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1. Introduction 

According to “Beyond Traffic 2045”, the US population is expected to increase by 

about 70 million in 30 years, from 320 million in 2015 to 390 million by 2045. The US 

economy GDP is forecasted to grow by 115% to $36.7 trillion during the same period. 

America 2050 has identified 11 megaregions in the US, shown in Figure 1. About 75 

percent of US population and employment are located in these megaregions, which are 

defined as a network of metropolitan centers and their surrounding areas that are 

spatially and functionally linked through environmental, economic, and infrastructure 

interactions (Rose 2009). This definition regards metros not only as the ‘space of 

places’ but the ‘space of flows’ such as transportation, information, and business 

networks (Lang and Dhavale, 2005). In planning practice, the megaregions are usually 

identified as adjacent urban areas clustered together based on their socio-economic 

relationships, common interests, and connections through transportation and 

communication channels. These megaregions are projected to absorb most of the 

growing population, which means they are expected to meet the increasing demands 

for jobs, goods, and public services. They are expected to face more significant 

pressures on infrastructure adequacy suggesting they will need substantial 

improvements to bring their infrastructure up to acceptable levels of service (Amekudzi 

et al. 2007).   

 

 
Figure 1. Megaregions in the US identified by America 2050  

(Source: http://www.america2050.org/content/megaregions.html)  

 

http://www.america2050.org/content/megaregions.html
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With rapid growth of population, employment, domestic and international trade, 

demands for freight transport has grown as well. Transportation planning has been 

facing the challenges of moving goods in an efficient way, reducing the various 

nuisances associated with freight transport, and facilitating the improvement of freight 

mobility. Truck mobility has become one of the major concerns of transportation 

planners because trucks are the dominant mode of freight transportation and also one 

of the major contributors to congestion and emissions on highways. To facilitate 

efficient freight transport, improved competence of the regions, and ensure the success 

of the megaregional economy, it is necessary to gain a better understanding of the 

patterns of truck movement in megaregions. It is hard for decision makers to gain a 

comprehensive overview of megaregion truck movement due to the lack of sufficient 

data and appropriate approaches. Many existing studies and analytical models for truck 

transportation are available at federal, state, and metropolitan levels. Few, if any, have 

examined truck transportation at the megaregion level. 

 

Federal and state transportation departments have prepared their transportation 

improvement plans and developed freight analysis models. Bureau of Transportation 

Statistics (BTS) and Federal Highway Administration (FHWA) worked together to 

produce the Freight Analysis Framework (FAF) by integrating data from a variety of 

sources to estimate commodity flows and related freight transportation activities among 

states, major metropolitan areas, and major international gateways by all major modes 

of transportation. The average daily truck flows on the national highway system 

estimated by FAF is shown in Figure 2.  

 

Many states also have their analytical models or transportation management systems 

for passenger and freight movement. Texas Department of Transportation (TxDOT), 

for instance, has developed and maintained the Texas Statewide Analysis Model 

(SAM) as a multi-modal model with statewide coverage and freight components 

developed using TransCAD. In addition to the development of freight analysis models 

at state level, TxDOT also supported a number of freight studies within the state 

boundary.  Michael Walton and his colleagues analyzed relevant freight data and 

started engaging Texas shippers and freight stakeholders in a dialogue to provide 

insights into how freight moves on the Texas transportation infrastructure (Prozzi et al. 

2011).  Harrison et al. (2006) implemented freight performance measures (FPMs) to 

evaluate the accomplishment of goals and objectives of freight highway corridors in 

Texas. 
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Figure 2. Average Daily Long-Haul Truck Traffic on the National Highway System: 2012 

Source: U.S. Department of Transportation, Bureau of Transportation Statistics and Federal 

Highway Administration, Freight Analysis Framework, Version 4.3.1, 2016 (BTS 2018).  

 

There are also freight analysis models developed in other U.S. states. The California 

Department of Transportation (Caltrans) has released multiple versions of its 

Intermodal Transportation Management System (ITMS) since 1996. As a GIS software 

package, ITMS was designed to bring together information about personal and freight 

transportation traffic flows into a consistent database and provide a quick response 

statewide transportation analysis tool for planning and policy studies on both person 

travel and freight movement. ITMS estimated freight movement by different modes 

based on data from a variety of sources (Caltrans 1996). The ITMS traffic analysis 

zones are based on existing zip code areas. As a major metropolitan area in California, 

the Los Angeles area was covered by ITMS and disaggregated freight data for the 

region were partially available from ITMS (Pan 2006). 

 

In addition to the state transportation agencies in Texas and California, the Florida 

Department of Transportation (FDOT) developed the Florida Intermodal Statewide 

Highway Freight Model (FISHFM) to support the project-related work of FDOT and 

Florida’s metropolitan planning organizations (MPOs). The goal of the model was to 

identify the needs and deficiencies that can be easily identified at the local level and 

may affect efficient freight transportation, and also to test solutions on those major 
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freight corridors throughout the state, that have suffered from considerable congestion 

as they pass through metropolitan areas.  

 

There are also several other statewide studies described in the National Cooperative 

Highway Research Program (NCHRP) report prepared by Cambridge Systematics 

(2008), such as the Minnesota Trunk Highway 10 Truck Trip Forecasting Model, Ohio 

Interim Freight Model, New Jersey Statewide Model Truck Trip Table Update Project, 

Indiana Commodity Transport Model, and Oregon Statewide Passenger and Freight 

Forecasting Model. Few of these state-level freight models have explicitly addressed 

issues about freight movement in megaregions.  

