
 
 

1 

 

 

 
 

For:  
National Institute for Congestion Reduction 

University of South Florida 
Center for Urban Transportation Research | University of South Florida 

 
4202 E. Fowler Avenue, ENG030, Tampa, FL 33620-5375 

nicr@usf.edu    

Date 

System Monitoring of Auto Traffic 
Queue Detection and Congestion Impact Assessment 

 
 

Geza Pesti, Ph.D., PE 
Beverly Storey, PLA 
Robert Brydia, PMP 

 

 
NATIONAL INSTITUTE FOR 
CONGESTION REDUCTION 
 
FINAL REPORT 
April 21, 2022 

mailto:nicr@usf.edu


 
 

2 

DISCLAIMER 
 
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy 
of the information presented herein. This document is disseminated in the interest of information exchange. 
The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University 
Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use 
thereof.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

3 

 

Technical Report Documentation Page 
 
 
 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

   

4. Title and Subtitle 5. Report Date 

System Monitoring of Auto Traffic 

Queue Detection and Congestion Impact Assessment 

 

6. Performing Organization Code 

 

7. Author(s) 8. Performing Organization Report No. 

Geza Pesti, Beverly Storey, and Robert Brydia.  

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Texas A&M Transportation Institute 

1111 RELLIS Parkway 

Bryan TX 77807 

 

11. Contract or Grant No. 

69 69A3551947136 
A3551947136 
 

69A3551947136, 79070-00-SUB B and 79070-00 
SUB C 

12. Sponsoring Organization Name and Address 

U.S. Department of Transportation 
University Transportation Centers 
1200 New Jersey Avenue, SE 
Washington, DC 20590 
United States 

13. Type of Report and Period Covered 

 

National Institute for Congestion Reduction (NICR) 
Center for Urban Transportation Research 
University of South Florida 
4202 E. Fowler Ave.  
Tampa, FL, 33620-5375 

 

14. Sponsoring Agency Code 

 

15. Supplementary Notes 

 

 

16. Abstract 

The main objectives of this study were to identify available data sets and explore methodologies for improving 
the detection of bottlenecks, related congestion, and queue formation, as well as formulate methodologies to 
determine the extent and rate of spread queues, identify their impact area, and look at potential mitigation 
strategies.  Methodologies are provided that evaluate (a) impacts of single construction projects, (b) combined 
daily impacts of construction projects and incidents on selected segments of the corridor, and (c) a process to find 
the most appropriate schedule that minimizes the negative impact of construction, utility work or special events 
that require partial or full closure of a roadway.  Finally, this study describes an approach to queue detection  
using a combination of data available from two different sources (traffic sensors and third-party data providers) 
and finding the best combination of the two data sources for queue detection 

17. Key Words 18. Distribution Statement 

Queue Warning, Queue Detection, Queue Impacts, Queue Data, Queuing Analysis XXXX 

19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price 

Unclassified. Unclassified. 56 XXXX 



 
 

4 

Table of Contents 
DISCLAIMER ............................................................................................................................................................... 2 

Tables ........................................................................................................................................................................ 4 

Figures ....................................................................................................................................................................... 5 

Executive Summary ................................................................................................................................................... 6 

Introduction ............................................................................................................................................................... 9 

Literature Review ...................................................................................................................................................... 9 

Gap in Literature .................................................................................................................................................21 

Data Identification ...................................................................................................................................................22 

Data sources on I-35 ............................................................................................................................................22 

Wavetronix Radar Sensors ..............................................................................................................................22 

Bluetooth-based Segment Travel Time and Speed .........................................................................................26 

Data from Existing Queue Warning Systems (iCone) ......................................................................................27 

Third-Party Traffic Data ...................................................................................................................................31 

Congestion and Queue Analysis ..............................................................................................................................37 

Post-Event Traffic Performance Assessment and Queue Analysis .....................................................................37 

Travel Time and Delay Estimation ...................................................................................................................37 

Congestion and Queue Analysis ......................................................................................................................41 

Queue Detection Using Data from Multiple Sources ..........................................................................................44 

Queue Estimation from Each Available Source ...............................................................................................44 

Queue Estimation and Prediction ...................................................................................................................46 

Optimal Scheduling of Road Construction Activities and Special Events ...........................................................49 

Method and Algorithm ....................................................................................................................................49 

Lane Closure Scheduling Example ...................................................................................................................50 

Summary and Conclusion ........................................................................................................................................52 

References ...............................................................................................................................................................53 

 

Tables  
Table 1. Data fusion algorithms and architectures currently applied to ITS (El Faouzi and Klein 2016). ...............12 
Table 2. Permanent queue warning technologies (Grewal 2020). .........................................................................15 
Table 3. Sample Wavetronix data archived in 15-minute intervals. .......................................................................24 
Table 4. INRIX segment lengths statistics on I-35 in Central TX. .............................................................................34 
Table 5. Comparison of Data Sources Available for Queue Detection ...................................................................34 
Table 6. Delay-Based Traffic Condition Grades in Daily Postmortem .....................................................................41 



 
 

5 

Table 7. Data Availability Scenarios Considered in Queue Detection. ....................................................................47 
 

Figures 
Figure 1. Fully Connected Vehicle (Cronin 2020). ...................................................................................................10 
Figure 2 Sample queue alert message (Mekker et. al 2017)...................................................................................12 
Figure 3. Crossroads Example Darmo Street (Setiawan and Budayasa 2017). .......................................................20 
Figure 4. Impacts of CV on congestion (Shelton et. al 2018). .................................................................................21 
Figure 5. Bluetooth and Wavetronix sensors on the I-35 corridor. ........................................................................23 
Figure 6.  Radar-Based Detection. ...........................................................................................................................23 
Figure 7. Historical (Six-Month Average) NB Traffic Volumes on the I-35 Corridor. ..............................................24 
Figure 8. Six-Month Average NB Traffic Volumes at Wavetronix Stations 1 through 6. ........................................25 
Figure 9. Six-Month Average NB Traffic Volumes at Wavetronix Stations 7 through 12. ......................................25 
Figure 10. Six-Month Average NB Traffic Volumes at Wavetronix Stations 13 through 15. ..................................26 
Figure 11. Bluetooth-based Segment Travel Time and Speed Data Collection. .....................................................27 
Figure 12. iCone Deployment Configuration Layout. ..............................................................................................28 
Figure 13. Message Selection for Queues up to 3 miles (Source: iCone). ..............................................................29 
Figure 14.  Message Selection for Queues up to 7 miles (Source: iCone). .............................................................30 
Figure 15. WAZE Data Collection Polygon for the I-35 corridor in Central Texas. ..................................................32 
Figure 16. Distribution of INRIX TMC and XD Segment Lengths on I-35 in Central Texas ......................................33 
Figure 17.  Aggregating Bluetooth Travel Times over Consecutive Segments .......................................................38 
Figure 18. Steps of Post-Event Impact Analysis ......................................................................................................38 
Figure 19.  Impact of a Freeway Closure on I-35 NB ...............................................................................................39 
Figure 20. Major Steps of Daily Postmortem. .........................................................................................................40 
Figure 21. Illustration of a Daily Postmortem for I-35 ............................................................................................41 
Figure 22. Speed Heat Map Showing Typical Saturday Traffic Conditions on I-35 SB between Hillsboro and Waco 
on Saturday, Oct 16, 2001. ......................................................................................................................................42 
Figure 23. Speed Heat Map Showing Unusual Congestion on I-35 Southbound between Hillsboro and Waco on 
Saturday, Oct 23, 2001. ...........................................................................................................................................42 
Figure 24. Queue Analysis Using Speed Heat Map on I-35 Southbound in Waco on Saturday, Oct 23, 2001. ......43 
Figure 25. Queue Detection Using Infrastructure Sensor Data. .............................................................................45 
Figure 26. A Single Time Step of Queue Detection Using Sensor Data. ..................................................................45 
Figure 27. Queue Detection Using Third-Party Data...............................................................................................46 
Figure 28. A Single Time Step of Queue Detection Using Third-Party Data. ..........................................................46 
Figure 29. Flow Chart for BOQ Estimation from Sensor and Third-Party Data. ......................................................48 
Figure 30. Logic for Determining Optimal Closure Schedule. .................................................................................50 
Figure 31.  Historical Hourly Traffic Volumes Upstream of the Planned Lane Closure ..........................................51 
Figure 32. Maximum Queue Lengths vs. Start Time of a 16-hour Lane Closure. ...................................................51 

 
  

https://tti.sharepoint.com/sites/NICR-SystemMonitoringofTraffic/Shared%20Documents/General/Task4-Report/NICR_1.3_SystemMonitoringAutoTraffic_FinalReport.docx#_Toc101444357
https://tti.sharepoint.com/sites/NICR-SystemMonitoringofTraffic/Shared%20Documents/General/Task4-Report/NICR_1.3_SystemMonitoringAutoTraffic_FinalReport.docx#_Toc101444358
https://tti.sharepoint.com/sites/NICR-SystemMonitoringofTraffic/Shared%20Documents/General/Task4-Report/NICR_1.3_SystemMonitoringAutoTraffic_FinalReport.docx#_Toc101444359


 
 

6 

Executive Summary 
 
The main objective of this study was to identify available data sets and explore methodologies for improving 
the detection of bottlenecks, related congestion, and queue formation. Additional objectives are to determine 
the extent and rate of spread of queues, identify their impact area, and look at potential mitigation strategies.   
 
The first chapter of the report includes a review of relevant literature. The second chapter provides a 
description of the data sources identified and used for illustrating selected methods for congestion and queue 
analysis. After a review of available datasets, the TTI research team identified the I-35 traveler information 
database. This database and related data collection system have been successfully used for detecting 
congestion and queue formation along a 100-mile segment of I-35 in Central Texas. The I-35 data suite 
incorporates a lane closure database and real-time and archived traffic data from various data sources. 
Available traffic data include lane-level traffic volumes and spot-speeds from Wavetronix radar sensors, 
segment travel times and speeds from Bluetooth (and/or WiFi) readers, incident, and traffic jam data as well as 
segment travel times and speeds from third-party traffic data providers. Both real-time and archived data are 
available from most of these data sources. The second chapter describes the available data sources and data 
types on I-35 in Central Texas and provides details on their potential use for different applications, such as 
queue detection and queue warning. For example, data from Wavetronix sensors have been used for  

• Estimating the expected impact (delay and queue length) of planned lane closures. 

• Assessing the need for deploying portable queue warning systems for planned closures. 

• Find the best schedule for planned closures, i.e., closure time that is expected to have the least 
negative impact (minimum delay and shortest queues). 

• Identifying potential radar sensor issues (e.g., need for equipment adjustment due to change in 
roadway alignment). 

On the I-35 corridor, Bluetooth readers are deployed at an average of 4-mile spacing with a minimum distance 
of 0.9 mile and maximum distance of 11.5 miles between consecutive readers. Bluetooth-based segment travel 
times and average segment speeds have been used for 

• Assessing the impacts of lane closures, accidents, and special events on the corridor, both separately 
and in combination. 

