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ABSTRACT 
Micromobility is an innovative transportation strategy that has demonstrated a great potential 

for congestion mitigation. However, the research on micromobility is very limited in the field of 

transportation. This project aims to conduct a comprehensive study to analyze, quantify, and 

understand the impacts of micromobility on congestion reduction and recommend 

corresponding intervention strategies for stakeholders. We firstly inferred origins and 

destinations of e-scooter trips in Washington, D.C. based on the General Bikeshare Feed 

Specification (GBFS) data and modeled the trip origin demand of e-scooter services. The 

Ordinary Linear Squares (OLS), Lasso, Decision Tree (DT), Random Forest (RF), and Boosting 

models were used to predict the trip origin demand in census block group level. The RF model 

had the best performance among the five models regarding root mean squared error (RMSE) 

and mean absolute error (MAE). Then we used feature importance (FI) and partial dependence 

plots (PDP) to interpret the RF model. The results showed that the most important category of 

variable was built environment variables. From PDPs, we also observed nonlinear relationships 

between the dependent variable and independent variables. After that, we developed an 

extended module for shared micromobility simulation in MATSim by applying modifications to 

its carsharing module. We also developed an effective pipeline to generate synthetic student 

plans by using different real data sources. The updated MATSim framework was utilized to 

generate realistic day plans for travelers in a case study that considered 500, 750 and 1000 e-

scooters on and around the UAB campus.  The case study results confirmed that the simulated 

traffic volumes are lower and travel speeds are higher when e-scooters are available, compared 

to the base case scenario. Then we discussed the policy related to shared micromobility 

operation and developed a decision-support tool that can collect and analyze the e-scooter-

related data. Lastly, we created a new decision-support tool to assist cities to better monitor 

and analyze e-scooter usage and gather inputs from residents. We also presented policy 

recommendations on regulatory structure, general terms and conditions, operations oversight, 

public engagement, data, and infrastructure. This project provided rich insights of key factors 

associated with micromobility demand, examined the potential impact of deployment of e-

scooters and other micromobility options on traffic operations, and generated new knowledge 

for stakeholders to facilitate planning micromobility policies and practices. 

Keywords (up to 5):  

micromobility, congestion, machine learning, simulation, policy 
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EXECUTIVE SUMMARY 
Micromobility has demonstrated a great potential to grow and become an important travel 

mode for short trips, but research is very limited on modeling and analyzing the impacts of 

micromobility on the existing transportation system and exploring its impacts on congestion 

mitigation. This project aims to conduct a comprehensive study to analyze the impacts of 

micromobility on urban mobility to understand the potential of micromobility to serve as a 

solution to mitigate congestion and recommend corresponding intervention strategies for 

stakeholders. It consists of three major tasks: 1) Task 1: e-scooter big data analytics and travel 

demand modeling; 2) Task 2: traffic simulation of e-scooters - a pilot study for an urban 

university campus; 3) Task 3: shared micromobility policy analysis and decision-support tool. 

The main findings are summarized as follows. 

Task 1 inferred origins and destinations of e-scooter trips in Washington, D.C. based on GBFS 

data and modeled the e-scooter trip origin demand using socioeconomic and demographic 

variables, built environment variables, and transit supply variables. The results showed that the 

RF model achieved the best performance among the five models (i.e., Ordinary Linear Squares, 

Lasso, Decision Tree, Random Forest, and Boosting). The RF model was further interpreted 

using used feature importance and partial dependence plots. The most important category of 

variable was built environment variables. We also observed nonlinear relationships between 

the demand and key factors such as WalkScore and parking density.  

Task 2 used MATSim to simulate traffic for a base case scenario at an urban university campus 

(i.e., UAB campus) and developed an extended module that allowed the consideration of e-

scooter use for shared micromobility simulation by applying proper modifications to MATSim’ 

carsharing. We also developed an effective pipeline to generate synthetic student plans by 

using different real data sources. The case study results confirmed that the simulated traffic 

volumes are lower and travel speeds are higher when e-scooters are available, compared to the 

base case scenario. 

Task 3 discussed the policy related to shared micromobility operation and developed a 

decision-support tool, called SERMOS. We presented policy recommendations on regulatory 

structure, general terms and conditions, operations oversight, public engagement, data, and 

infrastructure. We also developed a decision-support system that can collect and analyze the e-

scooter-related data to help local stakeholders to facilitate better-targeted decision making and 

policy intervention. 

This project provided insights of key factors associated with micromobility demand, examined 

the potential impact of deployment of e-scooters on traffic operations, and generated new 

insights for key stakeholders to facilitate planning micromobility policies and practices.  Several 

issues require future research. For example, more features may be needed to develop a more 

comprehensive demand forecasting model. In addition, more work is needed to refine the 

Birmingham MATSim model. We also plan to add more analytics modules in the decision-

support tool in future work.  
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1.0 INTRODUCTION 
In the recent years, the urban transportation system is experiencing a rapid change with the 

rise of micromobility, i.e., a variety of small, lightweight transportation devices such as e-

scooters and dockless bikes (USA Today, 2019). A recent study by Populus (2018) has found that 

around 70% people view e-scooters positively as they believe that e-scooters can expand 

transportation options by replacing short trips in automobile and complementing public transit. 

The first perception was also validated empirically by a study conducted in Chicago, which 

showed that for trips between 0.5 and 2 miles, e-scooters present a strong alternative to 

private vehicles (Smith and Schwieterman, 2018). Similarly, after analyzing half a million e-

scooter trips (during a three-month period) in the Indianapolis region, Mathew et al. (2019) 

found that the median duration and distance of these trips were 8 minutes and 0.7 miles 

respectively. As most of the short car or ridehailing trips take place in the downtown and its 

surrounding areas, e-scooters are presenting an opportunity to relieve traffic congestion by 

replacing automobile trips. 

As micromobility continues to grow in size and importance, public entities should start to 

consider its broader social impacts and its potential to address some of the transportation 

problems that cities face. In particular, some transportation experts have suggested e-scooters 

to be part of a solution to reduce congestion and to mitigate the environmental problems 

brought by automobile use (USA Today, 2019). Moreover, some studies have indicated that 

micromobility has the potential to account for 8 to 15 percent of all the trips under five miles 

and grow to a market that is worth $200B to $300B in the U.S. (Shaheen and Cohen, 2019). 

Furthermore, an integrated transportation system that includes public transit and 

micromobility also has a great potential to reduce all the car trips by offering a solution to the 

infamous first/last-mile problem, which may lead to congestion mitigation and emission 

reduction. 

Micromobility has demonstrated a great potential to grow and become an important travel 

mode for short trips, but research is very limited on modeling and analyzing the impacts of 

micromobility on the existing transportation system and exploring its impacts on congestion 

mitigation. In an attempt to fill some of these research gaps, this project aims to use the state-

of-the-art machine-learning techniques and activity-based traffic simulations to understand the 

potential of micromobility to serve as a solution to mitigate congestion.  

1.1 OBJECTIVE 
In this project, we will examine how micromobility will impact traffic operations and its 

potential to ease traffic congestion in the U.S. More specifically, this research aims at 

making the following contributions to the scientific knowledge and practice. 
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1) Providing a comprehensive assessment for micromobility as a solution to congestion

mitigation by integrating big data analytics, travel demand modeling, activity-based

traffic simulation, and policy analysis.

2) Leveraging historical e-scooter travel demand data, socio-demographic data,

employment data, land-use data, and other relevant data to explore travelers’ usage

patterns.

3) Applying interpretable machine learning techniques to model and explain the

relationships between e-scooter travel demand and other important features,

including availability of bike lanes, connectivity to transit, among many others, in

order to forecast the travel demand for e-scooters.

4) Identifying under which scenarios micromobility can help reduce urban congestion

by applying state-of-the-art traffic simulation models. Furthermore, sensitivity

analyses will be conducted to analyze the level of congestion reduction under

various market penetration rates of e-scooters.

5) Improving existing activity-based traffic simulation models to account for new

modes, such as e-scooters, and provide more accurate simulations for future

scenarios.

6) Identifying needs, opportunities, and potential obstacles for policy and operational

cooperation between municipal governments and micromobility service providers

and proposing effective urban policy and intervention strategies for promotion of e-

scooter usage.

1.2 SCOPE 
This project conducts a comprehensive study to analyze, quantify, and understand the 

impacts of micromobility on urban mobility and recommend corresponding intervention 

strategies for stakeholders by integrating transportation big data analytics, travel 

demand modeling, activity-based traffic simulation, and policy analysis. It can be divided 

into three major tasks: 1) Task 1: e-scooter big data analytics and travel demand 

modeling; 2) Task 2: traffic simulation of e-scooters - a pilot study for an urban 

university campus; 3) Task 3: shared micromobility policy analysis and decision-support 

tool. 

In Task 1, we firstly inferred origins and destinations of e-scooter trips in Washington, 

D.C. based on GBFS data. Then we modeled the trip origin demand of e-scooter services

in Washington, D.C. using socioeconomic and demographic variables, built environment

variables, and transit supply variables. The OLS, Lasso, DT, RF, and Boosting models were

used to predict the trip origin demand in census block group level. The in-sample and

out-of-sample performance of these five models were compared using MAE and RMSE.
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The results of the best performed model, the RF model, were further interpreted using 

FI and PDPs. 

In Task 2, we used MATSim to simulate traffic for a base case scenario at an urban 

university campus (i.e., UAB campus). Then, we developed an extended module that 

allowed the consideration of e-scooter use for shared micromobility simulation. This 

was done by successfully applying proper modifications to MATSim’ carsharing module 

to enable the simulation with the mode of dockless e-scooters. We also changed the 

scoring function for cars and e-scooters, so both modes can work together in a way that 

realistic plans get better scores. In addition, we developed an effective pipeline to 

generate synthetic student plans by using different real data sources. The updated 

MATSim framework was utilized to generate realistic day plans for travelers in a case 

study that considered 500, 750 and 1000 e-scooters on and around the UAB campus. 

In Task 3, we discussed the policy related to shared micromobility operation and 

developed a decision-support tool named SERMOS. Firstly, we discussed considerations 

of scooter shares as environmentally beneficial when considering the mode 

substitution, rebalancing, and life cycle costs of scooters. Then we presented policy 

recommendations on regulatory structure, general terms and conditions, operations 

oversight, public engagement, data, and infrastructure. We also developed a decision-

support system that can collect and analyze the e-scooter-related data. 
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2.0 LITERATURE REVIEW 
2.1 Micromobility in the US and travel behavior of e-scooter users 
Micromobility refers to small, single-passenger transportation modes rented for short-

term use. Existing micromobility studies mainly focus on two micromobility modes: e-

scooters and shared bicycles. In this section, studies on usage of e-scooters and bike-

sharing are reviewed. 

2.1.1 Micromobility safety and regulatory challenges 
The rapid emergence of e-scooter without adequate regulatory apparatus or 

infrastructure in many cases has resulted in public concerns and raised problems 

such as usage regulation and safety issues. The research community has been 

dedicated to exploring these topics for years, and studies on e-scooters are still 

in growth. One topic is crashes and safety of the e-scooter usage since the e-

scooter may travel with pedestrians and motor vehicles in some areas. Factors 

that related to the crashes of e-scooters were examined by researchers, and the 

results showed that illegal riding (i.e., not wearing a helmet, carrying a 

passenger) and riding under influence were important factors that influence e-

scooter safety (Haworth et al., 2021; Yang et al., 2020). The quick spread of e-

scooters as a transportation mode in cities also leads to a regulatory challenge 

for cities. As discussed in existing studies, the regulations can be spatial and non-

spatial. Non-spatial regulations include permitting, insurance, scooter caps, 

vehicle requirements, rider requirements, app requirements, pricing regulation, 

marketing, and public education, helmet laws, equipment maintenance, safety 

regulations such as speed limitations, and data sharing (Verkehrswende, 2019; 

Merlin et al., 2021). Spatial regulations concern the proper areas for riding and 

parking e-scooters, and the provision of appropriate infrastructure. These 

regulations are usually related to safety, efficiency, and equity of the urban 

transportation system. For example, several cities have identified equity areas 

and require companies to offer a minimum supply of e-scooters in these areas 

for equity purposes (Clewlow et al., 2018; Arnell et al., 2020), and some other 

cities may want to discourage an oversupply of scooters in congested areas 

(Verkehrswende, 2019). However, it is difficult for cities to make proper 

regulatory policy to ensure the safety of e-scooter operation and take more 

advantages of this new transportation mode without a comprehensive and in-

depth understanding of travel behavior of e-scooter users. Therefore, cities may 

wish to know about the users’ willingness to use e-scooters, as well as the usage 

patterns of e-scooters. 
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2.1.2 Factors associated with micromobility usage 
Many factors have been examined by the researchers using the survey data to 

understand the influence of factors on users’ willingness to use e-scooters. These 

factors can be categorized roughly as socio-demographic factors, trip 

characteristics, and built environment factors. The socio-demographic factors 

include age, gender, income, education level, race, resident status, and so on. 

The literature suggested that the young people, the male, the people with high 

income, and highly educated people were more willing to use the e-scooters (Lee 

et al., 2021; Cao et al., 2021; Mitra and Hess, 2021; Christoforou et al., 2021; Laa 

and Leth, 2020; Sanders et al., 2020). Sanders et al. (2020) also found that non-

white people were significantly more likely to intend to try e-scooters. In 

addition, Mitra and Hess (2021) suggested that the living situation also affected 

the adoption of e-scooters: single people were more open to using e-scooter 

services. Trip characteristic factors include travel time, monetary cost, transfer, 

and travel purpose (Lee et al., 2021; Cao et al., 2021; Mitra and Hess, 2021; 

Christoforou et al., 2021). Traveler with lower satisfaction with existing 

alternative modes, which caused by transfer and travel time, were more likely to 

switch to e-scooters (Lee et al., 2021), and e-scooters mostly replaced walking 

and public transport modes (Laa and Leth, 2020). Christoforou et al. (2021) 

indicated that the most common travel purposes of e-scooters were leisure, 

strolling, and visits, and playfulness was also an important motivation for 

travelers to choose e-scooters. The most significant built environment factor 

related to users’ adoption of e-scooters was the quality of riding environment, 

especially the street safety (Mitra and Hess, 2021; Sander et al., 2020; 

Hosseinzadeh et al., 2021). Areas with higher Walk Score and Bike Score usually 

had more e-scooter trips (Hosseinzadeh et al., 2021). In addition, the access-

egress walking distance also influenced users’ willingness to user e-scooters (Cao 

et al., 2021). That means an optimized distribution of available e-scooters is 

important to promote e-scooter use, thus an exploration of e-scooter travel 

behavior was needed.  

