ADA Notice

For individuals with sensory disabilities, this document is available in alternate formats. For information call (916) 654-6410 or TDD (916) 654-3880 or write Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814.

1. REPORT NUMBER	2. GOVERNMENT ACCESSION NUMBER	3. RECIPIENTS CATALOG NUMBER
FHWA/CA17-2557		
4. TITLE AND SUBTITLE		5. REPORT DATE
COMPLIANCE CRASH TESTING OF TH	February 2017	
RAIL		6.PERFORMING ORGANIZATION
	ROADSIDE SAFETY RESEARCH GROUP	
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.
VUE HER, CHRISTOPHER CALDWELL, JOHN JEWELL, ROBERT MELINE		FHWA/ CA17-2557
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. WORK UNIT NUMBER
ROADSIDE SAFETY RESEARCH GROUP		
CALIFORNIA DEPARTMENT OF TRANSPORTATION		11. CONTRACT OF GRANT NUMBER
5900 FOLSOM BLVD.	_	
SACRAMENTO, CA 95819	FHWA/ CA17-2557	
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT AND PERIOD COVERED
CALIFORNIA DEPARTMENT OF TRANSPORTATION		FINAL
5900 FOLSOM BLVD. SACRAMENTO, CA 95819		14. SPONSORING AGENCY CODE
		2 3. 3333. 3321

15. SUPPLEMENTARY NOTES

This project was performed in cooperation with the US Department of Transportation, Federal Highway Administration, under the research project titled "COMPLIANCE CRASH TESTING OF A SIDE MOUNTED BRIDGE RAIL".

16. ABSTRACT

The California ST-70SM Side Mounted Bridge Rail was developed and tested in accordance with the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware 2009* (MASH 2009). The barrier is 42 inches (1.07 m) in height and consists of four rails with posts every ten feet. It is mounted to the side of a bridge deck by five 1-1/4 inch (32 mm) high strength anchor rods. On each rod, there are two disc springs stacked together, totaling 10 per post. For testing, the end posts were rigidly mounted to the bridge deck and did not have disc springs. The disc springs reduce the effective stiffness of the post, allowing the rails to distribute more of the load to adjacent posts and lessening damage to the bridge deck. The barrier tested was 76 feet (23.2 m) in length and mounted to a bridge deck, which was anchored to a 4.5′ x 10′ x 76′ (1.4 m x 3.0 m x 23.2 m) anchor block. The barrier was constructed at the Caltrans Dynamic Test Facility in West Sacramento, California.

Three full-scale crash tests were conducted under MASH 2009 Test Level 4 for longitudinal barriers. All three tests met MASH 2009's evaluation criteria for Test Level 4 longitudinal barriers. The results of all three test were within the limits of MASH 2009 guidelines.

The California ST-70SM Side Mounted Bridge Rail tested in the project is recommended for approval on California highways in areas designated as Test Level 4.

17. KEY WORDS		18. DISTRIBUTION STATEMENT	-	
Barriers, Crash Test, Median Barrier, Vehicle Impact Test, Bridge Rail, See-Through, Side Mounted		No restrictions. This document is available through the National Technical Information Service, Springfield, VA 22161		
19. SECURITY CLASSIFICATION (OF THIS REPORT)	20. SECURITY CALSSIFICATION (OF THIS PAGE)		21. NUMBER OF PAGES	22. PRICE
UNCLASSIFIED	UNCLASSIFIED		200	

DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Caltrans Roadside Safety Research Group (RSRG) has determined the uncertainty of measurements in the testing of roadside safety hardware as well as in standard full-scale crash testing of roadside safety features. The results contained in this report are only for the tested article(s) and not any other articles based on the same design and/or thereof. Information regarding the uncertainty of measurements for critical parameters is available upon request made to the California Department of Transportation (Caltrans) Roadside Safety Research Group.

COMPLIANCE CRASH TESTING OF THE CA ST-70SM SIDE MOUNTED BRIDGE RAIL

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION
OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH
ROADSIDE SAFETY RESEARCH GROUP

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	Vue Her, M.S., P.E.
Research Performed by	Roadside Safety Research Group

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION
OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH
ROADSIDE SAFETY RESEARCH GROUP

COMPLIANCE CRASH TESTING OF THE CA ST-70SM SIDE MOUNTED BRIDGE RAIL

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	Vue Her, M.S., P.E.
Research Performed by	Roadside Safety Research Group

Joseph W. Horton, P.E.

Office Chief

Office of Safety Innovation and Cooperative Research

Robert Meline, P.E.

Branch Chief

Roadside Safety Research Branch

Roadside Safety Research Group

John Jewell, P.

Senior Engineer Specialist

Roadside Safety Research Group

Vue Her, M.S., P.E.

Transportation Engineer

Roadside Safety Research Group

SI CONVERSION FACTORS

Metric (SI) to English System of Measurement

To Convert From	<u>To</u>	Multiply By			
ACCELERATION					
m/s ²	ft/s ²	3.281			
	AREA				
m ²	ft ²	10.764			
	ENERGY				
Joule (J)	ft-lb _f	0.7376			
	FORCE				
Newton (N)	lb _f	0.2248			
	LENGTH				
m	ft	3.281			
m	in	39.37			
cm	in	0.3937			
mm	in	0.03937			
	MASS				
kg	Ib_m	2.205			
	PRESSURE OR STRESS				
kPa	psi	0.1450			
	VELOCITY				
km/h	mph	0.6214			
m/s	ft/s	3.281			
km/h	ft/s	0.9113			

ACKNOWLEDGEMENTS

This work was accomplished in cooperation with the United States Department of Transportation, Federal Highway Administration.

Special appreciation is due to the following staff members of the Materials Engineering and Testing Services and the Division of Research, Innovation and System Information for their enthusiastic and competent help on this project:

Thanks to Robert Meline, John Jewell, David Whitesel, Christopher Caldwell, Safar Ali Zalekian, Mike O'Keeffe, Rachel Kwong, Eric Jacobson, Karim Mirza, Arvern Lofton, Larry Baumeister, D. Jean Vedenoff, John Williams, and Samira Zalekian for test preparation, data reduction, vehicle preparation, and film processing. Thanks to Tillat Satter and Kyoung-Hyeog Lee from Caltrans' Division of Structure Policy and Innovation. Thanks to Dave Bengal, Independent Camera Operator. Thanks to Martin Zanotti, Charles Gill, and Michael Pieruccini for their support in the machine shop. Thanks to Larry McCrum, Bang Nguyen, and Michael Mullins for their support in the concrete lab.

ROADSIDE SAFETY RESEARCH GROUP

Bob Meline, P.E., Branch Chief

John Jewell, P.E., Principal Investigator

Vue Her, M.S., P.E., Project Manager

David Whitesel, P.E., Transportation Engineer

Christopher Caldwell, *Transportation Engineer*

D. Jean Vedenoff, P.E., Transportation Engineer

Ali Zalekian, *Lab Manager*

John Williams, Lab Manager

Mike O'Keefe, Lab Manager

Rachael Kwong, Audio Visual Manager

TABLE OF CONTENTS

TECHNICAL REPORT STANDARD TITLE PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
SI CONVERSION FACTORS	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xv
1. Introduction	1
1.1. Problem	1
1.2. Objective	1
1.3. Background	1
1.4. Literature Search	1
1.5. Scope	1
2. Technical Discussion	
2.1. Barrier Design	2
2.2. Test Conditions	
2.2.1. Test Facilities	
2.2.2. Construction	
2.2.3. Test Vehicles	
2.2.3.1. Test Vehicle 2270P: 2007 Dodge Ram 1500ST (Test 110MASH3P15-01)	
2.2.3.2. Test Vehicle 1100C 2008 Kia Rio (Test 110MASH4C15-02)	
2.2.3.3. Test Vehicle 10000S: 2005 Freightliner M2 (Test 110MASH4S16-03)	
2.2.4. Data Acquisition System	
3. Crash Test Matrix and Results	
3.1. Test 110MASH3P15-01 Impact Description and Results	
3.1.1. Test 110MASH3P15-01 Barrier Damage	
3.1.2. Test 110MASH3P15-01 Vehicle Damage	
3.1.3. Test 110MASH3P15-01 Summary Sheet	
3.2. Test 110MASH4C15-02 Impact Description and Results	
3.2.1. Test 110MASH4C15-02 Barrier Damage	
3.2.2. Test 110MASH4C15-02 Vehicle Damage	32

	3.	2.1.	Test 110MASH4C15-02 Summary Sheet	37
	3.3.	Test	110MASH4S16-03 Impact Description and Results	38
	3.	3.1.	Test 110MASH4S16-03 Barrier Damage	38
	3.	3.2.	Test 110MASH4S16-03 Vehicle Damage	42
	3.	3.3.	Test 110MASH4S16-03 Summary Sheet	51
4.		Discus	sion of Test Results	52
	4.1.	Gen	eral Evaluation Methods	52
	4.2.	Stru	ctural Adequacy	52
	4.3.	Occ	upant Risk	52
	4.4.	Veh	icle Trajectory	52
5.		Conclu	usion	57
6.		Recon	nmendations	57
7.		Imple	mentation	57
8.		Apper	ndix	58
	8.1.	Test	: 110MASH3P15-01 Vehicle Setup	58
	8.	1.1.	Test Vehicle Equipment	58
	8.	1.2.	Test Vehicle Guidance System	60
	8.	1.3.	Photo - Instrumentation	61
	8.	1.4.	Electronic Instrumentation and Data	62
	8.	1.5.	Vehicle Measurements	65
	8.	1.6.	Vehicle Interior Deformation Measurements	71
	8.	1.7.	Data Plots	73
	8.2.	Test	: 110MASH4C15-02 Vehicle Setup	80
	8.	2.1.	Test Vehicle Equipment	80
	8.	2.2.	Test Vehicle Guidance System	82
	8.	2.3.	Photo - Instrumentation	83
	8.	2.4.	Electronic Instrumentation and Data	84
	8.	2.5.	Vehicle Measurements	86
	8.	2.6.	Vehicle Interior Deformation Measurements	90
	8.	2.7.	Data Plots	92
	8.3.	Test	: 110MASH4S16-03 Vehicle Setup	99
	8.	3.1.	Test Vehicle Equipment	99
	8.	3.2.	Test Vehicle Guidance System	103

8.3.3. Photo – Instrumentation	104
8.3.4. Electronic Instrumentation and Data	
8.3.5. 2005 Freightliner M2 Vehicle Measurements	108
8.4. Anchor Bolt/Nut Torque Tension Testing	111
8.5. Disc Springs	114
8.6. Finite Element Modeling	
8.6.1. Objective	
8.6.2. Barrier Models	
8.6.2.1. Disc Springs	
8.6.2.2. SMBR Shell Model with Springs	116
8.6.2.3. SMBR Solid Model with Springs	116
8.6.2.4. CA ST-70SM Solid Model without Springs	117
8.6.3. Vehicle Models	
8.6.3.1. 2270P Truck	117
8.6.3.2. 1100C Car	
8.6.3.3. 10000S Single-Unit Van Truck	118
8.6.4. Comparing Modeling Data to Real World Data	119
8.6.4.1. Disc Springs	
8.6.4.2. 2270P Truck	
8.6.4.2.1. Test Article Movement	123
8.6.4.2.2. TRAP Data Comparison	
8.6.4.2.3. Visual Comparison	131
8.6.4.3. 1100C Car	133
8.6.4.3.1. Test Article Movement	133
8.6.4.3.2. TRAP Data Comparison	133
8.6.4.3.3. Visual Comparison	140
8.6.4.4. 10000S Single-Unit Van Truck	142
8.6.4.4.1. Test Article Movement	142
8.6.4.4.2. Visual Comparison	
8.6.5. Conclusions	146
8.6.5.1. Test Article Movement	146
8.6.5.2. TRAP Data Comparison	146
8 6 5 3 Visual Comparison	146

	8.6.5.4. Overall	146
9.	Post-Impact Anchor Rod Testing	147
10.	Detail Drawings and Materials Data	159
11.	References	179
12.	Document Revision History	179

LIST OF FIGURES

Figure 2-1. Stage 1 Construction of Anchor Block and Bridge Deck Overhang	2
Figure 2-2. Stage 2 Installation of Bridge Rail	3
Figure 2-3. Forming the Anchor Block	3
Figure 2-4. Anchor Block Rebar	4
Figure 2-5. CA ST-70SM Side Mounted Bridge Rail Typical	5
Figure 2-6. Strain Gages Installed on Anchor Rods for Posts 3, 4, and 5	6
Figure 2-7. Anchor Block and Bridge Deck Rebar	6
Figure 2-8. Rebar Configuration at Rail Post Location	7
Figure 2-9. Pouring Anchor Block Concrete	7
Figure 2-10. Surface Finishing on Anchor Block	8
Figure 2-11. Anchor Rod Installation	8
Figure 2-12. Anchor Rod Placement in Deck Overhang	9
Figure 2-13. Concrete Deck Overhang Pour	9
Figure 2-14. Concrete Deck Overhang Finish	10
Figure 2-15. Installation of CA ST-70SM Side Mounted Bridge Rail Posts	10
Figure 2-16. Installation of CA ST-70SM Side Mounted Bridge Rails	11
Figure 2-17. 110MASH3P15-01 Dodge Ram 1500 (Side)	12
Figure 2-18. 110MASH3P15-01 Dodge Ram 1500 (Front Right)	12
Figure 2-19. 110MASH3P15-01 Dodge Ram 1500 (Relative to Barrier)	13
Figure 2-20. 110MASH4C15-02 Kia Rio (Side)	13
Figure 2-21. 110MASH4C15-02 Kia Rio (Front Right)	14
Figure 2-22. 110MASH4C15-02 Kia Rio (Relative to Barrier)	14
Figure 2-23. 110MASH4S16-03 Freightliner M2 (Side)	15
Figure 2-24. 110MASH4S16-03 Freightliner M2 (Front Right)	15
Figure 2-25. 110MASH4S16-03 Freightliner M2 (Relative to Barrier)	16
Figure 2-26. Dodge Ram 1500 Vehicle Instrumentation	16
Figure 2-27. Kia Rio Vehicle Instrumentation	17
Figure 2-28. Freightliner M2 Vehicle Instrumentation	17
Figure 3-1. Point of Impact 66 inches (1.7 m) Upstream of Post 4	19
Figure 3-2. Vehicle Impact Tire Marks (Red – Front Right Tire, Green – Rear Right Tire)	19
Figure 3-3 Unstream Impact View	20

Figure 3-4.	Downstream Impact View	20
Figure 3-5.	CA ST-70SM Side Mounted Bridge Rail after 2270P Vehicle Impact	21
Figure 3-6.	Disc Spring Installed	21
Figure 3-7.	Posts 3, 4, and 5 String Pot Setup	22
Figure 3-8.	String Pot Installed on Upper Post	22
Figure 3-9.	110MASH3P15-01 Dodge Ram 1500 Damage (Side)	23
Figure 3-10.	110MASH3P15-01 Dodge Ram 1500 Damage (Rear)	23
Figure 3-11.	110MASH3P15-01 Dodge Ram 1500 Damage (Front)	24
Figure 3-12.	110MASH3P15-01 Dodge Ram 1500 Airbags Deploy	24
Figure 3-13.	110MASH3P15-01 Dodge Ram 1500 Damage (Truck Bed)	25
Figure 3-14.	Trajectory Towards K-Rail	25
Figure 3-15.	Secondary Impact on K-Rail	26
Figure 3-16.	Vehicle Resting Location	26
Figure 3-17.	Target Point of Impact 66 inches (1.7 m) Upstream of Post 4	28
Figure 3-18.	Vehicle Impact Tire Marks (Red – Front Right Tire, Green – Rear Right Tire)	29
Figure 3-19.	Upstream Impact View	29
Figure 3-20.	Downstream Impact View	30
Figure 3-21.	CA ST-70SM Side Mounted Bridge Rail after 1100C Vehicle	30
Figure 3-22.	Disc Spring Installation	31
Figure 3-23.	Posts 3 and 4 String Pot Mount Supports	31
Figure 3-24.	String Pot Installed on Base of Post	32
Figure 3-25.	110MASH4C15-02 Kia Rio Damage (Side)	33
Figure 3-26.	110MASH4CP15-02 Kia Rio Damage (Rear)	33
Figure 3-27.	110MASH4C15-02 Kia Rio Damage (Front)	34
Figure 3-28.	110MASH4C15-02 Kia Rio Interior Post Test	34
Figure 3-29.	110MASH4C15-02 Kia Rio Side Damage	35
Figure 3-30.	Trajectory After Impact	35
Figure 3-31.	Vehicle in Yaw	36
Figure 3-32.	Vehicle Resting Location	36
Figure 3-33.	Point of Impact 60 inches (1.5 m) Upstream of Post 3	38
Figure 3-34.	110MASH4S16-03 Post 3 Concrete Spalling	39
Figure 3-35.	110MASH4S16-03 Approximate Size of Spalled Concrete from Post 3	30

Figure 3-36. 110MASH4S16-03 Green (Front Tire) / Red (Rear Tire)	40
Figure 3-37. 110MASH4S16-03 Upstream Impact View	40
Figure 3-38. 110MASH4S16-03 Side Impact View	41
Figure 3-39. 110MASH4S16-03 Traveling Downstream	41
Figure 3-40. 110MASH4S16-03 Impact with Fence	42
Figure 3-41. 110MASH4S16-03 Upstream View	43
Figure 3-42. 110MASH4S16-03 Leaking Fluids from Engine Bay	43
Figure 3-43. 110MASH4S16-03 Front Right Tire	44
Figure 3-44. 110MASH4S16-03 Front Right Fender	44
Figure 3-45. 110MASH4S16-03 Fuel Tank and Right A-Pillar Damage	45
Figure 3-46. 110MASH4S16-03 Fence into Windshield	45
Figure 3-47. 110MASH4S16-03 Front End with Fence Removed	46
Figure 3-48. 110MASH4S16-03 Windshield Damage	46
Figure 3-49. 110MASH4S16-03 Cab View Damage	47
Figure 3-50. 110MASH4S16-03 Rear View	47
Figure 3-51. 110MASH4S16-03 Permanent Box Leaning to Impact Side	48
Figure 3-52. 110MASH4S16-03 Vehicle Resting Location on Berm	49
Figure 3-53. 110MASH4S16-03 Ballasts Shifted to Passenger Side	49
Figure 3-54. 110MASH4S16-03 Alternate View of Ballast After Impact	50
Figure 4-1. Exit Box for Longitudinal Barriers	52
Figure 8-1. Ballast Added to Increase CG Height	58
Figure 8-2. Instrumentation Board Mounting Location	58
Figure 8-3. Brake Receiver	59
Figure 8-4. Brake and Gas Pedal Actuators	59
Figure 8-5. Speed Control Box Mounted to Dashboard	60
Figure 8-6. Rail Guidance Hub	60
Figure 8-7. Rail Guidance System with 2270P Attached	61
Figure 8-8. High-Speed Video Camera Locations	61
Figure 8-9. Speed Trap Tape Layout	64
Figure 8-10. 110MASH3P15-01 X (Longitudinal) Acceleration at CG vs Time	74
Figure 8-11. 110MASH3P15-01 Y (Lateral) Acceleration at CG vs Time	75
Figure 8-12. 110MASH3P15-01 Z (Vertical) Acceleration at CG vs Time	76

Figure 8-13.	110MASH3P15-01 Roll, Pitch, and Yaw Rates vs Time	77
Figure 8-14.	110MASH3P15-01 Roll, Pitch, and Yaw Angles vs Time	78
Figure 8-15.	110MASH3P15-01 Vehicle Acceleration Severity Index (ASI) vs Time	79
Figure 8-16.	Instrumentation Board Mounting Location	80
Figure 8-17.	Backseat Removed	80
Figure 8-18.	Rear of Instrumentation Panel	81
Figure 8-19.	Brake Pedal Actuator	81
Figure 8-20.	Rail Guidance Hub	82
Figure 8-21.	Rail Guidance System	82
Figure 8-22.	High-Speed Video Camera Locations	83
Figure 8-23.	Speed Trap Tape Layout	85
Figure 8-24.	110MASH4C15-02 X (Longitudinal) Acceleration at CG vs Time	93
Figure 8-25.	110MASH4C15-02 Y (Lateral) Acceleration at CG vs Time	94
Figure 8-26.	110MASH4C15-02 Z (Vertical) Acceleration at CG vs Time	95
Figure 8-27.	110MASH4C15-02 Roll, Pitch, and Yaw Rates vs Time	96
Figure 8-28.	110MASH4C15-02 Roll, Pitch, and Yaw Angles vs Time	97
Figure 8-29.	110MASH4C15-02 Vehicle Acceleration Severity Index (ASI) vs Time	98
Figure 8-30.	110MASH4S16-03 F350 Push Vehicle and the 10000S Test Vehicle	99
Figure 8-31.	110MASH4S16-03 Vehicle Ballast	100
Figure 8-32.	110MASH4S16-03 Vehicle Ballast Mounted in with C-Channels Sections	100
Figure 8-33.	110MASH4S16-03 Vehicle Ballast CG Height (Red Laser at 64 inches)	101
Figure 8-34.	110MASH4S16-03 Shear Plates	101
Figure 8-35.	110MASH4S16-03 Instrumentation	102
Figure 8-36.	110MASH4S16-03 Instrumentation Mounted on Passenger Seat Mount	102
Figure 8-37.	110 MASH4S16-01 Brake and Gas Pedal Actuators	102
Figure 8-38.	110MASH4S16-03 Rail Guidance Hub	103
Figure 8-39.	110MASH4S16-03 Rail Guidance System with 10000S Disengaged	103
Figure 8-40.	High-Speed Video Camera Locations	104
Figure 8-41.	Speed Trap Tape Layout	107
Figure 8-42.	Skidmore-Wilhelm Bolt Tension Machine	111
Figure 8-43.	Top View	112
Figure 8-44.	Disc Spring View	112

Figure 8-45.	Verification of Skidmore-Wilhelm Bolt Tension Machine	. 113
Figure 8-46.	Skidmore-Wilhelm Verification	. 113
Figure 8-47.	Single Disc Spring Model	. 116
Figure 8-48.	Double Disc Spring Model	. 116
Figure 8-49.	SMBR Shell Model With Springs	. 116
Figure 8-50.	SMBR Solid Model With Springs	. 117
Figure 8-51.	SMBR Solid Model Without Springs	. 117
Figure 8-52.	2270P Truck	. 118
Figure 8-53.	1100C Car	. 118
Figure 8-54.	10000S Single-Unit Van Truck	. 119
Figure 8-55.	Spring Testing Setup	. 119
Figure 8-56.	Springs for Test 1 and Test 2	. 120
Figure 8-57.	Graph of All Single Disc Spring Tests and Models	. 121
Figure 8-58.	Spring for Test 3	. 122
Figure 8-59.	Graph of All Double Disc Spring Tests and Models	. 122
Figure 8-60.	Graph of Roll Angles for Full Scale and FE Model TRAP Results for 2270P Truck	. 125
Figure 8-61.	Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 2270P Truck	. 126
Figure 8-62.	Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 2270P Truck	.126
Figure 8-63.	Graph of Roll Rates for Full Scale and FE Model TRAP Results for 2270P Truck	. 127
Figure 8-64.	Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 2270P Truck	. 127
Figure 8-65.	Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 2270P Truck	.128
Figure 8-66.	Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 2270P	•
Truck		. 128
Figure 8-67.	Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck	k129
Figure 8-68.	Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 2270P True	ck
		. 129
Figure 8-69.	Graph of Longitudinal Velocities for Full Scale and FE Model TRAP Results for 2270P Tru	ıck
		. 130
Figure 8-70.	Graph of Lateral Velocities for Full Scale and FE Model TRAP Results for 2270P Truck	. 130
Figure 8-71.	Visual Comparison of Actual Crash Test and Simulations for 2270P Truck	. 132
Figure 8-72.	Graph of Roll Angles for Full Scale and FE Model TRAP Results for 1100C Car	. 135
Figure 8-73.	Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 1100C Car	. 135

Figure 8-74. Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 1100C Car	136
Figure 8-75. Graph of Roll Rates for Full Scale and FE Model TRAP Results for 1100C Car	136
Figure 8-76. Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 1100C Car	137
Figure 8-77. Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 1100C Car	137
Figure 8-78. Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 1100C G	Car
	138
Figure 8-79. Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 1100C Car	138
Figure 8-80. Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 1100C Car	139
Figure 8-81. Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 1100C Car	139
Figure 8-82. Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 1100C Car	140
Figure 8-83. Visual Comparison of Actual Crash Test and Simulations for 1100C Small Car	141
Figure 8-84. Visual Comparison of Actual Crash Test and Simulations for 10000S Single Unit Truck	145
Figure 9-1. Post 2, Anchor Rod 1 Tensile Test Data	148
Figure 9-2. Post 2, Anchor Rod 2 Tensile Test Data	149
Figure 9-3. Post 2, Anchor Rod 3 Tensile Test Data	150
Figure 9-4. Post 3, Anchor Rod 1 Tensile Test Data	151
Figure 9-5. Post 3, Anchor Rod 2 Tensile Test Data	152
Figure 9-6. Post 3, Anchor Rod 3 Tensile Test Data	153
Figure 9-7. Post 4, Anchor Rod 1 Tensile Test Data	154
Figure 9-8. Post 4, Anchor Rod 2 Tensile Test Data	155
Figure 9-9. Post 4, Anchor Rod 3 Tensile Test Data	156
Figure 9-10. Post 2, Anchor Rods 1, 2, & 3	157
Figure 9-11. Post 3, Anchor Rods 1, 2, & 3	157
Figure 9-12. Post 4, Anchor Rods 1, 2, & 3	158
Figure 10-1. CA ST-70SM Side Mounted Bridge Rail (Title Page)	160
Figure 10-2. CA ST-70SM Side Mounted Bridge Rail (Details Page 1)	161
Figure 10-3. CA ST-70SM Side Mounted Bridge Rail (Details Page 2)	162
Figure 10-4. CA ST-70SM Side Mounted Bridge Rail (Details Page 3)	163

LIST OF TABLES

Table 3-1. CA ST-70SM Side Mount Bridge Rail Test Matrix	18
Table 3-2. Maximum Dynamic and Static Displacements (110MASH3P15-01)*	19
Table 3-3. Maximum Dynamic and Static Displacements (110MASH4C15-02)*	29
Table 3-4. Maximum Dynamic and Static Displacements (110MASH4S16-03)*	40
Table 4-1. 110MASH3P15-01 Assessment Summary	54
Table 4-2. 110MASH4C15-02 Assessment Summary	55
Table 4-3. 110MASH4S16-03 Assessment Summary	56
Table 8-1. 110MASH3P15-01 Camera Types and Location Coordinates	62
Table 8-2. Accelerometer and Angular Rate Sensor Specifications	63
Table 8-3. Exterior Vehicle Measurements	65
Table 8-4. CG Calculation: Curb Weight	66
Table 8-5. CG Calculation: Test Inertial Weight	67
Table 8-6. CG Calculation: Gross Static Weight	68
Table 8-7. CG Calculation: Vertical CG Weight	69
Table 8-8. Vehicle CG Measurements	70
Table 8-9. Pretest and Post-test Interior Floorboard Deformation Measurements	71
Table 8-10. Pretest and Post-test Interior Dashboard and Roof Deformation Measurements	72
Table 8-11. 110MASH3P15-01 Camera Types and Location Coordinates	83
Table 8-12. Accelerometer and Angular Rate Sensor Specifications	84
Table 8-13. Exterior Vehicle Measurements	86
Table 8-14. CG Calculation: Curb Weight	87
Table 8-15. CG Calculation: Test Inertial Weight	88
Table 8-16. CG Calculation: Gross Static Weight	89
Table 8-17. Pretest and Post-test Interior Floorboard Deformation Measurements	90
Table 8-18. Pretest and Post-test Interior Dashboard and Roof Deformation Measurements	91
Table 8-19. 110MASH4S16-03 Camera Types and Location Coordinates	. 104
Table 8-20. 110MASH4S16-03 Sensor Locations	. 105
Table 8-21. Accelerometer and Angular Rate Sensor Specifications	. 106
Table 8-22. Exterior Vehicle Measurement	. 108
Table 8-23. 2005 Freightliner M2 CG Calculation: Curb Weight	. 109
Table 8-24. 2005 Freightliner M2 CG Calculation: Test Inertial Weight (same as Gross Static Weight)	.110

Table 8-25. Disc Spring Design Information	114
Table 8-26. Center of Gravity for 2270P Truck Test Vehicle and LS-Dyna Finite Element Model	123
Table 8-27. Test Article Movement Comparison Full Scale and FE Model Results for 2270P with Disc	
Springs	123
Table 8-28. TRAP Results Data Comparison for Full Scale and FE Models for 2270P Truck (Absolute	
Values)	125
Table 8-29. Center of Gravity for 1100C Car Test Vehicle and LS-Dyna Finite Element Model	133
Table 8-30. Test Article Movement Comparison Full Scale and FE Model Results for 1100C	133
Table 8-31. TRAP Data Comparison for Full Scale and FE Model TRAP Results for 1100C (Absolute	
Values)	134
Table 8-32. Center of Gravity for 10000S Single Unit Truck Test Vehicle and LS-Dyna Finite Element	
Model	142
Table 8-33. Test Article Movement Comparison Full Scale and FE Model Results for 10000S	142
Table 9-1 CA ST-70SM Anchor Rod Tensile Test Data	. 147

THIS PAGE WAS LEFT INTENTIONALLY BLANK

1. Introduction

1.1. Problem

The California Department of Transportation (Caltrans) is constantly faced with Right-of-Way issues and other limitations that make it impossible to mount standard bridge rails to the top of bridge decks. The Caltrans Division of Engineering Services (DES) and the Highway Safety Features New Products Committee (HSFNPC), a committee comprised of representatives from several Divisions within Caltrans, recognizes that crash testing of a side mounted bridge rail that meets American Association of State Highway and Transportation Officials' (AASHTO) *Manual for Assessing Safety Hardware* (MASH) 2009¹ Test Level 4 rated guidelines is a high priority.

1.2. Objective

The objective of this research project is to design and test a side mounted bridge rail that will meet the evaluation criteria of MASH 2009 Test level 4 (TL-4) for longitudinal barriers. TL-4 consists of three crash tests as follows:

- 1. A 2,420 lbs. (1,100 kg) small car impacting the test article at 62 mph (100 km/h) and an angle of 25° (MASH 2009 Test No. 4-10).
- 2. A 5,000 lbs. (2,270 kg) pickup truck impacting the test article at 62 mph (100 km/h) and an angle of 25° (MASH 2009 Test No. 4-11).
- 3. A 22,000 lbs. (10,000 kg) single-unit truck impacting the test article at 56 mph (90 km/h) and an angle of 15° (MASH 2009 Test No. 4-12).

1.3. Background

Caltrans has several side mounted bridge rails in their inventory but none of the barriers had been crash tested under either the current MASH 2009 guidelines or previous NCHRP Report 350 guidelines. (See "Side Mounted Bridge Rail" Preliminary Investigation²).

1.4. Literature Search

Several locations² were searched for crash test information on side mounted bridge rails. No similar products were found that had been tested to MASH 2009 TL-4. There are two products that were tested to the previously accepted guidelines, the National Cooperative Highway Research Program (NCHRP) Report 350 at TL-4 and also accepted by FHWA^{3, 4}. They were designed and tested by the University of Nebraska-Lincoln, Midwest Roadside Safety Facility. Although these products were tested to NCHRP Report 350 guidelines, they were only designed for use on transverse, glue-laminated timber bridge decks. These products were found acceptable by FHWA under NCHRP Report 350 TL-4 guidelines but have not been tested under MASH 2009.

1.5. Scope

Three full-scale crash tests were performed and evaluated in accordance with MASH 2009 TL-4 guidelines. The primary purpose of the testing was to determine if the barrier would successfully contain and safely redirect the test vehicles while meeting vehicle occupant safety guidelines. A secondary purpose of the testing was to determine the level of maintenance required after a major impact.

2. Technical Discussion

2.1. Barrier Design

The design criteria for the CA ST-70SM Side Mounted Bridge Rail are as follows:

- 1. Must meet MASH 2009 Test Level 4
- 2. Minimize damage to bridge deck

2.2. Test Conditions

2.2.1.Test Facilities

Crash testing was conducted at the Caltrans Dynamic Test Facility in West Sacramento, California. The test area is a large, flat, asphalt concrete surface. At the time of testing, there were no obstructions nearby.

2.2.2.Construction

The California ST-70SM Side Mounted Bridge Rail was constructed at the Caltrans Dynamic Test Facility. The barrier was constructed in two stages; Stage 1 was the placement of the anchor block foundation then the bridge deck overhang, Stage 2 was the installation of the bridge rail. The anchor block consisted of a $10'-0'' \times 4'-6'' \times 76'-0''$ (3.0 m x 1.4 m x 23.2 m) reinforced concrete block and is designed to support the bridge deck overhang and act as a resistance mass to help reduce motion during testing. See Section 10 for detail drawings.