• Determining mobility-related work zone performance measures at both project- and corridor-levels. 

Queue data is also collected by portable queue warning systems deployed for work zones in the I-35 
reconstruction project. The portable queue warning system used iCone® portable traffic monitoring devices 
and have been deployed in two configurations depending on the expected lengths of the longest queues.   

Third-party traffic data are also available and offer crowdsourced traffic information and probe vehicle data on 
the I-35 corridor and a large portion of the connecting roadway network. A major benefit of these crowd-
sourced third-party data is that they can be collected without the need for the deployment and operation of 
physical infrastructure, and they provide broad coverage over the road network. The data include segment 
travel times and speeds, and information on incidents, road construction, weather and road conditions. The 
segment travel times and speeds are provided as averages over predefined time intervals (e.g., 1, 5, 10 or 15 
minutes). TxDOT and TTI have access to third-party traffic data from WAZE and INRIX. Agencies can access 
WAZE’s crowd-sourced incident data through the Waze for Cities (formerly: Connected Citizen Program). In 
exchange, they are expected to share their own incident and/or work zone data feed with WAZE. Available 
INRIX probe data include segment travel times and speeds measured over two types of road segments: TMC 
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(Traffic Message Channel) segments and XD (eXtreme Definition) segments. Probe data from both segment 
types may be used for detecting congestion and estimating delays, but data from DX segments typically provide 
more accurate queue detection.  
 
There are significant differences between the above-mentioned data sources in terms of their data types, 
spatial coverage, spatial and temporal resolution, and latency. Table 5 provides a comparison of key 
characteristics of available data sources that may be used for queue detection. 
 
The last chapter describes potential applications and methods of congestion and queue analysis using the data 
sources identified. Examples illustrating the use of these methods to improve queue detection and minimize 
the negative impacts of congestion for travelers are also included. The selected applications include: 

• Post-event traffic performance assessment and queue analysis. 

• Queue detection using data from multiple sources 

• Optimal scheduling of road construction activities and special events. 

To assess the performance of the I-35 traveler information system, post-event evaluations have been 
performed for all significant lane closures as well as special events along the corridor. The operational impacts 
of lane closures or special events may be quantified in terms of travel time delays determined from Bluetooth 
data and queue analysis using third-party data.  
 
The major steps of a post-event impact analysis of work zone lane closures or incidents are summarized in  
Figure 18. The method is illustrated by an example of a night-time construction that required the closure of all 
northbound main lanes of I-35 while traffic was diverted to the frontage roads. 
 
In addition to evaluating the impacts of single construction projects, the method has also been used to 
determine the combined daily impacts of construction projects and incidents on selected segments of the 
corridor. This so-called Daily Postmortem (DPM) has been routinely performed to determine 15-minute 
average travel times and delays over 24-hour periods on three segments between major population centers on 
the I-35 corridor. 
 
When significant delays are observed, additional congestion analysis are performed to identify the location of 
bottlenecks and capture the formation and propagation of vehicle queues. For I-35, such congestion and queue 
analysis have been conducted using data from INRIX’s XD segments and the Congestion Scan tool included in 
the Probe Data Analytics (PDA) Suite of the Regional Integrated Transportation Information System (RITIS) 
developed by CATT Lab at University of Maryland.  
 
Figure 23 shows the speed heat map of a segment of I-35 on Saturday, October 23, 2021, when a vehicle 
collision occurred soon after 6 AM at mile marker (MM) 334. Figure 24 captures the main results of queue 
analysis. The incident-induced congestion and the formation and propagation of queues over time and space 
can be clearly identified.    
 
The second part of chapter 3 describes an approach to queue detection using a combination of data available 
from two different sources, traffic sensors and third-party data providers. Data from these two sources have 
different spatial coverage and temporal resolutions because of the way they are collected, aggregated, and 
transmitted. Traditional sensors provide average spot data (speed, volume, and occupancy) which are collected 
for each lane. Third-party data sources provide travel times and average travel speeds over predefined 
segments without lane-level detail.  Data from the two sources also differ in their latencies. Sensor data has a 
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minimum latency of 20 or 30 seconds depending on the data aggregation level. Third party probe data latency 
typically ranges from 3 to 4 minutes. These differences present some challenges in finding the best 
combination of the two data sources for queue detection. Table 7 provides a guide for BOQ detection under 
different scenarios of data availability from sensors and third-party data. The flow chart in Figure 29 shows the 
BOQ estimation logic using sensor and/or third-party data. 
  
The last section of chapter 3 describes a process to find the most appropriate schedule that minimizes the 
negative impact of road construction, utility work or special events that require partial or full closure of a 
roadway.  The impact is measured by the expected length of longest queue generated by the lane closure. The 
objective is to find the optimal schedule (start time) for a planned lane closure of fixed duration. The optimal 
schedule is defined by the lane closure start time t* during the week that is expected to create the shortest 
maximum queue length. The steps to determine an optimal schedule is summarized in Figure 30. The required 
input includes work zone capacity and a historical time series of vehicle flow rates measured at a point 
upstream of the planned lane closure. Note that work zone capacity does not have to be constant; the method 
can easily accommodate capacities that vary over the time of the closure. This methodology was tested and 
implemented for various lane closure situations across the corridor and provided a simple analytical process to 
ensure the least impact to the traveling public. The method is illustrated through an example where the 
optimum schedule for a 16-hour planned lane closure on I-35 was to be determined.   
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Introduction 
 
Vehicle queues may form upstream of incidents, work zones, entry and exit ramps, lane drops, freeway 
junctions, and traffic signals. They may also be caused by adverse weather and poor visibility conditions that 
significantly reduce vehicle speeds and roadway capacity. No matter where and why they form, queues are 
impactful to traffic, causing delay and increased accident potential.  Drivers approaching the back of queues 
without receiving any warning often have poor perception of the time and distance needed to safely slow down 
or stop to avoid rear-end collisions with slower or stopped vehicles in front of them. Queues behind horizontal 
or vertical curves that limit drivers’ sight distance are particularly hazardous. Rear-end collisions are among the 
most common types of crashes, often resulting in fatal or serious injuries. 
 
There is a need to identify available data sources and data sets that may be used for automated queue 
detection upstream of freeway bottlenecks.  There is also a need to develop methodologies to  

• assess the impact of lane closures, incidents, and special events, and  

• fuse multiple data sources to improve the accuracy and timeliness of queue detection.   
 
The overall goal of this effort is to explore methodologies for improving the detection of bottlenecks, related 
congestion, and queue formation. Additional objectives are to determine the extent and rate of spread of 
queues, identify their impact area, and look at potential mitigation strategies.  
 
The first section of the report includes a review of relevant literature. The second chapter provides a 
description of the data sources identified and used for illustrating selected congestion and queue analysis 
methods and mitigation strategies. The last section includes examples of how the identified data sources can 
be used to improve queue detection and minimize the negative impacts of congestion for travelers. 
 

Literature Review 
Congestion management and forecasting has been at the forefront of transportation agencies for decades. 
Lomax et al. defined congestion in their 1997 NCHRP Report 398 as: 

• Congestion is travel time or delay in excess of the normally incurred under light or free-flow travel 

conditions. 

• Unacceptable congestion is travel time or delay in excess of an agreed-upon norm. The agreed-upon 

norm may vary by type of transportation facility, travel mode, geographic location, and time of day. 

The two other concepts used in determining congestion are: 

• Mobility – the ability of people and goods to move quickly, easily, and cheaply to where they are 

destined as a speed that represents free-flow or comparably high-quality conditions. 

• Accessibility – the achievement of travel objectives within time limits regarded as acceptable (Lomax et 

al., 1997). 

As populations increase and roadway capacities “shrink”, the need to develop methods to quickly and 
accurately identify problems and implement strategies for mitigation becomes more urgent. Historically traffic 
congestion has been measured using identifiers such as speed, travel time, delays, level of service (LOS), 
congestion indices and federal level measures. However, as roadways and cities continue to grow they also 
continue to get “smarter.” Transportation agencies are able to utilize data from the smart technologies such as 
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the Internet of Things (IoT), Internet of Vehicles (IoV), vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V) 
and vehicle-to-everything (V2X) to provide critical real-time data for a faster and more accurate assessment of 
traffic conditions. Transportation infrastructure and vehicle technologies have changed how transportation 
agencies collect and manage data and disseminate traffic information. Intelligent transportation system (ITS) 
infrastructures contain sensors, data processing, and communication technologies that enable the transfer of 
data from vehicle-to-vehicle, vehicle-to-infrastructure, and infrastructure-to-vehicle and tracking of individual 
vehicles (El Faouzi et al., 2011). 

The basic safety message (BSM) is a connected vehicle technology consisting of vehicle position, heading, 
speed, and other information relating to a vehicle’s state and predicted path (see Figure 1). Onboard units 
(OBUs) installed on vehicles will continually broadcast BSMs. Roadside units (RSUs) also receive and broadcast 
messages. To enable security in V2X systems, it is important to ensure:  

• A message originates from a trustworthy and legitimate device 

• A message was not modified between sender and receiver 

• Misbehaving units are detected and removed from the system (USDOT 2019). 

 
Figure 1. Fully Connected Vehicle (Cronin 2020). 

Using cellular data to augment BSM provides the vehicle data needed to support nearly all mobility applications 
such as: 

• Cooperative Adaptive Cruise Control 

• Speed Harmonization 

• Queue Warning 

• Intelligent Traffic Signal System 

• Transit Signal Priority 

• Mobile Accessible Pedestrian Signal System 

• Emergency Communications and Evacuation 
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• Incident Scene Pre-Arrival Staging Guidance for Emergency Responders 

• Incidents Scene Work Zone Alerts for Drivers and Workers 

• Next Generation Integrated Corridor Management 

• Transit Connection Protection 

• Dynamic Transit Operations 

• Dynamic Ridesharing 

• Freight Traveler Information 

• Traveler Information (Cronin 2020). 

The USDOT’s Dynamic Mobility Applications (DMA) Program was initiated in 2009 to develop and assess bundle 
type applications that work with CVs to better enable safer, smarter, greener, and more efficient travel. These 
DMA applications included:  

• Enabling Advanced Traveler Information System (EnableATIS)  

• Freight Advanced Traveler Information Systems (FRATIS)  

• Integrated Dynamic Transit Operations (IDTO)  

• Intelligent Network Flow Optimization (INFLO)  

• Multi-Modal Intelligent Traffic Signal Systems (MMITSS)  

• Response, Emergency Staging and Communications, Uniform Management, and Evacuation 

(R.E.S.C.U.M.E.) (USDOT DMA). 