2.1.3 The usage patterns of micromobility 
The researchers have taken to the advent of e-scooters with alacrity, likely 

because of the abundance of available location data like General Bikeshare Feed 

Specifications (GBFS) and the Mobility Data Specification (MDS) data (citation), 

and e-scooter trip data published by the civic authorities (NABSA, 2020). Based 

on these data, researchers have examined diverse questions about e-scooter 

travel behavior such as trip distance, trip duration, spatial patterns, temporal 

patterns, and equity. Trip distance and trip duration vary across studies. The 

average trip distance in Austin was 0.77 miles with an average travel time of 7.55 

minutes (Jiao and Bai, 2020), while a different study in Washington DC found a 
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shorter mean trip distance of 0.6 km and a mean trip length of just 5 min 

(McKenzie, 2019). Temporal usage patterns were found different from the 

conventional traffic peaks in some studies. For example, Liu et al. (2019) found 

that the e-scooter usage peak in Indianapolis was 4 pm to 9 pm on weekdays and 

2 pm to 7 pm on weekends. Spatial patterns of e-scooter usage were also 

examined by the several studies. The findings suggested that downtown areas 

and university areas usually had a density of scooter trips, while suburban areas 

had a much lower trip density (McKenzie, 2019; McKenzie, 2020; Bai and Jiao, 

2020; Hosseinzadeh et al., 2021). Researchers also have examined spatial 

associations of e-scooter usage. E-scooter usage were found to be positively 

associated with some demographic characteristics of areas including 

employment rate, proportion of young population, and proportion of high 

educated population (Merlin et al., 2021; Caspi et al., 2021). Studies also found 

that built environment were correlated to spatial distribution of e-scooter trips. 

Areas with better riding environment (i.e., higher Walk Score and Bike Score, and 

better bicycle infrastructure) often had a high density of e-scooter trips 

(Hosseinzadeh et al., 2021; Caspi et al., 2021). Another important built 

environment factor was access to transit stations. Areas with higher transit 

station density usually had more e-scooter trips (Bai and Jiao, 2020; Jiao and Bai, 

2020; Merlin et al., 2021). Land use factors were also associated with the spatial 

usage patterns of e-scooters: greater land use diversity and higher proportion of 

commercial land use were positively correlated with higher e-scooter use 

(Hosseinzadeh et al., 2021; Bai and Jiao, 2020; Merlin et al., 2021; McKenzie, 

2019).  

As an emerging travel mode, e-scooter were usually compared with other 

existing micromobility options, especially the bike-sharing. Studies suggested 

that the usage patterns of e-scooter and bike-sharing were different temporally 

and spatially. McKenzie (2019) found that the temporal distribution of bike-

sharing trips clearly reflected stand commuting patterns in Washington D.C. 

while e-scooter trips did not. Reck et al. (2021) suggested that morning peak 

positively influences mode choice for shared e-bikes and bikes and negatively for 

e-scooters. For spatial usage patterns, e-scooters trips were found to have

spatially compact and quantitatively denser distribution compared with shared

bikes in Singapore (Zhu et al., 2020). On the contrary, membership-based bike-

sharing trips appeared to be more concentrated in the downtown core of

Washington D.C. than e-scooter and non-membership-based bike-sharing trips

(McKenzie, 2019). The trip purposes preference of e-scooter and bike-sharing

trips were also different. Shared bikes were more preferred for commuting,

whereas e-scooters were more often used for leisure rides (Reck et al., 2021;

Bieliński and Ważna, 2020). Studies also found that e-scooter users were on
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average younger than e-bike users, more sensitive to gas price changing, and less 

sensitive to the weather (Younes et al., 2020; Bieliński and Ważna, 2020). 

2.1.4 The impact of micromobility on the existing transportation 
system 
The rapid growth of micromobility creates the need to explore modal shift 

practices toward micromobility option. In markets where micromobility options 

are available, it is important to understand how micromobility affects other 

modes of transportation such as walking, biking, bike-share, and public 

transportation in terms of travel time, cost, and convenience.  

Some survey-based studies have shown that the emerging micromobility 

transportation modes replaced some traditional transportation options including 

automobile travel. Between October 2018 and September 2019, 2.7 million 

journeys were performed during a trial of e-scooters and e-bikes in Santa 

Monica, California, 49% of which replaced journeys that would have been 

undertaken by cars (City of Santa Monica, 2019). According to a global study of 

Lime customers conducted by Barclays, 30% of Lime customers have substituted 

an automobile journey with an e-bike or e-scooter trip (Barclays, 2019). In 

addition, e-scooter rides replaced 28% of the private automobile or ride-sharing 

journeys, and 57% of walking, biking, e-biking, and skateboarding trips (Fitt & 

Curl, 2019). Chang et al. (2019) claimed that shared e-scooters are substantially 

replacing walking and cycling trips in Denver and Portland. According to results 

from online surveys, e-scooter journeys replaced walking (43%) and bike (14%) 

journeys in Denver, Colorado. If a shared e-scooter had not been available for 

their previous trip, 46 percent of respondents in Portland, Oregon said they 

would have walked (37%) or cycled (9%) instead (Chang et al., 2019). In a 2019 

online study of Auckland and Christchurch citizens, 14% said they would replace 

a private car trip with an e-scooter, and 10% reported that they would replace an 

Uber/taxi trip with an e-scooter (Kantar, 2019). Cao et al. (2021) conducted a 

survey study to examine the possibility of substituting short-distance transit trips 

with shared e-scooter trips users in Singapore and showed that people tend to 

favor shared e-scooters if transit service has long walking distances and more 

transfers. 

Other researchers use statistical models to estimate the impact of micromobility. 

Smith & Schwieterman (2018) applied Chaddick Institute’s multimodal travel 

model to assess 30,000 trips around the city and concluded that people would 

prefer e-scooters over their private cars for short trips between 0.5 and 2 miles 

while e-scooters would not probably be an appropriate option in comparison 

with public transportation for trips over 3 miles. Lee et al. (2019) conducted a 

study to forecast the percentages of e-scooters substitute for carpool, taxi, and 
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bike trips in four US cities, namely Portland, Austin, Chicago, and New York. The 

results showed that e-scooter can substitute short-distance trips of up to 32%, 

13%, 7.2% of carpool, bike, and taxi trips, respectively (Lee et al., 2021). Reck et 

al. (2021) analyzed shared micromobility competition and mode choice among 

four types of shared micromobility modes and found that docked modes are 

preferred for commuting. Their results also revealed a fundamental relationship 

between the density of micromobility fleet size and the volume of usage (Reck et 

al., 2021). (Ciociola et al., 2020) proposed a simulation model to forecast the 

demand for e-scooter usage in Minneapolis and Louisville by using the Poisson 

method for temporal estimation and Kernel Density Estimation (KDE) for spatial 

estimation. Their demand model provides a data-driven approach to compare 

and improve the design of e-scooter sharing systems in smart cities. 

2.2 The potential application of microscopic simulation to 
micromobility 
To date, microscopic traffic simulation models have focused on automobile traffic. To 

the author’s knowledge, there has not been a comprehensive model to simulate 

micromobility traffic, such as e-scooter and e-bike. However, there is research that 

studies bicycles as a transportation mode, which has some similar motion and 

maneuverability as e-scooter and e-bike. Therefore, the review of literature on bicycle 

microsimulation can contribute to the development of micromobility microsimulation 

applications. 

2.2.1 Bicycle microsimulation models 
Most microsimulation models are built upon the car-following and lane change 

formulae, where vehicle actions are highly influenced by lead vehicles. We 

cannot assume the same stimulus-response mechanism in bicycle traffic given 

the independent movement of the bicycle. While the principles and algorithms 

of microsimulation for an automobile can apply to bicycles, bicycle traffic has 

more flexibility and maneuverability affected by bicyclist’s attributes and 

environmental factors, such as individual's age, physical ability, weather, 

topology, and the availability of designated lanes. The heterogeneity and 

stochasticity are more noticeable in cyclists’ behavior (Taylor & Mahmssani, 

1998). 

2.2.1.1 Cellular Automata Model 

One of the most common approaches to modeling microscopic cyclist behavior is 

cellular automata (CA) (Wolfram, 1983). CA uses a discrete space algorithm in 

which cells occupied by cyclists change as cyclists move by following a set of 

behavior and interaction rules (Mohammed et al., 2021). CA has been 

extensively used to simulate cyclists' behavior. Jiang et al. (2004) modeled the 
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cyclists’ behavior by developing a stochastic CA model that used the discretized 

cells containing multiple bicycles. However, this model cannot differentiate the 

heterogeneity and stochasticity of the cyclists. To overcome the limitation, many 

CA models have been developed to account for different cyclists' characteristics, 

motion, and behavioral patterns (Jia et al., 2007; Gould & Karner, 2009; Xue et 

al.,2017; Tang et al., 2018). Despite its wide adoption, the CA model has its 

limitations. First, it cannot produce the continuous state-space representation. 

Second, the CA model only allows a pre-defined number of agent groups in cells 

with its own set of rules. These limitations restrict the ability to model multiple 

levels of heterogeneity and environment dynamics (Mohammed et al., 2021). 

2.2.1.2 Psychopysical Model 

Another method of modeling microscopic cyclist behavior adopts the concept of 

the psychophysical car-following model. Liang et al. (2012) developed a 

psychophysical model that stimulates the cyclists’ acceleration, deceleration, and 

turns by assuming cyclists follow the rules of collision avoidance. Zhao and Zhang 

(2017) extended the model application to motor vehicles, bicycles, and 

pedestrians with parameter values estimated from experimental data. These 

methods have a similar limitation as the CA model and only model generalized 

behavior. 

2.2.1.3 Agent-Based Model 

Unlike the conventional modeling methods, the Agent-Based Model (ABM) is a 

powerful tool that can capture the complexity of the real-world environment 

and the variability of human behavior. In ABM, each traveler or vehicle 

represents an agent that moves according to the interactions between agents 

and the environment.  

In recent years, a small number of studies use the ABM to simulate bicycle traffic 

patterns. Loidl et al. (2016) simulated the single trips of employees, students, 

and leisure cyclists. Ziemke et al. (2017) developed the extension of agent-based 

modeling framework MATSim with infrastructure attributes that affect cyclists’ 

routing choices. Ziemke et al. (2019) extended previous work to consider the 

interaction of bicycles with the automobile. Veldhuis (2018) simulated the single 

bicycles trips of employees, shoppers, and tourists in Amersterdam. These 

studies proposed agent-based models that simulated simplified daily bicycling 

trips, however, they fall short of simulating a complete day of a total regional 

population in detail (Kaziava et. al., 2021). Kaziyeva et al. (2021) simulated the 

spatial-temporal patterns of bicycle flows of 186,000 inhabitants in the Salzburg 

region, Austria. Eventhough the study simulated only bicycle movements; the 

simulation of mode choice included all major available transportation modes. 
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 A key step to develop ABM is to decide the agent’s interaction rules. One 

approach is to use a structural analytical model with parameters that guide 

agent behavior in different situations (Baster et al., 2013; Hussein & Sayed, 

2017). This method has wide transportation modeling applications, including 

modeling the effect of “Mobility as a Service (MaaS)” trends (Djavadian & Chow, 

2017), solving transit network design problems (Liu & Zhou, 2016), and even 

modeling the interactions between autonomous vehicles (de Oliveira, 2017). 

One major limitation of this method is the preset rules: agents do not learn from 

the interactions, nor do they evolve through the learning process (Abdou et al., 

2012). 

To overcome this limitation, the Reinforcement Learning approach can be 

applied in ABM. In Reinforcement Learning, intelligent adaptive agents can learn 

from expert demonstrations and evolve their goals and strategies over time 

(Plekhanova, 2003). The framework of a finite-state Markov Decision Process is 

used to guide agents’ behavior. Agents execute sequential decision processes 

based on a reward function that represents the attractiveness of potential future 

states (Sutton & Barto, 1999). Mohammed et al.  (2021) applied reinforcement 

learning in an agent-based model to simulate both longitudinal and lateral 

motion dynamics of cyclists. Their approach imposed fewer restrictions and 

assumptions and demonstrated better accuracy in predicting cyclists’ behavior 

than other cyclist simulation models. 

2.2.2 Bike-sharing microsimulation 
Compared to conventional bicycles, the emergence of micromobility 

transportation is quite new and there are fewer studies of microsimulation for 

micromobility. Soriguera et al. (2018) developed an ABM in Matlab to emulate 

bike-sharing in the city of Barcelona, Spain. The model includes the model choice 

between biking and walking and the deployment of bikes by the truck fleet. 

However, this model is built upon a simplified system that focuses on 

rebalancing the shared bikes among stations. Hebenstreit and Fellendorf (2019) 

developed an ABM that incorporates public transit, bicycle, and bike-sharing into 

a multimodal transportation system in the city of Vienna, Austria. The MATSim-

based model focused on the station-based bike-sharing system. Some unique 

features associated with bike-sharing, such as station, battery charging status, 

and relocation, were considered for modal choice and routing choice decisions. 

This is one of the pioneer works that incorporates the micromobility model into 

multimodel transportation microsimulation. The MATSim based framework 

provides great flexibility for the extension and future research. 
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2.2.3 Summary 
In recent years, researchers have studied the different aspects of micromobility 

transportation modes, including the patterns of usage, the factors influencing 

the usage, and the impact on the existing transportation system. However, there 

has not been a comprehensive microscopic traffic model to simulate 

micromobility traffic options (e.g., shared e-scooter and e-bike). The microscopic 

traffic simulation models have been developed and improved for over 50 years.  