 

At the metropolitan levels, the core functions of metropolitan planning organizations 

(MPOs) include the development of a transportation improvement plan (TIP) and the 

maintenance of a regional transportation plan (RTP). However, most state 

transportation agencies and MPOs have failed to encourage greater cooperation among 

individual MPOs (Seedah and Harrison, 2011). They lack analytical methods to 

estimate travel demands and measure the performance of transportation infrastructure 

on moving people and goods at the megaregion level. Zhang et al. (2007) argued that a 

megaregion approach can provide provocative and imaginative answers to growing 

problems of congestion, development disparity, and air pollution facing individual 

metropolitan areas or cities but are unlikely to be solved by each region individually.  

A megaregion transportation plan should integrate individual metropolitan 

transportation plans with consideration of inter-metropolitan people and goods 

movements within the megaregion. 

 

Besides the development of freight analysis models at state or MPO levels, some state 

and local transportation departments have also sponsored freight movement studies of 

megaregions. Harrison et al. (2012) examined freight issues in the megaregions of 

Texas and tried to answer the question whether statewide freight planning can be 

enhanced through a megaregional approach. They progressed by conducting interviews 

and workshops with stakeholders from a variety of public and private sector entities. 

These freight research projects mainly focused on freight data and policy analysis.  

 

There are few studies that explore the temporal patterns of truck flows, especially the 

night time truck traffic patterns. The Defense Meteorological Satellite Program 

(DMSP) / Operational Linescan System (OLS) data have been used to obtain nighttime 

lights generated by urban infrastructures. However, most of the relevant studies focus 

on measuring socioeconomic development, using remote sensing data as a proxy for 

the intensity of human activity, such as geographic extents, population density, and 

energy consumption. Even fewer, if any, examine the characteristics of night time truck 

flows. 
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To fill gaps in the existing literature and gain a better understating of the patterns of 

megaregion truck flows to facilitate the improvement of freight mobility, this research 

will develop an analytical model for estimating spatial and temporal patterns of truck 

flows in megaregions based on the available datasets. Texas Triangle is selected as an 

empirical case to demonstrate the implementation of the megaregion truck flow model. 

2. Previous Studies  

In the available literature, most studies of megaregions are still limited to pure 

academic interest. Dewar and Epstein (2007) analyzed the state of megaregion planning 

in the United States through the work of America 2050. They explained the public data 

available for the analysis of commute flows and truck flows. But their discussions are 

conceptual and descriptive, involving no quantitative methods for freight transportation 

analysis.  

 

As Harrison et al. (2012) pointed out, applied research on megaregional freight 

planning is still at an early stage. For example, as one of the most discussed US 

megaregions, Texas Triangle includes these large metropolitan areas as the major 

bottlenecks for truck movement in Texas. The study by Harrison et al. (2012) has 

explored how the freight planning structure can be strengthened by adding a 

megaregional component. However, there is as yet no analytical model developed to 

estimate both the intra- and inter-metropolitan truck flows within the megaregion. It 

also lacks discussions on the temporal patterns of the truck flows. The study of 

megaregions is still limited to academic research.  

 

Historical and economic census data were employed by Zhang et al. (2007) to discuss 

the complementarities and interconnectedness of the metros within the Texas Triangle. 

They reviewed the historical development and examined the economic structure of the 

triangle cities. They took both a normative view and heuristic modeling to understand 

the nature of future transportation demands in the Triangle region. They projected 

mobility change, mode shares, and total travel by mode for the Texas Triangle for 2020 

and 2050. But their study did not project goods movement.   

 

Seedah and Harrison (2011) explored the strategies for maintaining efficient future 

freight movement and to find multimodal solutions to moving freight to, between, and 

within the metropolitan economies of the megaregion. By selecting the Texas Triangle 

as a case study, they reviewed population growth, economic profile, and freight patterns 

of the Triangle and discussed megaregional planning strategies. Freight patterns were 

examined using the datasets from Freight Analysis Framework (FAF), version 3.1. But 

it was difficult to obtain the details of freight movement within individual metropolitan 

areas from the FAF data and connect freight demands to economic activities at the sub-

metropolitan level. 
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As a part of the effort to develop a regional freight transportation model, a freight O-D 

matrix, mainly truck O-Ds, was constructed by Gordon and Pan (2001) and Pan (2006) 

via a low-cost approach, using secondary data sources. As an advance of these regional 

freight studies, Giuliano et al. (2007) extracted freight data automatically from online 

sources, which further reduced the cost of modeling freight movement. Cho et al. 

(2015) integrated a multiregional input–output (I–O) model with the US national 

highway network to simulate the economic impacts and changes in transportation 

system performance in the disruptions of highway infrastructure failures. The freight 

data and highway network from freight analysis framework (FAF) 2002 are employed 

in this study. It extended regional freight transportation models discussed in Pan (2006) 

and Giuliano et al. (2007) to analyze interregional and interstate freight flows. 

However, megaregion freight transportation was not discussed in this study. 

 

Most of the existing freight studies model truck traffic at peak hours or day time. 

