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mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2
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L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 
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oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
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EXECUTIVE SUMMARY 

The accuracy of cost estimates during project development highly depends on the extent 

of information available at the time that the estimate is developed. At the earlier stages of 

project development (e.g., conceptual or preliminary design stages), at which the design 

is not complete, and quantities are uncertain, state departments of transportation (DOTs) 

often encounter difficulty in accurately estimating costs for highway projects. Inaccurate 

estimates lead to critical issues in delivering projects on time and within budget. 

One of the main challenges is the ability to develop accurate cost estimates for major 

lump sum (LS) pay items, such as Traffic Control and Grading Complete. For example, 

in the Georgia Department of Transportation (GDOT), Traffic Control and Grading 

Complete LS pay items are shown on the summary of quantities (SOQ) drawings but do 

not include individual items of work or quantities that constitute the lump sum 

measurement and payment, which can cause significant inaccuracy of cost estimates for 

LS pay items. Cost estimators and designers apply engineering judgment, using 

knowledge from similar projects from the past, and reach out to subject matter experts for 

additional resources. However, researching similar projects to find appropriate estimates 

for the LS pay item is not a simple endeavor. Moreover, the unique features of LS pay 

items add to the complexity of cost estimating for these items. Therefore, this research 

project aims to utilize advanced machine learning algorithms to develop appropriate cost 
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estimating models to enhance the accuracy of early cost estimates for major LS pay items 

using information from project-specific characteristics, location, and design features.  

The overarching objective of this research is to develop forecasting models to estimate 

the prices of the Traffic Control and Grading Complete LS pay items using advanced text 

mining and machine learning algorithms that: (1) detect key patterns of information 

generated during project development and (2) provide higher accuracy of the cost 

estimates. 

To achieve these research objectives, this project uses text mining algorithms, including 

term frequency–inverse document frequency (TF–IDF) and principal component analysis 

(PCA), to capture key patterns of information from unstructured text files (i.e., concept 

reports, field plan review reports, preconstruction status reports, and construction plan 

staging notes). The project then uses data processing algorithms, including the synthetic 

minority oversampling technique (SMOTE) and the Boruta feature selection algorithm, 

and machine learning algorithms, including random forest, bootstrap aggregating 

(bagging), k-nearest neighbors (KNN), stacking regressor, and ordinary least squares 

(OLS) linear regression, to develop forecasting models for the prices of the Traffic 

Control and Grading Complete LS pay items. This study collected the prices of the 

Traffic Control and Grading Complete LS pay items used in highway projects in the state 

of Georgia. With the collected data, the researchers developed a forecasting model for the 

prices of the Traffic Control and Grading Complete LS pay items.  
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This research project used several machine learning algorithms to develop forecasting 

models for the segments of the collected data and select the best-performing algorithms 

for predicting the prices of the Traffic Control and Grading Complete LS pay items for 

each segment. Based on the mean absolute percentage error (MAPE), the researchers 

found that the best-performing algorithms for predicting the prices of a Traffic Control 

LS pay item in Segments 1, 2, 3, 4, and 5, respectively, are: k-nearest neighbors (KNN), 

random forest, KNN, random forest, and stacking regressor. Moreover, the best-

performing algorithms in predicting the prices of a Grading Complete LS pay item in 

Segments 1, 2, and 3, respectively, are: KNN, KNN, and random forest. Next, the 

accuracy of the forecasting models is compared between partitioned data and data 

without partitioning. The model comparison results indicate that the developed machine 

learning models for forecasting the prices of the Traffic Control and Grading Complete 

LS pay items in the defined segments show a higher level of forecasting accuracy.  

Furthermore, a web-based application tool is developed in a Python environment to help 

designers developing cost estimates- with a data-driven tool for estimating the prices of 

the Traffic Control and Grading Complete LS pay items. This tool aids designers and cost 

estimators with a flexible and intelligent platform for early cost estimation of two 

important LS line items, Traffic Control and Grading Complete.   
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CHAPTER 1. INTRODUCTION 

INTRODUCTION 

Accuracy of cost estimates for highway projects is one of the major components in 

making decisions for programming and budgeting for a project during the early stages of 

the project development process. Developing an accurate cost estimate for highway 

projects during the early stages of project development is burdensome for state 

departments of transportation (DOTs) because of difficulties in describing scope 

solutions for all issues, evaluating the quality and completeness of early cost estimates, 

identifying significant areas of variability and uncertainty in project scope and costs, and 

tracking the cost impact of design development on major cost estimates (Anderson et al. 

2007). State DOTs often encounter critical issues in delivering their projects on time and 

within budget since an inaccurate cost estimate is the leading root cause of scope 

changes, cost escalations, project cancellations or delays, and the loss of public trust 

throughout the project development (Paulsen et al. 2008, Baek and Ashuri 2021).  

In addition, the accuracy of cost estimates during project development highly depends on 

the extent of information available at the time the estimate is developed. At the earlier 

stages of project development (e.g., the conceptual or preliminary design stages), where 

the design is not complete and quantities are uncertain, cost estimates are developed 

using parametric cost factors, such as location, traffic management considerations, and 

utility impacts, in what is known as a top-down cost estimating technique. Thus, to 
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develop cost estimates at the early stages of the plan development process (PDP), cost 

estimators often rely on historical bid data due to limited information about project 

design details (Chou et al. 2006, Gardner et al. 2016). As the complete design and precise 

quantities of work become available, cost estimates are developed by assigning unit rates 

for each activity and summing each activity cost to estimate a total construction cost of a 

project, which is known as a bottom-up estimating technique (Kim et al. 2012, Gardner 

2015). With a bottom-up estimating technique, cost estimates can be determined by either 

prices provided by suppliers or through recent bid history. Ultimately, inaccurate cost 

estimates for highway projects are still a pervasive problem (Trost and Oberlender 2003, 

Baek et al. 2016).  

PROBLEM STATEMENT 

The Georgia Department of Transportation (GDOT) Office of Engineering Services 

oversees developing engineer estimates for the projects led by the Department and acts as 

the gatekeeper of cost estimates throughout the PDP milestones. The Office of 

Engineering Services develops the engineer’s estimate for the project using a bottom-up 

unit cost estimating approach based on pay item quantities taken from the final detailed 

project plans and specifications. The GDOT Office of Roadway Design, the district 

design office, and the consultant design phase leader (DPL) each play a unique and 

important role to initialize the construction cost estimate for the project during the early 

phases of preliminary engineering (PE). These subject matter experts update the 
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programmed construction cost estimate throughout the Plan Development Process (PDP) 

milestones and at any time there is a 10% or greater cost increase or decrease. As 

appropriate or when requested, the Office of Engineering Services assists the DPL in 

preparing and updating cost estimates. 

Developing a reasonably accurate cost estimate during the early phases of the design 

development is a challenging task for the DPL, as detailed design information has not yet 

been developed. The DPL must rely on personal experience in similar projects to develop 

an initial cost estimate. Sometimes, the DPL reaches out to subject matter experts in the 

Office of Engineering Services for advice and recommendations to prepare and update a 

more accurate estimate for the project. 

One of the main challenges the DPL faces is in developing accurate cost estimates for 

major lump sum (LS) pay items, such as Traffic Control, Clearing & Grubbing, and 

Grading Complete. These items are shown on the summary of quantities (SOQ) 

drawings; however, these drawings do not include individual items of work or quantities 

that constitute the LS measurement and payment. For instance, according to GDOT 

Policy 2434-1, Method of Payment for Earthwork, “Grading Complete” (Specification 

Section 210) is a LS pay item; thus, no quantity, even for information only, is shown on 

the plans. Grading Complete is automatically used if the total earthwork is not greater 

than 100,000 CY and includes the Clearing & Grubbing LS items of work. 
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Developing cost estimates for these LS pay items requires that the DPL apply 

engineering judgment, use knowledge from similar projects from the past, and reach out 

to subject matter experts for additional resources. However, researching similar projects 

to find appropriate estimates for the LS pay item is not a simple endeavor. The unique 

features of LS pay items add to the complexity of cost estimating for these items, and the 

price patterns for the LS pay items tend to be more uncertain, compared to other pay 

items that have well-established records of historical prices. This research aims to utilize 

advanced machine learning algorithms to develop appropriate cost estimating models to 

enhance the accuracy of early cost estimates for major LS pay items using information 

from project-specific characteristics, location, and design features.  

Thus, this research develops new methods capable of capturing key information from 

project documents and incorporating the complex nonlinear relationships between input 

and output variables in developing reliable prediction models for LS pay item prices for a 

highway project. This report describes the research process to achieve this objective.  