One of the key components going forward with traffic management on urban street networks includes how use 
these technologies to identify queue formation and spread in real-time using automated detection systems. 
This involves methods to determine queue spread, the rate of spread and the potential impacts of the queue as 
it spreads into the surrounding areas and creates traffic flow delays. The impacts of the queue known as a 
shockwave are characterized as the boundaries between different traffic states such as different vehicle speeds 
and densities (i.e., boundary between slow-moving queued vehicles and approaching high-speed traffic) (Pesti 
et al., 2007). Real-time data collection and analysis method involves combining data from multiple sources to 
provide an accurate and reliable assessment of real-time (or near real-time) traffic conditions. This method is 
known as data fusion (DF). Transportation agencies are tasked with gathering and analyzing enormous amounts 
of traffic data, known as big data, across multiple modalities and domains. These data can include traffic 
cameras, global positioning system (GPS) or location information, Twitter and vehicular sensors, taxi 
trajectories data, metro/bus swiping data, bike-sharing data and so on (Adetiloye and Awasthi 2019, Xie et al., 
2019). Other multisource data includes Bluetooth® and IP-based (cellular and Wi-Fi) communications, GPS 
devices, cell phones, probe vehicles, license plate readers, infrastructure-based traffic-flow sensors, and 
connected vehicles. Table 2 shows some of the applications assembled by El Faouzi and Klein (2016) that 
includes data fusion algorithms and architecture.  
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Table 1. Data fusion algorithms and architectures currently applied to ITS (El Faouzi and Klein 2016). 

 
Mekker et al. (2017) discuss the high-level function of an email/text queue alert 
system developed for the Indiana DOT (INDOT) to notify relevant personnel, such 
as work zone managers, of queues that exceed prescribed thresholds. The 
algorithm was first deployed in 7 work zones with 13 users receiving text 
messages. On average, there were 8 text messages per day per work zone. Two 
case studies from one of the six work zones are presented that demonstrate the 
functionality of the system by using images captured from existing traffic 
cameras. Result demonstrated the feasibility of using a system to send targeted 
alerts to public safety and traffic management personnel to assist with more 
informed decisions during incidents (Figure 2). The probe vehicle data is collected 
by a third-party vendor from several sources, including freight, smart phones, 
and in vehicle GPS. The queue alert system developed in this study utilizes the 
same real-time probe vehicle data for defining and locating queues as in the 
previous INDOT tool. 

 
Federal Highway Administration has procured probe data feeds and provides free 
access to state and local agencies as National Performance Measures Research 
dataset (NPRMDS). INRIX is the current provider of NPMRDS data records. Ahsani 

Figure 2 Sample queue alert 
message (Mekker et. al 2017). 
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et al. (2020) evaluated the reliability of probe-sourced data (INRIX) using two performance measures; 
congested hour and the number of congested events. Another study looked at a 23 intersection urban corridor 
in Pittsburgh, PA to evaluate the operational impacts of the SUTRAC (Scalable Urban Traffic Control) Adaptive 
Signal Control Technology (ASCT) using a combination of real-world GPS floating car runs and private sector 
probe data from INRIX. The ASCT was found to produce significant improvements in the number of stops made 
along the corridor. The findings of this study are generally consistent with past evaluations of other ASCTs, 
indicating that the SURTRAC system is another potential tool for managing congestion on signalized urban 
arterial networks (Khatak et al. 2020).  Zhang et al. (2020) also evaluated the accuracy of the travel time data 
estimated by Dual loop, Waze, HERE, and INRIX against Bluetooth data. The results show that the INRIX and 
HERE data closely match the Bluetooth data, both in the trends and values of reported travel time; however, all 
three vendors’ data accuracy deteriorates when the traffic congestion intensifies (Zhang et al. 2020). 
The Intelligent Traffic Congestion Monitoring & Measurement System called TrafficMonitor developed by 
Mandal et al. (2011) uses a probe vehicle that combines active RFID and Global System for Mobile 
communication (GSM) technologies to trace the travel time of probe vehicle as it passes the roadside devices 
and create an average trip time. TrafficMonitor measures congestion of a single length of road using the 
following: 

• One active RFID tag to be kept in the probe vehicle 

• One wireless router and one wireless coordinator (both acting as RFID readers) to be installed at the 

roadside 

• Two GSM modems (one with coordinator and the other with central monitoring station) for wireless 

data transmission between gateway and software monitoring system 

• Monitoring station software for real-time visualization of traffic congestion and report generation.  

• The system can also be connected wirelessly with Variable Message Sign (VMS) to divert the traffic 

upon automatic detection of congestion on a stretch of a road. 

Crowd sourced GPS probe data have become a major source of real-time traffic information applications being 
used for automatic incident detection, integrated corridor management (ICM), end of queue (EOQ) warning 
systems, and mobility-related smartphone applications. Wang et al. (2018) evaluated the lag time between the 
reported incident in the outsourced data feed, and the time at which the traffic is disturbed using high-quality 
independent Bluetooth/Wi-Fi re-identification data to measure the latency of the vehicle probe data provided 
by three major vendors.  

EOQ warning systems can use a combination of sensors for detecting traffic and an artificial neural network 
(ANN) model-based algorithm for predicting EOQ location and issuing warning messages displayed on portable 
variable message sign (PVMS). Khan (2017) synthesized an automated information system that integrates 
traffic sensors, ANN models, PVMS and potential links with other media for highway work zones which 
automatically predicts queue-end location and alerts drivers so that rear-end collisions can be avoided. 
Selected results of ANN models illustrate their application in the queue-end warning system requires a limited 
number of traffic sensors and relies upon the ANN-based algorithm to perform its function. Limitations of the 
system design include its reliance on predictive queue-end models rather than traffic sensors to find the EOQ 
on a real-time basis and it does not have the on-line self-calibration capability necessitating the analyst to 
intervene during a field demonstration period, archive the sensor data and measure queues.  

Pesti et al. (2019) used a microscopic traffic simulation to explore the expected performance and reliability of a 
work zone queue warning system. Researchers assessed system performance based on queue detection 
accuracy, distribution of queue estimation errors and the percentage of drivers that encountered queues 
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without receiving any warning. The effect of key design parameters such as speed thresholds for queue 
detection, detector spacing and speed aggregation intervals, portable changeable message sign (PCMS) 
location and update intervals were studied using a simulation testbed of a queue warning system for a 
hypothetical freeway work zone involving the closure of a lane. The results showed that queue warning 
systems with half-mile spacing between speed sensors detected queues with significantly higher accuracy than 
systems with 1-mile sensor spacing. It was also found that shorter speed aggregation intervals and shorter 
PCMS update intervals improved the reliability of the system by reducing the percentage of drivers 
encountering queues without warning. However too short PCMS update intervals may increase oscillation in 
queue warning messages. 

Another EOQ warning system uses Dedicated Short Range Communications (DSRC). The study conducted by Liu 
et al. (2017) used only velocity difference information which is one of the key factors for determining ssl, the 
minimum distance to avoid collision. The proposed model considered the influencing factors of real highway 
data such as traffic parameters, communication range and penetration rate.  

The technique developed Mohammadi et al. (2020) is based on the strength of Bluetooth signals transmitted by 
both stationary and moving beacons, creating radio maps, and applying an algorithm called k-nearest neighbors 
(k-NN). They evaluated an intersection and its adjacent streets using four Bluetooth signal scanners and a 
beacon. Results found up to 90% precision with the stationary beacons with an error of 5 m or less, but the 
moving beacons were challenging. Two advanced Bluetooth devices were used along a 0.52-mi segment of an 
urban arterial road in Baton Rouge, LA to assess match rate, travel time, and segment speed to benchmark data 
sets. They were coupled with classic Bluetooth technology: the demodulator (BT DM), and the low-energy 
Bluetooth signal additional component (BLE). Results showed the BLE performed better than the BT DM 
(Cotton et al. 2020). 

Liu et al. (2020) used approximately two million records of Bluetooth time-stamped media access control 
(MAC) data to evaluate their accuracy for travel time. The work shows that accurate Bluetooth-based travel 
time information on signalized arterial roads can be derived if an appropriate matching method can be selected 
to smooth out the remaining noise in the filtered travel time estimates. The method used by Advani et al. 
(2019) to develop Bluetooth MAC Scanner (BMS) based links for the entire Brisbane city network focused on 
challenges of integrating the Bluetooth scanners and the Open Street Map network used for congestion 
visualization. The results showed the method is ready to implement for any large city network. A study 
conducted by Yuan et al. (2020) included a review of case studies regarding the use of Bluetooth for traffic data 
and included three case studies in Delaware. The overall conclusion is that the Bluetooth technology by itself is 
not a proper tool for travel time measurements. Some of the issues found with using Bluetooth data are as 
follows. 

• Unknown location of detected vehicle within the detection zone 

• Extremely dense data processing 

• Communications/power supply complications during sensor deployment 

• Oversampling 

• Unable to determine traffic volume 

• Trip-Chaining 

• Low detection/match rates 

• No standard for of analysis 

• Limited information extraction 
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• Difficulty of determining reasons for delay 

Researchers from the University of Central Florida (Abdel-Aty et al. 2019) developed a decision support system 
(DSS) for Integrated Active Traffic Management (IATM) for both freeways/expressways and arterials/collectors. 
The data sources used included HERE, NPMRDS, MVDS (Microwave Vehicle Detection System), AVI (Automatic 
Vehicle Identification), BlueTOAD, BlueMAC, etc. The results suggested that the developed DSS could 
successfully reduce traffic congestion and improve travel time reliability.  

The Ontario Ministry of Transportation developed their Transportation Systems Service Books available on their 
website http://www.mto.gov.on.ca/english/publications/#corridor. These include Permanent Queue Warning, 
Roadside Travel Time Information and Traffic Incident Management. Each contain information that includes 
system costs and life cycle expectancy. The Queue Warning Systems (QWS) found in the Permanent Queue 
Warning Service Book includes the three basic components of detection, processing and information 
dissemination. Table 2 contains the compiled information (Grewal 2020).  
 
Table 2. Permanent queue warning technologies (Grewal 2020). 

 Technology Advantage Disadvantages Description 

D
et

ec
ti

o
n

 

In-pavement 
detectors 

Reliable Maintenance issues e.g. inductive loops, 
magnetometers, magnetic 
detectors 

Radar/Microwave 
Traffic Sensors 

Configurable to 
changing lane 
patterns 
High sample size 
Can be leveraged for 
traffic count data 

Requires mounting 
on existing 
infrastructure or 
installing new poles 

Pole-based sensors utilizing 
microwave/radar technology to 
detect vehicle speeds, 
classification and volume data 
and they represent a reliable, 
tested, and non-intrusive 
approach for permanent 
deployments. 

Bluetooth 
Detectors 

Low cost 
Can be leveraged for 
travel time 

Not well suited for 
standalone queue 
detection. Sample 
size constrained to 
availability of passing 
Bluetooth devices. 
Requires the same 
vehicles to span two 
or more detection 
points. 

Roadside sensors scan for 
passing Bluetooth devices as a 
surrogate to the presence of a 
vehicle. A second Bluetooth 
device placed downstream 
provides comparative data to 
determine average vehicle 
speeds. 

