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EXECUTIVE SUMMARY 
This research project developed a 3D imaging approach based on deep learning techniques for 
automating the process of size and shape characterization for riprap aggregate stockpiles during on-
site quality assurance/quality control (QA/QC) evaluations. Riprap rock and large-sized aggregates 
have been used extensively in geotechnical and hydraulic engineering applications to armor 
shorelines, streambeds, bridge abutments, pilings, and other shoreline structures against scour and 
water or ice erosion. They are made from a variety of rock types, commonly granite or limestone and 
occasionally concrete rubble from building and paving demolition. Their main engineering functions 
include erosion and sediment control as well as scour protection. At both quarry production sites and 
construction sites, the sustainable and reliable use of riprap materials demands efficient and accurate 
evaluation of their large particle sizes, shapes, and gradation information. However, determination of 
particle size distribution or gradation of riprap has always been difficult. The riprap gradation or sizing 
of the rocks shall be well graded, as outlined in Illinois Department of Transportation (IDOT) 
specifications. Individual rocks are weighed or visually inspected by keystone method, which is a 
time-consuming and labor-intensive task. In this regard, reliable field imaging techniques are of 
utmost need to efficiently and safely assess riprap stockpiles for gradation and to provide informative 
data analytics about the size distribution.  

This research effort, conducted at the Illinois Center for Transportation (ICT), focused on developing 
an advanced nonintrusive machine vision system for field evaluation of riprap aggregates. This system 
will allow engineers to obtain 3D size and shape information of individual particles in a riprap 
stockpile simply by taking videos or images with mobile devices, such as a smartphone camera. The 
research followed a reconstruction-segmentation-completion pipeline based on computer vision 
methods. The riprap surface can be reconstructed as 3D point cloud data by using structure-from-
motion (SfM) techniques to capture high-definition spatial information of the scene in the field. A 3D 
point cloud segmentation algorithm was developed to separate and extract individual riprap rocks 
from the reconstructed stockpile. To supplement the partially occluded shape information of particles 
on the stockpile surface, 3D shape completion algorithms were developed to estimate missing shape 
properties based on an established database of riprap rock shape characteristics. The deep learning 
approaches achieved the desired user-independent performance level. Finally, trained algorithms 
were integrated into a user-friendly software application with a user interface suited for field use by 
practitioners.  

The following approach was utilized to achieve the research goals. First, riprap imaging data in the 
form of images and videos were collected and compiled as datasets to be used throughout the entire 
research study. Providing continuity with the ICT-IDOT Phase I study (R27-182), the compiled raw 
data included: (a) image and video data collected from several quarry visits during the Phase I study, 
(b) image and video data of medium-sized stockpiles built in a laboratory setting, and (c) ground-truth 
size and shape measurements of the riprap samples for algorithm development and validation. The 
collected riprap samples constitute a great resource that enables efficient experimentation, 
development, and verification of the state-of-the-art algorithms. This data collection activity was 
conducted as an ongoing effort throughout the study for the continuous 3D algorithm development 
and its validation. 
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Next, to overcome the limitations of single view 2D image representations of a stockpile, 3D 
reconstruction algorithms were developed. Image sequences taken from multiple views or frames 
extracted from a moving-camera video were used as the input in the 3D reconstruction step. 
Advanced techniques such as SfM were used to obtain high-definition spatial information of the 
scene in the field, and state-of-the-art reconstruction algorithms were selected to reconstruct the 
riprap stockpile surface as 3D point cloud data. Point cloud data can represent the stockpile by points 
with spatial coordinates and color values. 3D reconstruction approaches focus on capturing the 
structure of the stockpile, which is less affected by environmental conditions such as shadow effects, 
in field imaging, and hence the performance is more robust than 2D image-based techniques.  

After the 3D reconstruction development, 3D segmentation algorithms were developed to obtain 
useful morphological information of individual riprap particles from the stockpile’s point cloud data. 
Due to the spatial sparsity of the point cloud representation, conventional computer vision methods 
are either less robust or highly user dependent. In this regard, this effort developed state-of-the-art 
3D segmentation algorithms based on deep learning techniques. As a result, the segmentation 
algorithms work in an automated fashion for robust processing under a wide variety of riprap and 
large-sized aggregate stockpile field conditions, e.g., strong sunlight or shadowy conditions.  

3D segmentation algorithms were followed by the development of 3D morphological analysis 
algorithms applied on individual extracted particles. Although each segmented particle is an 
incomplete surface due to overlap and occlusion, its true shape can be better estimated by utilizing 
the 3D geometric information that is visible based on the multi-view observation. This effort 
developed state-of-the-art 3D shape completion algorithms based on deep learning techniques, 
which learned the representative aggregate shapes to achieve a reasonable estimation of the unseen 
or missing part of the segmented particle to aid in the prediction of a correct volume and weight. 

As the key deliverable, a user-independent and user-friendly software application was developed in 
this research study. The software application was developed to process riprap stockpile data for 
evaluation of the size and shape of individual aggregate particles captured by the 3D reconstruction 
approach. Professional software engineering guidelines were reviewed and followed during the 
developmental stages. All developed riprap stockpile analysis algorithms were programmed and 
integrated into a standalone software application with a simple graphical user interface (GUI). A user 
manual is provided along with this final report for the developed software program. 

In conclusion, 3D algorithms for reconstruction, segmentation, and shape completion of aggregate 
stockpiles were developed, validated, and integrated into a software application with a GUI. The 
product of this research project is a computer vision approach consisting of field imaging methods 
and advanced 3D computer vision algorithms to provide field analysis of riprap aggregate properties 
at a quarry or construction site. This approach helps to accurately determine if a riprap material 
meets gradation as well as volume and weight specifications. As a result, more efficient property 
characterization of riprap stockpiles and optimized material selection can be achieved in practice to 
improve designs through effective quality control, reduced costs, increased life cycle, lower 
environmental impacts, and minimized labor utilization and energy consumption.   
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CHAPTER 1: INTRODUCTION 

BACKGROUND AND MOTIVATION  
Riprap rock and large-sized aggregates have been used extensively in geotechnical and hydraulic 
engineering to armor shorelines, streambeds, bridge abutments, pilings, and other shoreline 
structures against scour and water or ice erosion. They provide erosion and sediment control as well 
as scour protection. The sustainable and reliable use of riprap materials demands efficient and 
accurate evaluation of their large particle sizes, shape, and gradation information at both quarry 
production lines and construction sites.  

Determination of particle size distribution (gradation) of riprap has always been challenging. Despite 
the ongoing development of guidelines for size selection of riprap, the practical procedures for 
characterizing riprap size and shape properties in the field are still subjective and qualitative, 
primarily due to difficulties associated with measuring sizes of these large particles. As compared to 
coarse aggregates used in transportation engineering, the sizes of which typically range from 0.187 
in. (4.75 mm) to 5 in. (12.7 cm) (ASTM D448 2017; ASTM D2940 2015), an individual riprap rock can 
weigh up to 1,150 lb (522 kg) with nominal top sizes greater than 24 in. (61.0 cm) (IDOT 2022a; ASTM 
D6092 2021). Laboratory sieve analysis is usually conducted to determine the gradation of small- to 
medium-sized aggregates, but the large sizes of riprap particles make this task impractical. Due to the 
lack of a practical and standard method to define the sizes and dimensions of individual rocks, 
standards or guidelines usually specify riprap gradation requirements in terms of weight.  

For the current state of the practice, a nationwide AASHTO survey of many transportation agencies in 
the United States and Canada has indicated that riprap characterization is mostly based on visual 
inspection and hand measurements (Sillick 2017). Visual inspection relies greatly on the experience 
and expertise of practitioners. In this method, certain gauge or key stones and sample stockpiles are 
often used as a reference to assist the judgement (Lippert 2012). To better estimate the size 
distribution, the Wolman count method may be applied by statistically sampling and measuring rocks 
within a stockpile (Wolman 1954; Lagasse et al. 2006; Bartelt 2018). For hand measurement, 
transportation agencies either weigh individual particles directly or use size-mass conversion after 
measuring particle dimensions. The piece size-mass conversion proposed in ASTM D5519 (2015) 
requires measurement of the midway dimension or circumference from three orthogonal axes and 
estimates the volume based on a cuboid assumption or averaged sphere-cube assumption. However, 
visual inspection and hand measurement are both rough estimations that do not represent realistic 
riprap properties, and an objective and efficient approach of quantitatively characterizing the size 
and shape of riprap must be established. 

Over the past two decades, imaging-based analysis techniques have been widely developed and 
adopted to characterize particle size and shape properties of aggregates from their scanned photos. 
These techniques have been significantly enhanced to provide high accuracy and efficiency in the 
characterization (Rao et al. 2002; Al-Rousan et al. 2005; Pan et al. 2006; Wang et al. 2013; Moaveni et 
al. 2013; Hryciw et al. 2014). Current laboratory image-based analysis approaches mostly focus on the 
shape analyses using camera(s) attached to a table-sized equipment, on which a set of prepared 
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particles are placed for photo capture. For example, the Aggregate Imaging System (AIMS) uses a 
setup consisting of one slide-mounted camera and two lighting sources. The Enhanced University of 
Illinois Aggregate Image Analyzer (E-UIAIA) takes three 2D images of particles on a conveyor system 
from three orthogonal axes where cameras are installed. Among the most widely used imaging-based 
indices for aggregate shape characterization are the flat and elongated ratio (FER), angularity index 
(AI), and surface texture index (STI). These were developed as key indices from national studies, 
NCHRP 4-30 and 4-34 and the TPF-5(023) pool fund, using E-UIAIA (Tutumluer et al. 2000; Rao et al. 
2002; Pan et al. 2006; Moaveni et al. 2013).  

The laboratory imaging systems generally use a limited number of 2D images, typically up to three, 
because of the fixed camera positions. As a result, the generated 3D particles may lack shape details 
such as local concave curvatures on the surface. Furthermore, the setups are usually not portable and 
are unwieldy for field inspection. While laboratory imaging equipment has been mostly used for 
shape characterization, in situ imaging alternatives, e.g., WipFrag (Maerz et al. 1996), have been 
developed to obtain the grain size distribution data in the field. IDOT used the WipFrag system for 
riprap imaging in the field with limited success because image quality was adversely affected by 
shadows and overlaps between particles in the image. Therefore, the existing laboratory or in situ 
methods do not provide a complete set of analysis data for both particle size and shape 
characterization.  

Because the size and shape properties of riprap and large-sized aggregates cannot be obtained with 
standard sieve analysis or laboratory-based image analyzer setups, a newly developed field imaging 
technique was first implemented and used in the ICT-IDOT study R27-124 (Kazmee and Tutumluer 
2015). For this effort, representative particles of aggregate subgrade materials (RR01, CS01, and CS02 
per IDOT specifications) with particles greater than 3 in. (7.6 cm) in size were spread out on a blue 
tarp in the field. High-resolution (e.g., 1292 × 964 pixels) images of these large aggregate particles 
were captured with a digital single-lens reflex camera. A white-colored calibration ball placed beside 
the aggregate particles was introduced to scale the spatial resolution properly. The final outcome of 
the segmentation is a simplified black and white binary image of each particle, where the black pixels 
are the background and the white pixels are the object. The morphological indices FER, AI, and STI 
were computed from the extracted binary images. The dimensions of the particles were determined 
in reference to the spatial resolution of the calibration ball. 

In view of recent advances in the area of computer vision and machine learning, machine vision–
based inspection systems trained using sample images have the potential for directly identifying 
individual particles for shape and size analysis from stockpile or trench views of the constructed layer 
showing aggregate assemblies. For example, image segmentation has been implemented at UIUC to 
study individual railroad ballast particles collected in the field in terms of their shape and size 
variability versus depth of sampling (Moaveni et al. 2013). Through preliminary image analysis and 
algorithm development, individual particles can be segmented from images with overlapping 
particles, and their size and shape properties can be quantified from the cut sections imaged from 
field ballast trenches. Nevertheless, the image analysis algorithm entails heavy interaction with the 
user for fine-tuning segmentation parameters. The quality of the segmentation results for this initial 
effort also needed to be further enhanced.  
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In this regard, the preceding Phase I research study (ICT-IDOT R27-182) addressed the main 
challenges and provided a user-independent approach for 2D aggregate image analysis. A single-
particle field imaging system was developed in the ICT-IDOT project R27-182 (Huang et al. 2020a). A 
field imaging system was designed and built as a portable and versatile toolkit for the convenience of 
efficient and reliable image acquisition needs. Image segmentation and 3D volumetric reconstruction 
algorithms were then developed for single rocks with the capabilities of segmenting object 
information under uncontrolled field lighting conditions and reconstructing the object three-
dimensionally with necessary calibration and corrections (Huang et al. 2019). The robustness and 
accuracy of the developed algorithms were studied through field imaging tasks at two aggregate 
production sites. Good agreements between the ground-truth volume and weight measurements as 
well as the image-based volumetric reconstruction results were achieved. Comparisons were also 
made between the image-based volumetric reconstruction results and the state-of-the-practice hand 
measurements. Significant improvements could be achieved using the developed field imaging 
system (Huang et al. 2019). 

