.6 mm(0.3 in)/hour

- MODERATE

: 2.5 mm(0.098 in)/hour <= Precipitation Rate < 7.6 mm(0.3 in)/hour

- LIGHT : Precipitation Rate < 2.5mm(0.098 in)/hour

* Glossary of Meteorology (June 2000), Rain, American Meteorological Society

http://glossary.ametsoc.org/wiki/Rain

107

Table 5.4.2 Junction-table schema between travel-time and weather tables

Table Name : tt_weather

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

tt_route_id INTEGER NN UNSIGNED

tt_id INTEGER NN UNSIGNED

noaa_weather_id INTEGER NN UNSIGNED

Figure 5.4.4 shows the weather data processing steps, which can be summarized as follows:

1) Calculate center coordinates of a given route to calculate the distance to weather stations.

2) Find a nearby weather station, whose weather data exists during a given time period.

3) Repeat the following steps for all time intervals:

i) Find a weather data for a specific time interval

ii) Insert link information between travel time and weather data into the junction table.

Figure 5.4.4 Flow charts of Weather Categorization module

Calculate center coordinate of a

given route

Read weather data from a

nearby weather station in order

Has weather data?

Find weather data
for a specific time interval from

loaded weather data

Insert data-link information

between travel time data and

weather data into DB

Iterated all data?

yes

no

yes

no

Input : route, tt-data list,

time-period

start

end

108

Incident Categorization module

Table 5.4.3 shows the Incident-data categorization scheme, whose main parameters include Type,

Severity, Impact and Distance. Incident type, Severity and Impact information are obtained from the

incident database, which also contains additional information, such as event type and bool values

named as “blocking”, “fatal”, “injury” and “rollover”, as shown in Table 5.5.3. The location of an

incident in a travel –time route is represented by ‘Distance’ or ‘Offset-distance’ as shown in Figure 5.5.5.

Those distance values are determined by the Weather Categorization module, which saves those

calculated distance values with foreign keys into the data-table shown in Table 5.4.5.

Table 5.4.3 Incident data categorization scheme

Data Field Values

Type Crash, Hazard, Stall, Roadwork

Severity Property Damage, Fatal, Injury, Other

Impact 2+ Lanes Closed, Lane Closed, Blocking, Not Blocking, Wrong Way, Run-Off Road

Distance Distance from upstream boundary of a route

Offset-Distance Distance from upstream or downstream boundary of route

Table 5.4.4 Junction table schema between travel time and incident tables

Table Name : tt_incident

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

tt_route_id INTEGER NN UNSIGNED

tt_id INTEGER NN UNSIGNED

incident_type_id INTEGER NN UNSIGNED

incident_id INTEGER NN UNSIGNED

distance FLOAT NN

offset_distance FLOAT NN

Figure 5.4.5 Distance and offset-distance in incident data categorization

TT route
Incident 1 Incident 2

distance (negative)
distance

(positive)

offset-distance

traffic direction

109

Figure 5.4.6 shows the flow chart of the Incident-Categorization module, which follows the following

steps:

1) Read all incident data from the database in a given route for a given time period in a same

corridor.

2) Calculate the ‘distance’ and ‘offset-distance’ for each incident in a given route.

3) Repeat the following steps for all the time intervals:

i) Find an incident data for a specific time interval using “cdts (created)”, “udts (updated)” and

“xdts (closed)” field of the incident data.

ii) Insert the foreign keys between travel time and incident data into the junction table, named as

tt_incident, with the calculated distances.

Figure 5.4.6 Flow charts of Incident Categorization module

Read all incidents during given

time period

Calculate distance between

travel time route and incidents

Find incident data
for a specific time interval using

cdts, udts and xdts

Insert data-links information

between travel time data and

incident data into DB

Iterated all data?

yes

no

Input : route, tt-data list,

time-period

start

end

110

Work-Zone Categorization module

Table 5.4.5 shows the work-zone data categorization scheme, whose data fields include Location Type,

Lane configuration, Work zone characteristics, Closed-lane length, Distance and Offset Distance. The

Work-zone categorization module determines Location type, Distance and Offset-Distance, while the

data for other fields are collected from the database. The junction table schema to store the data

connection information is included in Table 5.4.6, while Figure 5.4.7 illustrates the definitions of

distances.

Table 5.4.5 Work zone data categorization scheme

Data Field Values

Location Type UP_OVERLAPPED, IN, DN_OVERLAPPED, DN, WRAP

Lane Configuration 2To0, 2To1, 2To2, 3To0, 3To1, 3To2, 3To3, 4To0, 4To1, …

Characteristics

USE_OPPOSING_LANE: when using opposing lanes

USED_BY_OPPOSING_LANE: when lanes are used by the opposing traffic

SHIFTED : when lanes are shifted but not closed

Length work zone length in mile

Distance Distance from upstream boundary of a route to upstream boundary of work zone

Offset-Distance
Distance from upstream or downstream boundary of route

 to upstream or downstream boundary of work zone

Table 5.4.6 Junction table schema between travel time and work zone tables

Table Name : tt_workzone

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

tt_route_id INTEGER NN UNSIGNED

tt_id INTEGER NN UNSIGNED

workzone_id INTEGER NN UNSIGNED

loc_type INTEGER NN UNSIGNED

distance FLOAT NN

offset_distance FLOAT NN

111

Figure 5.4.7 Location type, distance and offset-distance in work zone data categorization

TT route
traffic direction

UP UP_OVERLAPPED IN DN_OVERLAPPED DN

workzones

distance
(positive)

offset_distance offset_distance

distance
(negative)

WRAP

The flow chart of the Work Zone Categorization module is shown in Figure 5.4.8, which shows the

following steps:

1) Read all the work-zone data from the database for a given route and a time period in a same corridor.

2) Determine Location Type, Distance and Offset-distance for each work zone in a given route.

3) Repeat the following steps for all time intervals:

- Find a work zone data for a specific time interval.

- Insert the foreign keys into the junction table, “tt_workzone”, between travel time and work zone

data with the location type, distance and offset-distance determined by the Work-zone Categorization

module.

112

Figure 5.4.8 Flow chart of Work Zone Categorization module

Read all work zone data during

given time period

Determine loc_type, distance

and off_distance for all loaded

work zones

Find work zone data
for a specific time interval

Insert data-link information

between travel time data and

work zone data into DB

Iterated all data?

yes

no

Input : route, tt-data list,
 time-period

start

end

Special Event Categorization module

Table 5.4.7 shows special event data categorization scheme, which uses Attendance, Distance and Event

type for categorization. The Attendance data is obtained from the database, while the Distance and

Event Type are determined by the Special-Event Categorization module with the following definitions:

 Distance: is the minimum distance from a given travel time route to a special event location.

 Event type: can be either “A” or “D”, which indicates “Arrival” and “Departure”. The Event Type is

determined with the following parameters whose definitions are illustrated in Figure 5.4.9.

 - ARRIVAL_TIME_WINDOW: hours before starting event

 - DEPARTURE_TIME_WINDOW1: hours after an event starts

 - DEPARTURE_TIME_WINDOW2: lasting hours after departure starts (event start time +

DEPARTURE_TIME_WINDOW1)

The Distance and Event Type data are stored into the database table shown in Table 5.4.8, which has the

foreign keys to travel time and special event data.

113

Table 5.4.7 Special event data categorization scheme

Data Field Values

Attendance Number of attendance

Distance Line distance between special event location and TTR route

Event Type

“A” : Arrival

“D” : Departure

* Parameter

 - Arrival time window

 : na hours before starting event

 - Departure time window

 : last nd1 hours beginning nd2 hours after an event starts

Table 5.4.8 Junction table schema between travel time and work zone tables

Table Name : tt_specialevent

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

tt_route_id INTEGER NN UNSIGNED

tt_id INTEGER NN UNSIGNED

specialevent_id INTEGER NN UNSIGNED

distance FLOAT

event_type CHAR

Figure 5.4.9 Arrival and Departure Time Window in special event data categorization

event start

time

ARRIVAL
TIME
WINDOW

event end

DEPARTURE
TIME
WINDOW 1

DEPARTURE
TIME
WINDOW 2

“A” “D”

114

The flow chart of the Special Event Categorization module is shown in Figure 5.4.10, which has the

following steps:

1) Read all special event data during a given time period from the database.

2) Calculate the distance between a given route and a special event location.

3) Repeat the following steps for all time intervals:

- Find a special event data and determine event type for a specific time interval.

- Between travel time and special event data, insert the connection information into the junction table,

“tt_specialevent”, with the event type and distance.

Figure 5.4.10 Flow charts of Special Event Categorization module

Read all special event data

during given time period

Calculate distance between

travel time route and special

events

Find special event data and

determine event_type
for a specific time interval

Insert data-link information

between travel time data and

special event data into DB

Iterated all data?

yes

no

Input : route, tt-data list,

time-period

start

end

115

Snow-Management Categorization module

Table 5.4.9 shows the data-categorization scheme of the snow-management module, which uses

Location type, Distance, Offset-distance and Road status for categorization. Table 5.4.10 includes the

junction table with the foreign keys, which connect travel time and snow management data with the

following information determined by the Snow Management Categorization module:

 Location Type indicates the location of a snow-plow truck route relative to a given travel-time route.

 Distance is from the upstream boundary of a travel-time route to the upstream boundary of a truck

route.

 Offset-distance is from the upstream or downstream boundary of a travel time route to the

upstream or downstream boundary of a snow-plow truck route.

 Road status is a binary value (0 or 1) depending on whether lane is lost or regained during snow

event.

Table 5.4.9 Snow management data categorization scheme

Data Field Values

Location Type UP_OVERLAPPED, IN, DN_OVERLAPPED, DN, WRAP

Distance
Distance from upstream boundary of travel time route to upstream boundary of

truck route

Offset-Distance
Distance from upstream or downstream boundary of travel time route

 to upstream or downstream boundary of truck route

Road Status LOST, REGAINED

Table 5.4.10 Junction table schema between travel time and snow management tables

Table Name : tt_snowmgmt

ColumnName DataType PrimaryKey NotNull Flags Default Value Comment AutoInc

tt_route_id INTEGER NN UNSIGNED

tt_id INTEGER NN UNSIGNED

snowmgmt_id INTEGER NN UNSIGNED

loc_type INTEGER UNSIGNED

distance FLOAT

offset_distance FLOAT

road_status INT

116

Figure 5.4.11 shows the flow chart of the Snow-Management Categorization module, which has the

following steps:

 Read all the snow management data during a given time period from the database.

 Determine Location type, Distance and Offset-distance for all loaded snow-management data.

 Repeat the following steps for all time intervals:

 - Find a snow-management data and determine the road status for specific time duration.

 - Insert the connection information between travel time and snow-management data in the

junction table, “tt_snowmgmt”, with the Location type, Distance, Off-distance and Road status.

Figure 5.4.11 Flow chart of Snow-Management Categorization module

Read all snow management

data during given time period

Determine loc_type, distance

and offset_distance for all

loaded data

Find snow management data
for a specific time interval

Insert data-link information

between travel time data and

snow management data into DB

Iterated all data?

yes

no

Input : route, tt-data list,
 time-period

start

end

Determine road status

117

5.5 DEVELOPMENT OF RELIABILITY CALCULATION MODULE

5.5.1 Structure of Reliabili ty Calculation module

The Reliability Calculation module determines various types of reliability indices using travel-time data

and related non-traffic data for given routes and time periods. Figure 5.5.1 shows the simplified

structure and data flow of the Reliability Calculation module that has the following sub-modules:

 Data Extraction module reads all the travel time and non-traffic data stored by the Data

Categorization module for a given route and time duration. The loaded data are organized according

to given filters, such as “incident-only” and/or “rainy day only” filter. Multiple data filters are

acceptable so that the reliability indices under different operating conditions can be calculated.

 Reliability module calculates various reliability indices such as travel time index, buffer index and

planning time index. Figure 5.5.2 shows the flow chart of the reliability calculation module.

Figure 5.5.1 Structure and Data flow of the Reliability Calculation module

Data Extraction
DB

Access

Layer

Reliability Calculation

TeTRES DB

Reliability

request

reliability

calculation
User

(GUI)

route,

time

period,

Reliability

Calculation

Request

Handler

API

results

reliability

calculation

results

traffic and

non-traffic

data
loaded traffic

and non-traffic data

data filters

118

Figure 5.5.2 Flow chart of Reliability Calculation process

Read all travel times and non-

traffic data from DB

Apply filter to all data sets

(make data list for each filter)

Calculate reliability indices

with a data list for a filter

Iterated all data list?

yes

no

Input : route, time periods,

data filters

start

end

Data Extraction module

Reliability module

5.5.2 Development of Data Extraction module

To facilitate the reliability calculation process under different operating conditions, the Data Extraction

module needs to have the filtering functions that can collect the data specific to given operating

conditions.

Figure 5.5.3 shows a class diagram to filter the travel-time data with non-traffic, operating condition

data. In this diagram,

 ExtData is the data type to contain travel time data and related non-traffic data, such as weather

and incidents. One ExtData object is for travel time data at a time interval.

 IExtFilter is an interface which has a “check” function to be called by Data Extraction module.

 ExtFilter, ExtFilterGroup, And_ and Or_ are implementation of this IExtFilter interface.

 ExtFilter is a unit of filtering which is responsible for one kind of non-traffic data.

 ExtFilterGroup consists of several ExtFilters and filtered ExtData list. For example, one

ExtFilterGroup can have ExtFilter for weather, ExtFilter for incident and ExtFilter for work zone.

 All filtered ExtData are put into the result list named as “results” of this class.

119

 And_ and OR_ are designed for logical operation among IExtFilters, which can be ExtFilter or another

And_ or Or_.

Figure 5.5.3 Class diagram for data filter

Figure 5.5.4 shows a class diagram of the filter-generation functions, which create ExtFilter for each non-

traffic data type. Further, each module has the following functions to create ‘filtered non-traffic data’

described in Data Categorization module.

 no_incident() function of the incident module returns a filter object (instance of ExtFilter class) to

pass only if there is no incident at the specific time interval,

 type_rain() function of the weather module returns a filter object to pass only if precipitation type of

weather data is RAIN.

Using these functions, filter objects can be created and these filters are combined into ExtFilterGroup in

order to collect data with respect to multiple operating conditions. Further, these filter objects can be

combined into the logical operator And_ and Or_

120

Figure 5.5.4 Class diagram of filter generation functions for each data type

121

5.5.3 Development of Reliability Calculation module

The Reliability-Calculation (RC) module calculates the travel-time reliability indices with those data

collected by the Data Extraction module. The current version of the RC module developed in this

research can determine the following reliability indices:

 Travel Time Index (TTI) =
𝑇𝑇𝑎𝑣𝑔 𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑠

𝑇𝑇𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤
,

 where TTavg = Average Travel Time, TTFree-Flow = Travel Time under free-flow condition.

 Planning Time Index (PTI) =
𝑇𝑇𝑛%

𝑇𝑇𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤
, where TTn% = nth %-ile travel time.

 Buffer Index (BI) =
𝑇𝑇𝑛% −𝑇𝑇𝑎𝑣𝑔

𝑇𝑇𝑎𝑣𝑔

 Misery Index (MI) =
𝑇𝑇97.5%

𝑇𝑇𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤

 On-Time-Arrival =
C(𝑇𝑇𝑖 >1.5∗𝑇𝑇𝑎𝑣𝑔,𝑖=1−>𝑛)

𝑛
 , where C(x) = number of occurrence of x

 Semi-Variance =
1

𝑛
∑ (𝑇𝑇𝑖 − 𝑇𝑇𝑎𝑣𝑔)2, ∃ 𝑇𝑇𝑖 > 𝑇𝑇𝑎𝑣𝑔

𝑛
𝑖=1

In the above formulations, free-flow travel time is calculated with the posted speed limit on each route.