Existing research shows that it is possible to model truck flows at night using nighttime 

light data collected from remote sensing datasets. Dobson et al (2000) employed 

DMSP/OLS images to develop population database at global scale. In their study, not 

only DMSP/OLS images but also geospatial data, land cover and topology information, 

were used in the model. For greater accuracy, they proposed a potential research to 

explain the differences between daytime population pattern and nighttime one.  

 

Doll et al (2000) parameterized the association between socioeconomic patterns and 

CO2 emission using nighttime lights.  It highlighted that DMSP/OLS images provided 

a significant advantage with the information relating the size and location of each urban 

district over a large area. Its uniqueness makes it possible to easily transform  

socioeconomic status to spatial information using pixel values.   

 

DMSP/OLS images can also be utilized to understand electric energy consumption. He 

et al (2013) demonstrated that nighttime lights are practical resource to measure energy 

consumption. Nighttime light images have been used to explore damage levels driven 

by natural disasters (Kohiyama et al, 2004).  Its estimation is based on measuring the 

reduction of urban lights by comparing their values before and after a disaster event.  It 

implied the potential applications of estimating the impacts of disasters on human 

activities as an indirect effect.   

 

Visible Infrared Imaging Radiometer Suite (VIIRS) images can overcome some 

weakness of DMSP/OLS data generated by the spatial resolution. As of now, the 

applications of VIIRS are not as much as DMSP/OLS because they are a relatively new 

source that brings some unexpected technical challenges. Nevertheless, the VIIRS data 

has started to be utilized in recent studies. Ma et al. (2014) estimated the magnitude of 

socioeconomic activity using VIIRS images.  They found that nighttime lights induced 
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significant positive associations with airport performance, population, gross domestic 

product, electronic energy consumption, and surface road traffic. A higher spatial 

resolution of images with nighttime light data makes it possible to extract built-up areas 

at global scale.  Sharma et al (2016) estimated urban impervious coverage by 

integrating VIIRS images to MODIS data.  Shi et al. (2015) parameterized freight 

traffic in China. They conducted statistical analysis using the amount of total freight 

traffics within each province.  Their study highlighted the potential applications of 

VIIRS to explore transportation infrastructures and regional economic status.  

 

To gain a better understating of megaregional truck flows and also facilitate the 

improvement of freight mobility, transportation planners and scholars call for a 

megaregion approach with an analytical framework for estimating spatial and temporal 

patterns of truck flows in megaregions on the base of available datasets. 

3. Methodology 

This research addresses issues of megaregion truck flows and develops an analytical 

framework for estimating truck flows at a megaregion level. Many existing freight 

studies have employed aggregate-level methods that are implemented as spreadsheet-

based models. These have not taken into account the special characteristics of 

megaregions as networked metropolitan areas nor fully grasped the impacts of 

individual freight facilities like seaports, airports, airports, and rail yards on truck 

flows. They also maintain the unrealistic assumption that the attraction of freight 

movement to a zone is simply a function of the land use type within the zone and 

strength of relationship between zones. This does not consider the spatial location of 

the zones and the accessibility effects of other zones. They also ignored the temporal 

patterns of truck flows. These shortcomings have limited the effectiveness of freight 

models in policy analysis. All of these problems in freight studies call for an operational 

model designed for truck flow estimation in megaregions that can be developed at low 

costs. We have developed methods to examine spatial and temporal patterns of 

megaregion truck flows. 

 

3.1 Estimate megaregion truck flows and examine their spatial patterns  

 

To examine freight movement via a low-cost approach, Gordon and Pan (2001) and 

Pan (2006) constructed a freight O-D matrix, mainly truck O-Ds, using secondary data 

sources. Giuliano et al. (2007) further reduced the cost of modeling freight movement 

by acquiring freight data automatically from online sources. Their freight models can 

be extended for freight analysis at the megaregion level. 

 

Similar to the freight models developed by Pan (2006), the analytical framework for 

megaregion truck flow estimation separates truck flows in a megaregion to the various 
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inter-metropolitan and intra-metropolitan parts. The intra-metropolitan component 

refers to the truck movements within an individual metropolitan area of the megaregion 

while the inter-metropolitan part refers to the truck movement between the adjacent 

metropolitan areas of the megaregion.   

 

This model is an integration inter-metropolitan goods movements by truck in Federal 

Highway Administration (FHWA)’s Freight Analysis Framework (FAF) database and 

the intra-metropolitan freight flows for metropolitan area highway networks. The 

commodity value and tonnage data are obtained from the FAF and other publicly 

available sources. FAF data are based mainly on the CFS and other components of the 

Economic Census. The original version of FAF provides estimates for 1998 and 

forecasts for 2010 and 2020 while the new version of FAF, i.e. the FAF version 4 

(FAF4), includes the regional and state database of 2012-2015 and the forecasts 

through 2045 in 5-year intervals. The commodity origin-destination (O-D) database in 

the FAF estimates tonnage and value of goods shipped by type of commodity and mode 

of transportation among and within 132 predefined areas used in the 2012 CFS, as well 

as to and from eight international trading regions (Hwang et al. 2016). These predefined 

areas are called economic centroids. The FAF also provides highway link and trucking 

data in GIS format, as well as the models to disaggregate interregional flows from the 

Commodity O-D Database into flows among individual counties, which allows to 

estimate county-to-county O-D flows and loads the flows onto regional highway 

networks. 