REPORT ORGANIZATION 

The report is structured into the following chapters: 

•  Chapter 2. Literature Review: Through comprehensive content analysis, 

this chapter studies recent trends in developing engineers’ estimates for 

transportation projects. The main goal of this task is to collect information and 
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data related to the state of the knowledge about developing cost estimates in early 

phases of the plan development process. 

• Chapter 3. Research Methodology: This chapter provides an overview of the 

research methodology. Appropriate machine learning algorithms devised for data 

mining and forecasting LS pay items are discussed in this chapter. 

• Chapter 4. Data Collection And Processing: This chapter reviews the collected 

data and conducts quality assurance on the collected information, to ensure that 

the right dataset is used to conduct further analysis. Through a consultation with 

the Offices of Engineering Services and Roadway Design, the collected data are 

verified for developing forecasting models for prices of the LS pay items. This 

critical step ensures the input data are of high quality prior to being incorporated 

into any modeling efforts.  

• Chapter 5. Development Of Forecasting Models For Lump Sum Pay Items: 

Forecasting models are developed through machine learning algorithms. A wide 

range of modeling techniques that can be potentially applicable for forecasting LS 

pay items is considered. The quality and accuracy of several modeling choices 

considering the availability of data points are examined. For example, the 

following steps are conducted to develop machine learning algorithms (i.e., 

random forest, bootstrap aggregating [bagging], and k-nearest neighbors [KNN]) 

for forecasting estimates for LS pay items: 
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o Split the dataset into training and testing datasets (this research uses 

the training dataset to develop the prediction model and validates the 

developed model by applying it to the testing dataset). 

o Apply several machine learning algorithms, such as random forest, 

bagging, and k-nearest neighbors, to the training dataset to create 

forecasting models. 

o Estimate the parameters of the machine learning algorithms through 

trial-and-error analysis to develop a model with an acceptable level of 

fitness. 

To validate the accuracy of the developed forecasting models, the best machine 

learning model is determined based on a predictability assessment. The 

predictability of each machine learning model is assessed based on computing the 

difference between the predicted values of the LS pay items and the actual 

estimates for those line items in the testing dataset. This research uses mean 

absolute percentage error (MAPE) to evaluate the accuracy/predictability of the 

developed models. 

• Chapter 6. Web-Based Application For Forecasting Prices Of Lump Sum 

Pay Items: A web-based application tool is created to automate the developed 

forecasting models. This chapter provides a detailed description of how to use the 

web-based application for forecasting models, alongside snapshots of data entry 

and results publication. The research team’s technical/implementation manager 
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outlines all the required steps to develop an executable tool for forecasting. All 

steps in the developed algorithms are described in detail to facilitate the 

implementation of the forecasting model for GDOT.  

• Chapter 7. Conclusions: A summary of the research findings is presented. 
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 CHAPTER 2. LITERATURE REVIEW  

BACKGROUND 

Several studies have attempted to enhance the accuracy of cost estimates for 

transportation construction projects. Past studies have been carried out to estimate and 

forecast construction costs using historical data through quantitative methods, such as 

regression analysis and machine learning algorithms. For example, many researchers 

used various types of linear regression models for forecasting cost estimates for 

transportation projects. Chou et al. (2006) used multivariate linear regression to predict 

the unit prices of the major work items (e.g., earthwork and landscape, structures, and 

subgrade treatments and base). They used project-related parameters, such as the number 

of work items, project length, and project types, in developing predictive models. 

Mahamid (2011) used linear regression to predict the total cost of road construction 

projects. The author developed multivariate regression models to estimate costs of major 

activities (e.g., earthworks and asphalt works) and sum up the costs of construction 

activities to calculate the total project cost. Another study conducted by Mahamid (2013) 

developed regression models to forecast the conceptual cost estimates for road 

construction projects. That study showed that project-related factors, including bid 

quantities of the major construction activities, road length, and road width, help predict 

conceptual cost estimates and the developed regression models provide favorable 

accuracy in the early stages of a project. Blampied (2018) used multiple regression 
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analysis to estimate conceptual construction costs for public highway projects. The author 

used 39 pedestrian access facility projects on state highways in California and several 

input variables, such as the number of ramps, audible traffic signals, and project length. 

The study showed that the developed exponential regression models were reasonably 

accurate for forecasting conceptual cost estimates for public highway projects. 

Ogungbile et al. (2018) employed a multiple linear regression model to predict the cost of 

road construction projects. Their study used information related to several quantitative 

factors, such as asphaltic wear course, earthwork, and site clearance, in developing a cost 

estimating model. A study conducted by Baek and Ashuri (2018) performed geographical 

regression analysis to estimate the unit price of asphalt line items used in highway 

projects. Their study found different linear relationships between the unit prices and 

external factors (e.g., project length, project types, and duration) depending on the 

geographical location of a project.  

In a follow-up study, Baek and Ashuri (2019) developed a random parameter regression 

model to estimate the unit price of asphalt line items. The authors identified significant 

factors representing project characteristics, major supply sources, construction market 

conditions, macroeconomic conditions, and energy market conditions. Li et al. (2021) 

investigated the construction cost estimation from the temporal perspective and identified 

leading indicators of deviation between the owner’s estimate and low bids from the 

construction market and economic conditions. Another study from Li and Ashuri (2021) 
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quantified the likelihood of construction cost underestimation through Cox proportional 

hazards regression. However, one of the primary limitations of linear regression analysis 

is that a defined mathematical form for the cost function is required for better fitting the 

available historical cost data with explanatory variables (Creese and Li 1995). In 

addition, it is difficult to account for a large number of variables presented in a 

construction project and explain the numerous interactions/relationships among variables, 

which may cause the low accuracy of cost estimating models (de la Garza and Rouhana 

1995). 

Machine learning algorithms are the more advanced alternative to make the cost 

prediction. For instance, Hegazy and Ayed (1998) employed the neural network 

technique to develop a parametric cost estimating model for highway projects. Their 

study used 18 highway projects to develop neural network models through three 

optimization algorithms—back-propagation, simplex optimization, and generic—and 

compare their accuracies. The authors showed that the neural network model with 

simplex optimization provides higher accuracy in forecasting the construction costs than 

the other two algorithms. A study conducted by Al-Tabtabai et al. (1999) used a neural 

network to predict the preliminary cost of highway construction projects. The authors 

used location factors, project-participant factors, and project characteristics in developing 

a neural network model and showed the ability of the neural network technique to predict 

the cost of a highway project. Sodikov (2005) proposed an artificial neural network 
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(ANN) approach for developing cost estimates for highway projects during the 

conceptual phase. The author developed ANN models using project-related variables, 

such as project activities and project duration, and showed that the ANN model was 

superior in forecasting cost estimates for highway projects compared to the multiple 

regression model. 

Chou (2009) examined the practicality of the case-based reasoning (CBR) technique for 

improving the accuracy of early cost prediction for pavement projects. The author 

concluded that the CBA model with experience-based weights of the attributes showed 

better predictability than the CBA model that contains attributes equally treated. Cheng 

et al. (2010) proposed an evolutionary fuzzy hybrid neural network, integrating neural 

networks and high order neural networks into a hybrid neural network, to estimate 

construction costs during the early stages of a project. The authors concluded that the 

proposed approach could yield better accuracy for construction conceptual cost estimates 

compared to the accuracy of the traditional neural network connections.  

Petroutsatou et al. (2012) developed neural network models for predicting early cost 

estimates of road and tunnel construction projects. Their study showed the applicability 

of neural networks in developing forecasting models by capturing nonlinear data 

relationships. Gardner et al. (2016) developed cost estimating models using artificial 

neural networks and multiple regression techniques for highway projects. The study 

found that adding more variables does not necessarily increase the accuracy of cost 
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estimates, and acceptable performance of the estimating models could be yielded using 

suitable input variables with low data collection and storage efforts. Adel et al. (2016) 

developed parametric models for conceptual cost estimates for highway projects using 

artificial neural networks. The authors used 75 highway projects and project-related 

factors, such as project duration, project region, and mainline length, in developing 

conceptual cost estimating models for highway projects. The authors concluded that the 

developed neural network models provide reliable accuracy for forecasting conceptual 

cost estimates for highway projects. 