Further, the ‘congested hours’ for TTI is defined as the time duration satisfying the following condition,

 TTi > TTfree-flow * CH_FACTOR

where, CH_FACTOR is a user-defined parameter and currently set to 1.3. Further, PTI and BI can be

calculated with 80 – 95th %-ile travel times.

Figure 5.5.5 shows the internal process of the travel-time reliability calculation module, whose data list

includes both travel time and non-traffic data. First, only travel time data are extracted from the data

list, which is the list of ExtData described in the previous section. Next, from the travel-time data list,

average speed, n-th percentile travel times and travel times during congested hours are collected.

122

Figure 5.5.5 Flow chart of reliability calculation process

Input : route, data list

start

end

Calculated congested-hour

average travel time

Calculate average speed

Determine contested-hour

data

Make travel time data list from

the data list including non-

traffic data

Calculate free-flow travel time

based on posted speed limit

Calculate travel times for each

predefined percentiles (80-95)

Calculate travel time indices by

equations

123

5.5.4 Example of Reliability Calculation

The reliability calculation module is tested by calculating a set of indices for an example travel-time

route on I-35E NB shown in Figure 5.5.6. Figure 5.5.7 shows the source code developed in this task to

calculate the travel time reliability indices. The non-traffic operating conditions tested in this example

include ‘normal weather’, ‘incident’ and ‘rain or snow’. Further, the VMT-based categorization is also

conducted and included in the output. Figure 5.5.8 shows the output results, which include all the

calculated travel-time indices categorized for each type of operating condition as well as the VMT level.

Figure 5.5.6 Example travel time route on I-35E (NB)

124

DB Access module

da_route = route.TTRouteDataAccess()

select the first route (to test)

ttri = da_route.list()[0]

da_route.close()

data categorization filters

filters = [

 normalday.implicit_normalday_filter(label='Only Normal Day'),

 ExtFilterGroup([

 # no-workzone days

 workzone.no_workzone(),

 # incidents which offset_distance is less than 2 mile

 incident.has_incident(distance_limit=2),

 # no-special-event days

 specialevent.no_specialevent(),

 # normal day (not reported weather condition is considered as normal)

 weather.normal_implicit(),

], 'Incident'),

 ExtFilterGroup([

 Or_(

 # snow days

 weather.type_snow(),

 # or rainy days

 weather.type_rain()

),

], 'Rain or Snow'),

]

time duration

sdate = datetime.date(2013, 1, 1)

edate = datetime.date(2013, 12, 31)

stime = datetime.time(5, 0, 0)

etime = datetime.time(11, 0, 0)

optional parameters

target_days = [0, 1, 2, 3, 4] # Mon - Fri

remove_holiday = True

extract all traffic and non-traffic data

(filters are applied in this function)

extraction.extract_tt(ttri, sdate, edate, stime, etime, filters,

 target_days=target_days, remove_holiday=remove_holiday)

each `ExtFilterGroup` has filtered `ExtData` list

for filter in filters:

 print('# ', filter.label)

 # call “Reliability” module

125

Figure 5.5.7 Example program to perform travel time reliability calculation

 res = reliability.calculate(ttri, filter.results)

 pprint.pprint(res)

 print(' > Demand Cutlines', filter._vmt())

 L, M, H = filter.results_by_demand()

 print(' > Low : ')

 for idx, extdata in enumerate(L):

 print(' : id=%s, time=%s, vmt=%s, tt=%s, speed=%s' % (

 extdata.tti.id, extdata.tti.time, extdata.tti.vmt, extdata.tti.tt, extdata.tti.speed))

 print(' > Moderate : ')

 for idx, extdata in enumerate(M):

 print(' : id=%s, time=%s, vmt=%s, tt=%s, speed=%s' % (

 extdata.tti.id, extdata.tti.time, extdata.tti.vmt, extdata.tti.tt, extdata.tti.speed))

 print(' > High : ')

 for idx, extdata in enumerate(H):

 print(' : id=%s, time=%s, vmt=%s, tt=%s, speed=%s' % (

 extdata.tti.id, extdata.tti.time, extdata.tti.vmt, extdata.tti.tt, extdata.tti.speed))

 ….

Incident

{'avg_tt': 5.898422216373923,

 'buffer_index': {80: 0.05933045569987334,

 85: 0.12079556770020708,

 90: 0.30066387580050313,

 95: 0.5970637489832032},

 'congested_avg_tt': 7.676708768762868,

 'congested_count': 91,

 'congested_hour_factor': 1.1,

 'count': 329,

 'misery_index': 2.123753990475553,

 'on_time_arrival': 0.9057750759878419,

 'on_time_arrival_count': 298,

 'planning_time_index': {80: 1.1757701091578348,

 85: 1.2439913531116722,

 90: 1.4436304544999148,

 95: 1.772610056069236},

 'semi_variance': 3.7783484521146713,

 'semi_variance_count': 88,

 'travel_time_index': 1.4445419726166666,

 'tt_by_ffs': 5.314285714285722}

> Demand Cutlines (192.27010498823893, 1375.8428571428572, 2559.4156092974754)

126

Figure 5.5.8 Output from example application

> Low :

: id=27038, time=2013-04-05 05:00:00, vmt=157.3, tt=5.644760145333022, speed=65.31044109010875

: id=56025, time=2013-07-15 05:00:00, vmt=171.55, tt=5.531120949181454, speed=67.19233026486648

> Moderate :

: id=1824, time=2013-01-07 08:30:00, vmt=1463.5, tt=5.142052733644625, speed=71.58372613402621

: id=1825, time=2013-01-07 08:35:00, vmt=1405.65, tt=5.929287093800081, speed=75.25099445497403

: id=1826, time=2013-01-07 08:40:00, vmt=1315.6500000000008, tt=5.0676565653823396,

speed=72.40713706601464

 : id=1827, time=2013-01-07 08:45:00, vmt=1423.2999999999995, tt=5.133540132677518,

speed=71.37316550993613

 : id=1828, time=2013-01-07 08:50:00, vmt=1495.1500000000005, tt=5.32814191253344,

speed=69.52230072998147

 : id=1829, time=2013-01-07 08:55:00, vmt=1303.9999999999998, tt=5.00060983611013,

speed=73.0741272852253

 : id=1830, time=2013-01-07 09:00:00, vmt=1167.05, tt=5.830640308125936, speed=75.93197463580118

 : id=1831, time=2013-01-07 09:05:00, vmt=977.4000000000001, tt=5.9419823849146285,

speed=75.20242524950046

 : id=1832, time=2013-01-07 09:10:00, vmt=1072.2000000000003, tt=5.178616587708128,

speed=70.96455602004282

 : id=1833, time=2013-01-07 09:15:00, vmt=1033.6499999999994, tt=5.079442284365358,

speed=72.30713324913864

 : id=1834, time=2013-01-07 09:20:00, vmt=1026.5999999999997, tt=5.231895906617949,

speed=70.23874890121296

 ….

> High :

: id=15876, time=2013-02-25 07:35:00, vmt=2585.749999999999, tt=5.014524242197838,

speed=73.19709787462331

 : id=30228, time=2013-04-16 07:45:00, vmt=2621.8, tt=5.08946883590134, speed=71.25368634418763

 : id=38265, time=2013-05-14 07:50:00, vmt=2635.0999999999995, tt=6.777045113148593,

speed=60.572141710624805

 : id=38266, time=2013-05-14 07:55:00, vmt=2633.6, tt=6.497281606780513, speed=60.90148652210063

 ….

127

CHAPTER 6: DEVELOPMENT OF A TRAVEL-TIME INFORMATION

MODULE

6.1 INTRODUCTION

This chapter develops the Travel Time Information module (TTIM), whose main objective is to estimate

the expected travel times for predefined routes using reliability measures. Further, the connectivity of

the TTIM to the existing driver-information system of MnDOT is also examined by developing an

example travel-time webpage that can be used by the MnDOT system. The types and the functionalities

of the major modules developed in this task are as follows:

 Travel-Time Information (TTI) Module

– Calculates travel-time reliability measures for each time of day (TOD) for all pre-defined

routes depending on weather and dates.

– Estimates expected travel times for a given route and departure time using the average

travel time and TOD travel-time reliability measures.

 Public Service API (PS-API) Module

– Receives and conveys the travel time information requests from the external clients, i.e., the

users of MnDOT’s driver-information system.

– Returns the travel-time estimation results from the TTIM to the clients.

In addition to the above modules, a web application is developed to demonstrate the travel-time

information service by using an open-source chart library and external-map service.

Figure 6.1.1 shows the locations of the TTI and the PS-API modules in the overall architecture of Travel-

Time Reliability Measurement System (TTRMS). The rest of this chapter describes the details of the

above modules and the example travel-time webpage developed to be embedded into the existing

driver-information system of MnDOT.

128

Figure 6.1.1 TTI and PS-APT Modules in the TTRMS Architecture

Server

<python>

User Input Data

Roadway Network Management Traffic MOE

MOE

Result Writer

Travel Time

Metrics

Data Type and Function Library (package=pyticas)

VMT

Speed

Travel Time & Reliability Calculation (package=pyticas_ttrms)

DB Connection and Model

DB Connector Models Setup

Periodic JobTravel Time and Reliability

Scheduler

Daily TT Calc.

Jobs

. . .

Data

Categorizer

Reliability

Calculation

Travel Time

Calculation

Travel Time

Information

API Service Register
Reliability Services

User Service Admin Service

API Server (package=pyticas_server)

Detector Data Reader
Weather Data

Reader

Weather Sensor

Data Reader

External Data Reader

Incident

Data Reader

Database

DB Access Layer

Travel Time

Data Acess

Module

Work Zone

Data Access

Module

. . .

Server

Client (TICAS)

UI and

Controller

Report

Generato

Local Service

Client

<java>

IRIS

<metro_config.xml>
Traffic Data Archive NOAA / RWIS

Weather Sensor

Data Archive

Incident

(CAD / IRIS)

Snow Management

Data

Special Event

Data
Static Travel Time Route

User Client Admin Client

Non-Traffic Data Config

UI and Controller

Work Zone Client

WZ Route Config

UI and Controller

Work Zone Data

External Data

Infra

Route

Route Config

VHT

LVMT . . .

Infra Loader

Public Service

modulepackage data

Modules developed in the previous chapters.

Packages or modules developed in Chapter 6

r

129

6.2 DEVELOPMENT OF TRAVEL-TIME INFORMATION AND PUBLIC SERVICE API MODULES

The TTI module developed in this chapter uses the travel-time data stored in the TTRMS database for

each predefined route for the past year and calculates the following travel times for each time of day,

i.e., every 5 minute, for each combined type of weather and date:

– Average travel time

– 95% buffer travel time

– 85% buffer travel time

Table 6.2.1 includes 12 regime types used in the travel-time calculation by the TTI module developed in

this chapter.

Table 6.2.1 Regimes used in the Travel-Time Information Module

Code Description Code Description

1 Dry, Monday 7 Rain, Friday

2 Dry, Tuesday-Thursday 8 Rain, Saturday-Sunday

3 Dry, Friday 9 Snow, Monday

4 Dry, Saturday-Sunday 10 Snow, Tuesday-Thursday

5 Rain, Monday 11 Snow, Friday

6 Rain, Tuesday-Thursday 12 Snow, Saturday-Sunday

Figure 6.2.1 shows the interrelationship between the TTI and the PS-API modules along with the other

modules relevant to the calculation of expected travel times for given corridors and departure times.

The main functionalities of each module in Figure 6.2.1 are summarized as follows:

 The TTI Module is responsible for the calculation of the TOD reliability measures as a pre-process

and extracts the stored information in the database according to a given request.

 The Periodic Job module runs the function of the TOD reliability calculation in the TTI Module and

the calculated data are stored into the database through the DB Access Layer.

 The Public Travel Time Information Service, a client of the TTI Module, is an external service to

provide travel-time information to public. In this task, an example webpage for a client is developed

to examine the feasibility of this service.

 The API module receives the request from a client and performs the process by calling the TTIM.

 The Reliability Calculation module developed in the previous task is used in the pre-process to

calculate TOD reliability measures.

130

 The Weather Reader module provides weather information near a given route for a given date.

 The MOE module is used to produce current travel times of a given route.

 The Database stores the travel-time calculation results for each route for each regime. Table 6.2.2

shows the database table description used for the TTI Module.

Table 6.2.2 Database Table for Travel Time Information module

Table Name Data Fields

tod_results

- route_id : route ID

- regime_type : regime type, e.g. Dry-Monday, Rain-Tue./Wed./Thu, Snow-Saturday

- hour : hour in time of day

- minute : minute in time of day

- result : JSON string containing travel time information at each time of day

 such as average travel time and 95percentile / 85percentile travel time for each

Figure 6.2.1 The Relationship between Travel-Time Information and other relevant modules

DB

Access

Layer

Travel Time

Information TeTRES DB

request Public

Travel Time

Information

Service

route,

weather,

depart_time

Travel Time

Information

Request

Handler

API

results

calculate

reliability

route list /

reliabilities

Reliability

Calculation

Periodic

Job

execute TOD reliabilities

according to regimes

reliabilities

routes /

TOD reliabilities

MOE (TT)

travel times

calculate TT

Weather

Reader

weather

Procedure for Calculating Historical Reliability Measures

Figure 6.2.2 shows the process to calculate the reliability measures for a given predefined route. The

source code of this process is included in Figure 6.2.3.

131

(1) Retrieve the travel-time route list from the database.

- The reliability measures are calculated for all the predefined routes using the historical data.

(2) Determine a route to process.

(3) Determine a regime to process.

(4) Read the route’s travel-time data calculated by the Periodic Job module on a daily basis for the

regime.

- Travel-time data are stored with weather information in the database.

(5) Calculate the travel-time reliability for the route by using the Reliability Calculation module.

(6) Save the calculated reliability measures in the database.

(7) Go to step (3) if calculation for all regimes are not completed.

(8) Got to step (2) if calculation for all routes are not completed.

132

Figure 6.2.2 Process to Calculate Reliability Measures using Historical Data

Retrieve Travel-Time Route List

Read Travel Time Data from DB

for a specific regime

Calculate Travel Time Reliability

Iterated for all regimes?