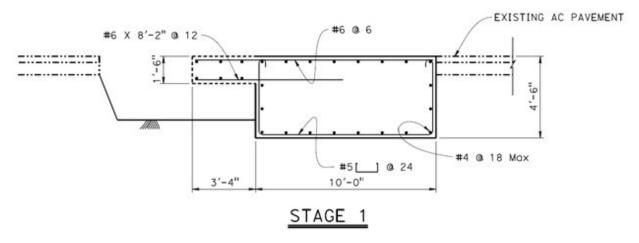


Figure 2-1. Stage 1 Construction of Anchor Block and Bridge Deck Overhang

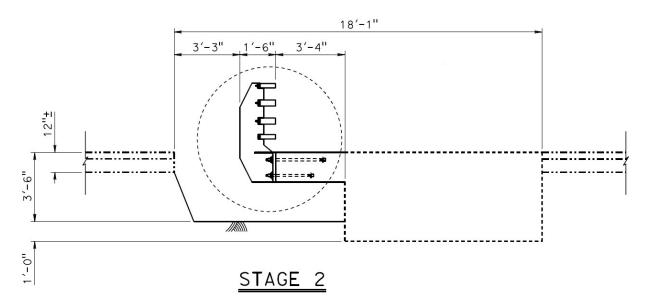


Figure 2-2. Stage 2 Installation of Bridge Rail

Figure 2-3. Forming the Anchor Block

Figure 2-4. Anchor Block Rebar

There were eight bridge rail posts. The two outer posts were mounted directly to the deck without any springs. The six inner posts had double stacked disc springs installed on each anchor bolt (5 pairs of disc springs per rail post). The disc springs on the bridge rail were designed to reduce the effective stiffness of the post, allowing the rails to distribute more of the load to adjacent posts. This should decrease damage to posts, anchor bolts, and bridge deck. Also, under high enough loads, the disc springs are designed to undergo plastic deformation prior to yielding of the anchor bolts, providing some additional overload protection for the anchor bolts and deck overhang. The deck overhang is designed to yield prior to deck rebar yielding. See Table 8-25 in Appendix 8.5 for disc spring information. See Figure 2-5 for a typical rail post.

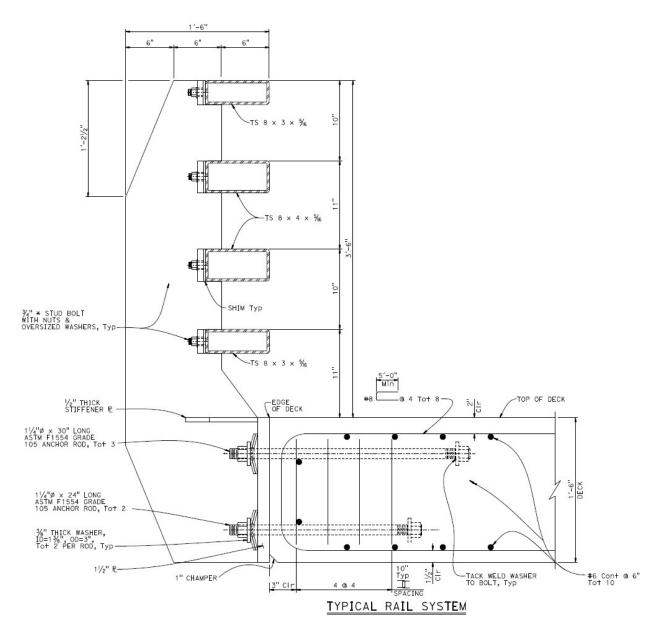


Figure 2-5. CA ST-70SM Side Mounted Bridge Rail Typical

Bridge rail posts 3, 4, and 5 had strain gages installed on their anchor rods prior to installation and concrete deck pour. See FHWA/ CA17-2557 Supplement report for strain gage and string pot results. (Strain gage and string pot measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab)

Figure 2-6. Strain Gages Installed on Anchor Rods for Posts 3, 4, and 5

Figure 2-7. Anchor Block and Bridge Deck Rebar

Figure 2-8. Rebar Configuration at Rail Post Location



Figure 2-9. Pouring Anchor Block Concrete

Figure 2-10. Surface Finishing on Anchor Block

Figure 2-11. Anchor Rod Installation

Figure 2-12. Anchor Rod Placement in Deck Overhang

The deck overhang was poured separate from the anchor block to make removal of the deck easier for future research projects.

Figure 2-13. Concrete Deck Overhang Pour

Figure 2-14. Concrete Deck Overhang Finish

Figure 2-15. Installation of CA ST-70SM Side Mounted Bridge Rail Posts

Figure 2-16. Installation of CA ST-70SM Side Mounted Bridge Rails

The completed test article was 76 feet (23.2 m) long with a bridge rail nominal height of 42 inches (1.07 m). Rails were placed in cutouts in the posts and held in place with ¾" stud bolts. For the stud bolts welded on the railing it was determined that "bolt stud welds" were needed instead of the originally specified "full penetration butt weld". During construction the shims shown in the construction plans could not be installed on the lower three rails once the rails were installed. The Caltrans Translab Machine Shop modified the shims for the test barrier installation. Also, the railing washers were undersized and could slip into the post slots, no longer supporting the nut. The 6 inner posts were held in place with 5 anchor bolts per post. Two stacked disc springs were installed on each anchor bolt, on the outside of the barrier post. The discs were retained with a flat washer and nut torqued to provide 10,000 lbs. (4536 kg) of preload. For this research project, thread locking compound was not used to secure the nuts of the test article. The discs allow the barrier to have some controlled deflection, reducing the peak load on the rail and providing some energy dampening during impact. The reduced peak load provides a lower maximum stress on the top anchor bolts and a slightly lower peak deceleration of the impacting vehicle. Barrier (test article) construction was completed December 2014. See Appendix 8.4 for bridge rail anchor bolt/nut torque information.

2.2.3.Test Vehicles

The test vehicles complied with MASH 2009 tests 4-10, 4-11, and 4-12 requirements. The vehicles were a 2007 Dodge Ram 1500 ST, a 2008 Kia Rio, and a 2005 Freightliner M2. The MASH 2009 2270P, 1100C, and 10000S tests for the CA ST-70SM Side Mounted Bridge Rail were assigned test identification numbers 110MASH3P15-01, 110MASH4C15-02, and 110MASH4S16-03, respectively. All vehicles were in good condition and free of any major body damage. The vehicles were not missing any structural parts nor were they modified in any way other than described in this report. All the standard equipment for each vehicle was present. The inertial mass of the pickup truck, small car, and van truck were 5,030 lbs. (2,282 kg), 2,465 lbs. (1,118 kg), and 21,887 lbs. (9,928 kg), respectively. The vehicles were within the recommended limits of MASH 2009 vehicle mass requirements.

2.2.3.1. Test Vehicle 2270P: 2007 Dodge Ram 1500ST (Test 110MASH3P15-01)

To achieve the desired impact speed, the pickup truck was self-powered. A speed control device was installed in the Dodge Ram which limited the acceleration of the vehicle once the target impact speed was achieved. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm connecting the vehicle wheel hub to the guidance rail. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail a short distance before impact. The pickup truck ignition was turned off via an engine kill switch that activated just before impact. Photos of the test vehicle are shown in Figure 2-17 to Figure 2-19. See Appendix 8.1 for more information on test 110MASH3P15-01 vehicle instrumentation.

Figure 2-17. 110MASH3P15-01 Dodge Ram 1500 (Side)

Figure 2-18. 110MASH3P15-01 Dodge Ram 1500 (Front Right)

Figure 2-19. 110MASH3P15-01 Dodge Ram 1500 (Relative to Barrier)

2.2.3.2. Test Vehicle 1100C 2008 Kia Rio (Test 110MASH4C15-02)

To achieve the desired impact speed for the small car, the vehicle was towed. A speed control device was installed in the tow vehicle, which limited the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm connecting the vehicle wheel hub to the guidance rail. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail a short distance before impact. Photos of the test vehicle are shown in Figure 2-20 to Figure 2-22. See Appendix 8.2 for more information on test 110MASH4C15-02 vehicle instrumentation.

Figure 2-20. 110MASH4C15-02 Kia Rio (Side)

Figure 2-21. 110MASH4C15-02 Kia Rio (Front Right)

Figure 2-22. 110MASH4C15-02 Kia Rio (Relative to Barrier)

2.2.3.3. Test Vehicle 10000S: 2005 Freightliner M2 (Test 110MASH4S16-03)

To achieve the desired impact speed within the allowable physical distance, the van truck was self-powered and pushed with a 2001 Ford F350 regular cab dually. The Ford F350 assisted in the acceleration of the van truck for the first 900 ft. (274 m). The vehicle's target speed was accomplished by reprogramming the electronic control module and setting the speed governor in the vehicle to MASH 2009's recommended impact speed of 56 mph (90 km/h) for Test 4-12. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm connecting the vehicle wheel hub to the guidance rail. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail a short distance before impact. The van truck ignition was turned off via an engine kill switch that activated just before impact. Photos of the test vehicle are shown in Figure

2-23 to Figure 2-25. See Appendix 8.3 for more information on test 110MASH4S16-03 vehicle instrumentation.

Figure 2-23. 110MASH4S16-03 Freightliner M2 (Side)

Figure 2-24. 110MASH4S16-03 Freightliner M2 (Front Right)

Figure 2-25. 110MASH4S16-03 Freightliner M2 (Relative to Barrier)

2.2.4.Data Acquisition System

The tests were visually documented through the use of still cameras, video cameras, and high-definition high-speed digital video cameras. The impact phase of the crash test was recorded with five high-definition high-speed digital video cameras, a normal-speed DVC format video camera, several small action style cameras and digital SLR cameras. The test vehicle and barrier were photographed before and after impact with the DVC format camera and a digital SLR camera.

DataBrick III Transient data recorders (TDR), manufactured by GMH Engineering, were used to record accelerations and rotational rate changes during the test. The digital data was downloaded to a laptop computer and analyzed with Texas Transportation Institute's Test Risk Assessment Program (TRAP). A DADISP workbook was used to create the necessary TRAP input files.

Figure 2-26. Dodge Ram 1500 Vehicle Instrumentation

Figure 2-27. Kia Rio Vehicle Instrumentation

Figure 2-28. Freightliner M2 Vehicle Instrumentation

Two sets of orthogonal accelerometers were mounted at the center of gravity for vehicles of tests 110MASH3P15-01 and 110MASH4C16-02 (as per MASH 2009 specifications). Rate gyro transducers (angular rate sensors) were also placed at the center of gravity of the test vehicles to measure roll, pitch, and yaw rates. The data was analyzed in TRAP to determine the occupant impact velocities, ridedown accelerations, and maximum vehicle rotation.

Additional instrumentation was installed on the barrier around the proximity of the impact location to record displacements of the bridge rail. Strain gages were also installed on the anchor rods of posts 3, 4, and 5. Information on the measurements for all three tests can be found in the supplement report (FHWA/ CA17-2557 Supplement). (Strain gage and string pot measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab)

3. Crash Test Matrix and Results

The first test on the CA ST-70SM Side Mounted Bridge Rail is MASH 2009 Test 4-11. It consists of a 5000 lbs. (2270 kg) 2007 Dodge Ram 1500 pickup truck with target impact conditions of 62 mph (100 km/h) at an angle of 25°. The second test is MASH 2009 Test 4-10. It consists of a 2420 lbs. (1100 kg) 2008 Kia Rio with target impact conditions of 62 mph (100 km/h) at an angle of 25°. The final test is MASH 2009 Test 4-12 and consists of a 22,000 lbs. (10,000 kg) single-unit van body truck with target impact conditions of 56 mph (90 km/h) at an angle of 15°. The test numbers for the three tests are 110MASH3P15-01, 110MASH4C15-02, and 110MASH4S16-03, respectively. The following table shows the test matrix for the CA ST-70SM Side Mounted Bridge Rail.

RSRG Test Number	MASH 2009 Test Number	Impact Speed	Impact Angle
110MASH3P15-01	4-11	62 mph (100 km/h)	25°
110MASH4C15-02	4-10	62 mph (100 km/h)	25°
110MASH4S16-03	4-12	56 mph (90 km/h)	15°

Table 3-1. CA ST-70SM Side Mount Bridge Rail Test Matrix

3.1. Test 110MASH3P15-01 Impact Description and Results

The 2270P vehicle impacted the barrier at 61.5 mph (98.9kph) and at an angle of 25.0 degrees. The impact point was 66 inches (1.7 m) upstream from the center of post 4. It was estimated that this point of impact would provide the greatest load on post 4 based on the location of the vehicle frame and observations from previous similar testing and computer simulations. The impact severity was 113.6 kip-ft (154 kJ). The barrier contained and redirected the 2270P vehicle in a controlled manner and the vehicle exited the barrier within the MASH exit box criteria. There was no indication of any pocketing of the vehicle or snagging of the vehicle on the bridge rail. The Occupant Risk factors, Occupant Impact Velocities (OIV) and Occupant Ridedown Accelerations (ORA) were within the MASH criteria limits. The OIV $_x$ = 13.45 ft/s (4.1 m/s) is below the preferred limit of 30 ft/s (9.1 m/s). The OIV $_y$ = 26.9 ft/s (8.2 m/s) is close to the preferred limit but is well below the maximum of 40 ft/s (12.2 m/s). The ORA $_x$ = -2.6 G is below the preferred limit of 15.0 G and the ORA $_y$ = -16.9 G is below the maximum of 20.49 G.

3.1.1. Test 110MASH3P15-01 Barrier Damage

The point of impact was 66 inches (1.7 m) upstream from the center of post 4. There was minimal damage to the barrier. The vehicle bumper first made contact at the impact point upstream of rail post 4 (see Figure 3-2). The red contact marks on the bridge rail were from the front right tire. The green contact marks on the bridge rail were from the rear right tire. Based on video analysis and markings on the barrier, the vehicle stayed in contact with the bridge rail for 14 feet (4.3 m). The vehicle did not snag or pocket. The three upper disc spring sets on post 4 went into plastic deformation during impact, thus requiring replacement for future testing. String potentiometers (pots) were mounted on posts 3, 4, and 5 to measure deflection. Both dynamic and static displacements were measured from the rear middle of the top rail. See Table 3-2 for maximum dynamic and static displacements. Strain gages were installed on the all anchor rods for posts 3, 4, and 5 to indicate stress levels during testing. See FHWA/ CA17-2557 Supplement report for strain gage and string pot results. (Strain gage and string pot measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab)

Figure 3-1. Point of Impact 66 inches (1.7 m) Upstream of Post 4

Table 3-2. Maximum Dynamic and Static Displacements (110MASH3P15-01)*

	Post 3	Post 4	Post 5
Maximum Dynamic Displacement	0.92 in (23.4 mm)	1.62 in (41.0 mm)	0.38 in (9.6 mm)
Static Displacement	0.05 in (1.3 mm)	0.18 in (4.6 mm)	0.03 in (0.7 mm)

^{*} Not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab

Figure 3-2. Vehicle Impact Tire Marks (Red – Front Right Tire, Green – Rear Right Tire)

Figure 3-3. Upstream Impact View

Figure 3-4. Downstream Impact View

Figure 3-5. CA ST-70SM Side Mounted Bridge Rail after 2270P Vehicle Impact

Figure 3-6. Disc Spring Installed

Figure 3-7. Posts 3, 4, and 5 String Pot Setup

Figure 3-8. String Pot Installed on Upper Post

3.1.2. Test 110MASH3P15-01 Vehicle Damage

The front right corner of the test vehicle sustained most of the damage from the impact with the side mounted bridge rail. The bumper, headlight, hood, doors, and front and rear fenders were severely damaged. The right front tire ruptured upon impact with the bridge rail. Both airbags deployed in the vehicle. The right front and rear doors were wedged in and still attached but could not be opened. The impact with the bridge rail left indentations along the pickup truck's side relative to where it was in contact with the rails during impact. The windshield cracked but did not separate or enter the occupant compartment. The maximum amount of passenger compartment deformation was 1.2 inches (31 mm), which occurred at the roof of the vehicle. The maximum amount of deformation for the floorboard and dashboard were 0.7 inches (18 mm) and 0.7 inches (18 mm), respectively. These values are below the

maximum MASH 2009 limits. See Appendix 8.1.6 for complete interior deformation measurements for test 110MASH3P15-01.

Figure 3-9. 110MASH3P15-01 Dodge Ram 1500 Damage (Side)

Figure 3-10. 110MASH3P15-01 Dodge Ram 1500 Damage (Rear)

Figure 3-11. 110MASH3P15-01 Dodge Ram 1500 Damage (Front)

Figure 3-12. 110MASH3P15-01 Dodge Ram 1500 Airbags Deploy

Figure 3-13. 110MASH3P15-01 Dodge Ram 1500 Damage (Truck Bed)

The vehicle sustained damage from a secondary impact with a construction barrier (k-rail) that was set about 270 feet (82 m) downstream of the target impact point to protect a high-speed video camera. The vehicle remote braking system was applied several vehicle lengths after leaving the bridge rail but the brake did not stop the vehicle before it hit the K-Rail. The impact with the K-Rail occurred on the front left (drivers side) of the vehicle causing the bumper to fold under with the vehicle coming to rest on the K-Rail. Even though the left side of the vehicle was damaged during the secondary impact, it did not cause difficulty analyzing the damage from the primary impact with the bridge rail. The interior deformations were still within acceptable limits.

Figure 3-14. Trajectory Towards K-Rail

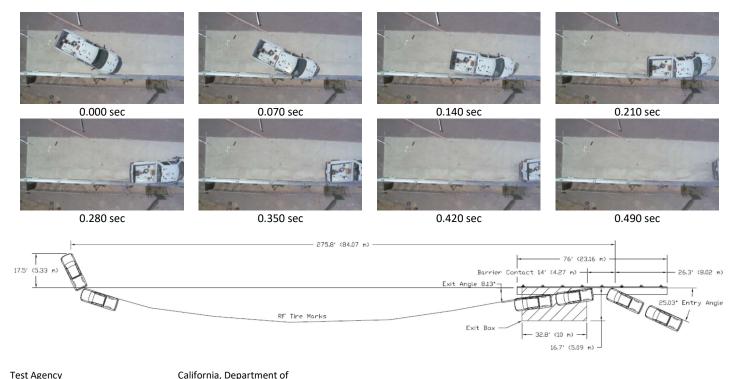


Figure 3-15. Secondary Impact on K-Rail

Figure 3-16. Vehicle Resting Location

3.1.3. Test 110MASH3P15-01 Summary Sheet

rest Agency	California, Department of			
	Transportation			
Test Number 110MASH3P15-01		Post-impact Trajectory		
Date	8/26/2015	 Vehicle Stability 	Satisfactory	
Test Article	CA ST-70SM Side Mounted Bridge Rail	 Stopping Distance 	276 ft (84.1 m) downstream	
Total Length	76 ft (23.2 m)		17.5 ft (5.3 m) laterally behind	
Key Elements – Barrier		Vehicle Snagging	None	
 Description 	Side Mounted Bridge Rail	Vehicle Pocketing		
 Length 	120 in (3048 mm) O.C. Posts	Occupant Impact Velocity		
 Base Width 	18 in (457 mm)	 Longitudinal 	13.45 ft/s (4.1 m/s)	
 Height 	42 in (1067 mm)	 Lateral 	26.90 ft/s (8.2 m/s)	
Test Vehicle		Occupant Ridedown Deceleration (10 msec avg.)		
 Type/Designation 	2270P	 Longitudinal 	2.6 G	
 Make and Model 	2007 Dodge Ram 1500 Quad Cab	Lateral	16.9 G	
Pickup		THIV	30.5 ft/s (9.3 m/s)	
• Curb	4867 lb (2208 kg)	PHD	16.9 G	
Test Inertial	5030 lb (2282 kg)	Test Article Damage	Minor (3 spring sets to be replaced	
 Gross Static 	5038 lb (2285 kg)		Post 4)	
Impact Conditions		Test Article Deflections*		
 Speed 	61.5 mph (98.9 kph)	 Permanent Set 	0.2 in (5 mm)	
 Angle 	25.0 deg	Dynamic	1.6 in (41 mm)	
 Location/Orientation_ 	66 in (1.7 m) upstream of post 4	 Working Width 	20.25 in (514 mm)	
 Impact Severity 	113.6 kip-ft (154.0 kJ)	Vehicle Damage	Moderate	
Exit Conditions		• VDS	01-FR-3, 03-RP-3	
 Speed 	53.0 mph (85.3 kph)	• CDC	01-RFEK3, 03-RDEK1	
Angle	8.1 deg	 Maximum Deformation 	11.2 in (31 mm) roof deformation	

^{*}String potentiometer measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab

3.2. Test 110MASH4C15-02 Impact Description and Results

The 1100C vehicle impacted the barrier at 64.7 mph (104.1kph) and at an angle of 25.0 degrees. The impact point was 66 inches (1.7 m) upstream from the center of post 4. An impact at this location would help indicate possible vehicle wheel snagging on post 4. The impact speed of 64.7 mph (104.1 kph) is 0.7 mph (0.1 kph) above MASH 2009 maximum desired value. Although the speed was over the maximum desired value, it was consider acceptable because the impact severity and ride down decelerations were within acceptable limits. The impact severity was calculated to be 61.6 kip-ft (83.5 kJ). The barrier contained and redirected the 1100C vehicle in a controlled manner and the vehicle exited the barrier within the MASH exit box criteria. There was no indication of any pocketing of the vehicle or snagging of the vehicle on the bridge rail. The Occupant Risk factors, OIV and ORA were within the MASH criteria limits. The OIV $_x$ = 17.4 ft/s (5.3 m/s) is below the preferred limit of 30 ft/s (9.1 m/s). The OIV $_y$ = 36.4 ft/s (11.1 m/s) is below the maximum of 40 ft/s (12.2 m/s). The ORA $_x$ = 3.9 G is below the preferred limit of 15.0 G and the ORA $_y$ = -13.4 G is also below the preferred limit.

3.2.1. Test 110MASH4C15-02 Barrier Damage

The point of impact was 66 inches (1.7 m) upstream from the center of post 4. There was no damage to the barrier. The vehicle bumper first made contact at the impact point upstream of rail post 4 (see Figure 3-18). The red contact marks on the bridge rail were from the front right tire. The green contact marks on the bridge rail were from the rear right tire. The vehicle stayed in contact with the bridge rail for 10.6 feet (3.2 m). The vehicle did not snag or pocket. There were no permanent deflections on the disc springs. String pots were mounted on posts 3, 4, and 5 to measure deflection. Both dynamic and static displacements were measured from the rear middle of the top rail. See Table 3-3 for maximum dynamic and static displacements. Strain gages were installed on the all anchor rods for posts 3, 4, and 5. See FHWA/ CA17-2557 Supplement for strain gage and string pot results. (Strain gage and string pot measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab)

Figure 3-17. Target Point of Impact 66 inches (1.7 m) Upstream of Post 4

Table 3-3. Maximum Dynamic and Static Displacements (110MASH4C15-02)*

	Post 3	Post 4	Post 5
Maximum Dynamic Displacement	NA (Damage d)	0.93 in (23.5 mm)	0.11 in (2.7 mm)
Static Displacement	0.01 in (0.3 mm)	0.03 in (0.8 mm)	0.00 in (0.1 mm)

^{*} Not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab

Figure 3-18. Vehicle Impact Tire Marks (Red – Front Right Tire, Green – Rear Right Tire)

Figure 3-19. Upstream Impact View

Figure 3-20. Downstream Impact View

Figure 3-21. CA ST-70SM Side Mounted Bridge Rail after 1100C Vehicle

Figure 3-22. Disc Spring Installation

Figure 3-23. Posts 3 and 4 String Pot Mount Supports

Figure 3-24. String Pot Installed on Base of Post

3.2.2. Test 110MASH4C15-02 Vehicle Damage

The front right corner and passenger side of the test vehicle sustained most of the damage from the impact with the side mounted bridge rail. The whole passenger side of the vehicle made contact with the side mounted bridge rail. The passenger headlight was completely torn off the vehicle. The bumper, hood, doors, and front and rear fenders were severely damaged. The airbags did not deploy because the vehicle was towed and the vehicle's battery had been removed. The right front and rear doors were damaged and could not be opened. The impact with the bridge rail left depressions along the vehicle's side relative to where it contacted the rails during impact. The windshield cracked but did not separate or enter the occupant compartment. The maximum amount of passenger compartment deformation was 2.0 inches (52 mm), which occurred at the floorboard. The maximum amount of deformation for the roof and dashboard are 0.4 inches (10 mm) and 0.3 inches (8 mm), respectively. These values are below the maximum MASH 2009 limits. See Appendix 8.2.6 for complete interior deformation measurements for test 110MASH4C15-02.

Figure 3-25. 110MASH4C15-02 Kia Rio Damage (Side)

Figure 3-26. 110MASH4CP15-02 Kia Rio Damage (Rear)

Figure 3-27. 110MASH4C15-02 Kia Rio Damage (Front)

Figure 3-28. 110MASH4C15-02 Kia Rio Interior Post Test

Figure 3-29. 110MASH4C15-02 Kia Rio Side Damage

Figure 3-30. Trajectory After Impact

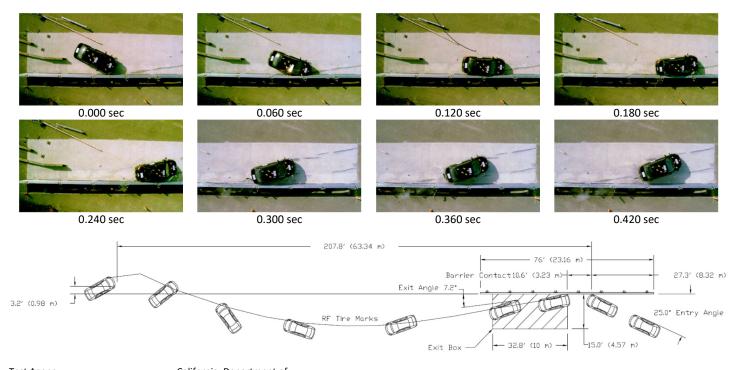


Figure 3-31. Vehicle in Yaw

Figure 3-32. Vehicle Resting Location

3.2.1.Test 110MASH4C15-02 Summary Sheet

Test Agency	California, Department of		
	Transportation	Post-impact Trajectory	
Test Number	110MASH4C15-02	 Vehicle Stability 	Satisfactory
Date	11/18/2015	 Stopping Distance 	208 ft (63.3m) downstream
Test Article	CA ST-70SM Side Mounted Bridge Rail		3.2 ft (1 m) laterally behind
Total Length	76 ft (23.2 m)	Vehicle Snagging	None
Key Elements – Barrier		Vehicle Pocketing	None
	Side Mounted Bridge Rail	Occupant Impact Velocity	
 Length 	120 in (3048 mm) O.C. Posts	 Longitudinal 	17.4 ft/s (5.3 m/s)
 Base Width 	18 in (457 mm)	 Lateral 	36.4 ft/s (11.1 m/s)
 Height 	42 in (1067 mm)	Occupant Ridedown Deceleration (10 msec avg.)	
Test Vehicle		 Longitudinal 	3.9 G
 Type/Designation 	1100C	Lateral	-13.4 G
Make and Model	2008 Kia Rio	THIV	40.4 ft/s (12.3 m/s)
• Curb	2435 lb (1104 kg)	PHD	13.4 G
Test Inertial	2465 lb (1118 kg)	Test Article Damage	NONE
 Gross Static 	2642 lb (1199 kg)	Test Article Deflections*	
Impact Conditions		 Permanent Set 	0.03 in (0.8 mm)
• Speed	64.7 mph (104.1 kph)	• Dynamic	0.93 in (23.5 mm)
Angle	25.0 deg	 Working Width 	19 in (483 mm)
 Location/Orientation 	66 in (1676 mm) upstream of post 4	Vehicle Damage	Moderate
 Impact Severity 	61.6 kip-ft (83.5 kJ)		01-FR-3, 03-RP-2
Exit Conditions		• CDC	01-RFEK2, 03-RDEK1
• Speed	59.2 mph (95.3 kph)	Maximum Deformation	2.1 in (52 mm) floorboard
Angle	7.2 deg		deformation

^{*}String potentiometer measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab

3.3. Test 110MASH4S16-03 Impact Description and Results

The target point of impact for test 110MASH4S16-03 was determined from Table 2-7 of MASH 2009, which was 60 inches (1.5 m) upstream from the center of post 3. This point would apply maximum loading to post 3. The vehicle impacted the barrier at 56.3 mph (90.6 kph) at an angle of 15.8°. The impact severity was 171.9 kip-ft (233.1 kJ).

Figure 3-33. Point of Impact 60 inches (1.5 m) Upstream of Post 3

3.3.1. Test 110MASH4S16-03 Barrier Damage

The single-unit truck first made contact with the barrier at the impact point, 60 inches (1.5 m) upstream of post 3. The green marks on the barrier were from the front right tire. The red marks were from the rear right tire. The rear of the vehicle made contact with the barrier upstream of post 2. The vehicle stayed in contact with the bridge rail for 65.6 feet (20 m). This measurement was from where the rear of the vehicle made contact with the rail and all along the entire length of the rail downstream. The vehicle did not snag or pocket.

Most of the damage to the barrier was on the rails. The studs from the front right tire gouged the two inner rails and left longitudinal dents between posts 2 and 4. The nuts for the three upper disc springs from posts 2 and 3 were loose after contact, which meant that those upper disc spring sets went into plastic deformation. A piece of concrete spalled right below post 3.

Figure 3-34. 110MASH4S16-03 Post 3 Concrete Spalling

Figure 3-35. 110MASH4S16-03 Approximate Size of Spalled Concrete from Post 3

String pots were mounted on posts 3, 4, and 5 to measure deflection. Both dynamic and static displacements were measured from the rear middle of the top rail. See Table 3-4. for maximum dynamic and static displacements. Strain gages were installed on all the anchor rods for posts 3, 4, and 5. Neither string pots nor strain gages were installed on post 2 as the target impact location was originally planned for farther downstream. The target impact point was ultimately moved to upstream of post 3 to address the concern over inadequate barrier length for vehicle interaction after impact. Also, originally loading on post 2 was not expected to be as high as post 3. However, since the upper disc springs on post 2 went into plastic deformation the loading on post 2 was high. See FHWA/ CA17-2557 Supplement for strain gage and string pot results. (Strain gage and string pot measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab)

Table 3-4. Maximum Dynamic and Static Displacements (110MASH4S16-03)*

	Post 3	Post 4	Post 5
Maximum Dynamic Displacement	Estimated at ~2.4 in (61 mm)	0.71 in (17.9 mm)	NA (channel malfunction) Estimated at less than 0.1 in
Static Displacement	0.58 in (14.7 mm)	0.02 in (0.6 mm)	NA (channel malfunction) Estimated at less than 0.1 in

^{*} Not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab

Figure 3-36. 110MASH4S16-03 Green (Front Tire) / Red (Rear Tire)

Figure 3-37. 110MASH4S16-03 Upstream Impact View

Figure 3-38. 110MASH4S16-03 Side Impact View

Figure 3-39. 110MASH4S16-03 Traveling Downstream

Figure 3-40. 110MASH4S16-03 Impact with Fence

3.3.2. Test 110MASH4S16-03 Vehicle Damage

The front right fender and right side of test vehicle sustained most of the damage from the impact with the side mounted bridge rail. Still camera images and high-speed videos showed the test vehicle's hood release broke and the hood partially opened. The front right wheel detached and folded under the vehicle. The front axle was also broken during impact. It disconnected from the vehicle with the exception of the hydraulic steering lines, which dragged the axle underneath the front of the vehicle. The front right headlight broke and right side of the bumper folded into the engine compartment. The right fuel tank was also damaged from contact with the barrier. The right passenger door was damaged but it was able to be opened.

The 10000S test vehicle sustained damage from a secondary impact with a fence that was installed downstream of the vehicles presumed exit path. The fence was placed there to help slow the test vehicle down. Even though the fence caused some damage during the secondary impact, it did not cause difficulty analyzing the damage from the primary impact with the bridge rail.

Figure 3-41. 110MASH4S16-03 Upstream View

Figure 3-42. 110MASH4S16-03 Leaking Fluids from Engine Bay

The vehicle remote braking system was applied several vehicle lengths after leaving the bridge rail but the brake did not stop the vehicle before the vehicle hit the fence. The fence used four 3/8" (10 mm) steel cables stacked at approximately one foot (0.3 m) apart horizontally. The impact with the fence caused some damage to the front end of the test vehicle. The fence rode over the vehicle's hood and into the windshield. Although the windshield was still intact, the cable broke the windshield and bent the A-pillars. The fence was connected to the four steel cables, which were connected to two Caltrans Type 60k portable concrete barriers (one on each side). The fence did help slow the vehicle down. The vehicle came to rest on a berm at the north end of the test facility.

Figure 3-43. 110MASH4S16-03 Front Right Tire

Figure 3-44. 110MASH4S16-03 Front Right Fender

Figure 3-45. 110MASH4S16-03 Fuel Tank and Right A-Pillar Damage

Figure 3-46. 110MASH4S16-03 Fence into Windshield

Figure 3-47. 110MASH4S16-03 Front End with Fence Removed

Figure 3-48. 110MASH4S16-03 Windshield Damage

Figure 3-49. 110MASH4S16-03 Cab View Damage

Figure 3-50. 110MASH4S16-03 Rear View

The box did not disconnect from the frame. The ballasts did shift a few inches toward the impact side but did not disconnect. The box also had a permanent lean towards the impact side after impact.