Besides the single-particle approach, an advanced deep learning–based stockpile imaging system was 
also developed in R27-182 (Huang et al. 2020a), which demonstrated the ability to facilitate the 
riprap characterization task. In accordance, significant research efforts have been made to achieve 
the automated segmentation of 2D stockpile images under complex field conditions. The project 
utilized state-of-the-art deep learning techniques to develop a convenient, nonintrusive field 
evaluation system based on imaging, whereby an engineer or inspector can take multiple photos of 
riprap and large-sized aggregates to determine the gradation (size distribution) and shape properties, 
using a calibration ball in each image to aid analysis (Huang et al. 2020b). A neural network was 
designed and trained to accomplish the challenging task of aggregate stockpile image segmentation. 
By establishing an image dataset of labeled aggregate images, the trained segmentation model 
achieved good performance for extracting individual aggregate particles in an automated manner. 
Morphological analyses were conducted on the segmented aggregate particles to produce size and 
shape distribution curves. Analysis results were verified with ground-truth labeling to measure the 
robustness and accuracy of the segmentation approach. Completeness and precision analyses were 
conducted between the labeled images in the validation set and their segmentation results. The 
segmentation model exhibited satisfactory precision and completeness in the stockpile image-
segmentation task. As the main deliverable, all developed algorithms were integrated into a user-
independent and user-friendly software application, named I-RIPRAP, for image-based quantifications 
of riprap size and shape characteristics. 

Nevertheless, there are certain limitations of 2D imaging approaches because a significant amount of 
useful spatial information is lost when projecting a 3D scene onto a 2D image plane. 3D size and 
shape information, on the other hand, offers more comprehensive geometric features as well as 
more accurate characterization of riprap and large-sized material at quarries and construction sites. 
Reliable and efficient 3D imaging techniques that can facilitate QA/QC checks are still in high demand 
for accurately evaluating riprap stockpiles. Additionally, the majority of the particles seen in a riprap 
stockpile are not fully visible. Thus, shape information associated with the unseen part of the 
particles is unavailable, as well as the particles hidden underneath the particles on the surface of the 
stockpile. Using 3D imaging approaches is expected to provide supplemental information from 
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advanced stockpile reconstruction and segmentation techniques. Furthermore, deep learning–based 
shape completion algorithms could be leveraged to estimate and predict the occluded size and shape 
information, allowing a more comprehensive characterization of the aggregates comprising the riprap 
stockpile.  

The main benefit of this project is the ability to conduct riprap and large-sized aggregate size and 
shape property testing in the field, i.e., at a quarry or construction site, with improved accuracy in 
determining the size and shape properties from imaging without having to weigh rock pieces. This is a 
pressing need because engineers and inspectors at quarries and government agencies have been 
spending considerable time and effort in riprap sizing at job sites.  

Implementation of the advanced machine vision system that is being fully developed in this project 
will help to accurately determine if a riprap material meets gradation and 3D volume-based weight 
specifications. The proposed approach is sustainable for field application by utilizing state-of-the-art 
machine vision and stockpile segmentation and shape completion techniques. Ultimately, better 
property characterization and optimized material selection can be achieved to improve designs 
through effective quality control, increasing the life cycle and reducing costs, environmental impacts, 
labor needs, and energy consumption. Major cost savings in terms of personnel time, transportation, 
laboratory equipment, and facility use can be realized. 

RESEARCH OBJECTIVE 
The objective of this research project is to develop an advanced nonintrusive machine vision system 
for field evaluation of riprap aggregates, whereby engineers can obtain 3D size and shape information 
of individual particles in a riprap stockpile simply by taking videos and images with mobile devices 
such as a smartphone camera. The research follows a reconstruction-segmentation-completion 
pipeline based on computer vision methods. The riprap surface is reconstructed as 3D point cloud 
data by using structure-from-motion (SfM) techniques to capture high-definition spatial information 
of the scene in the field. A 3D point cloud segmentation algorithm is developed to separate and 
extract individual riprap rocks from the reconstructed stockpile. To supplement the partially occluded 
shape information of particles on the stockpile surface, 3D shape completion algorithms are 
established to estimate missing shape properties based on an established database of riprap rock 
shape characteristics. The deep learning approaches being adopted are intended to achieve the 
desired user-independent performance in the above tasks. Finally, the resulting algorithms are 
integrated into a user-friendly software application with a user interface suited for practical field use. 

RESEARCH METHODOLOGY 
To fulfill the above-stated research objective, the following tasks and methodologies are considered 
in this study:  

• Collecting riprap imaging data in the form of images and videos and compiling as datasets. The 
raw data include: (a) image and video data collected from several quarry field visits during the 
Phase I study (Huang et al. 2020a), (b) image and video data of medium-sized stockpiles built 
in a laboratory setting, and (c) ground-truth size and shape measurements of the riprap 
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samples for algorithm development and validation. The collected riprap samples constitute a 
resource that enables efficient experimentation, development, and verification of state-of-
the-art algorithms. This data collection activity was an ongoing effort throughout the study for 
continuous 3D algorithm development and validation.  

• Developing an integrated framework that implements automated 3D point cloud 
reconstruction, segmentation, completion, and morphological analyses for aggregate 
stockpiles and constructed layers. To obtain more comprehensive information of aggregate 
stockpiles and field constructed layers, a 3D point cloud reconstruction approach is 
developed. State-of-the-art deep learning architecture for 3D object detection and instance 
segmentation is implemented and trained to enable automated segmentation of stockpile and 
field constructed aggregate clouds. Further, a 3D particle shape completion approach as well 
as 3D morphological analysis algorithms were developed to characterize the meaningful 3D 
size, shape, and volumetric properties of the segmented aggregates.  

• Validating the accuracy and robustness of the developed algorithms by comparing results with 
measured ground-truth data in field applications. Comparisons are made to ensure that the 
algorithms’ performance and reliability are in good agreement with engineering practice. 

• Designing and developing a software application as the integrated riprap aggregate evaluation 
module for size and shape analyses of individual particles captured in stockpile images. A 
graphical user interface (GUI) is designed to facilitate user interaction. 

REPORT ORGANIZATION 
This report consists of seven chapters, including this introductory chapter. 

Chapter 2, titled “Literature Review,” provides a review of riprap standards and specifications, past 
aggregate studies and equipment that leverage imaging techniques, and the applications of artificial 
intelligence and deep learning techniques. 

Chapter 3, titled “3D Reconstruction for Field Data of Individual Aggregates and Aggregate 
Stockpiles,” provides an overview of the 3D reconstruction approach developed for laboratory and 
field samples. This chapter includes riprap source information from the riprap production sites visited 
by the research team, material selection and image acquisition criteria, and laboratory tests for 
measuring the ground-truth data of collected samples.  

Chapter 4, titled “Automated 3D Segmentation of Aggregate Stockpiles,” provides the algorithmic 
details of the 3D instance segmentation network. This chapter introduces the development of a 
computer vision–based approach for the instance segmentation of individual riprap particles from a 
stockpile point cloud, which is user-independent, automated, and powered by deep learning 
techniques. 

Chapter 5, titled “Automated 3D Aggregate Shape Completion and Field Validation,” provides the 
algorithmic details of the 3D shape completion and morphological analyses as well as the verification 



6 

results with ground-truth data. This chapter introduces a shape completion approach that is 
developed and further evaluated on several unseen aggregate shapes for robustness and reliability. 

Chapter 6, titled “Software Development for 3D Riprap Stockpile Characterization,” provides a 
detailed description of the software development stages undertaken in this project, which includes 
the software engineering concepts adopted, the graphical design and control logic of the software 
application, and the back-end implementation details of the software. 

Chapter 7, titled “Conclusions and Recommendations,” provides a summary of research findings and 
the main recommendations and conclusions from this study. This chapter also discusses proposed 
next steps to further extend this study, and recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

INTRODUCTION 
This chapter presents a review of the riprap quality assurance/quality control (QA/QC) requirements 
as well as previous research studies related to the imaging techniques and developed systems used in 
aggregate research and the emerging artificial intelligence–based approaches for image 
segmentation. An overview of the current practices for characterizing riprap and large-sized 
aggregate materials is also discussed. 

APPLICATIONS AND SPECIFICATIONS OF RIPRAP AND LARGE-SIZED AGGREGATES 
Riprap rock and large-sized aggregates are quarried from undisturbed, consolidated rock deposits or 
recycled from demolished concrete construction. As a natural material, the reliable and sustainable 
use of riprap as an integrated system requires quality control throughout the design, production, 
transport, installation, inspection, and maintenance stages (Lagasse et al. 2006). Case studies on 
riprap failure in stream channels and bridge piers indicate that undersized particles and open-graded 
riprap often cause insufficient resistance to hydraulic shear stress (Blodgett and McConaughy 1986; 
Chiew 1995; Richardson and Davis 2001; Lagasse et al. 2001).  

During the material selection and QA/QC process, characterizing particle size and shape properties 
has become a focal point for aggregate studies. Particle size and morphological/shape properties of 
aggregates primarily influence the macroscopic behavior and performance of aggregate skeleton 
assemblies of constructed layers in transportation infrastructure, e.g., hot-mix asphalt (HMA) and 
Portland cement concrete (PCC) (Quiroga and Fowler 2004; Polat et al. 2013), unbound/bound layers 
in highway and airfield pavements (Liu et al. 2019; Tutumluer and Pan 2008; Bessa et al. 2015), the 
ballast layer in railway tracks (Huang 2010; Wnek et al. 2013), and riprap materials for erosion control 
and hydraulic applications (Lutton et al. 1981; Lagasse et al. 2006). Across all size ranges, aggregate 
shape properties in terms of form (e.g., flatness and elongation), angularity, and texture have been 
used to characterize their morphology (Barrett 1980). The information on aggregate morphology 
greatly facilitates the quality control process and in-depth understanding of aggregate layer behavior 
linked to particle composition and packing.  

For producers and practitioners, the size and shape of aggregate sources are important for QA/QC 
requirements throughout production, mix design (if applicable), and other operations (ASTM D448 
2017; ASTM D2940 2015; ASTM D6092 2021). Different quarrying processes and rock mineralogy 
introduce randomness to the quality of produced aggregates. Therefore, consistent and continuous 
monitoring of quarry products is important for efficient material selection and construction. On the 
other hand, particulate mechanics dealing with discrete aggregate particle interactions and realistic 
modeling of assembly behavior of granular materials require properly characterizing the 
morphological properties of aggregates. Through recently focused research efforts on modeling the 
aggregate layer behavior using the finite element and discrete element methods, aggregate 
morphological properties and grain size distribution have gained increased importance for 
establishing an accurate composition and packing that enable the modeling scheme to capture 
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complex behaviors of granular materials. This is especially challenging for most stone skeleton layers 
in constructed road pavements, e.g., surface course mixtures such as HMA, PCC, and unbound 
aggregate base/subbase, which are subjected to vehicular dynamic loading conditions (Huang 2010; 
Chen 2011; Ghauch 2014; Qian 2014). Therefore, uniform guidelines, specifications, or techniques 
that ensure reliable and efficient characterization of weight, size, shape, and gradation of different 
aggregate categories are critical in quarry production lines and construction sites (Lagasse et al. 
2006).  

Despite the ongoing development of guidelines for size selection of riprap in design, the practical 
procedures for characterizing riprap grain size distribution and shape properties in the field are still 
subjective and qualitative, primarily due to difficulties associated with measuring sizes of these large 
particles. The riprap gradation or sizing of the pieces shall be well graded, as outlined in Article 
1005.01(c) of IDOT’s (2022a) Standard Specifications for Road and Bridge Construction. Individual 
rock pieces are measured for weight, which is a time-consuming and labor-intensive task. Sample grid 
systems have been used for gradations of RR3 to RR7 with less success. Minnesota DOT (2018), 
Nevada DOT (2014), and U.S. Army Corps of Engineers (1990) have specifications on riprap gradation 
by individually weighing or measuring as well. Individual riprap rocks can weigh up to 1,150 lb (522 
kg) with nominal top sizes greater than 24 in. (61.0 cm) (IDOT 2022a; ASTM D6092 2021). Laboratory 
sieve analysis is thus impractical. Because there is no uniform way to define the size dimension of 
individual rocks, standards or guidelines usually specify riprap gradation requirements in terms of 
weight.  

The current IDOT specification for riprap classification into different “RR” categories is based on the 
grain size distribution, which is determined by the weight distribution of riprap rocks. IDOT published 
a policy memorandum in 2012 for the classification of riprap based on weight (Policy Memorandum 
No. 14-08.1). The latest revision 14.08.3 of this memorandum on April 14, 2022, requires a visual 
inspection of the riprap stockpiles, including inspections for flat and elongated rocks (IDOT 2022b). A 
collection of riprap keystones shall be maintained by the producers for all produced riprap 
gradations, as outlined in Table 1, to assist with visual “sizing.” IDOT requires that the set of 
keystones shall be representative of the stockpile gradation and be replaced with a new set if they 
become nonrepresentative. 

If the gradations by visual inspection were disputed by the producer, a second visual inspection is 
conducted by IDOT’s Central Bureau of Materials (CBM). If the second visual inspection is again 
disputed by the producer, a representative sample is excavated from the working face of the 
stockpile and spread over the length of a marked grid to a one-rock thickness and weighed piece by 
piece for riprap categories RR3–RR7. The rock spalls and fines below the minimum specified weight 
are collected and included in the calculations for each size range. The grid size for each riprap 
category is outlined in Table 2. The grid length is broken into 5 ft (1.524 m) long blocks. Note that for 
riprap categories RR1 and RR2, the grain size distribution is performed by conventional sieve analysis 
in accordance with AASHTO T 27 (Illinois Modified), outlined in IDOT’s (2021) Manual of Test 
Procedures for Materials. 
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Table 1. Keystone Requirements for Different Riprap Size and Weight Categories 

Gradation Keystone #1 (lb) Keystone #2 (lb) Keystone #3 (lb) 
RR3 50 (±5) 10 (±1) 1 (±0.1) 
RR4 150 (±15) 40 (±4) 1 (±0.1) 
RR5 400 (±40) 90 (±13) 3 (±0.1) 
RR6 600 (±60) 170 (±17) 6 (±0.5) 
RR7 1000 (±100) 300 (±30) 12 (±1) 

Note: 1 lb = 453.6 g 

Table 2. Grid Size Requirements for Sampling Different Riprap Gradation Categories 

Gradation Grid Size (ft) Sample Size 
(Min. Number of Tested Blocks) 

RR3 2 by 25 2 
RR4 3 by 25 2 
RR5 4 by 25 3 
RR6 5 by 30 3 
RR7 5 by 35 3 

Note: 1 ft = 30.48 cm 

Based on IDOT (2022b), the procedure for riprap size characterization entails using three keystone 
particles (used as control points) to identify gradations. Figure 1 shows the upper, lower, and 
midpoint gradation lines for IDOT’s riprap categories RR3–RR7, from left to right. This plot assumes a 
flat and elongated ratio of 2:1, a specific gravity of 2.5, and an ellipsoidal particle shape for a 
standardized weight to volume/size conversion. Note that the maximum dimension of a particle is 
used to indicate size on the horizontal axis. 