Iterated for all

routes?

no

start

end

no

yes

yes

route = route_list[i]

regime = regimes[k]

Save the Results in the database

133

def calculate_TOD_reliabilities(ttr_id, today):

 """

 :type ttr_id: int

 :type today: datetime.datetime

 """

 ttri = _tt_route(ttr_id)

 sdate, edate, stime, etime = _time_period(today)

 _calculate_for_a_regime(ttri, TOD_REGIME_N_0, sdate, edate, stime, etime, (0,)) # Normal, Monday

 _calculate_for_a_regime(ttri, TOD_REGIME_N_123, sdate, edate, stime, etime, (1, 2, 3)) # Normal, Tuesday-

Thursday

 _calculate_for_a_regime(ttri, TOD_REGIME_N_4, sdate, edate, stime, etime, (4,)) # Normal, Friday

 _calculate_for_a_regime(ttri, TOD_REGIME_N_56, sdate, edate, stime, etime, (5, 6)) # Normal, Saturday-

Sunday

 _calculate_for_a_regime(ttri, TOD_REGIME_R_0, sdate, edate, stime, etime, (0,)) # Rain, Monday

 _calculate_for_a_regime(ttri, TOD_REGIME_R_123, sdate, edate, stime, etime, (1, 2, 3)) # Rain, Tuesday-

Thursday

 _calculate_for_a_regime(ttri, TOD_REGIME_R_4, sdate, edate, stime, etime, (4,)) # Rain, Friday

 _calculate_for_a_regime(ttri, TOD_REGIME_R_56, sdate, edate, stime, etime, (5, 6)) # Rain, Saturday-Sunday

 _calculate_for_a_regime(ttri, TOD_REGIME_S_0, sdate, edate, stime, etime, (0,)) # Snow, Monday

 _calculate_for_a_regime(ttri, TOD_REGIME_S_123, sdate, edate, stime, etime, (1, 2, 3)) # Snow, Tuesday-

Thursday

 _calculate_for_a_regime(ttri, TOD_REGIME_S_4, sdate, edate, stime, etime, (4,)) # Snow, Friday

 _calculate_for_a_regime(ttri, TOD_REGIME_S_56, sdate, edate, stime, etime, (5, 6)) # Snow, Saturday-

Sunday

def _calculate_for_a_regime(ttri, regime_type, sdate, edate, stime, etime,

 target_days=(1, 2, 3), except_dates=(), remove_holiday=True):

 """

 :type ttri: pyticas_ttrms.ttrms_types.TTRouteInfo

 :type regime_type: int

 :type sdate: datetime.date

 :type edate: datetime.date

 :type stime: datetime.time

 :type etime: datetime.time

 :type target_days: tuple[int]

 """

 # Regime Filter

 ext_filter = _ext_filter(regime_type)

 # Retrieve travel time data for a regime from DB

 extractor.extract_tt(ttri, sdate, edate, stime, etime, [ext_filter],

 target_days=target_days,

 remove_holiday=remove_holiday,

134

Figure 6.2.3 Source code for Reliability Measure Calculation using Historical Data

 except_dates=except_dates)

 # create DB Access module instance

 da = TODReliabilityDataAccess()

 # delete existings

 for ttwi in da.list_by_route(ttri.id, regime_type):

 da.delete(ttwi.id, autocommit=False)

 da.commit()

 # iterate for time of day

 cursor = datetime.datetime.combine(datetime.date.today(), stime) # indicator of TOD

 cursor += datetime.timedelta(seconds=cfg.TT_DATA_INTERVAL)

 edatetime = datetime.datetime.combine(datetime.date.today(), etime)

 while cursor <= edatetime:

 ctime = cursor.strftime('%H:%M:00')

 # collect data for a regime

 res = [extdata for extdata in ext_filter.results if ctime in extdata.tti.time]

 # calculate reliabilities

 ttr_res = reliability.calculate(ttri, res)

 # put the result into DB

 todri = TODReliabilityInfo()

 todri.regime_type = regime_type

 todri.route_id = ttri.id

 todri.hour = cursor.hour

 todri.minute = cursor.minute

 todri.result = json.dumps(ttr_res)

 da.insert(todri, autocommit=True)

 # move the cursor

 cursor += datetime.timedelta(seconds=cfg.TT_DATA_INTERVAL)

 da.close()

Procedure for Travel-Time Information Service

Figure 6.2.4 shows the sequence diagram of the travel-time information service, which provides

estimated travel times to public for given routes and departure times. Figure 6.2.5 includes the source

code of the information service function in the TTI Module. The process can be summarized as follows:

(1) User accesses the public travel-time information (TTI) service, which requests predefined travel-time

route list.

(2) The API in the server receives the request and produces the results by calling the corresponding

function in the TTI Module. The TTI Module retrieves the travel-time route list from the database.

135

(3) User selects a travel-time route and departure time, then requests travel-time information.

(4) The API module receives the request from the TTI service and calls the corresponding function in the

TTI Module, which performs the following steps:

- Calculates travel times for current time.

- Get current weather information through the Weather Data Reader module

- Retrieves the travel-time reliability measures for a given route and regime from the database.

- The reliability measures are sent back to the TTI service in a Jason format.

(5) The TTI Service displays the reliability measures.

Figure 6.2.4 A Sequence diagram of travel-time information service process

request route
get route retrieve route

travel time route

rows

route

list
route list

(json)

request TTI
get TTI

calculate TT

calculated TT

get current

weather current weather

info

TTI Service API Travel Time
Information

MOE DB Weather
Data Reader

pre-calculated TTI TTI (json)

display

retrieve

def traveltime_info(ttr_id, weather_type, depart_time):

 """

 :type ttr_id: int

 :type weather_type: int

 :type depart_time: datetime.datetime

 :rtype: list[dict], list[float]

 """

 # create DB Access module instance for travel time route

list
list list

reliabilities

results

reliabilities

136

 ttrda = TTRouteDataAccess()

 ttri = ttrda.get_by_id(ttr_id)

 ttrda.close()

 # get weather information

 if not weather_type or weather_type not in [WC_NORMAL, WC_RAIN, WC_SNOW]:

 weather_type = _weather(depart_time, ttri.route)

 # decide regime according to weather and departure time

 regime_type = _regime_type(weather_type, depart_time)

 # create DB Access module instance for travel time reliability

 da = TODReliabilityDataAccess()

 # retrieve reliability data from DB and pack to list

 tods = da.list_by_route(ttr_id, regime_type)

 res = []

 for idx, tod in enumerate(tods):

 tod_res = json.loads(tod.result)

 res.append({'hour' : tod.hour, 'minute' : tod.minute, 'avg_tt' : _roundup(tod_res['avg_tt']),

 'p95_tt' : _roundup(tod_res['percentile_tts']['95']),

 'p90_tt' : _roundup(tod_res['percentile_tts']['90']),

 'p85_tt' : _roundup(tod_res['percentile_tts']['85']),

 'p80_tt' : _roundup(tod_res['percentile_tts']['80']),

 'count' : tod_res['count']

 })

 # calculate travel time until the current time

 today_to = depart_time

 now = datetime.datetime.now()

 if today_to >= now:

 today_to = now

 today_from = datetime.datetime.combine(today_to.date(), datetime.time(0, 0, 0))

 prd = period.Period(today_from, today_to, cfg.TT_DATA_INTERVAL)

 tts = moe.travel_time(ttri.route, prd)

 tts = moe.imputation(tts, imp_module=time_avg)

 traveltimes = data_util.moving_average(tts[-1].data, 5)

 traveltimes = _roundup(traveltimes)

 return res[60:-12], traveltimes[60:-12]

Figure 6.2.5 Source code of the travel-time information service function in the TTI Module

137

6.3 DEVELOPMENT OF AN EXAMPLE WEBPAGE FOR MNDOT DRIVER-INFORMATION

SYSTEM

Figure 6.3.1 shows the example webpage developed in this chapter to examine the connectivity of the

TTI Module to the existing driver-information system in MnDOT. The example travel-time webpage is

developed as a single web application, so that it can be embedded efficiently into the existing web site

of the MnDOT driver-information system. The process to obtain expected travel times for a route is as

follows:

1) User can select a route and specify expected departure time using the combo box.

2) The selected travel time route is shown in the map.

3) The expected travel times for the selected route, including average, 95th and 85th %-ile travel times,

are displayed in the screen in both graphical and text formats. The travel time of current day and time

when the request was made for a selected route is also displayed in the travel-time graph along with the

reliability-based, expected travel times.

Figure 6.3.2 shows the results from an example application of the TTI Module with a route on the 35E

NB corridor from the split point to the 494 interchange. Figure 6.3.2a is for a day under dry weather

condition, while Figure 6.3.2b shows the expected travel times for a snow day in November 2017. The

estimation results for a route on the I-35W NB for dry and snow days in November 2017 are shown in

Figures 6.3.3a and 6.3.3b.

138

Figure 6.3.1 An Example web page for travel-time information service

Chart Area

Route Selector

Date and Time Selector

Route Map

139

Figure 6.3.2 Example application results of the Travel-Time Information Module for a route on I-35E (NB)

(a) Travel-time estimation results for a route on I-35E NB on a dry day

(b) Travel-time estimation results for a route on the I-35E NB during a snow day

140

Figure 6.3.3 Example Application Results of the Travel-Time Information Module for a route on I-35W (NB)

(a) Travel-time estimation results for a route on the I-35W NB for a dry day

(b) Travel-time estimation results for a route on I-35W NB during a snow day

141

CHAPTER 7: DEVELOPMENT OF THE USER-INTERFACE AND

REPORT-GENERATION MODULE

7.1 Introduction

In this chapter, the User-Interface and Report-Generation Module is developed to facilitate the input and

output processes of TTRMS. Using the User-Interface, the user can specify a set of freeway routes, time

periods and specific operating conditions for reliability estimation. Further, the report-generation

module produces reliability measures for selected corridors following user-specified format. Figure 7.1.1

shows the relationships between the new modules developed in this chapter and the other modules in

the Travel-Time Reliability Measurement System (TTRMS). The major functionalities of the new modules

are as follows:

 User- Interface Module:

– Manages of the identification and grouping process for the routes whose reliability measures

need to be estimated,

– Manages of the configuration process to specify operating conditions for reliability estimation,

such as weather, incident, work-zone and special events,

– Manages the input process of the user-specified data necessary to estimate reliability measures,

such as selection of a route or route groups for reliability estimation, time-periods, and

operating conditions.

 User-Service Module:

– Facilitates reliability estimation process by providing user-specified input parameters to the

Reliability Estimation module.

 Reliability-Estimation Module:

– Creates a set of the operating-condition filters using user-specified operating conditions from the

Client,

– Retrieves the travel-time data for specified routes from the database using the filter functions

and time-duration data,

– Conducts the reliability-measures estimation process using retrieved travel time data and the

reliability calculation module developed in Task 4.

 Report-Writing Module:

142

– Generates a set of spread-sheet files with the estimated reliability measures and travel-time

data for user-specified routes,

– Generates a set of the graphs with the reliability measures for user-specified operating condition

for given routes.

The rest of this chapter describes the details of the above modules.

143

Figure 7.1.1 Architecture of TTRMS and the User-Interface Modules

Server

<python>

User Input Data

Roadway Network Management Traffic MOE

MOE

Result Writer

Travel Time

Metrics

Data Type and Function Library (package=pyticas)

VMT

Speed

Travel Time & Reliability Calculation (package=pyticas_ttrms)

DB Connection and Model

DB Connector Models Setup

Periodic JobTravel Time and Reliability

Scheduler

Daily TT Calc.

Jobs

. . .

Data

Categorizer

Reliability

Calculation

Travel Time

Calculation

Real time

Travel Time

Calculation

API Service Register
Reliability Services

User

Service

Admin

Service

API Server (package=pyticas_server)

Detector Data Reader
Weather Data

Reader

Weather Sensor

Data Reader

External Data Reader

Incident

Data Reader

Database

DB Access Layer

Travel Time

Data Acess

Module

Work Zone

Data Access

Module

. . .

Server

Client (TICAS)

Estimation

UI

Client

<java>

IRIS

<metro_config.xml>
Traffic Data Archive NOAA / RWIS

Weather Sensor

Data Archive

Incident

(CAD / IRIS)

Snow Event

Data
Special Event

Data

Travel-Time Reliability

 Routes

User Interface Admin Client

Non-Traffic Data Config

UI and Controller

Work Zone Client

WZ Route Config

UI and Controller

Work Zone Data

External Data

Infra

Route

Route Config

VHT

LVMT . . .

Infra Loader

Public

Service

Operating

Condition

Config.UI

Estimation and Report

Reliability

Estimation

Report

Writing

Route

Identification

Config UI

module package data

Modules developed in the previous tasks.

Packages or modules developed in Chapter 6

Reliability

Estimation

Time Period

Operating

Condition
Route

Selection

144

7.2 DEVELOPMENT OF THE USER-INTERFACE AND USER-SERVICE MODULES

7.2.1 Overview of the User-Interface and User-Service modules

Figure 7.2.1 shows the simplified structure of the User-Interface and User-Service modules and their

interrelationships. The User-Interface, written in Java, has three submodules:

- Reliability Estimation Panel receives user-specified input parameters needed to run the reliability

estimation process, such as reliability-route selection, time periods, and operating conditions.

- Route Identification-Configuration Panel manages the selection process of a route or route-group

whose reliability would be estimated.

- Operating Condition-Configuration Pane manages the configuration process of the specific

operating conditions for reliability estimation, e.g. weather, incident and work zone conditions.

The user-specified data through the user interface are serialized to JSON string and delivered to the User

Service module using HTTP by the API client modules as shown in Figure 7.2.1.

 The User service module receives the JSON strings from the User-Interface and converts them to the

Python objects to be used by other modules in TTRMS. The main functions of the two submodules in the

User-Service module are as follows:

- Reliability Estimation Handler performs the reliability estimation process for user-specified

conditions,

- Travel Time Route Data Handler provides travel-time route list for given corridors.

Figure 7.2.1 Overview of User-Client and User-Service module structure

Route Identification-Configuration Panel

Reliability

Estimation

Client

Travel Time

Route Client

API Client

User Client (Java)

Reliability Estimation Panel

Operating Condition-Configuration Panel

Server (Python)

Reliability Estimation

Handler

Travel Time Route

Data Handler

User Service

API

145

7.2.2 Development of the User-Interface module

Development of the Reliability-Estimation Panel

Figure 7.2.2 shows the Reliability-Estimation Panel, which is the main user interface for entering a set of

the input parameters required to estimate reliability measures. The types of the parameters that can be

entered through this panel are as follows:

 Travel time routes: the pre-defined travel time routes in the Route Identification Configuration Panel

or a single route can be selected for reliability estimation.

 Date and time information: start/end dates, time period, week day.

 Type of Reliability to be estimated:

- Reliability for Whole-Time-Period (WTP Reliability)

:Reliability measures calculated with all the travel time data during a given time period

including Yearly, Monthly and Daily reliability measures.

- Time of Day Reliability (TOD Reliability)

:Reliability measures calculated for each time interval for a given time period, e.g., Reliability at

5:00, 5:05, etc., are calculated.

 Operating Conditions: specific operating conditions under which reliability measures are calculated

for given corridors, e.g., weather, existence of incidents and work zones.

146

Figure 7.2.2 Estimation Panel of the User Interface

147

Development of the Route-Selection Panel

Figure 7.2.3 shows the screenshot of the Route-Selection Panel, where user can select a route or a route

group from pre-defined routes by the Administrator Client. The predefined reliability routes for a

selected corridor can be shown in the Panel as illustrated in Figure 7.2.3. Further, the list of the selected

routes in a group is stored in a local disk and can be retrieved for future use.

Figure 7.2.3 Route-Selection Panel of the User Client

Development of the Operating-Condition Configuration Panel

Figure 7.2.4 shows the screenshot of the Operating-Condition Configuration Panel, where user can

specify a set of operating conditions under which reliability measures would be calculated. The

operating conditions to be specified include types of weather, existence and types of incident, work-

zone and special event. Also, the road conditions during snow events can be specified with this panel. As

shown in Figure 5, the operating conditions can be specified in two ways:

(1) Specific conditions can be added by using “Add Condition” button in each tab in Figure 7.2.4.

(2) Check boxes of “Without any < condition name>” and “With < condition name>” are used for

binary selection.

148

In the current version of the User Interface, the operating conditions specified by user are applied as

follows:

 If there are multiple sub-conditions checked in a same operating condition, “OR” operator is applied.

- e.g. if “Light Rain”, “Moderate Rain” and “Heavy Rain” are checked in the weather tab, all rainy day

data are used in the estimation process .

 If multiple operating conditions are set, “AND” operator is applied:

- e.g. if “Normal Dry Day” is selected in the weather tab and “Property Damage of Crash” are checked in

the incident tab, only the travel-time data under normal dry-weather condition and incident(s) with

property damage will be used to calculate reliability measures.

 If a certain operating condition is not specified, that operation condition is not considered when

filtering travel-time data for reliability estimation.

- e.g. if “Normal Dry Day” is selected in the weather tab and any other operating condition, e.g., incident

or work-zone, is not set, the travel- time data under normal dry day are used regardless of incident or

work zone conditions.

Figure 7.2.5 shows various types and levels of sub-conditions for each operating condition and their

possible combinations that can be specified in the current version. Figure 7.2.6 also shows one example

dialog to add a sub-condition.