However, most models share some major drawbacks including the inability to 

model the heterogeneity and stochasticity of human behavior. The introduction 

of new technologies, such as artificial intelligence and machine learning 

techniques, helps to overcome these limitations. Still, the conventional 

microscopic traffic simulation models that are currently available mainly imitate 

the automobile traffic flow and cannot properly capture the flexibility and 

complexity of micromobility traffic, such as e-scooter and e-bike.  

To address these concerns, Agent-Based Models may be considered as an option 

for integrating micromobility with automobile and other modes. Agent-Based 

Models have the ability to incorporate the complexity and interactions of real-

life traffic situations and has shown promising results in simulating bicycle traffic 

and mixed traffic.  Since bicycle traffic shares similarities with micromobility, the 

techniques used for stimulating bicycle traffic can be applied for modeling 

micromobility. Some pioneer studies on bike-sharing have been conducted 

around European cities, and their methods can be adopted to develop 

micromobility models in U.S. cities. MATSim, an open-sourced ABM holds great 

promise as a potential platform that can allow integration of micromobility 

options with automobile and transit options.  Such an integration will enable to 

study the impacts from mode choice shifts between automobile and 

micromobility modes, in networks that offer such options. 

2.3 Literature review on existing policy and practice for planning 
and managing micromobility 
The literature on micromobility is growing and providing more clarity into various 

aspects of dockless shared scooters (DSS). Most of the literature addresses four major 

topics regarding dockless shared scooters: benefits of DSS usage, concerns surrounding 

their use and implementation in the city, observations resulting from the 

implementation of DSS, and patterns resulting from DSS interaction. These discussions 

are summarized in Figure 1. 
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Figure 1. Discussions surrounding dockless scooter share 

2.3.1 Benefits of dockless shared scooter usage 
Three major benefits of DSS are often cited in the literature: their capacity to 

address first mile/last mile problems, the perception of them as a sustainable 

mobility alternative, and their application of technology.  

One of the more promising aspects of scooter share is its capacity to address or 

to bridge the often discussed first mile/last mile mobility problem. McKenzie 

(2019) asserts that scooters are presented as a first mile/last mile solution, 

however, scooter operators flooded cities with scooters so quickly that 

municipalities have not yet properly evaluated if this assertion is true. In the 

research article that developed scenarios for scooters in Chicago, Smith and 
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Schweiterman (2018) contend that scooters have the capacity to replace private 

car trips that are between 0.5 miles and 2 miles. Button, Frye and Reaves (2020) 

suggest that scooters address a demand that the mobility alternatives do not 

address, citing the average scooter trip distance of 2 miles, which is too short for 

car trips or taxi hailing, but too long a walk. Estimating the potential demand of 

scooters in New York City, Lee, Chow, Yoon, and He (2021) models suggest that 

many short trips (perhaps within this 0.5-2-mile range) could be replaced by 

scooters, including 32% of carpool, 13% of bike, 7.2% of taxi, 1.9% of walking, 

and 1.8% of auto trips. Additionally, their model results suggest that nearly 24% 

of access/egress trips to public transit could be complemented by scooters. In 

Portland, nearly 34% of scooter riders would have chosen a motorized 

alternative had a scooter not been available, suggesting that scooters are 

capable of addressing not only a first mile last mile gap, but also supporting a 

positive modal shift (PBOT, 2018). 

Numerous sources find that DSS’s potential to create a substantial modal shift 

from personal cars is part of their appeal as a sustainable mobility alternative, 

mainly because there is a perception that scooters are responsible for 

significantly less carbon emissions than cars. These two sustainability goals go 

hand in hand in most of this discussion. Bai and Jiao (2020) suggest that a 

reduction in automobile usage is evident and further suggest that there are key 

built environment and socioeconomic factors that are responsible for this shift. 

Based on their forecasts, Smith and Schweiterman (2018) speculate that the 

introduction of scooters in parking-constrained areas in the 0.5-to-2-mile range 

could increase the number of trips from 47% to 75% for non-auto, time 

competitive, mobility options. Acknowledging that scooters are a new mobility 

mode, Caspi, Smart and Noland (2020) suggests that if they are successful, they 

could be an environmentally friendly mode that can address many mobility 

needs. At the moment, however, Caspi, Smart and Noland (2020) assert that 

commuting is not one of those mobility needs for scooter users, citing a more 

recreational usage. de Bortoli and Christoforou (2020) concur and add that, in 

order to reduce the DSS carbon footprint, municipalities must deploy them 

carefully, using regulations that consider local characteristics.  

Less discussed but equally important is the most evident characteristic of 

scooters: their efficient application of technology. Hosseinzadeh, Algomaiah, 

Kluger, and Li (2021) suggest that what has led to such a rapid adoption of 

scooters in “Smart Cities” is the convenience of finding, using and dropping-off 

scooters through a mobile application. This technological advancement is 

consistent with Smart City concepts, demonstrating a successful integration of 

technology in transportation. The convenience of a shared, dockless system is 

extended to any given geographical point, but of particular consideration, to 
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public transportation access and egress points. Lee, et al. (2021) suggests that 

integrating scooters into a Mobility as a Service (MaaS) system would allow users 

to experience a seamless, multimodal trip. The literature often suggests that the 

scooter's potential to improve accessibility is best realized through its inclusion 

in a MaaS system that can connect users to their nearest public transportation 

system and effectively transfer them within the same technological interface (in 

this case, a mobile app), using the same payment methods, and perhaps 

scheduling the connection more efficiently than the user could have on their 

own. 

2.3.2 Concerns surrounding dockless shared scooter usage 
For as many benefits of DSS usage being cited, many concerns have emerged in 

the literature. Four major concerns are often discussed in the literature about 

DSS: the uniform implementation of policy and regulation, economic and 

environmental concerns, curbside management, and corridor management. 

Policy makers are generally considering three key factors when discussing policy 

related to the implementation of scooters: safety, equitable access to vehicles 

and impact on traffic and sustainability (Populus, 2018). However, this may be 

reducing the circumstances surrounding policy adoption very narrowly since the 

main concern surrounding policy implementation has been a lack of uniformity 

throughout the places they are adopted. This is hardly of policy makers own 

doing; scooters arrived in cities during ongoing discussion on the proper 

implementation of rideshares and transportation network companies (TNC) 

(Button, Frye & Reaves, 2020). Additionally, the novelty of DSS coupled with a 

lack of data about them made it challenging to develop regulatory structures, 

especially when compromises were being reached to balance enhanced personal 

mobility, protections for scooter users and protections for the scooter operators. 

(Button, Frye & Reaves, 2020) As a result, Button, Frye, and Reaves (2020) 

asserts that policy makers have been “chasing events” rather than leading with 

proactive policies. This has led to numerous shifts and a constantly evolving 

regulatory environment for scooter operators.  

Their impact on safety is well known since a lack of dedicated areas in the right 

of way for scooters has led to their use on sidewalks and elsewhere, causing 

issues in dense areas (Smith and Schwieterman, 2018). Lee et al. (2021) 

recognize that the legality of scooters varies across the U.S. but demand for 

them has pushed for their rapid implementation, leaving policymakers to 

primarily focus on equitable access to them. Policy makers need to address the 

more glaring issues of safety, and the scooters impact on traffic and 

sustainability. Button, Frye and Reaves (2020) cite the seven fatalities, a 

relatively high number, related to scooter usage reported in a brief period in 

 Micromobility as a Solution to  Reduce Urban Traffic Congestion 



25 

2019. The Insurance Institute for Highway Safety (IIHS) completed that 

“compared e-scooter injury statistics with interviews with emergency room 

patients who had sustained injuries while riding bicycles.” (Preston, 2020 quoting 

a study by IIHS). “IIHS researchers found that e-scooter riders sustained more 

injuries per mile than bicyclists and were twice as likely to be injured because of 

potholes, pavement cracks, lampposts, and signposts, although bicyclists were 

three times as likely to be hit by a motor vehicle” (Preston, 2020). No national 

studies have focused on scooter safety, leaving policy makers without any data 

on safety to make informed regulations.   

Furthermore, there is also a lack of solid sustainability benchmarks for regulators 

to evaluate. Eccarius and Lu (2020) suggest that the success of public policy and 

the continuation of scooters as a mobility service is to identify the users of 

micromobility to determine how the service aligns with local mobility goals and 

strategies. Eccarius and Lu (2020) emphasize a particular point that is assumed 

by many researchers: people shifting from public transit and from active modes 

to scooters will not necessarily make them the sustainable mobility alternative 

that they presumed to be.  

If sustainability is a goal for regulators, then Eccarius and Lu’s (2020) 

consideration needs to be central to decision making about scooters, since any, 

“claims of environmental benefits from their use should be met with skepticism 

unless longer product lifetimes, reduced materials burdens, and reduced e-

scooter collection and distribution impacts are achieved.” The circumstances 

under which scooters are a sustainable alternative are directly tied to their 

environmental benefits. de Bortoli and Christoforou (2020) suggests that the 

facilitation of longer trips with e scooters should be a policy priority as they tend 

to replace non-active modes of transport. This negative modal shift could lead to 

serious environmental issues. Hollingsworth (2019) suggests that while e-

scooters may be an effective solution to urban congestion and last-mile problem, 

they do not necessarily reduce environmental impacts of the transportation 

system. de Bortoli and Christoforou (2020), who also modelled the impact of 

scooters on the environment suggests that scooters can be a positive in certain 

circumstances. Regulators of scooters need to be aware of these circumstances 

because recommendations are vary depending upon context, suggesting the 

importance of localized strategies. 

The economics of scooter shares are also concerning. According to Button, Frye 

and Reaves (2020), scooter share companies are struggling to break even, just 

like rideshare companies such as Uber and Lyft have in the recent past. 

Numerous articles evaluate the market penetration and the potential income 

generated by these companies. Noland (2019) estimates that users in Louisville 
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incurred an average cost of $3.40 per trip, which was more expensive than a 

local bus trip estimated between $1.50 and $1.75. However, the income 

generated by the companies seems to be around $501.85 per day, which comes 

down to a meager $183,000 per year in revenues. Lee et al.’s (2021) model, 

seems more optimistic, with an estimated $77 million in annual revenues and a 

market penetration of about 75,000 potential daily trips in New York City. 

Button, Frye and Reaves (2020) found that Lime (a DSS operator) lost an average 

of $6 million a month the first half of 2018 and by October 2018 accounted for a 

net loss of nearly $23 million as it sought to compete with Bird, another DSS 

operator.  

Survey results from de Bortoli and Christoforou (2020) show that most users are 

males aged 18 to 29; de Bortoli and Christoforou (2020) further asserts that the 

market penetration for people over 30 remains significantly low, suggesting that 

scooters are addressing a niche in the market. But if scooters are to be capable 

of being a sustainable alternative, should they be so only for a niche? McKenzie 

(2020) raises this concern when observing that the predominantly African 

American neighborhoods of Wards 7 and 8 in Southeast Washington, D.C.  have 

low ridership for both scooter shares and bikeshares. McKenzie (2020) says, “this 

suggests one of two things, either these mobility services only appeal to a small 

socio-economic subset of the population, or these new services are contributing 

to a further socio-economic divide fueled by technology-based transportation.” 

With little data to design robust economic models, the question of DSS’s 

economic stability remains unclear, but at the moment, the current income 

generation does not suggest endurance, and the current market penetration 

suggests a small subset of people being served.  

Finally, in the domain of the built environment, scooters raise two major 

concerns involving scooter users interacting with the local environment: curbside 

and corridor management. Zou, Younes, Erdoğan and Wu (2020) suggest that in 

high-demand areas that are busy with traffic and pedestrians, designated 

parking areas are necessary to prevent clutter from disorderly parked dockless e-

scooters, especially on pedestrian sidewalks. This suggestion comes in a long list 

of complaints associated with the dockless nature of scooters, which have 

cluttered streets and sidewalks to the amazement of residents. While generally 

convenient, Button, Frye, and Reaves (2020) contends that scooters have 

contributed to an aesthetically unappealing look in cities, especially in areas 

attractive to scooter users themselves, since scooters are generally scattered 

along sidewalks and other locations where previous customer have left them. 

Additionally, they clutter an already limited public space despite their relatively 

smaller size (Eccarius and Lu, 2020). Lee et al. (2019) considers that while 

curbside management is a hot (and often negative) discussion surrounding 
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scooters, understanding the demand for scooters can promote the proper 

development of policy and infrastructure.  

More challenging to address is their use along corridors. Operating on bike 

infrastructure that has been historically underinvested Zou et al. (2020) highlight 

the importance of managing e-scooter traffic at critical street corridors, 

especially principal arterial roads with high volumes of traffic, a high number of 

historical bike crash incidents, and a lack of bikeway design. This is mainly 

because there is a lack of safe infrastructure for scooters to navigate, and often 

scooters operate either on open roads alongside cars and heavy vehicles or on 

sidewalks alongside slower moving pedestrians. Zou et al. (2020) found that local 

streets with heavy traffic are popular corridors for scooter users, adding to a 

safety challenge that policy makers have not been able to wrestle with 

appropriately due to lack of data. Moreover, Zou et al. (2020) warn that an 

analysis on scooter trajectory data is challenging due to the amount of API 

(Application Programming Interface) scrapping involved to get one trajectory, 

suggesting a highly technical process achievable with open data and 

technologically capable researchers. But it remains an important part of research 

since Button, Frye, and Reaves (2020) find that in Southern California, between 

September 2017 and August 2018, 249 people required medical care after e-

scooter related incidents. Over the same period of time 195 received medical 

attention for bicycle injuries and 181 for pedestrian injuries. The incidents 

include falls, collisions and getting struck by a moving vehicle, suggesting that 

many incidents while the scooter is in use. 

2.3.3 Understanding the implementation of dockless shared scooter 
While questions remain about the concerns and benefits of DSS, a growing 

number of research papers have evaluated the implementation of DSS, helping 

to bridge a gap of knowledge that has existed since DSS gained popularity in 

2017. The implementation of DSS has revealed much about where in particular 

they are most successfully implemented, namely by being associated to land 

uses and built environment attributes or to particular socioeconomic and 

demographic characteristics. 