Figure 3-51. 110MASH4S16-03 Permanent Box Leaning to Impact Side

Figure 3-52. 110MASH4S16-03 Vehicle Resting Location on Berm

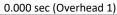

Figure 3-53. 110MASH4S16-03 Ballasts Shifted to Passenger Side

Figure 3-54. 110MASH4S16-03 Alternate View of Ballast After Impact

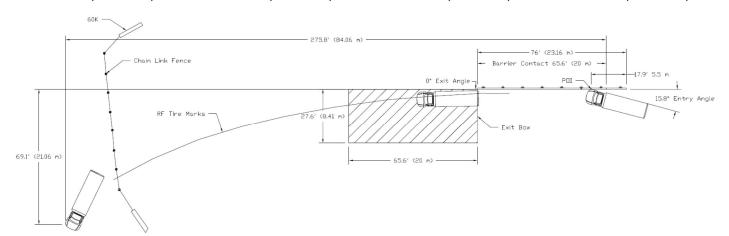
3.3.3. Test 110MASH4S16-03 Summary Sheet

0.070 sec (Overhead 1)

0.140 sec (Overhead 2)

0.210 sec (Overhead 2)

0.280 sec (Overhead 2)


0.350 sec (Overhead 2)

0.490 sec (Overhead 2)

1.158 sec (Overhead 2)

Test Agency	California, Department of		
	Transportation	Post-impact Trajectory	
Test Number	110MASH4S16-03	 Vehicle Stability 	Satisfactory
Date	8/31/2016	Stopping Distance	275.8 ft (84.1 m) downstream
	CA ST-70SM Side Mounted Bridge Rail		69.1 ft (21.1 m) laterally in front
Total Length	76 ft (23.2 m)	Vehicle Snagging	None
Key Elements – Barrier		Vehicle Pocketing	
 Description 	Side Mounted Bridge Rail	Occupant Impact Velocity	
Length	120 in (3048 mm) O.C. Posts	 Longitudinal 	N/A
Base Width	18 in (457.2 mm)	 Lateral 	N/A
 Height 	42 in (1066.8 mm)	Occupant Ridedown Deceleration (10 msec avg.)
Test Vehicle		 Longitudinal 	N/A
 Type/Designation 	10000s	Lateral	N/A
Make and Model	2005 Freightliner M2	THIV	
• Curb	14,786 lb (6707 kg)	PHD	
Test Inertial	21,887 lb (9928 kg)	Test Article Damage	Moderate (6 spring sets damage at
Gross Static	21,887 lb (9928 kg)		Posts 2 & 3)
Impact Conditions		Test Article Deflections*	
 Speed 	56.3 mph (90.6 kph)	 Permanent Set 	0.6 in (15 mm)
Angle	15.8 deg	Dynamic	2.4 in (61 mm)
 Location/Orientation 	60 in (1.5 m) upstream of post 3	 Working Width 	23 in (584 mm)
 Impact Severity 	171.9 kip-ft (233.1 kJ)	Vehicle Damage	Moderate
Exit Conditions		• VDS	01-FR-4, 03-RP-03
 Speed 	53.4 mph (85.9 kph)	• CDC	01-RFEK5, 03-RDEK1
Angle	0.00 deg	 Maximum Deformation 	N/A

^{*}String potentiometer measurements are not within the scope of ISO 17025 A2LA Accreditation of the RSRG Lab

4. Discussion of Test Results

4.1. General Evaluation Methods

MASH 2009 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the side mounted bridge rail were evaluated using evaluation criteria found in Tables 2.2 and 5.1 of MASH 2009. The post-impact vehicular response was evaluated using section 5.4 of MASH 2009.

4.2. Structural Adequacy

The structural adequacy of the side mounted bridge rail was acceptable for all three tests. The three upper disc spring sets from posts 2, 3 and 4 of the bridge rail went into plastic deformation during the 2270P and 10000S impacts and required replacement. Other than replacing the top disc springs sets on the posts, the CA ST-70SM Side Mounted Bridge Rail was functional. The anchor rods were tested after the bridge rail was demolished. The anchor rods all passed tensile testing with the rods breaking within or above the tensile strength specifications of 125 to 150 ksi. See Appendix 9 for Post-Impact Anchor Rod Testing.

Refer to Table 4-1, 4-2 and Table 4-3 for the assessment summaries of the safety evaluation criteria for the CA ST-70SM Side Mounted Bridge Rail.

4.3. Occupant Risk

The occupant risk values for the 2270P and 1100C vehicles were acceptable according to MASH criteria. The OIV and ORA values are not included in the testing of the 10000S vehicle. The occupant compartment was not significantly compromised in any of the three tests. The yaw, pitch, and roll of the vehicles were within acceptable limits for all three tests.

Refer to Table 4-1, 4-2 and Table 4-3 for the assessment summaries of the safety evaluation criteria for the CA ST-70SM Side Mounted Bridge Rail.

4.4. Vehicle Trajectory

The vehicle trajectories were acceptable for all three tests. The exit trajectories were within the required exit box. The yaw, pitch, and roll of the vehicles were below the maximums allowed in the MASH guidelines.

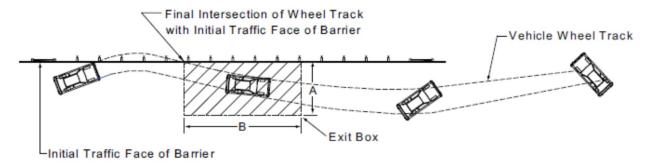


Figure 4-1. Exit Box for Longitudinal Barriers

May 9, 2018 California Department of Transportation Report No. FHWA/CA17-2557

Refer to Table 4-1, 4-2 and Table 4-3 for the assessment summaries of the safety evaluation criteria for the CA ST-70SM Side Mounted Bridge Rail.

Table 4-1. 110MASH3P15-01 Assessment Summary

E	valuation Criteria	ssessment Summary	Accoccment		
	raiuation Criteria		Test Results	Assessment	
vehicle should not	contain and redired penetrate, underric igh controlled latera otable.	The vehicle was contained and redirected smoothly.	PASS		
Occupant Risk					
penetrating the od a work zone.	s, fragments, or oth not penetrate or sh cupant compartments or intrusions into, th	The bridge rail did not detach any elements, fragments, and/or other debris	PASS		
compartment sho	uld not exceed limits	s set forth in			
Occupant Risk	1	, :	1 · 1 · ·		
F. The vehicle should	imum roll and pitch	The vehicle remained upright during and after the collision.	PASS		
Occupant Risk					
should satisfy the	H 2009) for calculat following limits:	ion procedure)	Longitudinal OIV _x = 13.45 ft/s (4.1 m/s)	PASS	
Component Longitudinal and Lateral	Preferred 30 ft/s (9.1 m/s)	Maximum 40 ft/s (12.2 m/s)	Lateral OIV $_{y}$ = 26.9 ft/s (8.2 m/s)		
Occupant Risk I. The occupant ride	down acceleration (see Appendix A,	Longitudinal ORA _x =		
	H 2009) for calculat	ion procedure)	-2.6 G		
should satisfy the		1: '' (6)	2.00	PASS	
	idedown Acceleration	. ,	Lateral ORA _y =		
Component Longitudinal and Lateral	Preferred 15.0 G	Maximum 20.49 G	-16.9 G		
Vehicle Trajectory It is preferable that the					
this is typically indicate within the "exit box". by the initial traffic face the initial traffic face of width of the vehicle plushicle, starting at the track with the initial tr	The concept of the e e of the barrier and f the barrier, at a di us 16 percent of the final intersection (b	A = 16.7 ft (5.1 m) B = 32.8 ft (10 m)	PASS		
of B. All wheel tracks of parallel line within the	f the vehicle should				

Table 4-2. 110MASH4C15-02 Assessment Summary

	Fy:	aluation Criteria	Test Results	Assessment	
C+-	uctural Adequacy	aluation Criteria		rest nesuits	ASSESSIFICIT
	Test article should on yehicle should not pinstallation, althoughtest article is accep	penetrate, underric gh controlled latera	The vehicle was contained and redirected smoothly.	PASS	
	cupant Risk Detached elements test article should rependerating the occurrence a work zone. Deformations of, or compartment should section 5.3 and Approximations of the compartment should be compa	not penetrate or sho cupant compartmen r intrusions into, the ld not exceed limits	The bridge rail did not detach any elements, fragments, and/or other debris	PASS	
Oce F.	cupant Risk The vehicle should collision. The maxil exceed 75 degrees.	remain upright dur mum roll and pitch	The vehicle remained upright during and after the collision.	PASS	
	Cupant Risk Occupant Impact V Section A5.3 (MASH should satisfy the formation of the Component Longitudinal and Lateral	H 2009) for calculat	Longitudinal OIV _x = 17.4 ft/s (5.3 m/s) Lateral OIV _y = 36.4 ft/s (11.1 m/s)	PASS	
Occ I.	Occupant Risk			Longitudinal ORA _x = 3.9 G Lateral ORA _y = -13.4 G	PASS
It is this with by the wide vertical of I	hicle Trajectory s preferable that the s is typically indicate hin the "exit box". The the initial traffic face initial traffic face of th of the vehicle plu nicle, starting at the face k with the initial tra B. All wheel tracks of	d when the vehicle he concept of the e of the barrier and the barrier, at a distance of the final intersection (but of the barrier face of the barrier the vehicle should	A = 15.0 ft (4.6 m) B = 32.8 ft (10 m)	PASS	

Table 4-3. 110MASH4S16-03 Assessment Summary

Evaluation Criteria	Test Results	Assessment	
Structural Adequacy A. Test article should contain and redirect the vehicle; the	The vehicle was		
vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.	contained and redirected smoothly.	PASS	
Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in	The bridge rail did not detach any elements, fragments, and/or other debris	PASS	
Section 5.3 and Appendix E (MASH 2009). Occupant Risk G. It is preferable, although not essential, that the vehicle	The vehicle remained upright during and after	PASS	
remain upright during and after collision.	the collision.	17.55	
Vehicle Trajectory It is preferable that the vehicle be smoothly redirected, and this is typically indicated when the vehicle leaves the barrier within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the barrier for a distance of B. All wheel tracks of the vehicle should not cross the parallel line within the distance B.	A = 27.6 ft (8.4 m) B = 65.6 ft (20 m)	PASS	

5. Conclusion

Based on the physical crash testing involved in this project, the following conclusions can be drawn:

- 1. The California ST-70SM Side Mounted Bridge Rail can successfully contain and redirect a MASH 2009 2270P pickup truck impacting at 62 mph (100 km/h) and 25°.
- 2. The California ST-70SM Side Mounted Bridge Rail can successfully contain and redirect a MASH 2009 1100C small car impacting at 62 mph (100 km/h) and 25°.
- 3. The California ST-70SM Side Mounted Bridge Rail can successfully contain and redirect a MASH 2009 10000S single-unit van body truck impacting at 56 mph (90 km/h) and 15°.
- 4. Impact damage to the California ST-70SM Side Mounted Bridge Rail would require inspection of the disc springs and replacement, if necessary. Other than the disc spring replacements, rail damage was primarily cosmetic.
- 5. The California ST-70SM Side Mounted Bridge Rail meets the criteria set in the American Association of State Highway and Transportation Officials' *Manual for Assessing Safety Hardware* 2009 as a Test Level 4 longitudinal barrier.

6. Recommendations

During the assembly of the CA ST-70SM Side Mounted Bridge Rail to the deck, the contractor ran into tolerance problems. The following are recommendations from Caltrans' Division of Structure Policy and Innovation and the Division of Research, Innovation and System Information:

- 1. The vertical opening in the post for the tube railing must be 0.16 inches (4 mm) larger than the height of the steel tube railing ASTM A500 railing has a mill tolerance of +0.12 inches (+3 mm), thus there can be issues with the rails fitting into the posts.
- 2. Size the slotted holes to 1-1/4" x 1-9/16" to accommodate the diameter of the stud bolt weld. This will reduce interference between the stud weld and slotted hole reducing the need for shims.
- 3. The diameter of the railing washers should be increased to provide better support for the nut. The updated plans in this report specify "oversized washers".
- 4. Redesign shims so that they can be installed after rails are mounted onto the posts. One concept considered was a shim that could slide in from the side instead of from the top. Also, the size of the shim opening needs to be large enough to clear stud weld. Note that shims are needed only if there is a gap between the rail and post opening after installation and may not be needed. Future project details may not include shims.

7. Implementation

Caltrans' Division of Structure Policy and Innovation will be responsible for the preparation of Standard Plans (if required) and specifications for the California ST-70SM Side Mounted Bridge Rail, with technical support from the Division of Research, Innovation and System Information.

8. Appendix

8.1. Test 110MASH3P15-01 Vehicle Setup

8.1.1. Test Vehicle Equipment

The vehicle used for this test is a 2007 Dodge Ram 1500 ST. The gas tank was disconnected from the fuel supply line and drained. A 12L safety gas tank was installed in the truck bed and connected to the fuel supply line. The stock fuel tank had gaseous CO₂ added in order to purge the gas vapors and eliminate oxygen.

Figure 8-1. Ballast Added to Increase CG Height

One pair of 12-volt wet cell batteries was mounted in the pickup truck. The batteries powered the GMH DataBrick III transient data recorders. A 12-volt deep-cycle gel cell battery powers the Electronic Control Box.

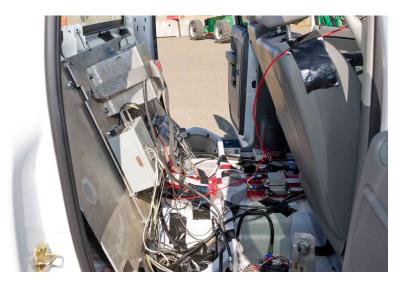


Figure 8-2. Instrumentation Board Mounting Location

A 4800 kPA CO_2 system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system included a pneumatic ram, which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

Figure 8-3. Brake Receiver

An accelerator switch was located on the rear fender of the vehicle. The switch opens an electronic solenoid that releases compressed CO_2 from a reservoir into a pneumatic ram, which was attached to the accelerator pedal. The CO_2 pressure for the accelerator ram was regulated to the same pressure as the remote braking system with a valve to adjust CO_2 flow rate.

Figure 8-4. Brake and Gas Pedal Actuators

A speed control device was connected in-line with the ignition module signal to the coil. It was used to regulate the speed of the test vehicle based on the signal from the vehicle transmission speed sensor. This device was tuned prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer. A microswitch was mounted below the front bumper and connected to the ignition system. A trip plate on the ground near the impact point triggers the switch when the truck passed over it removing power to the engine coil.

Figure 8-5. Speed Control Box Mounted to Dashboard

8.1.2. Test Vehicle Guidance System

A rail guidance system directed the vehicle into the barrier. The guidance rail, anchored at 12.5 ft (3.8 m) intervals along its length was use to guide a mechanical arm, which was attached to the front left wheel of each of the vehicles. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

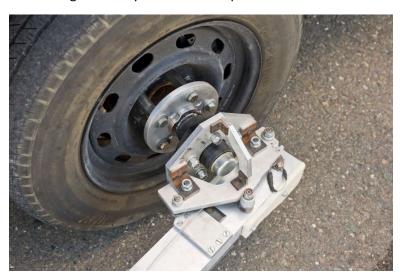


Figure 8-6. Rail Guidance Hub

Figure 8-7. Rail Guidance System with 2270P Attached

8.1.3. Photo - Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Figure 8-8 and Table 8-1. The origin of the coordinates is at the intended point of impact.

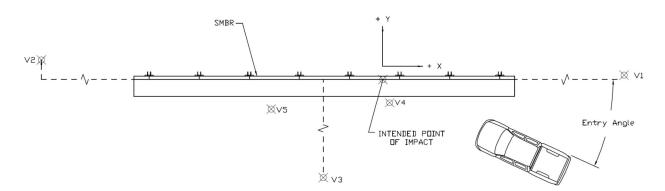


Figure 8-8. High-Speed Video Camera Locations

Table 8-1. 110MASH3P15-01 Camera Types and Location Coordinates

Camera	Camera Camera		Lens		Coordinates		
Location	Make/Model	Serial No.	Lens	Serial No.	x	у	z
V4	Vision Resesarch Miro 110	13235	14 mm	210927	1.4 ft (0.41 m)	-4.7 ft (-1.43 m)	29.9 ft (9.12 m)
V5	Vision Resesarch Miro 110	13234	14 mm	217706	-22.3 ft (-6.80 m)	6.0 ft (1.83 m)	30.6 ft (9.34 m)
V3	Olympus iSpeed 3	1400012	35 mm	173792	-11.9 ft (-3.26 m)	-71.3 ft (-21.74 m)	3.9 ft (1.18 m)
V1	Olympus iSpeed 3	1400022	35 mm	259936	96.0 ft (29.26 m)	0.9 ft (0.27 m)	2.9 ft (0.87 m)
V2	Olympus iSpeed 3	1400014	85 mm	420398	-279.8 ft (-85.27 m)	3.9 ft (1.19 m)	4.0 ft (1.22 m)

The following are the pretest procedures that were required to enable video data reduction to be performed using the Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 19.7 inches (500 mm) and 39.4 inches (1000 mm). The targets established scale factors.
- 2. Flashbulbs, mounted on the test vehicle, were electronically triggered to establish initial vehicle-to-barrier contact and the time of the application of the vehicle brakes.
- 3. High-speed digital video cameras were all time-coded through the use of a portable computer and were triggered as the test vehicle passed over a tape switch located on the vehicle path upstream of impact.

8.1.4. Electronic Instrumentation and Data

Transducer data were recorded on two separate GMH Engineering, DataBrick, Model III, digital transient data recorders (TDRs) that were mounted on the test vehicle. These transducers included two sets of accelerometers and two sets of angular rate sensors at the center of gravity. The TDR data were reduced using a desktop personal computer running DADiSP 2002 version 6.0 NI NK B14 (pre-processing) and TRAP version 2.3.10 (post-processing). Accelerometer and angular rate sensor specifications are shown in Table 8-2.

Table 8-2. Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13366	CG	±200g	Primary Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13328	GC	±200g	Primary Lateral
Accelerometer	Measurement Specialties	64CM32	MS13358	CG	±200g	Primary Vertical
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200g	Secondary Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200g	Secondary Lateral
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200g	Secondary Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4018	CG	±1500°/s	Primary Roll
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4217	CG	±1500°/s	Primary Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3348	CG	±1500°/s	Primary Yaw
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3355	CG	±1500°/s	Secondary Roll
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3336	CG	±1500°/s	Secondary Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4019	CG	±1500°/s	Secondary Yaw

A rigid stand with three retro-reflective 90° polarizing tape strips was placed on the ground near the test article and alongside the path of the test vehicle. The strips were spaced at carefully measured intervals of 39.4 inches (1000 mm). The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the accelerometer signals on the TDR, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) an "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, were placed 13.1 ft (4 m) apart just upstream of the test article specifically to establish the impact speed of the test vehicle. The layout of the pressure sensitive tape switches and reflective tape is shown in Figure 8-9.

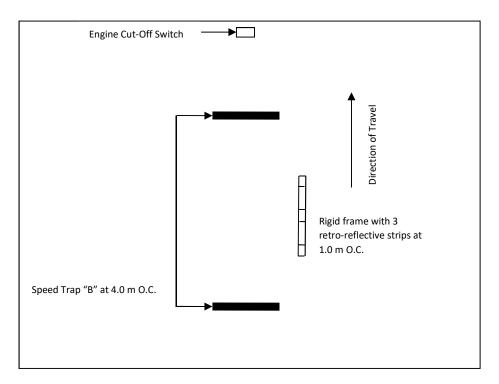


Figure 8-9. Speed Trap Tape Layout

8.1.5. Vehicle Measurements

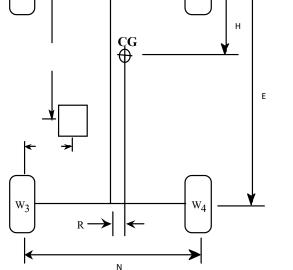
Table 8-3. Exterior Vehicle Measurements

		Table	8-3. Exterior	Vehicle	Measu	rements			
Date:	8/24/2015	Te	st Number:	110N	1ASH3P1	15-01	Model:	Do	dge Ram
Make:	1500	VII	N:	10	7HA18	N47S1050	53		
Tire Size:	P245/70R17	Ye	ar: 2007				Odomete	r: 1837	19
Tire Inflat	ion Pressure:	35p	si	Tape I	Measure	Used:		Tape 1	
*(All Mea	surements Refer to Imp		Inertial C.M.	Ve a c e g i k	hicle Ge 1971 5780 3572 711.8 385 526	(77.6) (227.1) (140.3) (28) (15.2) (20.7)	6) d 6) f) h 2) j	1913 1210 996 1482 680 745 1715	(75.3) (47.6) (39.2) (58.3) (26.8) (29.3) (67.5)
Tire Diamete	r ——— q ———			0	1125			125	(4.9)
Vheel Diamet	er + r +			T	755	(29.7		467	(18.4)
p		_/		5	387	(15.2	_	1920	(75.6)
1	1	1 ~		b		er Height F		361	(14.2)
î			1			er Height F	_	363	(14.3)
* * *	 	100	71	± Wh	neel Well	Clearance	(F)	143	(5.6)
	h			Wh	neel Well	Clearance	(R)	220	(8.7)
	- f	-	d			Frame Hei	ght (F):	455	(17.9)
	VW _{front} C		7 W _{rear}			Frame Hei	ght (R):	643	(25.3)
						Engin	e Type:		V8
						Engir	ne Size:	4	1.7L
Mass Dist	ribution - kg (lbs)			Transmission Type:					
				Automatic or Manual:			Aı	Automatic	
						FWD or RW	/D or 4WD		RWD
Left Front Left Rear:		Scale:	red yellow	Right I	_	626.25 462.35	(1380.6)		blue
cere near.	455.15 (555)	ocure.	yenow	Nigit	-	102.03	(1015.5)	Jeuic.	green
Weights									
kg (lbs)	Curb	Test I	nertial	Gross	Static				
W _{front}	1291.75 (2847.8)	1297.5	(2860.4)	1298.9	(2863.	5)			
W _{rear}	915.5 (2018.3)	984.1	(2169.5)	986.25	(2174.				
W _{total}	2207.5 (4866.6)	2281.6	(5030)	2285.15	•				
** total	2207.5 (4000.0)		(5555)		(5557.				
GVWR Rat	tings - kg (lbs)			Dumm	ny Data				
Front:		(3	701.5)		pe:		N/	A	
Back:	1770	***	902.1)		ass:		N/		
Total:	3040		701.9)		at Positi	on:	- 7	N/A	
Note any	damage prior to test:	A number	of quarter siz	ed small d	lents are	on the fr	ont bump	er.	

The tire were changed to replace aluminum rims. Copied from test 430MASH3P13-04-L.

Table 8-4. CG Calculation: Curb Weight

CG Calculation Worksheet #1: Curb Weight


Make:	1500		Test Number:	110MASH3P15-01
Model:	Dodge Ram		Date:	8/24/2015
Year:	2007		Temperature:	N/A
VIN:	1D7HA18N47S10	5053		
Fuel in Tank:	10 gal			М
Fuel Removed:	none		_	→
Staff:	Ali Z.			·
	Chris C.			
	Vue H		_	
			$\overline{}$ w_1	W_2
			_	
W1 = Left Front (LF) =	665.5	kg		
Scale Used:	red			1 1
		_		CG
W2 = Right Front (RF) =	626.25	kg		IΨ
Scale Used:	blue	•		
				E
W3 = Left Rear (LR) =	453.15	kg	<u> </u>]
Scale Used:	yellow	0	7	
	,		★ →	'
W4 = Right Rear (RR) =	462.35	kg		
Scale Used:	green	°		
	8			
Total Weight:			$ \mathbf{w}_3 $	\mathbf{w}_{4}
Wtotal (measured) =	2207.5	kg	1 1	
	2207.3		R	
Wtotal (calculated) =	2207.25	kg		
	2207.23	^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Distance between rear wheels:

Distance from front to rear wheels:

Distance from front wheels back to CG:

Distance from vehicle centerline to CG:

$$W_{Total} = W_1 + W_2 + W_3 + W_4$$

$$H = \frac{\left(W_{3} + W_{4}\right)E}{W_{Total}}$$

$$R = \frac{\left(W_2 - W_1\right)M + \left(W_4 - W_3\right)N}{2 W_{Total}}$$

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Copied from test 430MASH3P13-04-L. No spare Tire.

Table 8-5. CG Calculation: Test Inertial Weight

CG Calculation Worksheet #2: Test Inertial Weight

Make:	1500		Test Number:	110MASH3P15-01
Model:	Dodge Ram		Date:	8/24/2015
Year:	2007		Temperature:	N/A
VIN:	1D7HA18N47S10	5053		
Fuel in Tank:	0 gal			М
Fuel Removed:	10 gal		_ ←	→
Staff:	Ali Z.		_	
	Chris C.			$\overline{}$
	Vue H		_	
				w_2
W1 = Left Front (LF) =	652.65	kg		н
Scale Used:	red			CG
				GG →
W2 = Right Front (RF) =	644.85	kg	1	
Scale Used:	blue			
W3 = Left Rear (LR) = Scale Used:	486.3 yellow	kg	Fuel Tank	E
	ye o		← →	
W4 = Right Rear (RR) =	497.8	kg		
Scale Used:	green			
Total Weight: Wtotal (measured) = _	2281.3	kg_	W ₃	\longrightarrow
Wtotal (calculated) = 2		kg	←	N .
Distance between front whe	els:			
M =1732	mm		$W_{\scriptscriptstyle Total} =$	$W_1 + W_2 + W_3 + W_4$

Distance between rear wheels:

Distance from front to rear wheels:

Distance from front wheels back to CG:

Distance from vehicle centerline to CG:

$$H = \frac{(W_3 + W_4)E}{W_{Total}}$$

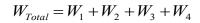
$$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$$

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Copied from test 430MASH3P13-04-L. With all equipment and ballast.

Table 8-6. CG Calculation: Gross Static Weight

CG Calculation Worksheet #3: Gross Static Weight


Make:	1500		Test Number:	110MASH3P15-01
Model:	Dodge Ram		Date:	8/24/2015
Year:	2007		Temperature:	N/A
VIN:	1D7HA18N47S10	5053		
Fuel in Tank:	none			М
Fuel Removed:	none		_	—————————————————————————————————————
Staff:	Ali Z.			
	Chris C.			
	Vue H			
			$\underline{}$ w_1	W_2
			\bigcup	
W1 = Left Front (LF) =	660.6	kg		н
Scale Used:	red			CG
				CG ▼
W2 = Right Front (RF) =	638.3	kg	1	
Scale Used:	blue			
				E
W3 = Left Rear (LR) =	491.3	kg	Fuel	
Scale Used:	yellow		Tank	
			← →	
W4 = Right Rear (RR) =	494.95	kg		
Scale Used:	green		$\overline{}$	
			l	
Total Weight:			W_3	W ₄ — •
Wtotal (measured) =	2285.3	kg	R ·	\rightarrow
			Ī	- '
Wtotal (calculated) = $\underline{2}$	285.15	kg	 	→
Distance between front when	ale:			N

Distance between rear wheels:

Distance from front to rear wheels:

Distance from front wheels back to CG:

Distance from vehicle centerline to CG:

$$H = \frac{(W_3 + W_4)E}{W_{Total}}$$

$$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2W_{Total}}$$

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Copied from test 430MASH3P13-04-L. Final vehicle weight with all equipment and ballast. No spare tire.

2W Total

Table 8-7. CG Calculation: Vertical CG Weight

CG Calculation Worksheet #4: Vertical CG Weight

Make:	1500		Test Number:	110MASH3P15-01
Model:	Dodge Ram		Date:	8/27/2015
Year:	2007		Temperature:	N/A
VIN:	1D7HA18N47S10	5053		
Fuel in Tank:	none			M
Fuel Removed:	none		<u> </u>	——————————————————————————————————————
Staff:	Ali Z.			
-	Chris C.			
	Vue H			
W1 = Left Front (LF) =	655.3	kg		W_2
Scale Used:	red			
			·	CG <u>↓</u>
W2 = Right Front (RF) =	640	kg		ΙΥ
Scale Used:	blue	<u> </u>		
				E
W3 = Left Rear (LR) =	494.35	kg	¥ Fuel	
Scale Used:	yellow		Tank	
			← →	
W4 = Right Rear (RR) =	499.25	kg		
Scale Used:	green			
Total Weight: Wtotal (measured) =	2288.35	kg	W_3 $R =$	\longrightarrow W_4
Wtotal (calculated) =	2288.90	kg		
,		<u> </u>	17	N
Distance between front wh	neels:			
M = 1732	mm		W = I	77 + 177 + 177 + 177
			$VV_{Total} = V$	$W_1 + W_2 + W_3 + W_4$
Distance between rear who	eels:			
N = <u>1715</u>	mm		$H = \frac{Q}{Q}$	$\frac{W_3 + W_4}{W_{Total}}$
Distance from front to rear	r wheels:			VV Total
E = 3572	mm			
			$ (W_2 - W_1)$	$M + (W_4 - W_3)N$
Distance from front wheels	s back to CG:		$R = \frac{\sqrt{2}}{2}$	2 H/

If R is negative the CG is left of center, if R is positive the CG is right of center

H = 1551 _____mm

Distance from vehicle centerline to CG: R = <u>-4</u> mm

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Copied from test 430MASH3P13-04-L. Vehicle has equipment installed for vertical CG measurement.

Table 8-8. Vehicle CG Measurements

Vehicle Center of Gravity Measurements

Project Title	e: Complia	nce Crash	Testing	g of Side Mounted Bridg	ge Rail				
Vehicle Test	t Number:	110MA	110MASH3P15-01		Model:	Ram 150	0		
Make:		Dodge			Year:	2007			
VIN:		1D7HA:	18N47	S105053	_				
Vehicle We	ights (Test I	nertail):							
Left Front T	ïre:	660.6	kg_	Right Front Tire:	638.3	kg	Front Axle:	1298.9	kg
Left Rear Ti	re:	491.3	kg	Right Rear tire:	495.0	kg	Rear Axle:	986.3	kg
Ballast and	Location:	55.55 k	g adde	d to front of the truck b	oed		Total:	2285.2	kg
Vehicle Wh	eel Base Me	easuremen	its:						
Vehicle leng	gth from cen	ter of fron	t tires	to center of back tires:		3	572.0	mm	
Vehicle wid	th from cent	ter of left f	ront ti	re to center of right fro	nt tire:	1	732.0	mm	
Vehicle wid	th from cent	ter of left r	ear tir	e to center of right rear	tire:	1	715.0	mm	
Center of G	ravity:								
X:	1541.6	5	mm	Center of front tire to	CG.				
Y:	-7.1		mm	The CG will be left if n	egative and rig	tht if positi	ve of vehicle's c	enter line.	
7.	711.8		mm	CG location above gro	und level				

8.1.6. Vehicle Interior Deformation Measurements

Table 8-9. Pretest and Post-test Interior Floorboard Deformation Measurements

Vehicle Type	2270P	Test Number	110MASH3P15-01	
Make	Dodge	Model	Ram	
Year	2007	Color	White	
VIN #	1D7HA18N47S105053			

Floorboard Measurements - Dimensions in mm (inches)

Daint	Pre-Impact				Post-Impact		Difference		
Point	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ
F20	1650 (65)	800 (31.5)	324 (12.8)	1652 (65)	788 (31)	332 (13.1)	2 (0.1)	-12 (-0.5)	8 (0.3)
F21	1650 (65)	673 (26.5)	320 (12.6)	1649 (64.9)	658 (25.9)	324 (12.8)	-1 (0)	-15 (-0.6)	4 (0.2)
F22	1650 (65)	546 (21.5)	321 (12.6)	1643 (64.7)	533 (21)	318 (12.5)	-7 (-0.3)	-13 (-0.5)	-3 (-0.1)
F23	1650 (65)	419 (16.5)	321 (12.6)	1639 (64.5)	404 (15.9)	310 (12.2)	-11 (-0.4)	-15 (-0.6)	-11 (-0.4)
F24	1777 (70)	800 (31.5)	326 (12.8)	1772 (69.8)	785 (30.9)	334 (13.1)	-5 (-0.2)	-15 (-0.6)	8 (0.3)
F25	1777 (70)	673 (26.5)	323 (12.7)	1776 (69.9)	657 (25.9)	327 (12.9)	-1 (0)	-16 (-0.6)	4 (0.2)
F26	1777 (70)	546 (21.5)	323 (12.7)	1776 (69.9)	530 (20.9)	320 (12.6)	-1 (0)	-16 (-0.6)	-3 (-0.1)
F27	1777 (70)	419 (16.5)	321 (12.6)	1771 (69.7)	401 (15.8)	311 (12.2)	-6 (-0.2)	-18 (-0.7)	-10 (-0.4)
F28	1904 (75)	800 (31.5)	328 (12.9)	1900 (74.8)	786 (30.9)	334 (13.1)	-4 (-0.2)	-14 (-0.6)	6 (0.2)
F29	1904 (75)	673 (26.5)	325 (12.8)	1903 (74.9)	658 (25.9)	327 (12.9)	-1 (0)	-15 (-0.6)	2 (0.1)
F30	1904 (75)	546 (21.5)	325 (12.8)	1898 (74.7)	533 (21)	320 (12.6)	-6 (-0.2)	-13 (-0.5)	-5 (-0.2)
F31	2020 (79.5)	800 (31.5)	280 (11)	2017 (79.4)	786 (30.9)	281 (11.1)	-3 (-0.1)	-14 (-0.6)	1 (0)
F32	2027 (79.8)	673 (26.5)	275 (10.8)	2024 (79.7)	661 (26)	275 (10.8)	-3 (-0.1)	-12 (-0.5)	0 (0)
F33	2027 (79.8)	560 (22)	275 (10.8)	2022 (79.6)	549 (21.6)	267 (10.5)	-5 (-0.2)	-11 (-0.4)	-8 (-0.3)
F34	2147 (84.5)	637 (25.1)	215 (8.5)	2147 (84.5)	622 (24.5)	215 (8.5)	0 (0)	-15 (-0.6)	0 (0)

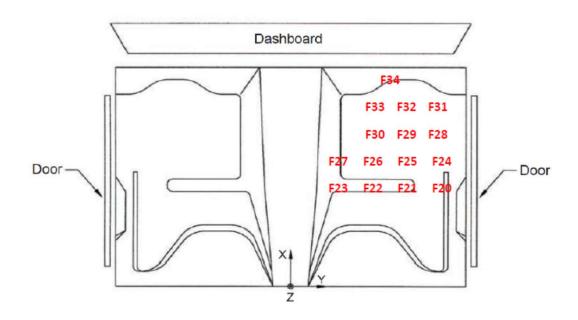
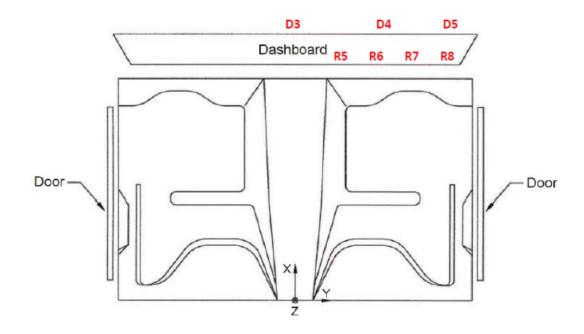


Table 8-10. Pretest and Post-test Interior Dashboard and Roof Deformation Measurements


Vehicle Type	2270P	Test Number	110MASH3P15-01	
Make	Dodge	Model	Ram	
Year	2007	Color	White	
VIN #	1D7HA18N47S105053		-	

Dashboard Measurements - Dimensions in mm (inches)

Daint	Pre-Impact				Post-Impact		Difference			
Point	X	Y	Z	X	Y	Z	ΔΧ	ΔΥ	ΔΖ	
D3	1765 (69.5)	100 (3.9)	-537 (-21.1)	1758 (69.2)	90 (3.5)	-549 (-21.6)	-7 (-0.3)	-10 (-0.4)	-12 (-0.5)	
D4	1790 (70.5)	546 (21.5)	-465 (-18.3)	1777 (70)	537 (21.1)	-471 (-18.5)	-13 (-0.5)	-9 (-0.4)	-6 (-0.2)	
D5	1798 (70.8)	800 (31.5)	-442 (-17.4)	1780 (70.1)	792 (31.2)	-452 (-17.8)	-18 (-0.7)	-8 (-0.3)	-10 (-0.4)	

Roof Measurements - Dimensions in mm (inches)

Deint	Pre-Impact				Post-Impact		Difference		
Point	Point X Y Z		X	Y Z		ΔΧ	ΔΥ	ΔZ	
R5	1450 (57.1)	419 (16.5)	-919 (-36.2)	1434 (56.5)	423 (16.7)	-931 (-36.7)	-16 (-0.6)	4 (0.2)	-12 (-0.5)
R6	1450 (57.1)	546 (21.5)	-900 (-35.4)	1434 (56.5)	551 (21.7)	-920 (-36.2)	-16 (-0.6)	5 (0.2)	-20 (-0.8)
R7	1450 (57.1)	673 (26.5)	-890 (-35)	1419 (55.9)	681 (26.8)	-916 (-36.1)	-31 (-1.2)	8 (0.3)	-26 (-1)
R8	1450 (57.1)	800 (31.5)	-810 (-31.9)	1432 (56.4)	810 (31.9)	-831 (-32.7)	-18 (-0.7)	10 (0.4)	-21 (-0.8)

8.1.7. Data Plots

The data plots are shown in Figure 8-10 through Figure 8-15 include the accelerometer and angular rate sensor records from the test vehicle in test 110MASH3P15-01. They also show the velocity and displacement curves for the longitudinal and lateral components. These plots are required to calculate the occupant impact velocity (OIV) defined in MASH 2009. All data were analyzed using TRAP.