149

Figure 7.2.4 Operating Condition-Configuration Panel of the User Interface

150

Figure 7.2.5 Combinations of the Operating Sub-Conditions

Weather

Dry

Rain

Snow

Light

Moderate

Heavy

Type Intensity

Drizzle

Rain: ~0.1 inch/hour precipitation rate

Drizzle & Snow: visibility > 1/2mi

Rain: 0.11~0.3 inch/hour precipitation rate

Drizzle & Snow: 1/4mi < visibility <= 1/2mi

Rain: more than 0.1 inch/hour precipitation rate
Drizzle & Snow: visibility <= 1/4mi

Incident

Hazard

Roadwork

Stall

Crash

Fatal

Road Closed

2+ Lane Closed

1 Lane Closed

Not Blocking

Only on Shoulder

Type Impact

Severity
Serious

Injury
Personal

Injury
Property

Damage

Work

Zone

2 to 1

3 to 1

3 to 2

Short (~5mi)

Medium

(5~10mi)

Long

(10+mi)
…

Lane Config Lane-closed Length

Upstream

Overlapped

Downstream

Relative Location

Special

Event

Near

(~3mi)

Middle

(3-5mi)

Far

(5+mi)

Small

(~20k)

Medium

(20-40k)

Large

(40k+)

Distance

(lineal distance)

Event Size

(attendance)

Before

During-After

Event Time
Seat Capacity

U.S. Bank Stadium: 66,655

Target Field: 39,504

Xcel Energy Center: 18,568

Target Center: 19,356

TCF Bank Stadium: 50,805

151

Figure 7.2.6 Dialog to Add a Weather sub-Condition

Development of API Client module

Figure 7.2.7 shows the structure of the API Client module, which facilitates the data exchange between

the User-Interface and other modules. The main functionalities of each submodule of the API client

module are as follows;

- Reliability-Estimation Client module delivers the user parameters from the Reliability Estimation

Panel to the server through the HTTP Client module.

- Travel-Time Route Client module retrieves the travel-time route list from the server. The route list is

then used in the Reliability Estimation Panel and the Route Identification Configuration Panel

- HTTP-Client module implements the POST and GET method of HTTP in both synchronous and

asynchronous ways. The methods of the HTTP Client are described in Figure 7.2.8.

- Data Types module contains the related data types such as ReliabilityRoute, OperatingConditionsInfo

and EstimationRequestInfo classes as shown in Figure 7.2.9.

Figure 7.2.7 API Client module structure

Reliability

Estimation

Client

Travel Time

Route Client

HTTP Client

ReliabilityRoute,

OperatingConditions,
EstimationRequestInfo

Data Types

API Client

Server
(Remote

Python

Server)

Graphical
UI

HTTP

152

Figure 7.2.8 HttpClient class structure

 public class HttpClient {

 public static HttpURLConnection getConnection(String target_url);

 public static void get(String target_url, IHttpResultCallback callback);

 public static HttpResult get_synced(String target_url);

public static <T extends Response> void get(String target_url, IResponseCallback<T> callback, Class<T> type);

public static <T extends Response> T get_synced(String target_url, <T> type);

 public static void post(String uri_path, PostData pd, IHttpResultCallback callback);

 public static HttpResult post_synced(String target_url, PostData postData);

public static <T extends Response> void post(String uri_path, PostData pd,

 IResponseCallback<T> callback, <T> type);

public static <T extends Response> T post_synced(String target_url, pd, Class<T> type);

public static <T extends Response> T post_synced(String target_url, PostData pd, Type type);

}

Figure 7.2.9 Data Types used in API Client module

public class EstimationRequestInfo extends InfoBase {

 public ReliabilityRouteInfo travel_time_route;

 public String start_date;

 public String end_date;

 public String start_time;

 public String end_time;

 public WeekdayConditionInfo weekdays;

 public Boolean except_holiday;

 public ReliabilityEstimationModeInfo estmation_mode;

 public List<OperatingConditionsInfo> operating_conditions;

}

public class OperatingConditionsInfo extends InfoBase {

 public String name;

 public String desc;

 public List<WeatherConditionInfo> weather_conditions;

 public List<IncidentConditionInfo> incident_conditions;

 public List<WorkzoneConditionInfo> workzone_conditions;

 public List<SpecialeventConditionInfo> specialevent_conditions;

 public List<SnowmanagementConditionInfo> snowmanagement_conditions;

}

public class ReliabilityRouteInfo extends InfoBase {

 public String name;

 public String description;

 public String corridor;

 public Route route;

}

153

7.2.3 Development of the User-Service module

Figure 7.2.10 shows the structure of the User Service module, which facilitates the data exchanges

between the User-Interface module and the Reliability-Estimation-Report Generation module. The main

functionalities of the two submodules are as follows:

 - Reliability Estimation Handler module receives the user-specified parameters from the user

interface and executes the travel-time reliability estimation process implemented in the Reliability-

Estimation and Report-Generation module.

 - Travel-Time Route Data Handler module receives the request of travel-time route list, retrieves the

pre-defined travel time routes through the DB Access Layer module and returns the list to the client.

Figure 7.2.11 includes the source code of the User Service module.

Figure 7.2.10 User-Service module structure

Reliability

Estimation

Handler

Travel Time

Route Data

Handler

User
Interface

User Service

Server

Reliability

Estimation

and Report

Generation

API

Database Access Layer

Database

154

Figure 7.2.11 Source code of User-Service module

Reliability Estimation Handler

@app.route(api_urls_user.ESTIMATION, methods=['POST'])

def tetres_user_estimation():

 # parse user parameter

 routes = request.form.get('routeIDs')

 route_ids = json.loads(routes)

 param = request.form.get('param')

 eparam = json.loads(param)

 setattr(eparam, 'travel_time_route', None)

run estimation process for all the given routes

 ttr_da = TTRouteDataAccess()

 for a_route_id in route_ids:

 eparam.travel_time_route = ttr_da.get_by_id(a_route_id)

 if not eparam.travel_time_route:

 return prot.response_error('The travel time route does not exist')

 estimation.estimation(eparam)

return the success message to the client

 return prot.response_success()

Travel Time Route Data Handler

@app.route(api_urls_user.ROUTE_LIST, methods=['POST'])

def tetres_user_route_list():

 # parse user parameter

 corridor_name = request.form.get('corridor')

retrieve route list for the given corridor through DB access module

 da = TTRouteDataAccess()

 ttris = list(da.list_by_corridor(corridor_name, order_by=('name', 'desc'), window_size=10000))

 da.close()

return the list as JSON

 return prot.response_success({'list': ttris})

155

7.3 DEVELOPMENT OF THE RELIABILITY-ESTIMATION AND REPORT-GENERATION MODULE

7.3.1 Overview of the Reliability Est imation and Report module

Figure 7.3.1 shows the structure of the Reliability Estimation and Report Generation Module, which

performs the reliability estimation process for user-specified conditions delivered through the User-

Service module. After the calculation is completed, it calls the Report-Generation module, which creates

a set of the output files in the spreadsheet and graph formats.

Figure 7.3.1 Estimation and Report module structure

Reliability

Estimation

Handler

Travel Time

Route Data

Handler

User
Interface

User Service

Server

API Reliability-Estimation and

Report Generation

Reliability Estimation

Database Access Layer

Database

Report Generation

Spread Sheet Writers

Graph Writers

7.3.2 Development of the Reliability-Estimation Process module

Figure 7.3.2 shows the structure of the Reliability Estimation process module, where the Operating-

Condition Filter Creator first creates the filter functions for each operating-condition group specified by

user in the User-Interface. Then the Reliability-Estimation module calls the Travel Time and Reliability

module, developed in the previous chapter, and calculates the reliability measures with the filtered data

for the given set of operating conditions.

156

Figure 7.3.2 Reliability-Estimation module structure

Travel Time and Reliability

DB Access Layer

Database

Operating Condition

Filter Creator

Reliability Estimation

User

Service

Report

Generator

Figure 7.3.3 shows the sequence diagram of the reliability estimation process performed in the

Reliability-Estimation process module. The step-by-step process is as follows:

(1) Make the operating condition filter functions using the Operating Condition Filter Creator module.

- The filters are defined as a class containing callable function and travel-time data list for storing the

travel-time data passed the filter created for the operating conditions specified by user.

(2) Retrieve travel-time data and operating condition data, such as weather and incident, during the

given time period from the database.

(3) Iterate the following steps for all the given operating conditions:

(i) Iterate for all travel time data and check if it is passed by the filter function.

(ii) Store the travel time data and operating conditions data to the data list of the filter if it is

passed

(4) Make yearly, monthly and daily data set with the filtered data

(5) Calculates the reliability measures with all data set including yearly, monthly and daily data sets for

all the given operating conditions, depending on the selected type of the reliability measure, i.e., whole

time period reliability or time of day reliability

(6) Write output files using the Report Generation module.

R

e

p

o

r

R

e

G

e

n

e

r

a

t

i

o

n

157

Figure 7.3.3 Sequence Diagram of Reliability-Estimation Process

Make operating condition filter function

(operating_conditions)

oc = operating_conditions[i]

Retrieve travel time and operating condition data

during the given time period

save the travel time data into the result list for a

operating condition if passed

no

yes

no

start

yes

one travel time and operation

conditions data set is passed oc.check()

Make yearly, monthly and daily data list with the

retrieved data

calculate reliability measures with

whole data set for whole-time-

period and TOD reliabilities

no

end

yes

calculate yearly reliability measures

for whole-time-period and TOD

reliabilities

calculate monthly reliability

measures for whole-time-period

and TOD reliabilities

calculate daily reliability measures

for whole-time-period

oc = operating_conditions[i]

Iterated all

operating conditions?

write spread sheet and graphs

using report module

Iterated all

operating conditions?

158

7.3.3 Development of the Report-Generation module

The Report-Generation module saves the reliability measures calculated by the Reliability-Estimation

module in the form of spread sheet and graph images. Specifically, the following spread-sheet and graph

writers have been developed and included in this module.

Whole Time Reliability Writer creates a spread-sheet file with the reliability measures of whole-time-

period data. Figure 7.3.4 shows an example spreadsheet file:

- The first sheet shows the given operating conditions as defined in the User Interface.

- The other sheets contain the reliability measures with all data, yearly data, monthly data and daily

data sets estimated for given operating conditions.

Figure 7.3.4 Sequence Diagram of Reliability Estimation Process

Report Generation

Spread Sheet Writers

Whole Time Reliability Writer

Whole Time Reliability Writer by

Operating Conditions

Travel Time Data Writer

Whole Time Reliability Graph

Writer

Time of Day Reliability Graph

Writer

Graph Writers

Time of Day Reliability Writer

Reliability
Estimation

159

Figure 7.3.5 Output File Example of Whole-Time-Reliability Writer module

160

Whole Time Reliability (WTP) Writer by Operating Conditions writes a spread-sheet file with the WTP

reliability measures for pre-specified operating conditions. Figure 7.3.6 shows an output example from

this module:

- The first sheet shows the given operating conditions specified in the User-Interface same as in

the previous module.

- The other sheets contain the reliability estimates from each data set, i.e., all data, yearly data,

monthly data and daily data set, for each operating condition.

Figure 7.3.6 Output File Example of Whole Time Period Reliability Writer by Operating Conditions

161

Time of Day (TOD) Reliability Writer writes TOD reliability measures with all data set, yearly data set

and monthly data set, for each operating condition as shown in Figure 7.3.7.

Figure 7.3.7 Output File Example of Time of Day Reliability Writer module

Travel-Time Data Writer writes travel-time data and the related non-traffic data, such weather and

incident, depending on the specified operating conditions as shown in Figure 7.3.8. Using this data set,

user can calculate different types of reliability measures not defined in the current version of TTRMS.

Figure 7.3.8 Output File Example of Travel Time Data Writer module

162

Whole-Time-Reliability (WTP) Graph Writer develops a set of multiple graph-image files with WTP

reliability measures. Figures 7.3.9 - 16 show the types of the output graphs currently available. It needs

to be noted that the number of graph files depends on the number of operating conditions specified by

user.

The types of graphs currently available are as follows:

- Cumulative probability of travel time rate for each operating condition (Figure 7.3.9)

- Reliability index for each operating condition (Figure 7.3.10)

- Yearly reliability index variations (Figure 7.3.11)

- Yearly multiple reliability indices comparison (Figure 7.3.12)

- Monthly reliability index variations (Figure 7.3.13)

- Monthly multiple reliability indices comparison (Figure 7.3.14)

- Daily reliability index variations (Figure 7.3.15)

- Relationship of travel time rate and buffer index using daily data (Figure 7.3.16)

Figure 7.3.9 An Example Cumulative-Probability graph of Travel Time Rate

163

Figure 7.3.10 An Example Buffer-Index graph depending on Operating Conditions

Figure 7.3.11 An Example Graph for Yearly Buffer Index Variations

Figure 7.3.12 An Example Graph for Yearly Multiple Indices Comparison

164

Figure 7.3.13 An Example Graph for Monthly Buffer Index Variations

Figure 7.3.14 An Example Graph for Monthly Multiple Indices Comparison

Figure 7.3.15 An Example Graph for Daily Buffer Index Variations

165

Figure 7.3.16 Variations of Daily Travel-Time Rate vs. Buffer-Index

Time of Day Reliability (TOD) Graph Writer creates TOD reliability graphs for each time interval for each

operating condition with each data set, i.e., whole data set, yearly data set and monthly data set as

shown in Figure 7.3.17-19. The graph types currently available are as follows:

- Travel time variations by time of day (Figure 7.3.17)

- Yearly TOD reliability indices (Figure 7.3.18)

- Monthly TOD reliability indices (Figure 7.3.19)

Figure 7.3.17 An Example graph for Travel-Time Variations by Time of Day

166

Figure 7.3.18 An Example graph for Yearly Planning-Time Index by Time of Day

Figure 7.3.19 An Example graph for Monthly Planning-Time Index by Time of Day

167

CHAPTER 8: SYSTEM INTEGRATION AND TESTING

8.1 INTRODUCTION

In this chapter, all the individual modules developed in the previous chapters are integrated and the

combined system is tested with real data from the metro freeway network in Twin Cities. To facilitate

the integration and the data-exchange process among various modules, a set of the new functions and

modules were developed. Figure 8.1.1 shows the locations and interrelationships of the new functions

and modules, developed in this chapter, with the other modules in the TTRMS architecture.

First, the Admin Client module, developed in the previous chapter to manage non-traffic data, was

enhanced with the new functions that can be used to configure the system parameters and to apply the

updated data into the database. Next, the Task Processing module was developed for implementing the

functions, including the procedures to handle the request from the Admin Client, to operate the entire

system. The Admin Service module was also updated to connect the Admin Client and the Task

Processing module. Finally, the Periodic Data Processing module was developed to perform the reserved

tasks at pre-configured times on each day, week and month.

The functionalities of the major modules newly developed and/or enhanced in this chapter are as

follows:

 Admin Client module, enhanced with a set of new functions:

– provides the data-change log to the administrator.

– sends the requests to apply the changed-data into the database,

– configures the system parameters.

 Periodic Data Processing module, newly developed:

– Performs daily, weekly and monthly tasks to prepare for travel-time data and time-of-

day reliability measures, and to check missing data.

 Task Processing module, newly developed:

– prepares for initial-data including weather, incident, travel times and categorization

data for given-time period,

– calculates time-of-day (TOD) reliability measures for all routes

– calculates or categorizes travel time data for updated or inserted non-traffic data or

route,

168

– checks if there are missing travel-time data.

The rest of this chapter summarizes the details of the above modules and the operating process of the

integrated system, including initial data preparation, post processing for updated data and performing

periodic tasks.