Cao et al. (2018) introduced the ensemble learning method in forecasting unit price bids 

for highway projects, which comprised four machine learning algorithms, including 

gradient boosting, extreme gradient boosting, random forest, and neural network. Their 

study showed the higher prediction accuracy of the proposed ensemble model compared 

to the accuracies of other methods, such as Monte Carlo simulation and multiple 

regression. In a follow-up work (Cao and Ashuri 2020), an advanced deep learning 

algorithm, long short-term memory (LSTM) algorithm, was used to predict highway 

construction costs. The authors showed that the proposed LSTM model outperformed the 

time series models in all three forecasting scenarios: short-term, medium-term, and long-

term prediction. Moreover, Tijanić et al. (2019) used an artificial neural network to 

develop cost estimating models for road projects. The authors selected three neural 

networks—multilayer perceptron, generalized regression neural network, and radial basis 
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function neural network—and compared the model accuracies. Their study showed that 

the neural network technique is a promising approach to estimate construction costs in 

the initial design phase of a project when there is a limited or incomplete set of data 

available. According to the literature, it can be concluded that machine learning 

algorithms have potential to improve data fitting to the forecasting models and provide 

higher accuracy in forecasting construction costs. 

RESEARCH OBJECTIVE 

Previous studies have shown that higher accuracy and better performance can be 

achieved by using machine learning algorithms to forecast construction costs. However, 

few studies have attempted to estimate the prices of the lump sum pay items for highway 

projects. One of the main challenges in developing accurate cost estimates for LS pay 

items (e.g., Traffic Control and Grading Complete) during PDP lies in the fact that LS 

pay items do not include individual items of work or quantities that constitute the LS 

measurement and payment, which can result in significant uncertainty in cost estimates of 

LS pay items. In addition, as project development advances, a vast amount of project 

information is generated and documented in several different databases, which makes it 

difficult for cost estimators to consider all the collected information items and quantify 

the information in developing cost estimates for LS pay items. The estimator must 

acquire better and more definite project information to develop an accurate cost estimate.  
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The overarching objective of this research is to develop forecasting models to estimate 

the prices of Traffic Control and Grading Complete LS pay items using advanced text 

mining and machine learning algorithms that detect key patterns of information generated 

during project development and provide higher accuracy of cost estimates. 
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CHAPTER 3. RESEARCH METHODOLOGY  

INTRODUCTION TO DATA 

This section describes data sources, including response variables and potential variables, 

for forecasting LS item prices. The prices of the Traffic Control and Grading Complete 

LS pay items used in highway construction projects in the state of Georgia were collected 

from the GDOT Cost Estimation System (CES). The research team collected prices of the 

Traffic Control LS pay items used in 304 highway projects and prices of the Grading 

Complete LS pay items used in 265 highway projects.  

A Traffic Control LS item represents the work of managing mobility and safety impacts 

within a project work zone and addressing traffic safety and control through the work 

zone using items such as channelizing devices, temporary barriers, signage, traffic 

signals, warning devices, and pavement markings. A Grading Complete LS item 

represents the work of clearing, grubbing, and earthwork, including removals and 

excavating of all materials (e.g., ditches and undesirable materials), hauling, forming 

embankments, construction subgrades, etc.  

The prices of the Traffic Control and Grading Complete LS pay items used in this 

research project were developed by the designer during project development at the 

milestone of the Final Field Plan Review (FFPR) cost estimate. Figure 1 shows the 

milestones of GDOT’s project cost estimates during the plan development process. 
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Figure 1. Flow diagram. Milestones for project cost estimates during PDP. 

In addition, the project development documents were collected from the GDOT databases 

to gather potential input attributes in developing a forecasting model. The project 

development documents include concept reports, final field plan review reports, and 

preconstruction status reports (PSRs). A concept report for a project is developed during 

the concept stage in coordination with subject matter experts (e.g., personnel in Right-of-

Way, Utility, and Environmental Offices). Concept reports contain critical information 

related to a project, including project justification, project background, location of 

environmental resources, public involvement plan, access control, etc. During the final 

design stage, FFPR reports are developed to confirm that the design has efficiently and 

continuously satisfied the purpose and need of a project. FFPR reports summarize the 

review of plans and specifications, special provisions, permits, right-of-way agreements, 

Initial Cost Estimate

Concept Development Cost Estimate

Prelimninary Field Plan Review (PFPR) Cost Estimate

Right-of-Way Plans Approval Cost Estimate

Utility Relocation Plans Cost Estimate

Final Field Plan Review (FFPR) Cost Estimate

Final Construction Cost Estimate (Engineer's Estimate)
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and utility conflict resolutions for a project. Finally, during project development, the 

GDOT project manager uses preconstruction status reports to make critical decisions on a 

project. PSRs contain general project information, such as project location, project 

length, and work type, and track major tasks of project development and important notes 

regarding structure, right-of-way, utilities, etc. Table 1 shows the potential factors 

collected in this research effort that might impact the prices of the Traffic Control and 

Grading Complete LS pay items. 

Table 1. Potential factors affecting Traffic Control and Grading Complete 
prices for highway projects.  

Sources Variables (66) Descriptions Units 

C
on

ce
pt

 R
ep

or
ts

 Construction Costs 

Construction cost including construction, 5% Engineering and 
Inspection, Contingencies, and Liquid AC Cost Adjustment 
(not including ROW, Reimbursable Utility, PE, Environmental 
Mitigation Costs) 

$ 

Major Structure Existence of major structures, such as bridges and retaining 
walls 

Boolean 
Indicator 

Major Interchange Existence of major interchanges in the project location Boolean 
Indicator 

Major Intersection Existence of major intersections in the project location Boolean 
Indicator 

Construction Issues Potentially 
Affecting Constructability/ 
Construction Schedule 

Existence of potential issues that affect constructability or 
construction schedules 

Boolean 
Indicator 

Fi
na

l F
ie

ld
 P

la
n 

R
ev

ie
w

 R
ep

or
ts

 

Current Traffic Average Daily 
Traffic (ADT) The total volume of vehicle traffic Number 

Number of Parcels for Right of 
Way Number of parcels for the right-of-way required in a project Number 

Estimated Contract Time Estimated contract duration for a project Month 

Types of Traffic Control Plans 

Seven types of traffic control plans, including: 
• Detours 
• Lane Closures 
• Lane Closures and Detours 
• Lane Closures, Detour, and Flagging Operations 
• Lane Closures and Flagging Operations 
• Traffic Restrictions 
• No Traffic Restrictions 

Boolean 
Indicator 

Summary of Quantities (06-
XXX) 

Presence of words related to traffic control (3): 
• Temporary barrier 
• Attenuator 
• Striping 

Boolean 
Indicator 

Comments on Mainline Roadway 
Plan Sheet (13-XXX) 

Presence of comments for Mainline Roadway Plan Sheet (13-
XXX) in the Field Plan Review Reports 

Boolean 
Indicator 
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Comments on Construction 
Staging & Cross-Section Plan 
Sheet (19-XXX) 

Presence of comments for Construction Staging & Staging 
Cross-section Plan Sheet (19-XXX) in the Field Plan Review 
Reports 

Boolean 
Indicator 

Presence and occurrence of words related to traffic control (4): 
• Stage 
• Shift 
• Closure 
• Detour 

Number 

Comments on Drainage Profiles 
(22-XXX) 

Presence of comments for Drainage Profiles (22-XXX) in the 
Field Plan Review Reports 

Boolean 
Indicator 

Comments on Retaining Walls 
Envelopes (31-XXX) 

Presence of comments for Retaining Walls Envelopes (31-
XXX) in the Field Plan Review Reports 

Boolean 
Indicator 

Comments on Retaining Walls 
Plans (32-XXX) 

Presence of comments for Retaining Walls plans (32-XXX) in 
the Field Plan Review Reports 

Boolean 
Indicator 

Comments on Bridge Plans (35-
XXX) 

Presence of comments for Bridge Plans (35-XXX) in the Field 
Plan Review Reports 

Boolean 
Indicator 

Project Type 

Highway project types (8): 
• Widening & Passing Lanes 
• New Location Roadways 
• Interchange Reconstructions 
• Grade Separations 
• Bridge Program (e.g., replacement of an existing bridge 

or construction of a bridge where there is no existing 
bridge) 

• Intersection Improvements (e.g., roundabouts, signals, 
other intersection control type changes) 

• Other Operational Improvements (e.g., pedestrian 
upgrade, lighting, advanced traffic management (ATM), 
information technology services (ITS), and other 
operational improvements 

• Systematic Improvements: Improvements of guardrail, 
cable barrier, drainage, and noise wall 

Boolean 
Indicator 

Functional Classification 

Functional classification of the project (24): 
• Pedestrian Facility 
• Rural Freeway 
• Rural Major Arterial 
• Rural Major Collector 
• Rural Major Principal Arterial 
• Rural Minor Arterial 
• Rural Minor Collector 
• Rural Minor Interstate Principal Arterial 
• Rural Minor Local Road 
• Rural Minor Principal Arterial 
• Urban Freeway and Expressway 
• Urban Major Arterial 
• Urban Major Collector 
• Urban Major Interstate 
• Urban Major Interstate Principal Arterial 
• Urban Major Principal Arterial 
• Urban Minor Arterial 
• Urban Minor Collector 
• Urban Minor Interstate 
• Urban Minor Interstate Principal Arterial 
• Urban Minor Local Road 
• Urban Minor Principal Arterial 
• Varies 
• Not Provided 

Boolean 
Indicator 

Major Project 
A project that has significant amounts of right-of-way 
acquisition; a significant change in travel patterns; or 
significant social, economic, or environmental effects 

Boolean 
Indicator 
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Road Type 

The types of roadways based on the project description in the 
PSR (3): 
• County Road 
• State Route 
• US Route Interstate 

Boolean 
Indicator 

Project Length Length of the project Miles 

Metropolitan Planning 
Organizations (MPOs) 

Areas with a population greater than 50,000, defined by the 
U.S. Census 

Boolean 
Indicator 

 

To develop the forecasting models for the prices of the Traffic Control and Grading 

Complete LS pay items, 66 initial attributes were collected from the GDOT project 

development documents, including concept reports, FFPR reports, and PSRs.  