Probe Data Requires no 
infrastructure 
Scalable 
Portable 

Still in development 
and early stages. 
Unproven for this 
application. Requires 
new software to 
integrate to VMS 
controller. 

Privately sourced vehicle 
location data through a 
combination of car 
manufacturers, commercial fleet 
trackers and/or cell phones (e.g. 
INRIX, TomTom, Cellint). 



 
 

16 

 Technology Advantage Disadvantages Description 
P

ro
ce

ss
in

g 

Queue detection 
algorithm 

This system offers 
the ability to monitor 
and override the 
messages as needed. 
 

MTO’s current 
system is an 
Advanced Traffic 
Controller (ATC) 
based system near 
the end of its design 
life. MTO is currently 
exploring alternative 
options which may 
include Software-as-
a-Service (SaaS) or 
server-based 
systems. 

Upon determination of a queue, 
the appropriate information can 
be issued to message signs 
and/or traveler information 
systems. 

In
fo

rm
at

io
n

 D
is

se
m

in
at

io
n

 

Static Queue 
Warning Signs 

Low cost 
Contact closure input 
allowing for 
simplified integration 

Limited visibility and 
applications 
No time or distance 
information is 
provided 

A static sign advising to “Watch 
for Slow Traffic” accompanied by 
flasher beacons. Flasher beacons 
are actuated when a 
downstream queue is detected. 

Hybrid Queue 
Warning Signs 

Low cost and lower 
power compared to 
other variable 
message sign options 

Combination of static 
and variable text 
may hinder 
readability 

Like the static queue warning 
sign with the addition of a 
single-line VMS providing the 
distance to the queue 

Permanent 
Portable Variable 
Message Sign 

VMS provides 
additional messaging 
options 
Medium cost 
Large sign face for 
detailed messaging 
and high readability 
across all lanes 

Low, roadside 
deployment may 
limit visibility to 
drivers across all 
lanes 
Does not provide 
clean, permanent 
aesthetics 

Portable variable message signs 
(PVMS) deployed on a concrete 
pad to provide a “permanent” 
application 

Overhead Variable 
Message Sign 

Large sign face for 
detailed messaging 
and high readability 
across all lanes 
Can be used for 
alternate 
applications when a 
queue is not present 

High cost Typically used for multi-purpose 
applications such as congestion, 
safety, and traveler information 

Pole-mounted 
Variable Message 
Sign 

Great readability 
across all lanes with a 
higher mounting 
height 
Can be utilized for 
alternate 
applications when 

Moderate to high 
cost 

Permanent, roadside pole-
mounted option 
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 Technology Advantage Disadvantages Description 
the queue is not 
present 
Finished design and 
look 

Portable Mounted 
Variable Message 
Sign (PMVMS) 

Great readability 
across all lanes with a 
higher mounting 
height 
Flexibility in 
deployment locations 
Can be utilized for 
alternate 
applications when a 
queue is not present 

Originally designed 
for temporary 
applications 
Typically used for 
construction or 
special event 
applications, not 
providing dedicated 
queue warning 
function 

Can be deployed on the median, 
separator or roadside using a 
temporary concrete barrier 
system 

 
Queue length and queue discharge rates are key performance measures for urban street networks that consist 
of signalized intersections that contribute to the traffic shockwave. Urban spatial-temporal traffic flow 
congestion are characterized by these main components: traffic incidents, work zones, daily flows activity 
patterns, anomalies of flows activity patterns, weather, special events, traffic control devices, and inadequate 
capacity (Crawford et al. 2011, Xie et. al 2019). Contributing factors can include left-turn spillback, traffic from 
side streets, traffic signal timing and queue storage capabilities.  

Numerous studies and models examined probe vehicles with sensors and probe data as methods for identifying 
and/or estimating traffic conditions. A proposed model using a two-way bandwidth maximization approach 
considers the turning traffic from side streets especially when the traffic volume is relatively high and the 
spacing between arterial intersections is short. Results showed a reduction in the overall network average 
delay and number of stops per vehicle (Chen et. al 2019). Zhang et al. (2020) examined a cycle-based EOQ 
estimation method using sampled vehicle trajectory data under relatively low penetration rates that resulted in 
desirable accuracy using different scenarios, e.g., under-saturated, oversaturated, and queue spillback 
conditions. Yin et al. (2018) used low-penetration mobile sensor data as the only input as a queue length 
estimation method based on the combination of Kalman Filtering and shockwave theory. Yao and Tang (2019) 
looked at point detector placement method to estimate the cycle-based queue length at signalized 
intersections considering spillover. Detector data at the upstream intersection approach are used to modify the 
volume data of the downstream intersection when long queue occurs, and the effect of spillover can thus be 
formulated analytically using the shockwave theory. An integer-programming model was evaluated to estimate 
queue length and guarantee the consistent reconstruction of shockwave propagation by comparing the 
estimated queue length with observed queue length in every signal period based on simulation data. Results 
demonstrated the model’s ability to estimate queue length and the required penetration rate of floating 
vehicles (Guo et al. 2019). Christofa et al. (2016) developed and tested a queue spillback detection method 
using CV data and CV data combined with information about the signal settings at the upstream intersection 
and is based on a kinematic wave theory of traffic. Results show the penetration rate thresholds of CV-
equipped vehicles required for accurate queue detection and the proposed signal control strategy improved 
traffic operations for the upstream cross streets without compromising traffic operations on either direction of 
the arterial traffic and substantially reduced the variation of the queue length on the critical arterial link. 
Results of a study conducted using a new arterial coordination control model for two-way arterial progression 
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solely using sampled trajectories shows that the optimization of fixed-time arterial coordination control solely 
using sample trajectories is feasible (Yao et al. 2019). 

Adaptive signal control usually offers high benefits as it relies on real-time traffic flow information as input, 
such as traffic volume, queue length, delay, travel speed, and travel time. Vehicle trajectory data was used to 
estimate traffic parameters at signalized intersections based on a framework combining shockwave analysis 
(SA) and Bayesian Network (BN) (Wang et al. 2020). A real-time adaptive traffic signal control method for 
managing spillbacks along signalized arterials used partitioning of the arterial to detect critical cluster(s) of 
consecutive links with oversaturated traffic conditions. Results showed that an advanced queue length 
detection method and specific focus on queue spillbacks prevention can significantly reduce congestion and 
arterial total delay (Ramezani et al. 2017). Chen et al. (2015) used an optimization (SO) algorithm to design the 
most appropriate adaptive signal plan for a highly congested urban network with multimodal traffic, numerous 
signalized intersections, short links and a grid-type topology. Results showed the proposed signal plans 
improves traffic conditions as measured by a variety of performance metrics. 

Mercader et al. (2019) presented a max-pressure algorithm for traffic signal control that offers scalability, 
stability, and distribution. The new, modified version improves the practical applicability of the max-pressure 
controller by considering travel times instead of queue lengths as input. An extended backpressure algorithm 
(EBP) considers the trade-off of pressure differential and traffic status of downstream links to prevent queue 
spillback and improve performance of whole traffic network. Results showed that the coordination of 
neighboring intersections should be considered in the future work due to the impacts of approaching vehicles 
from upstream links that will generate pressure to the downstream intersections (Hao 2020). 

Perimeter control strategies for urban networks commonly use a macroscopic fundamental diagram (MFD) 
model. Ingole et al. (2019) investigated the side-effects (in terms of the queue, emission, and total time spent) 
of perimeter control strategy inside-and-outside of the perimeter. Simulation results show significant 
improvements in the total time spent and mean speed in the network with a minor increase in the queues. 
Wang et al. (2017) looked at the effect on the MFD from queue spillbacks and presence of the hysteresis loop 
during the traffic unloading process. Using the MFD Wu et al. (2018) suggest a perimeter control strategy by 
assigning a special prohibiting phase to the perimeter traffic lights for the roads entering the core area. 
Simulations show that the average arrival rate and the average flow will be greatly improved with the 
perimeter flow control strategy and that it can increase the critical density of traffic congestion. A delay 
balancing strategy at the gated links under perimeter control was evaluated in microscopic simulation for a 
realistic traffic network and compared with fixed-time only, perimeter control without queue or delay 
management and perimeter control with relative queue balancing.  Results showed that managing the queues 
at the gated links not only improves the overall network performance but also reduces the possibility of queue 
propagation to the upstream junctions (Keyvan-Ekbatani et al. 2017).  

Cao et. al examined the development of a proposed online approach to detect traffic shockwaves on freeways, 
particularly the end-of-queue shockwaves, using spacing-based probe vehicles (SPVs) to the trajectories of its 
leading and/or following vehicles. This approach had four stages: (1) local shockwave (LSW) position detection, 
(2) LSW speed estimation, (3) grouping of LSWs into a whole shockwave (WSW), and (4) WSW speed 
estimation. There were two alternatives for stage 2 - the line connection-based method (LCM) and the Lighthill-
Whitham- Richards (LWR) model-based method (LWRM). Stage 4 alternatives were the simple average method 
(SAM) and the hybrid method (HM). A set of NGSIM data are utilized to evaluate the performance of the 
proposed method. The combination of LWRM+HM outperforms among the four combined methods. Analysis 
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indicates that the proposed method is computationally efficient, accurate, and more importantly it is applicable 
for sensor data from SPVs with real-world noise (Cao et. al 2018). 

The Minnesota DOT (MnDOT) has conducted several studies. As part of their Active Traffic Management (ATM) 
the MnDOT examined a queue warning system to manage the shockwave affect using two scenarios: (1) high 
crash rate due to rapidly evolving shockwaves and (2) longstanding queues extending into the freeway 
mainline. Results showed a 22% decrease in crashes and 54% decrease in near crashes for scenario 1 and a 
reduction in the speed variance near the queue locations and the speed difference between upstream and 
downstream locations for scenario 2 (Hourdos et al. 2017). Another MnDOT project looked at the DMAs such as 
the INFLO bundle applications that target maximizing roadway throughput, reducing crashes, and reducing fuel 
consumption through the use of frequently collected and rapidly disseminated data drawn from wirelessly 
connected vehicles, travelers’ communication devices, and infrastructure. Dynamic Speed Harmonization (SPD-
HARM) and Queue Warning (Q-WARN) were the INFLO bundle applications that were examined. The INFLO 
SPD-HARM concept uses V2I and V2V communication to detect impending congestion that might require speed 
harmonization, generate an appropriate target speed recommendation for upstream traffic, and communicate 
the recommendations to the affected. Recommendations are made through a traffic management center 
(TMC) or a similar infrastructure-based entity and then communicated to the affected traffic. Unlike the SPD-
HARM application which is infrastructure-based entity, the INFLO Q-WARN application uses V2I and V2V 
communication (in vehicle and/or infrastructure) to detect existing queues and/or predict impending queues 
and communicate advisory queue warning messages to drivers in advance of roadway segments with existing 
or developing vehicle queues (Hourdos et. al 2019).  