 
Figure 1. Graph. Converted particle size distribution of IDOT riprap categories RR3–RR7. 
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A nationwide AASHTO survey of transportation agencies in the United States and Canada indicates 
that the current state of practice for riprap characterization is mostly based on visual inspection and 
manual measurements (Sillick and AASHTO 2017). Visual inspection depends on the experience and 
expertise of practitioners. In this method, certain gauge or keystones and sample stockpiles are 
usually used as a reference to assist the judgement (Lippert 2012). To better estimate the size 
distribution, the Wolman count method is applied by statistically sampling and measuring rocks 
within a stockpile (Lagasse et al. 2006). For manual measurements, transportation agencies either 
weigh individual particles directly or use size-to-mass conversion after measuring particle dimensions. 
The size-to-mass conversion proposed in ASTM D5519 (2015) requires measurement of the midway 
dimension or circumference from three orthogonal axes and estimates the volume based on a cuboid 
assumption or averaged sphere-cube assumption. However, visual inspection and manual 
measurements provide rough estimations that do not necessarily represent realistic riprap 
properties. A more objective and efficient approach for quantitatively characterizing the size and 
shape of riprap has yet to be established. 

ADVANCED AGGREGATE IMAGING SYSTEMS 
Over the past two decades, imaging-based analysis has been widely developed and adopted to 
characterize particle size and shape properties from digital images of aggregates. Related image-
segmentation techniques have been significantly enhanced to provide high accuracy and efficiency in 
practice (Rao et al. 2002; Al-Rousan et al. 2005; Pan et al. 2006; Wang et al. 2013; Hryciw et al. 2014). 
Most imaging analysis techniques are developed and applied to aggregates with maximum particle 
sizes less than 6 in. (15.2 cm) using a fixed-position camera setup for acquiring images in a laboratory. 
Masad (2003) and Gates et al. (2011) developed the Aggregate Imaging System (AIMS), which consists 
of one slide-mounted camera and two lighting sources visualizing a maximum particle size up to 6 in. 
(15.2 cm). Tutumluer et al. (2000) originally developed and later Moaveni et al. (2013) improved the 
Enhanced University of Illinois Aggregate Image Analyzer (E-UIAIA). This system takes three 2D 
images of particles on a conveyor system, where cameras are installed along three orthogonal axes, 
and processes the set of orthogonal views for each particle, with a maximum particle size up to 3 in. 
(7.6 cm).  

Komba et al. (2013) established a 3D laser-based aggregate system that scans an individual particle 
and analyzes the generated 3D mesh model, with a maximum detected sample size of 0.75 in. (1.9 
cm). Hryciw et al. (2014) used a translucent segregation table and evaluated the effect of particle size 
and morphology on the shear strength mechanical properties of the material. Zheng and Hryciw 
(2014) introduced an algorithm to accurately determine the thickness as well as the size 
characterization of particles ranging from sand to gravel (maximum size of 1.2 in. [3.0 cm]) 
simultaneously. Obaidat et al. (2017) established a smartphone-based scheme that utilizes image-
processing techniques and ImageJ commercial software to extract coarse aggregate properties, with 
a maximum particle size up to 2 in. (5.1 cm). Jin et al. (2018) developed an algorithm to perform 
aggregate shape characterization and volume estimation based on a 3D solid model constructed from 
X-ray CT images. 
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Although these imaging systems were developed and validated with ground-truth measurements 
under laboratory conditions, their capabilities for field application have not been verified. First, these 
systems are designed with a laboratory-scale setup for object and camera positioning. Thus, they may 
not be easily transported, assembled, and deployed for field applications, especially for those 
involving advanced devices such as a 3D laser scanner or an X-ray CT scanner. Moreover, most of the 
systems have a maximum particle size restriction, limiting their application for handling large-sized 
aggregates. Further, the lighting conditions for these systems are controlled using backlighting or 
multiple light sources to minimize the shadow and reflection effects. In addition, the image-
segmentation algorithm originally developed for laboratory conditions may not provide accuracy and 
robustness under field lighting conditions. Consequently, laboratory imaging systems are not readily 
applicable or adaptable for field inspection.  

Furthermore, most of the laboratory imaging systems focus on 2D particle size and shape analysis in 
lieu of 3D volumetric information, although the weight of individual rocks is needed for determining 
size distribution of riprap material. Note that the WipFrag software developed by Maerz et al. (1996, 
1999) and commercialized by WipWare, Inc. is the only imaging-based system found in the literature 
that was used to provide riprap characterization based on field images. It was integrated with mobile 
devices to allow for convenient on-site use to roughly estimate the particle sizes and gradation in a 
stockpile image. Nevertheless, the image-segmentation procedure used in this software is highly user 
dependent and its gradation property estimation is based on a single-view stockpile image of riprap, 
without accounting for detailed 3D particle shape or volumetric information. To achieve user-
independent image-segmentation analysis for relatively large-sized aggregates, Huang et al. (2019, 
2020b, 2021) recently designed a field imaging system for the convenient volumetric estimation of 
aggregates under field conditions and developed a morphological analysis software, I-RIPRAP, for 
stockpile aggregate image analysis. 

Among these aggregate imaging systems developed to date, the 3D aggregate stockpile analysis 
remains an extremely challenging task, with existing systems either focused on 2D image analysis or 
3D analysis of separated aggregate particles. An efficient approach with robust and efficient 
algorithms for obtaining comprehensive 3D geometric information of aggregate particles from 
stockpiles has not yet been developed.  

ANALYSIS APPROACHES FOR AGGREGATE EVALUATION 
Traditional methods for aggregate evaluation include visual inspection, geometry measurements, and 
sieve analysis. More recently, computer vision techniques have been widely adopted to characterize 
particle size and shape properties, and a variety of aggregate imaging systems have been developed. 

Aggregate image analysis typically consists of an image-segmentation module followed by a 
morphological analysis module based on computational geometry (Al-Rousan et al. 2007). Image 
segmentation extracts the region of interest (the individual particles) from the image background, 
which is a key step for extracting useful information after image acquisition. Aggregate imaging 
systems are usually configured to ensure spacing among particles such that the effort required to 
separate overlapping or touching particles during the image segmentation is minimized. The AIMS 
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system (Masad et al. 2007; Gates et al. 2011) can capture multiple aggregates manually spread onto a 
tray. Post-processing is required by conducting the convex hull test. The E-UIAIA system (Tutumluer 
et al. 2000; Moaveni et al. 2013) acquires aggregate photos from orthogonal views of individual 
particles only. Huang et al. (2019) recently developed a field imaging system for large-sized 
aggregates following a similar design concept. These variations of UIAIA systems deal with single-
particle imaging with no touching or overlapping involved. Other imaging systems such as a 3D laser-
based system by Anochie-Boateng et al. (2013) and a stereophotography-based system by Zheng and 
Hryciw (2017) mainly focused on aggregate particles with minimal contact or overlap.  

The above aggregate imaging systems manually control the arrangement of particles and achieve 
high-precision measurements of separated or nonoverlapping aggregates. However, when aggregates 
are in a densely stacked or stockpile form, which are the more practical scenarios, their capability to 
simultaneously characterize a large quantity of aggregates may not be sufficient. First, these systems 
manually separate the particles and provide a constant background to simplify the image-
segmentation task. This condition can no longer be satisfied when aggregates are in a stockpile 
background or other field scenes. Second, manually feeding many particles into these systems is 
inefficient for time-sensitive applications. Moreover, the application of these advanced imaging 
systems is further limited when only in-place or field evaluation is available at quarry and 
construction sites or when characterization of large-sized aggregates is needed. 

To overcome the challenges of analyzing stockpile aggregate images, more advanced image-
segmentation techniques are required. Traditional 2D image-segmentation methods include three 
major types—region based, edge detection based, and watershed—among which the variations of 
edge-based and watershed segmentation algorithms have been shown to perform better in the 
presence of mutually touching particles in dense images such as stockpile aggregate views (Wani and 
Batchelor 1994; Senthilkumaran and Rajesh 2009; Vincent and Soille 1991). In this connection, several 
research software systems and industrial applications have been developed. For example, Tutumluer 
et al. (2017) and Huang et al. (2018) applied watershed segmentation to characterize the degradation 
level in trench-view images of railway ballast by classifying the size distributions of image segments. 
Similarly, the commercial cross-platform software WipFrag, developed by Maerz et al. (1996, 1999), 
uses edge-based segmentation to partition rock fragments and estimate the particle size distribution 
in a stockpile image. Nevertheless, both image-segmentation algorithms used in the software 
programs are user-dependent. Considerable user interaction for fine-tuning parameters and 
interactive editing is required to achieve an acceptable segmented image. To this end, the state-of-
the-art implementation in stockpile aggregate image analysis is the deep learning–based approach 
developed by Huang et al. (2020b), which trains an image-segmentation network called Mask R-CNN 
on a manually labeled stockpile image dataset. 

However, the available approaches for 3D aggregate analysis are very limited and mostly focused on 
single-particle analysis. To fully reconstruct the aggregates as 3D models, many 3D scanning-based 
approaches have been developed in the past decade. Anochie-Boateng et al. (2013) and Komba et al. 
(2013) designed and developed a 3D laser scanning device to obtain 3D aggregate models by a spot-
beam triangulation scanning method. Jin et al. (2018) constructed 3D solid models of nine aggregates 
by merging X-ray CT slices from the cross sections of the specimens. Complicated searching and 
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merging algorithms were developed to orient the CT slices to form valid 3D shapes. Thilakarathna et 
al. (2021) used a structured light 3D scanner to reconstruct 3D models by projecting preset light 
patterns onto the aggregate surface. These 3D scanning-based approaches usually utilize expensive 
scanning devices and require external lighting sources. Alternatively, more convenient and cost-
effective photogrammetry approaches were investigated and demonstrated a comparable 
reconstruction quality when compared to the approaches requiring expensive imaging devices.  

Paixão et al. (2018) reconstructed 18 ballast particles by fixing the individual aggregates with a 
support pedestal and obtaining all-around views at three elevations. The particle sizes were below 3 
in. (7.6 cm) to ensure stable support from the pedestal. The photogrammetry results were compared 
with the results from 3D laser scanning, and both methods demonstrated very close results. Ozturk et 
al. (2020) followed a similar photogrammetry procedure that captures all-around views from 
different viewing angles when the aggregate particle is glued to a stick and elevated in the air. The 
particle sizes were around 0.5 in. (1.3 cm) to be stably fixed using glue. Both researchers used a 
support system to elevate the aggregate in the air so that all-around views are accessible. The size 
range of aggregates that can be reconstructed by the procedure is greatly limited by the design of the 
support system. More importantly, an effective 3D analysis approach that can apply to aggregate 
stockpiles is lacking in the aggregate research domain. 

DEEP LEARNING FACILITATED COMPUTER-VISION TECHNIQUES 
Over the last decade, machine learning–based methods have enabled significant advances in many 
complex vision tasks benefitting from the development of artificial intelligence and computer vision 
techniques (Prince 2012; Goodfellow et al. 2016). Dense image-segmentation tasks, along with many 
object classification and detection tasks, are difficult in the sense that the features in the image are 
usually implicit and thus cannot be easily extracted and represented by human means. While 
traditional segmentation methods are not effectively applicable to identifying these features, 
machine learning methods may better handle such tasks by capturing the underlying features based 
on data-driven mechanisms. Zheng and Hryciw (2017) proposed an approach using pattern 
recognition to identify particles in images of sand assemblies. The approach followed the Voila-Jones 
object detection framework, which is a combination of traditional feature extraction techniques and 
machine learning algorithms. However, this approach still requires careful design of a feature 
extractor that transforms the raw image into effective internal representation. 

During recent developments in the computer vision domain, a deep learning framework proposed by 
LeCun et al. (2015) exhibits several advantages over conventional machine learning techniques 
because of its better capability of discovering intricate structure in large datasets with minimal 
human-guided interaction. With multiple levels of abstraction in the neural network, deep learning 
has dramatically improved the state of the art in many complicated tasks in computer vision, such as 
image classification, object detection, semantic segmentation, etc. The power and benefits of deep 
learning techniques in 2D aggregate image analysis have been demonstrated in Huang et al. (2020a), 
and the similar mechanism is expected to apply to 3D aggregate analysis. Considering this fact, 
applying deep learning techniques to 3D stockpile aggregate analysis tasks is promising.  
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SUMMARY 
This chapter provided a review of riprap standards and specifications, findings from previous 
aggregate studies, relevant equipment that leveraged imaging techniques, and the applications of 
machine learning–based technology in machine vision. 

Traditional methods for assessing riprap geometric properties involve subjective visual inspection and 
time-consuming manual measurements. As such, achieving the comprehensive in situ 
characterization of riprap materials remains challenging for practitioners and engineers. In this 
regard, several advanced aggregate imaging systems developed over the years utilized computer 
vision techniques to approach this task in a quantitative, objective, and efficient manner. 