OVERVIEW OF THE RESEARCH METHODS 

Figure 2 illustrates an overview of the proposed methodology employed in this paper. 

The research methodology includes four stages: data processing, feature selection, model 

selection, and final model development. Multiple steps of machine learning algorithms 

are introduced to achieve the objective of this research.  

First, the researchers used a text-mining algorithm to convert text information into 

quantifiable data and a dimension reduction algorithm to reduce the computational 

complexity of the model (Ramsingh and Bhuvaneswari 2021). Since project scope and 

design documents are stored with unstructured text files, a text-mining algorithm, term 

frequency–inverse document frequency (TF–IDF), enabled categorization of the text data 

and index words per their importance in the document by identifying the frequency of 

words and checking the presence of the words related to the Traffic Control and Grading 
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Complete LS pay items. TF–IDF has been used widely for analyzing construction (ul 

Hassan et al. 2020, Moon et al. 2021, Jafari et al. 2021). In addition, a dimension 

reduction algorithm, principal component analysis (PCA), was utilized to determine the 

optimal reduced feature set, which can yield the optimal accuracy and learning times. As 

the information in the project documents is vast, the dimension reduction algorithm 

reduced the dimensionality of words identified from the text mining algorithm and 

transformed them into a new set of features (Lin et al. 2015). 

 

Figure 2. Flow diagram. Overview of research methodology. 

Data Processing 

A Term Frequency Inverse Document Frequency (TF–IDF) 

Principal Component Analysis (PCA) 

Synthetic Minority Oversampling Technique (SMOTE) 

Data Partitioning 

Boruta Feature Selection 

Model Selection (Random Forest, Bagging, KNN, Stacking Regression, 
and Ordinary Least Squares [OLS] Linear Regression) 

Final Model Development 

Prediction (Piecewise Regression)  

Splitting Data (90% Training and 10% Testing) 
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Second, this research used an oversampling algorithm—synthetic minority oversampling 

technique (SMOTE)—to overcome the issue of imbalanced data. Imbalanced data or 

skewed data sets are challenging because they will cause bias for developing a 

forecasting model. For instance, there will be high predictive accuracy for the majority 

data while the minority data will have poor predictivity because the minority class is 

treated as noise and ignored completely by the classifier (Su and Hsiao 2007). Thus, 

SMOTE will improve classifier performance for the minority class. Next, data 

partitioning was conducted to minimize the errors of forecasting models by making the 

predicted values of the forecasting models close to the observed data points. This 

research identified data segments by examining a quantile plot of construction costs. And 

then, the data were divided into training and testing datasets, 90 and 10 percent, 

respectively. 

Next, the BORUTA feature selection algorithm was used to select important variables to 

predict the prices of the Traffic Control and Grading Complete LS pay items. Since 

including a higher number of variables for developing a forecasting model can decrease 

the efficiency of the algorithm and the accuracy of a forecasting model (Kohavi and John 

1997), identifying a set of important variables was crucial. This research used the Boruta 

feature selection algorithm because it provides an unbiased and stable selection of 

important and non-important variables (Kursa and Rudnicki 2010). With identified 

variables for data segments from the Boruta algorithms, multiple machine learning 
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algorithms, including random forest, bagging, KNN, stacking regressor, and ordinary 

least squares (OLS) linear regression, were used to develop forecasting models for data 

segments. For the data segment, this research selected the best algorithms that provide the 

least absolute error. Finally, using the best algorithm for each data segment, piecewise 

regression was employed to predict the prices of the Traffic Control and Grading 

Complete LS items.  

DATA PROCESSING 

Text Mining with Term Frequency–Inverse Document Frequency and Principal 
Component Analysis 

The forecasting accuracy heavily depends on the data quality used for developing 

forecasting models. Data processing was carried out in the following steps. First, useful 

information hidden in collected text documents (i.e., concept reports and FFPR reports) 

was extracted using the term frequency–inverse document frequency technique, which 

allows for ranking of important words within documents and creates a document term 

matrix based on the importance of the identified words. Raw counts of specific words 

were also computed from the text information. To extract important words related to the 

Traffic Control and Grading Complete LS pay items, this research applied the TF–IDF 

technique to several text components in concept reports and FFPR reports, as presented in 

Table 2 and Table 3.  
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Table 2. Text components for Traffic Control LS pay item. 

Data Source Text Components 

Concept Reports Need and purpose project justification 

FFPR Reports 

Project Description 

Special Provisions General Special Provision 

Typical sections 

Summary of Quantities 

Construction Staging & Cross-Section Plan Sheet (19-XXX) 

Construction Issues potentially affecting constructability/construction 
schedule 

 

Table 3. Text components for Grading Complete LS pay item. 

Data Source Text Components 

Concept Reports Need and purpose project justification 

FFPR Reports 

Project Description 

Cover Sheet (01-XXX) 

Mainline Roadway Plan Sheet (13-XXX) 

Cross Sections (23-XXX) 

Summary of Quantities 

Construction Staging & Cross-Section Plan Sheet (19-XXX) 

 

As the developed document term matrix from the TF–IDF technique is large and sparse, 

principal component analysis was applied to reduce feature dimensions (i.e., document 

term matrix). PCA uses a linear combination of initial text variables identified from the 

TF–IDF (Kotekar and Kamath 2018) to reduce dimensionality through the orthogonal 

projection of the original data onto a lower-dimensional linear space. The identified 
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principal components transform the textual variables describing the project into an 

optimal subspace serve. The calculated principal components are valuable as intermediate 

links for the subsequent forecasting analysis.  

Synthetic Minority Oversampling Technique and Data Partitioning  

A synthetic minority oversampling technique was introduced to address highly right-

skewed data. Figure 3 and figure 4 depict the distribution of prices of the Traffic Control 

and Grading Complete LS pay items, which are highly right-skewed. SMOTE combines 

undersampling of the frequent data points with oversampling of the minority data points, 

which reduced skewness for the collected data of the Traffic Control and Grading 

Complete prices. SMOTE has the potential to improve the accuracy of model 

performance by handling the skewed class distribution. To oversample the minority class, 

synthetic samples were generated by interpolating between adjacent minorities. The 

sampling was performed in the same feature space of original minority classes, which 

allows for more consistent data distribution (Rong et al. 2014). The majority class was 

undersampled by randomly removing samples from the majority class population until 

the minority class became some specified percentage of the majority class. Thus, SMOTE 

used the combination of undersampling and oversampling to address data skewness 

(Chawla et al. 2002). 
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Figure 3. Graph. Distribution of Traffic Control price. 

 

Figure 4. Graph. Distribution of Grading Complete price. 
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Feature Selection with Boruta Feature Selection Method 

The primary purpose of feature selection is to select a subset of variables from the 

potential variables that are useful to explain the responsible variable while excluding 

effects from irrelevant and redundant variables (Guyon and Elisseeff 2003). 

This research used a Boruta feature selection technique to select the most relevant 

variables with the greatest potential for enhancing price prediction of Traffic Control and 

Grading Complete LS items. Following Kursa and Rudnicki’s (2010) recommendations, 

the following steps were implemented to find relevant variables for developing 

forecasting models. First, the Boruta algorithm extended the information system by 

adding copies of all variables (e.g., adding at least five shadow attributes). The added 

attributes were randomly shuffled to remove their correlations with the response variable. 

Next, the algorithm ran a random forest algorithm on the extended information system 

and gathered the Z scores computed. The maximum Z score among shadow attributes 

(MZSA) was determined as the threshold. A two-sided test of equality with the MZSA 

was performed for each attribute with undetermined importance. The algorithm deemed 

the attributes with importance significantly higher than MZSA as important variables and 

those with importance significantly lower than MZSA as unimportant variables. Lastly, 

unimportant attributes were permanently removed from the information system. The 

Boruta feature selection technique has proven successful in prior studies to identify the 
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sets of variables for developing a forecasting model (Cao et al. 2018, Assaad and El-

adaway 2020). 