X Acceleration at CG

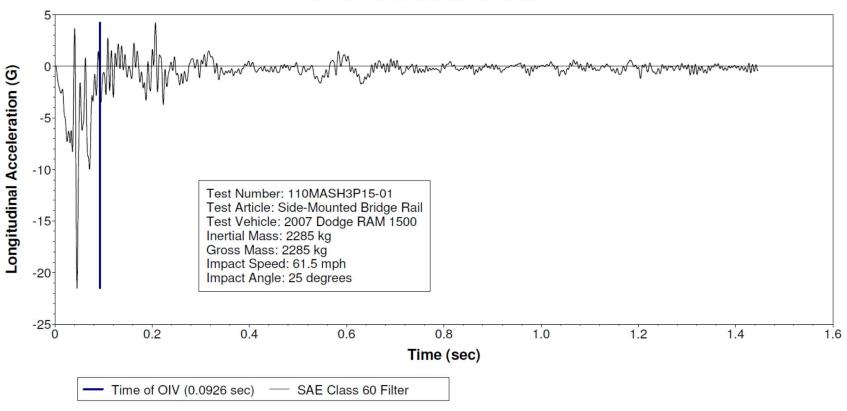


Figure 8-10. 110MASH3P15-01 X (Longitudinal) Acceleration at CG vs Time

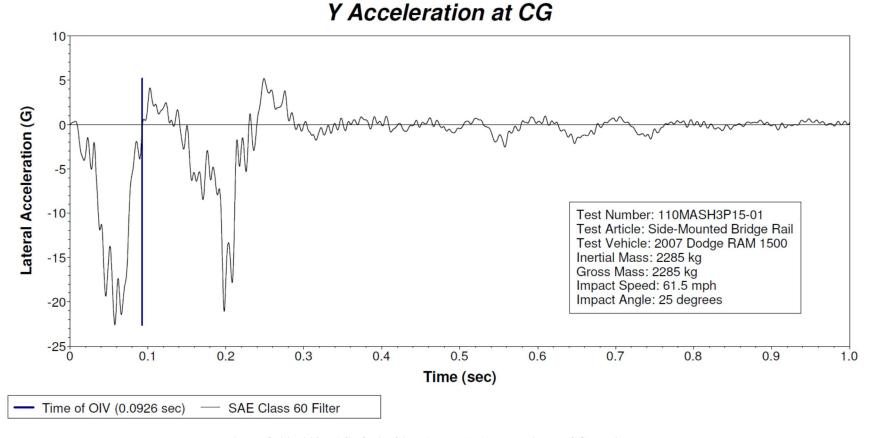


Figure 8-11. 110MASH3P15-01 Y (Lateral) Acceleration at CG vs Time

1.4

1.6

Test Number: 110MASH3P15-01 Test Article: Side-Mounted Bridge Rail Test Vehicle: 2007 Dodge RAM 1500 Inertial Mass: 2285 kg Gross Mass: 2285 kg Impact Speed: 61.5 mph Impact Angle: 25 degrees

Figure 8-12. 110MASH3P15-01 Z (Vertical) Acceleration at CG vs Time

0.8

Time (sec)

1.0

1.2

0.6

-20|

0.2

SAE Class 60 Filter

0.4

Roll, Pitch and Yaw Rates

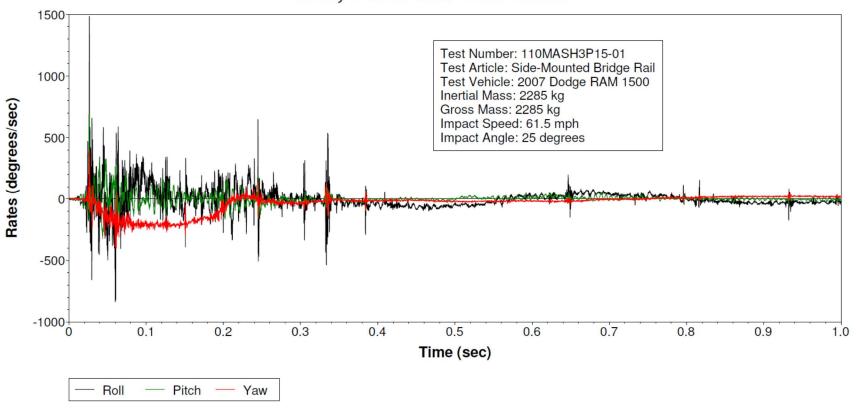


Figure 8-13. 110MASH3P15-01 Roll, Pitch, and Yaw Rates vs Time

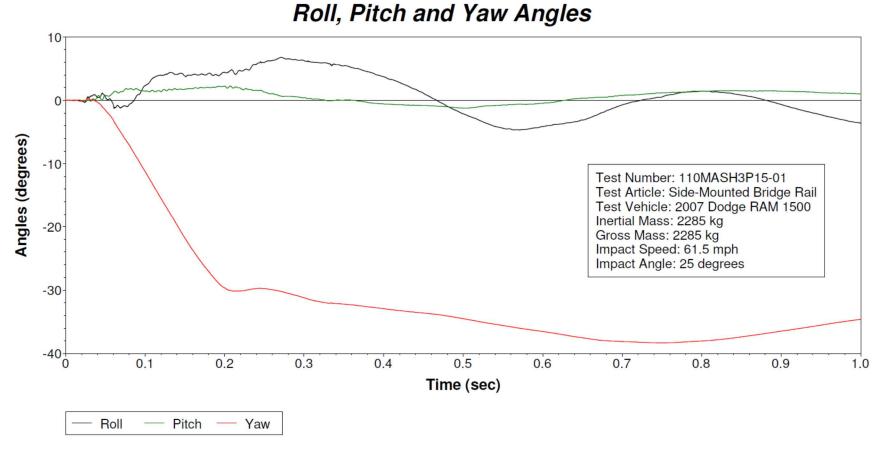


Figure 8-14. 110MASH3P15-01 Roll, Pitch, and Yaw Angles vs Time

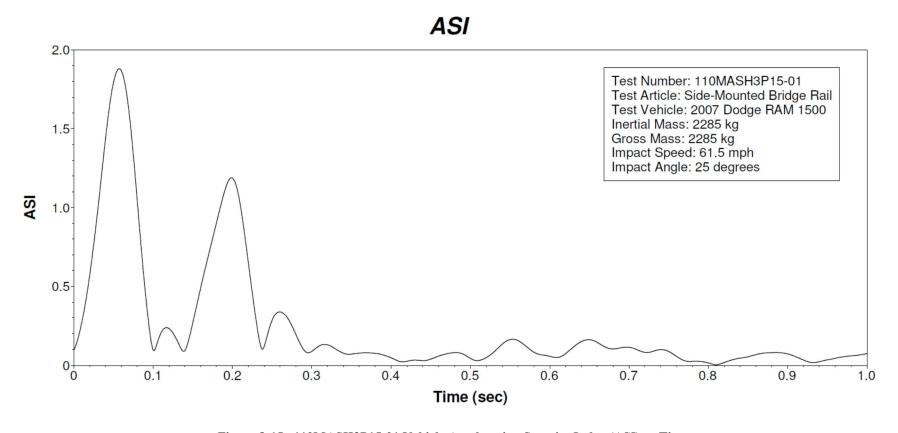


Figure 8-15. 110MASH3P15-01 Vehicle Acceleration Severity Index (ASI) vs Time

8.2. Test 110MASH4C15-02 Vehicle Setup

8.2.1. Test Vehicle Equipment

The vehicle used for this test was a 2008 Kia Rio. Since the vehicle was towed and not self-powered, the fuel in the gas tank was pumped out and gaseous CO_2 added in order to purge the fuel vapors and eliminate oxygen. One pair of 12-volt wet cell batteries were mounted in the vehicle. The batteries powered the GMH DataBrick transient data recorders. A 12-volt deep-cycle gel cell battery powers the Electronic Control Box.

Figure 8-16. Instrumentation Board Mounting Location

Figure 8-17. Backseat Removed

A 4800 kPA CO₂ system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

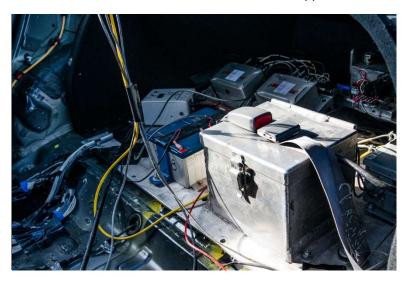


Figure 8-18. Rear of Instrumentation Panel

Figure 8-19. Brake Pedal Actuator

A speed control device was connected in-line with the ignition module signal to the coil on the tow vehicle. It was use to regulate the speed based on the signal from the vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

8.2.2. Test Vehicle Guidance System

A rail guidance system directed the vehicle into the barrier. The guidance rail, anchored at 12.5 ft (3.8 m) intervals along its length was use to guide a mechanical arm, which was attached to the front left wheel of the vehicle. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

Figure 8-20. Rail Guidance Hub

Figure 8-21. Rail Guidance System

8.2.3. Photo - Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Figure 8-22 and Table 8-11. The origin of the coordinates is at the intended point of impact.

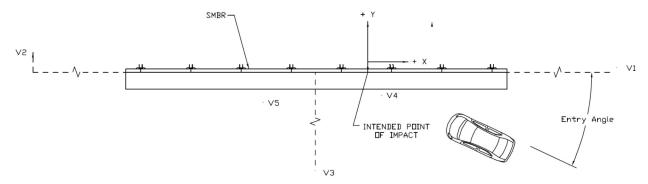


Figure 8-22. High-Speed Video Camera Locations

Camera	Camera	Camera		Lens	Coordinates				
Location	Make/Model	Serial No.	Lens	Serial No.	x	у	z		
V4	Vision Resesarch Miro 110	13235	14 mm	210927	3.1 ft (0.94 m)	-4.6 ft (-1.41 m)	29.9 ft (9.12 m)		
V5	Vision Resesarch Miro 110	13234	14 mm	217706	-21.4 ft (-6.5 m)	-6.1 ft (-1.85 m)	29.9 ft (9.12 m)		
V3	Olympus iSpeed 3	1400012	35 mm	173792	-4.2 ft (-1.27 m)	-69.9 ft (-21.29 m)	3.9 ft (1.17 m)		
V1	Olympus iSpeed 3	1400022	35 mm	259936	111.0 ft (33.83 m)	0.6 ft (0.15 m)	2.9 ft (0.87 m)		
V2	Olympus iSpeed 3	1400014	85 mm	420398	-303.8 ft (-92.58 m)	0.3 ft (0.08 m)	5.1 ft (1.56 m)		

Table 8-11. 110MASH3P15-01 Camera Types and Location Coordinates

The following are the pretest procedures that were required to enable video data reduction to be performed using the Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 19.7 inches (500 mm) and 39.4 inches (1000 mm). The targets established scale factors.
- 2. Flashbulbs, mounted on the test vehicle, were electronically triggered to establish initial vehicle-to-barrier contact and the time of the application of the vehicle brakes.
- 3. High-speed digital video cameras were all time-coded through the use of a portable computer and were triggered as the test vehicle passed over a tape switch located on the vehicle path upstream of impact.

8.2.4. Electronic Instrumentation and Data

Transducer data were recorded on two separate GMH Engineering, Data Brick, Model III, digital transient data recorders (TDRs) that were mounted on the test vehicle. These transducers included two sets of accelerometers and two sets of angular rate sensors at the center of gravity. The TDR data were reduced using a desktop personal computer running DADiSP 2002 version 6.0 NI NK B14 (pre-processing) and TRAP version 2.3.10 (post-processing). Accelerometer and angular rate sensor specifications are shown in Table 8-12.

Table 8-12. Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13366	CG	±200	Primary Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13328	GC	±200	Primary Lateral
Accelerometer	Measurement Specialties	64CM32	MS13358	CG	±200	Primary Vertical
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200	Secondary Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200	Secondary Lateral
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200	Secondary Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4018	CG	±1500	Primary Roll
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4217	CG	±1500	Primary Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3348	CG	±1500	Primary Yaw
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3355	CG	±1500	Secondary Roll
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3336	CG	±1500	Secondary Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4019	CG	±1500	Secondary Yaw

A rigid stand with three retro-reflective 90° polarizing tape strips was placed on the ground near the test article and alongside the path of the test vehicle. The strips were spaced at carefully measured intervals

of 39.4 inches (1000 mm). The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the accelerometer signals on the TDR, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) an "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, were placed 13.1 ft (4 m) apart just upstream of the test article specifically to establish the impact speed of the test vehicle. The layout for all of the pressure sensitive tape switches and reflective tape is shown in Figure 8-23.

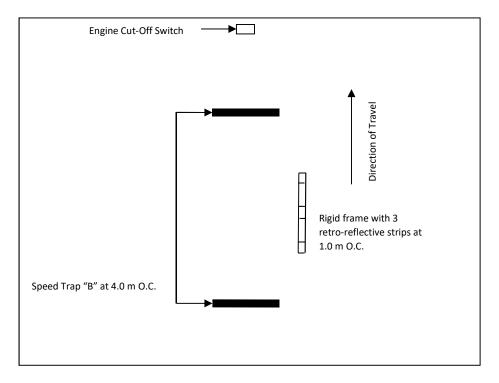


Figure 8-23. Speed Trap Tape Layout

8.2.5. Vehicle Measurements

Table 8-13. Exterior Vehicle Measurements

Date:	Oct. 6	, 2015	Test Number	:	110MASH4C15-02 Model: Rid				Rio	
Make:		ia	VIN:	_	KI	NADE12338	86322346			
Tire Size:	P185/	65R14	Year: 2008				Odom	neter	r: 11642	2
Tire Inflat	ion Pressure:		32 psi		Tape I	Measure U	sed:		Tape #	1
*(All Mea	surements Refe	r to Impactin		Ve	hicle Geon	netry - mm (ir	nche	s)		
					а	1671	(65.8)	b	1436	(56.5)
1					_ T C	4246	(167.2)	d	922	(36.3)
I T			-		e	2497	(98.3)	f	826	(32.5)
a m		-	- - 9	hicle	n t g	n/a	n/a	h	972.09	(38.3)
		77/			i	179	(7)	j .	685	(27)
			74-15		k	281	(11.1)	1	615	(24.2)
					m	1470	(57.9)	n	1443	(56.8)
					0	693	(27.3)	P .	109	(4.3)
	-P- 1-7-1		The same		T q	575	(22.6)	r	388	(15.3)
		8			s	297	(11.7)	t .	1680	(66.1)
1 -		9-1-	01	1 +			Height Front:	_	268	(10.6)
ا ا		- 15		k i	1.1		Height Rear:	_	282	(11.1)
	f h	- e	d	1		heel Well Cle		_	123	(4.8)
	→ Wfre		Wrear		W	heel Well Cle	earance (R)	_	144	(5.7)
1	,-		-1				ame Height (F):		165	(6.5)
						Fra	ame Height (R)		175	(6.9)
							Engine Type:			inder
							Engine Size:	:	1.	6 L
							nission Type:			
							tomatic or Man			nanual
						FW	D or RWD or 4	WD:		FWD
Mass Dist					D:-L+	F	200/		Carle	22222
Left Front						Front:	30%		Scale:	green
Left Rear:	19%	Scal	e: yellow		Right	Rear:	19%		Scale:	blue
Maiaba										
Weights kg (lbs)	Curb		Test Inertial		Gross	Static				
			32.7 (1505.1)		723.3	(1594.6)				
W _{front}	Administration (CE)						-			
W _{rear}			35.2 (959.4)		475.2	(1047.6)	-			
W _{total}	1104.4 (243	34.6) 11	17.9 (2464.5)	-	1198.5	(2642.2)	-			
GVWR Rat	tings				Dumn	ny Data				
GVWR Ratings Front: 867 kg 1918 lbs					pe:	50th hybrid	ד ווו ל	est Dumn	nv	
Back:			1874 lbs			ass:			78 kg)	
Total:			3638 lbs	7		at Position			senger sid	e
										_
Note any	damage prior to	test:				No dam	nage.			

Table 8-14. CG Calculation: Curb Weight

CG Calculation Worksheet #1: Curb Weight

Make:	Kia		Test Number: 110MASH4C15-02
Model:	Rio		Date: Oct. 6, 2015
Year:	2008		Temperature: 73°F
VIN:	KNADE123386322	2346	
Fuel in Tank:	25% tank		
Fuel Removed:	none		M
Staff:	Jean V.		<u> </u>
	Chris C.		
	Ali Z.		
	David W.		W_1 W_2 A
W1 = Left Front (LF) =	363.2	kg	
Scale Used:	red		
W2 = Right Front (RF) =	330.7	kg	. ΙΨ
Scale Used:			
	8		E
W3 = Left Rear (LR) =	198.45	kg	Fuel
Scale Used:	vellow		Tank Tank
	yenow		
W4 = Right Rear (RR) =	212	kg	
Scale Used:	blue		
	Dide		
Total Weight:			$ W_3 $ $ W_4 $ $ W_4 $
Wtotal (measured) =	1104 45	kσ	$\begin{bmatrix} 3 \end{bmatrix} \qquad R \longrightarrow \begin{bmatrix} 4 \end{bmatrix}$
	110 11 13		
Wtotal (calculated) = 1	1104.35	kg	
			N
Distance between front whe	els:		
M = 1470			117 117 117 117
	 ·····		$W_{Total} = W_1 + W_2 + W_3 + W_4$
Distance between rear whee	els:		
N = 1443			
	 -		$(W_{1} + W_{1})E$
Distance from front to rear v	vheels:		$H = \frac{(W_3 + W_4)E}{W_{Total}}$
E = 2497			W Total
	 -		
Distance from front wheels b	oack to CG:		(W W M M M M M
H = 928.05			$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$
320.03			2 W Total
Distance from vehicle center	line to CG		
R = <u>-12.78</u>			
112.70			

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) As received: spare tire included

110MASH4C15-02

Table 8-15. CG Calculation: Test Inertial Weight

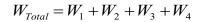
CG Calculation Worksheet #2: Test Inertial Weight

Test Number:

Rio Model: Date: Oct. 22, 2015 2008 Year: Temperature: 73°F KNADE123386322346 VIN: Fuel in Tank: 25% М Fuel Removed: No fuel removed Staff: Jean V. Chris C. David W. W_1 Vue H. W1 = Left Front (LF) = Scale Used: CG W2 = Right Front (RF) = 322.1 kg Scale Used: green Ε W3 = Left Rear (LR) = 212.95 Scale Used: yellow W4 = Right Rear (RR) = Scale Used: Total Weight: Wtotal (measured) =

Distance between front wheels:

Make:


Wtotal (calculated) = 1117.9

Distance between rear wheels:

Distance from front to rear wheels:

Distance from front wheels back to CG:

Distance from vehicle centerline to CG:

$$H = \frac{(W_3 + W_4)E}{W_{Total}}$$

$$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$$

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

Note: Spare tire, rear seats, carpet, trunk carpet, and rear plastic panel removed. Fuel tank was ¼ full, guide hub installed on front left wheel, and all instrumentation installed in vehicle.

Table 8-16. CG Calculation: Gross Static Weight

CG Calculation Worksheet #3: Gross Static Weight

	CG Cal	culation W	orksheet #3: Gross Static Weight
Make:	Kia		Test Number: 110MASH4C15-02
Model:	Rio		Date: Oct. 22, 2015
Year:	2008		Temperature: 73°F
VIN:	KNADE12338632	22346	
Fuel in Tank:	25%		M
Fuel Removed:	No fuel remov	/ed	
Staff:	Jean V.		
	Chris C.		
	David W.		
	Vue H.		
W1 = Left Front (LF) =	371.1	kg	
Scale Used:	red		
W2 = Right Front (RF) =	352.2	kg	,
Scale Used:	green		
W3 = Left Rear (LR) =	224.9	kg	¥ Fuel
Scale Used:	yellow		Tank
			← →
W4 = Right Rear (RR) =	250.3	kg_	
Scale Used:	blue		
Total Weight:			$ W_3 $ $ W_4 $
Wtotal (measured) =	1198.5	kg	$\left(\begin{array}{c} \\ \end{array} \right) \qquad \mathbb{R} \longrightarrow \left(\begin{array}{c} \\ \end{array} \right)$
Wtotal (calculated) = $\underline{1}$	198.5	kg	N N
Distance between front whee	els:		
M =1470	mm		W + W + W + W
			$W_{Total} = W_1 + W_2 + W_3 + W_4$
Distance between rear wheel	s:		
N = 1443	mm		$H = \frac{(W_3 + W_4)E}{W_{Total}}$
			$H = \frac{\sqrt{y}}{W_{Total}}$
Distance from front to rear w	heels:		rr 10tai
E = 2497	mm		
			$(W_2 - W_1)M + (W_4 - W_2)N$
Distance from front wheels b	ack to CG:		$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2W_{Total}}$
H = <u>990.05</u>	mm		∠ VV Total
Distance from vehicle centerl	ine to CG:		
R = 3.70	mm		

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Dummy added.

8.2.6. Vehicle Interior Deformation Measurements

Table 8-17. Pretest and Post-test Interior Floorboard Deformation Measurements

Vehicle Type	1100C	Test Number	110MASH4C15-02	
Make	Kia	Model	Rio	
Year	2008	Color	Black	
VIN #	KNADE123386322346		-	

Floorboard Measurements - Dimensions in mm (inches)

Daint		Pre-Impact			Post-Impact			Difference	
Point	X	Y	Z	X	Υ	Z	ΔX	ΔΥ	ΔZ
F1	850 (33.5)	400 (15.7)	-181 (-7.1)	852 (33.5)	400 (15.7)	-183 (-7.2)	2 (0.1)	0 (0)	-2 (-0.1)
F2	850 (33.5)	550 (21.7)	-183 (-7.2)	838 (33)	547 (21.5)	-194 (-7.6)	-12 (-0.5)	-3 (-0.1)	-11 (-0.4)
F3	850 (33.5)	700 (27.6)	-184 (-7.2)	840 (33.1)	695 (27.4)	-192 (-7.6)	-10 (-0.4)	-5 (-0.2)	-8 (-0.3)
F4	850 (33.5)	800 (31.5)	-183 (-7.2)	846 (33.3)	792 (31.2)	-190 (-7.5)	-4 (-0.2)	-8 (-0.3)	-7 (-0.3)
F5	1000 (39.4)	400 (15.7)	-204 (-8)	1000 (39.4)	409 (16.1)	-191 (-7.5)	0 (0)	9 (0.4)	13 (0.5)
F6	1000 (39.4)	550 (21.7)	-184 (-7.2)	988 (38.9)	539 (21.2)	-190 (-7.5)	-12 (-0.5)	-11 (-0.4)	-6 (-0.2)
F7	1000 (39.4)	700 (27.6)	-192 (-7.6)	993 (39.1)	688 (27.1)	-196 (-7.7)	-7 (-0.3)	-12 (-0.5)	-4 (-0.2)
F8	1000 (39.4)	800 (31.5)	-197 (-7.8)	996 (39.2)	791 (31.1)	-199 (-7.8)	-4 (-0.2)	-9 (-0.4)	-2 (-0.1)
F9	1150 (45.3)	400 (15.7)	-196 (-7.7)	1138 (44.8)	402 (15.8)	-144 (-5.7)	-12 (-0.5)	2 (0.1)	52 (2)
F10	1150 (45.3)	550 (21.7)	-184 (-7.2)	1139 (44.8)	534 (21)	-186 (-7.3)	-11 (-0.4)	-16 (-0.6)	-2 (-0.1)
F11	1150 (45.3)	700 (27.6)	-191 (-7.5)	1145 (45.1)	691 (27.2)	-196 (-7.7)	-5 (-0.2)	-9 (-0.4)	-5 (-0.2)
F12	1150 (45.3)	800 (31.5)	-191 (-7.5)	1150 (45.3)	786 (30.9)	-190 (-7.5)	0 (0)	-14 (-0.6)	1 (0)
F13	1300 (51.2)	550 (21.7)	-179 (-7)	1290 (50.8)	516 (20.3)	-175 (-6.9)	-10 (-0.4)	-34 (-1.3)	4 (0.2)
F14	1300 (51.2)	700 (27.6)	-181 (-7.1)	1295 (51)	678 (26.7)	-179 (-7)	-5 (-0.2)	-22 (-0.9)	2 (0.1)
F15	1300 (51.2)	800 (31.5)	-180 (-7.1)	1300 (51.2)	780 (30.7)	-178 (-7)	0 (0)	-20 (-0.8)	2 (0.1)
F16	1450 (57.1)	550 (21.7)	-105 (-4.1)	1430 (56.3)	523 (20.6)	-90 (-3.5)	-20 (-0.8)	-27 (-1.1)	15 (0.6)
F17	1450 (57.1)	700 (27.6)	-85 (-3.3)	1415 (55.7)	675 (26.6)	-72 (-2.8)	-35 (-1.4)	-25 (-1)	13 (0.5)

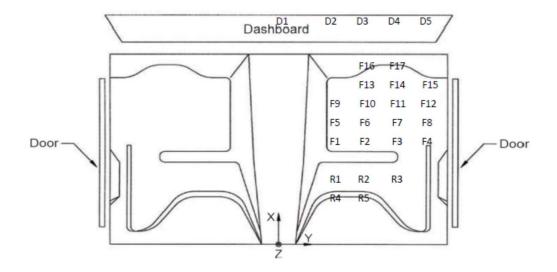
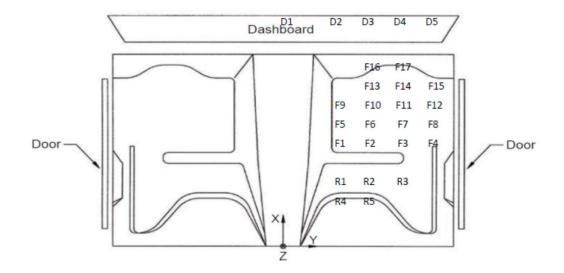


Table 8-18. Pretest and Post-test Interior Dashboard and Roof Deformation Measurements


Vehicle Type	1100C	Test Number	110MASH4C15-02	
Make	Kia	Model	Rio	
Year	2008	Color	Black	
VIN #	KNADE123386322346			

Dashboard Measurements - Dimensions in mm (inches)

Doint	Point Pre-Impact				Post-Impact		Difference			
Y	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	
D1	1076 (42.4)	200 (7.9)	532 (20.9)	1084 (42.7)	196 (7.7)	534 (21)	8 (0.3)	-4 (-0.2)	2 (0.1)	
D2	1047 (41.2)	400 (15.7)	532 (20.9)	1052 (41.4)	395 (15.6)	530 (20.9)	5 (0.2)	-5 (-0.2)	-2 (-0.1)	
D3	1115 (43.9)	550 (21.7)	532 (20.9)	1118 (44)	546 (21.5)	533 (21)	3 (0.1)	-4 (-0.2)	1 (0)	
D4	1118 (44)	700 (27.6)	519 (20.4)	1118 (44)	695 (27.4)	526 (20.7)	0 (0)	-5 (-0.2)	7 (0.3)	
D5	1106 (43.5)	800 (31.5)	515 (20.3)	1105 (43.5)	797 (31.4)	523 (20.6)	-1 (0)	-3 (-0.1)	8 (0.3)	

Roof Measurements - Dimensions in mm (inches)

Point	Pre-Impact				Post-Impact		Difference			
Polit	X	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ	
R1	730 (28.7)	400 (15.7)	921 (36.3)	738 (29.1)	400 (15.7)	925 (36.4)	8 (0.3)	0 (0)	4 (0.2)	
R2	730 (28.7)	550 (21.7)	911 (35.9)	739 (29.1)	551 (21.7)	912 (35.9)	9 (0.4)	1 (0)	1 (0)	
R3	730 (28.7)	700 (27.6)	891 (35.1)	740 (29.1)	703 (27.7)	895 (35.2)	10 (0.4)	3 (0.1)	4 (0.2)	
R4	467 (18.4)	550 (21.7)	979 (38.5)	470 (18.5)	553 (21.8)	979 (38.5)	3 (0.1)	3 (0.1)	0 (0)	
R5	475 (18.7)	700 (27.6)	900 (35.4)	481 (18.9)	710 (28)	901 (35.5)	6 (0.2)	10 (0.4)	1 (0)	

8.2.7.Data Plots

The data plots are shown in Figure 8-24 through Figure 8-29 include the accelerometer and angular rate sensor records from the test vehicle in test 110MASH4C15-02. They also show the velocity and displacement curves for the longitudinal and lateral components. These plots are required to calculate the occupant impact velocity (OIV) defined in MASH 2009. All data were analyzed using TRAP.