In terms of imaging-based approaches, aggregate imaging systems developed to date for size and 
shape characterization have primarily focused on 2D analysis of separated or nonoverlapping 
aggregate particles. The development of efficient computer vision algorithms based on emerging 
deep learning techniques is urgently needed for 3D evaluations of aggregates in densely stacked and 
stockpile forms. 
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CHAPTER 3: 3D RECONSTRUCTION FOR FIELD DATA OF 
INDIVIDUAL AGGREGATES AND AGGREGATE STOCKPILES 

INTRODUCTION 
Given the challenges presented in the previous chapter, a 3D aggregate particle database/library 
would serve as the cornerstone for any development related to 3D aggregate segmentation research. 
This chapter presents the development of a photogrammetry-based 3D reconstruction approach for 
obtaining models for individual 3D aggregates and aggregate stockpiles. Based on this approach, the 
researchers will establish a 3D aggregate particle database that is used for the development of 
segmentation and completion algorithms.  

MARKER-BASED 3D RECONSTRUCTION APPROACH 
First, a convenient and cost-effective procedure for the 3D reconstruction of individual aggregate 
particles from multi-view images was developed. The proposed photogrammetry approach follows a 
marker-based design that enables background suppression, point cloud stitching, and scale 
referencing to obtain high-quality aggregate models. The approach allows reconstruction across 
flexible size ranges (especially for relatively large-sized aggregates) and is potentially extensible to 
work under field conditions as well. The equipment setup, reconstruction mechanism, and key 
designs of the reconstruction approach are detailed herein. 

Equipment Setup 
The equipment of the reconstruction system includes a digital camera, a camera tripod, a 12 in. (30.5 
cm) diameter turntable, and a white cardboard background, as shown in Figure 2. The digital camera 
used in this study was a smartphone camera (Model: iPhone XR) with a 4032x3024 pixel resolution, 
but other types of digital cameras can also be used if the collected images are of sufficient quality and 
resolution. The camera was mounted on the tripod at a viewing angle of 30 to 45 degrees with 
respect to the horizontal plane. A proper viewing angle ensures the top and side surfaces of the 
inspected aggregate particle are visible to the camera. During reconstruction, the camera was at a 
fixed position, and the multi-view images of the aggregate were obtained by manually rotating the 
turntable. The smartphone camera was programmed with an automatic shutter (with a beeping 
sound) to take an image every two seconds. In between two shutters, the operator rotates the 
turntable around 30 degrees and switches to the next view. Note that the use of a turntable and a 
white background with a fixed-position camera is one of many possible setups to collect multiple 
views. The approach is flexible and designed to accommodate different configurations. For example, 
when applying this approach to larger aggregates that cannot easily fit onto a turntable, or a 
turntable is not available for field inspection, it is recommended to acquire multi-view images by 
moving the camera around the static object. 
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Figure 2. Photo. Equipment setup for 3D reconstruction of aggregates. 

3D Reconstruction by Structure from Motion 
In the computer vision domain, the structure-from-motion (SfM) technique is a powerful 
photogrammetry method for 3D reconstruction of static scenes. The previous photogrammetry-
based methods used by aggregate researchers (Paixão et al. 2018; Ozturk and Rashidzade 2020) also 
belong to the SfM category. SfM solves the problem of recovering a 3D stationary structure from a 
collection of multi-view 2D images. A typical SfM pipeline involves three main stages: (i) extracting 
local features from 2D views and matching the common features across views; (ii) estimating the 
motion of cameras and obtaining relative camera positions and orientations; and (iii) recovering the 
3D structure by jointly minimizing the total re-projection error (Longuet-Higgins 1981; Andrew 2001). 
The fundamentals and implementation of SfM are omitted from this discussion, but the key steps, 
i.e., steps (ii) and (iii), are discussed herein with necessary details. The process of simultaneously 
estimating the camera parameters and the 3D structure is also called bundle adjustment, which is 
essentially an optimization problem, as shown in Figure 3: 

 
Figure 3. Equation. Re-projection error during bundle adjustment. 

where Pi is the projection matrix of the ith camera, Xj is the coordinates of the jth feature point in the 
3D structure, and xij is the projected pixel location of Xj in the ith camera view. The total re-projection 



17 

error, the objective function in Figure 3, is the squared pixel distance of all feature points across all 
camera views. The bundle adjustment process then iteratively finds the best estimates of the camera 
parameters and the point coordinates by minimizing the objective. After convergence, the 
reconstructed structure is available as a sparse 3D point cloud and can be further processed to 
generate a dense point cloud. 

Background Suppression by Masking for Noise Reduction 
The standard SfM procedure extracts features from the whole 2D images and attempts to reconstruct 
the entire scene, as shown in Figure 5(a). This usually results in a 3D model that requires manual 
cleaning to remove unrelated background information (noise) and to obtain a clean model of the 
aggregate sample. Depending on how much of the background is reconstructed, the manual cleaning 
process could become considerably time-consuming, especially in regions where the aggregate is 
touching the background surface, as illustrated in Figure 6(a). Note that this manual cleaning 
requirement is not only limited to the SfM procedure. During 3D reconstruction with costly devices 
(i.e., laser scanner, structured light scanner, etc.), manual cleaning is also a necessary step. This is 
because the scanning mechanism does not distinguish the foreground from the background, because 
their relative definition will vary from one application to another. To reduce noise from unrelated 
background regions, the proposed approach improves the standard SfM approach by generating a 
foreground object mask, M, for each image. During bundle adjustment, the object mask is applied as 
an additional constraint in the original objective function, as shown in Figure 4: 

 
Figure 4. Equation. Re-projection error during bundle adjustment with mask constraints. 

where Mij is the object mask indicating the inclusion or suppression of feature Xj in the ith camera 
view. 

The generation of this type of foreground object mask is an image-segmentation problem. Although 
traditional segmentation methods can be applied using color and edge information, the proposed 
approach adopts a deep learning–based segmentation method. The neural network architecture used 
is called U2-Net, which is a successful design for the salient object detection task (Qin et al. 2020). 
Salient object detection is utilized to detect and extract the potential region of interest (RoI) of 
objects that may be salient in the image. The network uses deep-nested U-shaped convolutional-
deconvolutional blocks to capture multiscale contextual information without significantly increasing 
the computation cost. The training dataset was image-mask pairs prepared by both manual labeling 
and 3D to 2D projection of several manually cleaned 3D models. Based on experiments, around 100 
image-mask pairs yield very robust and accurate foreground extraction for a given background 
environment. Note that for a given background environment, the network is trained only once, and 
no further training is involved in the reconstruction workflow. The raw images and generated 
foreground masks of an example aggregate are illustrated in Figure 5. 
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(a) (b) 

Figure 5. Illustration. (a) Multiple view images of an aggregate particle and (b) salient object masks 
for each view. 

Adopting a deep learning–based method improves the flexibility of the proposed approach. Although 
the experiments conducted in this study were set up with a fixed background, the approach is 
designed to work in different environments, such as using different colors for the turntable and 
background, or under field conditions with natural lighting conditions. In such cases, a traditional 
segmentation method may not generate masks robustly, while the method based on deep learning 
only requires a few image-mask pairs to tune its behavior. The robustness of detection in natural 
backgrounds has been validated in the original U2-Net development. 

By applying the foreground masks, the unrelated background is suppressed, and the reconstructed 
model is noise-free and does not require any further manual cleaning. The resulting background 
suppression effect is illustrated in Figure 6. 

 

                

(a) (b) 

Figure 6. Illustration. Reconstructed sparse point cloud (a) without background suppression and (b) 
with background suppression. 
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Object Markers for Robust Point Cloud Stitching 
Unlike small-sized aggregates that can be easily elevated by a support pedestal, medium- and large-
sized aggregates usually need to sit on a flat surface during reconstruction or scanning. This limits the 
possibility of obtaining all-around views of the aggregate and reconstructing with one run of SfM. 
Two or more rounds of reconstruction are thus required on different parts of the aggregate by 
adjusting its pose in between, and the partial point clouds must be stitched into a complete 3D 
model. The most common method to stitch multiple point clouds is to use point set registration 
algorithms (Choi et al. 2015). However, based on experiments, automatic registration algorithms are 
not always robust and may fail for certain aggregate samples with less distinct surface features. 

In this regard, a set of object markers was designed to provide robust feature-matching during point 
cloud stitching. Two markers were drawn with colored pencils on the side of each aggregate. The 
markers were designed to have a head-tail pattern with purple and red colors, as shown in Figure 7(a) 
and Figure 7(b). Note that the selected colors are not fixed and can be adjusted based on the color of 
the aggregate for better contrast. The head and tail of each marker are the ends of short and long 
line segments, respectively. Such pattern is invariant to different viewing angles and can, thus, be 
identified robustly. After the sparse reconstruction is completed, manual labeling of the markers is 
required on few views (typically three views) to obtain a consistent localization of the markers in 3D 
coordinates. When the marker localization is completed for each partial point cloud, the stitching 
process can be conducted successfully, and a complete 3D model is obtained for the aggregate. 

Background Markers for Scale Reference 
The reconstructed 3D model from previous steps is in a local coordinate system. To bring the model 
into a true physical scale and a global coordinate system, a set of background markers was designed 
to provide a scale reference. The design follows the same concept of ground control points (GCP) in 
land surveying (Bernhardsen 2002). Color-coding labels in red, green, blue, and yellow were placed at 
four corners of the turntable, as illustrated in Figure 7(c). The distances between the markers were 
measured in advance and given as the scale factor. As discussed previously, when the proposed 
approach is applied without a turntable, the background markers could take other forms such as 
GCPs.  

          
(a) (b) (c) 

Figure 7. Photo. (a) Purple-colored and (b) red-colored object markers for robust point cloud 
stitching and (c) background markers for scale reference. 
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Reconstruction Workflow 
The reconstruction workflow can be summarized by the following steps: 

• Step 1: Preparation (executed only once for each environment). This step involves setting up 
the equipment, tuning the foreground detection network, and placing the background 
markers. 

• Step 2: Placing the aggregate sample. The sample is placed in the camera view, and object 
markers are labeled on the side surface. 

• Step 3: Capturing visible sides (two or more) of the sample. By rotating the turntable (or 
moving the camera), multiple view images are taken. The same procedure is repeated for 
each side. In our experiments, 30 views were taken for each side with a two-second shutter 
interval, resulting in two minutes per sample for a two-side inspection. 

• Step 4: Reconstruction. First, foreground masks are generated from the foreground detection 
network. Second, SfM is executed using the raw multi-view images and the associated 
foreground masks. Next, object markers and background markers are labeled on a subset of 
images (usually three images from each side). Finally, a complete 3D point cloud model is 
obtained by stitching the partial point clouds together, and an associated 3D mesh model is 
reconstructed from the complete dense cloud using the screened Poisson surface 
reconstruction method (Kazhdan and Hoppe 2013). 

• Steps 2 to 4 are repeated for each aggregate sample. 

The reconstructed results presented in this study were generated by extending the Agisoft 
Metashape (Agisoft 2021) software program. Note that the implementation of the reconstruction 
step is not limited to certain software tools. Commercial software programs such as Agisoft 
Metashape (Agisoft 2021), free software available such as VisualSFM (Wu 2011), or open-sourced 
software available such as Meshroom (Griwodz et al. 2021) can all be extended to implement the 
proposed approach. Also note that even though this research study focused on relatively large-sized 
aggregates, the setup previously shown in Figure 2 is expected to work for smaller sizes such as base 
course aggregates or ballast without further adjustments. 

MATERIAL INFORMATION AND PROPERTIES OF THE 3D AGGREGATES LIBRARY 
The outlined reconstruction procedure was used to inspect a set of 46 RR3 aggregate particles and 36 
RR4 aggregate particles collected from field site visits to aggregate producers in Illinois. The samples 
conform to the “RR3” and “RR4” categories based on IDOT specification, which typically refers to 
aggregates that have weights above 10 lb (4.54 kg). In the specification, the RR1 and RR2 categories 
refer to small-sized riprap aggregates having the same size ranges as aggregate subgrade material in 
pavement engineering and ballast material in railway engineering, and the RR3 to RR7 categories are 
medium- to large-sized aggregates or rocks that are more common in riprap applications. 
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Example reconstruction results are visualized in Figure 8. The reconstructed models are available in 
different formats, such as the textured model that preserves the surface color information in Figure 
8(a), the mesh model that shows the wireframe of vertex connectivity in Figure 8(b), and the point 
cloud model with discrete point coordinates in Figure 8(c). An image collage of 40 RR3 aggregate 
samples reconstructed in this study is presented in Figure 8(d). In terms of geological classification, 
these aggregate samples are dolomite rocks with white to yellowish colors, as shown in Figure 8(d). 
Based on the aggregate particle library, necessary datasets were generated to develop a deep 
learning–based algorithm for 3D segmentation and 3D shape completion. 

     

 

(a) (b) (c) 

 

(d) 

Figure 8. Illustration. (a) Textured model, (b) mesh model, (c) point cloud model of an aggregate 
particle and (d) collage of 40 reconstructed aggregate particles. 

The quality and fidelity of the reconstruction results were assessed from visual effects and 
quantitative methods. Qualitatively, the reconstructed aggregate models are of high quality and 
fidelity, as shown in Figure 8. The aggregate models reproduce the geometric features and texture 
features of the original aggregate samples. Quantitatively, the surface resolution (or point density) of 
the reconstructed results is considerably high in aggregate research. On average, each sample was 
exported at a resolution of around 100,000 vertices and 200,000 faces. The surface resolution and 
point density of 10 example RR3 aggregate particles are listed in Table 3. The resolution is calculated 
based on the ratio between the number of points in the point cloud model and the surface area of 
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the reconstructed mesh model. The average resolutions for all 46 RR3 aggregates and all 36 RR4 
aggregates are 1.66 points/mm2 and 0.93 points/mm2, respectively. The resolution statistics indicate 
that the aggregate models were reconstructed at a resolution of approximately 1 point/mm2, i.e., the 
average distance between adjacent points is around 0.04 in. (1 mm).  