 

Because there is only one centroid typically defined even for a very large metropolitan 

area, the FAF’s truck origin-destination (O-D) flows do not provide enough details 

about truck freight movements within a megaregion. In this research, the centroids in 

the FAF’s zonal system will be redesigned by adding more detailed zonal system plus 

multiple freight external points such as seaports, airports, rail yards and highway entry-

exit points in large metropolitan areas. Data for the freight external points can be 

manually added or obtained from local MPOs and public agencies that manage 

seaports, airports, rail yards, and highway weight stations. These freight external points 

are called network centroids.  

 

To estimate detailed truck flows within metropolitan areas, the small number of 

economic centroids representing the FAF4 predefined areas with associated origin-

destination (O-D) can be disaggregated to network centroids that are added to represent 

freight zonal system and external points. By following the procedures described by Pan 

(2006), attractions and productions of commodities are calculated for each network 

centroids. The analytical methods similar to those proposed by Pan (2006) can be 

adopted to estimate commodity flows and convert them to O-Ds for intra-metropolitan 

truck flows.  
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When the data for both intra-metropolitan and inter-metropolitan truck flows are ready, 

a user equilibrium (UE) freight model will be developed to estimate the truck freight 

values on each link of the roadway network. The truck freight values by link calculated 

via the analytical method proposed in this research can support the evaluation of freight 

mobility and facilitate the decision-making process of policy makers for megaregion 

freight transportation.  

 

The equilibrium-based model employed to load freight flows by considering the 

network overloading condition is described as follows, 

 

Min 
a

x

a

a

dxxC
0

)(  (2.1) 

subject to 
o d p

od

p

od

paa hx ,  a  (2.2) 

od

p

od

p Th   do,  (2.3) 

0od

ph  dop ,,  (2.4) 

where ax  is the total flow on link a. 

)(tC a is the cost-flow function to calculate average travel cost on link a. 

od

pa, is link-path incidence variable; equal to one if link a belongs to path p 

connecting OD pair o and d, 

od

ph  is flow on path p connecting OD pair o and d, 

odT  is total trips between origin node o and destination node d, 

p is a network path, o and d are two end nodes on the network. 

This equilibrium-based freight model is usually computed using an iterative scheme, 

which repeats to load O-D truck trips onto network using link travel times that are 

continuously updated in response to loaded flows on network links and stops until the 

criterion of network condition is satisfied. The minimization of travel costs requires the 

solution of all feasible values to be generated at each step of iteration. When the results 

become convergent, the total travel costs of the network are minimized. The process is 

summarized as follows,  
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Step 0: Initialization. Perform all-or-nothing approach for assigning freight trips 

simultaneously using free flow travel costs )0(aa CC  , for each link a on 

the empty network. Link flows ax are obtained. 

Step 1: Update link travel times. The travel time on link a  is updated as 

)( aaa xCC  . 

Step 2: Find a feasible descent direction. Use the updated travel time { aC } for 

an all-or-nothing assignment for freight trips, which yields a set of 

auxiliary link flows { au } combining both freight trips in PCEs.  

Step 3: Find optimal parameter. A linear approximation algorithm (LPA) such 

as the Golden section or Bisection method described in Sheffi (1985) is 

applied to obtain optimal parameter  satisfying the following equation: 

Min  


a

xux

a

aaa

dxxC

)(

0

)(



 

Step 4: Update link flows. Link flows ax  is changed to be )( aaa xux   

Step 5: Test Convergence. The process stops when a convergence criterion is 

satisfied and link flows are the optimal link flows at equilibrium condition. 

Otherwise, go back to Step 1 and continue the process. 

This approach has been utilized to model the integrated passenger and freight flows in 

a congested highway network system under a user equilibrium condition by Pan (2006). 

It can be employed to load truck flows to megaregion highway networks in a congestion 

situation.  
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3.2 Examine the nighttime truck flows in a megaregion using remote sensing data 

 

Nighttime lights observed via remotely sensed data are used to extract diverse surface 

characteristics of urban activities.  In our study, both DMSP/OLS and VIIRS 

instruments have been used to obtain nighttime images for diverse applications.  

Previous research demonstrated their applications in interdisciplinary research topics, 

such as urban population, socio-economic activity, energy consumption, urban 

expansion, natural disaster damage, and forest fires (Dobson, et al., 2000; Doll, et al., 

2000; Fuller & Fulk, 2000; Kohiyama, et al., 2004; Sutton & Costanza, 2002; He, et 

al., 2013).  While most of these studies employed DMSP/OLS in different ways and in 

different topics, the spatial resolution of the DMSP/OLS is 30 arc second, about 1 km 

in equator, which limits their applications at a large geographical scale (Li & Zhou, 

2017).  To obtain more specific information from nighttime images, VIIRS data have 

been used. It contributes to the understanding the relationships between urban density 

and the amount of truck mobility at a fine scale.  The unit cell of VIIRS images is 15 

arc second or 0.5 km in equator, which is approximate 2 times smaller than the images 

produced by DMSP/OLS (Elvidge, C., et al., 2017).   Figure 3 shows the areas covering 

the Texas Triangle on DMSP/OLS and VIIRS images.  The image by DMSP/OLS is 

composed of 1,009,785 cells. As for VIIRS data, the total number of cells is 2,020,648 

and each cell represents a spatial unit. 