Numerous research papers associate scooter usage to downtown areas and 

universities (Mathew, Liu, Seeder, & Li, 2019; Bai and Jiao, 2020; Noland, 2019; 

Caspi, Smart & Noland, 2020). However, Bai and Jiao (2020) found that areas 

with higher indexes of walkability, bikeability and compact land uses are equally 

opportune areas. Similarly, they found that a diversity of land use types 

generates more demand than the actual mix of specific land uses. They 

attributed this to larger numbers of points of interest in diverse land uses. 

Hosseinzadeh et al. (2021) found positive correlations with commercial land 
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uses, industrial land uses and areas with high employment. Caspi, Smart, and 

Noland (2020) found that the proportion of residential, commercial, educational, 

and industrial land uses have an impact on the number of trips generated in an 

area. 

Caspi, Smart, and Noland (2020) also found that scooter usage is not related to 

neighborhood affluence but did recognize that usage by low-income populations 

is associated most with high student presence near university areas. Caspi, 

Smart, and Noland (2020) suggest that it is possible that areas with low 

socioeconomic statuses may be served disproportionately by operators, however 

there is no data on the supply side of scooter deployment to confirm this. 

Eccarius and Lu (2018) found that values related to environmental concern was 

an indirect intention for many scooter users in their research. Several 

researchers cite low-parking availability and the short-distance trips as important 

elements in generating trips from scooters (Noland, 2019; Smith and 

Schwieterman, 2018; Lee et al., 2021). Lee et al. (2021) suggests that scooters 

would be less competitive on walking trips in New York City compared to other 

modes. Noland (2019), McKenzie (2019), and other researchers have found that 

DSS are not a significant mode for commuters, citing low morning usage and high 

afternoon plateaus suggest other non-commuters use scooters more frequently. 

2.3.4 Understanding patterns of dockless shared scooter interaction 
Some of the most important findings in the literature discuss the patterns of 

usage and purpose of DSS, as well as their interaction with other modes, namely 

bikeshares. Noland (2019) found that nearly 400 trips per day are made in 

Louisville. Trips lasted on average 15 minutes and travelled on average about 

1.25 miles (within the often mentioned 0.5-to-2-mile scooter range). On average, 

speeds were found to be around 5 miles per hour. McKenzie (2019) by 

comparison found that nearly 7,050 trips per day were made on Lime scooters in 

Washington between June and October 2018. Trips lasted 5 minutes and 

travelled about 0.4 miles with speeds of about 4.8 miles per hour. Between 

December 2018 and June 2019, Younes, Zou, Wu, and Baiocchi (2020) found that 

4,300 trips were made daily in Washington with distances of .6 miles, 11 minutes 

and nearly 3.5 mph speeds. The effects of winter weather can be the cause of 

the variance in trips between the research put forth by McKenzie (2019) and 

Younes et al. (2020). On the other hand, Caspi, Smart, and Noland (2020) found 

11,000 trips per day in Austin with an average of 0.6 mi and a trip duration of 

close to 6.5 minutes, travelling at about 5.5 miles per hour. Mathew et al. (2019) 

found 4,700 daily scooter trips in Indianapolis travelled 1.1 miles on average, 

lasted 13.9 minutes and travelled at nearly 5.5 miles per hour.  
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Mathew et al. (2019) found that only 15% of individual scooters in Indianapolis 

were used for more than an hour a day, meaning most scooters remained 

parked most of the day. Younes et al. (2020) found that changing gasoline prices 

were positively correlated with trips and found that large events in Washington 

were influential in trip generation. Smith and Schwieterman (2018) find that, “e-

scooters would make about 16% more jobs reachable within 30 minutes 

compared to the number of employment opportunities currently accessible by 

public transit and walking alone.” Bai and Jiao (2020) found that proximity to the 

city center in Austin and Minneapolis was associated to higher scooter 

accessibility. 

Most importantly, previous research indicates correlations between various 

mobility modes and scooters. Smith and Schwiterman (2018) find that the 

benefits of scooters can vary significantly in only a few blocks due to public 

transit accessibility. Various sources (Smith and Schwieterman, 2018; Lee et al., 

2021) suggest that short distance trips can help scooter users begin or complete 

long-distance transit trips with great success. Achieving multi-modality is broadly 

suggested to be the highest potential for scooters. de Bortoli and Christoforou 

(2020) finds that multi-modality is important and that there were few, rare trips 

that did not start without accessing some other mode. 

The most discussed comparison exists between scooter shares and bike shares 

since they belong to the micromobility family. A gender gap in the adoption of 

bike-sharing for women is discussed in Populus Technologies (2018), which 

indicates a 12% adoption rate compared to 21% for males. This is due to the lack 

of safe infrastructure that is important to female adoption of services. This gap 

found in bikeshares is almost closed in scooter share programs, where 3% of 

females have adopted them compared to 4% of males. The League of American 

Bicyclists (2019), for example, found 33% of Lime riders identify as female 

compared to just over 25% of bicycle commuters. Additionally, 36% of riders 

identify themselves as people of color compared to 27% who cycle.  

Hosseinzadeh et al. (2021) and Bai and Jiao (2020) concur that high bikeability 

index scores are needed for scooter shares to be successful. Hosseinzadeh et al. 

(2021) further points out that bikeability index does not also mean that there will 

be a high density of scooters suggesting that bikes may not be entirely replaced 

by scooters. In their research, McKenzie (2019) compares member bikeshare, 

non-member bikeshare and scootershare. Member bikeshare are associated 

with commuting, however, non-member bikeshare closely resembled trip 

purposes of scootershare users such as recreational use, leisure or tourism. 

Younes et al. (2020) concurs with this notion and suggests that non-member 

bikeshare and scootershare are in competition, where scootershare 
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complements membership bikeshare. While no membership scootershare 

system exists, there could be potential ramifications for multi-modality, MaaS 

and improved economics in the idea of a membership scootershare. Moreover, 

McKenzie (2019) suggests that scooters and non-members seem to have 

competing attributes, yet member bikeshares seem to be complimented by 

dockless scooters. Noland (2019) and McKenzie (2019) find that adverse 

weather, such as rain or cold weather, has more negative effects on bikeshare 

when compared to scootershares.  This is attributed to the ease of ending the 

scooter trip wherever, while bikeshares need to be ended in locations perhaps 

relatively distant from sheltered areas. Similar to bikeshares, scooter shares are 

also associated with areas of high employment rates (Caspi, Smart and Noland, 

2020). de Bortoli and Christoforou (2020) finds that in Paris, the user 

demographics of scooter shares and bikeshares are similar as well as similar 

modal substitutions. Smith and Schwieterman (2018) finds that scooter users will 

often choose scooters over docked bicycles because of their coverage and ease 

of access. Smith and Schwieterman (2018) also finds that compared to 

bikeshares, scooters could not compete on long distance trips. This is due to 

their marginal costs, which are significantly lower on bikeshares than on 

scooters. Within a range of $4 and $5 per trip, scooters are less convenient to 

bikeshare member users who after paying the annual membership and using the 

membership for at least 200 one-way trips, they only pay about $0.50 per trip. 

Zou et al. (2020) use bike statistics to indicate corridors where safety for scooters 

indicate concern, demonstrating an important link between bicycles and 

scooters that is not shared by other modes of transportation. Similarly, the use 

of historical bike data can be used to discuss safety or bike lane design for 

scooters. This could suggest an interchangeability between bikes and scooters in 

the long run. Tables 1 and Table 2 below summarize the literature on DSS. 

Table 1. Summary of Literature Review on Scooters 

Author(s) Case Study 

Area(s) 

Dependent 

Variable 

Independent Variables Modelling 

Approach(es) Internal External 
Bai & Jiao 2020 Austin, TX and 

Minneapolis, MN 

Spatiotemporal 

Patterns and 

relationships of 

scooter usage 

-Ridership 

-Trip

Characteristics 

-Population

Demographics 

-Land Use 

-GIS Hotspot 

-Negative Binomial 

Regression Model 

de Bortoli & 

Christoforou 

2020 

Paris Scooter Impact on 

Climate Change 

-Carbon Emissions

from scooter 

production, 

rebalancing, 

recycling, etc. 

-Modal Shifts from 

various modes 

-Respective 

Carbon Emissions 

-Life Cycle

Assessment 

Button Frye & 

Reaves 2020 

United States 

(multiple cities) 

Regulations and 

Policies regarding 

Scooters 

Comparative Literature Review 

Caspi, Smart & 

Noland 2020 

Austin, TX Spatiotemporal 

Patterns and 

relationships of 

scooter usage 

-Ridership 

-Trip

Characteristics 

-Population

Demographics 

-Land Use 

-Spatial Lag Model

-Spatial Durbin Model

-Generalized

Weighted Regression
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Christoforou, 

Gioldasis, de 

Bortoli & 

Seidowsky 2020 

Paris Propensity to use 

Scooters and 

characteristics of 

scooter users 

-Scooter General 

Usage 

-Trip

Characteristics 

-General Travel 

Habits 

-Survey-takers

socioeconomic

characteristics 

-Road Survey

-Multinomial Logit 

Model 

Eccarius & Lu 

2018 

Taiwan Propensity to use 

Scooters and 

characteristics of 

scooter users 

-Trip Purpose 

-Reasons for 

Scooter usage 

-Experience with

various forms of 

shared mobility 

-Survey 

-Exploratory Factor 

Analysis 

-Binary Logit Model 

Eccarius & Lu 

2020 

Taiwan Intentions for Scooter 

Usage 

-Intentions 

-Global Motives 

-Personal Values 

-Demographics -Survey 

-Theory of Planned

Behavior 

Hollingsworth, 

Copeland & 

Johnson 2019 

Raleigh, NC Scooter Impact on 

Climate Change 

-Carbon Emissions

from scooter 

production, 

rebalancing, 

recycling, etc. 

-Modal Shifts from 

various modes 

-Respective 

Carbon Emissions 

-Life Cycle

Assessment 

Hosseinzadeh, 

Algomaiah, & 

2021 

Louisville, KY Spatial Factors 

associated with 

Scooter Trips 

-Ridership 

-Trip

Characteristics 

-Population

Demographics 

-Land Use 

-Urbanism Scores 

-Built Env.

Characteristics 

-Generalized Additive

Model 

Lee,, Chow, 

Yoon & He  

2021 

New York City 

(Manhattan) 

Forecasting e-scooter 

substitution of direct 

and access trips 

-Ridership Sociodemographic

Data 

-Traffic Data 

-Log-Log Regression

Model 

Mathew, Liu, 

Seeder & Li 19 

Indianapolis, IN Spatiotemporal 

Patterns of Scooter 

Usage

-Trip counts 

-Trip

Characteristics 

None -Descriptive Statistics 

McKenzie 2019 Washington, DC Comparison of 

Spatiotemporal 

Patterns and 

relationships of 

scooters and 

bikeshare 

-Trip counts 

-Trip

Characteristics 

-Population

Demographics 

-Land Use 

-Watson's U2 two 

sample test for 

homogeneity

Noland 2019 Louisville, KY Spatiotemporal 

Patterns and 

relationships of 

scooter usage 

-Trip counts 

-Trip

Characteristics 

-Weather Data 

-Land Use 

-Transit Data 

-Ordinary Least

Square Regressions 

Smith and 

Schwieterman 

2018 

Chicago Scooter Impact on 

other mobility modes 

-Trip Data 

-Scooter 

Availability

Scenarios 

-Employment Data 

-Built Env.

Characteristics 

-Multimodal

Characteristics 

-Multimodal Network

Analysis 

Younes, Zou, 

Wu & Baiocchi 

2020 

Washington, DC Hourly number of 

trips and Median 

Hourly Trip Duration 

for Scooter, 

Bikeshare Member 

and Non-Member 

users 

For Scooters and 

Bikeshares: 

-Trip counts 

-Trip

Characteristics 

-Weather 

-Gas Prices 

-Special Events 

-Negative Binomial 

Regression Model 

Zou, Younes, 

Erdoğan & 

Wu2020 

Washington, DC Correlation between 

trips and crash data to 

evaluate safety at the 

route level 

-Trip Counts 

-Trip Trajectories 

-Bike Crash Data 

-Time of Day 

-Day of Week 

-Bivariate Correlation
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Table 2. Topics Addressed in Literature on Scooters 
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Number of Themes Addressed 6 6 3 8 4 3 5 6 7 8 2 6 2 7 4 3 

Benefits 

of Scooter Usa

ge 

Potential to Flip Personal Car Mode 6 

Reduction of Net Carbon Emissions 5 

First Mile/Last Mile of connectivity 4 

Technology/MaaS/Data 2 

Concerns 

Surrounding 

Scooter Usage 

Economic and Climate Concerns 5 

Managing High Volume Corridors 3 

Curbside Management 5 

Regulations and Policy 9 

Implementation 

of Scooters 

Spatial Socioeconomic Correlations 9 

Land Use & Built Environment Corr. 4 

Scooter 

Interaction 

Bikeshares 9 

Multimodality 10 

Scooter Usage Purpose and Patterns 9 
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3.0 TASK 1: E-SCOOTER BIG DATA ANALYTICS AND TRAVEL 
DEMAND MODELING 

3.1 Introduction 
We are experiencing a dramatic shift in transportation system induced by technology 

and social awareness of sustainability. For example, smart-phone-based ride-hailing 

services and micromobility are providing new forms of shared mobility services to 

travelers and bring a significant impact on their travel mode choices. Micromobility 

refers to small, single-passenger transportation modes rented for short-term use, such 

as e-scooters, docked bikes, and dockless bikes. Micromobility is flexible, convenient, 

affordable, accessible, environmentally friendly, and fun to use, and it is especially 

attractive for serving short-distance trips. Therefore, micromobility is a good solution to 

the “first mile/last mile” problem (the problem of public transit being unable to get 

passengers to their doorstep) that has long troubled public transit. Micromobility can 

connect the neighborhoods to the transit stops, which makes it more convenient for 

residents to use public transit. However, although the integration of micromobility and 

public transit is conceptually appealing, to make it work in practice requires knowledge 

on patterns of micromobility usage. 