For each reconstructed aggregate particle, the basic 3D properties can be calculated from the 3D 
mesh model, including volume, surface area, and the shortest, intermediate, and longest dimensions 
in the three principal axes. The 3D properties of the 10 selected RR3 aggregate particles are listed in 
Table 4. If the intermediate dimension is denoted as the nominal size of an aggregate, then the sizes 
of these aggregate samples ranged from 3 in. (7.6 cm) to 6 in. (15.2 cm). For the ground truth, the 
submerged volume of each aggregate sample was measured by a water displacement method 
following ASTM D6473 (2015), listed as the measured volume in the second column in Table 4. 

Table 3. Surface Resolution and Point Density of 10 Example RR3 Particles 

Rock ID Surface Area (cm2) No. of Vertices No. of Faces Resolution 
(points/mm2) 

1 1308.69 99680 199356 0.76 
2 2201.8 209440 418872 0.95 
3 2586.81 261948 523884 1.01 
4 2108.77 297392 594760 1.41 
5 2257.61 151599 303190 0.67 
6 1397.78 93369 186734 0.67 
7 1664.52 86056 172108 0.52 
8 1836.54 134359 268714 0.73 
9 2154.91 223307 446594 1.04 

10 1607.77 80549 161094 0.50 

Note: 1 cm2 = 0.155 in.2, 1 mm = 0.04 in. 

Table 4. Measured Volume, Reconstructed Volume, Area, and Principal Dimensions of 10 Selected 
RR3 Particles 

Rock ID 
Measured 

Volume 
(cm3) 

Reconstructed 
Volume 
(cm3) 

Surface 
Area (cm2) 

Shortest 
Dimension 

(cm) 

Intermediate 
Dimension 

(cm) 

Longest 
Dimension 

(cm) 
1 1014.9 1042.3 685.32 7.682 13.142 22.695 
2 763.5 786.33 537.87 9.308 12.519 17.412 
3 601.8 605.04 418.69 9.477 10.075 14.572 
4 791.4 795.69 558.41 9.118 10.133 19.925 
5 727.6 744.83 503.13 9.803 10.649 18.842 
6 688.1 691.96 478.72 7.497 9.987 15.925 
7 644 662.47 465.96 11.614 13.867 14.041 
8 1140.5 1165.03 704.29 10.617 12.213 21.923 
9 592.7 601.1 435.01 8.068 11.517 17.851 

10 890.8 920.92 590.14 10.374 14.513 17.37 
Note: 1 cm = 0.4 in., 1 cm2 = 0.16 in.2, 1 cm3 = 0.06 in.3 
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To validate the accuracy of the 3D reconstruction procedure, the reconstructed volume is compared 
against the measured ground-truth volume, as presented in Figure 10. A 45-degree line is plotted as a 
reference for the comparison. As the quantitative measure of accuracy, a statistical indicator—the 
mean percentage error (MPE)—is calculated using the equation in Figure 9. Note that unlike the 
mean absolute percentage error (MAPE), MPE can have a positive or a negative sign, indicating a 
systematic overestimate or underestimate behavior, respectively. 

 
Figure 9. Equation. Mean percentage error (MPE). 

where Ri is the reconstructed result of the ith sample, Mi is the ground-truth measurement of the ith 
particle, and N is the total number of particles. 

 
Figure 10. Graph. Comparison of reconstructed and measured volumes of aggregate samples. 

Figure 10 shows a very good agreement between the reconstructed volume from the marker-based 
reconstruction approach and the ground-truth measured volume, with an MPE of +2.0%. The positive 
MPE also indicates a consistent, systematic overestimate of the reconstructed volumes. There are 
three potential reasons for this overestimation. First, the pixel locations of the background markers 
are used to localize the marker in 3D coordinates. Therefore, pixel deviation when labeling the 
background markers may lead to a slight change of the scale reference. Second, a porous surface 
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condition was observed on these dolomite aggregate particles, and the micro-texture areas that are 
filled with water during the measurement of the submerged volume may be reconstructed as flat 
faces. This could also lead to a systematic overestimate of the true submerged volume. Third, since 
SfM-based photogrammetry methods entail an optimization approach to jointly approximate the true 
object geometry, and cameras provide sparser representation (pixels) than laser scanning devices, it 
is reasonable to assume that certain systematic deviation may exist within acceptable accuracy. Also, 
the mesh reconstruction from point cloud is an approximation algorithm that may bring systematic 
deviation near the true surface of the aggregates. 

Other morphological indices that can be calculated based on the 3D reconstructed models include 
the 3D flat and elongated ratio (FER) and 3D sphericity. As the 3D counterpart of the aspect ratio 
indicator, 3D FER can be calculated after determining the minimum volume bounding box of the 
particle. O’Rourke (1985) developed algorithms to find the minimal enclosing box of a point set. First, 
for each possible direction that originated from the particle centroid, a 3D local coordinate frame is 
formed in the orthogonal searching directions. Next, for each orthogonal pair, the three edge-to-edge 
distances (3D Feret diameters) within the point set are calculated. The volume of the bounding box 
can then be computed, and the Feret diameters (Feret 1930) of the minimum volume bounding box 
are denoted as the shortest dimension “a,” intermediate dimension “b,” and longest dimension “c.” 
Accordingly, the orthogonal pair associated with the minimum volume bounding box represents the 
three principal axes of the particle. The 3D FER can then be defined based on the principal 
dimensions (Figure 11): 

 
Figure 11. Equation. 3D flat and elongated ratio (FER). 

For 3D sphericity, Wadell (1932) defined the sphericity as the ratio between the surface area of an 
equivalent sphere having the same volume as the particle, Se, and the measured surface area of the 
particle, S. This is often called the true sphericity. Given the surface area (A) and the volume (V) of a 
3D model, the 3D sphericity can be computed using Figure 12. As a reference, a tetrahedron has a 
sphericity of 0.67 and a cube has a sphericity of 0.81, again with higher values indicating the 3D shape 
is closer to a perfect sphere. 

 
Figure 12. Equation. 3D sphericity. 

3D RECONSTRUCTION OF FIELD AGGREGATE STOCKPILES WITH SCALE REFERENCE 
Using a similar marker-based 3D reconstruction approach that works well for individual aggregates, 
the field aggregate stockpiles can also be reconstructed based on multi-view stereo photography. 
Different from the previous approach, which is specially designed to obtain a complete model (i.e., 
two-side reconstruction) of aggregates, the reconstruction of an aggregate stockpile only requires 
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one pass of 3D reconstruction from the multi-view images collected by walking around the stockpile. 
Object markers are not needed for this one-side reconstruction either. Background markers, though, 
are still necessary for providing the scale reference as GCPs. 

Under field conditions where the aggregate stockpile could vary in size, the previous design of a fixed-
distance marker system no longer applies. To address this issue, a new marker system was designed 
to provide a flexible scale reference in the field. The marker system consists of three colored blocks 
(red, blue, and yellow), as shown in Figure 13(a). The top surface of each colored block was marked 
with a cross sign intersecting at the center, which can be conveniently identified in an image. Figure 
13(b) demonstrates the use of the marker system during the 3D reconstruction approach. Before 
taking the multi-view images, the marker system is placed near the stockpile to form an angle. Note 
that the principle of using the marker system as GCPs is to form a plane that can be localized in the 
reconstruction coordinate space; therefore, the three markers should not be co-linear (i.e., 
approximately lie on the same line). Next, the distances between the markers are measured. In the 
field experiments, the blue block was used as a pivot marker, and the blue-red and the blue-yellow 
distances were measured. During the 3D reconstruction approach, by identifying the marker pixel 
location on a subset of multi-view images and taking the two measured distances as inputs, the 
reconstructed point cloud of the stockpile can be accurately resized to match the real-world scale. 

                
(a) (b) 

Figure 13. Photo. Field marker system for scale reference. 

Two different types of field stockpiles were inspected. First, stockpiles of different size categories 
were created at ICT in Rantoul, IL. At each time, all 46 RR3 aggregate samples were used to build a 
RR3 stockpile, and multi-view images were taken for the 3D reconstruction. After the image 
acquisition step was completed, the aggregate samples were randomly permuted (e.g., rocks buried 
inside the current stockpile were placed preferably on the surface for the next stockpile) to vary the 
stockpile configuration. As a result, six RR3 stockpiles were built, and the multi-view image data was 
acquired, denoted as stockpiles S1 to S6. The same process was repeated to build six RR4 re-
engineered stockpiles based on the 36 RR4 rocks.  
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For the second type, field stockpile images were collected during site visits to Illinois aggregate 
quarries at Rantoul and Kankakee. RR3, RR4, and RR5 stockpiles were prepared at these sites 
manually (for RR3) and by front loader trucks (for RR4 and RR5). At the beginning, 24 RR3 rocks, 16 
RR4 rocks, and 20 RR5 rocks were selected in the field. Similar to the first type of stockpile prepared 
at ICT, numbers were marked on many faces of each rock, and weight measurement was performed 
to obtain the ground-truth data. Then, the front loader truck moved the aggregate rocks to form a 
stockpile and permute the stockpile after the multi-view images were collected. This process was 
repeated three times for each RR category. To distinguish from the first type of stockpile prepared at 
ICT, these stockpiles are denoted as RR3R, RR4K, and RR5K, where letters “R” and “K” indicate the 
source locations of the field stockpiles. The information of all stockpiles is listed in Table 5. 

Table 5. Information of Re-engineered and Field Stockpiles 

Size Category Number of Aggregate 
Samples in Stockpile No. of Stockpiles Ground Truth 

RR3 (Re-engineered) 46 6 Morphological Properties 

RR4 (Re-engineered) 36 6 Morphological Properties 

RR3R (Field) 24 3 Weight  

RR4K (Field) 16 3 Weight  

RR5K (Field) 20 3 Weight  

 

Examples of the 3D reconstruction results are presented in Figure 14 for S1 stockpiles in each 
category. The ground surface was also reconstructed along with the stockpile but was manually 
removed as a preprocessing operation for the 3D segmentation step. Depending on the operator, the 
number of multi-view images collected per stockpile ranges from 26 to 50 images. Note that the 
reconstructed clouds are of consistently high quality for the presented results and for other 
stockpiles. Based on this practice, around 36 to 50 multi-view images are considered as the 
recommended number of images to be collected for an all-around inspection of aggregate stockpiles. 

SUMMARY 
This chapter describes the developed 3D reconstruction approaches for individual aggregates and 
aggregate stockpiles. A marker-based 3D reconstruction approach was developed to establish the 3D 
aggregate particle database as a cost-effective and flexible procedure to allow full reconstruction of 
3D aggregate shapes. The approach is a photogrammetry-based method with auxiliary designs to 
achieve background suppression, robust point cloud stitching, and scale reference. The approach was 
used to inspect a set of 46 RR3 aggregate particles and 36 RR4 aggregate particles collected from field 
site visits to aggregate producers in Illinois. Based on the aggregate particle library, necessary 
datasets were generated to develop a deep learning–based algorithm for 3D segmentation and 3D 
shape completion. Further, the approach was extended to field applications of reconstructing field 
aggregate stockpiles. For that purpose, an additional scale reference procedure to provide real 
physical scale of the reconstructed scene was developed.  
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Figure 14. Illustration. 3D reconstruction results of stockpiles in different categories.  
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CHAPTER 4: AUTOMATED 3D SEGMENTATION OF AGGREGATE 
STOCKPILES 

INTRODUCTION 
This chapter first reviews state-of-the-art advancements in computer vision regarding the 3D instance 
segmentation task and then analyzes the most suitable strategy for the application of dense stockpile 
segmentation. A selected deep learning framework is then implemented with necessary 
modifications for the automated stockpile segmentation. Based on the established dataset, the 
framework is trained to learn the segmentation of individual aggregate instances from the stockpile. 

DEEP LEARNING FRAMEWORK FOR AUTOMATED 3D STOCKPILE SEGMENTATION 

Review of 3D Instance Segmentation in Computer Vision 
Similar to 2D instance segmentation, 3D instance segmentation focuses on detecting and separating 
objects at the instance level, which is a much harder task than 3D object detection and semantic 
segmentation. This makes 3D instance segmentation a fundamental yet challenging topic in computer 
vision that facilitates various types of applications in autonomous driving, robotics, medical imaging, 
etc. (Guo et al. 2020; He et al. 2021). 3D data provides more comprehensive geometric and scale 
information than 2D images, especially in the understanding of spatial features and relations. 
However, unlike 2D images represented in a pixel grid that can naturally be handled by the 
convolutional neural network (CNN) design, the typical 3D data representation (i.e., point clouds, 
meshes, voxels) usually presents high disorderliness and irregularity than 2D images. To handle the 
challenges in 3D instance segmentation, two major categories of methods, i.e., detection-based and 
detection-free, were developed in the computer vision community. 

Detection-based methods are essentially a two-stage approach: (1) detect object proposals and (2) 
refine the proposals by generating instance masks. These methods usually propose a 3D bounding 
box of object instances in an explicit way. Because this type of approach imitates the mechanism of 
human attention by refining from a high-level perception, it is usually depicted as a top-down 
method. Typical detection-based methods include the Generative Shape Proposal Network (GSPN) 
and the framework Region-based PointNet (R-PointNet) proposed by Yi et al. (2019), the Gaussian 
Instance Segmentation Network (GICN, Liu et al. 2020), and 3D-BoNet (Yang et al. 2019).  