A study conducted in China used License Plate Recognition (LPR) systems at signalized intersections to record 
individual vehicles’ departure time at the stop-line of each approach lane to identify left-turn lane spillback in 
order to optimize signal controls. Results of the proposed method showed an average  identification rate of 
90% for all the left-turn phasing schemes, and achieves the highest 96% for the lagging and protected-only left-
turn phase (Wu et al., 2019).  

Popescu et al. (2017) discuss the collection of traffic data through V2I communications to facilitate automatic 
detection of traffic incidents in a highway scenario that are based on the use of distance and time for changing 
lanes, respectively vehicle speed changes over time. The proposed methods outperform alternative Automatic 
Incident Detection (AID) techniques through higher incident detection rates, about 25% shorter peak queue 
values and 20% faster dissipation of roadway congestion. 

Another approach at intersections is the use of graph theory which involves the applications of vertex 
connectivity and edge connectivity in traffic control problems at an intersection. The waiting time of the traffic 
participants can be minimized by controlling the edges of the edge connectivity and can be achieved by placing 
traffic sensors on each such edges of the edge connectivity of the transportation network which will provide 
complete information of the traffic network. As an alternative to above, sensors can also be placed on each 
vertex of the vertex connectivity of the transportation network for getting complete traffic information of the 
network (Tanveer 2016). Two vertices are represented as the flow connected by an edge if and only if the flow 
at the crossroads can be moved simultaneously without causing crashes. Influenced by the volume of traffic 
flows and the weights of the traffic flow, thus to be created a mathematical model in the form of the total time 
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of all flows function by establishing required conditions, such as minimizing running time of each flow 
(Setiawan and Budayasa, 2017) shows the direction of the 8 flows labeled a, b, c, d, e, f, g, and h (Figure 3).   

The flows are compatible which can be seen in the following: 
1. A flow a is compatible with the flows b, c, e, g, h 
2. A flow b is compatible with the flows a, c, e 
3. A flow c is compatible with the flows a, b, d, e, f, g, h 
4. A flow d is compatible with the flows c, g, h 
5. A flow e is compatible with the flows a, b, c, f, g 
6. A flow f is compatible with the flows c, e, g 
7. A flow g is compatible with the flows a, c, d, e, f, h 
8. A flow h is compatible with the flows a, c, d, g. 

 
In observation of the crossroads forms are assumptions, including: 

• The flow turn left (c) does not follow the light, meaning that the flow can move at any time by the 

waiting time 0 (zero). 

• The flow of the main street Darmo that turn left from the north (e) does not relate directly to the 

junction for the left turn lane there before the crossroads. 

• For other flow turn left (a and g) the movement of currents follow the light. 

• There is only one flow turn right (f) (Setiawan and Budayasa 2017). 

Traffic flow is always an issue for any roadway. Shelton et al. (2018) examined the potential effects of CV 
technology on congestion and mobility in a DTATexas context by modeling the traffic impacts of CVs at varying 
market penetrations on a twelve-mile section of I-35 in Austin at 2035 population levels. Researchers used a 
multi-resolution modeling (MRM) methodology mobility-focused applications, inspired by cooperative adaptive 
cruise control (CACC), speed harmonization, and queue warning applications which incorporates macroscopic, 
mesoscopic, and microscopic models. Figure 4 demonstrates the findings from the simulation-based modeling 
that showed counter-intuitive results when comparing to the consensus results of previous studies modeling 
CACC. On a heavily congested network, the effects of the Custom CV application were detrimental to the 
performance of the freeway in terms of mobility – speeds and total volumes were reduced while total travel 
times increase. 

Figure 3. Crossroads Example Darmo Street (Setiawan and Budayasa 2017). 



 
 

21 

 

Mekker et al. (2015) looked at 3 years of Indiana crash data and crowd-sourced probe vehicle data to classify 
crashes as being associated with queueing conditions or free-flow conditions. A new measure of crash rate was 
developed to account for the presence and duration of queues: crashes per mile-hour of congestion. Resulting 
trends were as follows: 

• Over the 3 years studied, 13% of fatal crashes occurred at the back of a queue. 

• 87% of fatal back-of-queue crashes involved at least one commercial vehicle. 

• Only 1-2% of the total mile-hours of interstate operated under congested conditions. 

• 90% of congested crashes in 2014 had a queue duration ≥ 5 minutes 

• 75% of congested crashes in 2014 had a queue duration ≥ 14 minutes 

• Overall congested crash rate was 24.1 times greater than the uncongested crash rate 

• Rural congested crash rate was 23.8 times greater than the rural uncongested crash rate 

• Urban congested crash rate was 20.7 times greater than the urban uncongested crash rate 

 

Gap in Literature 
Although the literature extensively covers the various data sources and their use for congestion and queue 

analysis, only a limited number of studies focused on the combination of multiple data sources for queue 

detection and queue warning applications.  There is a need to identify all challenges of fusing point detector 

data with crowd-sourced segment data, and to develop algorithms that can improve the accuracy and latency 

of queue detection under various data availability scenarios.  

  

Figure 4. Impacts of CV on congestion (Shelton et. al 2018). 
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Data Identification 
After a review of available datasets, the TTI research team identified the I-35 traveler information database and 
data collection system that has been successfully used for detecting congestion and queue formation along a 
100-mile segment of I-35 in Central Texas. The I-35 data suite incorporates a lane closure database and real-
time and archived traffic data from various data sources. Available traffic data include lane-level traffic volumes 
and spot-speeds from Wavetronix radar sensors, segment travel times and speeds from Bluetooth (and/or 
WiFi) readers, incident and traffic jam data as well as segment travel times and speeds from third-party traffic 
data providers. Both real-time and archived data are available from most of these data sources. This section 
describes available data sources and data types on I-35 in Central Texas, and provides details on their potential 
use for queue detection and queue warning applications. 
 

Data sources on I-35 
The Texas Department of Transportation (TxDOT) has undertaken a $2.1 billion reconstruction project of a 100-
mile section of the I-35 corridor located between Hillsboro and Salado in Central Texas. During reconstruction, 
TxDOT in collaboration with the Texas A&M Transportation Institute (TTI) has developed and deployed a 
traveler information system for providing real-time traffic information to travelers, freight operators and 
businesses along the corridor, so they can make informed travel decisions and route choices. The traveler 
information system deployed along the corridor has several advanced field components that provide real-time 
information on lane closures, travel times to the nearest major destination on the corridor, the existence and 
location of vehicle queues in advance of work zone lane closures, and available alternate routes. Wavetronix 
radar sensors, Bluetooth readers and CCTV cameras deployed along the corridor provide real-time data feeds 
and archived databases for the traveler information system. Bluetooth and Wavetronix locations on the I-35 
corridor are shown in Figure 5. 
 

Wavetronix Radar Sensors 
As shown in Figure 6, a radar-based Wavetronix uses a sensor installed on a roadside pole. Each radar is 
capable of lane-by-lane vehicle counts and classification and speed detection. If positioned properly, a single 
radar can collect the data in both travel directions. The sensor uses a unique pair of radar beams (a speed trap) 
projected across each traffic lane to detect vehicles and calculate their speeds and lengths on a per lane basis.  
The most common brand of this type of sensors uses central software that receives sensor data transmitted 
through messages.   
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Figure 5. Bluetooth and Wavetronix sensors on the I-35 corridor. 

 

 
Figure 6.  Radar-Based Detection. 
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Wavetronix data are archived and available in 15-min and 60-min intervals. A sample data set archived in 15-
minute intervals is illustrated by Table 3. Six-month average northbound volumes at 15 Wavetronix locations 
on I-35 are shown by the heat map on Figure 7, and the time series plots on Figure 8 through Figure 10. 

Table 3. Sample Wavetronix data archived in 15-minute intervals. 

 
Time 

Sensor 
 ID 

Location Volume Avg 
Speed 
MPH 

Avg  
Occup
ancy 

Total  
Lanes 

 
Num  

Samples Total  Small  Med Large 

4/7/2021  
0:00 

9218 IH-35 Southbound at  
TokioRd-West-MM351.7 

161 59 10 92 69 0 3 30 

4/7/2021  
0:15 

9218 IH-35 Southbound at  
TokioRd-West-MM351.7 

141 49 10 82 69 0 3 30 

4/7/2021  
0:30 

9218 IH-35 Southbound at  
TokioRd-West-MM351.7 

127 35 12 80 70 0 3 30 

4/7/2021  
0:45 

9218 IH-35 Southbound at  
TokioRd-West-MM351.7 

135 43 11 81 69 0 3 30 

4/7/2021  
1:00 

9218 IH-35 Southbound at  
TokioRd-West-MM351.7 

132 41 8 83 69 0 3 30 

 

 
Figure 7. Historical (Six-Month Average) NB Traffic Volumes on the I-35 Corridor. 



 
 

25 

 
Figure 8. Six-Month Average NB Traffic Volumes at Wavetronix Stations 1 through 6. 

 
Figure 9. Six-Month Average NB Traffic Volumes at Wavetronix Stations 7 through 12. 
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Figure 10. Six-Month Average NB Traffic Volumes at Wavetronix Stations 13 through 15. 

Data from Wavetronix sensors have been used for  

• Estimating the expected impact (delay and queue length) of planned lane closures. 

• Assessing the need for deploying portable queue warning systems for planned closures. 

• Find the best schedule for planned closures, i.e., closure time that is expected to have the least 
negative impact (minimum delay and shortest queues). 

• Identifying potential radar sensor issues (e.g., need for equipment adjustment due to change in 
roadway alignment). 

Bluetooth-based Segment Travel Time and Speed 
On the I-35 corridor, Bluetooth readers are deployed at an average of 4-mile spacing with a minimum distance 
of 0.9 mile and maximum distance of 11.5 miles between consecutive readers. Each BT-reader unit reads MAC 
addresses of passing-by mobile BT devices (vehicle-based or hand-held devices of occupants) and records the 
observation time and location, and wirelessly transmits them to TTI’s database server. Figure 11 illustrates this 
system. 
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Figure 11. Bluetooth-based Segment Travel Time and Speed Data Collection. 

The central computer software uses an address-matching algorithm to identify vehicles detected at adjacent 
stations and uses respective detection times and known distance between field devices to calculate the 
segment travel time for these vehicles. After calculating the travel times between designated pairs of Bluetooth 
readers and applying appropriate filters to remove outliers and invalid data, the data are archived and stored 
on the server. The archived data include travel times of individual vehicles with matched Bluetooth MAC 
addresses, and average segment travel times and speeds in 15-min intervals. Bluetooth-based post-event 
analyses of freeway work zones and incidents on the I-35 project have been used for 

• Assessing the impacts of lane closures, accidents, and special events on the corridor, both separately 
and in combination. 

• Determining mobility-related work zone performance measures at both the project- and corridor-
levels. 

Data from Existing Queue Warning Systems (iCone) 
The TxDOT in collaboration with TTI have been deploying portable queue warning systems for work zones in 
the I-35 reconstruction project. The portable queue warning system used iCone® portable traffic monitoring 
devices. An iCone® is a self-contained, battery-powered unit that consists of a radar detector, GPS antenna, 
cellular and backup satellite communication capabilities, and processor.   