MACHINE LEARNING ALGORITHMS 

Multiple machine learning algorithms, including random forest, bagging, KNN, stacking 

regressor, and OLS linear regression, were used in this research to develop forecasting 

models for prices of Traffic Control and Grading Complete LS pay items and to identify 

the best performance models for each data segment. Using the machine learning 

algorithms, forecasting models were developed for each defined segment, and their 

performances were compared through the mean absolute percentage error.  

Random Forest 

The random forest is one of the most accurate machine learning algorithms in terms of 

reducing bias and overfitting. The forest makes trees by randomly taking observations 

and input variables to decorrelate the base learners (Nasiriany et al. 2019, Murphy 2012). 

It aggregates a bundle of decision trees and takes the total average for prediction. The 

trees create branches by learning the decision rules inferred from the data. Each branch 

contains a set of rules and selected features that correspond to an output at the end of the 

branch. The primary advantage of this algorithm is the capability to consider both 

categorical and continuous variables in developing a forecasting model.  
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Bagging 

The “bagging” algorithm is an ensemble estimator composed of bootstrap and 

aggregation (Elmousalami 2020). The bootstrap step randomly draws replicas from the 

training dataset with replacement. Base regressors are fit on each random subset. The 

aggregation step forms the final prediction by averaging outcomes from base regressors 

(Breiman 1996). The algorithm leverages predictions from weak models that specialize in 

a different dimension of feature space to improve accuracy, reduce variance, and 

eliminate the chance of overfitting. 

K-nearest Neighbors 

The k-nearest neighbors regression is a nonparametric method that uses feature similarity 

to produce an estimation for new data entries. It is reasonable to conjecture that those 

similar observations should be nearby (Song et al. 2017). The algorithm approximates the 

relationship between the input features and the outcome by local interpolation of 

observations from the same neighborhood. The inverse distance is used to assign weight 

to different training samples. 

Stacking Regressor 

An ensemble learning technique is used to stack the outputs from individual regressors 

through ridge regression. The outputs from the random forest, bagging, and KNN are 

taken as inputs of the stacking regressor, allowing for higher generalizability. Ridge 

regression is a natural fit as it solves the problem of overfitting, especially when the data 
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suffer from multicollinearity (Mohammadi 2020). The algorithm formulation shrinks the 

parameters by pushing the coefficients toward zero. Such regularization reduces model 

complexity and the risk of multicollinearity arising in the unseen data. 

Model Evaluation 

The measure of mean absolute percentage error was used in this research to investigate 

the model accuracy on testing data. The MAPE evaluates the relative error of the 

forecasting models, as well as combines approaches using a stacking regressor. Because 

the test set is not used for model fitting, it reflects the model predictability when handling 

unknown future events. The lower the MAPE value, the higher the accuracy of 

forecasting models; the higher the MAPE value, the lower accuracy of forecasting 

models. The metric is defined in equation 1 below. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�

|𝑒𝑒𝑖𝑖|
𝑦𝑦𝑖𝑖

× 100
𝑛𝑛

𝑖𝑖=1

 (Error! Bookmark not defined.1) 

where 𝒚𝒚𝒊𝒊 is the actual Traffic Control or Grading Complete prices of project i, 𝒆𝒆𝒊𝒊 is the 

residual of project i, and n is the number of data points that are predicted. 
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CHAPTER 4. DATA COLLECTION AND PROCESSING  

RESULTS OF DATA PROCESSING 

Critical terms were identified, and the numerical representations of text data were 

developed through a term frequency–inverse document frequency technique. The PCA 

technique was performed on the developed sparse document term matrix to reduce 

dimensionality through the orthogonal projection of the original data onto a lower-

dimensional linear space. The first 21 principal components were kept after PCA. Finally, 

multicollinearity among input variables was detected using the variance inflation factor 

(VIF). If the value of the VIF is greater than 10 for a variable, severe multicollinearity 

exists in the model. The following four variables were removed from the subsequent 

modeling process: 

• Estimate Contract Time. 

• Presence of Word “Stage” in Construction Staging & Cross-Section Plan Sheet 

(19-XXX). 

• Presence of Comments on Mainline Roadway Plan Sheet (13-XXX). 

• Project Type Bridge Program. 
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Therefore, this research identified 81 potential variables in developing forecasting models 

for the prices of the Traffic Control and Grading Complete LS pay items. 

Next, SMOTE was applied to the collected prices of the Traffic Control and Grading 

Complete LS pay items to address highly right-skewed data. Data partitioning was 

implemented to minimize the errors, which allows for making the predicted values close 

to the observed data points. Furthermore, data partitioning is helpful to capture the 

different relationships between the response variable and independent variables in 

different partitions, especially when the response variable spans an extensive range. A 

quantile plot of construction costs for highway projects is used to determine breakpoints 

of data segments. Figure 5 presents a quantile plot of construction costs for highway 

projects, which were collected for the Traffic Control LS pay item. Figure 6 depicts a 

quantile plot of construction costs for highway projects, collected for the Grading 

Complete LS pay item. 
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Figure 5. Graph. Quantile plot of construction cost for 

Traffic Control LS pay item. 

 

Figure 6. Graph. Quantile plot of construction cost for Grading 
Complete LS pay item. 
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Table 4 provides breakpoints for data segments of the Traffic Control and Grading 

Complete LS pay items. The results in table 4 indicate that five segments were 

determined for the Traffic Control LS pay item and three segments were determined for 

the Grading Complete LS pay item. 

Table 4. Results of data partitioning. 

Segments 
Traffic Control Grading Complete 

Interval (Construction Costs $) 

Segment 1 <$1Million <$1.8Million 

Segment 2 [$1 Million, $1.8 Million) [$1.8 Million, $2.8 Million) 

Segment 3 [$1.8 Million, $2.8 Million) >=$2.8 Million 

Segment 4 [$2.8 Million, $10 Million) – 

Segment 5 >=$10 Million – 

 

Finally, the data were divided into training and testing data sets for model development 

and validation. This research uses 90 percent of the randomly selected data for training 

the model and the remaining 10 percent for testing the model’s predictability. 

RESULTS OF FEATURE SELECTION 

For each identified segment, the Boruta algorithm was applied to select the most 

important variables and remove unimportant variables to improve the model parsimony. 

The results of a Boruta feature selection for the Traffic Control and Grading Complete LS 

pay items are presented in Table 5 and Table 6, respectively.  
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Table 5. Results of Boruta feature selection for Traffic Control LS pay item. 

Ranks 

Segment 1 
<$1M 

Segment 2 
[$1M, $1.8M) 

Segment 3 
[$1.8M, $2.8M) 

Segment 4 
[$2.8M, $10M) 

Segment 5 
>=10M 

Features 

1 Construction 
Cost Traffic ADT Construction Cost Project Length Project Length 

2 State Route Construction 
Cost 

Principal 
Component 8 

Number of Parcels 
for ROW 

Construction 
Cost 

3 
Not Provided 
(Functional 
Classification) 

Number of 
Parcels for 
ROW 

Project Length Construction Cost Traffic ADT 

4 Stage# Project Length State Route Traffic ADT 
Number of 
Parcels for 
ROW 

5 Systematic 
Improvements 

Rural Minor 
Local Road 
(Functional 
Classification) 

Number of Parcels 
for ROW State Route 

No Traffic 
Restrictions & 
Control Plans 

6 Project Length Striping Traffic ADT 

Rural Minor 
Interstate 
Principal Arterial 
(Functional 
Classification) 

Other 
Operational 
Improvements 

7 
Comments on 
Drainage 
Profiles 

Rural Major 
Collector 
(Functional 
Classification) 

Striping Stage# Stage# 

8 Traffic ADT Stage# Lane Closures 
Comments on 
Retaining Walls 
Envelopes 

Intersection 
Improvements 

9 Lane Closures Principal 
Component 4 

Other Operational 
Improvements Closure# Detour# 

10 
Number of 
Parcels for 
ROW 

Intersection 
Improvements 

Rural Major 
Collector 
(Functional 
Classification) 

Comments on 
Bridge Plans 

Urban Minor 
Principal 
Arterial 
(Functional 
Classification) 

11 MPOs New Location 
Roadways 

 Striping Shift# 

12 County Road    

Urban Major 
Principal 
Arterial 
(Functional 
Classification) 