X Acceleration at CG

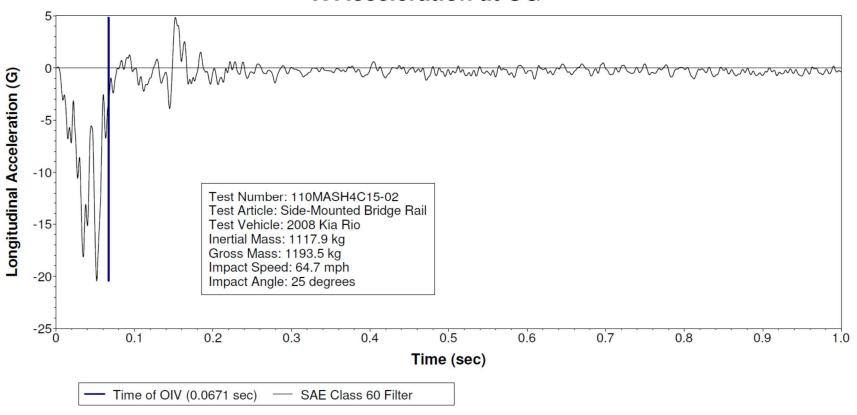


Figure 8-24. 110MASH4C15-02 X (Longitudinal) Acceleration at CG vs Time

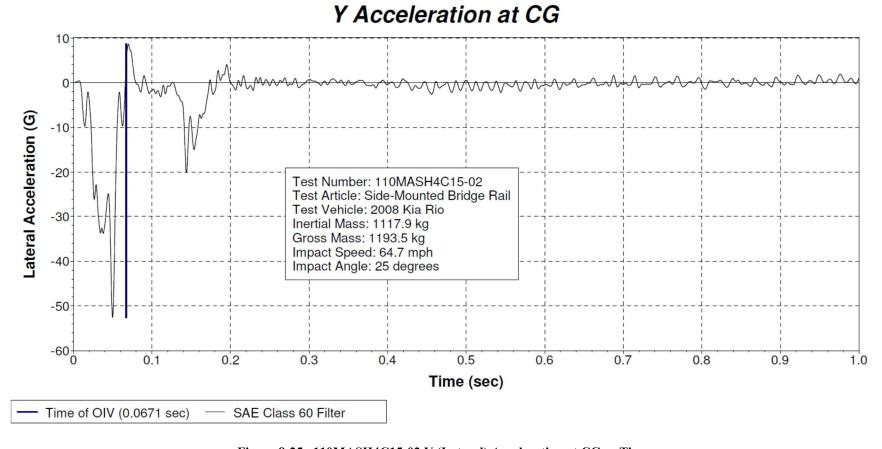


Figure 8-25. 110MASH4C15-02 Y (Lateral) Acceleration at CG vs Time

Z Acceleration at CG

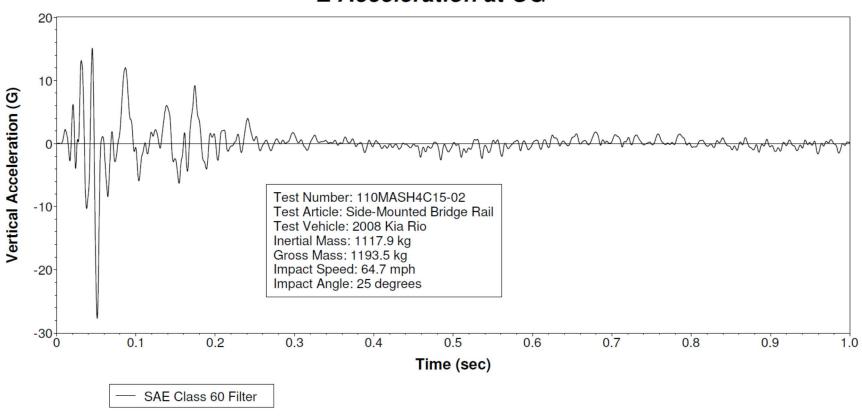


Figure 8-26. 110MASH4C15-02 Z (Vertical) Acceleration at CG vs Time

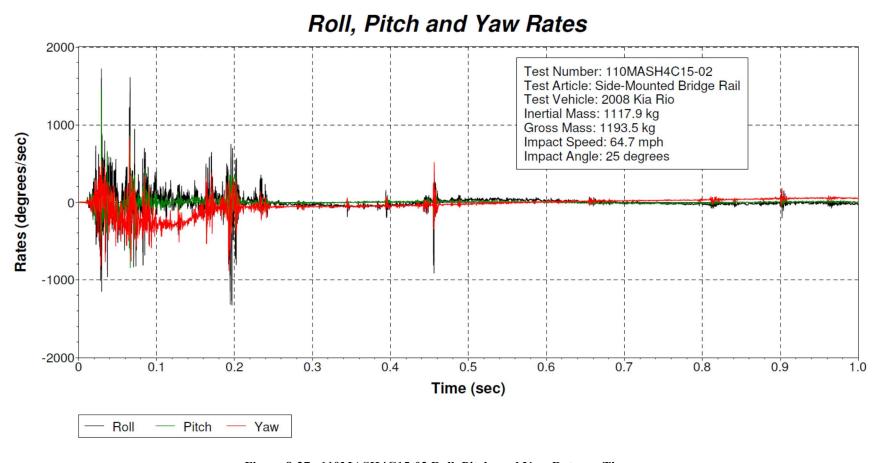


Figure 8-27. 110MASH4C15-02 Roll, Pitch, and Yaw Rates vs Time

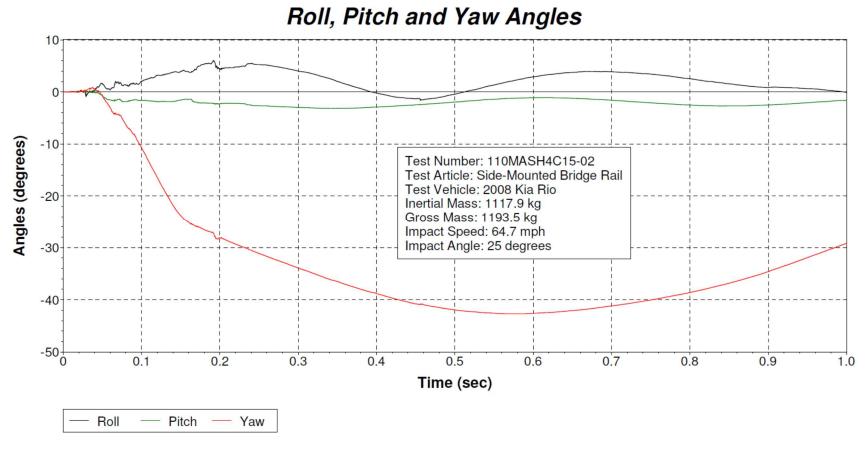


Figure 8-28. 110MASH4C15-02 Roll, Pitch, and Yaw Angles vs Time

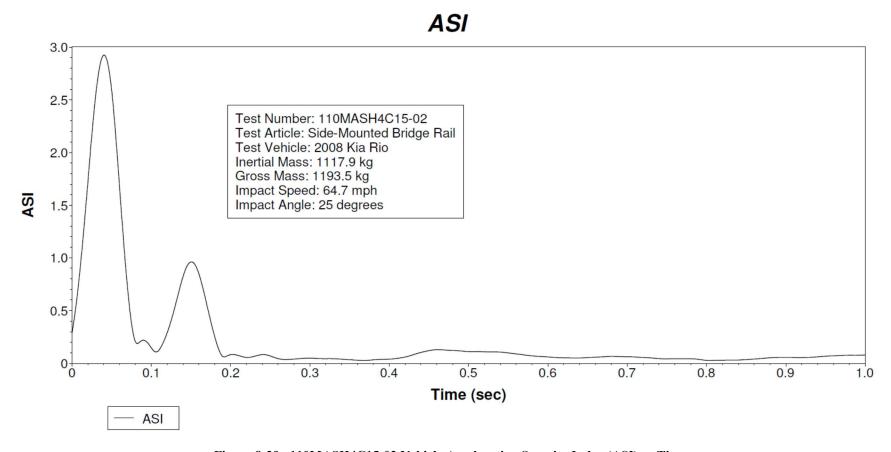


Figure 8-29. 110MASH4C15-02 Vehicle Acceleration Severity Index (ASI) vs Time

8.3. Test 110MASH4S16-03 Vehicle Setup

8.3.1. Test Vehicle Equipment

The vehicle used for this test is a 2005 Freightliner M2. The vehicle had two diesel fuel tanks, one on each side. The impact (passenger) side fuel tank was disconnected, drained, and purged with CO_2 gas to eliminate fuel vapors and oxygen. Fuel in the driver's side tank remained and was used to supply fuel to the engine during the test. In addition to being self-powered, the vehicle was also pushed with a 2001 Ford F350 Super Duty truck because the allowable runway length was not sufficient for the self-powered vehicle to reach the desired test speed.

Figure 8-30. 110MASH4S16-03 F350 Push Vehicle and the 10000S Test Vehicle

One pair of a 12-volt wet cell batteries were mounted in the vehicle on the instrumentation board. The batteries powered the GMH DataBrick transient data recorders. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box. A 4800 kPA CO₂ system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trail runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

An accelerator switch was located on the rear left of the vehicles cargo box. The switch opens an electronic solenoid that releases compressed CO_2 from a reservoir into a pneumatic ram, which was attached to the accelerator pedal. The CO_2 pressure for the accelerator ram was regulated to the same pressure as the remote braking system with a valve to adjust CO_2 flow rate. Speed control was accomplished by *Holt of California* in West Sacramento, California; Caterpillar engine service center. The service center reprogramed the speed governor to not exceed the target speed of 56 mph.

Three 5 feet by 5 feet by 2 inch (1.5 m by 1.5 m by 51 mm) steel plates were used as ballast. Each plate weighed approximately 2000 lbs (907 kg). They were mounted uniformly across the length and width of the cargo bed using 8 threaded rods through the bed to c-channel brackets under the bed. The ballast center of gravity height was at 64 inches (1626 mm).

Figure 8-31. 110MASH4S16-03 Vehicle Ballast

Figure 8-32. 110MASH4S16-03 Vehicle Ballast Mounted in with C-Channels Sections

Figure 8-33. 110MASH4S16-03 Vehicle Ballast CG Height (Red Laser at 64 inches)

The rear of the van body had a lift gate which was welded to the frame, thus shear plates were only mounted toward the front of the cargo box. Two shear plates, one on each side of the frame were mounted 48 inches (1219 mm) from the front of the cargo box to the middle of the plates. The shear plates are $20'' \times 4'' \times 3/8''$ (508 mm x 102 mm x 10 mm) HRLC steel plates, cut at 45° angles on each end and were mounted with 4-5/8" (117 mm) grade 8 bolts. All reinforcements were installed in accordance with the guidelines in *Ford's 2005 Body Builder Layout Book*.

Figure 8-34. 110MASH4S16-03 Shear Plates

Figure 8-35. 110MASH4S16-03 Instrumentation

Figure 8-36. 110MASH4S16-03 Instrumentation Mounted on Passenger Seat Mount

Figure 8-37. 110 MASH4S16-01 Brake and Gas Pedal Actuators

8.3.2. Test Vehicle Guidance System

The same rail guidance system as previous tests was used to direct the vehicle into the barrier. The guidance rail, anchored at 12.5 ft (3.8 m) intervals along its length was used to guide a mechanical arm, which was attached to the front left wheel of the vehicle. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

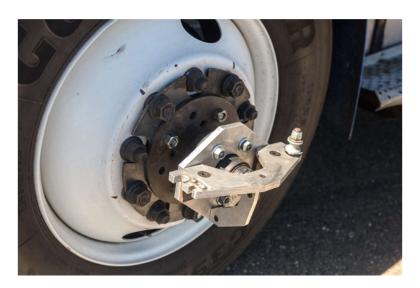


Figure 8-38. 110MASH4S16-03 Rail Guidance Hub

Figure 8-39. 110MASH4S16-03 Rail Guidance System with 10000S Disengaged

8.3.3. Photo – Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Figure 8-40 and Table 8-19. 110MASH4S16-03 Camera Types and Location Coordinates. The origin of the coordinates is at the intended point of impact.

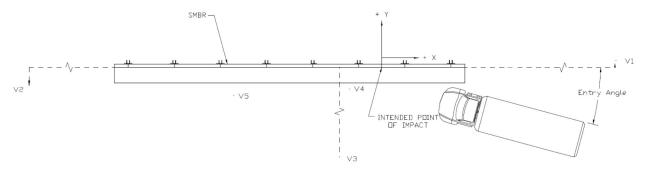


Figure 8-40. High-Speed Video Camera Locations

				v 1			
Camera	Camera	Camera		Lens		Coordinates	
Location	Make/Model	Serial No.	Lens	Serial No.	х	у	Z
V4	Vision Resesarch Miro 110	13235	14 mm	210927	11.2 ft (3.4 m)	-7.4 ft (2.3 m)	30.7 ft (9.4 m)
V5	Vision Resesarch Miro 110	13234	14 mm	217706	-31.6 ft (-9.6 m)	-6.7 ft (-2.0 m)	40.7 ft (12.4 m)
V3	Olympus iSpeed 3	1400012	20 mm	217706	-9.2 ft (-2.8 m)	-90.6 ft (-27.6 m)	N/A
V1	Olympus iSpeed 3	1400022	35mm	259936	97.0 ft (29.6 m)	1.3 ft (0.4 m)	N/A
V2	Olympus iSpeed 3	1400014	28-200 @ 200 mm	402495	-345.8 ft (-105.4 m)	-5.5 ft (-1.7 m)	N/A

Table 8-19. 110MASH4S16-03 Camera Types and Location Coordinates

The following are the pretest procedures that were required to enable video data reduction to be performed using the Vision Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 19.7 inches (500 mm) and 39.4 inches (1000 mm). The targets established scale factors.
- 2. Flashbulbs, mounted on the test vehicle, were electronically triggered to establish initial vehicle-to-barrier contact and the time of the application of the vehicle brakes.

High-speed digital video cameras were all time-coded through the use of a portable computer and were triggered as the test vehicle passed over a tape switch located on the vehicle path upstream of impact.

8.3.4. Electronic Instrumentation and Data

Transducer data were recorded on two separate GMH Engineering, Data Brick, Model III, digital transient data recorders (TDRs) that were mounted on the test vehicle. These transducers included two sets of accelerometers and two sets of angular rate sensors. One set of sensors was located in the cab of the vehicle 104.6 inches (2658 mm) in front and 0.9 inches (24 mm) to the right of the vehicle's center of gravity (CG). The other set of sensors was in the cargo bed of the vehicle located 64.3 inches (1634 mm) in front and 0.9 inches (24 mm) to the right of the vehicle's CG. The TDR data were reduced using a desktop personal computer running DADiSP 2002 version 6.0 NI NK B14 (pre-processing) and TRAP version 2.3.10 (post-processing). Accelerometer and angular rate sensor specifications are shown in Table 8-21.

The following table indicates where on the single-unit truck the sensors were mounted:

Table 8-20. 110MASH4S16-03 Sensor Locations

Sensor Mount Location from CG	х	Υ	Z		
	2658 mm	24 mm			
Truck Cab	(104.6 inches)	(0.9 inches)	N/A		
	In Front of CG	Right of CG			
	1634 mm	24 mm			
Cargo Box	(64.3 inches)	(0.9 inches)	N/A		
	In Front of CG	Right of CG			

Table 8-21. Accelerometer and Angular Rate Sensor Specifications

Location	Туре	Manufacturer	Model	Serial #	Range	Orientation
	Accelerometer	Measurement Specialties	64CM32	MS13366	±200g	Longitudinal
	Accelerometer	Measurement Specialties	64CM32	MS13328	±200g	Lateral
	Accelerometer	Measurement Specialties	64CM32	MS13358	±200g	Vertical
Truck Cab	Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4018 ±1500°,		Roll
	Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4217	±1500°/s	Pitch
	Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3348	±1500°/s	Yaw
	Accelerometer	Measurement Specialties	64CM32	MS13364	±200g	Longitudinal
	Accelerometer	Measurement Specialties	64CM32	MS13361	±200g	Lateral
	Accelerometer	Measurement Specialties	64CM32	MS13329	±200g	Vertical
Cargo Box	Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3355	±1500°/s	Roll
	Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS3336	±1500°/s	Pitch
	Angular Rate Sensors	Data Acquisition Systems	ARS- 1500(1000HZ)	ARS4019	±1500°/s	Yaw

A rigid stand with three retro-reflective 90° polarizing tape strips was placed on the ground near the test article and alongside the path of the test vehicle. The strips were spaced at carefully measured intervals of 39.4 inches (1000 mm). The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the accelerometer signals on the TDR, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) an "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, were placed 13.1 ft (4 m) apart just upstream of the test article

specifically to establish the impact speed of the test vehicle. The layout for all of the pressure sensitive tape switches and reflective tape is shown in Figure 8-41.

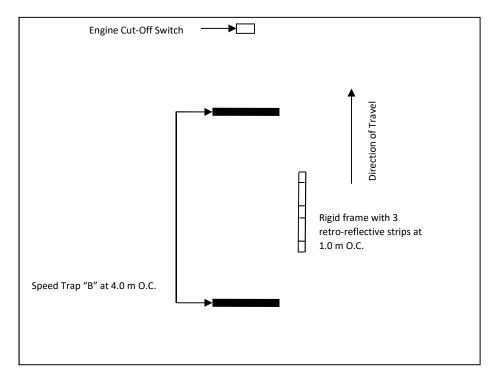


Figure 8-41. Speed Trap Tape Layout

8.3.5. 2005 Freightliner M2 Vehicle Measurements

Table 8-22. Exterior Vehicle Measurement

Date:		6/29/2016	Tes	t Number:	110MA	SH4S16-03	Model:		Freight	liner
Tire Size Fr	ont:	11R22.5	Ode	ometer:	19	6523	Make:	E	Business C	
Tire Size Re	ar:	11R22.5	VIN	l: 1	FVACWDC35	HU87193	Year:		200	4
Tire Inflatio	n Pressure	::		Tape Meas	sure Used:	#1 &	#4	CLE:	DRIS	1502
 			b o j		y h	c - c	v)	18	Ţ
Vehicle Geo	ometry - m	m (inches) Ta	pe Meas	ure Used:	#18	#4				
a)	2333	(91.9)	j)	755		(29.7)	s)	870		34.3)
b)	3818	(150.3)	k)	529		(20.8)	t) 2	2436		95.9)
c)	9972	(392.6)	I)	1284		(50.6)	u) 2	2698		106.2)
d)	2961	(116.6)	m)	2070		(81.5)	v) (5960		(274)
e)	5966	(234.9)	n)	1800		(70.9)	w)	65		(2.6)
f)	1044	(41.1)	0)	1335		(52.6)	_ ^	2483		97.8)
g)		(0)	p)	14		(0.6)	y)	850		33.5)
h)	3436	(135.3)	q)	1025		(40.4)		1318		51.9)
i)	390	(15.4)	r)	590		(23.2)	_aa)	1844		72.6)
Weights - k		urb	Test I	nertial	Gross	Static	Wheel Cen		500	(19.7)
W _{front axel}	2844	(6269.8)	3239	(7140.7)	3239	(7140.7)	Wheel Cen			
W _{rear axel}	3863	(8516.3)	6689	(14746.5)	6689	(14746.5)	Height Rea		525	(20.7)
	6707	(14786.2)	9928	(21887.1)	9928	(21887.1)	Wheel Well			
W _{TOTAL}	0/0/	(14700.2)	3320	(21007.1)	3320	(21007.1)	Clearance (F	R):	170	(6.7)
							Wheel Wel Clearance (170	(6.7)
Ballast:	314	42.5	(6927.9) Scale:	blue		Engine Typ	e:	C7, Die	esel
							Engine Size	:	L6, 7.	2L
						Tra	ansmission T	ype:		
								Automa	atic	
								RWD)	
Mass Distri										
Left Front	1618	(3567)	Scale:	green	Right Front				Scale:	red
Left Rear	3474	(7658.7)	Scale:	blue	Right Rear	3215	(708	37.7)	Scale:	yellow

Note any damage prior to test: Roll-up door has minor damage on low left side. Cargo box has damage on top passenger side corner. Dent on top back or cargo bed.

Table 8-23. 2005 Freightliner M2 CG Calculation: Curb Weight

CG Calculation Worksheet #1: Curb Weight

Make: Freightliner

Model: Business Class M@

Year: 2004

VIN: 1FVACWDC35HU87193

Fuel in Tank: 1/4 tank

Fuel Removed: none

Staff: C Caldwell

J Williams

W1 = Left Front (LF) =	1352	kg
Scale Used:	red	

W2 = Right Front (RF) = 1492 kg
Scale Used: blue

W3 = Left Rear (LR) = 1962 kg
Scale Used: yellow

W4 = Right Rear (RR) = 1901 kg
Scale Used: green

Total Weight:

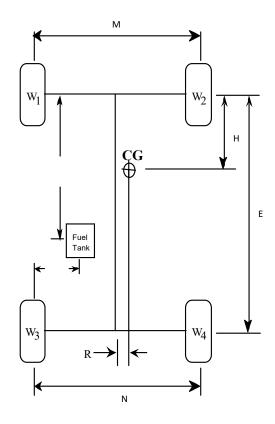
Wtotal (measured) = _____ kg

Wtotal (calculated) = 6707 kg

Distance between front wheels:

Distance between rear wheels:

Distance from front to rear wheels:


Distance from front wheels back to CG:

Distance from vehicle centerline to CG: R = 13 mm

 Test Number:
 110MASH4S16-03

 Date:
 6/29/2016

 Temperature:
 85 °F

$$W_{Total} = W_1 + W_2 + W_3 + W_4$$

$$H = \frac{\left(W_3 + W_4\right)E}{W_{Total}}$$

$$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2W_{Total}}$$

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) As purchased, no additions. Used new 40,000 Capacity Roadrunner Scales.

Table 8-24. 2005 Freightliner M2 CG Calculation: Test Inertial Weight (same as Gross Static Weight)

CG Calculation Worksheet #2: Test Inertial Weight Make: Freightliner Model: Business Class M2 Year: 2004 VIN: 1FVACWDC35HU87193 Fuel in Tank: 1/8th of a tank Fuel Removed: none Staff:

John W. Chris C.

W1 = Left Front (LF) = Scale Used: green

W2 = Right Front (RF) = 1621 Scale Used:

W3 = Left Rear (LR) = 3474 Scale Used: _____ blue

W4 = Right Rear (RR) = 3215 vellow Scale Used: ____

Total Weight:

Wtotal (measured) = 9929

Wtotal (calculated) = 9928

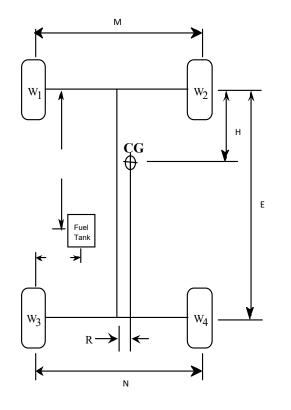
Distance between front wheels:

Distance between rear wheels:

1844

Distance from front to rear wheels:

E = <u>5966</u> mm


Distance from front wheels back to CG:

H = 4019.6 mm

Distance from vehicle centerline to CG:

R = -23.7 mm

Test Number: 110MASH4S16-03 Date: 8/26/2016 Temperature:

$$W_{Total} = W_1 + W_2 + W_3 + W_4$$

$$H = \frac{(W_3 + W_4)E}{W_{Total}}$$

$$R = \frac{(W_2 - W_1)M + (W_4 - W_3)N}{2 W_{Total}}$$

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) All equipment installed and ballast installed.

8.4. Anchor Bolt/Nut Torque Tension Testing

The Division of Engineering Services requested that a 10-kip pre load be established on each anchor bolt that connects the side-mounted post to the deck. It was decided that a *click adjustable* torque wrench would be used to set the torque on each of the anchor bolts. A Skidmore-Wilhelm¹ bolt tension machine (Model: ML, SN: 9682) was utilized to establish the requisite torque associated with a 10-kip load.

Testing was performed with the Skidmore-Wilhelm bolt tension machine clamped to a steel table. An anchor bolt, two disk springs, and two nuts were sampled from side-mount bridge rail hardware and placed in the tension machine as shown in the pictures below. Other than the blue coating, no additional lubrication was used during the torqueing. The adjustment dial on the torque wrench was increased until the applied torque corresponded with a 10,000 lb reading on the Skidmore Wilhelm gage. The corresponding torque required to reach the 10,000 lb load was 158 ft-lbs. Both the procedure and the results were repeated using a second nut.

Figure 8-42. Skidmore-Wilhelm Bolt Tension Machine

¹The Skidmore-Wilhelm bolt tension machine was verified in the Caltrans Structural Materials Lab using a Calibrated Instron 67kip Universal Tensile/Compression test machine.

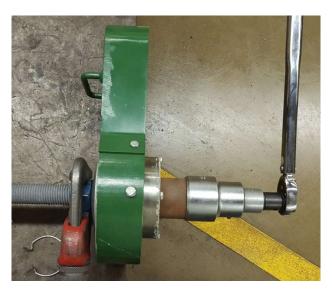


Figure 8-43. Top View

Figure 8-44. Disc Spring View

The Skidmore-Wilhelm bolt tension machine was verified in the Caltrans Structural Materials Lab using a Calibrated Instron 67kip Universal Tensile/Compression test machine. Compression in the Instron machine was brought to three levels (5k, 10k, 15k) and reading was verified in the tension machine dial.

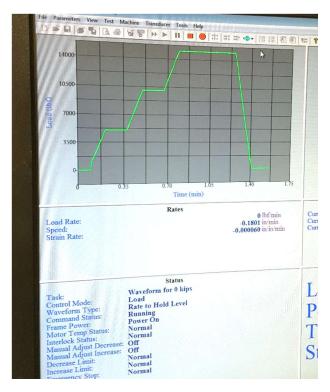
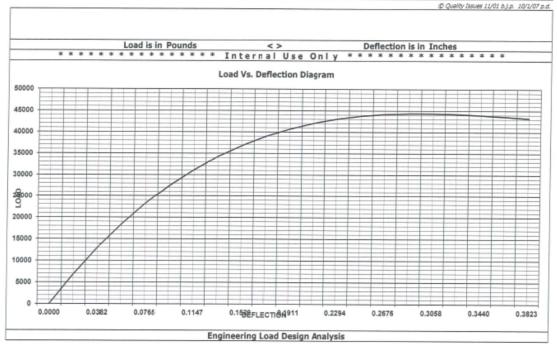


Figure 8-45. Verification of Skidmore-Wilhelm Bolt Tension Machine

Figure 8-46. Skidmore-Wilhelm Verification

8.5. Disc Springs


Table 8-25. Disc Spring Design Information

ROLEX SPRING ENGINEERING DESIGN ANALYSIS

Conical Disc Spring Design
Predicted Load and Stress by Deflection
Engineering Load Design Analysis

Customer Name	CALIFORN	ITA DOT		D-fl-stl-s				_		ate	14-Jan-1	5_
Cust. Part No.				Deflection	Height	Load		_	Stresse			
	BRIDGE RA			in	in	in	S1 Comp		S2 Tens	on	S3 Tensio	on
Contact Name	DAVID WHI			inches	inches	pounds	psi		psi		psi	
Customer Phone		Ext.		0.0000	0.6250	0.0	0		0		0	\perp
Customer Fax				0.0191	0.6059	6880.1	141,615		13,185		54,140	
				0.0382	0.5868	13034.2	279,262		22,400		106,500	
				0.0573	0.5677	18500.6	412,938		27,646		157,079	\Box
Supplier Part No.				0.0765	0.5485	23317.4	542,646		28,923		205,877	Y
Prepared by		Ext.		0.0956	0.5294	27523.0	668,385		26,231		252,895	М
Material Type	6150 Spring	Steel		0.1147	0.5103	31155.4	790,154		19,569		298,132	М
Load Type	Pounds			0.1338	0.4912	34252.9	907,954		8,939	\top	341,588	M
Parts in Series	1	in Parallel	1	0.1529	0.4721	36853.8	1,021,785	С	5,661	\top	383,263	M
Total # of parts	1	Appl. Type	Dynamic	0.1720	0.4530	38996.1	1,131,646	С	24,231	\top	423,158	М
	INCH		NM	0.1911	0.4339	40718.2	1,237,538	С	46,769	\top	461,272	М
Outside Dia.	4.984		126.6	0.2102	0.4148	42058.2	1,339,461	C	73,277	\Box	497,605	М
Inside Dia.	1.507		38.3	0.2294	0.3956	43054.3	1,437,415	C	103,754	П	532,158	М
Thickness	0.2490		6.32	0.2485	0.3765	43744.8	1,531,400	C	138,200	П	564,930	М
Overall Height	0.6250		15.88	0.2676	0.3574	44167.8	1,621,415	C	176,615	\Box	595,921	М
Bearing Flat OD	0.000		0.00	0.2867	0.3383	44361.6	1,707,461	C	219,000	Y	625,132	М
Bearing Flat ID	0.000		0.00	0.3058	0.3192	44364.4	1,789,538	C	265,354	М	652,561	М
Radius	0.042		1.07	0.3249	0.3001	44214.3	1,867,646	C	315,677	M	678,210	М
Pc. weight lbs.	1.2535	Newtons	5.562	0.3440	0.2810	43949.6	1,941,784	C	369,969	M	702,079	M
				0.3632	0.2618	43608.4	2,011,954	C	428,230	M	724,167	М
OD @ Flat	4.980		124.43	0.3823	0.2427	43229.1	2,078,154	C	490,461	M	744,474	М
ID @ Flat	1.510		36.12	Max stress	yield is ident	ified "M", Des	ign Max with	"Y"	Compression	on yi	eld with "C".	\Box
	^ Theore	etical Calculat	tions ^				Yields					_
			Poisson	0.30		Maximum	230000	(1	1)	h	0.376	
Spring Rate	113,086	lbs / inch	E Modulus	29,700,000	Des	ign Margin	200000	(Y	()	ı/t	1.510	

Using	Target	Load	S1 Comp.	S2 Tension	S3 Tension	
Deflection						

8.6. Finite Element Modeling

8.6.1.Objective

The purpose of this document is to record the RSRG Lab's experience with finite element modeling and analysis. Finite element (FE) analysis was performed using Livermore Software Technology Corporation's (LSTC) LS-Dyna, which is a commercial finite element program commonly used for crashworthiness analysis. The purpose of the modeling was to build finite element models that would represent their real world counterparts.

8.6.2.Barrier Models

A number of models were developed to represent different elements of the Side Mounted Bridge Rail research project. All the models were processed with LS-Dyna. All of the models were designed to simulate American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* required testing of longitudinal barriers to Test Level 4. The CA ST-70SM Side Mount Bridge Rail is 42 inches (1.07 m) high and consists of four steel beams. The top and bottom rails are 8 inch (203 mm) by 3 inch (76 mm) steel tubes and the middle two rails are 8 inch (203 mm) by 4 inch (102 mm) steel tubes. Each post is mounted to the side of a bridge deck with five anchor bolts. On each of the anchor bolts are two disc springs that reduce the effective stiffness of the post, allowing the rails to distribute more of the load to adjacent posts and lessening damage to the bridge deck during an impact. An oversight was made in the model regarding the application of a 10,000 lb_f (44,500 N) preload to all of the anchor bolts. This preload was applied to the actual test article by torqueing all the bolts to 158 ft-lbs (214 N-m). The barrier models did not have this preload applied to the bolts.

8.6.2.1. Disc Springs

In order to understand the affects that the two disc springs per bolt have on the bridge rail system, four spring models where built. All models had the springs between two plates. The bottom plate was constrained so that there was no translation or rotation in any direction. The top plate was allowed to move in the z-direction only, to apply a load to the springs. Two of the models consisted of a single spring and two of the models consisted of two springs stacked on top of each other, see Figure 8-47 and Figure 8-48. The single spring models had a load that started at zero and was ramped up 5,000 lbs/sec (2,270 kg/sec) until a maximum load of 50,000 lbf (222,400 N) was reached. The stacked springs models had a load that started at zero and was ramped up 10,000 lbs/sec (4,540 kg/sec) until a maximum load of 100,000 lbf (444,800 N) was reached. All of the material properties of the spring model where based on the properties on AlSI 6150 spring steel. AlSI 6150 spring steel has a yield strength around 105 ksi (720 MPa). One single spring model and one stacked spring model have material definitions that include the 105 ksi (720 MPa) yield strength. The other single spring model and stacked spring model have material definition that match the yield strength that was given in the Rolex Spring's Conical Disc Spring Design Analysis. The yield strength provided by Rolex Spring was 200 ksi (1,380 MPa).

Figure 8-47. Single Disc Spring Model

Figure 8-48. Double Disc Spring Model

8.6.2.2. SMBR Shell Model with Springs

Only the anchor bolts, anchor bolt washers, and disc springs were solid elements in the CA ST-70SM Shell Model with Springs.

Figure 8-49. SMBR Shell Model With Springs

8.6.2.3. SMBR Solid Model with Springs

All elements in the CA ST-70SM Solid Model with Springs simulation are solid elements.

Figure 8-50. SMBR Solid Model With Springs

8.6.2.4. CA ST-70SM Solid Model without Springs

The CA ST-70SM Solid Model without Springs is the same as the CA ST-70SM Solid Model with Springs model except that the disc springs have been removed. There was a possibility that the CA ST-70SM Side Mount Bridge Rail system would be tested without the disc springs on the anchor bolts. It was ultimately decided that this testing was not needed. Although testing was not conducted on the CA ST-70SM without springs, simulations of this testing were performed and the results are included in the summaries below.

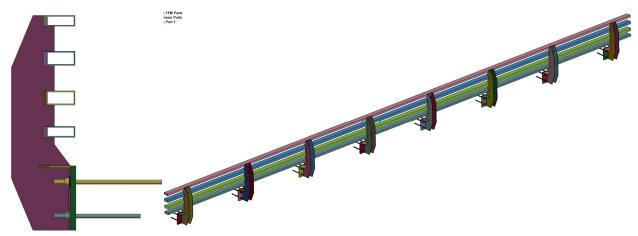


Figure 8-51. SMBR Solid Model Without Springs

8.6.3. Vehicle Models

All vehicle models were provide by the National Crash Analysis Center's (NCAC) Finite Element Model Archive webpage, http://www.ncac.gwu.edu/vml/models.html. This section will list which models were used and how they were modified.

8.6.3.1. 2270P Truck

The truck model used for any MASH 2270P truck test simulations was the 2270-kg 2007 Chevy Silverado version 2 that was posted February 27, 2009. The only change to the vehicle model was to increase the

velocity of the vehicle model to match the required speed for a MASH Test Level 4 longitudinal barrier test. For this test the 2270P truck will impact the barrier at a speed of 62.2 mph (100 km/h) at an angle of 25 degrees.

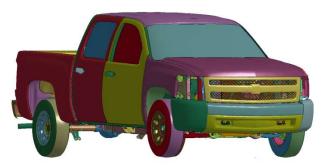


Figure 8-52. 2270P Truck

8.6.3.2. 1100C Car

The car model used for any MASH 1100C car test simulations was the 1100-kg 2010 Toyota Yaris that was posted November 17, 2014. The only change to the vehicle model was to increase the velocity of the vehicle model to match the required speed for a MASH Test Level 4 test. For this test the 1100C car will impact the barrier at a speed of 62.2 mph (100 km/h) at an angle of 25 degrees.

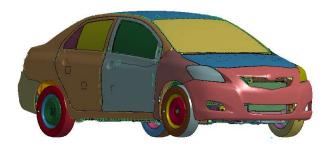


Figure 8-53. 1100C Car

8.6.3.3. 10000S Single-Unit Van Truck

The single-unit van truck model used for any MASH 10000S single-unit van truck test simulations was the Ford Single Unit Truck that was posted November 3, 2008. This model is of a 1996 Ford 18,000 lbs (8,150 kg) van body truck which was designed to meet the properties of the NCHRP Report 350 8000S single-unit van truck. The NCAC website did not have a MASH 10000S model when this report was written. Therefore, the Ford Single Unit Truck was modified in the following ways. The shape of the ballast in the bed of the truck was changed so that the ballast's center of gravity was 63 inches (1,600 mm) above the ground. The density of the ballast was increased so that the total mass of the truck was 22,050 lbs (10,000 kg). The wheelbase and overall length of the truck were not changed. Therefore, the wheelbase is short 29.5 inches (750 mm) and the overall length is short 51.2 inches (1,300 mm) of the properties given in MASH for a 10000S truck. The velocity of vehicle model was increased to match the required speed for a

MASH Test Level 4 test. For this test the 10000S truck will impact the barrier at a speed of 56 mph (90 km/h) at an angle of 15 degrees.