The deployment procedure starts with the prediction of queues that a lane closure was expected to create. An 
input-output analysis is performed using traffic demands calculated from 

• historical volumes measured on the approach to the work zone and  

• the estimated reduced capacity of the lane closure.   

If a queue was expected to occur, then a queue warning system is deployed at that location. The queue 
warning systems have been deployed in two configurations depending on the expected lengths of the longest 
queues. The first configuration consists of speed sensors installed at the lane closure taper and at 0.5, 1.5, and 
2.5 miles upstream of the taper; a PCMS is placed at 3.5 miles upstream of the taper, as illustrated by Figure 12.   
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Figure 12. iCone Deployment Configuration Layout. 

When queues longer than 3 miles are expected, additional sensors are installed at 3.5, 4.5, 5.5 and 6.5 miles 
upstream of the taper, and an additional PCMS is placed at 7.5 miles upstream of the taper. Message selection 
logics for the two queue warning system configurations are shown in Figure 13 and Figure 14, respectively. 
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Figure 13. Message Selection for Queues up to 3 miles (Source: iCone). 
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Figure 14.  Message Selection for Queues up to 7 miles (Source: iCone). 
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Third-Party Traffic Data 
Third-party traffic data providers offer crowdsourced traffic information and probe vehicle data over a large 
portion of the roadway network. The data may include segment travel times and speeds, and information on 
incidents, road construction, weather and road conditions. The segment travel times and speeds are provided 
as averages over predefined time intervals (e.g., 1, 5, 10 or 15 minutes). TxDOT and TTI have access to third-
party traffic data from WAZE and INRIX. A major benefit of these crowd-sourced third-party data is that they 
can be collected without the need for the deployment and operation of physical infrastructure, and they 
provide broad coverage over the road network.     

Waze Data 
Agencies can access WAZE’s crowd-sourced incident data through the Waze for Cities (formerly: Connected 
Citizen Program). In exchange, they are expected to share their own incident and/or work zone data feed with 
WAZE. Data sharing with partners of the Waze for Cities program has the following mechanisms: 

• Data are available for partners through a localized XML or JSON data feed that is updated every two 
minutes. 

• Partners can define a data collection polygon to delineate the area where data must be collected from.  

• A web-interface called Traffic View Tool is available. Using this web-interface partners can access real-
time user-reported incidents and estimated travel times along preselected routes. 

• Waze also offers email updates on unusual traffic that can be sent to anyone in the partner 
organization. 

Figure 15 shows the data collection polygon for the I-35 corridor. 

A Waze data feed contains the following data types: 

• Traffic incidents: jams, accidents, hazards, construction, potholes, roadkill, stopped vehicles, objects on 
road, missing signs reported by our community of mobile users. 

• System-generated traffic jams: location and speed data associated with slowdowns below average 
speed for a particular segment for the time of day/day of week identified by analyzing user GPS signals. 

Each alert gets reliability and confidence scores (based on a scale of 0 to 10) based on other user’s reactions 
(e.g., ‘Thumbs up’, ‘Not there’ etc.). Higher scores indicate more reliable reports.  

Waze generates traffic jam information by processing the following data-sources: 

• GPS location-points sent from users’ phones (users who drive while using the app) and calculations of 

the actual speed vs. average speed (on specific time-slot) and free-flow speed (maximum speed 

measured on the road-segment). 

• User-generated reports - reports shared by Waze users who encounter traffic-jams. These appear as 

regular alerts. 
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Figure 15. WAZE Data Collection Polygon for the I-35 corridor in Central Texas. 
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INRIX Data 
INRIX probe data include segment travel times and speeds measured over two types of road segments: TMC 
(Traffic Message Channel) segments and XD (eXtreme Definition) segments. TMC segments generally cover a 
stretch of road from one exit or entrance ramp to the next, and there is a large variation in their lengths. DX 
segments cover more roadway miles than TMC segments, and generally with greater granularity. The 
distributions of TMC and DX segment lengths along the I-35 corridor in Central Texas are shown in Figure 16, 
and basic segment length statistics are shown in Table 4. 

 

 

Figure 16. Distribution of INRIX TMC and XD Segment Lengths on I-35 in Central Texas 
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Table 4. INRIX segment lengths statistics on I-35 in Central TX. 

 TMC segment length (miles) XD segment  length (miles) 

 NB SB NB SB 

Minimum 0.012 0.010 0.263 0.245 

Maximum 2.023 2.931 0.965 0.992 

Average 0.634 0.685 0.579 0.596 

Std. Dev. 0.494 0.581 0.160 0.154 

 

Probe data from both segment types may be used for detecting congestion and estimating delays, but data 
from DX segments typically provide more accurate queue detection.  
There are significant differences between the above-mentioned data sources in terms of their data types, 
spatial coverage, spatial and temporal resolution, and latency. Table 5 provides a comparison of key 
characteristics of available data sources that may be used for queue detection. 
 
Table 5. Comparison of Data Sources Available for Queue Detection  

Data source 
characteristics 

Data Source 

Sensor 
Data 

Bluetooth/WiFi 
Waze 

INRIX 

Application for 
congestion and 
incident 
detection and 
queue warning 
 

Most common. 
Widely used in 
major cities and 
on freeway 
corridors 

More and more 
common because 
of its cost-
effectiveness 

Many state and 
local agencies use 
it through the 
“Waze for cities” 
partnership 
program. 

More and more 
agencies use it for 
congestion and 
queue detection. 
(e.g., INDOT & 
Purdue used INRIX 
data to detect BOQ 
in work zones).  

Data types Spot speed, 
Volume, and 
Occupancy 
aggregated over 
selected time 
intervals (e.g., 20-
sec, 30-sec, 1 min) 

Segment travel 
times and speeds 

Alerts, traffic 
jams, and 
irregularities 

Segment travel times 
and speeds.  
 

Queue 
detection  

Queued state of a 
sensor location is 
determined using 
pre-defined speed 
or occupancy 
thresholds 
BOQ is detected 
by comparing 
threshold-based 

Queued state of a 
BT or WiFi 
segment is 
determined using 
pre-defined 
speed or travel 
time thresholds.  
 

Alerts can 
identify potential 
bottleneck 
locations. 
Traffic jam may 
also identify 
congested 
segments. 

Agencies can 
develop their own 
queue detection 
logic that uses the 
segment speeds 
obtained from a 
third-party data 
provider  
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Data source 
characteristics 

Data Source 
Sensor 
Data 

Bluetooth/WiFi 
Waze 

INRIX 

queued states of 
consecutive 
sensor locations 

Proprietary Queue 
Detection logic 
developed by the 
third-party data 
provider may also be 
available (e.g., INRX’s 
Dangerous 
Slowdown 
application) 

Lane-by-lane 
queue detection 

YES – using high-
definition 
microwave 
radars, loop 
detectors, or 
video image 
processing. 

N/A N/A 
 

Until recently it was 
not possible, but 
new developments 
of INRIX AI Traffic 
may include some 
lane-level detection 
capability in the 
future 

Queue 
detection 
accuracy 

Accuracy depends 
on 
sensor spacing 
and 
data aggregation 
interval 
If shockwave 
speed is known, 
accuracy can be 
improved 

Queue detection 
accuracy depends 
on 
segment length 
and number of 
vehicles detected 

Can provide 
approximate 
locations of 
traffic slowdowns 
but cannot detect 
the locations of 
BOQ. 

Queue detection 
accuracy depends on 
segment length 
(INRIX DX segment < 
0.5 mile) and 
number of vehicles 
detected. 

Queue 
information 
timeliness 

Depends on 
length of time 
interval for data 
aggregation and 
warning message 
update. 

Depends on 
length of BT/WiFi 
segments and 
time interval for 
data aggregation. 

Waze data feed is 
updated in every 
2 minutes.  
Detection of 
traffic jams may 
take much 
longer. 

Information may 
have a latency of 3-5 
minutes. 

Queue 
prediction 
ability 

Locations, times 
and length of 
queues under 
recurring 
congestion can be 
predicted using 
archived historical 
data.  

Short-term 
prediction of 
BOQ location 
may be possible 
based on 
shockwave speed 
observed during 
queue formation. 

N/A Locations, times and 
length of queues 
under recurring 
congestion can be 
predicted using 
historical data 
archived by the 
third-party data 
provider. 
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Data source 
characteristics 

Data Source 
Sensor 
Data 

Bluetooth/WiFi 
Waze 

INRIX 

Short-term 
prediction using 
shock wave 
estimates is also 
possible 

Spatial coverage 
 

Covers major 
corridors and 
arterials. Spacing 
typically varies 
between 0.5 – 1 
mile. 
 

Covers a selected 
few corridors and 
major arterials. 

Covers all roadways where third-party 
provides service and collects traffic 
related data 
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Congestion and Queue Analysis 
This section includes examples using data from the I-35 corridor to illustrate how the data sources identified in 
Task 2 may be used to (1) improve the detection of congestion and formation of queues, and (2) minimize the 
negative impacts of congestion for travelers. The selected applications include: 

• Post-event traffic performance assessment and queue analysis. 

• Queue detection using data from multiple sources 

• Optimal scheduling of road construction activities and special events. 

The first and third applications use archived historical data, while the second application uses real-time data. 

Post-Event Traffic Performance Assessment and Queue Analysis 
Regular feedback on the performance of the traveler information system along the I-35 corridor is essential to 
the goal of reliable system operation. To provide this feedback post-event evaluations have been performed for 
all significant main lane and freeway closures as well as special events along the corridor. The impacts of lane 
closures or special events are quantified in terms of travel time delays determined from Bluetooth data and 
queue analysis using third-party data.  

Travel Time and Delay Estimation 

Travel time delay (D) over a single Bluetooth segment is calculated as:   

 

𝐷 =  𝑡𝐵𝑇 − 𝐿𝐵𝑇 𝑣𝐹𝐹⁄           (1) 

 
where 

tBT : observed travel time over the Bluetooth segment 

LBT : length of Bluetooth segment 

vFF : free-flow speed 

 

To estimate delay over a roadway segment consisting of multiple Bluetooth segments, the travel times 
obtained for each consecutive Bluetooth segment needs to be aggregated first. The Bluetooth segment 
aggregation process is illustrated using a simple example consisting of four Bluetooth readers numbered as 0, 1, 
2, and 3 in the direction of travel (from right to left), as shown in Figure 17. The temporal variations of segment 
travel times are defined by functions t1(.), t2(.) and t3(.) for BT segments 1, 2, and 3, respectively. If a vehicle 
arrives at the last Bluetooth reader (3) at time τ, then its travel time through Bluetooth segment 3 is t3(τ), and 
the aggregated travel time T over all three Bluetooth segments can be calculated as: 

𝑇 = 𝑡3(𝜏) + 𝑡2[𝜏 − 𝑡3(𝜏)] + 𝑡1{𝜏 − 𝑡3(𝜏) − 𝑡2(𝜏 − 𝑡3(𝜏))}    (2) 

 

where  

t3(τ): lag between travel times in Bluetooth segments 3 and 2 

t2(τ-t3(τ)): lag between travel times in Bluetooth segments 2 and 1 

 
This aggregation process takes into account the dynamically changing travel time lag in each Bluetooth 
segment. 
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Figure 17.  Aggregating Bluetooth Travel Times over Consecutive Segments 

The major steps of a post-event impact analysis of work zone lane closures or incidents are summarized in  
Figure 18. Figure 19 illustrates the application of this method for assessing the impact of a night-time 
construction on I-35 north of Temple, TX. The road construction required the closure of all northbound main 
lanes of I-35 while traffic was diverted to the frontage roads. The travel time and delay graphs on Figure 19 
show that the maximum delay caused by the freeway closure exceeded 2 hours, and occurred at approximately 
11:15 pm. The speed profiles (scatter plots with green dots) for the four Bluetooth segments indicate that there 
was significant congestion and queuing between 6:30 pm and 3:30 am. 
 