Among all the micromobility options, e-scooters are growing at the fastest pace 

(NACTO, 2019). E-scooters can be seen traveling on streets or parking asides bicycle 

lanes in many cities of the United States such as Washington D.C., Los Angeles, Chicago, 

and Atlanta. Based on smartphone applications, the e-scooter sharing services are easy 

to use. The user first accesses a map of available scooters via the application in a 

smartphone. After locating and navigating to the target scooter, the user unlocks it by 

scanning the Quick Response (QR) code on the vehicle or entering the plate number and 

then starts the trip. When reaching the destination, the user parks the scooter in 

designated areas and completes the trip on the application. The fee will be charged to 

the credit card registered by the user.  

While e-scooter as a travel mode can greatly enhance urban mobility, it has two key 

limitations. Firstly, the demands of e-scooter trip origin and destination are unbalanced 

spatially and temporally. For example, the spatial distribution of commuter trip origins 

and destinations are significantly unbalanced during the morning peak and the 

afternoon peak. The operators need to rebalance the vehicles to meet the high demand 

of e-scooter use in some areas. Therefore, accurate spatiotemporal e-scooter demand 

predictions are needed to help the operators generate optimal rebalancing strategies. 

Secondly, the e-scooters need to be recharged when they are at a low power level. 

Under normal usage conditions, a typical e-scooter must be recharged at least once 

within 24 hours. To accomplish this, the operators pay citizens to recharge e-scooters on 

their private property. Participants are instructed to pick up scooters with low power 
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levels and drop them off at specific locations when finishing recharging. Accurate e-

scooter demand predictions are needed to determine the optimal scooter drop-off 

locations. However, few existing studies focus on the e-scooter demand prediction 

problem. 

The Machine Learning (ML) methods have provided researchers powerful tools to 

predict the demands of different travel modes including public transit, ride-splitting, 

bike-sharing, and so on. Unlike conventional statistical methods that often assume a 

pre-determined functional form, ML allows the model structure to freely vary and thus 

can readily capture the nonlinear patterns underlying the data to generate more 

accurate prediction results. In addition, ML methods allows researchers to explore 

nonlinear and threshold effects conveniently. Therefore, in this task, we use ML 

methods to model the e-scooter demand and explore effects of different factors. 

Public application programming interfaces (APIs) are the main data source for the public 

to understand micromobility. As a part of the micromobility permit requirement, cities 

often require micromobility providers to share data through APIs prescribed by standard 

formats, including the General Bikeshare Feed Specification (GBFS) and the Mobility 

Data Specification (MDS). GBFS was initially developed as the open data standard for 

bike share system availability back in 2015, but now it is applicable for nearly all shared 

micromobility systems in the North America (NABSA, 2020). GBFS APIs report real-time 

information about available vehicles, which typically includes vehicle location, vehicle 

type (bike or scooter), and battery level. Created by the Los Angeles Department of 

Transportation (LADOT) in 2018, MDS extends GBFS to require additional information 

from mobility providers. The additional information may include data on unavailable 

vehicles in the network, trip characteristics, and trip trajectories (MobilityData, 2020). 

However, the MDS has received limited adoption so far, and the MDS APIs are usually 

not made available to the public. Accordingly, we focus on GBFS in this task.  

In this task, we firstly infer origins and destinations of e-scooter trips in Washington, 

D.C. based on GBFS data. Secondly, we develop several ML models to predict the e-

scooter demand in block group level. Then, the in-sample and out-of-sample

performance of ML models are compared. Finally, we interpret the ML models using

some interpretation tools (i.e., feature importance and partial dependence plot) to

explore the effects of factors.

3.2 Data 
3.2.1 Data collection and processing 
The data used in this research consist of two parts: scooter trip OD data in 

Washington D.C., and independent variables including socioeconomic and 

demographic data, built environment data, and transit supply data in block 

group level. 
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3.2.1.1 Trip origin and destination data 

The scooter trip OD data are inferred from the GBFS data in Washington D.C. 

from Feb 24, 2020 to Mar 01, 2020. Data of six operators in Washington, D.C., 

including Bird, Jump, Lime, Lyft, Skip, and Spin, are collected. Data feeds are 

scraped using APIs provided by the vendors. Since the data update frequency 

varies among vendors, we use different scraping intervals. Specifically, scraping 

interval for Bird, Jump, Skip, and Spin data is 60 seconds, and scraping interval 

for Lime and Lyft is 300 seconds. The attributes of the data include scooter ID, 

latitude and longitude of scooter location, battery level, etc. However, GBFS data 

only report real-time information about available vehicles. We need to infer trip 

origins and destinations from the raw data. 

Some recent studies have extracted trip information from the GBFS data to 

examine the spatiotemporal patterns of scooter usage (McKenzie, 2019; Younes 

et al., 2020). The trip inference method used in these studies usually assumes 

that GBFS APIs report Static Vehicle IDs, that is, the ID of a given micromobility 

device does not change over time. However, this assumption no longer holds for 

many circumstances because the GBFS data standards are updated frequently. 

For example, in GBFS v2.0, it is required to randomly rotate vehicle IDs after each 

rental, in order to reduce the potential exposure of private data (MobilityData, 

2020). To enhance rider privacy, many micromobility providers currently operate 

GBFS APIs that report Resetting Vehicle IDs (i.e., the vehicle ID will be randomly 

rotated once the vehicle is unlocked for a new trip) or Dynamic Vehicle IDs (i.e., 

the vehicle ID of a given scooter randomly changes every several minutes). 

Among the six scooter operators, Jump, Skip, and Spin were using Static Vehicle 

IDs, Bird was using Resetting Vehicle IDs, and Lime and Lyft were using Dynamic 

Vehicle IDs. The trip origins and destinations are inferred using algorithms 

developed by Xu et al. (2020). 

3.2.1.2 Independent variables 

The independent variables include socioeconomic and demographic data, built 

environment data, and transit supply data. Table 3 presents the description and 

the descriptive statistics of the independent variables used in this study. 

 All the variables are aggregated to block groups level. Block groups are defined 

as clusters of blocks within the same census tract that have the same first digit of 

their 4-character census block number. A block group usually covers a 

contiguous area. The socioeconomic and demographic properties are 

homogeneous in a block group; thus this kind of segmentation can well 

represent the functional and administrative properties of the zones (Ke et al., 

2021). The block groups in downtown area of Washington, D.C. are relatively 

small, where the micromobility usage intensity is high. Although the block groups 
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in rural and sub-rural areas are relatively large, micromobility trip demand is 

small in these areas. To better understand the usage pattern and regulate the 

operation of micromobility, we want the segmentation to be detailed in areas 

with high demand, which consistent with the segmentation of block groups. The 

average area of the block groups in Washington, D.C. is 0.4 𝑘𝑚2, and the median 

is 0.2 𝑘𝑚2. The size is suitable for management and research for micromobility. 

We constructed a list of input features by merging data from various sources. 

We obtained a list of socioeconomic and demographic variables from the 

American Community Survey 2014-2018 5-year estimates data. Furthermore, we 

used General Transit Feed Specification data to estimate some transit-related 

variables, applied geographic information system (GIS) techniques to calculate 

several built environment variables, and used the Walkscore.com API to obtain 

the Walk Score of a census tracts centroid. 

Table 3. Descriptive profile of Input variables 

Variable Description Mean SD Min Max 

Ori Trip origin demand 125.60 380.85 0 5167 

Totpop Total population 1521 740 60 6019 

Popden Population density 21029.1 16423.6 23.7 115858.7 

Pctmale Proportion of male population 0.47 0.07 0.21 0.91 

Hhsize Average household size 2.4 0.59 1.2 4.6 

Pcthighschool 
Proportion of population with high school 
degree and above 

1 0 1 1 

Pctsomecollege 
Proportion of population with some college 
degree and above 

0.73 0.21 0.15 1 

Young1 Proportion of population aged 18-34 0.32 0.16 0.01 1 

Pctbachelor 
Proportion of population with bachelor’s 
degree and above  

0.56 0.3 0 1 

Medage Population in median age 36 7.64 15 66 

Pctwhite Proportion of white population 0.41 0.33 0 1 

Pctblack Proportion of black population 0.47 0.35 0 1 

Pcthisp Proportion of hispanic population 0.1 0.1 0 0.57 

Pctasian Proportion of asian population 0.04 0.05 0 0.31 

Carown Proportion of households with at least one car 0.68 0.19 0.13 1 

Pct2car Proportion of households with at least two cars 0.23 0.16 0 0.75 

Pcttransit Proportion of workers taking transit to work 0.35 0.15 0 0.9 

Pctdrialone Proportion of workers driving alone to work 0.38 0.17 0 0.75 

Numworker Number of workers 814 484 60 4896 

Unemploy Proportion of unemployment 0.08 0.08 0 0.57 

Incpercap Income per capita ($) 55100 31868 3743 182111 

Medhhinc Median household income ($) 96519 55202 12229 250001 

Pctmodinc Proportion of moderate income 0.14 0.099 0 0.55 
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Pctlowinc Proportion of low-income ($25k less) 0.13 0.16 0 0.37 

Pctupmidinc Proportion of up middle-income households 0.1 0.06 0 0.37 

Pctlowmidinc Proportion of low middle-income households 0.13 0.07 0 0.37 

Pctmidinc 
Proportion of middle-income households ($50k 
to $75k)  

0.23 0.1 0 0.73 

Pcthighinc Proportion of high-income ($75k more) 0.42 0.24 0 1 

Pctrentocc Proportion of renter-occupied housing units 0.53 0.27 0 1 

Pctsinfam2 Proportion of single-family homes 0.45 0.32 0 1 

WalkScore WalkScore of centroid of census tract 73.47 21.84 4 99 

Attraction_Den Attraction density (per mile square) 2.03 10.64 0 144.54 

Bikelane_Den Bike lane density (miles per mile square) 11.47 13.34 0 90.31 

Biketrail_Den Bike trial density (miles per mile square) 6.97 19.34 0 260.10 

Hotel_Den Hotel density (per mile square) 57.74 182.00 0 1911.92 

Parking_Meters_Den Parking meter density (per mile square) 316.3 702.94 0 4736.4 

Parking_Valets_Den Parking valet density (per mile square) 504.96 1094.57 0 10214.23 

RdNtwk_Den Road network density (miles per mile square) 53.24 20.28 10.19 134.29 

Interst_Den Intersection density (per mile square) 706.08 314.23 43.49 2005.37 

MetroStop_Den Metro stop density (per mile square) 6.65 11.63 0 72.14 

BusStop_Den Bus stop density (per mile square) 564.43 404.41 25.43 3158.83 

PctMetroBuf 
Percentage of tract within 1/4 mile of a metro 
stop 

0.14 0.26 0 1 

PctBusBuf 
Percentage of tract within 1/4 mile of a bus 
stop 

0.95 0.14 0.15 1 

3.2.1.3 Reducing multicollinearity 

Multicollinearity has adverse effects on the reliability of estimates of model 

parameters and the model’s predictive power. Therefore, highly correlated 

independent variables should be excluded to mitigate the multicollinearity 

concern before the modeling process. We use variance inflation factor (VIF) to 

check multicollinearity among independent variables, and then remove variables 

with VIF greater than 10, a common threshold applied to determine 

multicollinearity (Sheather, 2009). The VIF values of the remaining independent 

variables are listed in Table 4. 

Table 4. Final independent variable list with VIF values 

Variable VIF Variable VIF 

Popden 4.54 Pctmidinc 1.87 

Pctmale 1.24 Pctrentocc 6.07 

Hhsize 3.72 Pctsinfam1 2.86 

Medage 3.45 Pctsinfam2 5.97 

Young1 4.28 WalkScore 3.61 

Pctwhite 6.29 Attraction_Den 1.41 

Pcthisp 1.47 Bikelane_Den 2.05 
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Pctasian 1.94 Biketrail_Den 1.25 

Carown 4.82 Hotel_Den 5.14 

Pct2car 5.43 Parking_Meters_Den 2.21 

Pcttransit 2.11 Parking_Valets_Den 6.25 

Pctdrialone 3.55 RdNtwk_Den 3.41 

Numworker 2.14 Interst_Den 3.44 

Unemploy 2.26 MetroStop_Den 2.64 

Medhhinc 8.71 BusStop_Den 5.65 

Incpercap 7.34 PctMetroBuf 2.21 

Pctlowinc 6.63 PctBusBuf 1.77 

Pctmodinc 2.84 

3.2.2 Temporal distribution of trip origins and destinations 
We have 65,601 observed trip origins and 65,600 observed trip destinations in 

total. Figure 2 presents the total number of origins and destinations in different 

time periods. We can see that there are two peaks of demand every day. Peak 

hours include 8-9 a.m. and 5-7 p.m. Besides, the temporal usage pattern of 

weekday and weekend is different. 
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Figure 2. Temporal distributions of total trip origins and destinations (top: trip origin; bottom: 
trip destination) 

We also examined temporal distribution of trip origins and destinations for 

different vendors in Washington, D.C. (Figure 3.2 and Figure 3.3). Note that the 

y-axis of the subfigures is different as the trip volume differs among vendors.

According to Figure 3 and Figure 4, while the six vendors have different trip

volumes, the temporal usage patterns are generally similar, which is consistent

with conclusions in McKenzie (2020). All of the six vendors have two significant

trip peaks during weekdays. The morning peak hours are 8:00 a.m. to 10:00 a.m.,

and the afternoon peak hours are 5:00 p.m. to 7:00 p.m. But on weekends, there

is only one peak, during the afternoon from 3:00 p.m. to 5:00 p.m. This

difference between weekdays and weekends presumably results from

commuting trips, which are more common during weekdays. Compared with the

study by McKenzie (2020), where data from December 2018 to March 2019 were

used, the morning and afternoon peaks in weekdays are more prominent in our

study. This result suggests that the proportion of commuting trips in e-scooter

trips might be increasing over time, but more analysis is needed in the future to

assess the e-scooter trip purpose.
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Figure 3. Temporal distribution of Trip Origins for different vendors 

Figure 4. Temporal distribution of Trip Destinations for different vendors 
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3.2.3 Spatial distribution of trip origins and destinations 
We then generate heat maps based on number of trips in each block group to 

explore spatial e-scooter usage patterns. The results are presented in Figure 5. 