Figure 8-54. 10000S Single-Unit Van Truck

8.6.4. Comparing Modeling Data to Real World Data

8.6.4.1. Disc Springs

On February 11, 2015 a test of the disc springs for the CA ST-70SM Side Mounted Bridge Rail project was conducted. The purpose of the testing was to compare the displacement versus load curves for a single disc spring and for a stack of two disc springs with the displacement versus load curve provided by the manufacturer, Rolex Spring. Since these results were available the results of the simulations were included in the overall analysis of the disc springs.

Figure 8-55. Spring Testing Setup

Figure 8-57 shows the load versus displacement curves for the single disc springs tests, simulations, and the data provided by Rolex Spring. Test 1 and Test 2 are the results of testing two springs independently.

Each spring was placed in a materials testing machine that applied a load and measured the deflection. The machine applied the load in 2,000 lbf (8,900 N) increments until it reached 30,000 lbf (133,500 N). After 30,000 lbf (133500 N) the applied load was increased to 5,000 lbf (22,200 N) increments. Both tested springs have similar curves, deflected about 0.16 inches (4 mm) before flattening, and had a maximum load between 28,000 lbf (124,600 N) and 30,000 lbf (133,500 N). Test 1 and Test 2 springs had about 67% of the maximum load provided by the Rolex Spring design data. Both of the simulation models had similar curves to the Rolex Spring design data but reached their maximums at lower loads. For the single spring simulation where the spring material had the yield strength defined as 105 ksi (720 MPa) the spring reached its maximum load around 29,000 lbf (129,000 N) and deflection of about 0.10 inches (3 mm) before flattening. The 105 ksi (720 MPa) single spring simulation had about 67% the maximum load of the Rolex Spring design data. The single spring simulation with the yield strength of 200 ksi (1,380 MPa) reached its maximum load around 35,000 lbf (155,700 N) and deflection of about 0.15 inches (4 mm) before flattening. The 200 ksi (1,380 MPa) single spring simulation had about 78% the maximum load of the Rolex Spring design data.

Figure 8-56. Springs for Test 1 and Test 2

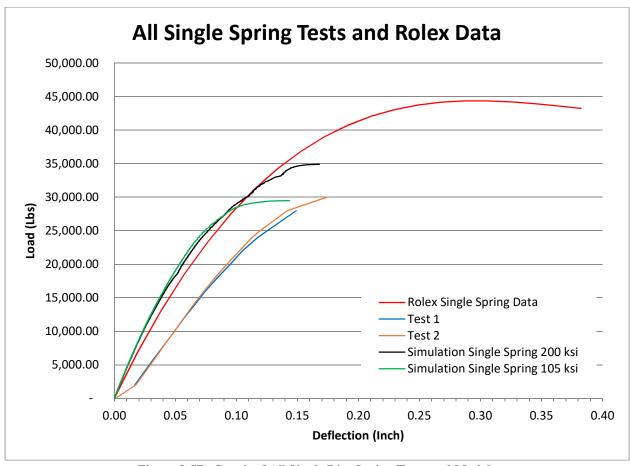


Figure 8-57. Graph of All Single Disc Spring Tests and Models

Figure 8-59 shows the load versus displacement curves for the double disc springs test, simulations, and modified Rolex Spring design data. The Rolex Spring design data was modified by doubling the load over the same deflection to represent two disc springs stacked on top of each other. Test 3 is the result of testing two springs stacked on top of each other. The two springs were placed in a materials testing machine that applied a load and measured the deflection. The machine applied the load in 2,000 lbf (8,900 N) increments until it reached 30,000 lbf (133,500 N). After 30,000 lbf (133,500 N) the applied load was increased to 5,000 lbf (22,200 N) increments. Test 3 deflected about 0.23 inches (6 mm) before flattening, and had a maximum load around 60,000 lbf (267,000 N). Test 3 had about 69% of the maximum load provided by the modified Rolex Spring design data. The double spring simulation with the yield strength of 105 ksi (720 MPa) reached its maximum load around 42,000 lbf (187,000 N) and deflection of about 0.13 inches (3 mm) before flattening. The 105 ksi (720 MPa) single spring simulation with the yield strength of 200 ksi (1,380 MPa) reached its maximum load around 52,000 lbf (231,300 N) and deflection of about 0.17 inches (4 mm) before flattening. The 200 ksi (1,380 MPa) single spring simulation had about 60% the maximum load of the modified Rolex Spring design data.

Figure 8-58. Spring for Test 3

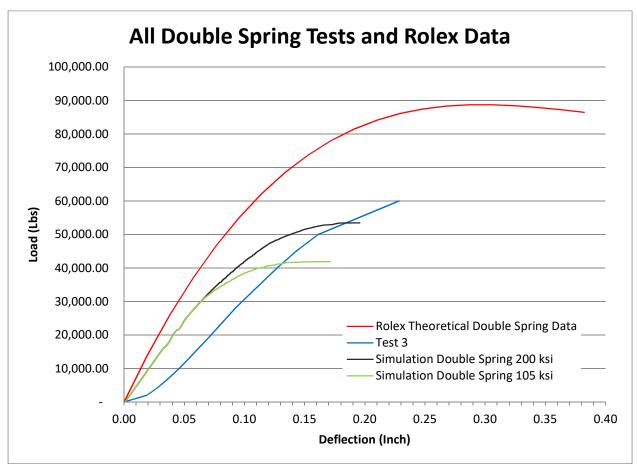


Figure 8-59. Graph of All Double Disc Spring Tests and Models

8.6.4.2. 2270P Truck

This section compares the FE modeling to the full scale crash testing of the CA ST-70SM Side Mounted Bridge Rail and a 2270P truck. Section 8.6.4.2.1 compares the movement of the test article between the FE models and the full scale test. Section 8.6.4.2.2 compares the analyzed data from the FE models and

the full scale test. Section 8.6.4.2.3 is a visual comparison of the FE modeling and the full scale test. Table 8-26 shows the differences between the vehicle used in testing and the vehicle model used in the finite element modeling.

Table 8-26. Center of Gravity for 2270P Truck Test Vehicle and LS-Dyna Finite Element Model

	Vehicle Type	X*	γ**	Z	Mass	Wheel Base
Test 110MASH3P15-01	2007 Dodge Ram 1500	60.7 inches	0.0 inches	28.0 inches	5028 lbs	140.6 inches
		(1541 mm)	(1 mm)	(712 mm)	(2281 kg)	(3572 mm)
2270P Vehicle Models	2007 Chevrolet Silverado	65.7 inches	-0.4 inches	28.6 inches	5004 lbs	144.1 inches
		(1670 mm)	(-11 mm)	(726 mm)	(2270 kg)	(3660 mm)

^{*} Behind centerline of front tire

8.6.4.2.1. Test Article Movement

When comparing the full scale test to the two FE models of the Bridge Rail with springs, only the solid model of the barrier has similar test article movement. Movement in the full scale test article was measured by string potentiometers. The top rail had a dynamic deflection of 1.62 inches (41 mm) and a static displacement of 0.18 inches (5 mm). The top of the test article in the Shell Model with Springs simulation had a dynamic deflection of 0.5 inches (13 mm) and a static deflection of 0.04 inches (1 mm). The barrier in the shell model's reaction was very stiff, even stiffer than the test article in the Solid Model without Springs Truck model.

The top of the test article in the Solid Model with Springs simulation had a dynamic displacement of 2.3 inches (59 mm) and the static displacement was not measured because the test article was still moving when the simulation was stopped.

Although the CA ST-70SM SMBR system without the disc springs was not tested, the results of the FE model without the springs is included in Table 8-27. The top of the barrier in the Solid Model without Springs Truck simulation had a dynamic displacement of 0.63 inches (16 mm) and a static displacement of 0.08 inches (2 mm). These results appear reasonable since the system is more rigid without the disc springs on the anchor bolts.

Table 8-27. Test Article Movement Comparison Full Scale and FE Model Results for 2270P with Disc Springs

Maximum Test Article Movement	Test 110MASH3P15-01	Shell Model with Springs Truck	Solid Model with Springs Truck	Solid Model without Springs Truck
Top Rail Dynamic Deflection	1.62 inches (41 mm)	0.5 inches (12 mm)	2.3 inches (59 mm)	0.63 inches (16 mm)
Top Rail Static Displacement	0.18 inches (5 mm)	0.04 inches (1 mm)	Barrier Still Moving When Simulation was Stopped	0.16 inches (4 mm)

^{**} Negative means CG is on the driver side of the vehicle's centerline

8.6.4.2.2. TRAP Data Comparison

The accelerometer and angular rate sensor data gathered during the full scale test and the FE modeling were processed with Test Risk Assessment Program (TRAP) and an SAE class 180 filter. See Table 8-28 for all of the TRAP results including the results of the Solid Model without Springs Truck simulation.

When Test 110MASH3P15-01 is compared to the results of the Shell Model with Springs Truck simulation the majority of the test data differs from the simulation. The TRAP results for the simulation tend to be higher than the test results. While the crash test was within the MASH evaluation criteria the simulation would have been considered a failure due to the Lateral Ridedown Acceleration being 25.7 G which is higher than the maximum of 20.49 G allowed in MASH.

When comparing the results of Test 110MASH3P15-01 to the Solid Model with Springs Truck simulation the majority of the test data differs slightly from the simulation data. The simulation TRAP results still tend to be higher than the test results but of the data is within the evaluation criteria provided by MASH.

Although the CA ST-70SM Side Mounted Bridge Rail system was not tested without the disc springs on the anchor bolts, the CA ST-70SM SMBR simulation Solid Model without Springs Truck can still be compared to Test 110MASH3P15-01. Most of the results are similar but the longitudinal and lateral accelerations were much higher in the simulation. The Lateral Ridedown Acceleration was 21.7 G which is higher than the maximum allowed in MASH and would be considered a failure. However the simulation results are high compared to testing.

Table 8-28. TRAP Results Data Comparison for Full Scale and FE Models for 2270P Truck (Absolute Values)

			· ·		
Data Results	MASH Criteria	Test 110MASH3P15- 01	Shell Model with Springs Truck	Solid Model with Springs Truck	Solid Model without Springs Truck
Longitudinal Occupant Impact Velocity	Preferred = 9.1 m/s Max = 12.2 m/s	4.1 m/s	2.6m/s	3.5 m/s	3.5 m/s
Longitudinal Ridedown Acceleration 10 msec Average	Preferred = 15.0 G Max = 20.49 G	2.6 G	9.3 G	4.5 G	10 G
Lateral Occupant Impact Velocity	Preferred = 9.1 m/s Max = 12.2 m/s	8.2 m/s	8.9 m/s	8.6 m/s	6.3 m/s
Lateral Ridedown Acceleration 10 msec Average	Preferred = 15.0 G Max = 20.49 G	16.9 G	25.7 G	19.7 G	21.7 G
PHD	n/a	16.9 G	25.9 G	19.8 G	21.7 G
ASI	n/a	1.88	2.05	1.9	1.89
Max Roll	<75 Degrees	6.8 degrees	19.7 degrees	20.5 degrees	17.1 degrees
Max Pitch	<75 Degrees	2.3 degrees	4.9 degrees	4.4 degrees	5.7 degrees
Max Yaw	n/a	38.3 degrees	38.7 degrees	35.0 degrees	42.7 degrees

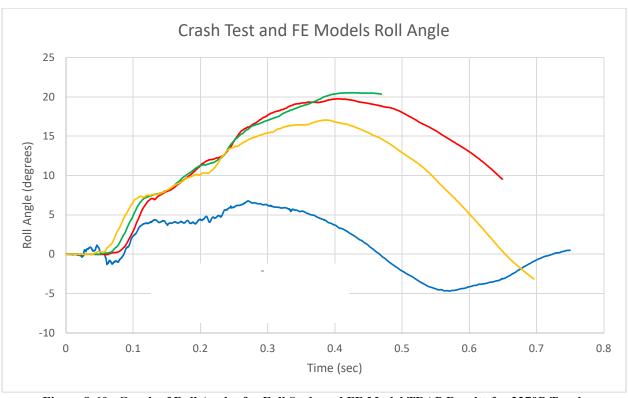


Figure 8-60. Graph of Roll Angles for Full Scale and FE Model TRAP Results for 2270P Truck

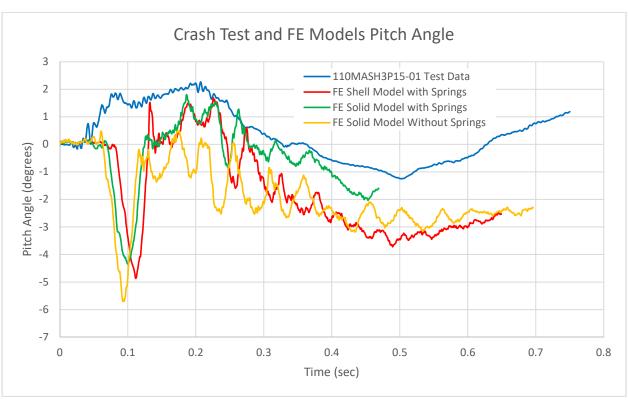


Figure 8-61. Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 2270P Truck

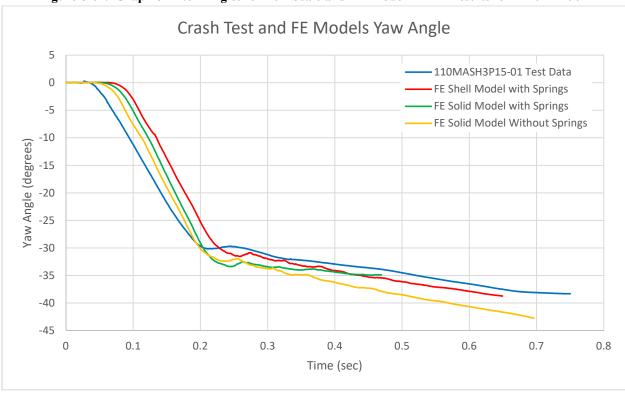


Figure 8-62. Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 2270P Truck

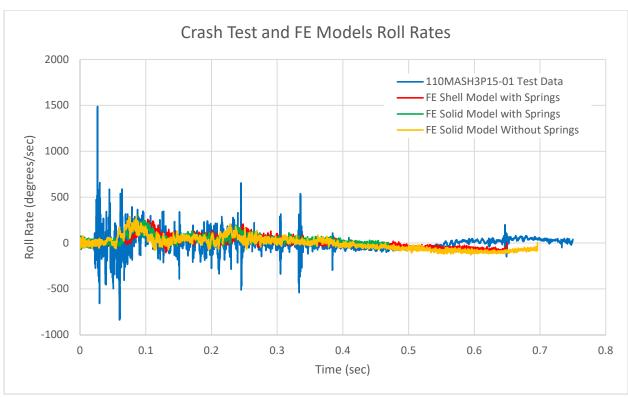


Figure 8-63. Graph of Roll Rates for Full Scale and FE Model TRAP Results for 2270P Truck

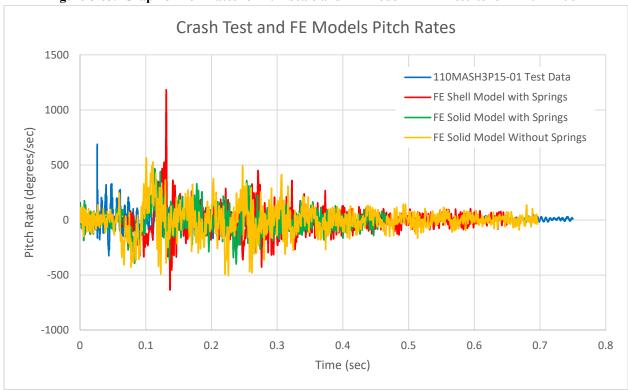


Figure 8-64. Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 2270P Truck

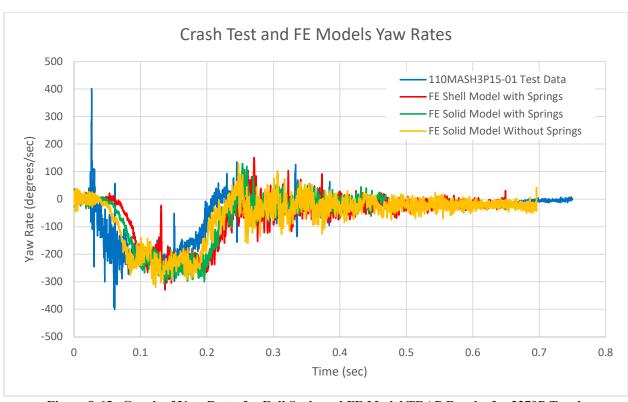


Figure 8-65. Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 2270P Truck

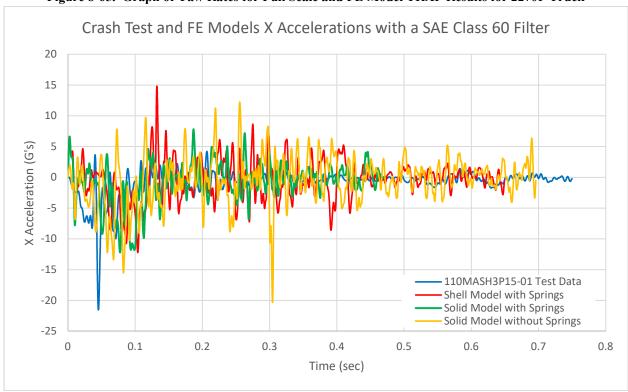


Figure 8-66. Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 2270P

Truck

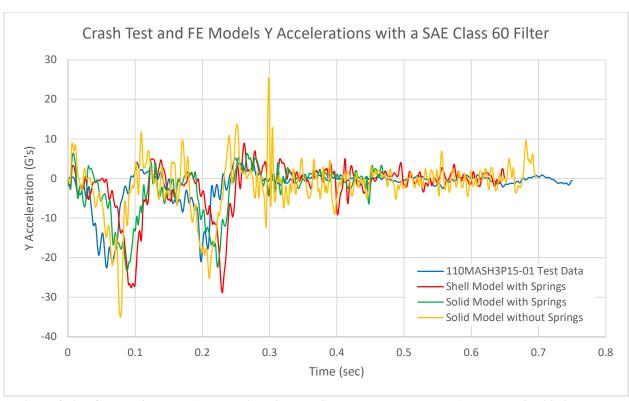


Figure 8-67. Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

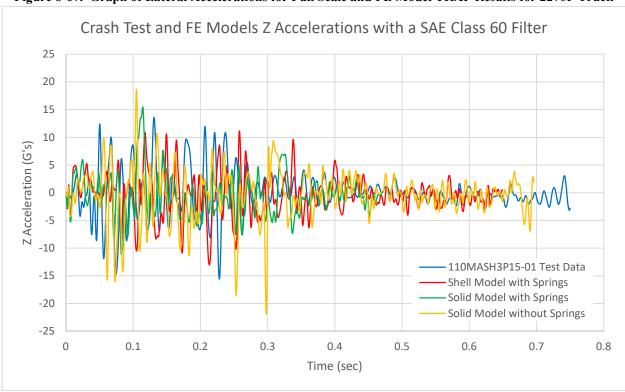


Figure 8-68. Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 2270P Truck

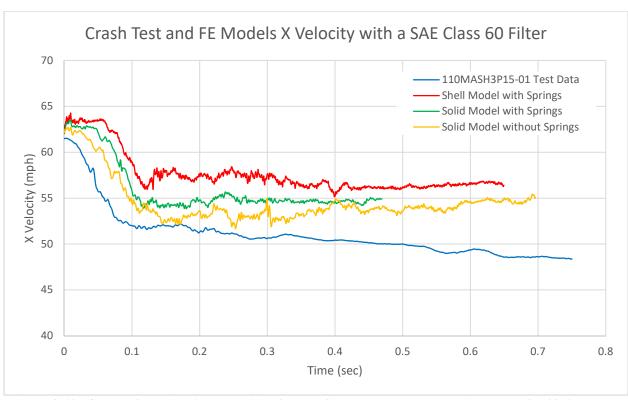


Figure 8-69. Graph of Longitudinal Velocities for Full Scale and FE Model TRAP Results for 2270P Truck

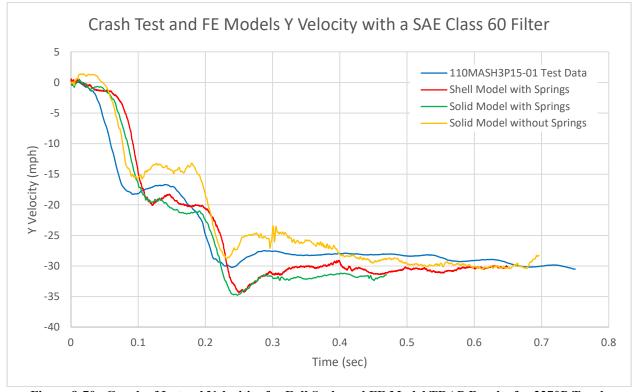


Figure 8-70. Graph of Lateral Velocities for Full Scale and FE Model TRAP Results for 2270P Truck

8.6.4.2.3. Visual Comparison

Figure 8-71 shows a comparison of the full scale test and the FE model simulations for the 2270P truck. The images of the full scale test were flipped for the purposes of a visual comparison, impact was on the passenger side. In all the simulations and the actual test the vehicle and barrier appear to interact similarly. All of the vehicles remain upright and have similar exit trajectories.

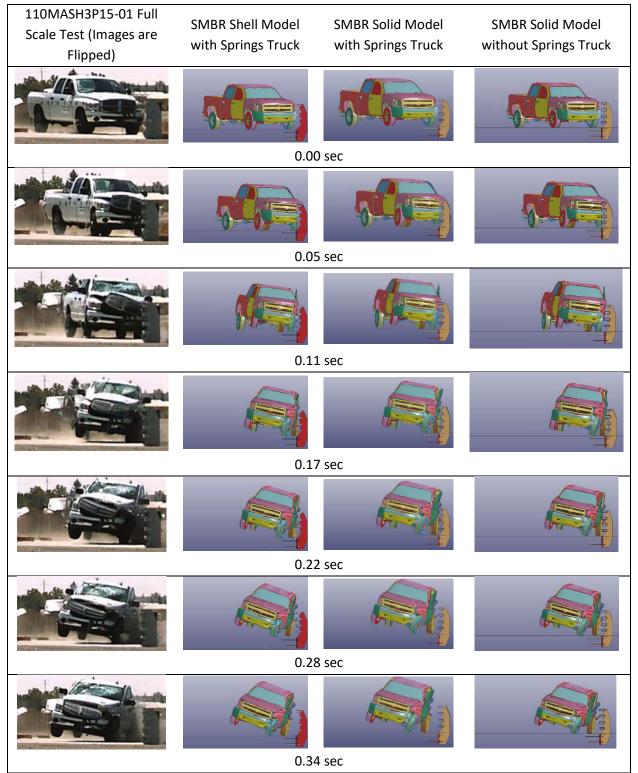


Figure 8-71. Visual Comparison of Actual Crash Test and Simulations for 2270P Truck

8.6.4.3. 1100C Car

This section compares the FE modeling to the full scale crash testing of the CA ST-70SM Side Mounted Bridge Rail and an 1100C car. Section 8.6.4.3.1 compares the movement of the test article between the FE models and the full scale test. Section 8.6.4.3.2 compares the analyzed data from the FE models and the full scale test. Section 8.6.4.3.3 is a visual comparison of the FE modeling and the full scale test. Table 8-29 shows the differences between the vehicle used in testing and the vehicle model used in the finite element modeling.

It was deemed unnecessary to continue to run simulations with the CA ST-70SM SMBR Shell Model with springs. The primary reason for this was the stiffness of the test article.

Table 8-29. Center of Gravity for 1100C Car Test Vehicle and LS-Dyna Finite Element Model

Vehicle Type

X*

Y**

7

Mass

Wheel

	Vehicle Type	X*	γ**	Z	Mass	Wheel Base
110MASH4C15-02	2008 Kia Rio	972 mm	-19 mm	N/A	1118 kg	2497 mm
110WA3H4C13-02	2008 KIA KIO	(38.3 inches)	(0.8 Inches)	N/A	(2465 lbs)	(98.3 inches)
1100C Vehicle Models	2010 Toyleta Varis	1035 mm	-4 mm	N/A	1100 kg	2538 mm
1100C venicle Models	2010 Toyota Yaris	(40.7 inches)	(0.2 Inches)	N/A	(2425 lbs)	(99.9 inches)

^{*} Behind centerline of front tire

8.6.4.3.1. Test Article Movement

Both the full scale test and the FE model of the CA ST-70SM SMBR with springs have similar test article movement. Movement in the full scale test article was measured by string potentiometers. The top rail had a dynamic deflection of 0.93 inches (24 mm) and a static displacement of 0.03 inches (1 mm). The top of the test article in the Solid Model with Springs simulation had a dynamic deflection of 1.33 inches (34 mm) and a static deflection of 0.10 inches (2.5 mm) See Table 8-30 for a tabulated comparison.

Although the CA ST-70SM SMBR system without the disc springs was not tested, the results of the FE model without the springs is included in Table 8-30. The top of the barrier in the Solid Model without Springs 1100C Car simulation had a dynamic displacement of 0.33 inches (8 mm) and a static displacement of 0.09 inches (2 mm). These results appear reasonable since the system is more rigid without the disc springs on the anchor bolts.

Table 8-30. Test Article Movement Comparison Full Scale and FE Model Results for 1100C

Maximum Test Article Movement	Test 110MASH4C15-02	Solid Model with Springs 1100C Car	Solid Model without Springs 1100C Car
Top Rail Dynamic Deflection	0.93 inches (24 mm)	1.33 inches (34 mm)	0.33 inches (8 mm)
Top Rail Static Displacement 0.03 inches (1 mm		0.10 inches (3 mm)	0.09 inches (2 mm)

8.6.4.3.2. TRAP Data Comparison

The accelerometer and angular rate sensor data gathered during the full scale test and the FE modeling were processed with Test Risk Assessment Program (TRAP) and an SAE class 180 filter. When the data from the full scale test is compared to the FE models the majority of the results are similar. Only the

^{**} Negative means CG is on the driver side of the centerline

Lateral Ridedown Acceleration and the PHD were different; about 1.5 times higher than the full scale test. The Lateral Ridedown Acceleration in the simulation exceeds the maximum allowed by MASH, therefore the simulation resulted in a failure. See Table 8-31 for all of the TRAP results.

Included in Table 8-31 are the results of the Solid Model without Springs 1100C Car simulation. The majority of the results are similar to the full scale test except for the Lateral Ridedown Acceleration. The simulation would fail due to the Lateral Ridedown Acceleration of 23.4 G exceeding the MASH criteria of 20.49 G.

Table 8-31. TRAP Data Comparison for Full Scale and FE Model TRAP Results for 1100C (Absolute Values)

MASH Criteria	Test 110MASH4C15-02	Solid Model with Springs 1100C Car	Solid Model without Springs 1100C Car
Preferred = 9.1 m/s Max = 12.2 m/s	5.3 m/s	4.6 m/s	4.7 m/s
Preferred = 15.0 G Max = 20.49 G	3.9 G	3.6 G	5.9 G
Preferred = 9.1 m/s Max = 12.2 m/s	11.1 m/s	9.7 m/s	8.7 m/s
Preferred = 15.0 G Max = 20.49 G	13.4 G	21.0 G	23.4 G
n/a	13.4 G	21.1 G	23.5 G
n/a	2.92	2.46	2.27
<75 Degrees	6.0 degrees	5.7 degrees	6.5 degrees
<75 Degrees	3.2 degrees	2.3 degrees	2.7 degrees
n/a	42.7 degrees	40.9 degrees	45.3 degrees
	Preferred = 9.1 m/s Max = 12.2 m/s Preferred = 15.0 G Max = 20.49 G Preferred = 9.1 m/s Max = 12.2 m/s Preferred = 15.0 G Max = 20.49 G n/a n/a <75 Degrees <75 Degrees	Preferred = 9.1 m/s 5.3 m/s Max = 12.2 m/s 5.3 m/s Preferred = 15.0 G 3.9 G Max = 20.49 G 11.1 m/s Preferred = 9.1 m/s 11.1 m/s Max = 12.2 m/s 13.4 G n/a 13.4 G n/a 2.92 <75 Degrees	MASH Criteria Test 110MASH4C15-02 1100C Car Preferred = 9.1 m/s Max = 12.2 m/s 5.3 m/s 4.6 m/s Preferred = 15.0 G Max = 20.49 G 3.9 G 3.6 G Preferred = 9.1 m/s Max = 12.2 m/s 11.1 m/s 9.7 m/s Preferred = 15.0 G Max = 20.49 G 13.4 G 21.0 G n/a 13.4 G 21.1 G n/a 2.92 2.46 <75 Degrees

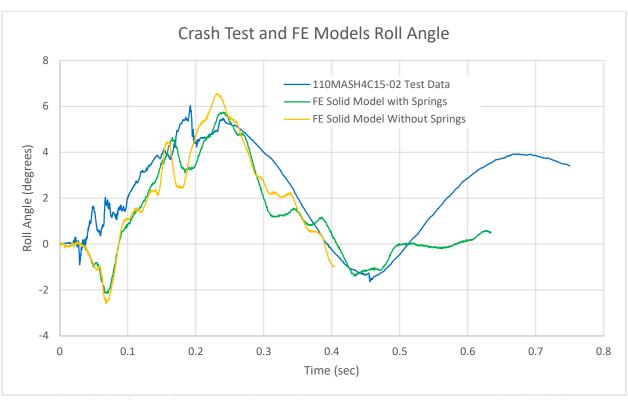


Figure 8-72. Graph of Roll Angles for Full Scale and FE Model TRAP Results for 1100C Car

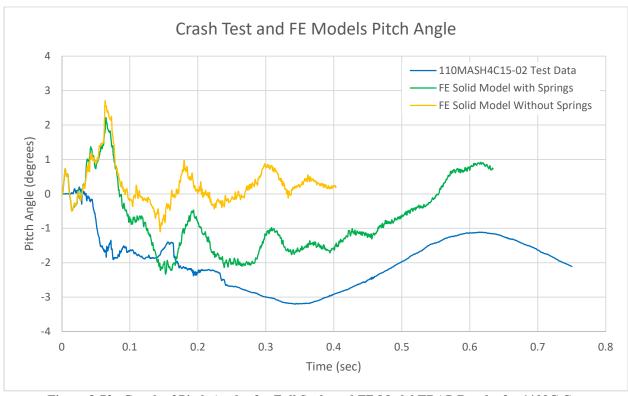


Figure 8-73. Graph of Pitch Angles for Full Scale and FE Model TRAP Results for 1100C Car

Figure 8-74. Graph of Yaw Angles for Full Scale and FE Model TRAP Results for 1100C Car

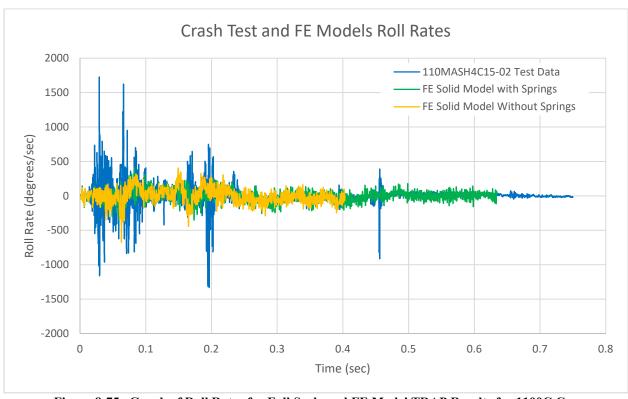


Figure 8-75. Graph of Roll Rates for Full Scale and FE Model TRAP Results for 1100C Car

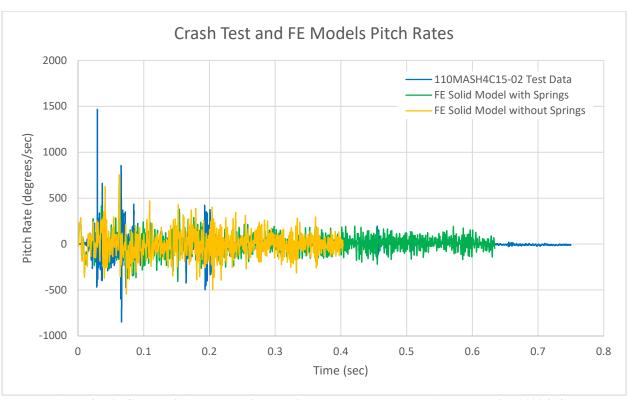


Figure 8-76. Graph of Pitch Rates for Full Scale and FE Model TRAP Results for 1100C Car

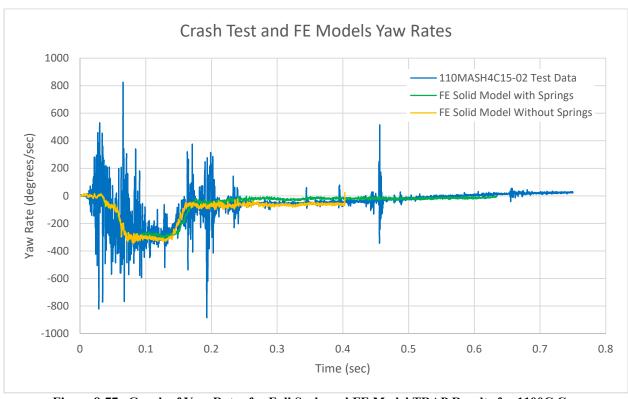


Figure 8-77. Graph of Yaw Rates for Full Scale and FE Model TRAP Results for 1100C Car