Figure 18. Steps of Post-Event Impact Analysis 

BT segment 3 BT segment 2 BT segment 1

Direction of Travel

t3(τ) 

τ 

t3 t2 t1

t2(τ-t3(τ)) 

τ τ 

t3(τ) 

t3(τ) 

t2(τ-t3(τ)) 

t1(τ- τ-t3(τ)-t2(τ-t3(τ)))

0123

Data Preparation Delay Calculation

Presentation of Results

Queue Estimation

Lane Closure Data
Lane Closure Database of 

Construction and Maintenance 
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• Closure Location (Beginning & End MM)
• Direction of Travel

• Start & End Date/Time

Time Series Plot of
• Delay
• Travel Time
• Speed for each BT-segment

Map Indicating
• Closure Location
• Bluetooth Devices & Segments

Identify Potentially Affected 
Bluetooth Segments

• BT-Reader ID

• Mile Marker

Download Archived Bluetooth Data
For Selected BT-segments

& Time Periods

Database Server
for Archived

Bluetooth Data

Estimate Boundaries of 
Longest Queues

Based on Speed Threshold for 
Queues

(e.g., v < 0.75* Free-Flow Speed)

Agregate Bluetooth Segment 
Travel Times

Calculate Delay

Based on the Difference of Actual 
and Free-Flow Travel Times

Summary Results
• Maximum Delay
• Effected Bluetooth Segements
• Estimated Queue Boundaries 
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Figure 19.  Impact of a Freeway Closure on I-35 NB 

In addition to evaluating the impacts of single construction projects, the method has also been used to 
determine the combined daily impacts of construction projects and incidents on selected segments of the 
corridor. This so-called Daily Postmortem (DPM) has been routinely performed to determine 15-minute 
average travel times and delays over 24-hour periods on the following three segments: 

• between Hillsboro and Waco, 

• between Waco and Temple, 

• between Temple and Salado.   

Figure 20 shows the major steps of DPM, and Figure 21 illustrates its application for a Saturday on October 23, 
2021.  
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Figure 20. Major Steps of Daily Postmortem.  

 
Figure 21 includes 24-hour time series plots and maximum values of travel times, delays and travel-time index 
(TTI) for all three segments, as well as letter grades “A” through “D” that characterize traffic conditions in each 
direction on the entire corridor. Grades are assigned based on delay thresholds defined in Table 6. 
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Figure 21. Illustration of a Daily Postmortem for I-35 

Table 6. Delay-Based Traffic Condition Grades in Daily Postmortem 

Grade Max. Delay 

A 0 min < D <= 10 min 

B 10 min < D <= 20 min 

C 20 min < D <= 30 min 

D 30 min < D <= 60 min 

F 60 min  < D  
 
The DPM results in Figure 21 indicate delays considerably higher than usual on the southbound segment 
between Hillsboro and Waco.   

Congestion and Queue Analysis 
When significant delays are observed, additional congestion analysis may be performed to identify the location 
of bottlenecks and capture the formation and propagation of vehicle queues. For I-35, such congestion and 
queue analysis have been conducted using data from INRIX’s XD (eXtreme Definition) segments and the 
Congestion Scan tool included in the Probe Data Analytics (PDA) Suite of the Regional Integrated Transportation 
Information System (RITIS) developed by CATT Lab at University of Maryland (Ref: https://pda.ritis.org/suite/).  
The speed heat map in Figure 22 shows traffic conditions for a typical Saturday when no major incident 
occurred, and no construction activities took place on I-35 Southbound between Hillsboro and Waco. Figure 23 
shows the speed heat map of the same roadway segment for Saturday, October 23, 2021, when a vehicle 

https://pda.ritis.org/suite/
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collision occurred soon after 6 AM at mile marker (MM) 334.  The incident-induced congestion and queuing can 
be clearly identified by the dark-red area indicating speeds below 10 mph on the left side of Figure 23.   

 
Figure 22. Speed Heat Map Showing Typical Saturday Traffic Conditions on I-35 SB between Hillsboro and Waco on Saturday, Oct 16, 
2001. 

 
Figure 23. Speed Heat Map Showing Unusual Congestion on I-35 Southbound between Hillsboro and Waco on Saturday, Oct 23, 2001. 

Figure 24 captures the main results of queue analysis. A vehicle queue began forming upstream MM 334 about 
10-15 minutes after 6 AM and propagated upstream at a speed of approximately 6 mph, reaching a queue 
length of about 3 miles within the first 30 minutes. As traffic volumes increased, the queue slowly grew to 
lengths of 3.5 to 4.5 miles between 7:45 AM and 9:45 AM. The maximum queue length was 5.5 miles between 
10 AM and 10:25 AM. The queue cleared and traffic returned to normal conditions at about 10:40 AM, 15-20 
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minutes after the incident was cleared. Figure 24 also makes it possible to identify the position of back of 
queue on the map at any time during the queuing process.  

 
Figure 24. Queue Analysis Using Speed Heat Map on I-35 Southbound in Waco on Saturday, Oct 23, 2001. 
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Queue Detection Using Data from Multiple Sources 
This section describes an approach to queue detection using a combination of data available from two different 
sources, traffic sensors and third-party data providers. Data from these two sources have different spatial 
coverage and temporal resolutions because of the way they are collected, aggregated, and transmitted. 
Traditional sensors provide average spot data (speed, volume, and occupancy) which are collected for each 
lane. Third-party data sources provide travel times and average travel speeds over predefined segments 
without lane-level detail. Data from the two sources also differ in their latencies. Sensor data has a minimum 
latency of 20 or 30 seconds depending on the data aggregation level. Third party probe data latency typically 
ranges from 3 to 4 minutes. These differences present some challenges in finding the best combination of the 
two data sources for queue detection.  

To address these challenges, a two-step approach is proposed, that is performed in each time step of the 
queue detection process: 

• Step 1: Determine queue parameters from each available source separately 

Determine the locations of Back of Queue (BOQ) and Front of Queue (FOQ), and calculate shock wave 
speeds using data measured in the current time step or predicted using data from previous time steps.  

• Step 2: Choose the best queue parameter estimates from Step 1  

Select the best estimates of BOQ, FOQ and shockwave speed for the given time step. Details of the approach 
are described and illustrated below. 

Queue Estimation from Each Available Source 

Queue Estimation from Sensor Data 
Estimation of BOQ and FOQ from sensor data is illustrated through a queueing example shown in Figure 25. 
The top part of this figure shows a three-lane freeway segment with ten sensor stations (SS), which measure 
lane-by-lane speeds. An incident just upstream of SS 2 blocks the two right lanes (lanes 2 and 3) causing the 
formation of a queue. Average speeds measured at individual sensors are compared to a pre-defined queue 
threshold (e.g., 15 mph) to determine if traffic flow at a sensor location is queued or not. Red colored bars 
indicate sensors where traffic is queued. Green colored bars are used for sensors where the average speed is 
above the queue threshold.  

Figure 25 shows a situation with differing queue characteristics in the three lanes. Lane 1 has the shortest 
queue, which extends upstream of SS 3. In Lane 2, the BOQ is located upstream of SS 7. However, at this instant 
in time, average speeds of vehicles at SS 5 are above queue threshold. Thus, there are two distinct queues in 
this lane. Lane 3 has the longest queue that propagated upstream beyond SS 8.  
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Figure 25. Queue Detection Using Infrastructure Sensor Data. 

For numerical processing, queue conditions can be captured by a queue indicator matrix shown at the bottom 
of Figure 25. The rows of the matrix, represent lanes, and columns represent sensor stations. Cell values of 1 
and 0 indicate queued and non-queues states, respectively. The matrix is depicting the current state of the 
roadway system shown in the top part of the figure. For queue warning purposes, BOQ in each lane is the most 
upstream position (cell) with a value of 1. The red lines with double arrowheads indicate that the actual queue 
at this time can be anywhere between this location and the next upstream sensor. The FOQ in each lane is the 
most downstream cell with a value of 1. The horizontal green lines with double arrowheads indicate that the 
actual FOQ position at this time can be anywhere between this location and the next downstream sensor.  
The flow chart in Figure 26 captures the above-described process for a single time-step of BOQ and FOQ 
estimation using sensor-based spot speeds. This logic consists of two nested loops. The outer loop steps 
through all lanes, while the inner loop steps through all detector stations for the current lane. It determines the 
queued state of each sensor and updates cell values of the queue indicator matrix. BOQ and FOQ for the 
current lane are updated when all calculations for the corresponding row are complete.  

 
Figure 26. A Single Time Step of Queue Detection Using Sensor Data. 

Queue Estimation from Third-Party Data 
Queue estimation using third-party data is illustrated in Figure 27. This is the same roadway and queueing 
example shown in Figure 25. There are eight segments where third-party probe data are collected and 
available. Probe vehicles that are detectable by the third-party traffic data provider are indicated by green 
color. A roadway segment is identified by a red arrow if traffic in the segment is queued, and green arrow if 
traffic is non-queued. Average segment speeds are compared to a pre-defined queue threshold to determine if 
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traffic in that segment is queued or not. Since segment travel times and speeds are averaged across all lanes, 
queue detection at lane-level is not possible. Figure 27 shows that segments 2, 3, and 5 are in a queued state.  

 

Figure 27. Queue Detection Using Third-Party Data. 

Queued and non-queued segments may be represented by a queue indicator vector with values of 1 and 0.  
Here, three cells, corresponding to the segments indicated by red arrows, have values of one. BOQ location is 
at the upstream end of the most upstream queued segment. FOQ is at the downstream boundary of the most 
downstream queued segment. As in the case of sensor data, this information may be combined with positions 
of previously detected BOQ and FOQ locations to calculate shockwave speeds.  

The flow chart in Figure 28 shows a single time step of queue detection using third-party data. This logic is 
similar but simpler than the one described above for spot sensors. In certain time steps, segment data analysis 
may not detect any change. In fact, there might be several contiguous time steps without any detected change 
in queue conditions. 