 

 

           

          (a) DMSP/OLS image                                       (b) VIIRS image 

Figure 3. Texas Triangle imagery 

 

Spatial regression models are used to explain the relationship between Average Annual 

Daily Truck Traffic (AADTT) and VIIRS information with NLCD.  First, it employs a 

spatial lag (SAR) model as follows, 

 

AADTT = α + ρWAADTT + Xβ + ε     (2.5) 
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where W is the normalized spatial weight matrix, where the element wij is non-

zero if cells i and j are neighbors and their values are zero otherwise, 

WAADTT represents the average value of the neighboring observations of 

AADTT, 

X is an independent variable, 

β is the coefficients of the independent variables X, 

ρ is the spatial lag coefficient, a measure of the strength of the SA, 

α is constant coefficient and ε is the error term.  

Second, it employs an SEM model as follows, 

  

AADTT = α  +  Xβ  + ε        (2.6) 

ε = λWε + u         (2.7) 

 

where λ is the lag coefficient of the error term ε,  

u is an error term with a normal distribution, 

α, X, and β are the same as those in Equation (2.5). 

For more information, see LeSage and Pace (2009). 

4. Analysis 

Our analysis employs Texas Triangle as an empirical case study to demonstrate the 

implementation of the megaregion truck flow model. Texas Triangle is one of the most 

discussed US megaregions. Its total population was 19.7 million in 2010, which was 

projected to reach 24.8 million by 2025 and 38.1 million by 2050 (RPA 2017). 

 

The Freight Analysis Framework (FAF) 2012 provides link and node geographic 

reference data for the highway network. The commodity data are also obtained from 

the FAF dataset. The most recent version of FAF, i.e. the FAF version 4 (FAF4), has 

defined 132 domestic regions, which are called economic centroids in this study. There 

are nine domestic regions or economic centroids located within the state of Texas, 

including Austin, San Antonio, Dallas-Fort Worth, Houston, Laredo, Beaumont, 

Corpus Christi, El Paso, and the rest of Texas. Four of them, i.e. Austin, San Antonio, 

Dallas-Fort Worth, and Houston, represent the large metropolitan areas that form Texas 

Triangle, a megaregion completely located within Texas.  
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4.1. Truck flow estimation for Texas Triangle 

 

This study has identified 38 border entry points for trucks moving in and out of Texas, 

which separate the state from the rest of the country. It also categorizes these border 

entry points as major entries or minor entries according to their truck volumes obtained 

from the FAF4 datasets, which reports the long-distance truck volume estimated based 

on the FAF 4 Origin-Destination truck tonnage. Empty trucks are included in the 

datasets.  

 

The number of predefined domestic regions or economic centroids are too small to 

estimate the detailed patterns of truck flows in a megaregion. It has also been 

considered unrealistic to load trucks onto highway network through a single network 

node connecting to the economic centroid of a domestic region. It is possible to add 

multiple network nodes at the highway interchanges to connect a regional centroid to 

the highway network based on econometric and spatial analysis.  The network nodes 

or so-called network centroids in this study are selected as freight external points such 

as seaports, airports, rail yards, and highway intersections to fine-tune the truck 

movements in a megaregion, especially for truck flows within a metropolitan area. This 

study has selected 579 network centroids manually by identifying the truck 

infrastructures in Texas Triangle and the rest of Texas. By adding two centroid 

connectors to each network centroid and incorporating those centroid connectors to the 

network links based on the FAF 2012 data set, the total number of network links is 

80,260 in Texas (Figure 4).  
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Figure 4. Economic Centroids, Network Centroids, and Border Entries of Truck 

Movement 

 

In this empirical study, the 80,260 highway network links in Texas are reorganized in 

the forward star data structure that represents a network as a list of links and a list of 

node pointers and stores the node adjacency of each node as a single array. In addition 

to from-node, to-node, and length, the network link attributes also include capacity and 

speed data. The link capacity is obtained from FAF 2012 data set, which estimates 

capacity using the methodology in Highway Capacity Manual (HCM). The link speed 

is estimated based on the link classification. 

 

The user-equilibrium based model with capacity constraints and the iterative processes 

described in the methodology section are applied to estimate freight flows in the state 

of Texas, especially in Texas Triangle. The model has run multiple iterations in the 

freight trip assignment step to reach convergence. The freight tonnage in FAF 2012 

OD database is converted to passenger car equivalent (PCE) value based on the ton-

per-PCE ratio estimated by Giuliano et al. (2007). The baseline link volumes in PCE 

per hour estimated by the user equilibrium assignment with link capacity constraints 

are shown in Figure 5.  
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Figure 5. Truck Flows in Texas Triangle 

 

Figure 5 clearly illustrates the strong connections between the four metropolitan areas 

within Texas Triangle through truck flows. It also shows the truck flows in detail within 

the megaregion, especially within the major metropolitan areas of the megaregion. It 

shows that some major metropolitan areas in Texas outside of Texas Triangle, such as 

El Paso, Laredo, Corpus Christi, and Beaumont, have strong connections with the 

major metropolitan areas in Texas Triangle through major highways. For instance, El 

Paso and Dallas have high volume of truck flows through Interstate Highway 20 while 

El Paso and San Antonio have high volume of truck flows via Interstate Highway 10.  