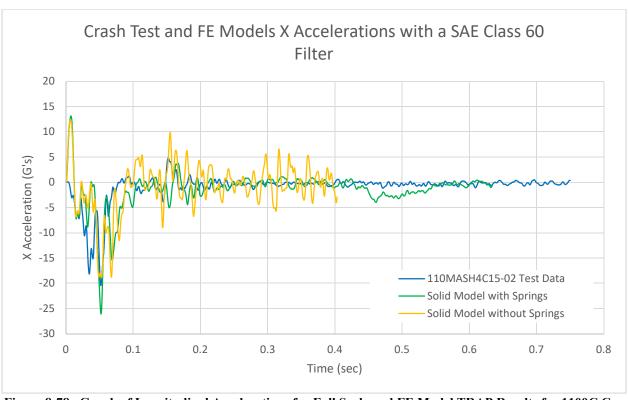


Figure 8-78. Graph of Longitudinal Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

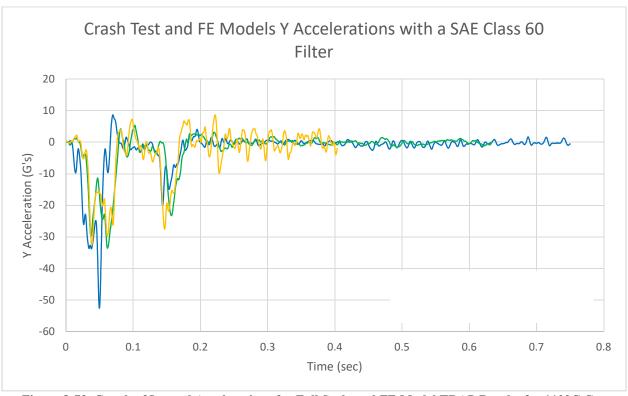


Figure 8-79. Graph of Lateral Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

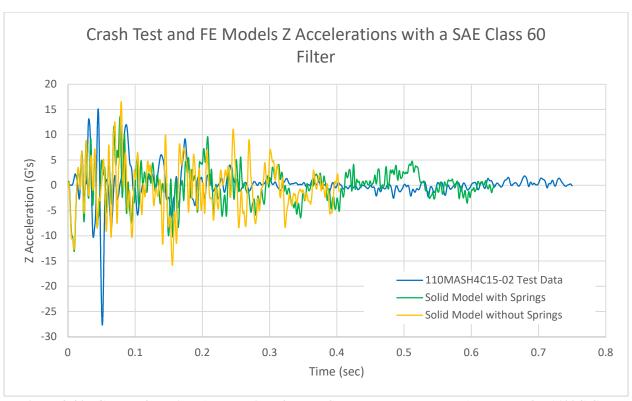


Figure 8-80. Graph of Vertical Accelerations for Full Scale and FE Model TRAP Results for 1100C Car

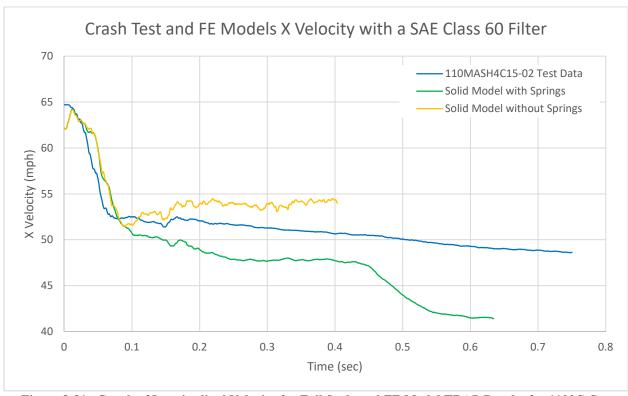


Figure 8-81. Graph of Longitudinal Velocity for Full Scale and FE Model TRAP Results for 1100C Car

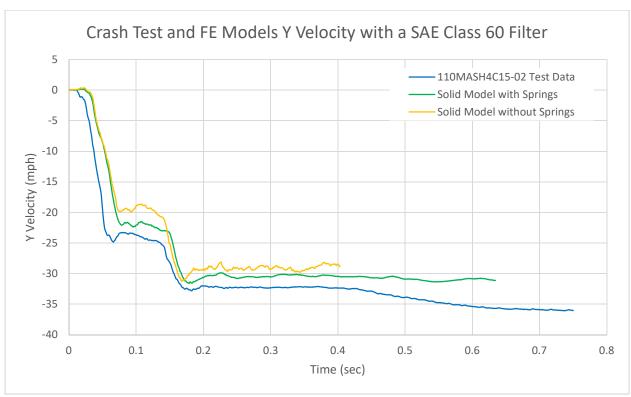


Figure 8-82. Graph of Lateral Velocity for Full Scale and FE Model TRAP Results for 1100C Car

8.6.4.3.3. Visual Comparison

Figure 8-83 shows a comparison of the full scale test and the FE model simulation for the 1100C car. The images of the full scale test were flipped for the purposes of a visual comparison, impact was on the passenger side. In the simulations and the actual test the vehicle and barrier appear to interact similarly. The vehicles remain upright and have similar exit trajectories.

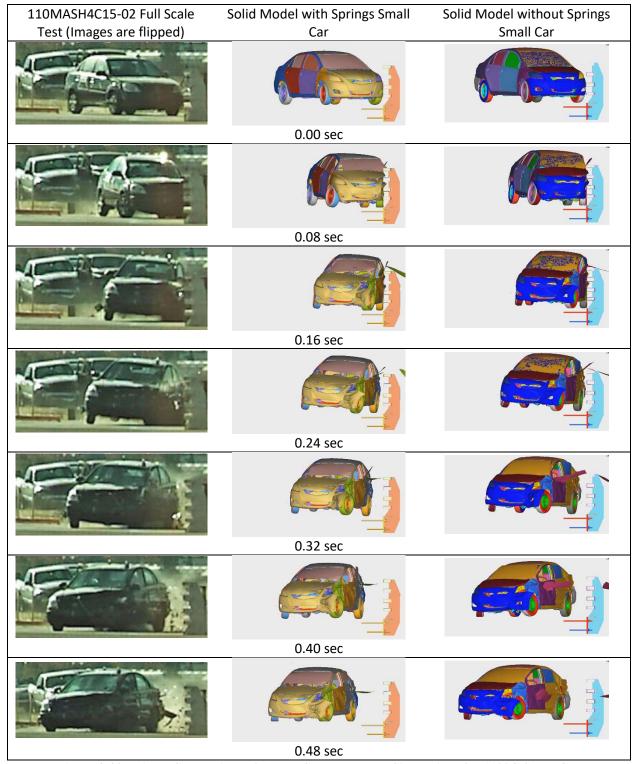


Figure 8-83. Visual Comparison of Actual Crash Test and Simulations for 1100C Small Car

8.6.4.4. 10000S Single-Unit Van Truck

This section compares the FE modeling to the full scale crash testing of the CA ST-70SM Side Mounted Bridge Rail and a 10000S Single-Unit Van Truck. Section 8.6.4.4.1 compares the movement of the test article between the FE models and the full scale test. Section 8.6.4.4.2 is a visual comparison of the FE modeling and the full scale test.

Table 8-32. Center of Gravity for 10000S Single Unit Truck Test Vehicle and LS-Dyna Finite Element Model

	Vehicle Type	X*	γ**	Z	Mass	Wheel Base
110MASH4S16-03	2005 Freightliner M2	4019 mm	-24 mm	N/A	9929 kg	5966 mm
		(158.2 inches)	(0.9 Inches)		(21890 lbs)	(234.9 inches)
10000S Vehicle Model	1996 Ford F800	3206 mm	-9 mm	N/A	10000 kg	5300 mm
100003 Verificie Model	155010101800	(126.2 inches)	(0.4 Inches)	IN/A	(22046 lbs)	(208.7 inches)

^{*} Behind centerline of front tire

8.6.4.4.1. Test Article Movement

Both the full scale test and the FE model of the CA ST-70SM SMBR with springs have similar test article movement. Movement in the full scale test article was measured by string potentiometers. The top rail had a dynamic deflection of 2.4 inches (61 mm) and a static displacement of 0.6 inches (15 mm). The top of the test article in the Solid Model with Springs simulation had a dynamic deflection of 2.6 inches (66 mm). The vehicle was still in contact with the barrier when the simulation was stopped so the static displacement was not measured. See Table 8-33 for a tabulated comparison.

Although the CA ST-70SM SMBR system without the disc springs was not tested, the results of the FE model without the springs is included in Table 8-33. The top of the barrier in the Solid Model without Springs 10000S Truck simulation had a dynamic displacement of 1.1 inches (28 mm). The vehicle was still in contact with the barrier when the simulation was stopped so the static displacement was not measured. These results appear reasonable since the system is more rigid without the disc springs on the anchor bolts.

Table 8-33. Test Article Movement Comparison Full Scale and FE Model Results for 10000S

Maximum Test Article Movement	Test 110MASH4S16-03	Solid Model with Springs 10000S Single Unit Truck	Solid Model without Springs 10000S Single Unit Truck	
Top Rail Dynamic Deflection	2.4 inches (61 mm)	2.6 inches (66 mm)	1.1 inches (28 mm)	
Top Rail Static Displacement	0.6 inches (15 mm)	Vehicle still in contact with the barrier when the simulation was stopped.	Vehicle still in contact with the barrier when the simulation was stopped.	

8.6.4.4.2. Visual Comparison

Figure 8-84 shows a comparison of the full scale test and the FE model simulation that included springs for the 10000S Van Body Truck. In the simulation and the actual test the vehicle and barrier appear to interact similarly. The vehicles remain upright and have similar exit trajectories.

^{**} Negative means CG is on the driver side of the centerline

May 9, 2018 California Department of Transportation Report No. FHWA/CA17-2557

The simulations, which were completed prior to the actual crash test, showed an issue with the front end of the vehicle. In the simulation, the axle separated from the vehicle resulting in erratic behavior. However, the actual crash test confirmed what the simulation depicted; the axle did break away from the front of the vehicle. Therefore the simulation was more accurate than initially thought. The erratic behavior might be due to the tires being the only elements of the front axle assembly that was defined to have contact with the ground. The rest of the elements would just pass through the ground which might have caused some of the erratic behavior.

Full Cools Tost	Solid Model with Springs Single	Solid Model without Springs
Full Scale Test	Unit Truck	Single Unit Truck
	0.00 sec	
## \$50,000,000 F (2)	0.08 sec	
TESNASJESS GEN		
	0.17 sec	
TESTIMENTS STATES		
	0.25 sec	
TETCHINITE STUDY		
	0.34 sec	
	0.42 sec	
	U.42 SEC	

Full Scale Test Continued	Solid Model with Springs Single	Solid Model without Springs
Full Scale Test Continued	Unit Truck Continued	Single Unit Truck Continued
	0.50 sec	
TETEMOSTICE OF THE PARTY OF THE		
	0.59 sec	
THE OWNER WATER OF THE PARTY OF		
	0.67 sec	
FEGURACIES SECS.		
	0.76 sec	
EECAMASIMISTICO Y		
	0.84 sec	

Figure 8-84. Visual Comparison of Actual Crash Test and Simulations for 10000S Single Unit Truck

8.6.5.Conclusions

8.6.5.1. Test Article Movement

- Solid models had similar movement compared to the actual test.
- Movement in the solid models without spring seemed reasonable even though the actual system was not tested without springs.

8.6.5.2. TRAP Data Comparison

- The truck and car simulation velocities were similar to the related crash test.
- The truck model accelerations were higher compared to the actual test in the shell model of the test barrier.
- The truck model accelerations were similar compared to the actual test in the solid model of the test barrier.
- The truck models had higher roll values, 3x actual.
- The car model's longitudinal accelerations were similar to the actual test and the lateral accelerations were higher than the actual test, predicting a failure pre MASH 2009 criteria.
- All other angles were similar to actual test in the truck and car simulations.

8.6.5.3. Visual Comparison

All of the models had similar interactions with the test article.

8.6.5.4. Overall

- The CA ST-70SM Side Mounted Bridge Rail solid model with springs appeared to act in a way that represented its real world counterpart.
- The truck model interacted in a similar way as the actual test with slightly higher accelerations.
- The car model interacted in a similar way as the actual test with the exception of the Lateral Ridedown Acceleration.
- The van body truck model interacted in a similar way as the actual test.
- Any future simulations of the CA ST-70SM Side Mounted Bridge Rail should use the CA ST-70SM SMBR Solid Model with Springs.

9. Post-Impact Anchor Rod Testing

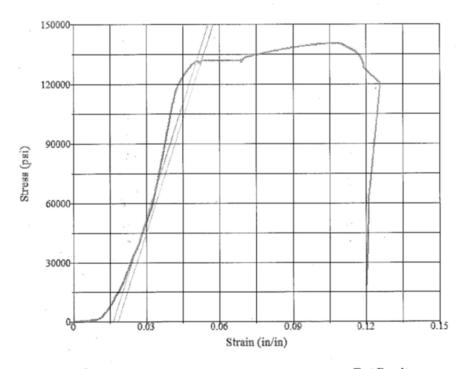
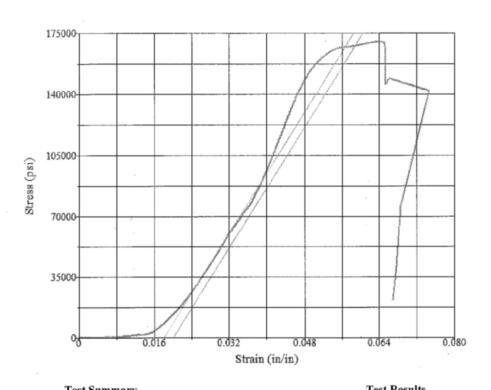

During the demolition of the CA ST-70SM barrier, the upper anchor rods from posts 2, 3, and 4 were carefully removed to be tensile tested. All of these rods had strain gages installed. Table 9-1 includes the specimen gage length and tensile strength of the rods. All of the anchor rods tested were within the expected range of 125-150 ksi with the exception of rod 2 from post 2 and rod 1 from post 4, which exceeded the range. The anchor rods from posts 3 and 4 fractured at the strain gage location (milled flat for gage installation).

Table 9-1. CA ST-70SM Anchor Rod Tensile Test Data

	CA ST-70SM Anchor Rod Tensile Test Data						
Post 2	Date of Test	Specimen Gage Length (in)	Tensile Strength (psi)				
Rod 1	10/12/2017	24.0	140,257				
Rod 2	10/12/2017	24.0	170,025				
Rod 3	9/29/2017	26.0	140,637				
Post 3							
Rod 1	10/12/2017	24.0	138,492				
Rod 2	10/12/2017	24.0	137,519				
Rod 3	10/12/2017	24.0	136,330				
Post 4							
Rod 1	10/12/2017	24.0	174,372				
Rod 2	10/12/2017	24.0	136,210				
Rod 3	10/12/2017	24.0	138,687				


9:05:34 AM 10/12/2017

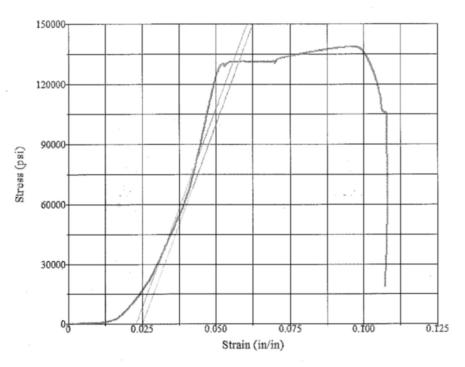
	Test Summa	ıry	Te	est Results	
Counter:	8532		Specimen Gage Leng	gth:	24.0000 in
Elapsed Time:	00:05:44		Area:		0.9690 in ²
Sample:	1A		Peak Load:		135909 lbf
Size:	Post 2 Rod 1		Peak Stress:		140257 psi
Comments:	P2 R1		Correlation Coefficie	nt:	0.9907
Procedure	DIME TM3 A	A449 Fastener	Tangent Modulus:	-	3842192 psi
Name:	Tensile Proce	dure	Load at Offset:		127395 lbf
Start Date:	10/12/2017		Stress at Offset:		131471 psi
Start Time:	8:57:27 AM		Tensile Strength:		140257 psi
End Date:	10/12/2017		Peak Load in kN:		604.5534 kN
End Time:	9:03:11 AM				
Workstation:	PC59W7DH0	Q44266			
Tested By:	bewing				
DIME Sample ID:	2018-10-12-1				
Operator:	Fred	j.			
Temperature:		72 °F			
Is Test Valid		1			
Y/N:	Y				
UTM:	400KIP	:			
Heat Number:					

Figure 9-1. Post 2, Anchor Rod 1 Tensile Test Data

9:19:11 AM 10/12/2017

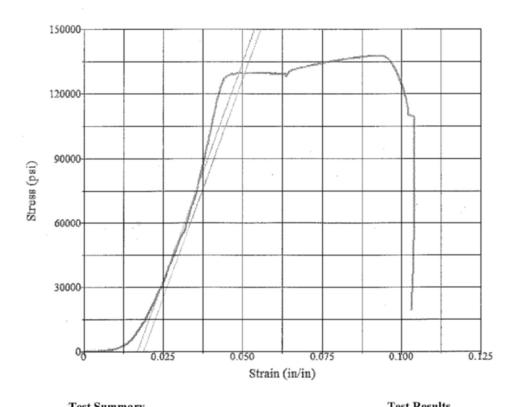
Test Summary			Test Results	Test Results		
	Counter:	8533	Specimen Gage Length:	24.0000 in		
	Elapsed Time:	00:03:11	Area:	0.9690 in ²		
	Sample:	1B	Peak Load:	164754 lbf		
	Size:	Post 2 Rod 2	Peak Stress:	170025 psi		
	Comments:	P 2 R 1	Correlation Coefficient:	0.9969		
	Procedure	DIME TM3 A449 Fastener	Tangent Modulus:	4310975 psi		
	Name:	Tensile Procedure	Load at Offset:	162366 lbf		
	Start Date:	10/12/2017	Stress at Offset:	167561 psi		
	Start Time:	9:09:53 AM	Tensile Strength:	170025 psi		
	End Date:	10/12/2017	Peak Load in kN:	732.8624 kN		
	End Time:	9:13:04 AM				
	Workstation:	PC59W7DHQ44266				
	Tested By:	bewing				
	DIME Sample ID:	2018-10-12-2				
	Operator:	Fred				
	Temperature:	72 °F				
	Is Test Valid Y/N:	Y				
	UTM:	400KIP				
	Heat Number:					

Figure 9-2. Post 2, Anchor Rod 2 Tensile Test Data



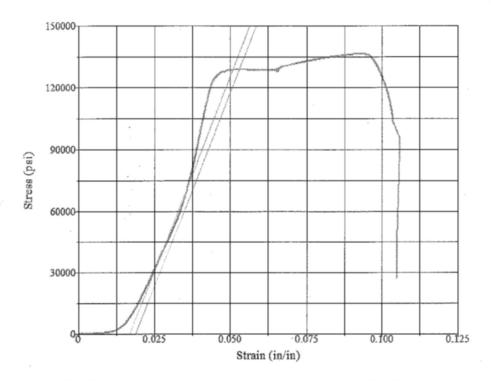
Test Summary		Test Summary	Test Result	ts
	Counter:	8504	Specimen Gage Length:	26.0000 in
	Elapsed Time:	00:06:04	Area:	0.9690 in ²
	Sample:	1A	Peak Load:	136277 lbf
	Mfg. Lot:		Peak Stress:	140637 psi
	SM Number:	Crash Test	Correlation Coefficient:	0.9997
	SIC Number:	N/A	Tangent Modulus:	8955508 psi
	Contract No.:		Load at Offset:	125980 lbf
		F1554 Althread Rod Grade	Stress at Offset:	130010 psi
	Size:	105	Tensile Strength:	140637 psi
	Comments:	F1554		
	Procedure			
	Name:	A449		
	Start Date:	9/29/2017		
	Start Time:	8:57:02 AM		
	End Date:	9/29/2017		
	End Time:	9:03:06 AM		
	Workstation:	PC59W7DHQ44266		
	Tested By:	FSaylor		

Figure 9-3. Post 2, Anchor Rod 3 Tensile Test Data


9:32:05 AM 10/12/2017

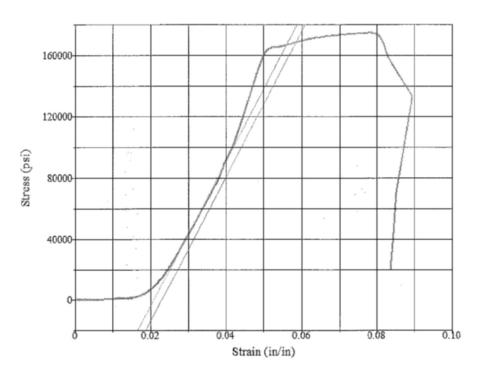
	Test Sumn	nary	Test R	Results	
Counter:	8534		Specimen Gage Length:	24.0000 in	
Elapsed Time:	00:05:07		Area:	0.9690 in ²	
Sample:	2A		Peak Load:	134199 lbf	
Size:	Post 3 Rod	L	Peak Stress:	138492 psi	
Comments:	P2 R1		Correlation Coefficient:	0.9891	
Procedure	DIME TM3	A449 Fastener	Tangent Modulus:	3988622 psi	
Name:	Tensile Prod	cedure	Load at Offset:	127059 lbf	
Start Date:	10/12/2017		Stress at Offset:	131124 psi	
Start Time:	9:25:00 AM		Tensile Strength:	138492 psi	
End Date:	10/12/2017		Peak Load in kN:	596.9470 kN	
End Time:	9:30:07 AM	[
Workstation:	PC59W7DF	IQ44266			
Tested By:	bewing				
DIME Sample ID:	2018-10-12	-3			
Operator:	Fred				
Temperature:		72 °F			
Is Test Valid Y/N:	Y				
UTM:	400KIP				
Heat Number:					

Figure 9-4. Post 3, Anchor Rod 1 Tensile Test Data


10:11:57 AM 10/12/2017

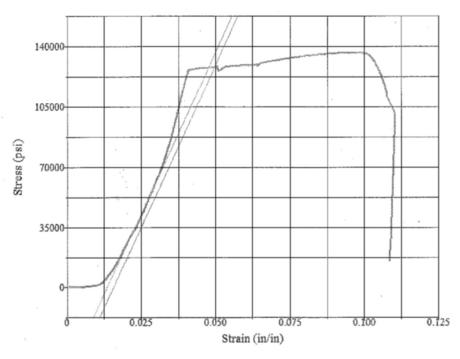
	Test Summary	Test Results	S
Counter:	8535	Specimen Gage Length:	24.0000 in
Elapsed Time:	00:04:55	Area:	0.9690 in ²
Sample:	2B	Peak Load:	133256 lbf
Size:	Post 3 Rod 2	Peak Stress:	137519 psi
Comments:	P3 R1	Correlation Coefficient:	0.9927
Procedure	DIME TM3 A449 Fastener	Tangent Modulus:	4070650 psi
Name:	Tensile Procedure	Load at Offset:	125339 lbf
Start Date:	10/12/2017	Stress at Offset:	129349 psi
Start Time:	10:06:22 AM	Tensile Strength:	137519 psi
End Date:	10/12/2017	Peak Load in kN:	592.7523 kN
End Time:	10:11:17 AM		
Workstation:	PC59W7DHQ44266		
Tested By:	bewing		
DIME Sample			
ID:	2018-10-12-4		
Operator:	Fred		
Temperature:	72 °F		
Is Test Valid			
Y/N:	Y		
UTM:	400KIP		
Heat Number:			

Figure 9-5. Post 3, Anchor Rod 2 Tensile Test Data


10:25:11 AM 10/12/2017

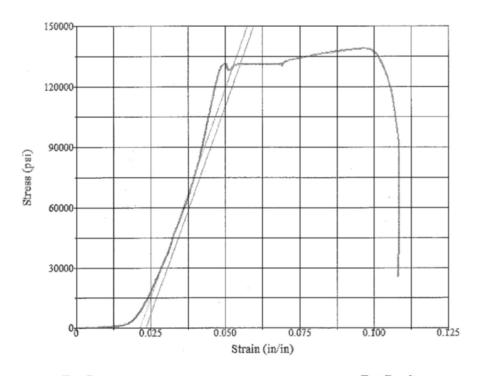
Test Summary	Test Results	
8536	Specimen Gage Length:	24.0000 in
00:04:59	Area:	0.9690 in ²
2C	Peak Load:	132104 lbf
Post 3 Rod 3	Peak Stress:	136330 psi
P3 R3	Correlation Coefficient:	0.9928
DIME TM3 A449 Fastener	Tangent Modulus:	3775588 psi
Tensile Procedure	Load at Offset:	124786 lbf
10/12/2017	Stress at Offset:	128778 psi
10:17:09 AM	Tensile Strength:	136330 psi
10/12/2017	Peak Load in kN:	587.6279 kN
10:22:08 AM		
PC59W7DHQ44266		
bewing		
2018-10-12-5		
Fred		
72 °F		
Υ		
400KIP		
	8536 00:04:59 2C Post 3 Rod 3 P3 R3_ DIME TM3 A449 Fastener Tensile Procedure 10/12/2017 10:17:09 AM 10/12/2017 10:22:08 AM PC59W7DHQ44266 bewing 2018-10-12-5 Fred 72 °F	Specimen Gage Length: 00:04:59 2C Post 3 Rod 3 Peak Stress: DIME TM3 A449 Fastener Tensile Procedure 10/12/2017 10:17:09 AM 10/12/2017 10:22:08 AM PC59W7DHQ44266 bewing Specimen Gage Length: Area: Peak Load: Peak Load: Peak Stress: Correlation Coefficient: Tangent Modulus: Load at Offset: Stress at Offset: Tensile Strength: Peak Load in kN: Peak Load in kN:

Figure 9-6. Post 3, Anchor Rod 3 Tensile Test Data


10:34:20 AM 10/12/2017

Test Summary		Test Results		
Counter:	8537	Specimen Gage Length:	24.0000 in	
Elapsed Time:	00:03:59	Area:	0.9690 in ²	
Sample:	2C	Peak Load:	168966 lbf	
Size:	Post 4 Rod 1	Peak Stress:	174372 psi	
Comments:	P4 R1	Correlation Coefficient:	0.9986	
Procedure	DIME TM3 A449 Fastener	Tangent Modulus:	4744210 psi	
Name:	Tensile Procedure	Load at Offset:	162939 lbf	
Start Date:	10/12/2017	Stress at Offset:	168152 psi	
Start Time:	10:27:35 AM	Tensile Strength:	174372 psi	
End Date:	10/12/2017	Peak Load in kN:	751.5983 kN	
End Time:	10:31:34 AM			
Workstation:	PC59W7DHQ44266			
Tested By:	bewing			
DIME Sample ID:	2018-10-12-6			
Operator:	Fred			
Temperature:	·72 °F			
Is Test Valid Y/N:	Y			
UTM:	400KIP			
Heat Number:				

Figure 9-7. Post 4, Anchor Rod 1 Tensile Test Data


10:44:45 AM 10/12/2017

Test Summary		Test Results		
Counter:	8538	Specimen Gage Length:	24.0000 in	
Elapsed Time:	00:05:11	Area:	0.9690 in ²	
Sample:	4A	Peak Load:	131987 lbf	
Size:	Post 4 Rod 2	Peak Stress:	136210 psi	
Comments:	P4 R2	Correlation Coefficient:	0.9978	
Procedure	DIME TM3 A449 Fastener	Tangent Modulus:	3775517 psi	
Name:	Tensile Procedure	Load at Offset:	124025 lbf	
Start Date:	10/12/2017	Stress at Offset:	127993 psi	
Start Time:	10:37:44 AM	Tensile Strength:	136210 psi	
End Date:	10/12/2017	Peak Load in kN:	587.1075 kN	
End Time:	10:42:55 AM			
Workstation:	PC59W7DHQ44266			
Tested By:	bewing			
DIME Sample ID:	2018-10-12-7			
Operator:	Fred			
Temperature:	72 °F			
Is Test Valid Y/N:	Y			
UTM:	400KIP			
Heat Number:				

Figure 9-8. Post 4, Anchor Rod 2 Tensile Test Data

10:55:09 AM 10/12/2017

	Test Summary	Test Results	5
Counter:	8539	Specimen Gage Length:	24.0000 in
Elapsed Time:	00:05:08	Area:	0.9690 in ²
Sample:	4C	Peak Load:	134388 lbf
Size:	Post 4 Rod 3	Peak Stress:	138687 psi
Comments:	P4 R3	Correlation Coefficient:	0.9967
Procedure	DIME TM3 A449 Fastener	Tangent Modulus:	4154752 psi
Name:	Tensile Procedure	Load at Offset:	126883 lbf
Start Date:	10/12/2017	Stress at Offset:	130942 psi
Start Time:	10:48:35 AM	Tensile Strength:	138687 psi
End Date:	10/12/2017	Peak Load in kN:	597.7877 kN
End Time:	10:53:43 AM		
Workstation:	PC59W7DHQ44266	•	
Tested By:	bewing		
DIME Sample ID:	2018-10-12-8		
Operator:	Fred		
Temperature:	72 °F		
Is Test Valid Y/N:	Y		
UTM:	400KIP		
Heat Number:			

Figure 9-9. Post 4, Anchor Rod 3 Tensile Test Data

Figure 9-10. Post 2, Anchor Rods 1, 2, & 3

Figure 9-11. Post 3, Anchor Rods 1, 2, & 3

Figure 9-12. Post 4, Anchor Rods 1, 2, & 3

10. Detail Drawings and Materials Data

The following details in Figure 10-1 to Figure 10-4 are for the tested barrier only.