 

Figure 28. A Single Time Step of Queue Detection Using Third-Party Data. 

Queue Estimation and Prediction 
In the second step of queue detection, the most likely position of BOQ is determined by comparing queue 
estimates available from the two data sources in each time step.  When all sensors are working as intended, 
and current queue estimates from sensor data are available, sensor data are preferable to third-party data.  
Sensor data allow queue estimation at lane-level, while third-party data do not. Also, latency of queue 
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detection using third-party data is typically longer than using sensor data. However, when timely queue 
estimates from sensors are not available, third-party segment data may be used. Table 7 provides a guide for 
BOQ detection under different scenarios of data availability from sensors and third-party data.  
 
Table 7. Data Availability Scenarios Considered in Queue Detection. 

BOQ determined 
using measured data 

from 

BOQ predicted using 
shockwave speeds 

estimated from  Comment 

Sensors 3rd Party Sensors 3rd Party 

BOQSEN BOQ3RD Pred-BOQSEN Pred-BOQ3RD 

X Any Any Any  

- X - Any  

- X X* Any *Age of Pred-BOQSEN > Latency in 3rd party data. 

- X X** Any **Age of Pred-BOQSEN <= Latency in 3rd party data. 

- - X Any  

- - - X  

- - - - Cannot update BOQ position 

X Available for current time step 

X Use this for BOQ determination 

- Not available for current time step 

Any Either available or not available 

 

At any time during queue detection, a BOQ estimate may be available from data measured in the current time 
step (first two columns) or it may be predicted using data from previous time steps (second two columns). 
Table rows represent different scenarios depending on the availability of BOQ and predicted BOQ in a queue 
calculation time step, and the green shaded cells indicate recommended BOQ selection. The first row 
represents all cases where sensor-based queue estimates are available for the current time-step, and estimates 
from other data sources may or may not be available. In such cases, use sensor-based estimates for BOQ and 
shockwave speeds for prediction. Rows 3 and 4 desribe scenarios when sensor-based BOQ estimate is not 
available, but sensor-based BOQ prediction is available for the current time step. In such cases, the following 
logic is recommended for BOQ selection based on the age of predicted BOQ: 

IF (Age of Pred-BOQSEN > 3rd party data latency) THEN  
BOQ =  BOQ3RD 

ELSE 
BOQ =  Pred-BOQSEN 

ENDIF 

Other rows describe scenarios with different combinations of available queue estimates and predictions from 
various data sources. The last row accounts for the case when there is no queue estimate available for the 
current time slice from any of the data sources. This scenario can occur under uncongested conditions without 
any queue, or when queue started forming but not yet detected by either of the two data sources. A legend 
provided at the bottom of the table describes the meanings of cell entries. 
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The flow chart in Figure 29 shows the BOQ estimation logic using sensor and/or third-party data. In this 
illustration, the queue detection application runs from T_Begin through T_End, using a calculation time-step of 
Δt. The length for Δt should not be less than the time it takes to receive and process input data. Processing time 
includes the time required for data checks, data aggregation, queue detection/prediction and queue warning 
message generation.  
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Figure 29. Flow Chart for BOQ Estimation from Sensor and Third-Party Data. 
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Optimal Scheduling of Road Construction Activities and Special Events 
Road construction, utility work or special events often require the closure of one or more roadway lanes for a 
certain time period. The impacts of such closures depend on the number of lanes closed, the closure time and 
duration. The number of lanes to be closed and the duration of the closure is typically determined by the 
nature of the required work or event, but there is often some flexibility in the timing/scheduling of closures.   
There have been several studies focusing on the optimization of road construction and maintenance projects.  
For example, S. Chien and P. Shonfeld (2001) developed a method to optimize work zone lengths on four-lane 
highways where one lane in one direction at a time is closed. Their model finds the work zone length that 
minimizes the total cost, including agency cost, accident cost, and user delay cost.  
 
This section describes a process to find the most appropriate schedule that minimizes the negative impact of 
construction, utility work or special events that require partial or full closure of a roadway. The impact is 
measured by the expected length of longest queue generated by the lane closure. The next subsection 
describes the lane closure scheduling method and algorithm followed by an illustrative example. 
 

Method and Algorithm 
The objective is to find the optimal schedule (start time) for a planned lane closure of fixed duration (T). The 
optimal schedule is defined by the lane closure start time t* during the week that is expected to create the 
shortest maximum queue length (i.e., the minimum number of vehicles stored in the queue S(t*)): 

𝑆(𝑡 ∗) = 𝑀𝐼𝑁
∀𝑡𝑖 ∈ 𝑤𝑒𝑒𝑘

{ 𝑀𝐴𝑋
𝑡𝑖 ≤ 𝑡𝑖𝑗 ≤ 𝑡𝑖+𝑇

[𝑆(𝑡𝑖𝑗)]}       (2) 

 
The number of vehicles in queue S(tij) is calculated for all possible lane closure start times during the week. The 
calculation is performed by running an input-output analysis in a dual loop. In the outer loop, different lane 
closure start times (ti) are assigned, starting from Sunday 12 AM and incremented through the entire week in 
selected time steps (e.g. 1 hour or 15 minutes). The inner loop calculates the number of queued vehicles for the 
entire lane closure duration T, and then finds the maximum number vehicles stored in the queue: 

𝑆(𝑡𝑖𝑗) = 𝑆(𝑡𝑖𝑗−1) + 𝐼(𝑡𝑖𝑗) − 𝑂(𝑡𝑖𝑗); 𝑡𝑖 ≤ 𝑡𝑖𝑗 ≤ 𝑡𝑖 + 𝑇 ; ∀𝑡𝑖 𝑓𝑜𝑟 𝑒𝑛𝑡𝑖𝑟𝑒 𝑤𝑒𝑒𝑘

   
𝑂(𝑡𝑖𝑗) = 𝑀𝑖𝑛[𝑆(𝑡𝑖𝑗−1) + 𝐼(𝑡𝑖𝑗) ,  𝐶]

            (3) 

where 
S(tij)  = number of vehicles stored in queue at time tij 
I(tij)  = number of arriving vehicles in the time step starting at time tij 
O(tij)  = number of departing vehicles in the time step starting at time tij 

C = work zone capacity 

The steps to determine an optimal schedule is summarized in Figure 30. 

The required input includes work zone capacity and a historical time series of vehicle flow rates measured at a 
point upstream of the planned lane closure. Note that work zone capacity does not have to be constant; the 
method can easily accommodate capacities that vary over the time of the closure. 
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Figure 30. Logic for Determining Optimal Closure Schedule. 

Lane Closure Scheduling Example 
To illustrate the use of the method, a 16-hour planned lane closure is considered. One of the two northbound 
main lanes of I-35 is to be closed, and the best closure start time (i.e. the one that is expected to create the 
shortest queues) is to be determined. The last six months of hourly traffic volumes collected by a Wavetronix 
radar sensor located a few miles upstream of the planned closure is used to calculate an average time series of 
hourly traffic volumes for a week.  

The volume time series is shown in Figure 31. Three work zone capacities (1100, 1300 and 1500 vphpl) were 
considered in the calculation of the expected queues. 

Historical hourly volumes 
at planned closure location

Data on Planned Closure
• Location and direction
• Duration (T)
• Lanes closed (Capacity reduction)

Initial closure start time
tCS = Sun 00:00

Input-Output Analysis 
for planned closure with 

start time tCS and duration T

Determine longest queue 
for closure starting at tCS

QMAX(tCS) 

tCS < Sat 24:00 ? tCS = tCS + 1 hourYES

Start time of minimum-impact closure t*CS 

where  QMAX(t*CS) = Min [ QMAX(tCS) ]  

(Sun 00:00 ≤ tCS <  Sat 24:00)

NO
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Figure 31.  Historical Hourly Traffic Volumes Upstream of the Planned Lane Closure 

The queues generated by a 16-hour long work zone lane closures starting at any time during the week were 
determined for all three work zone capacity scenarios. The longest queues (expressed as the maximum number 
of queued vehicles) for any closure start time are plotted in Figure 32. The best closure times with the least 
impact (i.e., shortest maximum queue) are at 6 pm on Monday, Tuesday, Wednesday, or Saturday night. Lane 
closures starting at these times are expected to create the shortest queues.  

 

 
Figure 32. Maximum Queue Lengths vs. Start Time of a 16-hour Lane Closure. 

 
This methodology was tested and implemented for various lane closure situations across the corridor and 
provided a simple analytical process to ensure the least impact to the traveling public under exceptional closure 
conditions. 
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Summary and Conclusion 
 
This study identified available data sources and data sets that may be used for automated queue detection 
upstream of freeway bottlenecks. It also explored methodologies to assess the impact of lane closures, 
incidents and special events, and improve the detection of vehicle queues in real-time, and determine their 
extent and speed of propagation.   
 
After a review of relevant literature, the data from the I-35 traveler information database was used for 
exploring potential applications and methods of congestion and queue analysis. The selected applications 
included: 

• Post-event traffic performance assessment and queue analysis. 

• Queue detection using data from multiple sources 

• Optimal scheduling of road construction activities and special events. 

Input data for these applications included traffic volumes and spot speeds collected by traffic sensors, and 
segment travel times and speeds from INRIX XD segments and Bluetooth readers.   
 
It was found that average segment travel times determined using Bluetooth address matching were quite 
effective in estimating delays caused by lane closures or incidents. However, they were not appropriate for 
queue detection because of the relatively long distances between Bluetooth readers.   
 
Segment travel times and speeds obtained from INRIX XD segments and averaged over 1-minute intervals have 
significantly improved the accuracy and timeliness of queue detection.  In addition to their higher resolution, 
another major benefit of INRIX XD segment data is that they can be collected without the need for the 
deployment and operation of physical infrastructure, and they provide broad coverage over the road network.  
Therefore, they can also be used for queue detection and queue warning in areas where traffic sensors are 
either not available or not functioning properly. 
 
One limitation of crowd-sourced third-party data, such as INRIX segment data, is that they are averaged over all 
lanes, and therefore cannot be used for detecting imbalanced queues where some lane(s) may be queued 
while traffic in other lanes flows freely. If queue detection at lane level is desired, then additional data source is 
needed. For example, INRIX XD segment data may be combined with spot speeds from sensors that monitor 
traffic speeds in each lane separately.  Data from these two sources have different spatial coverage and 
temporal resolutions because of the way they are collected, aggregated, and transmitted. Traditional sensors 
provide average spot data for each lane. The two data sources also differ in their latencies. Sensor data has a 
minimum latency of 20 or 30 seconds depending on the data aggregation level. Third party probe data latency 
typically ranges from 3 to 4 minutes. These differences present some challenges in finding the best 
combination of the two data sources for queue detection. A queue detection system fusing sensor and third-
party data was described in chapter 3. Such hybrid approach can improve the accuracy and timeliness of queue 
detection.  
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