The general spatial pattern is that the e-scooter demand is significantly high in 

downtown areas. Interestingly, the block group with the largest e-scooter 

demand has the greatest number of tourist attractions. This indicate that the e-

scooter services are playing an important role in tourism trips. 

Figure 5. Spatial distributions of e-scooter trips (origins) in Block Group level 

3.3 Methodology 
In this study, we use 5 methods, including Ordinary Linear Squares (OLS), Lasso, Decision 

Tree (DT), Random Forest (RF), and Boosting to develop models to predict the e-scooter 

trip origin demands of block groups in Washington, D.C. The model performance is 

evaluated by in-sample and out-of-sample root mean squared error (RMSE) and mean 

absolute error (MAE). The model that has the best performance in our data is further 

interpreted by feature importance (FI) and partial dependence plots (PDP). 

3.3.1 Modeling methods 
Ordinary least squares model is a type of method for estimating the unknown 

parameters in a linear regression model. The principle of OLS is to minimize the 
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sum of squares of the differences between the observed dependent variable 𝑦𝑖 

in the dataset and the dependent variable predicted by the model 𝑦̂𝑖. The 

function form is: 

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑛𝑥𝑖𝑛 + 𝜀𝑖 

where 𝛽1, 𝛽2, …, 𝛽𝑛 are parameters, 𝑥𝑖1, 𝑥𝑖2, …, 𝑥𝑖𝑛 are independent variables, 𝜀𝑖 

is error term. 

OLS model is a widely used linear model. The structure of OLS model is simple, 

and it is easy to use, while the OLS model has disadvantages such as limitations 

of the linear shape, possibly poor extrapolation properties, and sensitivity to 

outliers. 

Lasso (Least Absolute Shrinkage and Selection Operator) is a linear regression 

method that performs both variable selection and regularization in order to 

enhance the prediction accuracy and interpretability (Tibshirani, 1996). Lasso 

forces the sum of the absolute value of the regression coefficients to be less than 

a fixed value, which sets certain coefficients to be zero, effectively shrinking the 

size of coefficients. The lasso coefficients minimize the quantity: 

∑(𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)2

𝑛

𝑖=1

+ 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

= 𝑅𝑆𝑆 + 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

 

where 𝑦𝑖 is the observed dependent variable, 𝛽0, 𝛽𝑗, 𝜆 are parameters, 𝑅𝑆𝑆 is 

the residual sum of squares. 

Lasso produces simpler and more interpretable models that involve only a subset 

of the predictors compared with OLS model. However, Lasso may generate a 

slightly higher variance in some cases. 

Decision tree model is a tree-based nonparametric ML model. It can be applied 

to both regression and classification problems (Breiman, 1984). In this study, we 

use a decision tree for regression. A regression tree can be built by two steps. 

First, divide the predictor space by the set of possible values into distinct and 

non-overlapping regions. Then, for every observation that falls into the same 

region, take the mean of the response values as prediction. This kind of 

regression tree may produce good predictions on the training set but is likely to 

overfit the data, leading to poor test set performance. That is because of the 

high complexity of the resulting tree. We further prune the original large tree to 

a subtree, aiming to minimize the test error rate. 

Decision tree model is easy to interpret because of its tree structure. Trees can 

be displayed graphically and easily interpreted. In addition, trees can easily 
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handle qualitative predictors without the need to create dummy variables. 

However, the decision tree model is sensitive to noise and susceptible to overfit 

(Hastie et al., 2009). 

Random Forest (RF) is a tree-based ensemble ML model (Breiman, 2001). RF 

generates a set of decision trees where the training set for each decision tree is 

selected using bootstrap sampling from the original sample set, and the optimal 

node splitting feature for each node is selected from a random subset of the 

original set of features. The bootstrap sampling and the random selection of 

features could reduce the correlation between the generated decision trees and 

thus the average prediction response of multiple trees is expected to overcome 

the overfitting problems and has lower variance than individual decision trees.  

In general, RF tends to have high accuracy prediction and can handle large 

numbers of features due to the embedded feature selection in the model 

generation process. RF is also sufficiently robust: the predictor features for RF 

can be of any type (numerical, categorical, continuous, or discrete) and RF is 

insensitive to skewed distributions, outliers, and missing values (Breiman, 2001). 

More importantly, as a tree-based ensemble learning model, RF can model both 

linear and nonlinear relationships between the input features and the response 

variable as well as capture interactions among features because of its flexible 

modeling structure (Breiman, 2001).  

Boosting is another tree-based ensemble approach for improving the predictions 

resulting from a decision tree (Friedman, 2001). The first step of boosting is to 

create multiple copies of the training data using bootstrap. The trees of boosting 

are growing sequentially, which means each tree is grown using information 

from previously grown trees. And boosting does not involve bootstrap sampling, 

instead, each tree is fit on a modified version of the original data set. 

The boosting approach has a strong predictive. Compared with multiple 

regression, boosting does not require the output variable to be normally 

distributed. It can also deal with missing values and multicollinearity issues. 

Meanwhile, it can fit nonlinear relationships between variables. However, it 

cannot conduct significance tests or produce confidence intervals for 

coefficients. 

3.3.2 Interpretation methods 
To identify key factors associated with the e-scooter trip demand and examine 

their relationships, we further interpret the models using feature importance (FI) 

and partial dependence plots (PDP). The FI is used to identify key determinants, 

and PDP is used to explore the relationships between the factors and the e-

scooter trip demand. 
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The importance of each feature in predicting the outcome variable can be 

quantified by the FI metrics. For linear regression models such as OLS and Lasso, 

the FI can be evaluated by the coefficients of the independent variables using a 

standardized input. For tree-based model such as random forest, and boosting, 

the most commonly used feature importance measures is Mean Decrease 

Impurity. Mean Decrease Impurity evaluates the importance of variable 𝑥𝑖  by 

averaging the weighted reduction in cost for all nodes where feature 𝑥𝑖  is 

selected over all trees. Gini impurity is usually used as the cost function to 

evaluate variable importance. In this study, we will report the relative 

importance of features, with the total relative importance of all features scaled 

to 100%. Note that relative feature importance represents the relative 

contribution of a variable to the predictive power of a model, and it does not 

indicate the direction to which a variable is associated with the outcome 

variable. 

The PDP shows the marginal effect that a variable has on the predicted outcome 

of a machine learning model. PDP works by marginalizing the model output over 

the distribution of the variables in the complement set of the selected 

variable(s), so PDP shows the relationship between the selected variable(s) we 

want to evaluate and the predicted outcome (Molnar, 2019). Consider the sub-

vector 𝑋𝑆 of the input predictor variables 𝑋𝑇 = (𝑋1, 𝑋2, … , 𝑋𝑝), indexed by 𝑆 ⊂

{1,2, … , 𝑝}. Let 𝐶 be the complement set, with 𝑆 ∪ 𝐶 = {1,2, … , 𝑝}. A general 

function 𝑓(𝑋) will in principle depend on all of the input variables: 𝑓(𝑋) =

𝑓(𝑋𝑆, 𝑋𝐶). The partial dependence of 𝑓(𝑋) on 𝑋𝑆 is: 

𝑓𝑆(𝑋𝑆) = 𝐸𝑋𝐶
𝑓(𝑋𝑆, 𝑋𝐶)

and partial dependence of 𝑓(𝑋) on 𝑋𝑆 can be estimated by: 

𝑓𝑆̅(𝑋𝑆) =
1

𝑁
∑ 𝑓(𝑋𝑆, 𝑥𝑖𝐶)

𝑁

𝑖=1

 

where 𝑥𝑖𝐶  is the value of 𝑋𝐶 occurring in the training data, 𝑁 is the sample size. 

As a popular machine-learning interpretation method, PDPs are easy to 

implement. Besides, the computation of partial dependence plots is intuitive, 

and under uncorrelated cases, the interpretation is clear: PDP shows how the 

average prediction changes when the corresponding feature is changed. 

However, the PDP method assumes that the feature(s) under evaluation is not 

correlated with the other features. If they are correlated, PDP creates new data 

points in the areas of the feature distribution where the actual probability is very 

low, often leading to biases in results (Molnar, 2019). 
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3.4 Results 
3.4.1 Model comparison 
The model fit (measured using samples in training set) and predictive accuracy 

(measured using samples in test set) of the OLS, Lasso, DT, RF and Boosting 

models are evaluated by root mean squared error (RMSE) and mean absolute 

error (MAE). These metrics can be calculated by: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑘 − 𝑦𝑘)2𝑁

𝑘=1

𝑁

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦̂𝑘 − 𝑦𝑘|

𝑁

𝑘=1
 

where 𝑁 is the total number of observations, 𝑦𝑘 is the kth observed value for the 

outcome variable, and 𝑦̂𝑘 is the kth predicted value for the outcome variable. 

The five models are evaluated by 10-fold cross-validation. That is, we randomly 

split the dataset into 10 equal sized subsets. For a single subset, we used it as the 

test set, and use the remaining 9 subset as training set. The process is repeated 

10 times, with each of the 10 subsets used once as the test set. Then we 

averaged the 10 results to produce the final estimate. The performance metrics 

of the five models are presented in Table 5. 

Table 5. Model Performance of OLS, Lasso, DT, RF and Boosting 

Model 
In-Sample Performance Out-of-Sample Performance 

MAE RMSE MAE RMSE 

OLS 141.33 ± 16.24 267.83 ± 27.33 161.26 ± 39.38 300.56 ± 204.38 

RF 36.00 ± 2.12 122.27 ± 11.75 85.69 ± 41.04 238.56 ± 203.50 

Boosting 9.94 ± 1.56 15.24 ± 2.90 102.48 ± 39.01 250.64 ± 182.83 

DT 82.15 ± 7.85 232.15 ± 28.56 128.08 ± 39.42 365.10 ± 190.36 

Lasso 140.66 ± 16.15 267.84 ± 27.33 160.39 ± 39.37 299.63 ± 204.78 

According to Table 5, the Boosting model and the RF model have better in-

sample performance than other models. However, the out-of-sample 

performance of the Boosting model and the RF model is significantly worse than 

their in-sample performance. This result indicates that the Boosting model and 

the RF model have an overfitting problem. The linear models (i.e., OLS and Lasso) 

have larger fit and predictive errors than DT, RF, and Boosting. This is because 

the distribution of the outcome variable denoting a positive skew, with the 

majority of trip origin demand presenting a small value. The linear models are 

not good at dealing with this kind of data. The RF model has the best out-of-

sample performance, and it also has good in-sample performance. To conclude, 
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the RF model has the best performance on our data set among the five models. 

Therefore, the further interpretation will focus on the RF model. 

3.4.2 Modeling interpretation 
The relative importance of each feature is presented in Figure 6, with the total 

relative importance of all features scaled to 100%. 

Figure 6. Relative Feature Importance of RF Model 

According to Figure 6, the most important feature in the RF model is WalkScore 

with 18.1% relative importance. This result makes sense because the block 

groups with high WalkScore usually have a good environment to ride e-scooters. 

This result consistent with previous studies indicating that areas with better 

transportation facilities and environment (e.g., the street safety) are more likely 

to have more e-scooter trips (Mitra and Hess, 2021; Sander et al., 2020; 

Hosseinzadeh et al., 2021). The second and third important features are parking 
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related variables, Parking_Meters_Den (i.e., parking meter density), and 

Parking_Valtes_Den (i.e., parking valet density). This may result from the “P+R” 

(park and ride) trips: travelers use the e-scooters near their parking spots. 

Hotel_Den (i.e, hotel density) ranks 4th in relative feature importance. This is 

probably caused by the tourism trips. Previous studies showed that a large 

proportion of e-scooter trips were leisure, strolling, and visiting trips, and 

playfulness was also an important motivation for travelers to choose e-scooters 

(Christoforou et al., 2021). Tourists may ride e-scooters to metro stops, 

attractions, restaurants, and so on. The proportion of young (aged 18-34) 

population and the proportion of white population are ranks 5th and 6th, 

respectively. This means the census block groups with different demographic 

compositions have different e-scooter trip demands, probably because of the 

residents’ travel preferences. These results are consistent with some survey-

based studies. The young people and the non-white people were significantly 

more likely to use the e-scooters (Lee et al., 2021; Cao et al., 2021; Mitra and 

Hess, 2021; Christoforou et al., 2021; Laa and Leth, 2020; Sanders et al., 2020). 

The work-related variable, number of workers, ranks 7th among the variables. 

This may result from the commute trips. For different variable groups, the built 

environment variables have the highest relative feature importance, and the 

transit-supply-related variables have the lowest relative feature importance. 

That indicates the riding environment and infrastructure are important for 

promoting e-scooter use.  

The partial dependence plots of top six important features are presented in 

Figure 7. 

(a) Walkscore (b) Parking meter density
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(c) Parking valet density (d) Hotel density

(e) Proportion of population aged 18-34 (f) Proportion of white population

Figure 7. Partial Dependence Plots of Top Six Important Features 

According to Figure 7, all of the six features have positive relationships with trip 

origin demand. We can also observe nonlinear relationships from these figures. 

For example, when WalkScore increases from 85 to 95, there is a sharp increase 

in trip origin demand while the trip origin demand remains flat when WalkScore 

increases from 25 to 50. For parking meter density, parking valet density, and 

hotel density, the demand increases with the density increases. After the density 

exceeding a threshold, the demand does not change much. For proportion of 

population aged 18-34, the demand increases rapidly when the proportion 

increases from 0.12 to 0.38. Then the increase slows down. For proportion of 

white population, the demand increases sharply when the proportion increases 
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from 0 to 0.25. Then the demand remains steady. After the proportion exceeding 

0.5, the demand begins to decrease. 