169

Figure 8.1.1 The Modules developed in Chapter 8 in the TTRMS Architecture

Server

<python>

User Input Data

Roadway Network Management Traffic MOE

MOE

Result Writer

Travel Time

Metrics

Data Type and Function Library (package=pyticas)

VMT

Speed

Travel Time & Reliability Calculation (package=pyticas_ttrms)

DB Connection and Model

DB Connector Models Setup
Periodic Data Processing

Travel Time and Reliability

Scheduler

(daily, weekly, monthly)

Data

Categorizer

Reliability

Calculation

Travel Time

Calculation

Realtime

Travel Time

Calculation

API Service Register
Reliability Services

User

Service

Public

Service

API Server (package=pyticas_server)

Detector Data Reader
Weather Data

Reader

Weather Sensor

Data Reader

External Data Reader

Incident

Data Reader

Database

DB Access Layer

Travel Time

Data Acess

Module

Work Zone

Data Access

Module

. . .

Server

Client (TICAS)

Estimation

UI

Client

<java>

IRIS

<metro_config.xml>
Traffic Data Archive NOAA / RWIS

Weather Sensor

Data Archive

Incident

(CAD / IRIS)

Snow Management

Data

Special Event

Data
Static Travel Time Route

User Client

Work Zone Data

External Data

Infra

Route

Route Config

VHT

LVMT . . .

Infra Loader

Operating

Condition

Estimation and Report

Estimation Report

Generation

Route

Identification

Task Processing

Admin

Service

Admin Client

Route

Config UI

Operating

Condition

Data Input

UI

Data

Change Log

UI

System

Config UI

modulepackage data

Modules developed in the previous chapters.

Packages or modules developed in chapter 8

Config.UIConfig UI

170

8.2 INTEGRATION OF THE ENTIRE SYSTEM

Figure 8.2.1 shows the modules developed and updated in this chapter for the system integration. The

Admin Client module is updated with the new functions to configure the system parameters and

manage the data changes by administrator. The Task Processing module is developed to process the

requests from the Admin Client and the Periodic Data Processing module, which performs the daily,

weekly and monthly tasks. The main modules in Figure 8.2.1 for calculating travel-time reliability

measures have been developed in the previous chapters.

Figure 8.2.1 Updated and Added Modules for the System Integration

Admin Client (Java)

Route

Configuration

Operating

Condition Data

Input Panel

Data Change Log

Panel

System

Configuration

API
Client

Server (Python)

Admin
Services

API
Server

Reliability Calculation

Travel Time and

Reliability

Data Categorizer

Travel Time Processing

Realtime Travel Time
Calculation

Periodic Data Processing

Daily Tasks

Weekly Tasks

Monthly Tasks

Task Processing

Initial Data Maker

TOD Reliability Calculator

Data Processor

with Updated Condition

Travel Time Data Checker

8.2.1 Enhancement of the Admin-Client and Admin-Service module

Figure 8.2.2 shows, the screen shot of the Admin Client, developed in the previous chapter, to manage

the non-traffic data, which include travel-time route, work-zone, special-event and road condition

during snow events. In this chapter, two new tabs, the Data-Change Log Tab and the System-

Configuration Tab, are added to the Admin Client to facilitate the data-update and the system

configuration processes. The main functionalities of each tab are as follows:

 The Data-Change Log Tab, shown in Figure 8.2.3, displays all the data-change activity logs,

created in the Admin Client and stored in the database, in the following format:

- Time: the time when data is changed

- Action: type of data change action, i.e., “insert”, “delete”, or “update”

Panel

Panel

171

 - Data: the description of changed data

 - Finished: flag showing whether the processing of the subject data change is finished or not

 - Status: the status of the corresponding data processing.

 “in queue” indicates the corresponding data is waiting to be processed.

 “running” denotes the changed data is being processed.

 In this tab, the administrator can send the request to process all the changed data to the server by

clicking “Update Database with Changed Data” button.

Figure 8.2.2 User Interface of the Admin Client to Manage Non-Traffic Data

(a) Travel Time Route Configuration User Interface

(b) Operating Condition Data Input User Interface

172

Figure 8.2.3 Data Change Log Management User Interface

Request to proceed the unfinished data

unchecked data must be processed

(e.g. calculate travel times and categorize)

 The System-Configuration Tab, shown in Figure 8.2.4, contains two sub-tabs to configure 1) the

periodic-job scheduling and 2) the categorization parameters.

- In the periodic-job setting tab, an administrator can set the following parameters:

- Data Archive-Start Year: the start year to produce travel-time data for pre-defined routes.

- Daily Job-Start Time: the time when daily tasks are performed/

- Daily Job Offset: the offset in number of days to calculate travel-time in daily tasks

- Weekly Job Start Time: the week day and time when weekly tasks are performed.

- Monthly Job Start Time: the date and time when monthly tasks are performed.

- In the categorization-parameter setting tab, an administrator can set the parameters used in

categorization process as shown in Figure 8.2.4(b).

173

Figure 8.2.4 System-Configuration User Interface

(a) Periodic-Job Configuration Tab

(b) Categorization-Parameter Configuration Tab

174

8.2.2 Development of the Periodic Data-Processing module

Figure 8.2.5 shows the structure of the Periodic Data-Processing module, which is responsible for

executing the tasks to calculate and categorize travel times at scheduled times for all pre-defined routes.

This module interacts with Admin Services, Task Processing and Travel Time and Reliability modules.

Further, all the functions that perform the tasks are implemented in the Task Processing and Travel Time

and Reliability modules. The operational sequence of the Periodic Data Processing module is as follows:

1) Task-Scheduler and Worker-Process modules are started during the boot sequence of the

system.

2) Task-Scheduler puts daily, weekly and monthly tasks to the shared queue with the Worker

Process at each scheduled time.

3) Worker-Process, a separated process from the server process, receives the tasks from the

shared queue and executes the tasks using the Task Processing and Travel Time and Reliability

module.

4) Time schedules are updated by the Admin Client module. The updated-time information is

saved in the database and applied to currently running scheduler through the Admin Services

module.

Figure 8.2.5 Periodic Data Processing module

Task Processing

Admin

Services

Travel Time

and

Reliability

Periodic Data

Processing

Daily Tasks

Weekly Tasks

Monthly Tasks

Worker

Process

post tasks

to the shared queue

175

Daily-Task Processing

In the current version of TTRMs, the travel times for all pre-defined routes are calculated on a daily basis

and those travel times calculated for every day are categorized according to the operating conditions,

such as weather and incident, for each day. Further, the incident and weather data for each day are

loaded automatically before the categorization of the travel times is performed. Figure 8.2.6 shows the

sub-modules for processing the daily tasks, whose operational sequence is as follows:

 Scheduler module runs the Daily-Task module, which calls the individual task modules in the

Daily Tasks module in a specific order.

 Individual task modules use the Task Processing module and Travel Time and Reliability module

developed in the previous tasks

Figure 8.2.6 Sub-modules in the Daily-Tasks module in Periodic Data Processing

Daily Task Scheduler

Travel Time Calculation Task

Weather Data Preparation Task

Incident Data Preparation Task

Categorization Task

runs at scheduled time
every day

run the tasks
in the order from

top to bottom

Daily Tasks

Periodic Data Processing

Task

Processing

Travel Time

and Reliability

Weekly-Task Processing

 In the current version of TTRMS, the Time-of-Day (TOD) reliability measures for all pre-defined routes

are calculated on a weekly basis. Those TOD reliability measures are used as the basis for the Travel-

Time Information Service, which is designed to provide public an expected travel time d for a selected

route in real time. Figure 8.2.7 shows the structure and operational sequence for the Weekly-Tasks

module, whose main work is performed by the TOD Reliabilities Pre-Calculation Task module.

176

Figure 8.2.7 Structure and Sequence for Weekly-Task processing in Periodic Data Processing module

Weekly Task Scheduler TOD Reliabilities Pre-

Calculation Task

runs at scheduled time

every week

runs the tasks
Weekly Tasks

Periodic Data Processing

Task

Processing

Monthly-Task Processing

The main function of the Monthly-Task module is to check if there is any missing data in the travel times

calculated by the Daily-Tasks module. If any missing data are found, it runs the travel-time calculation

and categorization procedures. Figure 8.2.8 shows the structure and operational sequence of the

Monthly-Tasks module.

Figure 8.2.8 Structure and Operational Sequence of the Monthly-Task module in Periodic Data Processing

Monthly
Task

Scheduler Travel Time Data Check Task

runs at scheduled time

every month

runs the tasks
Monthly Tasks

Periodic Data Processing

Task

Processing

177

8.2.3 Development of the Task-Processing module

Figure 8.2.9 shows the structure of the Task-Processing module, whose main responsibility is to execute

the functions that operate the entire system. The main functionalities of each submodule are as follows:

Initial-Data Maker module calculates the travel-times for all predefined routes and categorizes them for

given time periods before the entire system is executed.

 - In the current version, the weather and incident data are imported automatically from the CAD/IRIS

database and the NOAA data archives by the Incident-Data Loader and the NOAA-Weather Data Loader

submodules before the travel-time data are categorized, while other non-traffic data, such as work

zone, special event and road condition during snow events, are entered manually by administrator. The

structure of those two submodules is shown in Figure 8.2.10.

-The calculation and categorization of the travel-time data is performed by the Travel-Time and

Reliability module developed in the previous chapters.

Figure 8.2.9 Structure of the Task-Processing module

Task Processing

Initial Data Maker

TOD Reliability Calculator

Data Processor with Updated

Route/Work Zone/Special

Event/Winter Road Status

Travel Time Data Checker

Admin

Services
Travel Time

and Reliability

Periodic Data Processing

178

Figure 8.2.10 Sub-modules in the Initial-Data Mark module

Initial Data Maker Incident Data Loader

NOAA Weather Data Loader

Data Loader

Data Categorizer

Travel Time Calculation

Travel Time and Reliability

Task Processing

TOD Reliability

Calculator

Realtime Travel Time Calculation

TOD Reliability Calculator module calculates the time of day (TOD) reliability measures for given dates

and for all predefined routes by using the pre-calculation functions of the Real-Time Travel-Time

Calculation module.

Data-Processor module calculates and categorizes travel-time data with updated/inserted non-traffic

data, such as work zone, special event and winter-road status, and also for updated routes. Figure 8.2.11

shows the flow chart of the process of this module, which has the following sequence:

1) Retrieving the data-change logs to be processed from the database.

2) Extracting the change item from the database according to the data-change log.

3) Preparing the handler to process the retrieved data.

4) Running the fetched handler with the retrieved data item

The above process is iterated for all data-change logs.

179

Figure 8.2.11 Flow Chart of Data Processor module

Retrieves the data-change logs from database

(data_change_logs)

dclog = data_change_logs[i]

run the handler function with the retrieved item

Iterated all
no

start

yes

fetch the corresponding handler to the data type

dclog.finished = True

retrieve the data from the database according to

the data change log

end

Travel-Time Data Checker module checks if there are missing travel-time data, and, if there are, it

calculates and categorizes the travel-time data for those missing data.

 - Checking any missing data is performed by comparing the expected number of the travel-time data

for given time periods and the number of stored travel-time data. It first divides the whole data set into

yearly, monthly and daily data sets and checks the existence of any missing travel-time data in a

sequential manner, as shown in Figure 8.2.11.

data_change_logs?

180

Figure 8.2.12 Flow Chart of Travel Time Data Checker module

start

Prepare for the yearly-

time periods

no

yes

end

Prepare for the monthly-

time periods

calculate the number of tt-

data in yearly data
calculate the number of tt-

data in monthly data

Prepare for the daily-time

periods

calculate the number of tt-

data in daily data

is the number of tt-data

greater than

yearly-threshold?

Iterated for all yearly

time periods?

Iterated for all monthly

time periods?

Iterated for all daily

time periods?

is the number of tt-data

greater than

monthly-threshold?

is the number of tt-data

greater than

daily-threshold?

yes

no

no

yes no

yes

yes

calculate and categorize

travel-time data for a day

with missing tt-data

no

yes

no

181

8.3 OPERATING PROCESS OF THE INTEGRATED SYSTEM

Figure 8.3.1 shows the operating process of the integrated system, which has the following sequence:

1) Editing of non-traffic data by the Admin Client, where insert/update/delete-operations of

routes, weather, incident, work-zone and road-condition data are performed.

2) Performing a set of scheduled tasks in the Server.

3) User-specification of operating conditions in the User Client and Calculation of the travel-time

reliability measures for given conditions.

4) Travel-Time information service based on time-of-day reliability measures.

Figure 8.3.1 Operating Process of the Integrated System

User Client

Admin Client

Travel Time

Information

TeTRES Server

Travel Time and Reliability

Reliability

Services

Estimation

and Report

Periodic

Job

API

Server

(1)

(3)

(4)

(2)

Task Processing

DB

Editing operations of non-traffic data in the Admin Client

In the current version of TTRMS, an administrator manages the non-traffic data, such as travel-time

reliability routes, work zone, special event and road condition data, which are entered manually.

Further, the system parameters, e.g., periodic job schedule, are configured in the Admin Client, whose

screen shot is shown in Figure 8.3.2. In addition, the administrator can send the request to process the

changed data to the server.

182

Figure 8.3.2 Screen Shot of Admin Client

Performing Scheduled Tasks in the server

The scheduled tasks described in the previous chapter are executed automatically at specified time

schedules:

Daily-tasks Processing: The calculation and categorization of the travel times for all pre-defined routes

are performed on a daily basis after the weather data from NOAA and the incident data from CAD and

IRIS are imported.

Weekly-tasks Processing: The calculation of Time of Day (TOD) reliability measures are conducted on a

weekly basis and those TOD reliability measures are stored into the database for all pre-defined routes.

Monthly-tasks Processing: The examination of any missing travel-time data is performed every month.

If any travel-time data are missing, they are calculated and categorized by appropriate functions.

Travel-time reliability estimation with the user client

The travel-time reliability estimation process is triggered by the user client, whose screen shot is shown

in Figure 8.3.3. The user client enables a user to set the parameters required to estimate reliability

measures. Those parameters include routes, time periods, types of reliability measures, output types

and operating conditions. Once user specifies those parameters, the server executes the estimation

process and produces output in the format of spreadsheets and graphs.

183

Figure 8.3.3 Screen Shot of User Client

Travel-time information service

As part of the TTRMS operations, a web page has been developed to investigate the feasibility of

providing public expected travel-times for selected routes in real time. The expected travel-times are

determined with the time-of-day reliability measures, which are generated by TTRMS. Figure 8.3.4

shows a screenshot of the current version of the web page, where user selects a route and enters a

departure time. Then the server calculates expected travel-time for user-selected route and departure

time using the time-of-day reliability measures.

184

Figure 8.3.4 Example Web Page for Travel-Time Information Service

185

8.4 TESTING OF THE INTEGRATED SYSTEM

The integrated system is tested with real data from the metro freeway network in Twin Cities for a two-

year period, i.e., from January 1, 2012, to December 31, 2013. For this testing, a total of 87 travel-time

routes have been defined covering most of the metro freeway network. Figure 8.4.1 shows the freeway

sections used as the basis for defining the travel-time routes in this testing, i.e., two directional routes

are defined for each freeway section.

 Figure 8.4.1 Freeway Sections used for defining Travel-Time Routes

In this report, the reliability estimation results for the following four routes are included. The estimation

results for the other routes are available upon request.

 Selected Routes:

 - I-35E NB and I-35W NB from south split to I-494

 - U.S.169 NB and T.H.100 NB from I-494 to I-394

 Duration: 1/1/2012 -12/31/2013 (2 years)

 Time Period for Reliability Estimation: 05:00 - 11:00 a.m.

 Dates included: Tuesday - Thursday (except holiday)

Table 8.4.1 shows the types of the operating conditions used for categorizing the travel-time data for

this testing. The reliability estimation results for the above 4 routes are presented in Tables 8.4.2 –

8.4.17 for each operating condition. Further, the graphical presentations of those reliability estimates

186

are shown in Figures 8.4.2-8.2.29, which can be used for comparing the reliability measures for different

operating conditions as well as analyzing the variations of reliability measures through time.