13 Comments on 
Bridge Plans 

   Comments on 
Major Structure 

14     
Urban Major 
Interstate 
(Functional 
Classification) 
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According to the results for a Traffic Control LS pay item in Table 5, 13 variables were 

selected in Segment 1. Construction cost, state route, no functional classification, and 

word frequencies of stages in the field plan review reports were the most critical factors 

in Segment 1, followed by systematic improvements, project length, and binary variable 

of comments on drainage profiles. In Segment 2, the results indicated that 11 variables 

were selected. Traffic volume, construction cost, number of parcels for ROW, and project 

length were the most significant variables, followed by rural minor local road (functional 

classification), striping (summary of quantity), and rural major collector (functional 

classification). In Segment 3, 10 variables were selected. The results showed that 

construction cost, principal component 8, project length, and state route were the most 

important variables, followed by the number of parcels for ROW, traffic volume, and 

striping. The identified principal component points to one of the principal directions 

along which the text data show the largest variation. In Segment 4, 11 variables were 

selected. The results indicated that project length, number of parcels, construction cost, 

and traffic volume were the most important variables, followed by state route, rural minor 

interstate principal arterial, word frequencies of the stage, the binary variable of 

comments on retaining walls envelopes, and word frequencies of closure. Lastly, 

Segment 5 had 14 variables identified. The most important variables in Segment 5 were 

project length, construction cost, traffic volume, and the number of parcels for ROW, 

followed by no traffic restrictions & control plans (type of traffic control plan), other 

operational improvements, word frequencies of stages, and intersection improvements. 
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Furthermore, the results showed that four variables—construction cost, project length, 

traffic volume, and the number of parcels—were influential in all segments.  

Table 6. Results of Boruta feature selection for Grading Complete LS pay item. 

Ranks 
Segment 1  
(<$1.8M) 

Segment 2 
[$1.8M,$2.8M) 

Segment 3  
(>=$2.8M) 

Features 

1 Construction Cost Traffic ADT LENGTH_MI 

2 Principal Component 4 LENGTH_MI Stage# 

3 LENGTH_MI Construction Cost Construction Cost 

4 Principal Component 17 Principal Component 9 Traffic ADT 

5 Traffic ADT ROW Number of Parcels ROW Number of Parcels 

6 Stage# Principal Component 18 FC Urban Major Principal 
Arterial 

7 Principal Component 19 Principal Component 5 Principal Component 13 

8 Comments on Major 
Interchanges Principal Component 12 Principal Component 7 

9 Principal Component 18 Principal Component 8 Principal Component 3 

10 Principal Component 6 Principal Component 14 Principal Component 8 

11 Principal Component 11 Principal Component 19 Principal Component 1 

12 Principal Component 1 Principal Component 0 Principal Component 19 

13 Principal Component 12 Principal Component 16 Principal Component 16 

14 FC Not Provided Principal Component 20 Principal Component 15 

 

Table 6 provides the results of feature selection for the Grading Complete LS pay item; 

14 variables were selected in Segments 1, 2, and 3, respectively. In Segment 1, 

construction cost, principal component 4, project length, principal component 17, and 

traffic volume are the most critical factors, followed by the number of occurrences of 

word “stage,” principal component 19, comments on major interchanges, etc. In Segment 
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2, the results indicated that traffic volume, project length, construction cost, principal 

component 9, and the number of parcels for ROW are the most significant variables, 

followed by other principal components. The selected principal components represent the 

directions that explain the largest amount of variation in the text documents. For Segment 

3, the results showed that project length, the number of occurrences of the word “stage,” 

construction cost, traffic volume, and the number of parcels for ROW are the most 

important variables, followed by the functional classification of urban major principal 

arterial and other principal components. Overall, the results showed that three variables—

construction cost, project length, and traffic volume—were significantly influential in all 

segments for predicting prices of a Grading Complete LS pay item. Thus, the identified 

variables for each segment for the Traffic Control and Grading Complete LS pay items 

were used for developing forecasting models. 
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CHAPTER 5. DEVELOPMENT OF FORECASTING MODELS FOR LUMP SUM 
PAY ITEMS 

OVERVIEW 

The prices of major lump sum pay items, Traffic Control 150-1000 and Grading 

Complete 210-0100, were forecasted using key project attributes identified through data 

processing and feature selection. Five machine learning algorithms were employed: 

KNN, random forest, bagging, stacking regressor, and OLS linear regression to train 

models for each data segment using 90 percent of the dataset. The out-of-sample 

performance of models was evaluated using MAPE on the remaining testing data. The 

following sections present evaluations of the forecasting results in both tabular and 

graphic formats. 

TRAFFIC CONTROL LUMP SUM ITEM (150-1000) 

The following subsections examine the model performance from three aspects: model 

comparison, overall accuracy, and residual examination. 

Model Comparison 

Table 7 presents the out-of-sample MAPE values for predicting the Traffic Control LS 

item price using different algorithms for each segment. In Segment 1, KNN gave the 

most accurate prediction, compared to the other algorithms. The MAPE value for KNN in 

Segment 1 is 6.25 percent. In Segment 2, random forest was the best-performing 
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algorithm in terms of MAPE. In Segment 3, KNN showed the best performance, 

compared to the other algorithms; the MAPE value for KNN in Segment 3 is 

8.04 percent. The random forest algorithm demonstrated the highest accuracy (i.e., 

MAPE) in forecasting the Traffic Control LS pay item prices in Segment 4. For Segment 

5, the stacking regressor algorithm showed the best accuracy in forecasting prices of the 

Traffic Control LS pay items. The MAPE value for stacking regressor in Segment 5 is 

7.16 percent. Therefore, this study selected KNN, random forest, KNN, random forest, 

and stacking regressor for Segments 1, 2, 3, 4, and 5, respectively. It can also be noted 

that the selected machine learning algorithms for the five segments outperformed the 

ordinary least squares linear regression based on the MAPE values. Consequently, the 

results showed that the estimated accuracy of the developed machine learning models for 

the segments ranged from 6.25 to 14.05 percent. 
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Table 7. Test results of model selection for segments (Traffic Control). 

Segments (Construction Costs $) Models MAPE 
(%) 

Segment 1 
<$1M 

K-Nearest Neighbors (KNN) 6.25 
Random Forest 11.84 

Bagging 12.66 
Stacking Regressor (Ridge) 16.73 

OLS Linear Regression 18.89 

Segment 2 
[$1M, $1.8M) 

Random Forest 14.05 
Bagging 21.79 

Stacking Regressor (Ridge) 25.72 
K-Nearest Neighbors (KNN) 39.82 

OLS Linear Regression 50.86 

Segment 3 
[$1.8M, $2.8M) 

K-Nearest Neighbors (KNN) 8.04 
Random Forest 15.73 

Bagging 17.07 
Stacking Regressor (Ridge) 30.42 

OLS Linear Regression 36.83 

Segment 4 
[$2.8M, $10M) 

Random Forest 12.52 
Stacking Regressor (Ridge) 12.74 

K-Nearest Neighbors (KNN) 13.44 
Bagging 16.07 

OLS Linear Regression 43.00 

Segment 5 
>=$10M 

Stacking Regressor (Ridge) 7.16 
K-Nearest Neighbors (KNN) 12.87 

Random Forest 14.33 
Bagging 27.62 

OLS Linear Regression 27.90 
 

Overall Accuracy 

Next, the accuracy of the forecasting models was compared between partitioned data and 

data without partitioning (table 8). The overall accuracy of the proposed model was 

90.21 percent (MAPE = 9.79 percent). It was concluded that the developed machine 

learning models achieve a high level of forecast accuracy. In contrast, the machine 

learning models achieve much lower accuracy when applied to data without partitioning. 
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The error metric of OLS reaches more than 100 percent. Therefore, the piecewise 

regression, which partitions data into different intervals and fits a regression function to 

each one, significantly improves the model predictability.  

Table 8. Test results comparison between partitioned data and data without 
partitioning (Traffic Control). 

 Partitioned Data Data without Partition 

Algorithms Proposed Model KNN Stacking 
Regressor 

Random 
Forest Bagging OLS 

MAPE (%) 9.79 28.53 31.68 36.88 45.69 109.37 

 

Figure 7 shows the scatter plot of actual and predicted traffic control prices. Since the 

scatter plots are close to the red dashed line, the developed forecasting models show the 

strong capability to predict the prices of the Traffic Control LS items. 
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Figure 7. Graph. Model results of piecewise regression (Traffic Control). 

Residual Examination 

Finally, the residuals obtained from the forecasting models were examined using the 

scatter plot and D’Agostino’s K-squared test. Figure 8 provides the scatter plot of 

residuals against fitted points for the Traffic Control LS pay item. Nearly half the data 

points are below the zero-line and half above the line. The plot also suggests no trend 

between residuals and fitted points.  
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Figure 8. Graph. Scatter plot of residuals (Traffic Control). 