 

4.2. Night time truck traffic analysis for Texas Triangle  

 

The DMSP/OLS image is used to conduct statistical analysis over all four major cities 

in Texas Triangle. Although data and analytical methods are acceptable, it has a 

weakness in terms of spatial accuracy due to the spatial resolution of the DMSP/OLS 

data.  Thus, the VIIRS image is applied to improve the image quality.  Using the VIIRS 

images, we explore the relationship between nighttime lights and the freight volume 

for each city in 500m spatial resolution, instead of the entire area covering Texas 

Triangle. This procedure is problematic due to the issues of computer memory 
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allocation. For example, computation of (I-ρW)-1 is required to estimate SAR 

parameters.  But the size of their spatial weight matrix, W, is 2,020,648×2,020,648, 

which generates memory problems during the computing process. To avoid this 

computing problem, we estimated statistical parameters over each city. Figure 6 

represents nighttime lights seen from over each city. This study superimposes freight 

volumes, land use types, and road length on each image cell. Data overlaid on uniform 

grids makes it possible to combine these varying input datasets, and to create a unique 

database, which provides the inputs to statistical models.  

 

       
      (a) Austin                   (b) Dallas                (c) Houston              (d) San Antonio 

 

Figure 6. Nighttime lights over each city 

 

National Land Cover Data (NLCD) and the length of traffic network are utilized to 

enhance the model performance for each city.  First, NLCD measures urban land use 

patterns to overcome a fundamental limitation of VIIRS images regarding land use 

metrics.   Although it is usually classified into 16 land cover classes with a spatial 

resolution of 30 meters by 30 meters, Texas contains only 10 classifications.  Second, 

realistic transportation networks offer road paths that accommodate truck flows.  

Particularly the Freight Analysis Framework (FAF) 4 network was employed to 

estimate the total length of truck flows within a given cell equal to the spatial resolution 

of VIIRS image.  Third, FAF4 truck flow data has been integrated into FAF4 network 

to get estimated truck volume in 2012 (AADTT) and travel speed as a proxy for freight 

mobility.  Given the spatial unit, all the information is aggregated into the cells in the 

VIIRS image.  This process makes it possible to combine various input datasets into a 

unique database for statistical analysis.   

 

The relationship between the nighttime lights obtained from DMSP/OLS datasets and 

the freight volumes provided by FAF4 is estimated using spatial lag model (SAR) and 

spatial error model (SEM). The results of statistical analysis are summarized in Table 

1.  The spatial lag (ρ) and spatial error (λ) terms are positive and statistically significant 

at the 99% level. The ρ value points to similar neighborhood interactions in terms of 

the amount of freight volume. Likewise, the λ values are also similar pointing to similar 

spatial autocorrelations for the error term. The coefficients of DMSP/OLS values are 

significant at 1 percent level in both models, indicating that it is desirable to estimate 
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freight volume using nighttime lights.  This approach can be employed to understand 

spatial pattern of freight movement over a large study area, such as megaregions.  

 

Table 1. Summary of Statistical Analysis using DMSP/OLS datasets  

 SAR SEM 

 Coeff. t-value Coeff. t-value 

Const 263.49*** 14.51 1,379*** 18.24 

DMSP/OLS value 7.53** 16.27 29.31*** 15.58 

Spatial lag (ρ) 0.78*** 282.91   

Spatial error (λ)   0.78*** 283.655 

Log-likelihood -307,529  -307,538  

R2 0.71  0.71  

N 33,689  33,689  

*p<0.1; **p<0.05; ***p<0.01 

 

Tables 2 to 5 summarize the results of statistical analysis using the VIIRS images for 

the four major cities in Texas Triangle. First, they report that the spatial lag coefficients 

(ρ) of all the four cities are statistically significant positive at 99% level, indicating that 

AADTT has spatial dependence structures.  In Houston and San Antonio, nighttime 

lights have statistically significant correlation with AADTT.  However, VIIRS in 

Austin and Dallas was not statistically significant at 90% level.   SAR explains the 

positive effects of developed land use (LUs) on AADTT, except low intensity for both 

Austin and San Antonio, and medium intensity for Houston.  The predictive power 

measured by R2 is more than four times higher than the old one when adding total road 

length.     

 

Without the variable of total road length, all SEM models have higher R2 than the SAR 

models, ranging from 0.35 to 0.43. This implies that the adjustment of the spatially 

correlated error (λ) increases goodness of fit, which is appropriate when explaining the 

relationships between AADTT and urban characteristics derived from the remotely 

sensed data.  The SEM outputs provide evidence that nighttime lights extracted from 

the VIIRS image have significantly positive relationship with the increase of AADTT 

in Austin and Houston, but their relationship is significantly negative in San Antonio 

and insignificant in Dallas. It also shows that the nighttime lights play an important 

role in understanding the spatial pattern of AADTT in some but not all cities in the 

megaregion.  Most coefficients of developed LUs are statistically significant at 90% 

level, except for the low intensity in San Antonio.  As expected, developed LUs lead 

to high AADTT in most cases.  However, the correlations between AADTT and non-

developed LUs, such as barren, forest, Shrubland+Herbaceous, and Planted/Cultivated 

land, are insignificant and weak in almost all cases except for the 

Shrubland+Herbaceous LUs in Dallas, which has significantly positive effects on 

AADTT at 99% level.   