Table 8.4.1 Operating-Condition Types used in the Test

Index Name Description

0 All all data during the time periods

1 DryDay dryday, no incident, no work zone, no special event, no winter road condition

2 Normal-Incident dryday, incident, no work zone, no special event, no winter road condition

3 Normal-Workzone dryday, no incident, work zone, no special event, no winter road condition

Estimation Results for I-35E NB Route

Table 8.4.2 Estimated Reliability Measures by Operating Conditions of I-35E NB Route

Operating Condition (OC) Index 0 1 2 3

OC Name All DryDay Normal-Incident Normal-Workzone

Avg TT 9.39 9.05 9.50 9.87

Travel Time Rate (minute/mile) 0.85 0.82 0.86 0.90

Data Count 22191.00 13884.00 2448.00 4416.00

Free-Flow TT using Speed Limit 9.43 9.43 9.43 9.43

Congested Avg. TT 16.66 18.12 18.46 15.71

Congested Data Count 1128.00 261.00 124.00 435.00

80th %-ile TT 9.38 9.13 9.31 10.22

85th %-ile TT 9.62 9.23 9.46 10.98

90th %-ile TT 10.21 9.39 9.95 12.20

95th %-ile TT 12.31 9.87 12.31 15.07

Buffer Index (80th %-ile) - 0.01 - 0.04

Buffer Index (85th %-ile) 0.02 0.02 - 0.11

Buffer Index (90th %-ile) 0.09 0.04 0.05 0.24

Buffer Index (95th %-ile) 0.31 0.09 0.30 0.53

Planning Time Index (80th %-ile) 0.99 0.97 0.99 1.08

Planning Time Index (85th %-ile) 1.02 0.98 1.00 1.16

Planning Time Index (90th %-ile) 1.08 1.00 1.06 1.29

Planning Time Index (95th %-ile) 1.31 1.05 1.31 1.60

Travel Time Index 1.77 1.92 1.96 1.67

Level of Travel Time Reliability 1.06 1.04 1.04 1.13

Semi-Variance 13.41 8.50 24.64 9.28

Semi-Variance Data Count 4335.00 3549.00 351.00 1094.00

On-Time Arrival 0.96 0.98 0.96 0.93

On-Time Arrival Data Count 21318.00 13668.00 2338.00 4115.00

Misery Index 1.64 1.20 1.82 1.87

187

Table 8.4.3 Yearly Reliability Measures of Operating Condition Type “All” of I-35E NB

Year 2012 2013

Avg TT 9.04 9.75

Travel Time Rate (minute/mile) 0.82 0.88

Data Count 11169.00 11022.00

Free-Flow TT using Speed Limit 9.43 9.43

Congested Avg. TT 15.48 18.02

Congested Data Count 261.00 866.00

80th %-ile TT 9.15 9.77

85th %-ile TT 9.25 10.23

90th %-ile TT 9.44 11.49

95th %-ile TT 10.19 14.37

Buffer Index (80th %-ile) 0.01 0.00

Buffer Index (85th %-ile) 0.02 0.05

Buffer Index (90th %-ile) 0.04 0.18

Buffer Index (95th %-ile) 0.13 0.47

Planning Time Index (80th %-ile) 0.97 1.04

Planning Time Index (85th %-ile) 0.98 1.09

Planning Time Index (90th %-ile) 1.00 1.22

Planning Time Index (95th %-ile) 1.08 1.52

Travel Time Index 1.64 1.80

Level of Travel Time Reliability 1.04 1.09

Semi-Variance 3.93 18.13

Semi-Variance Data Count 3030.00 2252.00

On-Time Arrival 0.98 0.94

On-Time Arrival Data Count 10966.00 10368.00

Misery Index 1.27 1.89

Table 8.4.4 Monthly Reliability Measures in 2012 for Operating Condition Type “All” of I-35E NB

Year 2012

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.96 9.03 8.78 8.92 9.00 8.92 8.86 9.06 9.28 9.26 8.85 9.61

Travel Time Rate

(minute/mile)
0.81 0.82 0.80 0.81 0.82 0.81 0.80 0.82 0.84 0.84 0.80 0.87

Data Count 949 949 949 876 1095 876 876 1022 876 1022 876 803

Free-Flow TT

using Speed Limit
9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43

188

Congested Avg.

TT

18.9

2

14.0

5

15.1

9

15.3

4

15.7

8

13.6

1
-1.00

15.1

4

13.3

8

16.7

5
-1.00

16.8

4

Congested Data

Count

18.0

0

33.0

0
9.00 6.00

18.0

0
6.00 0.00

28.0

0

49.0

0

30.0

0
0.00

64.0

0

80th %-ile TT 9.03 9.15 8.92 9.14 9.18 9.14 9.09 9.14 9.33 9.35 9.07 9.46

85th %-ile TT 9.12 9.29 9.01 9.21 9.26 9.21 9.17 9.24 9.57 9.51 9.17
10.1

0

90th %-ile TT 9.27 9.59 9.10 9.32 9.43 9.36 9.26 9.38
10.7

5
9.87 9.29

11.0

4

95th %-ile TT 9.48
10.6

7
9.24 9.51 9.74 9.64 9.45

10.0

8

12.4

2

11.1

8
9.59

14.3

6

Buffer Index (80th

%-ile)
0.01 0.01 0.02 0.03 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.00

Buffer Index (85th

%-ile)
0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.05

Buffer Index (90th

%-ile)
0.03 0.06 0.04 0.04 0.05 0.05 0.04 0.04 0.16 0.07 0.05 0.15

Buffer Index (95th

%-ile)
0.06 0.18 0.05 0.07 0.08 0.08 0.07 0.11 0.34 0.21 0.08 0.49

Planning Time

Index (80th %-ile)
0.96 0.97 0.95 0.97 0.97 0.97 0.96 0.97 0.99 0.99 0.96 1.00

Planning Time

Index (85th %-ile)
0.97 0.99 0.96 0.98 0.98 0.98 0.97 0.98 1.02 1.01 0.97 1.07

Planning Time

Index (90th %-ile)
0.98 1.02 0.96 0.99 1.00 0.99 0.98 0.99 1.14 1.05 0.99 1.17

Planning Time

Index (95th %-ile)
1.01 1.13 0.98 1.01 1.03 1.02 1.00 1.07 1.32 1.19 1.02 1.52

Travel Time Index 1.90 1.49 1.61 1.63 1.67 1.44 -1.00 1.61 1.42 1.78 -1.00 1.79

Level of Travel

Time Reliability
1.03 1.05 1.03 1.04 1.04 1.04 1.03 1.04 1.05 1.05 1.04 1.07

Semi-Variance 6.42 2.71 1.13 0.94 2.39 0.50 0.13 3.60 2.75 6.80 0.22
16.5

9

Semi-Variance

Data Count
243 263 343 330 358 335 387 267 195 240 342 143

On-Time Arrival 0.98 0.97 0.99 0.99 0.99 1.00 1.00 0.98 0.97 0.98 1.00 0.94

On-Time Arrival

Data Count
932 919 942 870 1080 872 876 999 854 998 876 753

Misery Index 1.07 1.43 1.01 1.10 1.10 1.07 1.03 1.33 1.41 1.38 1.06 1.94

189

Table 8.4.5 Monthly Reliability Measures in 2013 for Operating Condition Type “All” of I-35E NB

Year 2013

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 9.50 9.72 9.62 9.45 9.04
10.0

6

11.9

6
9.80 9.00 8.95 8.99

11.1

3

Travel Time Rate

(minute/mile)
0.86 0.88 0.87 0.86 0.82 0.91 1.08 0.89 0.82 0.81 0.82 1.01

Data Count 1021 876 876 949 1022 876 949 876 876 1095 803 803

Free-Flow TT

using Speed Limit
9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43

Congested Avg.

TT

16.6

4

19.5

9

18.8

3

20.8

1

14.0

4

14.0

9

16.6

3

14.6

7

12.6

4

15.8

0

12.3

3

19.5

1

Congested Data

Count
73 62 67 42 17 101 292 71 5 8 1 127

80th %-ile TT 9.35 9.34 9.22 9.34 9.30
10.9

0

15.0

7

10.8

3
9.20 9.12 9.23

11.3

1

85th %-ile TT 9.58 9.61 9.48 9.53 9.42
11.4

7

16.5

7

11.7

9
9.31 9.21 9.37

12.5

4

90th %-ile TT
10.2

6

10.2

1

11.6

1
9.83 9.57

12.6

6

18.9

6

12.1

1
9.49 9.34 9.57

15.6

7

95th %-ile TT
14.1

3

14.4

0

13.7

6

11.4

8

10.0

0

13.8

1

19.5

0

12.6

5
9.97 9.65

10.0

2

21.2

7

Buffer Index

(80th %-ile)
0.00 0.00 0.00 0.00 0.03 0.08 0.26 0.11 0.02 0.02 0.03 0.02

Buffer Index

(85th %-ile)
0.01 0.00 0.00 0.01 0.04 0.14 0.38 0.20 0.03 0.03 0.04 0.13

Buffer Index

(90th %-ile)
0.08 0.05 0.21 0.04 0.06 0.26 0.50 0.24 0.05 0.04 0.06 0.41

Buffer Index

(95th %-ile)
0.49 0.48 0.43 0.21 0.11 0.37 0.63 0.29 0.11 0.08 0.11 0.91

Planning Time

Index (80th %-ile)
0.99 0.99 0.98 0.99 0.99 1.16 1.60 1.15 0.98 0.97 0.98 1.20

Planning Time

Index (85th %-ile)
1.02 1.02 1.01 1.01 1.00 1.22 1.76 1.25 0.99 0.98 0.99 1.33

Planning Time

Index (90th %-ile)
1.09 1.08 1.23 1.04 1.01 1.34 1.90 1.28 1.01 0.99 1.02 1.66

Planning Time

Index (95th %-ile)
1.50 1.53 1.46 1.22 1.06 1.46 2.07 1.34 1.06 1.02 1.06 2.26

Travel Time

Index
1.76 2.08 1.89 2.21 1.49 1.49 1.76 1.56 1.34 1.68 1.31 2.07

Level of Travel

Time Reliability
1.05 1.05 1.05 1.06 1.04 1.15 1.48 1.20 1.04 1.03 1.04 1.20

190

Semi-Variance
16.6

1

41.4

6

28.3

1

30.8

8
1.18 3.37 8.69 6.39 0.51 1.19 0.35

41.3

3

Semi-Variance

Data Count
162 110 123 167 383 296 300 220 318 365 298 176

On-Time Arrival 0.94 0.94 0.94 0.96 0.99 0.96 0.81 0.97 1.00 0.99 1.00 0.88

On-Time Arrival

Data Count
959 823 823 911 1010 838 768 846 876 1087 803 706

Misery Index 1.80 2.28 1.94 1.96 1.16 1.65 2.21 1.57 1.13 1.11 1.11 2.91

Figure 8.4.2 Buffer Index (95th-ile) by Operating Condition Types for I-35E NB

Figure 8.4.3 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35E NB

191

Figure 8.4.4 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35E NB

Figure 8.4.5 Cumulative Probability of Travel-Time Rate of I-35E NB

Figure 8.4.6 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for Operating Condition Type “All” of I-35E NB

192

Figure 8.4.7 Time-of-Day Travel-Time Distribution of I-35E NB

Figure 8.4.8 Monthly TOD Buffer Index (95%-ile) of I-35E NB

Estimation Results of I-35W NB

Table 8.4.6 Reliability Measures by Operating Condition Type of I-35W NB

OC Index 0 1 2

OC Name All DryDay Normal-Incident

Avg TT 9.00 8.71 8.80

Travel Time Rate (minute/mile) 1.06 1.02 1.03

Data Count 22119.00 14714.00 10398.00

Free-Flow TT using Speed Limit 8.96 8.96 8.96

Congested Avg. TT 13.44 12.86 13.45

Congested Data Count 4798.00 2742.00 2051.00

80th %-ile TT 10.64 10.10 10.30

85th %-ile TT 11.58 11.01 11.35

90th %-ile TT 12.63 12.00 12.46

95th %-ile TT 14.25 13.37 14.00

Buffer Index (80th %-ile) 0.18 0.16 0.17

Buffer Index (85th %-ile) 0.29 0.26 0.29

Buffer Index (90th %-ile) 0.40 0.38 0.42

Buffer Index (95th %-ile) 0.58 0.54 0.59

193

Planning Time Index (80th %-ile) 1.34 1.27 1.29

Planning Time Index (85th %-ile) 1.46 1.38 1.43

Planning Time Index (90th %-ile) 1.59 1.51 1.57

Planning Time Index (95th %-ile) 1.79 1.68 1.76

Travel Time Index 1.69 1.62 1.69

Level of Travel Time Reliability 1.38 1.32 1.36

Semi-Variance 13.80 8.60 11.86

Semi-Variance Data Count 6590.00 4223.00 2903.00

On-Time Arrival 0.85 0.88 0.85

On-Time Arrival Data Count 18799.00 12883.00 8863.00

Misery Index 2.03 1.83 2.01

Table 8.4.7 Yearly Reliability Measures for Operating Condition Type “All” of I-35W NB

Year 2012 2013

Avg TT 8.84 9.17

Travel Time Rate (minute/mile) 1.04 1.07

Data Count 11023.00 11096.00

Free-Flow TT using Speed Limit 8.96 8.96

Congested Avg. TT 12.82 14.06

Congested Data Count 2388.00 2409.00

80th %-ile TT 10.65 10.63

85th %-ile TT 11.57 11.58

90th %-ile TT 12.48 12.91

95th %-ile TT 13.83 14.80

Buffer Index (80th %-ile) 0.21 0.16

Buffer Index (85th %-ile) 0.31 0.26

Buffer Index (90th %-ile) 0.41 0.41

Buffer Index (95th %-ile) 0.56 0.61

Planning Time Index (80th %-ile) 1.34 1.34

Planning Time Index (85th %-ile) 1.45 1.46

Planning Time Index (90th %-ile) 1.57 1.62

Planning Time Index (95th %-ile) 1.74 1.86

Travel Time Index 1.61 1.77

Level of Travel Time Reliability 1.39 1.37

Semi-Variance 5.49 21.86

Semi-Variance Data Count 3339.00 3241.00

On-Time Arrival 0.85 0.85

On-Time Arrival Data Count 9344.00 9458.00

Misery Index 1.91 2.26

194

Table 8.4.8 Monthly Reliability Measures in 2012 for Operating Condition Type “All” of I-35W NB

Year 2012

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.44 8.40 8.06 8.91 8.86 8.96 8.62 8.93
10.3