The result of the D’Agostino’s K-squared test, provided in table 9, indicates that the null 

hypothesis that the residuals follow the normal distribution is accepted at a significance 

level of 0.05. Therefore, it is clear that the forecasting models adequately capture the 

information in the data. 

Table 9. Normality test of residuals (Traffic Control). 

Test Statistics p-value 

D'Agostino's K-squared test 5.049 0.080 

 



47 

GRADING COMPLETE LUMP SUM ITEM (210-0100) 

The following subsections examine the model performance from three aspects: model 

comparison, overall accuracy, and residual examination. 

Model Comparison 

The out-of-sample MAPE values for forecasting the Grading Complete LS item price 

using different machine learning algorithms for each segment are summarized in table 10. 

For Segment 1 and Segment 2, KNN achieved the highest accuracy compared to the other 

machine learning algorithms, with a MAPE of 7.34 and 3.56 percent, respectively. For 

Segment 3, random forest stood out as the most accurate approach for forecasting the 

Grading Complete LS item price. Therefore, this study selected KNN, KNN, and random 

forest for Segments 1, 2, and 3, respectively. The out-of-sample MAPE values ranged 

from 3.56 to 14.31 percent. All the machine learning algorithms outperformed the 

ordinary least squares linear regression in terms of MAPE values.  
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Table 10. Test results of model selection for segments (Grading Complete). 

Segments (Construction Costs $) Models MAPE 
(%) 

Segment 1 
<$1.8M 

K-Nearest Neighbors (KNN) 7.34 
Random Forest 16.64 

Stacking Regressor (Ridge) 19.41 
Bagging 20.59 

OLS Linear Regression 57.20 

Segment 2 
[$1.8M, $2.8M) 

K-Nearest Neighbors (KNN) 3.56 
Random Forest 13.03 

Stacking Regressor (Ridge) 13.70 
Bagging 22.51 

OLS Linear Regression 64.80 

Segment 3 
>=$2.8M 

Random Forest 14.31 
Bagging 18.01 

Stacking Regressor (Ridge) 23.18 
K-Nearest Neighbors (KNN) 24.63 

OLS Linear Regression 99.08 
 

Overall Accuracy 

The overall accuracy was compared between the developed piecewise regression using 

partitioned data and machine learning algorithms using data without partitioning 

(table 11). The overall accuracy of the proposed model was 91.40 percent (MAPE = 

8.60 percent), which was much higher than the other approaches that used data without 

partitioning. The MAPE values ranged from 37.05 to 147.51 percent when forecasting 

algorithms were directly applied to data without partitioning. The high accuracy of the 

proposed model validated the effectiveness of piecewise regression, which could capture 

the complex relationship between an LS item price and project features in different 

intervals.  
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Table 11. Test results comparison between partitioned data and data without 
partitioning (Grading Complete). 

 Partitioned 
Data Data without Partition 

Algorithms Proposed 
Model 

Random 
Forest 

Stacking 
Regressor Bagging KNN OLS 

MAPE (%) 8.60 37.05 38.99 39.39 44.86 147.51 

 

Figure 9 provides the graphic evaluation of the model performance. The points lie close 

to the 45-degree line, confirming the model predictability. 

 

Figure 9. Graph. Model results of piecewise regression (Grading Complete). 
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Residual Examination 

The residual examination was performed using a scatter plot and normality test. In 

figure 10, the residuals are randomly scattered around zero. The degree of scattering is 

constant for all fitted values. The residuals show no pattern against the fitted points, 

which suggests that the proposed model appropriately captured all the trends in the data.  

 
Figure 10. Graph. Scatter plot of residuals (Grading Complete). 

The D’Agostino’s K-squared test statistics also confirmed the residuals’ normal 

distribution at a significance level of 0.05 (table 12). Therefore, it was concluded that the 

proposed model thoroughly described the relationship between the key project features 

and LS item price, and only random error remained. 
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Table 12. Normality test of residuals (Grading Complete). 

Test Statistics p-value 

D’Agostino’s K-squared test 1.884 0.390 

  



52 

CHAPTER 6. WEB-BASED APPLICATION FOR FORECASTING PRICES OF 
LUMP SUM PAY ITEMS 

PURPOSE OF THE TOOL 

The purpose of the development of a web application tool was to provide a data-driven 

tool for estimating the prices of major lump sum items (i.e., Traffic Control 150-1000 and 

Grading Complete 210-0100) used in highway construction projects in the conceptual 

stage. Project cost estimating professionals can use this tool to facilitate accurate cost 

estimation during the early phases of the design development utilizing key information 

items about the project when design details are not available.  

The Lump Sum Item Cost Estimator tool is designed for enhancing the accuracy of early-

stage cost estimation for lump sum pay items. After inserting numerical, categorical, and 

text information of project attributes retrieved from project development documents (i.e., 

preconstruction status reports, concept reports, and field plan review reports), the users 

can have instant cost estimation of major lump sum items (i.e., Traffic Control 150-1000 

and Grading Complete 210-0100). With the constantly evolving programming landscape, 

this fully deployed Flask web application was implemented in a Python environment. 

Despite large model complexity, the tool exhibits high computing speed. This tool aids 

designers and cost estimators with a flexible and intelligent platform for early cost 

estimation of two important LS line items, Traffic Control 150-1000 and Grading 

Complete 210-0100. 
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STRUCTURE OF THE TOOL 

The tool consists of a Home page, Navigation page, Data Inputs page, and Results page, 

which are introduced below. 

Home Page 

The Home page contains separate links to the Navigation pages for Traffic Control (150-

1000) and Grading Complete (210-0100) LS items, as shown in figure 11.  

• Click the “Traffic Control” button to forecast the price of the Traffic Control 

(150-1000) lump sum item. 

• Click the “Grading Complete” button to forecast the price of the Grading 

Complete (210-0100) lump sum item. 

 
Figure 11. Screen capture. Home page in the Lump Sum Item Cost Estimator. 
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Navigation Page 

After selecting a lump sum item on the Home page, the user is directed to the intended 

Navigation page, as shown in Ffigure 12. The Navigation page contains links to three 

different input sections (i.e., numerical attributes, multiple choice, and text documents) 

and the Results page. 

• Click the “Go” button on the row of the desired input section to enter the 

corresponding project attributes. After completion of each input section, use the 

“Go Back” button to return to the Navigation page or the “Continue” button to go 

to the next input section. 

• Click the “Go” button on the row next to the See Results and Warnings option to 

view the results and any warning information. 

• Click the “Home Page” button to return to the Home page. 

 
Figure 12. Screen capture. Navigation page for Traffic Control in the 

Lump Sum Item Cost Estimator. 
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  Insert Project Attributes 

To insert project attribute, click on the “Go” button next to the desired input type (i.e., 

numerical, multiple choice, or text) on the Navigation page. The data inputs process 

allows entry of project attributes information through manual-entry fields and drop-down 

menus. Screenshots of the attributes are provided in figure 13 and figure 14. Fill out or 

select the required information as indicated in each input section and according to the 

following detailed instructions of the project attributes to be inserted.1  

Numerical Attributes 

The Numerical Attributes page allows entry of numerical attributes, which include 

(1) Construction Cost ($), (2) DesignData_Current Traffic ADT, (3) Right of 

Way_Number of Parcels, and (4) Length_mile. These options are available for both 

Traffic Control (150-1000) and Grading Complete (210-0100) (as selected initially on the 

Home page). 

• Construction Cost ($): Construction cost includes construction, 5 percent 

Engineering and Inspection, Contingencies, and Liquid AC Cost Adjustment (not 

including ROW, Reimbursable Utility, PE, Environmental Mitigation Costs). 

 
1 The user can also refer to the detailed explanation for each attribute by clicking the attribute name: click 
once to open the popup message and click again to close the message box. For text inputs, the explanation 
is provided in the placeholder texts. 
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Related information can be found in the concept report and preconstruction status 

report (Coordination, Activities, Responsibilities, and Costs). 

• DesignData_Current Traffic ADT: Average daily traffic represents the total 

volume of vehicle traffic. Related information can be found in the Field Plan 

Review Reports (Design Data). 

• Right of Way_Number of Parcels: Number of parcels for the right-of-way is 

required in a project. Related information can be found in the Field Plan Review 

Reports (Right of Way). 

• Length_mile: Length of the project represents the total miles of the project. 

Related information can be found in the Preconstruction Status Report. 

 
Figure 13. Screen capture. Numerical Attributes page in the 

Lump Sum Item Cost Estimator. 
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Multiple Choice 

The Multiple Choice page contains 13 attributes for selection from the provided options. 

These options are available for both Traffic Control (150-1000) and Grading Complete 

(210-0100) (as selected initially on the Home page).  