 



18 

 

Table 1. Summary of Statistical Analysis: City of Austin 

 
 SAR SAR SEM SEM 

 Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

Const -417.65*** -11.84 -711.43*** -28.64 -978.59*** -19.79 -1003.01*** -35.59 

VIIRS 0.05 0.14 -0.27 -1.29 3.15*** 6.10 1.31*** 5.01 

Developed,  
Open Space 

5.42×10-4** 2.13 2.44×10-4 1.53 6.32×10-4** 1.91 4.59×10-4** 2.35 

Developed,  

Low Intensity 

-5.73×10-4* -1.75 -2.61×10-4 -1.28 -6.64×10-4* -1.60 -2.41×10-4 -0.98 

Developed,  
Medium Intensity 

19.8×10-4*** 6.39 7.94×10-4*** 4.10 27.95×10-4*** 7.15 10.25×10-4*** 4.41 

Developed, 

High Intensity 

33.97×10-4*** 9.87 12.36×10-4*** 5.70 39.88×10-4*** 9.76 14.97×10-4*** 5.98 

Barren -10.36×10-4 -0.78 -1.54×10-4 -0.18 -5.35×10-4 -0.36 -4.90×10-4 -0.53 

Forest 3.36×10-4 1.56 1.12×10-4 0.83 2.61×10-4 0.88 1.30×10-4 0.76 

Shrubland+Herbaceous 2.39×10-4 0.97 1.64×10-4 1.08 4.73×10-4 1.42 1.52×10-4 0.79 

Planted/Cultivated 1.65×10-4 0.48 1.15×10-4 0.53 0.12×10-4 0.02 -0.20×10-4 -0.07 

Total road length (km)   1578.17*** 88.95   1629.96*** 87.64 

Spatial lag (ρ) 0.62*** 402.01 0.31*** 26.98     

Spatial error (λ)     0.63*** 59.31 0.36*** 31.49 

Log-likelihood -33361.96  -30932.61  -33329.97  -31085.25  

R2 0.17  0.76  0.43  0.75  

N 4813  4813  4813  4813  

*p<0.1; **p<0.05; ***p<0.01 

 

 

 

Table 2. Summary of Statistical Analysis: City of Dallas 

 
 SAR SAR SEM SEM 

 Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

Const -427.59*** -34.40 -511.49*** -47.26 -427.59*** -34.40 -511.49*** -47.26 

VIIRS 0.09 0.58 -0.02 -0.16 0.09 0.58 -0.02 -0.16 

Developed,  

Open Space 

3.13×10-4*** 2.61 1.06×10-4 1.01 3.13×10-4*** 2.61 1.06×10-4 1.01 

Developed,  
Low Intensity 

1.29×10-4 1.13 0.53×10-4 0.53 1.29×10-4 1.13 0.53×10-4 0.53 

Developed,  

Medium Intensity 

5.22×10-4*** 4.34 4.01×10-4*** 3.82 5.22×10-4*** 4.34 4.01×10-4*** 3.82 

Developed, 
High Intensity 

28.54×10-4*** 18.80 21.07×10-4*** 15.82 28.54×10-4*** 18.80 21.07×10-4*** 15.82 

Barren 13.73×10-4 1.56 10.41×10-4 1.35 13.73×10-4 1.56 10.41×10-4 1.35 

Forest 2.73×10-4* 1.87 1.02×10-4 0.92 2.73×10-4* 1.87 1.02×10-4 0.92 

Shrubland+Herbaceous 3.97×10-4*** 2.99 3.32×10-4*** 2.87 3.97×10-4*** 2.99 3.32×10-4*** 2.87 

Planted/Cultivated 0.03×10-4 0.01 0.10×10-4 0.07 0.03×10-4 0.01 0.10×10-4 0.07 

Total road length (km)   611.65*** 68.44   611.65*** 68.44 

Spatial lag (ρ) 0.56*** 625.97 0.48*** 557.07 0.56*** 625.97 0.48*** 557.07 

Spatial error (λ)         

Log-likelihood -93420.35  -91448.18  -93420.35  -91448.18  

R2 0.10  0.41  0.10  0.41  

N 13360  13360  13360  13360  

 

*p<0.1; **p<0.05; ***p<0.01 
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Table 3. Summary of Statistical Analysis: City of Houston 

 
 SAR SAR SEM SEM 

 Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

Const -421.21*** -31.78 -714.49*** -68.95 -961.19*** -43.51 -981.62*** -94.12 

VIIRS -0.13*** -0.91 -0.26*** -3.10 1.39*** 6.81 0.28*** 2.78 

Developed,  

Open Space 

3.83×10-4*** 2.91 0.50×10-4 0.63 5.38×10-4*** 2.97 1.76×10-4* 1.84 

Developed,  
Low Intensity 

1.11×10-4 0.82 0.78×10-4 0.97 3.01×10-4* 1.59 1.29×10-4 1.30 

Developed,  

Medium Intensity 

0.34×10-4 0.28 -0.83×10-4 -1.18 3.05×10-4* 1.82 0.77×10-4 0.88 

Developed, 
High Intensity 

30.70×10-4*** 22.06 10.02×10-4*** 11.83 41.16×10-4*** 23.19 14.68×10-4*** 14.84 

Barren -1.48×10-4 -0.32 0.56×10-4 0.21 -2.92×10-4 -0.57 1.86×10-4 0.61 

Forest 2.04×10-4 1.40 0.47×10-4 0.54 2.62×10-4 1.32 0.91×10-4 0.85 

Shrubland+Herbaceous 0.28×10-4 0.14 0.10×10-4 0.08 -1.11×10-4 -0.44 1.42×10-4 1.04 