3.5 Conclusion 
In this task, we model the trip origin demand of e-scooter services in Washington, D.C. 

The independent variables include socioeconomic and demographic variables, built 

environment variables, and transit supply variables. The OLS, Lasso, DT, RF, and 

Boosting models are used to predict the trip origin demand in census block group level. 

The in-sample and out-of-sample performance of these five models are compared using 

MAE and RMSE. The results of the best performed model, the RF model, are further 

interpreted using FI and PDPs. The most important variable is WalkScore and the most 

important category of variable is built environment variables. From PDPs, we can 

observe nonlinear relationships between the dependent variable and independent 

variables. For example, when WalkScore increases from 85 to 95, there is a sharp 

increase in trip origin demand. 

Several issues require future research. Firstly, a detailed and in-depth analysis of 

modeling results need to be addressed. More literatures should be included to support 

the conclusions we draw from FI and PDPs. Secondly, more features may be needed to 

develop a more comprehensive model and to generate richer insights. Thirdly, the 

results and insights regarding the trip origin demand found in Washington D.C may not 

be directly transferable to other cities with different characteristics. Therefore, 

transferability requires further research in the future. 
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4.0 TASK 2: TRAFFIC SIMULATION OF E-SCOOTERS- A PILOT 
STUDY FOR AN URBAN UNIVERSITY CAMPUS 

4.1 Introduction 
In the recent years, there has been a growing interest in introducing shared 

micromobility options in urban areas and university campuses.  These initiatives are 

driven from a desire to provide alternative options to automobile travel, especially for 

short distance trips, in hopes of reducing automobile vehicle miles traveled and the 

associated environmental footprint, easing traffic congestion and improving traffic 

circulation and user satisfaction. Also, increased use of e-scooters, e-bikes and similar 

micromobility options can lead to the increase of future bike lanes, greenways, and 

other facilities that make streets and neighborhoods user-friendly for residents and 

transportation users alike (Powell, 2020).  The recent popularity in shared micromobility 

services is enabled by advances in technology (such as smartphones, GPS systems and 

mobile payment options) and supported by social and environmental concerns related 

to vehicle ownership and urban living (Shaheen et al, 2017). According to the National 

Association of Transportation Officials (NACTO), people in the United States took 136 

million trips on shared bikes, e-bikes, and scooters in 2019, which is 60% more than 

2018 (NACTO, 2019). 

A prime example of a city that embraced e-scooters and e-bike sharing systems is 

Portland, Oregon where city officials worked diligently to create an environment in 

which these services thrive (Powell, 2020). In 2018, e-scooter ridesharing popped up in 

cities like San Francisco, Santa Monica, St. Louis and 63 other cities. Some of these cities 

experienced e-scooter services only for a limited amount of time. For example, Bird, a 

private e-scooter company, introduced e-scooters in Birmingham, AL in August 2018 

(Egmon, 2018).  However, this move became controversial and short lived in 

Birmingham as well as in the many other cities across the country. This was due to the 

fact that ridesharing companies like Bird deployed their e-scooters without seeking the 

proper permits first. In fact, many cities did not have proper regulations in place for e-

scooter services to ensure the safety of riders and pedestrians, and the efficient storage 

of scooters. The City of Birmingham impounded the scooters and charged the company 

daily storage fees until e-scooters were removed, and in the meanwhile, proceeded with 

the drafting of legislation to regulate e-scooters.  
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The approval of a 2020 ordinance that allows the operation of motorized scooters in the 

city [City of Birmingham, 2021a] enabled the City of Birmingham to embark on a new 

pilot program to reintroduce e-scooters in 2021 by partnering with two companies, Veo 

and Gotcha, [Birmingham Department of Transportation, 2021]. As part of this 90-days 

pilot program, Veo began operations in late April 2021 offering shared e-scooters and e-

bikes in downtown Birmingham and other neighborhoods [City of Birmingham, 2021b]. 

The City of Birmingham Department of Transportation established 94 parking corrals 

throughout the service area and each vendor was approved to deploy 500 devices in the 

first 90 days of operations.  Figure 8 shows Veo e-scooters from the 2021 Birmingham 

pilot deployment. 

Many cities took a cautious approach by introducing pilot programs in order to gauge 

the interest in micromobility amongst their residents and the potential impacts on travel 

patterns prior to a broader deployment. To quantify such impacts and guide local urban 

Veo Scooters at Caldwell Park (Photo credit: 
Pat Byington) 

Veo e-Scooters at UAB (Photo credit: 
Virginia Sisiopiku) 

Veo e-Scooters Parked at Pepper Place (Photo 
credit: pepperplace.com) 

Figure 8. E-scooters in Birmingham, AL 
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and regional planners and transportation authorities as they try to determine the merits 

of micromobility deployment in their areas, simulation studies are desirable.  However, 

the literature (see Chapter 2) identified a current lack of off-the-shelve micro-simulators 

that allow the incorporation of shared micromobility options into traffic simulation 

modeling.  

In an effort to bridge this gap, our team performed a study to determine the feasibility 

of using simulation modeling to incorporate micromobility options into a traffic network 

in order to measure the impact of such modes on local congestion. Building on our 

earlier research related to STRIDE B and STRIDE I2 projects (Sisiopiku et al, 2019; 

Sisiopiku and Salman, 2019; Guo et al., 2019a and Guo et al., 2019b), we used the 

MATSim platform (www.matsim.org), an open-source agent-based transportation 

simulation software to implement our traffic simulation around the University of 

Alabama at Birmingham (UAB) campus located in Birmingham, AL. The Birmingham pilot 

study integrated e-scooters as an option of travel in the vicinity of UAB, through the 

development of new Python programs that generated realistic plans of UAB employees 

and students, which were then fed into MATSim and used to compare traffic impacts 

with and without e-scooters on the basis of speed and traffic volume.  In addition to the 

baseline (no scooters), three scenarios were considered with gradually increased e-

scooter availability to study the likely benefits of increased micromobility services on 

traffic operations.   

It should be noted that the development of the Birmingham MATSim simulation model 

that considered e-scooters in our study was limited in scope and aimed at 

demonstrating feasibility rather than measuring actual traffic impacts from the 2021 

pilot e-scooter deployment. Still, our team made sincere effort to use any information 

available about the Birmingham 2021 pilot deployment in the design of the simulation 

scenario in order to increase the realism of the experiment (e.g., size of the e-scooter 

fleet, location of parking corals, max speed, e-scooter dimensions, etc.).  

When using MATSim to run traffic simulation, MATSim takes the travel day-plans of a 

population and executes them on the underlying road network (obtained from 

OpenStreetMap) to generate simulated traffic. So, a key challenge is to generate a 

realistic synthetic population along with their travel day-plans to be fed to MATSim. In 

our prior work (Guo et al., 2019a; Guo et al., 2019b], we have proposed a solution to 

generate realistic population day-plans for an entire city like Birmingham using user 

surveys plus publicly available data sources. However, that approach does not take 

micromobility into account. Moreover, micromobility is unique in that the travel 

distance is usually much shorter than that of car trips, and the service deployment is 

often in a localized area. As a result, more fine-grained travel behavior modeling is 

essential. 
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Therefore, in this project we decided to conduct an area-specific survey of travelers 

designed based on the travel demands and types in the target area (e.g., based on zone 

functionality (Guo et al., 2019b) such as commercial, entertainment, or educational). 

Since the scale of a survey is limited compared with an entire population in the area, we 

needed to further enrich the day-plan details using openly available data sources. 

We choose the campus of the University of Alabama at Birmingham (UAB) as the target 

area to study. Since UAB is a functional zone for education, research, and healthcare, we 

surveyed both students and employees in our case study. For this purpose, we 

conducted a mobility survey of 4,137 students and 4,920 employees of UAB, which was 

used to obtain the location distributions of their home/apartments, classrooms, and 

workplaces. To enable the generation of rich information of day-plans, we also resorted 

to various openly available data sources, and internal data from UAB (e.g., parking 

lots/decks). Our workflow can be used in other scenarios when area-specific surveys and 

data sources are provided. 

The remaining of Chapter 4 is organized as follows. Section 4.2 describes how we 

modified MATSim’s carsharing module to support the mode of e-scooters, and how we 

designed a proper scoring function to allow MATSim to select the proper travel mode 

among alternative modes. Section 4.3 introduces our approach to generate realistic 

travel plans of UAB students and employees, including the various data sources that we 

used to achieve this goal. In Section 4.4, we report our experimental findings and 

conclude this report in Section 4.5. 

4.2 MATSim Adaptation for Shared Micromobility Simulation 
The following paragraphs provide a brief introduction to the MATSim model and discuss 

the approach that we used to customize the model in order to meet the needs and 

objectives of this study.  Additional details on MATSim capabilities and applications to 

date are summarized in the literature and in particular in Horni et al. (2016).  Details on 

our earlier work on the development of the MATSim base model for the Birmingham 

area are available in Sisiopiku et al. (2019) and Guo et al. (2019a). 

4.2.1 MATSim model background 
The Multi-Agent Transport Simulation (MATSim) model was used as a simulation 

tool in this study. MATSim (www.matsim.org) is an extendable, multi-agent 

simulation framework implemented in Java that offers considerable 

customizability through its modular design structure.  The software is designed 

to simulate large-scale scenarios by adopting a computationally efficient queue-

based approach (Horni et al., 2016). MATSim uses a microscopic simulation 

methodology for travel demand forecasting that traces the daily travel diary and 

agents synthetic travel decisions. It is designed to model a single day, similar to 

other activity-based models.  
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MATSim is an open-source software that requires its input files to be as XML 

files. Minimum input files required to run the software are: a) Configuration file; 

b) Network file, and c) Population/plans file.  The configuration file builds the

connection between MATSim tool and all other Extensible Markup Language

(XML) files (e.g., network, population, etc.), and contains a list of settings that

influence how the simulation behaves.  MATSim’s network file consists of nodes

and links and describes the infrastructure that agents can use to move around.

Nodes are defined by coordinates while the link requires definition of several

attributes including the length of the link, capacity, speed, and the number of

available lanes.  The population file provides information about travel demand,

e.g., a list of agents and their travel diaries. The travel demand is described by

the daily plans of each agent. The population file contains a list of transportation

users and their daily plans, activities, and legs.

Each simulation job executes in iterations where each iteration executes the 

selected plans of all agents over an underlying road network (Horni et al., 2016).  

Figure 9 shows the execution flow of a MATSim job (Horni et al., 2016).  It starts 

with an initial population demand (a.k.a. plans) in the studied area which is 

application dependent. Each agent in the population maintains a pool of up to 5 

day-plans. In each iteration, (i) MATSim’s “mobsim” simulation executor runs the 

selected plans of the agents in the synthetic road network environment; (ii) then, 

a scoring function assigns a score to each plan based on the corresponding 

agent’s experiences with the selected day plans (e.g., if congestion happens or 

not); (iii) afterwards, the replanning step selects a candidate plan based on the 

plan scores in each agent’s day-plan pool, and may modify this plan for 

execution in the next iteration. 

Figure 9. The Execution Flow of MATSim (Horni et al., 2016) 

Specific details on our approach for computing the mobility demand around the 

UAB campus for the Birmingham case study are available in Section 4.3.   

As far as simulation outputs are concerned, MATSim creates output data that 

can be used to monitor the current simulation setup progress as well as to 
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analyze results. In each iteration, a linkstats file containing hourly count values 

and travel times on every network link is generated by the model. The user can 

specify the output interval of simulation statistics for individual links. MATSim 

provides overview summaries of counts and other statistics for the whole 

network, but also analyzes for individual links. Also, a google maps-based 

visualization is available, showing simulation output results for each station in a 

pop-up window. 

For the purposes of our study that is interested in the introduction of shared 

micromobility travel options, we need to use an extended module of MATSim. 

However, MATSim does not have an extended module that directly supports e-

scooters for shared micromobility simulation. The closest available extended 

module to our needs is MATSim’s carsharing module, which only supports 

shared cars (e.g., Zipcar) rather than other vehicle types such as e-scooters.  

To address this issue, we revised MATSim’s carsharing module to simultaneously 

support multiple types of shared micromobility modes, including e-scooters. 

Specifically, we studied the code of MATSim’s carsharing module, and made the 

necessary revisions so that it to allow users to add more shared- mobility modes. 

Each shared-mobility mode needs to specify a few attributes for proper 

simulation by MATSim. For the e-scooter mode, we adopted the following 

attributes which are consistent with those documented in published studies 

and/or reported by manufacturers: 

• Passenger Car Unit (PCU): 0.2; 

• Maxi Speed:  18.6 miles per hour (or 8.314944 meters per second);

• Length: 3.8 feet (or 1.15824 meters); 

• Width: 1 foot (or 0.3048 meters); 

Also, for each travel leg, MATSim has a parameterized score function that 

computes the cost of the leg based on the executed travel time and distance. For 

different modes, we configured the parameters of the score function to be 

different so that the most proper mode will be selected based on the leg length. 

For example, a 5-minute walk is preferred than driving, but driving is preferred 

over a 30-minute walk. E-scooters are preferred for a middle-ranged travel 

distance that is too long for walking but relatively short for driving so driving a 

car is not preferred, especially in downtown areas and University campuses 

where finding a parking spot is often a challenge. For example, the literature 

suggests that the typical trip distance for shared e-scooters is 1.6-1.9 km or 1-1.2 

miles (Ensor et al., 2021).  We modified the score function of the original 

carsharing module to integrate the e-scooter mode and allow it to be properly 

chosen among alternative modes. 
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In any MATSim model, each MATSim job is associated with a configuration file, 

which defines job parameters. In our study, in order to allow proper simulation 

with e-scooters as a mode of shared mobility, we made the following changes to 

the configuration file: 

(1) MATSim uses a FIFO queue on each road link for vehicle traffic simulation by

default, but this will cause the slower e-scooters to block the faster cars

following them. We configured the job to use MATSim’s “PassingQueue”

instead, which allows e-scooters to use a designated lane so that they will not

block the cars. This aligns better with the real situation around UAB where

dedicated bike lanes are available, and

(2) MATSim’s “subtourmodechoice” strategy for replanning was enabled, so that

MATSim can change modes between iterations. This would allow a more

reasonable mode setting to be explored by the co-evolutionary framework of

MATSim, so that the best plan (using e-scooters or not) can be retained and

selected due to its better score.