• Road Type: Select the types of roadways based on the project description in the 

Preconstruction Status Reports (PI_Description). To select multiple options, hold 

down the Control (Ctrl) key.  

• Types of Traffic Control Plans: Select from several types of traffic control plans. 

Related information can be found in the Field Plan Review Reports (Special 

Provisions). 

• Project Type: Select the project type from the options provided. Related 

information can be found in the Field Plan Review Reports (Project Description). 

• Functional Classification: Select the functional classification for the project. 

Related information can be found in the Field Plan Review Reports. 

• Comments on Construction Staging & Cross-Section Plan Sheet (19-xxxx): Select 

options related to the existence of potential issues that affect constructability or 

construction schedules. Related information can be found in the Concept Reports 

(Construction). 
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Figure 14. Screen capture. Multiple Choice page in the 
Lump Sum Item Cost Estimator. 

• Comments on Drainage Profiles (22-xxxx): Select options for comments related to 

Drainage Profiles (22-xxxx) in the Field Plan Review Reports. Related 

information can be found in the Field Plan Review Reports (Construction Plans). 
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• Comments on Retaining Walls Envelopes (31-xxxx): Select options for comments 

related to Retaining Walls Envelopes (31-xxxx) in the Field Plan Review Reports. 

Related information can be found in the Field Plan Review Reports (Construction 

Plans). 

• Comments on Retaining Walls Plans (32-xxxx): Select options for comments 

related to Retaining Walls Plans (32-xxxx) in the Field Plan Review Reports. 

Related information can be found in the Field Plan Review Reports (Construction 

Plans). 

• Comments on Bridge Plans (35-xxxx): Select options for comments related to 

Bridge Plans (35-xxxx) in the Field Plan Review Reports. Related information 

can be found in the Field Plan Review Reports (Construction Plans). 

• MPO: Select options regarding areas with a population greater than 50,000, 

defined by the U.S. Census. Related information can be found in the 

Preconstruction Status Report. 

• Major Structure: Select options regarding the existence of major structures, such 

as bridges and retaining walls. Related information can be found in the Concept 

Report (Design and Structure Section). 

• Major Interchange: Select options regarding the existence of major interchanges 

in the project location. Related information can be found in the Concept Report 

(Design and Structure Section). 
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• Major Intersection: Select options regarding the existence of major intersections 

in the project location. Related information can be found in the Concept Report 

(Design and Structure Section). 

Text Documents 

The Text Documents page contains seven different text attributes for Traffic Control 

(150-1000) and Grading Complete (210-0100), as shown in Error! Reference source 

not found. and Error! Reference source not found.. To insert text inputs, copy the 

entire paragraph for each text attribute and paste it into the corresponding position; no 

further edit is needed. If the required information is not found, insert “Not Available”. 
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Figure 15. Screen capture. Text Documents – Traffic Control page in the 

Lump Sum Item Cost Estimator. 

• Text Documents – Traffic Control 

o Need and Purpose Project Justification Statement: Related information 

can be found in the Concept Reports (Planning & Background Section).  

o Project Description: Related information can be found in the Field Plan 

Review Reports. 
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o Special Provisions General Special Provision: Related information can be 

found in the Field Plan Review Reports. 

o Typical Sections: Related information can be found in the Field Plan 

Review Reports. 

o Summary of Quantities: Related information can be found in the Field 

Plan Review Reports. 

o Construction Staging & Cross-Section Plan Sheet (19-xxxx): Related 

information can be found in the Field Plan Review Reports (Construction 

Plans). 

o Construction_Issues potentially affecting constructability/construction 

schedule: Related information can be found in the Concept Reports. 
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Figure 16. Screen capture. Text Documents – Grading Complete page in the 
Lump Sum Item Cost Estimator. 

• Text Documents – Grading Complete 

o Need and Purpose Project Justification Statement: Related information 

can be found in the Concept Reports (Planning & Background Section).  
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o Project Description: Related information can be found in the Field Plan 

Review Reports. 

o Cover Sheet (01-xxxx): Related information can be found in the Field Plan 

Review Reports. 

o Mainline Roadway Plan Sheet (13-xxxx): Related information can be 

found in the Field Plan Review Reports. 

o Cross Sections (23-xxxx): Related information can be found in the Field 

Plan Review Reports. 

o Summary of Quantities: Related information can be found in the Field 

Plan Review Reports. 

o Construction Staging & Cross-Section Plan Sheet (19-xxxx): Related 

information can be found in the Field Plan Review Reports (Construction 

Plans). 

After filling in all the information on the appropriate Text Documents page:  

• Click the “Confirm” button and the “OK” button in the popup message, as shown 

in figure 17. The instructions for submission will show up at the bottom of the 

page.  

• Click the “Submit” button to submit the project attributes for the tool to process 

the data. The computing usually takes a few seconds; afterward, the tool will 

automatically redirect to the Navigation page, where results and warnings can be 
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accessed by selecting the “Go” button next to the See Results and Warnings 

option.  

 

 

Figure 17. Screen capture. Confirm Inputs dialog box in the 
Lump Sum Item Cost Estimator. 

Results Page 

The Lump Sum Cost Estimator Results page allows the user to check for any warning 

messages and view the prediction results. To access the results, click the “Go” button 

next to the See Results and Warnings option on the Navigation page, as shown in 

figure 18. 
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Figure 18. Screen capture. See Results and Warnings option in the 

Lump Sum Item Cost Estimator. 

If all required inputs are entered properly, the Results page will display the message 

“Input Data Successful,” and the predicted lump sum item price will be provided in the 

“Results” field, as shown in figure 19. Otherwise, warning information for missing or 

incorrectly entered items, as shown in figure 20, will be displayed. 

 
Figure 19. Screen capture. Example results on the Results page in the 

Lump Sum Item Cost Estimator. 
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Figure 20. Screen capture. Example warning on the Results page in the 

Lump Sum Item Cost Estimator. 

Start New Calculation 

To start a new calculation, on the Results page, click the “Go Back” button to return to 

the Home page, then select the lump sum item of interest and repeat the data input 

process. (Note: The tool will clear the inputs from the last calculation.) 

For more information about this tool, contact Dr. Baabak Ashuri at the Georgia Institute 

of Technology: 

Baabak Ashuri, Ph.D., DBIA 
Professor 
School of Building Construction | School of Civil & Environmental Engineering 
Georgia Institute of Technology 
Phone: (404) 385-7608 
E-mail: baabak@gatech.edu 
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CHAPTER 7. CONCLUSIONS 

The overarching objective of this research project is to develop forecasting models to 

estimate the prices of the Traffic Control and Grading Complete lump sum pay items 

using advanced text mining and machine learning algorithms that detect key patterns of 

information generated during project development and provide higher accuracy of the 

cost estimates. 

To achieve the research objectives, this research used text mining algorithms, including 

term frequency–inverse document frequency and principal component analysis, to 

capture key patterns of information from unstructured text files (i.e., concept reports, 

field plan review reports, and preconstruction status reports). It also used data processing 

algorithms, including the synthetic minority oversampling technique and the Boruta 

feature selection algorithm, and machine learning algorithms, including random forest, 

bagging, k-nearest neighbors, and stacking regressor, to develop forecasting models for 

the prices of the Traffic Control and Grading Complete LS pay items. This research 

collected the prices of the Traffic Control and Grading Complete LS pay items used in 

highway projects in the state of Georgia. With the collected data, a forecasting model for 

the prices of the Traffic Control and Grading Complete LS pay items was developed. 

This research used several machine learning algorithms to develop forecasting models for 

the segments of the collected data and select the best-performing algorithms for 
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predicting the prices of the Traffic Control and Grading Complete LS pay items for each 

segment. Based on the mean absolute percentage error, this research found that KNN, 

random forest, KNN, random forest, and stacking regressor were the best-performing 

algorithms for predicting the prices of a Traffic Control LS pay item in Segments 1, 2, 3, 

4, and 5, respectively. Moreover, this research selected KNN, KNN, and random forest 

algorithms as the best-performing algorithms in predicting the prices of a Grading 

Complete LS pay item in Segments 1, 2, and 3, respectively. Next, the accuracy of the 

forecasting models was compared between partitioned data and data without partitioning. 

The results of the model comparison indicated that the newly developed machine learning 

models for forecasting the prices of the Traffic Control and Grading Complete LS pay 

items in the defined segments showed a higher level of forecasting accuracy. 

Finally, a web-based application tool was developed in a Python environment to help 

designers developing cost estimates with a data-driven tool for estimating the prices of 

the Traffic Control and Grading Complete LS pay items. This tool serves as a stepping-

stone for transforming the traditional methodology of cost estimation, which heavily 

relies on designers’ experience, into a more flexible and intelligent solution.  
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