Different from the detection-based methods, detection-free methods often learn the pointwise 
features and then apply clustering (or grouping) to obtain instance information. These methods work 
in the reverse direction of human perception, which first focuses on fine-grained details, and are 
therefore called a bottom-up method. Representative methods in this category include Similarity 
Group Proposal Network (SGPN) proposed by Wang et al. (2018), Submanifold Sparse Convolution 
Network (SSCN, Graham et al. 2018), Multi-scale Affinity with Sparse Convolution (MASC) proposed 
by Liu and Furukawa (2019), PointGroup (Jiang et al. 2020), and OccuSeg (Han et al. 2020).  
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Point Grouping Framework with Shifted Coordinates 
Based on the review of 3D instance segmentation research in computer vision, it was concluded that 
detection-free methods are more suitable for the task of aggregate stockpile segmentation. The most 
important reason is the salience of the aggregate stockpile structure: aggregate stockpiles are point 
clouds with very densely stacked instances. The 3D instance segmentation datasets in computer 
vision are mostly available from autonomous driving (Geiger et al. 2013) and indoor environments 
(Armeni et al. 2016; McCormac et al. 2017), where the separation among object instances is 
considerably higher than that in a stockpile. Therefore, detection-based methods that strongly rely on 
the precision of predicted bounding boxes are likely to fail or produce inaccurate results on the 
densely stacked structure. This observation also agrees with the nature of humans’ top-down 
perception, i.e., they can easily distinguish sparsely separated objects but fail to disentangle small 
pieces from a pile. Detection-free methods, on the other hand, follow a bottom-up strategy that 
builds up high-level segmentation from fine-grained details and may better handle the stockpile 
structure. As a result, a state-of-the-art network, PointGroup (Jiang et al. 2020), was selected, 
implemented, and customized for the 3D stockpile segmentation task. 

The overall architecture of the PointGroup network is illustrated in Figure 15. The network consists of 
three main components: feature extraction by a backbone network, point clustering on dual 
coordinate sets, and cluster scoring. The key design in the network is to learn per-point offset vectors 
to shift the original coordinates into a more compact coordinate space, such that the clustering 
process will be more robust. The backbone feature extraction network follows a U-Net structure 
(Ronneberger et al. 2015) with submanifold sparse convolution (SSC, Graham et al. 2018) layers. The 
original PointGroup architecture uses point colors as additional input features, but in the context of 
aggregate stockpile segmentation, learning should be based on point coordinates only. This is 
because unlike the datasets in autonomous driving and indoor environments, aggregates can have 
high in-class variation in terms of the particle color. Aggregates from different geological origins and 
experiencing various weathering conditions may have very distinct colors. Considering that instance 
segmentation of an aggregate stockpile is theoretically plausible by exploring the void space between 
instances, the geometry information (i.e., point coordinates) is expected to be the crucial input. 
Therefore, the network was customized to only take point coordinates as the input.  

 
Figure 15. Illustration. PointGroup architecture for instance segmentation. 
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The per-point offset vectors are then predicted to shift points toward the centroid of its potential 
instance, as illustrated in the offset branch. Note that the original PointGroup architecture design 
uses two branches, one for semantic segmentation and the other for predicting the per-point offset 
vector. In the context of aggregate stockpile segmentation, the semantic branch was removed 
because the point cloud is expected to contain only single-class aggregate instances. The offset 
branch predicts per-point offset vector, and the shifted coordinate space can be obtained by applying 
the per-point offset to the original coordinates. The shifted coordinate space was found to be more 
efficient for clustering and grouping since the points have now been rearranged in an instance-aware 
pattern. Based on the original coordinates space “P” and the shifted coordinates space “Q,” a 
clustering step is performed to generate instance proposals. During the experiments, the shifted 
coordinates were more effective for generating instance proposals. This may be explained by the 
nature of a dense structure such as an aggregate stockpile, where segmentation on a more compact 
shifted space is easier than segmentation on the uniformly spaced original representation.  

The raw instance proposals may contain many overlapped prediction duplicates as well as low-
confidence predictions; therefore, the ScoreNet module is used to rank the clusters. ScoreNet is a 
sub-network that applies another U-Net structure on the per-point coordinates and feature vectors. 
As a final step, a 3D version of non-maximum suppression (NMS) is applied to condense highly 
overlapped instance proposals by selecting the proposal with the highest confidence score among 
overlapping proposals. 

EVALUATION OF STOCKPILE SEGMENTATION PERFORMANCE 
The network was trained, and the performance of the instance segmentation was evaluated on the 
“test set” of the dataset. Qualitative results are presented in Figure 16 and Figure 17. First, the space 
of the original and shifted coordinates are visualized to indicate the effectiveness of learning the per-
point offset. One example is given for each stockpile scene type in the dataset. As shown in Figure 16, 
the network successfully learned the per-point offset prediction by showing reasonable clustering of 
the points in the shifted coordinates. Note that each different color in the shifted coordinates “Q” 
represents the clustered points belonging to individual instances. With the more compact clustered 
coordinates, the generation of instance proposals is expected to be more robust and reasonable. 
Across different stockpile scene types in the test set, the network also demonstrates consistent 
effectiveness and performance in predicting the per-point offset. 

Next, the segmentation results were compared with the ground-truth labels in the test set to 
qualitatively evaluate the segmentation effect, as shown in Figure 17. The final instance proposals are 
visualized with enclosing bounding boxes to better show the location of the segmented instances. 
The segmentation results are reasonably satisfactory compared to the ground-truth instances, with 
most of the aggregate particles identified and successfully segmented. Although some over-
segmentation and under-segmentation effects can be observed from the segmentation results, it is 
considered an efficient and high-quality segmentation surpassing human vision’s capability of 
handling such dense structures. 
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Figure 16. Illustration. Original coordinates (P) and shifted coordinates (Q) by applying the  

per-point offset. 
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Figure 17. Illustration. Comparisons of segmentation results and ground-truth instances. 

Quantitative measurement was also conducted on the quality of segmentation. Before introducing 
the metrics used for stockpile segmentation, a brief overview is presented for the popular evaluation 
standard used in machine learning and computer vision research (Powers 2011). By comparing the 
predictions of a machine learning model and the ground truth, the results can be categorized into 
four groups: True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). 
Positive and negative represent the prediction results, while true and false indicate the correctness of 
the predictions when compared with the ground truth. For example, TP means a sample is predicted 
as positive and the prediction is true, i.e., the prediction is consistent with the ground truth. For 2D 
and 3D instance segmentation tasks that do not have clear true/false correspondences, the definition 
of the “match” between a prediction and a ground truth commonly follows the Intersection over 
Union (IoU) concept. 2D IoU for instance segmentation is the number of common pixels between the 
segmented and ground truth masks divided by the total number of pixels present across both masks. 
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Similar to 2D IoU, 3D IoU for point cloud data is commonly defined by the intersection and union 
volumes (V) between two axis-aligned bounding boxes of the instance (Figure 18): 
 

 
Figure 18. Equation. 3D intersection over union (IoU). 

Therefore, by setting an IoU threshold, the correspondence between prediction and ground truth can 
be determined, and TP, FP, TN, FN can be defined. Typically, precision and recall metrics are used to 
measure the performance of the model, as shown in Figure 19. Next, to capture the precision-recall 
behavior at different threshold IoU values, a precision-recall curve is usually generated by varying IoU 
thresholds, and an average precision (AP) is defined as the area integral under the precision-recall 
curve. 
 

 
Figure 19. Equation. Precision and recall. 

In the context of the aggregate stockpile segmentation task, however, the metrics are customized 
based on the standard metrics to better indicate the most relevant performance. First, the IoU 
threshold is fixed at 0.5 to determine the prediction and ground-truth correspondence. At this 
threshold, “completeness” is defined as the ratio between the number of segmented instances (TP) 
and the number of ground-truth instances (TP+FN). This ratio describes the percentage of aggregate 
instances correctly detected as compared to the ground-truth labeling. In fact, the completeness 
metric herein is identical to the standard recall metric but is renamed to distinguish it in the context 
of stockpile segmentation. Because a fixed IoU threshold is used, the AP concept no longer applies. 
However, a metric is needed to further indicate how closely the segmented instances align with the 
ground truth, even if they all have IoUs beyond the threshold. Therefore, an IoU precision metric is 
defined as the per-instance 3D IoU score that calculates the percent overlap between the 
segmentation and the corresponding ground truth. Then, for the entire stockpile, an IoU average 
precision (IoU AP) metric can be calculated to measure the overall volumetric similarity between the 
segmented and ground-truth instances. The definition of the two metrics is given in Figure 20, and 
the demonstrations are shown in Figure 21.  
 

 
Figure 20. Equation. Completeness and IoU average precision. 
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Figure 21. Illustration. Completeness and IoU precision metrics used to compare the segmentation 

instances with the ground-truth labels. 

Following the completeness and IoU AP metrics, the network performance was evaluated on 30 
stockpiles from the test set. The average completeness and IoU AP values are 78.4% and 82.2%, 
respectively, which are considered high for the dense stockpile segmentation task. The average 
completeness value shows that at least 75% of the aggregates can be successfully identified as 
compared to the ground truth, with individual instances segmented at a relatively good IoU AP of 
82%, on average. Note that the completion metric also indicates that about 20% of aggregates were 
not segmented. Some of the non-segmented points are likely not recognized as a true instance by 
human vision because of occlusion and overlapping. Overall, the network demonstrates good 
performance on the stockpile segmentation task. Moreover, the standard deviation values for 
completeness and precision are 6.3% and 4.8%, respectively, which implies good generality and 
robustness of the network among different stockpile scene types. 

SUMMARY 
This chapter reviewed state-of-the-art advancements in computer vision regarding the 3D instance 
segmentation task and selected the most suitable strategy for the application of dense-stockpile 
segmentation. A state-of-the-art deep learning framework was implemented with necessary 
modifications for automated stockpile segmentation and was trained on the aggregate dataset. Based 
on the qualitative and quantitative evaluation, the network demonstrated satisfactory performance 
on segmenting individual aggregate instances from dense stockpiles with considerably high 
completeness and precision. A more realistic evaluation of the 3D instance segmentation network 
was conducted on field stockpiles, which will be presented next upon integration with the 3D shape 
completion component.  
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CHAPTER 5: AUTOMATED 3D AGGREGATE SHAPE COMPLETION 
AND FIELD VALIDATION 

INTRODUCTION 
This chapter introduces the state-of-the-art strategy applicable to learning irregular aggregate 
shapes. Partial and complete shape pairs are generated from the 3D aggregate particle library based 
on varying-visibility and varying-view ray-casting techniques. The selected deep learning framework is 
implemented and trained on the partial-complete shape pairs to learn the shape completion of 
aggregates. Finally, field validation is conducted after the segmentation and shape completion steps 
to check the robustness and reliability of the final analysis results.  

GENERATION OF PARTIAL-COMPLETE AGGREGATE SHAPE PAIRS  
To serve as the dataset for learning a 3D shape completion task, aggregate shapes from partial 
observations associated with their corresponding ground-truth complete views should be generated 
and learned in pairs. Establishing such a dataset is usually challenging because it is difficult to obtain 
partial and complete views for an aggregate at the same time. 

A simplified approach could be randomly removing parts from the complete aggregate models, 
generating incomplete views of the shape. However, this approach is likely to suffer from the 
following issues. Point cloud is an unordered and irregular data format, so randomly removing points 
by index may result in an inconsistent effect of removal, i.e., the removed points could be clustering 
around a certain region or randomly distributed on the original surface. The former emulates the 
missing parts of partial observations, but the latter merely leads to a nearly uniform down-sampling 
of the complete shape without missing parts. This limitation could be addressed by intersecting 
certain shape primitives (e.g., sphere, cylinder, etc.) with the complete aggregate models. Even with 
this approach, the missing regions of the partial shapes are expected to have many artifacts, such as 
unnatural cuts, along the shape boundaries. 

A more realistic approach was developed by further investigating the cause of partial observations of 
aggregate shapes. During the reconstruction of an aggregate stockpile, multi-view sensors (i.e., 
cameras, LiDARs) are commonly used to observe the stockpile surface. Individual aggregates on the 
stockpile surface may be visible to several sensors simultaneously from different viewing angles. 
However, the sensors can only occupy the open space around the stockpile, with viewing angles from 
the other side of the stockpile being missing observations. Based on this fact, the proposed approach 
was to simulate the sensing process by varying visibility and view to generate realistic partial views 
that are possible in a real observation. 
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Figure 22. Illustration. Varying-visibility shapes with an increasing number of active sensor views (N). 

 
Figure 23. Illustration. Varying-view shapes at mth aggregate model orientation. 
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As a result, the varying-visibility and varying-view ray-casting schemes together simulate the partial 
observation process in a comprehensive way, as illustrated in Figure 22 and Figure 23. By treating the 
all-around sensor view (N = 16) as the ground-truth complete shape, a dataset of partial-complete 
aggregate shape pairs can be efficiently established. For each of the 82 rock models (46 RR3 rocks 
and 36 RR4 rocks) in the 3D aggregate particle library, a total of 9,184 partial-complete shape pairs 
were generated, because one model has seven visibility levels (N = {3, 4, 5, 6, 7, 8, 9}) and M = 16 
model orientations. The dataset was further divided into 9,000 training pairs and 184 validation pairs. 
The validation pairs were randomly selected and separated from the dataset. In addition, to further 
check the network performance on unseen aggregate shapes, six extra aggregate models were used 
to generate 672 partial-complete shape pairs. These are RR3 models that were not included in the 3D 
aggregate library and are therefore considered as an independent “test set” of the shape completion 
network. Note that the dataset was regularized by uniform down-sampling to 2,048 points per partial 
shape and 16,384 points per complete shape, which is common fixed data sizes in other popular 
datasets such as ShapeNet (Chang et al. 2015) and Completion3D (Tchapmi et al. 2019). 