6
9.20 8.25 9.13

Travel Time Rate

(minute/mile)
0.99 0.98 0.95 1.04 1.04 1.05 1.01 1.05 1.21 1.08 0.97 1.07

Data Count 949 949 949 876
102

2
803 876

102

2
876

102

2
876 803

Free-Flow TT using

Speed Limit
8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96

Congested Avg. TT
12.7

7

12.7

8

12.2

9

12.7

7

11.9

4

12.2

1

12.2

3

12.8

6

13.8

7

12.6

1

11.7

9

14.6

4

Congested Data Count 160 144 87 207 249 201 159 236 368 295 117 165

80th %-ile TT 9.56 9.33 8.68
10.9

5

11.0

1

11.1

3
9.97

10.6

6

13.5

4

11.5

7
9.06

10.4

6

85th %-ile TT
10.6

6

10.4

0
9.34

11.8

3

11.5

9

11.8

7

10.9

3

11.9

0

14.1

9

12.0

3
9.97

12.1

8

90th %-ile TT
11.7

5

11.3

8

10.1

7

12.8

6

12.0

8

12.4

2

11.9

0

12.9

7

14.9

0

12.6

7

10.9

9

14.3

8

95th %-ile TT
13.1

3

13.1

3

11.4

1

14.0

3

12.6

4

13.1

5

12.8

5

14.1

2

16.4

0

14.0

2

12.0

9

16.5

8

Buffer Index (80th %-

ile)
0.13 0.11 0.08 0.23 0.24 0.24 0.16 0.19 0.31 0.26 0.10 0.15

Buffer Index (85th %-

ile)
0.26 0.24 0.16 0.33 0.31 0.32 0.27 0.33 0.37 0.31 0.21 0.33

Buffer Index (90th %-

ile)
0.39 0.36 0.26 0.44 0.36 0.39 0.38 0.45 0.44 0.38 0.33 0.57

Buffer Index (95th %-

ile)
0.55 0.56 0.42 0.57 0.43 0.47 0.49 0.58 0.58 0.52 0.47 0.82

Planning Time Index

(80th %-ile)
1.20 1.17 1.09 1.38 1.38 1.40 1.25 1.34 1.70 1.45 1.14 1.31

Planning Time Index

(85th %-ile)
1.34 1.31 1.17 1.49 1.46 1.49 1.37 1.50 1.78 1.51 1.25 1.53

Planning Time Index

(90th %-ile)
1.48 1.43 1.28 1.62 1.52 1.56 1.50 1.63 1.87 1.59 1.38 1.81

Planning Time Index

(95th %-ile)
1.65 1.65 1.43 1.76 1.59 1.65 1.62 1.78 2.06 1.76 1.52 2.08

Travel Time Index 1.61 1.61 1.54 1.60 1.50 1.54 1.54 1.62 1.74 1.59 1.48 1.84

Level of Travel Time

Reliability
1.28 1.25 1.17 1.43 1.41 1.41 1.29 1.38 1.54 1.47 1.20 1.37

195

Semi-Variance 6.02 5.89 4.32 4.12 1.85 2.28 3.04 4.51 8.62 4.00 2.35
11.5

6

Semi-Variance Data

Count
243 248 259 275 366 277 265 307 366 356 241 216

On-Time Arrival 0.87 0.89 0.94 0.83 0.86 0.84 0.89 0.84 0.78 0.82 0.91 0.83

On-Time Arrival Data

Count
829 847 895 726 883 678 778 856 683 838 799 664

Misery Index 1.85 1.82 1.59 1.90 1.67 1.72 1.71 1.91 2.36 1.92 1.59 2.34

Table 8.4.9 Monthly Reliability Measures in 2013 for Operating Condition Type “All” of I-35W NB

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.71 9.51 8.42 9.54 8.90 9.71 9.04 9.43 8.30 8.22 8.61
12.1

2

Travel Time Rate

(minute/mile)
1.02 1.11 0.99 1.12 1.04 1.14 1.06 1.11 0.97 0.96 1.01 1.42

Data Count
102

2
876 876 949

102

2
876 949 949 876

109

5
803 803

Free-Flow TT using

Speed Limit
8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96 8.96

Congested Avg. TT
13.4

5

15.1

9

13.2

1

16.9

3

12.4

0

13.7

1

12.5

6

12.8

7

11.7

9

11.7

7

12.8

1

18.9

7

Congested Data Count 179 203 102 182 236 276 237 291 103 121 141 338

80th %-ile TT 9.85
10.8

7
9.32

10.2

5

10.8

2

12.1

4

11.1

1

12.3

7
9.03 8.94 9.96

18.4

7

85th %-ile TT
10.9

4

11.7

2
9.95

11.0

1

11.5

2

13.3

2

11.9

1

13.1

0
9.90 9.82

10.7

5

19.3

3

90th %-ile TT
12.1

8

12.8

9

10.5

2

12.4

8

12.3

1

14.2

6

12.6

5

13.6

2

10.6

3

10.4

6

11.6

2

21.1

9

95th %-ile TT
14.5

4

16.3

8

12.8

4

14.8

8

13.5

7

15.4

7

13.9

5

14.1

9

11.6

1

11.3

2

12.6

4

24.5

8

Buffer Index (80th %-

ile)
0.13 0.14 0.11 0.07 0.22 0.25 0.23 0.31 0.09 0.09 0.16 0.44

Buffer Index (85th %-

ile)
0.26 0.23 0.18 0.15 0.30 0.37 0.32 0.39 0.19 0.19 0.25 0.60

Buffer Index (90th %-

ile)
0.40 0.35 0.25 0.31 0.38 0.47 0.40 0.44 0.28 0.27 0.35 0.75

Buffer Index (95th %-

ile)
0.67 0.72 0.53 0.56 0.53 0.59 0.54 0.51 0.40 0.38 0.47 1.03

Planning Time Index

(80th %-ile)
1.24 1.37 1.17 1.29 1.36 1.53 1.40 1.56 1.13 1.12 1.25 2.20

196

Planning Time Index

(85th %-ile)
1.37 1.47 1.25 1.38 1.45 1.67 1.50 1.65 1.24 1.23 1.35 2.43

Planning Time Index

(90th %-ile)
1.53 1.62 1.32 1.57 1.55 1.79 1.59 1.71 1.34 1.32 1.46 2.66

Planning Time Index

(95th %-ile)
1.83 2.06 1.61 1.87 1.71 1.94 1.75 1.78 1.46 1.42 1.59 3.09

Travel Time Index 1.69 1.91 1.66 2.13 1.56 1.72 1.58 1.62 1.48 1.48 1.61 2.26

Level of Travel Time

Reliability
1.30 1.41 1.23 1.34 1.38 1.51 1.41 1.54 1.18 1.17 1.31 1.98

Semi-Variance 8.77
41.4

9
6.77

100.

65
3.41 8.93 3.45 3.01 2.45 2.74 9.23

29.5

2

Semi-Variance Data

Count
282 255 250 224 343 309 318 362 266 309 229 286

On-Time Arrival 0.87 0.84 0.92 0.87 0.87 0.79 0.84 0.79 0.95 0.95 0.88 0.68

On-Time Arrival Data

Count
888 739 805 830 891 695 801 745 830

104

3
710 544

Misery Index 2.08 2.97 1.93 3.39 1.85 2.19 1.88 1.84 1.62 1.58 1.74 3.77

Figure 8.4.9 Buffer Index (95th-ile) by Operating Conditions of I-35W NB

197

Figure 8.4.10 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35W NB

Figure 8.4.11 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of I-35W NB

Figure 8.4.12 Cumulative Probability of Travel Time Rate of I-35W NB

198

Figure 8.4.13 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for “All operating condition” of I-35W NB

Figure 8.4.14 Time-of-Day Travel Time Distribution of I-35W NB

Figure 8.4.15 Monthly TOD Buffer Index (95%-ile) of I-35W NB

Estimation Results for U.S.169 NB

Table 8.4.10 Reliability Measures by Operating Conditions of U.S.169 NB

OC Index 0 1 2

OC Name All DryDay Normal-Incident

Avg TT 8.51 8.18 8.88

Travel Time Rate (minute/mile) 0.96 0.92 1.01

Data Count 22264.00 13755.00 1854.00

199

Free-Flow TT using Speed Limit 8.51 8.51 8.51

Congested Avg. TT 18.90 16.83 18.60

Congested Data Count 805.00 206.00 112.00

80th %-ile TT 8.36 8.25 8.50

85th %-ile TT 8.55 8.34 8.82

90th %-ile TT 8.19 8.51 8.94

95th %-ile TT 10.02 8.34 11.91

Buffer Index (80th %-ile) - 0.01 -

Buffer Index (85th %-ile) 0.01 0.02

Buffer Index (90th %-ile) 0.09 0.05 0.13

Buffer Index (95th %-ile) 0.33 0.16 0.51

Planning Time Index (80th %-ile) 0.87 0.85 0.88

Planning Time Index (85th %-ile) 0.89 0.86 0.92

Planning Time Index (90th %-ile) 0.96 0.88 1.05

Planning Time Index (95th %-ile) 1.18 0.98 1.40

Travel Time Index 2.10 1.98 2.19

Level of Travel Time Reliability 1.05 1.04 1.06

Semi-Variance 32.12 8.86 59.76

Semi-Variance Data Count 3526.00 3526.00 269.00

On-Time Arrival 0.96 0.98 0.93

On-Time Arrival Data Count 21299.00 13508.00 1730.00

Misery Index 1.50 1.13 1.75

Table 8.4.11 Yearly Reliability Measures for Operating Condition Type “All” of U.S.169 NB

Year 2012 2013

Avg TT 8.23 8.78

Travel Time Rate (minute/mile) 0.92 0.99

Data Count 11169.00 11095.00

Free-Flow TT using Speed Limit 8.51 8.51

Congested Avg. TT 16.05 18.61

Congested Data Count 224.00 581.00

80th %-ile TT 8.29 8.54

85th %-ile TT 8.38 8.08

90th %-ile TT 8.57 9.16

95th %-ile TT 8.42 11.22

Buffer Index (80th %-ile) 0.01 0.00

Buffer Index (85th %-ile) 0.02 0.04

200

Buffer Index (90th %-ile) 0.05 0.18

Buffer Index (95th %-ile) 0.16 0.44

Planning Time Index (80th %-ile) 0.86 0.89

Planning Time Index (85th %-ile) 0.87 0.95

Planning Time Index (90th %-ile) 0.89 1.08

Planning Time Index (95th %-ile) 0.99 1.32

Travel Time Index 1.89 2.19

Level of Travel Time Reliability 1.04 1.08

Semi-Variance 8.28 45.63

Semi-Variance Data Count 2695.00 1905.00

On-Time Arrival 0.98 0.94

On-Time Arrival Data Count 10916.00 10383.00

Misery Index 1.19 1.73

Table 8.4.12 Monthly Reliability Measures in 2012 of Operating Condition Type “All” of U.S.169 NB

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.06 8.91 6.88 6.85 8.02 8.07 8.14 8.09 8.22 8.74 8.17 8.67

Travel Time Rate

(minute/mile)
0.90 1.01 0.88 0.88 0.90 0.90 0.91 0.91 0.92 0.99 0.92 0.98

Data Count 949 949 949 876
109

5
876 876

102

2
876

102

2
876 803

Free-Flow TT using

Speed Limit
8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51

Congested Avg. TT
14.9

0

20.9

4

12.9

9

-

1.00

13.0

7

13.3

5

11.3

1

11.4

1

14.0

0

14.0

6

11.9

4

15.2

2

Congested Data Count 4 59 2 0 6 3 1 1 7 77 7 57

80th %-ile TT 8.18 8.27 8.07 8.08 8.23 8.30 8.35 8.31 8.40 8.66 8.38 8.53

85th %-ile TT 8.25 8.42 8.11 8.13 8.29 8.37 8.44 8.36 8.52 8.00 8.47 8.87

90th %-ile TT 8.38 8.77 8.20 8.19 8.41 8.49 8.62 8.45 8.75 9.20 8.70 9.03

95th %-ile TT 8.21
12.1

8
8.33 8.29 8.70 8.83 8.13 8.67 8.18

12.8

1
8.67

13.5

6

Buffer Index (80th %-

ile)
0.02 0.00 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.00

Buffer Index (85th %-

ile)
0.03 0.00 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.03

Buffer Index (90th %-

ile)
0.05 0.11 0.05 0.05 0.06 0.06 0.07 0.05 0.07 0.19 0.07 0.18

Buffer Index (95th %-

ile)
0.16 0.54 0.07 0.07 0.10 0.11 0.14 0.08 0.13 0.66 0.21 0.77

201

Planning Time Index

(80th %-ile)
0.84 0.85 0.83 0.83 0.85 0.86 0.86 0.86 0.87 0.90 0.87 0.88

Planning Time Index

(85th %-ile)
0.85 0.87 0.84 0.84 0.86 0.87 0.87 0.86 0.88 0.94 0.88 0.92

Planning Time Index

(90th %-ile)
0.87 1.03 0.85 0.84 0.87 0.88 0.90 0.88 0.91 1.08 0.91 1.06

Planning Time Index

(95th %-ile)
0.96 1.43 0.86 0.86 0.91 0.92 0.95 0.90 0.96 1.51 1.02 1.59

Travel Time Index 1.75 2.46 1.53
-

1.00
1.54 1.57 1.33 1.34 1.65 1.65 1.40 1.79

Level of Travel Time

Reliability
1.04 1.05 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.07 1.05 1.08

Semi-Variance 1.36
71.6

6
0.23 0.04 0.65 0.52 0.47 0.38 1.15 9.41 0.92

14.1

2

Semi-Variance Data

Count
295 108 413 441 467 396 350 458 322 184 299 139

On-Time Arrival 0.99 0.93 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.92 0.99 0.92

On-Time Arrival Data

Count
943 887 947 876

108

9
870 872

101

8
867 943 868 742

Misery Index 1.04 2.74 0.88 0.87 0.97 0.98 1.05 1.01 1.01 1.71 1.11 1.84

Table 8.4.13 Monthly Reliability Measures in 2013 of Operating Condition Type “All” of U.S.169 NB

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.26 8.26 8.36 8.81 8.29 9.20 6.89 6.82 8.16 8.41 8.34
11.2

5

Travel Time Rate

(minute/mile)
0.93 1.06 0.94 1.00 0.93 1.18 0.88 0.87 0.91 0.95 0.94 1.44

Data Count
102

1
876 876 949

102

2
876 949 949 876

109

5
803 803

Free-Flow TT using

Speed Limit
8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51

Congested Avg. TT
12.2

1

25.9

7

12.8

7

20.4

9

11.9

1

16.2

4

-

1.00

-

1.00

14.0

7

12.9

7

14.0

5

22.2

8

Congested Data Count 33 52 33 50 7 118 0 0 14 39 40 195

80th %-ile TT 8.36 8.76 8.30 8.43 8.48
10.3

0
8.11 8.04 8.28 8.38 8.20

13.0

3

85th %-ile TT 8.57 8.22 8.83 8.89 8.66
10.8

2
8.15 8.10 8.37 8.57 8.33

15.6

6

90th %-ile TT 8.10 9.04 9.15 8.82 8.37
11.9

2
8.25 8.16 8.48 8.71 8.82

21.1

1

202

95th %-ile TT 9.67
11.9

5

10.5

3

11.3

4
9.54

15.3

2
8.41 8.26 8.94

10.5

9

10.8

7

28.3

6

Buffer Index (80th %-

ile)
0.01 0.00 0.00 0.00 0.03 0.12 0.03 0.03 0.02 0.00 0.00 0.16

Buffer Index (85th %-

ile)
0.04 0.00 0.06 0.01 0.05 0.18 0.04 0.04 0.03 0.02 0.00 0.39

Buffer Index (90th %-

ile)
0.12 0.09 0.24 0.13 0.15 0.30 0.05 0.05 0.05 0.18 0.06 0.88

Buffer Index (95th %-

ile)
0.33 0.45 0.43 0.45 0.31 0.67 0.08 0.07 0.11 0.43 0.48 1.52

Planning Time Index

(80th %-ile)
0.86 0.91 0.86 0.87 0.88 1.21 0.84 0.83 0.86 0.87 0.85 1.53

Planning Time Index

(85th %-ile)
0.89 0.97 0.92 0.93 0.90 1.27 0.84 0.83 0.87 0.89 0.86 1.84

Planning Time Index

(90th %-ile)
0.95 1.06 1.08 1.04 0.98 1.40 0.85 0.84 0.88 1.02 0.92 2.48

Planning Time Index

(95th %-ile)
1.14 1.40 1.24 1.33 1.12 1.80 0.87 0.85 0.93 1.24 1.28 3.33

Travel Time Index 1.44 3.05 1.51 2.41 1.40 1.91
-

1.00

-

1.00
1.65 1.52 1.65 2.62

Level of Travel Time

Reliability
1.06 1.12 1.06 1.07 1.06 1.28 1.04 1.04 1.04 1.05 1.04 1.67

Semi-Variance 2.87
126.

67
3.97

46.3

9
1.30

22.9

7
0.13 0.05 2.64 4.42 9.85

119.