Planted/Cultivated 2.49×10-4* 1.80 0.04×10-4 0.04 1.36×10-4 0.65 1.53×10-4 1.47 

Total road length (km)   1,654.47*** 153.07   1,703.22*** 151.25 

Spatial lag (ρ) 0.57*** 607.01 0.28*** 40.61     

Spatial error (λ)     0.61*** 67.17 0.311*** 45.81 

Log-likelihood -86,964.02  -80177.35  -86,844.79  -80540.40  

R2 0.12  0.76  0.37  0.76  

N 12460  12460  12460  12460  

*p<0.1; **p<0.05; ***p<0.01 

 

 

 

Table 4. Summary of Statistical Analysis: City of San Antonio 

 
 SAR SAR SEM SEM 

 Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

Const -429.61*** -12.94 -745.75*** -36.78 -429.61*** -12.94 -745.75*** -36.78 

VIIRS -0.53** -2.16 -0.41*** -2.88 -0.53** -2.16 -0.41*** -2.88 

Developed,  
Open Space 

6.87×10-4*** 3.27 2.02×10-4* 1.68 6.87×10-4*** 3.27 2.02×10-4* 1.68 

Developed,  

Low Intensity 

-5.02×10-4** -2.18 -1.51×10-4 -1.15 -5.02×10-4** -2.18 -1.51×10-4 -1.15 

Developed,  
Medium Intensity 

11.84×10-

4*** 
4.61 3.46×10-4** 2.36 11.84×10-4*** 4.61 3.46×10-4** 2.36 

Developed, 

High Intensity 

41.56×10-4*** 15.83 12.61×10-4*** 8.32 41.56×10-4*** 15.83 12.61×10-4*** 8.32 

Barren 3.27×10-4 0.94 -0.23×10-4 -0.10 3.27×10-4 0.94 -0.23×10-4 -0.10 

Forest 0.37×10-4 0.19 0.37×10-4 0.33 0.37×10-4 0.19 0.37×10-4 0.33 

Shrubland+Herbaceous 3.39×10-4* 1.64 0.55×10-4 0.46 3.39×10-4* 1.64 0.55×10-4 0.46 

Planted/Cultivated 1.39×10-4 0.63 0.54×10-4 0.43 1.39×10-4 0.63 0.54×10-4 0.43 

Total road length (km)   1,774.09*** 135.61   1,774.09*** 135.61 

Spatial lag (ρ) 0.57*** 505.25 0.26*** 32.21 0.57*** 505.25 0.26*** 32.21 

Spatial error (λ)         

Log-likelihood -59,279.92  -54,243.42  -59,279.92  -54,243.42  

R2 0.15  0.79  0.15  0.79  

N 8547  8547  8547  8547  

*p<0.1; **p<0.05; ***p<0.01 
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5. Conclusions 

Megaregions have been of increasing interest planners and decision makers as a spatial 

and socio-economic domain, offering effective contributions and alternative 

mechanisms to the resolution problems that cannot be easily resolved by individual 

metropolitan areas or cities -- including congestion and pollution caused by truck 

movement (Harrison et al. 2012).  This study describes an analytical framework for 

developing a megaregion truck model. A regional freight transportation model 

developed in our previous studies has been extended to estimate megaregion truck 

flows. An equilibrium function with capacity constraints has been incorporated into the 

traffic assignment model.  

 

Our approach employs an analytical framework to estimate truck flows in the Texas 

Triangle, a notable megaregion completely within the state of Texas. The OD database 

and highway network links have been obtained from FAF 2012 datasets. Due to the 

limited number of economic centroids, this study identifies network nodes or so-called 

network centroids as freight external points like seaports, airports, rail yards, and 

highway intersections to fine-tune megaregion truck movements, especially those 

within the metropolitan areas of the megaregion. The results of link level truck flows 

in the megaregion can help to enhance the understating of megaregional truck flows 

and also facilitate the improvement of freight mobility. 

 

One limitation of the study on the spatial patterns of megaregion truck traffic is the 

missing counts of pass-through truck flows. The analytical model developed for the 

megaregion truck flows only accounts for the trucks having their origin or destination 

within a megaregion but ignores those having both origin and destination outside of a 

megaregion.  

 

Another limitation is the intra-metropolitan truck flows are disaggregated through 

network centroids that have uniform characteristics within an economic centroid. The 

megaregion truck model can be improved by incorporating additional information from 

local metropolitan planning organization (MPO) or other transportation planning 

agencies to estimate the truck flows handled by the freight facilities of the network 

centroids. These limitations will be considered in our future work.  

 

To understand the temporal patterns of megaregion truck flows, this study focused on 

examining the nighttime truck flows, especially how they are estimated using nighttime 

light data and how they are affected by land use and road length. The results of the 

statistical analysis provide evidence to support the hypotheses that nighttime lights are 

associated with truck traffic.  However, several limitations should be taken into account 

in order to achieve better statistical results in future studies.  First, a downscaling 

technique should be developed for nighttime lights to reveal human activity over each 
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land use at night.  We expect that this may suggest accurate resources for understanding 

the impacts of nighttime metropolitan freight logistics.  Second, it is hard to obtain 

statistical relationships between AADTT and the geospatial characteristics of the road 

networks in advanced statistical analysis that covers Texas Triangle due to our limited 

computational capabilities.  Third, we need to include traffic analysis zones (TAZs) as 

spatial units to utilize diverse variables for transportation analysis, which may increase 

model efficacy.     
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