DEEP LEARNING FRAMEWORK FOR LEARNING 3D SHAPE COMPLETION 
Based on the review of 3D shape completion approaches in computer vision, a state-of-the-art 
network, SnowflakeNet (Xiang et al. 2021), was selected and implemented for learning the 3D shape 
completion of aggregates. The overall architecture of SnowflakeNet is presented in Figure 24. The 
network models the 3D shape completion process as a multi-stage snowflake-like growth of points in 
space, which consists of three major modules: feature extraction, seed generation, and point 
generation. 

The input of the network is a point cloud with fixed data dimension. The overall shape completion 
process follows an encoder-decoder approach, where the partial input cloud is condensed into a 
high-dimensional feature vector by an encoder, and then the decoder generates fine-grained 
completion by enriching the feature space. 

 
Figure 24. Illustration. SnowflakeNet architecture for 3D shape completion. 
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For the encoder part, the network uses set abstraction layers developed in PointNet++ (Qi et al. 
2017b) and point transformer layers (Zhao et al. 2021) together to encode the global and local shape 
context into a linear feature vector or shape latent code. This step is denoted as the feature 
extraction process to obtain high-level shape characteristics with a condensed representation. 
Although all the training data have 2,048 points, the network can actually take any arbitrary data size 
since this feature extraction step will first perform regularization to sample the data size down to 512 
points following the farthest point sampling (FPS) algorithm proposed in PointNet++ (Qi et al. 2017b). 
FPS is a shape feature-preserving technique to efficiently reduce the 3D data size while maintaining 
the prominent features. 

After the feature extraction, a two-stage decoder in the network conducts the shape completion task. 
First, a coarse-grained decoder denoted as the seed generator predicts a sparse version of the 
complete cloud with 256 points/seeds. This decoder consists of 1D deconvolution (i.e., transposed 
convolution) layers and multi-layer perceptron (MLP) layers to learn the seed generation, which is 
referred to as the point splitting operation in the network. The point splitting operation is essentially 
the 1D deconvolution operation with a large receptive field such that it can capture both existing and 
missing shape characteristics. The generated seeds are then merged with the input partial cloud to fill 
the missing portions. However, the merged cloud has nonuniform point density with fewer points in 
the missing regions. Therefore, FPS is used to re-sample the cloud into a uniform sparse cloud of N0 = 
512 points with the complete shape, denoted as P0. The overall design concept is similar to a seeded 
region growing approach, which first focuses on capturing the high-level shape characteristics with 
sparse representation and then enhancing the shape details as the next step. 

Based on the coarse cloud with complete shape, a fine-grained decoder is designed to predict the 
high-quality complete cloud while preserving the shape features. This decoder uses the snowflake 
point deconvolution (SPD) layers to up-sample the points by splitting each parent point into multiple 
child points, which is achieved by first duplicating the parent points and then adding variations to the 
duplicates. Unlike previous methods that ignore the local shape characteristics around the parent 
point, SPD utilizes a point-wise splitting operation to fully leverage the local geometric information 
around the parent point. The key design in the SPD is the skip transformer (ST). With an up-sampling 
factor of the SPD r, all parent points are first duplicated with r copies. Each point is passed through 
the ST layer to get per-point displacement feature vectors “K.” Then, an MLP layer computes a per-
point coordinate shift, which is added to the original coordinates to get the up-sampled points. 

ST uses the PointNet (Qi et al. 2017a) features as query “Q,” generates the shape context feature “H,” 
and further conducts deconvolution to get the internal displacement features as key “K.” Following 
the general design of a transformer, per-point query and key vectors are concatenated to form the 
value vector, and the attention vector is estimated based on the key and value vectors. Note that the 
attention vector denotes how much attention the old shape characteristics receive during the up-
sampling process. The displacement features “K” are carried between SPD operations, which allows 
the shape context to propagate along the sequential up-sampling process. 

By applying SPD with different up-sampling factors, a sequence of gradually refined point clouds can 
be generated. The up-sampling factors used in the network are r1 = 1, r2 = 4, and r3 = 8. The first SPD 
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with r1 = 1 generates a rearranged point cloud “P1” as the same size of the sparse cloud (N1 = 512) but 
with points slightly rearranged to form a more reasonable shape. The following two SPDs with r2 = 4 
and r3 = 8 predicts the up-sampled cloud “P2” (N2 = 2048) and the final completed cloud “P3” (N3 = 16, 
384), respectively. 

EVALUATION OF 3D SHAPE COMPLETION RESULTS 

Evaluation on Novel Views of Known Shapes 
For the partial shapes in the validation set, the shape completion results of three randomly selected 
inputs are presented in Figure 25. It can be observed that the network can generate high-quality 
results that agree well with the ground-truth shape for those novel views of the shapes known in the 
training dataset. This may indicate the network effectively learns the high-level shape representation 
rather than behaving similarly to a template matching-based approach. 

 

 
Figure 25. Illustration. Intermediate and final shape completion results for shapes in the validation set. 

 

Macroscale metrics that describe the particle shape at the instance level were used for evaluation. 
The metrics include equivalent spherical diameter (ESD), shortest/intermediate/longest dimensions, 
3D FER, surface area, and volume. Comparisons were made between the completed shape and the 
ground-truth shape for each of the metrics, as shown in Figure 26. The comparisons of macroscale 
metrics demonstrate that the completed shapes in the validation set achieve a good match in terms 
of aggregate morphological properties, where the mean average percent error (MAPE) between the 
prediction and the ground truth is less than 2.5% for all metrics. 
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Figure 26. Graph. Comparisons of macroscale metrics between the completed shapes and ground-

truth shapes in the validation set. 

Evaluation on Unseen Aggregate Shapes  
The comparisons above demonstrate the good performance of the network in handling novel views 
of known shapes, but the network’s ability to predict reasonable shapes for a completely unseen 
particle has not been verified. In this regard, the same type of comparison was made for the unseen 
shapes in the test set. First, the shape completion results of three randomly selected inputs from the 
test set are presented in Figure 27. By comparing with the shape completion performance on the 
validation set, two major observations were made between the validation set performance and the 
test set performance. First, the results from the test set show more uncertain prediction toward the 
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missing region of the shape. The test set results demonstrate a more scattered pattern among the 
predicted points that are near the missing region, meanwhile the validation set results generate 
sharper and more confident completion in the missing space. This is a positive sign, showing that 
given a completely unseen shape, the network is trying to predict the missing part in a probabilistic 
manner instead of force-fitting certain shape primitives. 

 
Figure 27. Illustration. Intermediate and final shape completion results for shapes in the test set. 

In terms of macroscale metrics, the network is still able to predict shapes with reasonable matches 
regarding morphological properties, as shown in Figure 28. The MAPE errors of the results are 
consistently higher than the validation set results, which aligns with the fact that these are 
completely unseen shapes. The MAPE errors still lie within 5% but note that the MAPE error describes 
an error average rather than extremes. The maximum percentage error of the morphological 
properties could reach 10% or 20% for certain predictions. Predicting the unseen shape should always 
be a probabilistic approach, so the authors concluded that the network presents satisfactory 
performance in predicting reasonable shapes for unseen aggregates. 
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Figure 28. Graph. Comparisons of macroscale metrics between the completed shapes and ground-

truth shapes in the test set. 

IMPROVEMENT OF MORPHOLOGICAL ANALYSIS RESULTS USING SHAPE PERCENTAGE 
THRESHOLDING 
By further investigating the aggregate shape characteristics in a stockpile, it was observed that the 
particle aggregate shapes usually exhibit very different visibility levels from a stockpile observation. 
For example, particles in a flat-layered stockpile setting tend to have better visibility due to larger 
void space and less occlusion between adjacent aggregates; meanwhile particles are likely to have 
lower visibility in a densely stacked stockpile setting. 
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In this regard, a quantitative method of characterizing the field “visibility” of aggregate shapes was 
developed. The intuition behind this visibility concept comes from the observation that partial and 
complete aggregate shapes demonstrate great differences in their spatial occupation patterns. A 
complete shape is a watertight surface such that a ray originating from the centroid will hit the 
enclosed surface in any arbitrary direction. However, for partial shapes, the rays originating from the 
centroid will either hit (for existing regions) or miss (for missing regions). 

The field visibility of aggregate shapes is calculated using a modified ray-casting scheme similar to the 
one previously described. By calculating the ratios between the number of hit rays and the total 
number of cast rays, a visibility indicator named shape percentage (SP) was developed to quantify the 
partial shape observation, as described below: 

• Step 1: Initializing a directional sphere at the centroid of the aggregate. Note that the centroid 
is approximated as the centroid of the partial shape, which may not be exactly at the centroid 
of the true shape; but is the best prediction based on partial observations. Then, a directional 
sphere with N = 1,000 equally distributed surface vertices is created at the centroid. 

• Step 2: Ray casting for shape surface intersection. For each vertex on the sphere surface, the 
directional vector from the centroid to the vertex coordinates forms a ray direction. The ray-
surface intersection is then conducted to indicate if the current direction contains a valid 
shape surface. If the ray hits the surface, the number of ray hits increments; otherwise, this 
direction represents a missing region. 

• Step 3: Calculating the SP value. After completing ray casting for all N = 1, 000 directional 
vectors, the SP value is calculated as the ratio between the number of ray hits and the total 
number of rays. 

The demonstration of the SP concept is presented in Figure 29. The blue region on the directional 
sphere represents the directions that have ray hits with the partial surface, while the orange region 
illustrates the missing space from the partial observation. 

 
Figure 29. Illustration. Shape percentage concept of a partial shape. 
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Based on the SP indicator, the analysis results can be interpreted from a more effective perspective 
for all segmented shapes in the stockpile. An example analysis on RR3R-S1 stockpile is shown in 
Figure 30. The size of the datapoints is proportional to the SP value of each partial shape after 
segmentation. More intuitively, the SP values (in percentage) are directly labeled on each data point. 

 

 
Figure 30. Graph. Shape percentage (in percentage) analysis of RR3R-S1 stockpile results. 

 

As observed in Figure 30, most of the outliers with high deviation from the ground truth have 
relatively low SP values (e.g., below 70%). As previously discussed, the shape completion process is 
probabilistic and learning based. Therefore, the higher the shape visibility (i.e., the greater the 
portion of a shape that can be observed), the better the reliability and robustness of the shape 
completion results. When interpreting the results for practical use, it is important to screen and 
select the effective data, i.e., reliable results with high confidence level in the analysis. 

Therefore, an SP thresholding process was developed to improve the morphological analyses 
procedure. Based on the segmented particle shapes from the laboratory and field stockpile analysis, 
the most common range of SP values is 60% to 85%. Accordingly, a SP threshold series of {65%, 70%, 
75%, and 80%} was used to investigate the effect of SP thresholding. The morphological analysis 
results for field stockpiles at various SP levels are presented in Figure 31. For field stockpile data with 
only weight metric, the comparison between Figure 31(a) and Figure 31(d) shows the MAPE error 
decreases from 22.2% to around 15% (at SP levels of 75% and 80%). 



47 

 
Figure 31. Graph. Effect of shape percentage thresholding on high-dimensional metric (weight) for 

field stockpile data. 

The MAPE statistics indicate that the SP thresholding process effectively improves the results of the 
reconstruction-segmentation-completion framework in estimating morphological properties. In 
addition to the MAPE error evaluation (which only gives an average error estimate of all the data 
points), error bound analysis was also conducted to better reveal the improvements. As shown in 
Figure 31, ±10% and ±20% error lines were added to indicate the range of deviation with respect to 
ground truth. The SP thresholding process plays a crucial role in screening most of the less reliable 
predictions (i.e., those with low SP and limited partial shape observation) and improving the overall 
confidence level of the morphological analysis. This observation coincides perfectly with the intuition 
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of the shape percentage concept. Namely, when an aggregate shape is observed with limited visibility 
(e.g., SP below 60%), the shape completion result can only represent one of the best-effort guesses 
based on the partial observation. Conversely, as the partial shape approaches toward a relatively 
complete observation (e.g., SP over 75%), the shape completion results may better capture the true 
aggregate shape with increasing confidence. Based on Figure 31, a SP threshold of 75% is 
recommended for volume and weight estimation to ensure that a sufficient number of representative 
data points are kept with improved reliability. 

 
Figure 32. Illustration. Effect of SP thresholding on segmented aggregate shapes in a stockpile (RR4-S6). 



49 

Furthermore, Figure 32 illustrates the effect of the SP thresholding process on the stockpile analysis 
results. As the SP threshold increases, the number of effective aggregates decreases, with the 
remaining shapes at locations of less occupancy and larger open space. Aggregates at these 
protruding positions typically have better visibility with a large portion of the shape accessible from 
multi-view observation. Partial shapes segmented from a stockpile, in either densely stacked or flat-
layered forms, can exhibit different SP values, i.e., visibility levels. Generally, the flat-layered stockpile 
form gives higher SP values or better shape visibility than the densely stacked form. This is because 
the aggregates in a flat-layered form usually have fewer occlusions from the stacking of particles. 
Therefore, when a certain SP threshold is used to screen the segmentation and completion results, 
flat-layered stockpiles are expected to have more effective aggregates (i.e., aggregates with SP 
greater than the threshold) than densely stacked stockpiles, given the same number of total 
aggregates in the stockpile. 