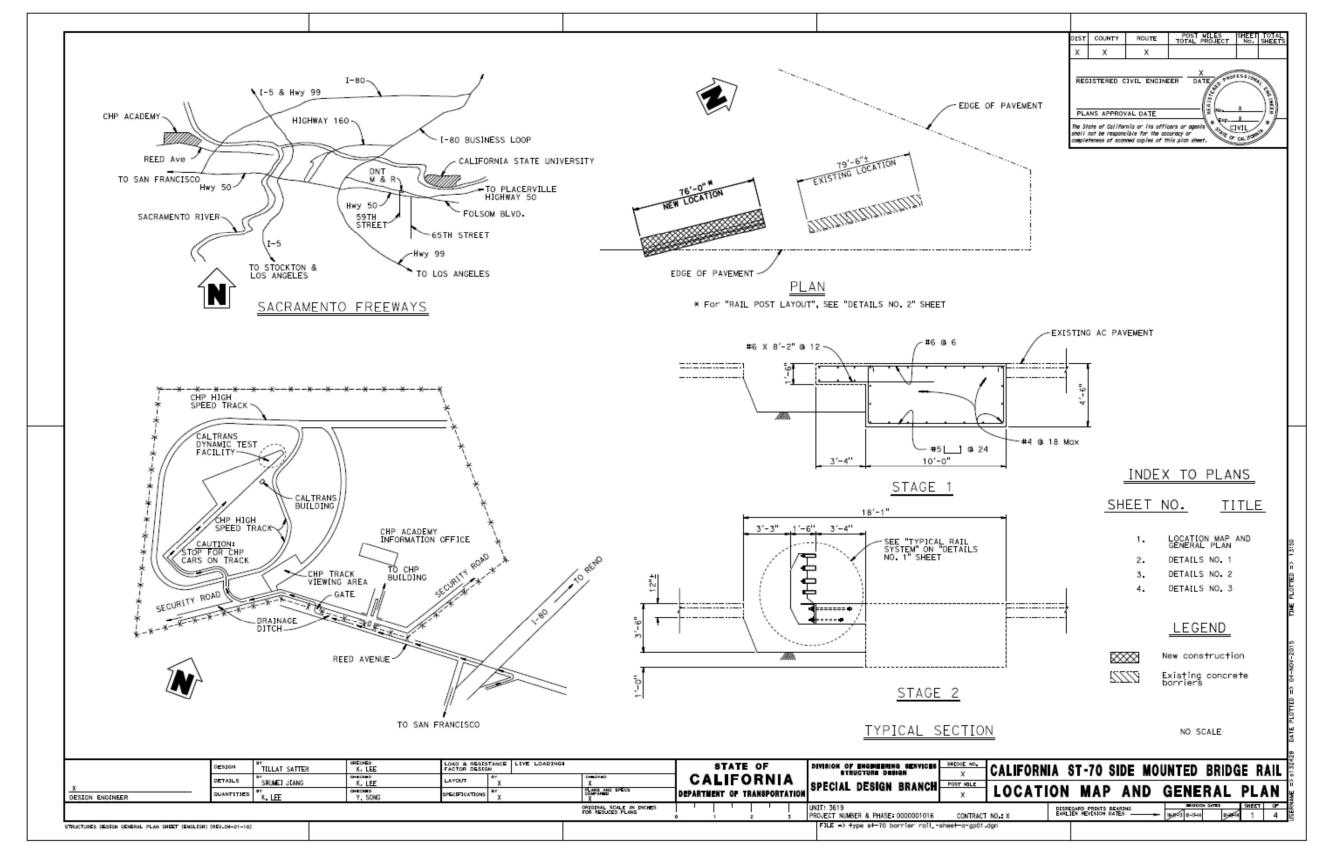


Figure 10-1. CA ST-70SM Side Mounted Bridge Rail (Title Page)

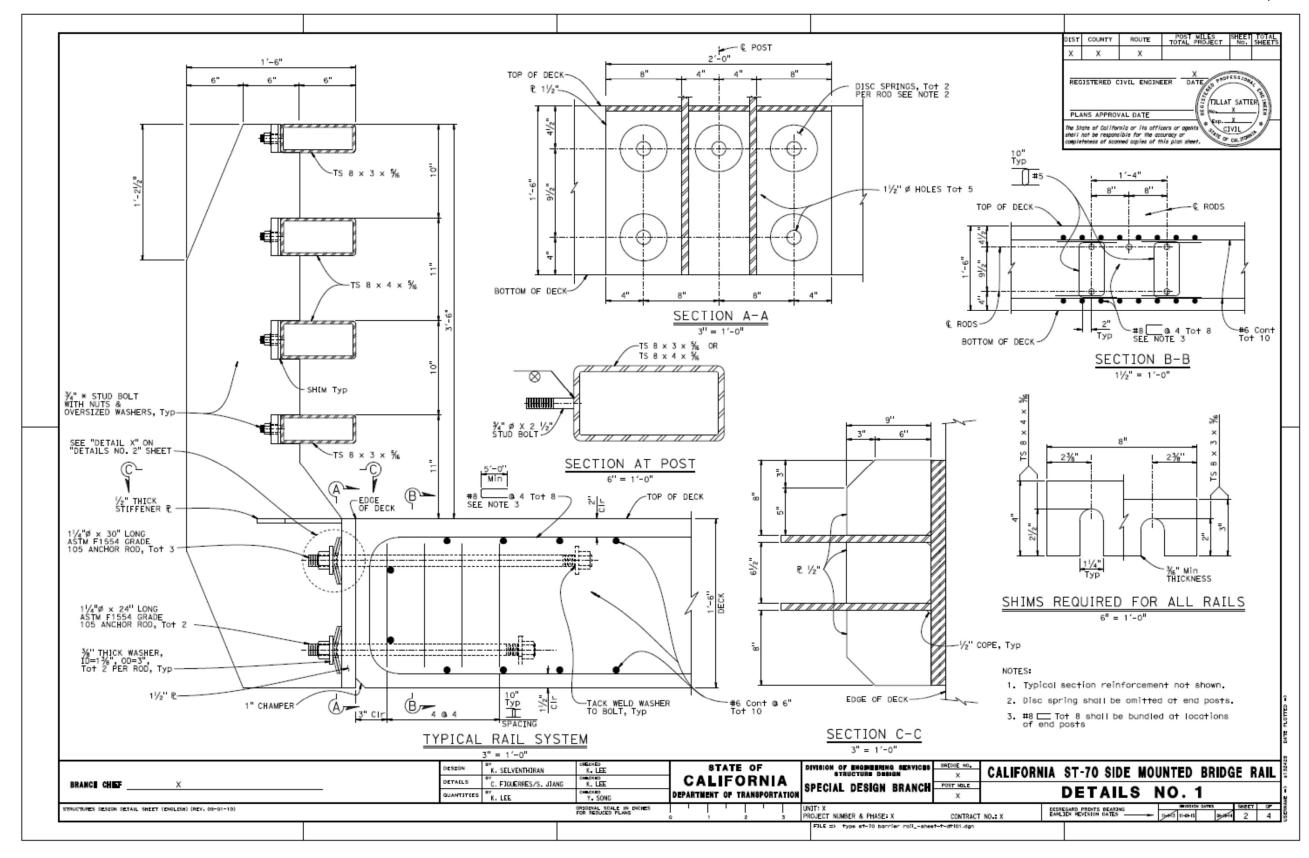


Figure 10-2. CA ST-70SM Side Mounted Bridge Rail (Details Page 1)

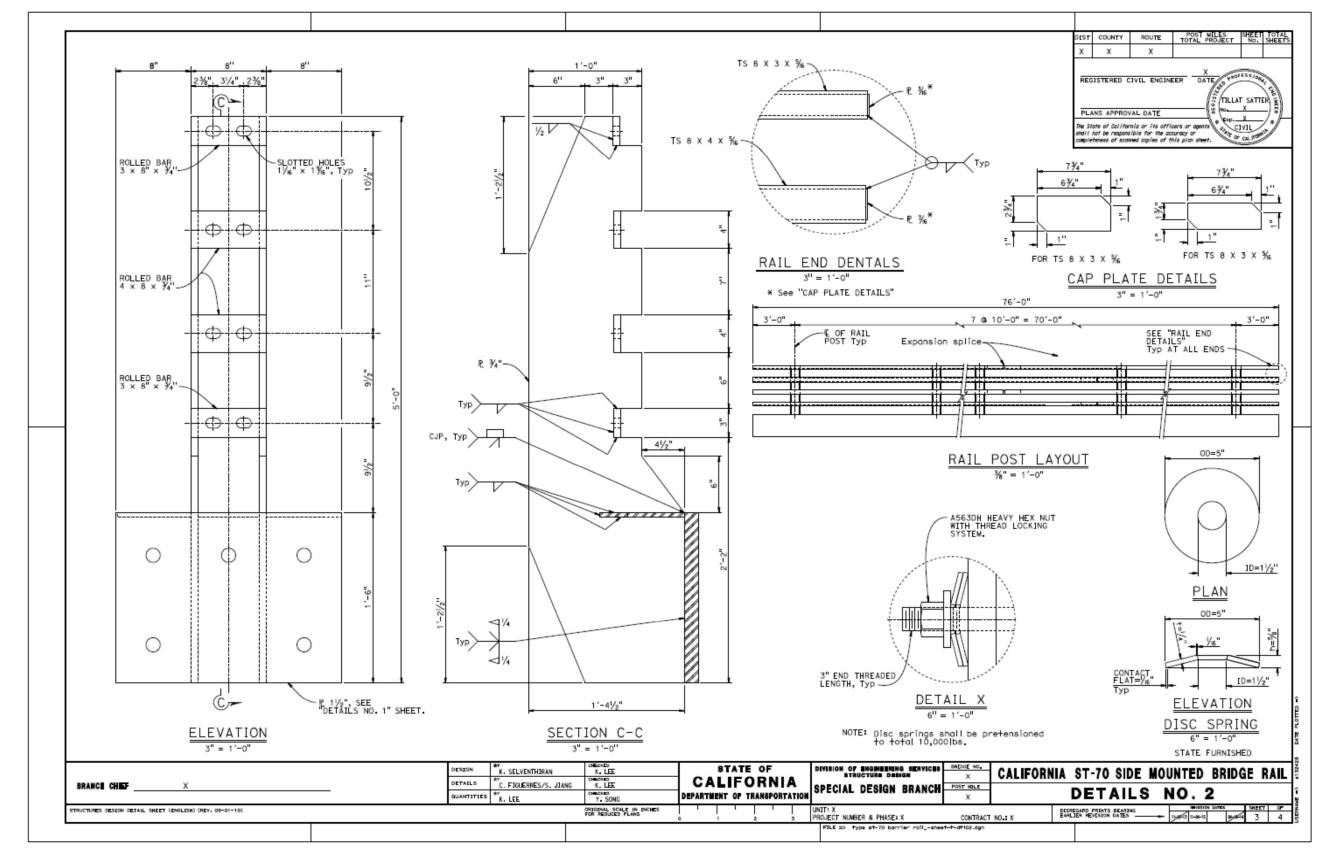


Figure 10-3. CA ST-70SM Side Mounted Bridge Rail (Details Page 2)

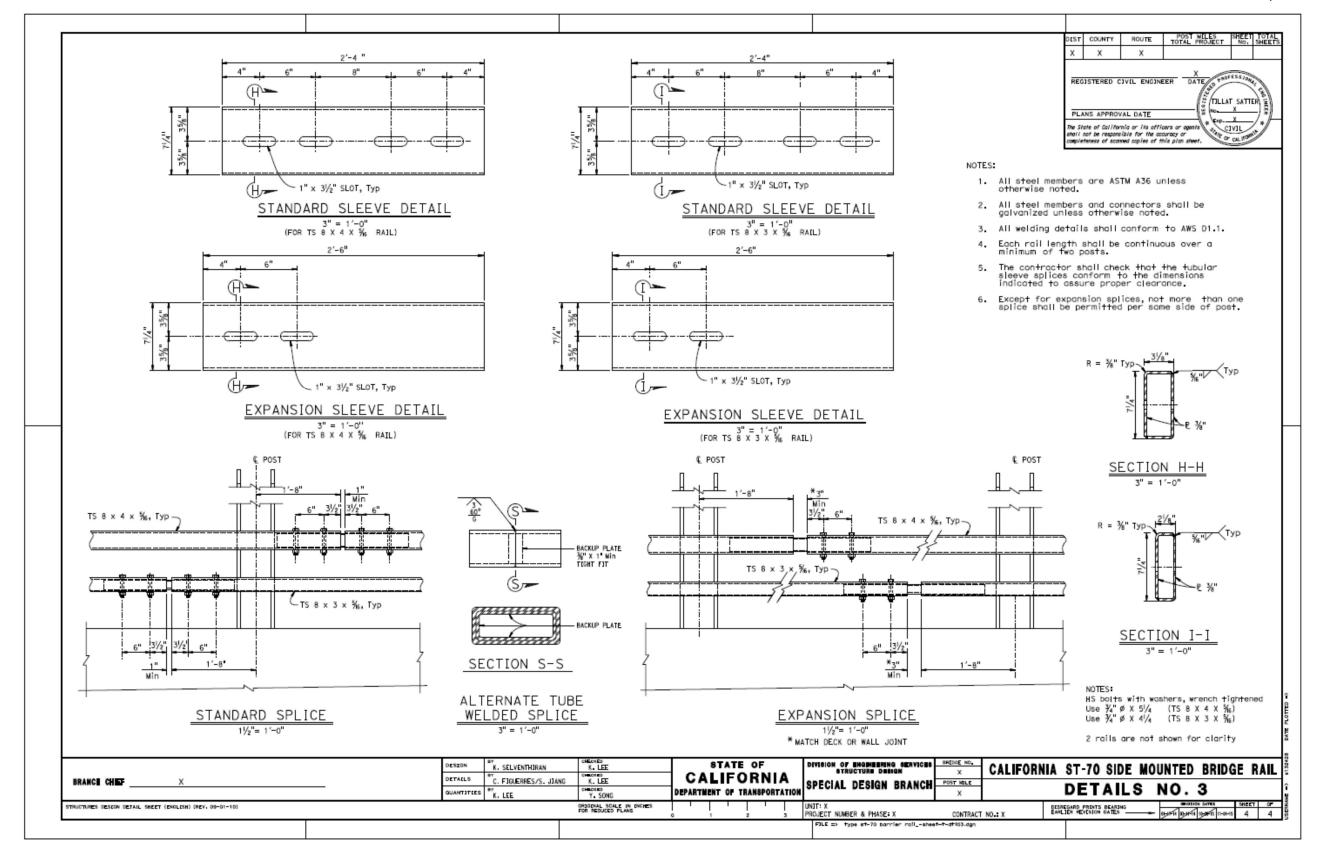


Figure 10-4. CA ST-70SM Side Mounted Bridge Rail (Details Page 3)

Structural Materials Testing Laboratory Test Report

Page 1 of 1

State of California

Department of Transportation

Structural Materials Testing Laboratory 5900 Folsom Boulevard, Sacramento, CA 95819

TEST REPORT

Remarks

ref: ASTM F1554, A563, A153/F2329, TM03. Bolt Heat #62265X; Nut Lot #17075-M50465. Bridge Rail Components for Crash Test Unit.

Sample No: SM-14-1016

Date Sampled: 10/20/14

Date Rec'd: 10/20/14

Date Reported: 10/27/14

- Lot No: N/A

TL-101 / SIC No: C619430

Contract/Permit No: Stock

Material: 1.25" F1554 Grade 105 HDG Threaded Rods w/ HDG Nuts.

Manufacturer: Universal Industrial / Unytite

Sampler: Ali Zalekian

Results: SAMPLES SUBMITTED COMPLY WITH MATERIAL SPECIFICATIONS.

Note: Results relate only to the items tested

http://onramp.dot.ca.gov/hq/esc/mets/structure_materials/smtl/testdata.php?SampleNo=1... 10/27/2014

Print

sportation ting Labora V 60 Kip	,	Tested B		bewing	bewing
Department of Transportation Structural Materials Testing Labora UTM: BALDWN 66 Kip	Tomperature /O	Tensile Strength Elongation in 4 x d	(%)	19.2	18.8 X
š			(bst)	142460	143320 0K
	= 14-1016	Stress at Offset	(bst)	135780	135239 8K
	SM Number = 14-1016	Area	(in²)	0.1971	0.1979
	- 1	Diameter	(in)	0.501	0.502
		Heat Number		62265X	62265X
	Calbrane	Sample		5XA	5XB

.500 SAMPLES

STRUCTURAL MATERIALS TESTING LABORATORY APPROVED FOR USE BY SMTL FORM TM-3 (REV. 07/11) QUALITY MANAGER anlo AManto **FASTENER ASSEMBLY WORKSHEET** Date Received Lot Number SM Number 14-1016 Date Tested Contract Number TL-0101 Number 20000000764. Test Temperature Lab Technician Page BOLTS: Sample No. Heat / Mfg. Lot No. 2265X Product Markings Size Pitch Diameter Bolt Length Ring Gage Go/No-Go Zinc Coating Thick. 4.98 5.08 5.15 Hardness: Rc/Rb ·Fall pull Spacing -500 5.06 Wedge Tensile 35831 NUTS: A563 Sample No. 10 Mfg. Lot No. 7075-M50465 Product Markings Plug Gage Go/No-Go 0K/60 Zinc Coating Thick. 4.96 4.13 4.60 4.42 Rc/Rb Hardness: Spacing Nut Proof Load 148258 148721 WASHER: Lubine Sample No. Mfg. Lot No. Product Markings Zinc Coating Thick. Hardness: Rc / Rb Spacing

F1554 Grade 105 Rod & Nut proof

itornia ansportation scring Laboratory CC 400	Comments	F1554 Grade 105	Nut Proof Load Nut Proof Load
State of California Department of Transportation Structural Materials Testing Laboratory UTM: SATEC 400 Temperature	Load at Offset	126231 OK	
St	Tensile Strength Stress at Offset (psi)	130270 0 F	
= 14-1016	Tensile Strength	140177	
SM Number = 14-1016	Peak Load	135831	148258 148721 014
	Area (in?)	0.969	
	Size	F1554 Grade 105 1-1/4" x 24" Allthread Rod	1%"
(-)	Sample	1A	1B 1C

Structural Materials Testing Laboratory Test Report

Page 1 of 1

State of California

Department of Transportation

Structural Materials Testing Laboratory 5900 Folsom Boulevard, Sacramento, CA 95819

TEST REPORT

Remarks

Tube E2 Heat #???

Sample No: SM-14-1017

Date Sampled: 10/20/14

Date Rec'd: 10/20/14

Date Reported: 10/29/14

- Lot No: N/A

TL-101 / SIC No: C619431

ref: ASTM A500, A123, TM06. 8"x 4"x .313" Tube F2 Heat #???; 8"x 3"x .313"

Contract/Permit No: Stock

Material:

8"x 4"x .313" & 8"x 3"x .313" A500 HDG Steel Rectangle Tubing For Bridge

Manufacturer: Universal Industrial / Atlas Tube Sampler: Ali Zalekian

Results: SAMPLES SUBMITTED COMPLY WITH MATERIAL SPECIFICATIONS.

Note: Results relate only to the items tested Print

http://onramp.dot.ca.gov/hq/esc/mets/structure_materials/smtl/testdata.php?SampleNo=1... 10/29/2014

ž
<u>e</u>
Scim
∵5
•
တ
+
<u>@</u>
-

Department of Transportation Structural Materials Testing Laborator, UTM: BALDWIN 60 Kip

1	Total Elongation G= 23% Ms	100 Stude C= 21 % Min	22.7 6 rade 8 - Low	22.3 Grade C- Fass	25 24	24.4	26.1	22.9	26.5.01	28.2		
1 emperante	Tensile Strength	(psi)	76905 OK	76857	79242	78847	71975	72072 OK	74312	75623		
	Stress at Offset	(pst)	89899	66125	69015 41	69612	57724	57943 05	56927	96519		
14-1017	Area	(in)	0.147	0.147	0.1478	0.1483	0.1438	0.1438	0.1454	0.1469		
OM Number = 14-101	Thickness	(in)	0.294	0.294	0,295	0.296	0.287	0.287	0.292	0.295		
	Width	(in)	0.5	0.5	0.501	0.501	0.501	0.501	0.498	0.498		
ik. Ük	Heat Number		F2	23	F2	F2	E2	E2	E2	E2		
وتداراتون	Sample		F2A-T	F2B-T	F2A-L	F2B-L	E2A-T	E2B-T	E2A-L	E2B-L		

REPORT OF TESTS	TAOLENOG			S.M. NO. /	1101-PI	1	å.	DATE RECEIVED	750 20		
TL-619 (REV. 5/96)	ADA Notice For inclividuals with sensory disabilities, this occurrent is evalleble in attemate formats. For information call (316) 654-6410 or TDD (316) 654-3890 or write Records and Forms Management, 1120 N Street, MS-99, Sucremento, CA-95614.	otice this occurrent is available in 6410 or TDD (916) 654-388/ Street, MS-89, Sacramento, C/	alternate 0 or write A 95814.	T-101 NO. C 6/943/ LOT NO.	9431		§ 4	ld - (3)	3 P.O. NO.		
TEST NAME		DISTRICT	COUNTY	ROUTE	į		ğ	POST MILES		-	
CONTRACTOR		SAMPLED BY		DATE SAMPLED	9		S	SUPPLY SOURCE	щ		
AGENCY		MANUFACTURER		MATERIAL TESTED FOR	STED FOR		-				
SAMPLE	AREA.	YIELD MPS	ULT	ULTIMATEDS (ELONG.	RED	9	CHEMIC	CHEMICAL ANALYSIS	818	A S
NO. TYPE	BEFORE AFTER	ACTUAL PSI	ACTUAL	E.	-		BEND C	WW	P S	S	<u>5</u> w
F34-7 F2	394 Sob 2. 6065 2. 4555	87897		76905 12.7	12.7						
138-T F2	52945500 2.0005 3.4465	66125		76857 22.3	22.3			-	: .		
62A-L FD	2000 2. 501 2. 6660 2.5000	69015		79342	15.0				,		
F2B-L FZ	20.501 2.0000 24.885	69612		78847 244	24.4						
							-				
F2A-T E2	187 3,0000 2,5225	427.124		71975 24.1	26.1			WILLIAM W. A.			
E2B-1 E2	2550 3.000 J.4585	67943		72012 12.9	22.9						
F24-6 F2	25248 20000 2.5300	56927		74312 24.5	24.5						
E2B-L E2	395.98 2000 2.5645	38519		75623	78.5						
• ,							1				
									-		
SPECIFICATIONS						-	-			-	
REMARKS											
DATE TESTED	TESTED BY			APPROVED BY	VED BY						

STRUCTURAL MATE FORM TM-3 (REV. 07	711)	TENER ASSEMI	BLY WORKSI	HEET	QUALITY	R USE BY SMTL MANAGER Manty
SM Number	14-1017	Lot Number	NA	Date I	Received	10/20/14
Contract Number	0000000764~N	TL-0101 Number		Dat	e Tested //	0/23/14
Lab Technician	FRED	Test Temperature	72_]	Page	of
BOLTS: Tuk	10. F2				:	
Sample N	10. F2	E2				
Heat / Mfg. Lot N	io.					
Product Markin		-				
Si						
Pitch Diamet						
Bolt Leng						
Ring Gage Go/No-G						1100
Zinc Coating Thic		.489			1	
Hardness: Rc/I		• 70 /			3	
Spaci	ng l					
Wedge Tensi					· '	
			:	· · · · · · · · · · · · · · · · · · ·		
NUTS:						, i
. Sample N	lo.					
Mfg, Lot N				,	1 1 1	15
Product Markin						
Si	ze				1.	
Plug Gage Go/No-0	Go					
Zinc Coating Thic	k.				-	
Hardness: Rc/I	Rb			•	:	1
Spaci	ng					,
Nut Proof Lo						ī
WASHER:		1				
Sample N						
Mfg. Lot N						9 1
Product Markin			1 .			
Zinc Coating Thic	The second secon			1		
Hardness: Rc/I	Rb				1	
Spaci	ng					

The

4175 CINCINNATI AVENUE ROCKLIN, CA 95765 (916) 644-1300 FAX (916) 408-6999

		FICATE OF CO		
SUBJECT PROJECT	T: Type Se	4-70 Rail	JOB#	14-233
In accordance wi	th the Specifications	and requirements for	r the above reference	d subject
project, we do he	reby certify to the be	est of our knowledge,	that any and all rein	forcing
	responds to the Mill			
ITEM(S) SHIPPED: AUTHORIZED REF	1-nden S	lab	RELE.	ASE: Z
AUTHORIZED REF	PRESENTATIVE: _	Richelley	DATE	10/30/14
SIZE	MILL	HEAT NO.	GRADE	WEIGHT
4	conc	4039114	A 706	25 25
		4039162		
5	cmc	4039339	AFOG	1835
6	cmc	4038499	A706	4203
8	cm (4039761	AZexo	1909
WE CERTIFY THAT ALL MANUF THE MATERIALS OCCURRED II			TOTAL WEIGHT	10,472

172

CMC STEEL ARIZONA 11444 E. GERMANN RD. MESA AZ 85212-9700

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

are accurate and conform to the reported grade specification We hereby certify that the test results presented here

Jacob Seizer – CMC Steel AZ

Quality Assurance Manager

HEAT NO.:4039162 SECTION: REBAR 13MM (#4) 60'0" A706 GRADE: A706-14 Grade 420 (60)	0 1 0	Camblin Steel Service Inc 4175 Cincinnati Ave Rocklin CA	S H H H H H H H H H H H H H H H H H H H		Camblin Steel Service Inc 4175 Cincinnati Ave Rocklin CA		Delivery#: 81328359 BOL#: 70483657 CUST PO#: Mark CUST P/N:	
ROLL DATE: 08/30/2014 MELT DATE: 08/30/2014	⊢ 0	US 95765-1402 9166441300 9169251502	2 T		US 95765-1402 9166441300 9169251502		DLVRY LBS / HEAT: 30855.000 LB DLVRY PCS / HEAT: 770 EA	
Characteristic	Value		Characteristic Value	Value		Charac	Characteristic Value	
ပ	0.25%	9	Elongation test 1	st 1	16%			
Mn	1.18%	9	Elongation Gage Lgth test 1	est 1	SIN			~ .
۵.	0.012%	%:	Bend Test Diameter	neter	1.500IN			
S	0.029%	%!	Bend Test 1	est 1	Passed			
ï	0.19%	9	Rebar Deformation Avg. Heigh	leigh	0.026IN			
J J	0.32%	9	Rebar Deformation Max. Gap	Gap	0.120IN			*****
	0.11%	9						
Z	0.12%	9						
Mo	0.022%	. %						
>	%00000	%	المراجع والم					
පි	%00000	%				٠		
Su	0.011%	%						
A	0.001%	. %			•			
Z	0.0141%	.1%	16.0					
Carbon Eq A706	0.47%	9						
	6							·····
	/3.9KSI	<u>.</u>						
	510MPa	Pa	:					
Tensile Strength test 1	100.6ksi	iksi						
Tensile Strength 1 (metric)	694MPa	Pa						ш,

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS:

09/05/2014 00:05:01 Page 1 OF 1

CMC STEEL ARIZONA 11444 E. GERMANN RD. MESA AZ 85212-9700

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

are accurate and conform to the reported grade specification We hereby certify that the test results presented here

Jacob Seizer – CMC Steel AZ

Quality Assurance Manager

000 LB									٠.
Delivery#: 81328400 BOL#: 70484633 CUST PO#: Mark CUST PNN: DLVRY LBS / HEAT: 49056.000 LB DLVRY PCS / HEAT: 784 EA	Characteristic Value					٠.			
	Charact					·			
Camblin Steel Service Inc 4175 Cincinnati Ave Rocklin CA US 95765-1402 9166441300 9169251502		15% 8iN 1.875iN	Passed 0.410IN	0.038iN 0.124iN					
S Camb H 1 4175 P Rockl US 99 1 91666	stic Value								
arvice Inc Ave	Characteristic Value	Elongation test 1 Elongation Gage Lgth test 1 Bend Test Diameter	Rebar Deformation Avg. Spaci	Rebar Deformation Avg. Heigh Rebar Deformation Max. Gap	-	٠			
Camblin Steel Service Inc 4175 Cincinnati Ave Rocklin CA US 95765-1402 9166441300 9169251502									
0 H D L O	Vaiue	0.26% 1.18% 0.010%	0.027%	0.09%	0.016%	0.000%	0.001%	0.47%	72.6ksi 501MPa
HEAT NO.:4039339 SECTION: REBAR 16MM (#5) 60'0" A706 GRADE: A706-14 Grade 420 (60) ROLL DATE: 09/08/2014 MELT DATE: 09/08/2014	Characteristic	M G	ν 15 č	} Ö ឪ	Mo >	දි සි	N	Carbon Eq A706	Yield Strength test 1 Yield Strength test 1 (metri

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS.

REMARKS:

ゝ

09/09/2014 11:47:09 Page 1 OF 1

643MPa

Tensile Strength test 1 93.2ksi
Tensile Strength 1 (metric) 643MPa

We hereby certify that the test results presented here are accurate and conform to the reported grade specification.

CERTIFIED MILL TEST REPORT For additional copies cell

CMC WEST DISTRIBUTION 11444 E. GERMANN RD. MESA AZ 85212-9700

HEAT NO.4038499 SECTION: REBAR 19MM (#6) 60'0"	S Camblin Steel Service Inc	ervice life S:	CPU Modesto Taxable	Delivery#: 81323494
A706 GBADE: A706-14 Grade 420 (60)	-i -ci	Ave	300 Codoni Rd Wodesto CA	CUST PO#: Mark 08272014.
HOLL DATE: 08/04/2014 MELT DATE:	US 95765-1402	2	US 95357,0506 2098396500	DLVRY LBS / HEAT; 36768,000 LB. DLVRY PCS / HEAT; 408 EA
	0 9169251502	0		
Characteristic	Value	Characteristic Value	alie	Characteristic Value
Ö	0.27%	Elongation tes	#1 14%	
Mn	1,21%	Elongation Gage Lgth test 1		
Á,	0.013%	Bend Test Diameter	ter 3,000IN	
Ö	0.025%	Bend Test 1	it 1 Passed	
177	0.21%	Rebar Deformation Avg. Spaci	aci 0.486IN	
3	0.28%	Rebar Deformation Avg. He		
ŏ	0.15%	Rebar Deformation Wax. Gap		
izi	0.12%			
Mo	0.031%			
>.	0.003%			
نفد.	%000.0			
uS.	0.012%	-		
ব	0.001%			
2	0.0114%			
Carbon Eq A706	0.49%	-		
	72.6ksi			
ami	501MPa			
	97.7ksi	WT TOWN 17		
Tensile Strength 1 (metric)	674MPa	-		
			H	

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH'NO WELD REPAIR OR MERCURY, CONTAMINATION IN THE PROCESS.

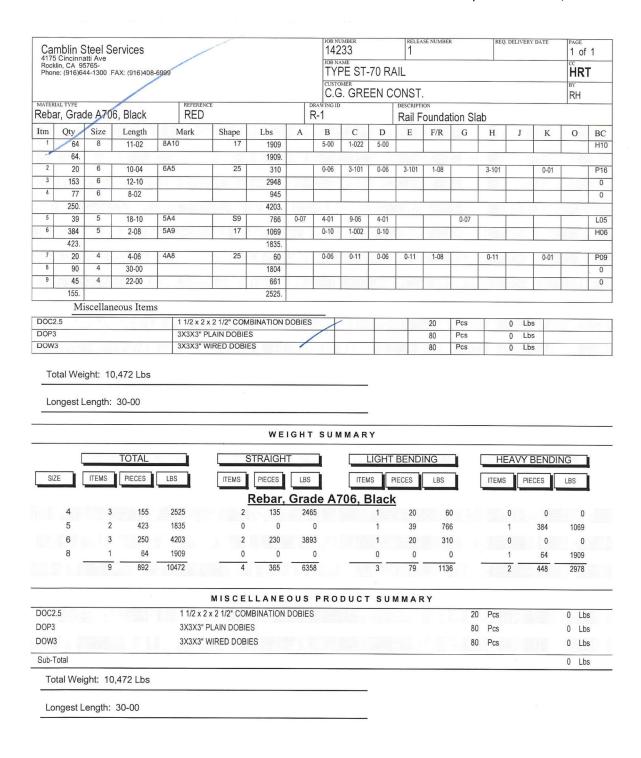
REMARKS:

08/27/2014 12:56:13 Page 1 OF 1

CMC STEEL ARIZONA 11444 E. GERMANN RD. MESA AZ 85212-9700

CERTIFIED MILL TEST REPORT
For additional copies call
830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification


Jacob Seizer – CMC Steel AZ

Quality Assurance Manager

HEAT NO.:4039761 SECTION: REBAR 25MM (#8) 60'0"	ဖ	Camblin Steel Service Inc	υI	Camblin Steel Service Inc		Delivery#: 81341412	
A706		4175 Cincinnati Ave	: -	4175 Cincinnati Ave		CUST PO#: Mark 9-18-14	
GRADE: A706-14 Grade 420 (60)	D Roc	Rocklin CA	Δ	Rocklin CA		CUST P/N:	
ROLL DATE: 09/22/2014	S	US 95765-1402		US 95765-1402		DLVRY LBS / HEAT: 42616,000 LB	_
MELT DATE: 09/22/2014	T 916	9166441300	-	9166441300		DLVRY PCS / HEAT: 266 EA	
	0 91	9169251502	0	9169251502			
							Τ
Characteristic	Value	Characteristic Value	tte V	alue	Charac	Characteristic Value	
ပ	0.25%	Elongation test 1	ion tes	11 14%			
Mn	1.18%	Elongation Gage Lgth test 1	ath tes				
a.	%600.0	Bend Test Diameter	Diame				
	0.025%	Bei	Bend Test 1				
Si	0.20%	Rebar Deformation Avg. Spaci	vg. Spa				
	%68.0	Rebar Deformation Avg. Heigh	vg. Hei	gh 0.068IN			
ර්	0.13%	Rebar Deformation Max. Gap	Max. G	ap 0.152IN			
	0.14%						
Mo	0.032%						
>	0.002%						
93	0.000%						
Su	0.012%						
a A	0.001%						
2	0.0145%						
Carbon Eq A706 (0.47%	2					
	73.9ksi						•
_	510MPa	ndonyy aga					
Tensile Strength test 1 9	95.2ksi						
Tensile Strength 1 (metric)	657MPa			•			

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS:

09/22/2014 08:47:21 Page 1 OF 1

v13.01.4018 (T) (CSS) ©2014 aSa UNAUTHORIZED REPRODUCTION PROHIBITED

CUSTOMER COPY

Tuesday, October 28, 2014 2:53 PM

Camblin Steel Services,	Services, Inc.		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							Sacra	Sacramento, CA
Item Bundle	ndle Check List	Š	Session: 001312 Run: 131347	Fab Shop: Sacramento, CA Shift 1	ımento, C/ 1		Fab Cap	Fab Date: 10/28/2014 Caption:	/2014		
HRT	Job Name: TYPE ST-70 RAIL Customer: C.G. GREEN CONST	IL ONST.		Job: 14233 Release: 1	က္		Description: Ship Date:	Description: Rail Foundation Slab Ship Date:	undation S	lab	RED
Tag	Color / Shape Quantity S	Size	Length	Mark	Shape	11. Sq.	Grade	Coating	BC	Page // Item	CL / Tag
	:			Bent							
_	32	œ	11-02	8A10	17	954	A706	쑮	I	1/1	1/ 1
2	32	ω	11-02	8A10	17	954	A706	BIK		1/1	1/ 2
e e	20	9	10-04	6A5	25 .	310	A706	器	Δ	1/2	2/ 4
7	38	Ŋ	18-10	5A4	8S	766	A706	器		1/5	3/ 1
80	192	ι Ω .	2-08	5A9	17	535	A706	器	Ι	1/6	3/2
o o	192	c)	2-08	5A9	17	535	A706	嚴	I	1/6	3/3
10	20	4	4-06	4A8	25	09	A706	蓋	۵	1/7	4/ 3
			G	Straight							
4	135	9	12-10			2,602	A706	器	0	1/3	2/ 1
rs.	18	ဖ	12-10			347	A706	器	0	1/3	2/ 2
9	77	ဖ	8-02			945	A706	BŖ	0	1/4	2/ 3
12	06	4	30-00			1,804	A706	器	0	1/8	4/ 1
12	45	4	22-00			199	A706	置	0	1/9	4/ 2
v13.01.4021			Tuesda	Tuesday, October 28, 2014 2:54:21 PM	4 2:54:21 PN	_				Page 1	of 2
			©2014 aSa	©2014 aSa UNAUTHORIZED REPRODUCTION PROHIBITED	DUCTION PROH	IBITED					

11. References

- 1. *Manual for Assessing Safety Hardware 2009 (MASH 09).* American Association of State Highway and Transportation Officials. Washington, DC. 2009.
- 3. Rosson, Barry T., Faller, Ronald K., and Ritter, Michael A. *Performance Level 2 and Test Lever 4 Bridge Railings for Timber Decks*. Transportation Research Record 1500. Pgs. 102-111
- Ronald K. Faller, Michael A. Ritter, Barry T. Rosson, Michael D. Fowler, and Sheila R. Duwadi. Two Test Level 4 Bridge Railing and Transition Systems for Transverse Timber Deck Bridges. Transportation Research Record 1696. Pgs. 334-351

12. Document Revision History

Date	Description
x/x/2018	Initial publication