95

Semi-Variance Data

Count
245 127 161 148 311 296 435 434 270 207 118 193

On-Time Arrival 0.96 0.94 0.94 0.94 0.99 0.91 1.00 1.00 0.98 0.95 0.95 0.77

On-Time Arrival Data

Count
979 821 827 890

100

9
794 947 949 858

103

6
760 618

Misery Index 1.35 3.42 1.41 2.32 1.19 2.43 0.89 0.87 1.15 1.38 1.63 4.81

203

Figure 8.4.16 Buffer Index (95th-ile) by Operating Conditions of U.S.169 NB

Figure 8.4.17 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of U.S.169 NB

Figure 8.4.18 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of U.S.169 NB

204

Figure 8.4.19 Cumulative Probability of Travel Time Rate of U.S.169 NB

Figure 8.4.20 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for “All operating condition” of U.S.169 NB

Figure 8.4.21 Time-of-Day Travel Time Distribution of U.S.169 NB

Figure 8.4.22 Monthly TOD Buffer Index (95%-ile) of U.S.169 NB

205

Estimation Results for T.H.100 NB

Table 8.4.14 Reliability Measures by Operating Condition Types of T.H.100 NB

OC Index 0 1 2

OC Name All DryDay Normal-Incident

Avg TT 8.43 8.26 8.67

Travel Time Rate (minute/mile) 1.05 1.03 1.08

Data Count 22264.00 19144.00 2050.00

Free-Flow TT using Speed Limit 8.75 8.75 8.75

Congested Avg. TT 13.96 13.20 13.83

Congested Data Count 1395.00 939.00 170.00

80th %-ile TT 8.28 8.08 8.00

85th %-ile TT 8.06 8.59 8.61

90th %-ile TT 8.97 8.58 9.65

95th %-ile TT 10.57 10.03 11.89

Buffer Index (80th %-ile) - - 0.04

Buffer Index (85th %-ile) 0.09 0.05 0.12

Buffer Index (90th %-ile) 0.21 0.18 0.26

Buffer Index (95th %-ile) 0.42 0.38 0.55

Planning Time Index (80th %-ile) 0.94 0.91 1.03

Planning Time Index (85th %-ile) 1.04 0.98 1.11

Planning Time Index (90th %-ile) 1.16 1.11 1.25

Planning Time Index (95th %-ile) 1.37 1.29 1.54

Travel Time Index 1.80 1.70 1.79

Level of Travel Time Reliability 1.07 1.04 1.17

Semi-Variance 14.45 10.01 10.80

Semi-Variance Data Count 4166.00 3278.00 468.00

On-Time Arrival 0.94 0.95 0.92

On-Time Arrival Data Count 20941.00 18251.00 1893.00

Misery Index 1.66 1.47 1.95

Table 8.4.15 Yearly Reliability Measures for Operating Condition Type “All” of T.H.100 NB

Year 2012 2013

Avg TT 8.31 8.55

Travel Time Rate (minute/mile) 1.03 1.07

Data Count 11169.00 11095.00

Free-Flow TT using Speed Limit 8.75 8.75

Congested Avg. TT 13.67 14.16

206

Congested Data Count 568.00 828.00

80th %-ile TT 8.13 8.57

85th %-ile TT 8.67 8.36

90th %-ile TT 8.61 9.36

95th %-ile TT 10.09 11.24

Buffer Index (80th %-ile) 0.00 0.00

Buffer Index (85th %-ile) 0.05 0.11

Buffer Index (90th %-ile) 0.18 0.24

Buffer Index (95th %-ile) 0.38 0.49

Planning Time Index (80th %-ile) 0.92 0.98

Planning Time Index (85th %-ile) 0.99 1.08

Planning Time Index (90th %-ile) 1.11 1.21

Planning Time Index (95th %-ile) 1.30 1.45

Travel Time Index 1.77 1.83

Level of Travel Time Reliability 1.05 1.11

Semi-Variance 13.52 15.07

Semi-Variance Data Count 1939.00 2230.00

On-Time Arrival 0.95 0.93

On-Time Arrival Data Count 10632.00 10314.00

Misery Index 1.50 1.83

Table 8.4.16 Monthly Reliability Measures in 2012 for Operating Condition Type “All” of T.H.100 NB

Year 2012

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.40 8.03 6.96 8.03 8.38 6.88 8.00 6.92 8.35 8.51 8.08 8.23

Travel Time Rate

(minute/mile)
1.05 1.14 0.98 0.99 1.04 0.97 0.99 0.98 1.04 1.06 1.00 1.16

Data Count 949 949 949 876
109

5
876 876

102

2
876

102

2
876 803

Free-Flow TT using

Speed Limit
8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75

Congested Avg. TT
12.3

0

16.7

1

11.8

6

10.3

3

12.4

8

10.4

3

13.1

2

11.0

2

10.9

3

12.5

4

10.5

7

19.0

2

Congested Data

Count
67 97 16 5 69 5 18 27 75 83 29 77

80th %-ile TT 8.40 8.20 6.93 8.03 8.53 6.96 8.00 6.91 8.49 8.51 6.95 8.95

85th %-ile TT 8.26 8.84 8.01 8.31 8.36 8.01 8.12 6.98 8.68 8.62 8.78 8.74

90th %-ile TT 9.23
10.0

8
8.33 8.24 9.18 8.24 8.34 8.11 9.67 9.72 8.51 9.76

207

95th %-ile TT
10.8

7

13.1

1
8.48 8.96

10.4

7
8.04 8.17 8.26

10.7

7

11.3

7
9.75

18.4

7

Buffer Index (80th %-

ile)
0.00 0.02 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.00 0.00 0.00

Buffer Index (85th %-

ile)
0.12 0.10 0.01 0.04 0.13 0.02 0.02 0.01 0.18 0.15 0.10 0.06

Buffer Index (90th %-

ile)
0.25 0.26 0.05 0.17 0.24 0.05 0.05 0.03 0.32 0.29 0.20 0.19

Buffer Index (95th %-

ile)
0.47 0.63 0.22 0.28 0.42 0.17 0.17 0.19 0.47 0.51 0.38 1.12

Planning Time Index

(80th %-ile)
0.95 1.06 0.89 0.91 0.97 0.90 0.90 0.89 0.97 0.97 0.90 1.03

Planning Time Index

(85th %-ile)
1.07 1.14 0.91 0.94 1.08 0.91 0.92 0.90 1.12 1.11 1.00 1.13

Planning Time Index

(90th %-ile)
1.19 1.30 0.95 1.06 1.19 0.94 0.95 0.92 1.25 1.25 1.10 1.26

Planning Time Index

(95th %-ile)
1.40 1.69 1.09 1.16 1.35 1.04 1.05 1.07 1.39 1.47 1.26 2.25

Travel Time Index 1.59 2.16 1.53 1.33 1.61 1.35 1.69 1.42 1.41 1.62 1.36 2.46

Level of Travel Time

Reliability
1.09 1.21 1.03 1.04 1.10 1.03 1.03 1.02 1.10 1.10 1.03 1.16

Semi-Variance 5.52
40.9

3
2.21 0.89 4.97 0.63 3.85 2.07 1.58 5.45 1.23

51.0

3

Semi-Variance Data

Count
190 197 168 178 231 254 180 189 182 205 152 143

On-Time Arrival 0.93 0.90 0.98 1.00 0.94 1.00 0.98 0.98 0.92 0.92 0.97 0.91

On-Time Arrival Data

Count
887 858 933 872

103

0
872 859 997 807 940 848 730

Misery Index 1.54 2.97 1.18 1.22 1.60 1.11 1.20 1.30 1.43 1.68 1.33 3.08

Table 8.4.17 Monthly Reliability Measures in 2013 for Operating Condition Type “All” of T.H.100 NB

Year 2013

Month 1 2 3 4 5 6 7 8 9 10 11 12

Avg TT 8.38 8.26 8.39 8.53 8.25 8.57 6.91 6.87 8.45 8.35 8.21 9.81

Travel Time Rate

(minute/mile)
1.04 1.17 1.05 1.07 1.03 1.07 0.98 0.97 1.05 1.04 1.02 1.39

Data Count
102

1
876 876 949

102

2
876 949 949 876

109

5
803 803

Free-Flow TT using

Speed Limit
8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75

208

Congested Avg. TT
12.7

8

15.1

5

13.8

5

18.0

1

11.2

7

12.2

5

11.0

9

10.9

4

12.6

7

12.5

8

11.6

8

18.0

7

Congested Data

Count
59 121 46 45 77 79 5 16 65 67 50 197

80th %-ile TT 8.35 8.62 8.23 8.35 8.12 8.14 6.96 6.91 8.82 8.31 6.98
11.5

1

85th %-ile TT 8.85 9.78 8.06 8.93 8.99 9.00 8.03 6.96 8.71 8.26 8.88
13.4

2

90th %-ile TT 8.81
11.1

9
9.06 8.83 8.89 9.91 8.18 8.03 9.59 9.06 9.02

16.9

5

95th %-ile TT
10.4

3

16.2

5

10.1

7

10.0

2

10.7

1

11.9

1
8.49 8.91

10.8

6

10.4

4

10.6

1

23.5

6

Buffer Index (80th

%-ile)
0.00 0.04 0.00 0.00 0.00 0.08 0.01 0.01 0.05 0.00 0.00 0.17

Buffer Index (85th

%-ile)
0.06 0.18 0.09 0.05 0.10 0.19 0.02 0.01 0.17 0.12 0.09 0.37

Buffer Index (90th

%-ile)
0.19 0.35 0.23 0.17 0.23 0.31 0.04 0.02 0.29 0.23 0.25 0.73

Buffer Index (95th

%-ile)
0.41 0.97 0.38 0.33 0.48 0.57 0.23 0.15 0.46 0.42 0.47 1.40

Planning Time

Index (80th %-ile)
0.95 1.11 0.93 0.95 0.92 1.05 0.90 0.89 1.01 0.94 0.90 1.49

Planning Time

Index (85th %-ile)
1.01 1.26 1.04 1.02 1.03 1.16 0.91 0.90 1.12 1.07 1.02 1.73

Planning Time

Index (90th %-ile)
1.14 1.44 1.17 1.14 1.15 1.28 0.93 0.91 1.24 1.17 1.16 2.19

Planning Time

Index (95th %-ile)
1.35 2.10 1.31 1.29 1.38 1.54 1.10 1.02 1.40 1.35 1.37 3.04

Travel Time Index 1.65 1.96 1.79 2.32 1.45 1.58 1.43 1.41 1.64 1.62 1.51 2.20

Level of Travel

Time Reliability
1.07 1.25 1.06 1.09 1.05 1.18 1.03 1.03 1.15 1.08 1.04 1.52

Semi-Variance 8.26
20.3

8
9.07

26.7

0
2.64 4.10 0.86 1.28 5.27 6.07 3.12

34.6

6

Semi-Variance Data

Count
202 212 167 166 189 220 263 254 188 215 146 208

On-Time Arrival 0.95 0.87 0.95 0.95 0.93 0.92 0.99 0.98 0.93 0.94 0.94 0.79

On-Time Arrival

Data Count
967 764 832 904 950 807 944 934 815

103

1
753 637

Misery Index 1.54 2.51 1.68 2.17 1.49 1.71 1.16 1.22 1.81 1.59 1.50 3.25

209

Figure 8.4.23 Buffer Index (95th-ile) by Operating Condition of T.H.100 NB

Figure 8.4.24 Yearly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of T.H.100 NB

Figure 8.4.25 Monthly Buffer Index (95th-ile) Variations for Operating Condition Type “All” of T.H.100 NB

210

Figure 8.4.26 Cumulative Probability of Travel Time Rate of T.H.100 NB

Figure 8.4.27 Daily Buffer Index (95th-ile) vs. Travel-Time Rate for “All operating condition” of T.H.100 NB

Figure 8.4.28 Time-of-Day Travel Time Distribution of T.H.100 NB

Figure 8.4.29 Monthly TOD Buffer Index (95%-ile) of T.H.100 NB

211

CHAPTER 9: CONCLUSIONS

Travel-time reliability has been emerging as one of the major measures in quantifying the operational

effectiveness of transportation networks. While the importance of travel time reliability in measuring

the performance of transportation systems has been well recognized by transportation professionals,

the current state of the practice has not reached the point where various types of reliability measures

under different operating conditions can be automatically generated using data from multiple sources.

This research has developed a computerized Travel-Time Reliability Measurement System (TTRMS),

which can automate the time-consuming process of gathering and managing a large amount of data

from multiple sources and calculating a set of reliability indices for the predefined corridors in the metro

freeway network. The TTRMS developed in this study employed a top-down approach, where the

detailed system architecture was first designed. Further, a comprehensive data-management system

was also developed before the development of individual modules. In particular, a set of data-import

functions developed and incorporated into the data-management system can automatically download

both traffic and non-traffic data from external sources, such as MnDOT’s traffic data and NOAA’s

weather data archives. A travel-time calculation function to determine the travel times at work zones

with various lane-configurations was then developed by enhancing the existing travel-time function in

TICAS (Traffic Information and Condition Analysis System), developed in the previous research. Next, the

reliability estimation module, the main computational engine of TTRMS, was developed to calculate a

set of predetermined reliability indices following user-specified operating conditions for predefined

corridors and time periods. A reliability-based, time-of-day travel-time estimation module was also

developed in a webpage format, whose connectivity to the existing MnDOT’s driver information system

has shown promise. The development of the user-interfaces for both system administrator and general

users was followed. Finally, all the individual modules were integrated, and the resulting TTRMS was

tested by applying it for estimating the reliability measures for the selected corridors in the metro

freeway network.

The test results using real data indicate that the TTRMS developed in this study can substantially reduce

the time and effort in estimating the various types of reliability measures under different operating

conditions for the predefined corridors. Further, the map-based graphical user-interfaces of the TTRMS

provide both the system administrator and the general users with a flexible environment in defining

corridors and specifying the operating conditions for reliability estimation. The modular approach

adopted in developing TTRMS allows the addition of new reliability measures and data sources without

any major modification of its structure.

The enhancement needs of TTRMS include the automation of the input process for the work-zone lane-

configuration data, such as lane-closure and shifting locations and time periods. In the current version of

TTRMS, the lane-configuration data for each work-zone are entered manually by users. The availability

of the electronic version of work zone data can substantially improve the efficiency and accuracy of the

data input process for the work-zone routes.

212

The future research possibilities with TTRMS can include the identification and prioritization of

bottlenecks in the metro freeway network. The extension of reliability to new measures, which can

quantify the vulnerability and resilience levels of the existing corridors in dealing with large-scale

incidents and natural events, is also recommended. Such measures can be directly applicable for

effectively allocating the operational resources to the priority routes and also for developing short- and

long-term plans for freeway-network improvements.

213

REFERENCES

1. Texas Transportation Institute and Cambridge Systems, Inc. (2005), Travel Time Reliability:

Making It There on Time, All the time, FHWA-HOP-06-070, Retrieved from

http://ops.fhwa.dot.gov/publications/tt_reliability, Federal Highway Administration,

Washington, D.C.

2. Transportation Research Board (2015), Retrieved from

http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Pages/Reliability_Projects_302.

aspx.

3. Kuhn, B., Higgins, L., Nelson, A., Finley, M., Ullman, G., Chrysler, S., Wunderlich, C., Shah, V.,

Dudek, C. (2014), A Lexicon for Conveying Travel Time Reliability Information, SHRP2 Report, S2-

L14-RW-2, Transportation Research Board, Washington, D.C.

4. List, G., Williams, B. and Rouphail, N. (2014), Guide to Establishing Monitoring Programs for

Travel Time Reliability, SHRT2 Report, S2-LO2-RR-1, Transportation Research Board,

Washington, D.C.

5. Kwon, E. and Park, C. (2012), Development of Freeway Operational Strategies with IRIS-In-Loop

Simulation, Final Report, 2012-04, Minnesota Department of Transportation, St. Paul,

Minnesota.

http://ops.fhwa.dot.gov/publications/tt_reliability