SUMMARY 
This chapter introduced the selected state-of-the-art strategy that is applicable to learning irregular 
aggregate shapes. To generate partial-complete shape pairs for deep learning, the varying-visibility 
and varying-view ray-casting schemes were developed, and an aggregate shape completion dataset 
was prepared. The selected deep learning framework was implemented and trained on the partial-
complete shape pairs to learn the shape completion of aggregates. The shape completion network 
demonstrated good performance on both novel views of the known shapes as well as completely 
unseen shapes. Moreover, a shape percentage prediction threshold was developed toward practical 
interpretation of the morphological analysis results after the instance segmentation and shape 
completion steps. The final analysis results were quantitatively validated against the ground truth. 
Overall, the framework demonstrated robustness and reliability in characterizing morphological 
properties of aggregates in stockpiles.  
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CHAPTER 6: SOFTWARE DEVELOPMENT FOR 3D RIPRAP 
STOCKPILE CHARACTERIZATION 

INTRODUCTION 
This chapter presents the software development procedure and details for the 3D riprap stockpile 
image analysis program developed for IDOT and practitioners in Illinois. The primary outcome of this 
research study is a computer vision software application to conduct size and shape analyses of riprap 
and large-sized aggregates in the field. The deliverables integrated in the software include: (a) a user-
friendly 3D reconstruction module for efficient field data preprocessing to generate calibrated 3D 
point clouds for aggregate stockpiles; (b) an automated segmentation module to extract individual 
aggregates from the stockpile; (c) a shape completion module to generate the complete 3D shape of 
the segmented particles; (d) a morphological analysis module to characterize particle size and shape; 
(e) a user-friendly graphical user interface (GUI) design for data input and output and visualization; 
and (f) a user manual including best practice and guidance for capturing images and demonstrating 
software usage. 

REVIEW OF SOFTWARE ENGINEERING CONCEPTS 
Software development is a complicated process that requires careful planning and execution to 
transform the goals into a software system. Developers must react timely and aggressively to meet 
ever-changing requirements (Rehman and Paul 2003). Maintaining software quality hinders fast-
paced software development, as many testing cycles are necessary to ensure quality products 
(Pusuluri 2006).  

Software Life Cycle 
Software development, in contrast to common thought, is not just “writing code.” The life cycle of 
one software development project comprises many stages, which can be summarized as follows: 1) 
requirement gathering, 2) writing functional specifications, 3) creating architecture and design 
documents, 4) implementation and coding, 5) testing and assurance, 6) software release, and 7) 
documentation. All these stages/activities are necessary for a project to go through to produce a 
high-quality software system (Rehman and Paul 2003).  

Following the predictable path of the software development life cycle, developers first understand 
and evaluate the problem or goal. Next, they identify the requirements of a solution to the problem. 
These requirements are studied in-depth to develop the architecture of the solution that will satisfy 
the requirements. The solution architecture provides the organizational details for designing the 
individual solutions (Eddie 2007). Once the architecture and detailed solution designs have been 
finalized, construction/implementation is the next focus. All work should be carefully tested before 
integration into the software system. Any further modification to the software system will be treated 
as maintenance, which will start a new iteration of the software life cycle (Eddie 2007). 
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Lifecycle Model of Software Development 
A software process is a detailed series of steps during the software development project. To facilitate 
reasoning about software processes following the software life cycle, it is helpful to create specific 
abstract groupings of software processes, which is commonly known as the life cycle model (Feiler et 
al. 1993). 

Because the software development for this project does not require extensive coding, the most-used 
model, code and fix, is selected as the desirable model. The code-and-fix model involves little to no 
overhead and is applicable for small projects and short-lived prototypes. The code-and-fix model 
starts with sufficient requirements and system specification analysis to begin coding. Once the 
software system works, developers rework and add more code to the system until it meets all 
requirements of the project. 

DESIGN AND CONTROL LOGIC OF GRAPHICAL USER INTERFACE 
The stockpile aggregate images captured by the end users need to be processed to yield a 3D point 
cloud representation of the stockpile that accurately replicates the physical stockpile scene. First, the 
collected images of a target riprap stockpile will be fed into the preprocessing module to conduct the 
3D reconstruction step. During this step, the 3D point cloud of the stockpile is generated and cleaned 
after being calibrated to physical scale. The point cloud is then processed through the user-
independent 3D segmentation and completion modules to analyze the complete 3D shape of each 
segmented particle. The output shapes are then used for determining the morphological indices of 
individual aggregate particles, such as principal dimensions, 3D FER, and volume and weight. The 
visual description of different modules is depicted in Figure 33, and the current version of the GUI is 
illustrated in Figure 34. The control logic of the GUI is divided into three modules: 3D reconstruction, 
3D segmentation, and 3D completion. 
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Figure 33. Illustration. Schematic drawing of the graphical user interface control logic. 
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Figure 34. Illustration. Graphical user interface of the software. 

3D Reconstruction Module 
As a critical preprocessing step, the 3D reconstruction module was implemented to convert the input 
2D image sequence (or video frames) to a 3D point cloud.  

Initial-Reconstruction Submodule 
To initiate 3D reconstruction, the user needs to click the “3D Reconstruction” button located at the 
control pane list (positioned at the upper right corner of the main window). To provide better user 
experience and separate different functions, a pop-up window will be prompted. After setting the 
required configuration, a preliminary version of the 3D point cloud will be computed as the output of 
this submodule. 

Calibration Submodule 
A major piece of missing information from the 2D image sequence (or video frame) is the scale factor 
of the point cloud. To obtain the physical scale, the user needs to manually annotate/label the 
location of the calibration objects on a subset of images and provide the corresponding measured 
distances between the calibration objects. During the labeling stage, after adding two images with 
the calibration objects, the software will compute the projected 3D location of them and back-project 
to other unlabeled images, which is termed “prediction.” The user can choose to show/hide the 
predictions to assess the accuracy of the calibration step. By labeling more images with the 
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calibration objects, the accuracy of the prediction increases. To achieve a relatively high accuracy, the 
authors recommend labeling three to five images from different viewing angles, at minimum. After 
checking the accuracy of the labeling, the software will compute the physical scaling and calibrate the 
raw point cloud. 

Ground-removal Submodule 
To clean up the non-stockpile points in the 3D point cloud, which are mainly the ground plane and 
the calibration objects, the user needs to manually remove those points. This step is necessary and 
important for a precise analysis due to the sensitivity of the module toward noise and outliers. In 
addition, due to the complicated and unpredictable field conditions, the surroundings of the target 
riprap stockpile may be noisy and random. This randomness necessitates that this step is designed to 
be manual instead of automated, so that the end user can ensure the right ground and background 
are being removed. 

After completing the steps above, the output of the 3D reconstruction module is an accurate, clean, 
and calibrated 3D point cloud reconstructed from the input image sequence (or video frames).  

3D Segmentation Module 
After preprocessing the input images and specifying the output folder, the user can run the 
segmentation module with one click, and all results will be displayed in an interactive window 
presenting visual results at each step during 3D instance segmentation, as shown in Figure 35, where 
the calibrated 3D point cloud is the left image, the shifted coordinates of the point cloud are shown in 
the center image, and the segmented particles with bounding boxes are shown with different colors 
on the right image. A discussion of the algorithmic details was presented in Chapter 4. 

 
Figure 35. Illustration. Example of 3D segmentation result window. 

3D Completion Module 
After running the segmentation module, the user can run the 3D completion module in one click. 
Each individual segmented particle will be analyzed to predict the unseen portion and obtain the full 
shape. A detailed discussion on the algorithmic details was presented in Chapter 5. The SP 
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thresholding process will be applied at this step to filter out the highly occluded shapes, and the 
completed 3D model for each particle will be saved as the output data. 

After the completion step, the software will automatically compute the morphological indices of the 
stockpile, such as ESD, principal dimensions, 3D FER, and volume and weight. A summary spreadsheet 
of the morphological analysis results will be saved in the output folder. 

SUMMARY 
This chapter summarized the software development effort toward a practical, user-independent, and 
user-friendly 3D riprap analysis software by integrating the proposed reconstruction-segmentation-
completion approach. A software application was developed as the aggregate stockpile evaluation 
tool for size and shape analyses. The research team reviewed and followed professional software 
engineering guidelines during the developmental stages. 3D riprap stockpile analysis algorithms were 
programmed and integrated into a standalone software application with a simple user interface and 
interactive windows. The design of the GUI and control logic was intended to provide a fluent 
workflow for use by practitioners, including convenient file input/output (I/O), synchronous results 
display and switching, and user interaction. A user manual is also provided for software usage and 
technical support. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

INTRODUCTION 
The main benefit of this project includes the ability to conduct riprap and large-sized aggregate size 
and shape property testing in the field, at a quarry or construction site, with improved accuracy in 
determining the size and shape properties from imaging without having to weigh rocks. This is a 
pressing need because engineers and inspectors at quarries and government agencies have been 
spending considerable time and effort in riprap sizing at job sites.  

Implementation of the advanced machine vision system developed in this project helps to accurately 
determine if a riprap material meets gradation and 3D-volume-based weight specifications. The 
proposed approach is sustainable for field applications by utilizing state-of-the-art machine vision and 
stockpile segmentation and shape completion techniques. At the end, better property 
characterization and optimized material selection can be achieved to improve designs through 
effective quality control, reduced costs, and energy consumption. Major cost savings in terms of 
personnel time, transportation, laboratory equipment, and facility use can be realized. 

SUMMARY OF FINDINGS 
Based on the 3D aggregate stockpile research study, the following findings can be summarized: 

• A marker-based 3D reconstruction approach was developed as a cost-effective and flexible 
procedure to allow full 3D reconstruction of individual aggregates and aggregate stockpiles. A 
3D aggregate particle library of 46 RR3 and 36 RR4 aggregate samples collected from field 
studies was established using this approach. The approach was further extended to field 
applications of reconstructing aggregate stockpiles, with an additional scale reference 
procedure to provide real physical scale of the reconstructed scene. 

• A state-of-the-art 3D instance segmentation network was implemented, trained, and tested. 
The 3D instance segmentation network achieved an average completeness of 78% and an 
average intersection over union (IoU) precision of 82%, with a standard deviation of 6.3% and 
4.8%, respectively. The segmentation network effectively learns the per-point offset vector to 
shift the original point cloud into an optimized clustered coordinate space, from which the 
instance proposals are generated.  

• A state-of-the-art 3D shape completion network was implemented, trained, and tested. A 
dataset of partial-complete shape pairs was generated from the particle library based on 
varying-visibility and varying-view ray-casting schemes, at 7 visibility levels and 16 model 
orientations for each of the 82 models in the particle library. The completion network 
effectively learns the global and local shape context of the partial input point cloud and 
predicts the missing regions with fine-grained details.  
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• Based on the development of neural networks, an integrated 3D reconstruction-
segmentation-completion approach was developed. The robustness and reliability of the 
approach were validated against re-engineered stockpiles and field stockpiles. Further, a 
shape percentage (SP) thresholding study was conducted to quantitatively characterize the 
partial observation process and improve the quality of morphological analysis. 

• A practical, user-independent, and user-friendly 3D riprap analysis software was developed by 
integrating the established reconstruction-segmentation-completion approach. The software 
program is envisioned as a convenient tool that provides a fluent workflow for 3D aggregate 
stockpile analysis in industry and research applications. 

RECOMMENDATIONS FOR FUTURE RESEARCH 
Due to the data-driven nature of the deep learning networks in this framework, the performance is 
expected to gain progressive and scalable improvement with increased dataset size. The potential 
directions of improvements include:  

• Extending the 3D particle library by collecting more aggregates from different origins and size 
groups (e.g., ballast, gravel, etc.). The size and quality of the 3D particle library will directly 
reflect on the quality of the stockpile dataset and the partial-complete shape dataset. 

• Exploring and improving the 3D instance segmentation and 3D shape completion networks. By 
utilizing cutting-edge advancements in the computer vision research domain, the robustness 
and accuracy of the networks in the context of aggregate studies are expected to improve 
with innovative network designs. 

Furthermore, during field visits and collaboration with aggregate producers, the researchers 
discovered great research potential for integrating the developed approach with intelligent sensing 
technologies. The current approach adopts the traditional SfM techniques for obtaining the 3D point 
clouds of aggregate stockpiles. Note that the three major components of the approach are 
standalone. Namely, as long as the input to the 3D segmentation and shape completion networks 
follows the point cloud format, the approach does not need to be bonded to certain 3D 
reconstruction methods or devices. With the rapid development in 3D visualization and augmented 
reality, it is expected that more advanced technologies for 3D sensing will be readily available in the 
future. For example, potential methods for the 3D reconstruction step can be further developed as 
follows: (i) LiDAR devices that directly capture the point cloud and (ii) dense simultaneous localization 
and mapping (SLAM) techniques that leverage RGB-D sensors and optical flow methods. 

On the other hand, the data acquisition devices are not limited to handheld sensors. For example, to 
embed the developed approach into the aggregate production line, it is best to attach sensors to the 
conveyor system, which allows better statistical coverage of most aggregates before they are added 
to the stockpiles. Further, intelligent methods of acquiring stockpile aggregate images can be 
integrated with advanced aerial photography techniques. For example, unmanned aerial vehicles can 
greatly help with the image acquisition step for multi-spot or all-around inspection of a large 
stockpile, especially when intelligent route planning techniques are used. By dividing the large 
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stockpile into chunks, the entire stockpile can be analyzed by using the developed approach 
incrementally. 

Also note the great potential of using unmanned aerial vehicles for calibration-free reconstruction. 
Commercial or industry level unmanned aerial vehicles usually have an open-source Software 
Developer ToolKit that records the internal inertial measurement unit data. With such flight route 
data integrated into the 3D reconstruction step, it is very likely to achieve a calibration-free 
reconstruction of aggregate stockpiles for segmentation as well as size and shape analyses of 
individual aggregate particles.  
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