The MATSim’s carsharing module also uses an input file called 

“CarsharingStations.xml” where users need to specify the parking locations of 

the shared vehicles. In our case, e-scooters are dockless (a.k.a. freefloating in 

MATSim’s carsharing terminology), so the stations are just used to specify the 

initial locations of e-scooters when a day begins (for simulation). Even though e-

scooters are dockless, the companies will redistribute their e-scooters at the end 

of the day to a set of pre-designated stations to meet the demands for the next 

day, which aligns well with our use of “CarsharingStations.xml” for simulation. To 

increase the realism of our simulation scenarios, we configured 

CarsharingStations.xml to match the Veo’s stations in the Birmingham 

micromobility pilot deployment. Figure 10 shows the e-scooter stations for the 

2021 pilot deployment in Birmingham. 
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Figure 10. Veo e-Scooter Stations in the 2021 Birmingham Pilot Deployment 

4.3 MATSim plan generation for the Birmingham study 
MATSim requires users to provide a file named “plans.xml” containing the day-plans of 

each agent (traveler) to run a simulation job. So, the key to a successful simulation is to 

generate realistic population day-plans in the simulated area. We considered three 

types of traffic that constitute the majority of UAB traffic: 

(1) Traffic generated by students attending classes.

(2) Traffic generated by employees going to work.

(3) Background traffic where travelers are just passing through UAB, where UAB is

neither origin nor destination.

4.3.1 Data background traffic generation 
In Guo et al. (2019a), we used MATSim to generate a transportation simulation 

for the entire City of Birmingham with the help of a small seed mobility survey of 

451 participants, where day-plan details are enriched with the help of various 

open data sources that we completed as part of STRIDE B project (Sisiopiku et 

al., 2019; Sisiopiku et al., 2021; Sarjana et al., 2020). There, we partitioned the 

city into ZIP Code Tabulation Areas (ZCTAs), and for each OD (origin-destination) 
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pair (where origin refers to “Home”), we determined the number of trips by 

iterative proportional fitting (IPF) seeded from the mobility survey data and 

scaled up with the help of ZCTA aggregates (obtained from open data sources) 

serving as IPF marginals. Since the seed mobility survey was small, the OD matrix 

obtained was sparse with many zeros (see Figure 12 of Guo et al, 2019a). To 

overcome this issue, we smoothed this OD matrix with an OD-marginal-product 

matrix by taking a weighted sum and tuned the weight parameter so that the 

simulated traffic on a validation set of roads align best with the real road 

monitoring data from National Performance Management Research Data Set 

(NPMRDS). The resulting OD matrix A is shown in Figure 11. 

Figure 11. ZCTA OD Matrix A for Background Traffic 

UAB spans ZCTAs 35233 and 35205. To generate the background traffic, we 

further set A[i] [35233] and A[i][35205] to 0 for all origin ZCTAs i since we have 

counted their traffic in the first two types for UAB students and employees. For 

the remaining OD pairs, we generate their day-plans similarly as in [6] to count 

traffic that merely pass through UAB. 

4.3.2 Student traffic generation 
Figure 12 shows the three types of student plans that we adopted. Each plan 

consists of a sequence of activities connected by legs. For example, Plan 1 has an 

activity sequence “Home → Parking → Class → Parking → Home” describing a 

student’s day plan where he/she drives from home to a parking lot/deck on the 

campus, parks his/her car and then walks to the classroom to attend the class; 

after the class ends, the student then walks back to the parking lot/deck, and 

then drives home. In Plans 2 and 3, the student goes directly to the classroom 
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from home, either on foot (e.g., he/she lives in an on-campus apartment near 

the classroom) or by car (e.g., roadside parking). 

Figure 12. Types of Student Plans Considered 

In a plan, each activity has an associated location, and each leg has a starting and 

end time for the travel, as well as a trip mode (e.g., car, walk or e-scooter). 

Figure 13 shows how to specify the day-plans of an agent in MATSim. 

Figure 13. A Type-3 Student Plan in “plans.xml” for MATSim 

Simplification Assumption. Figure 4-5 assumes that a student always attends one 

class and then goes back home. This may not always hold true since a student may, 

for example, take two classes before going back home, or have lunch in a cafeteria 

after class before going back home. However, since we do not have data on the 

diversified possibility of day-plans, but we know UAB’s class information, this 

simplified assumption is the best we can reach based on the principle of Occam's 

razor. 

The plans in Figure 4-5 are for the baseline scenario where e-scooters are not 

used. If e-scooters are allowed, the “walking” legs in Plans 1 and 2 can be replaced 

by “e-scooter” legs. To generate realistic plans, we need to build our plan 

generation process upon real data. Therefore, we first describe our data sources 

used to generate realistic locations for (1) home/apartments, (2) parking 

lots/decks, and (3) classrooms. 

Home Locations. Building on earlier work by Sisiopiku, 2018 and Sisiopiku and 

Ramadan, 2017 we had access to a mobility survey of 4,137 UAB students and 

4,920 employees of UAB, which contained information about their daily trips 

commuting between home and the UAB campus. There were two challenges in 
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directly using the survey data. First, to protect the privacy of the participants, the 

exact home locations (e.g., building numbers) were not disclosed, but rather 

information was entered in the form of “nearest intersection” + “zip code” + 

“city.” Figure 14 shows an illustration of the relevant columns in the data table. 

Figure 14. A Home-Related Columns from UAB Mobility Survey 

To tackle this problem, we used positionstack (https://positionstack.com/), an 

address geocoding API, to get an approximate home location for each participant 

in GPS coordinates. Some records may miss the “nearest intersection” 

information, in which case we use a random address from the zip code area, 

sampled from the addresses obtained from OpenAddresses 

(https://openaddresses.io/), so that the sampled location is populated (e.g., not 

on a lake). 

It should be noted, that in our study and as per Figure 12 we considered 3 types 

of student-plans: Plan 1 is for students living off campus, Plan 2 is for students 

living on campus, and Plan 3 can be for both. We, therefore, use a UAB campus 

polygon (from OpenStreetMap, see Figure 15) to separate the (approximate) 

“Home” locations in the survey into two sets: an on-campus set Son and an off-

campus set Soff. 

 Micromobility as a Solution to  Reduce Urban Traffic Congestion 

https://openaddresses.io/


61 

Figure 15. The UAB Campus Polygon from OpenStreetMap, and Parking Score Computation 

The second challenge that we faced is that the survey only included a certain 

portion of all the UAB employees and students, but MATSim simulation requires 

the day-plans of an entire population. Therefore, we used Kernel Density 

Estimation (KDE) to fit the 2D location distribution of the on-campus set Son 

(resp. off-campus set Soff), denoted by Pon (resp. Poff). The tuned KDE bandwidth 

parameter is 0.001 (resp. 0.01) for fitting Pon (resp. Poff). Later, when we generate 

home locations for students, we sample from this distribution on demand. 

However, a sampled home location may not correspond to an actual 

home/apartment location. We, therefore, needed to align the sampled location 

to a nearby apartment/address location for realistic simulation. For this purpose, 

we collected and used data on the locations of apartments inside and round the 

City of Birmingham from online sources (Figure 16). Such sources included 

apartments.com, rent.com, etc., and on-campus apartments from 

https://www.uab.edu/students/housing/residence-halls. 
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Figure 16. UAB On-Campus (Red) and Off-Campus (Blue) Apartments 

For a student living on campus, we sampled a location pon from the on-campus 

distribution Pon, and then align it to an on-campus apartment as follows: 

• We first tried to align the sampled location pon to a random apartment

within 300 meters (by a range query over an R-tree indexing all

apartment locations);

• If we could not find such an apartment, we then sampled a random on-

campus apartment.

For a student living off campus, we sampled a location poff from the off-campus 

distribution Poff, and then aligned it to an off-campus apartment as follows: 

• We first tried to align the sampled location poff to a random apartment

within 300 meters;

• If we could not find such an apartment, we then sampled a random

address (from OpenAddresses) within 300 meters;

• If such an address cannot be found, we then found the nearest address to

poff for alignment (using a nearest neighbor query over an R-tree indexing

all addresses).
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Classes. As per Figure 12, we had to determine students’ day-plans for attending 

classes, so we also needed to obtain classroom locations/buildings. We used 

UAB Class Schedule Listing (UAB, 2021) to obtain the class information of a 

particular day for simulation purpose. The day we chose as a typical class day 

was a Wednesday in Fall 2020, which was before the guidance for UAB remoting 

teaching due to the COVID-19 pandemic went into effect. 

Notably, besides the location of a class c (denoted by p(c)), we also had access to 

its starting time ts(c) and end time te(c), and the number of students n(c) in the 

class. Such data were useful in our student plan generation process to be 

described later. 

Parking Locations. As per Figure 12, Plan 1 for off-campus students involves 

parking locations, which can be either parking lots or parking decks. We obtained 

and used in our MATSim model detailed data on the parking locations from UAB 

Transportation, including the parking type (lot or deck), address, and parking 

capacity. We also obtained their GPS coordinates by the positionstack API. 

Parking Location Determination. Assuming that we have already determined the 

home location ph and classroom location pc of a student plan, the next task is to 

determine the parking location pp that the student uses to park his/her car after 

arriving on campus. Intuitively, students would prefer parking locations closer to 

their classrooms. However, in busy hours where many classes are ongoing, the 

parking locations nearby a classroom may be full, forcing students to find a 

farther-away parking location with available space. Moreover, for two such 

parking locations that have similar distance to the destination classroom, a 

student would prefer the one on the side of the campus that is closer to his/her 

home. 

We regard finding a parking location as the following process: a student has a list 

of on-campus parking locations in mind ordered by preference based on home 

and classroom locations; he/she tries the parking locations down the list one by 

one until a parking location with available space is found. 

We assigned the preference score to each parking location pp, denoted by s(pp), 

based on two distances (1) dhp = distance(ph, pp) and (2) dpc = distance(pp, pc): 

s(pp) = α · dhp + (1 – α) · dpc,  (1) 

where α balances the importance of dhp and dpc. We adopted α = 0.3, which gives 

more weight to dpc so that a student would prefer a parking location closer to the 

classroom to one that is closer to his/her home. In Figure 15, the black arrows 

correspond to dhp, and the pink arrows correspond to dpc. 
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One problem remains: since we are considering off-campus trips, the distance 

dhp is usually much longer than dpc, so the first term in Eq (1) is overrated. To 

avoid this issue, we deducted from dhp a constant distance that the student has 

to travel anyway no matter which on-campus location (including parking 

locations) he/she arrives. This constant distance is denoted by dh-UAB, computed 

as the distance from home to the nearest point of the UAB campus polygon (see 

the dashed red arrow in Figure 15). 

Thus, we actually used the following formula (Eq. 2): 

s(pp) = α · (dhp – dh-UAB) + (1 – α) · dpc,  (2) 

We computed dhp, dh-UAB and dpc for on-campus parking locations pp using 

Dijkstra’s algorithm. Notably, we can compute dhp and dpc for all on-campus 

parking locations (125 in total) together using just 2 calls of Dijkstra’s algorithm 

(single-source multi-destination), and the steps are listed as follows: 

• Find dhp for all parking locations pp by running one Dijkstra’s algorithm

from ph on the underlying road network, until all the 125 parking

locations have been visited.

• Find dh-UAB by running one Dijkstra’s algorithm from ph on the underlying

road network, until all the border points on the UAB campus polygon are

visited; then dh-UAB takes the distance value between ph and the closest

UAB border point.

• Find dpc for all parking locations pp by running one Dijkstra’s algorithm

from pc on the reverse graph of the underlying road network (i.e., the

directions of all edges are reversed), until all the 125 parking locations

have been visited.

• Compute s(pp) for all parking locations pp by Eq (2).

Now that we have scores for all parking locations pp, we can sort the parking lots 

in non-decreasing order of their scores s(pp) to obtain the preference list Lp. 

Recall that we will have to go down the list to find the first parking location with 

available space. We used a distribution to determine if a parking location has 

space. Poisson distribution is a discrete probability distribution that expresses 

the probability of a given number of events (denoted by X) occurring in a fixed 

time interval, if these events occur with a known constant mean rate λ and 

independently of the time of past events. The probability mass function (PMF) is: 

(3)
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where k is the number of occurrences (k = 0,1, 2, ...), and λ is equal to the 

expected value of X (i.e., λ = E(X)). Through the use of the Poisson distribution, 

we could answer the question: what is the probability of finding k vehicles in a 

parking location pp at a specific time t (e.g., right before the class beginning 

time), such that k < the parking capacity of pp, denoted by c(pp).  If this does not 

hold, i.e., k ≥ c(pp), then pp is not available, and we need to continue checking 

the next parking location in the preference list Lp. 

Let the Poisson cumulative distribution function (CDF) be: 

 (4) 

In other words, pp is available only with probability CDF(c(pp) – 1; λ). In the 

preference list Lp, we choose the current parking location pp with probability Pr(X 

< c(pp)) = CDF(c(pp) – 1; λ) by sampling a random number in [0, 1] and check if it 

is less than Pr(X < c(pp)); otherwise, we move on to check the next parking 

location in Lp. One problem remains: λ should be the expected number of 

vehicles in parking location pp at time t when the student arrived at pp, and we 

next explain how to obtain λ ≜ λ(pp, t), which is a function of location pp and 

time t. 

Given a time t when a student arrives at a parking location pp, we would like to 

know the ongoing classes c (i.e., ts(c) ≤ t ≤ te(c)) happening near pp so that we 

can compute λ(pp, t) to be used for availability check. Let us denote the set of 

ongoing classes near pp by Ct(pp). We assumed that Ct(pp) includes all ongoing 

classes happening within a distance of 150 meters from the parking location pp, 

though this distance threshold is tunable. Then intuitively, the larger |Ct(pp)| is 

and the larger the sizes of classes c ∈Ct(pp) (i.e., n(c)) are, then the larger the 

value of λ(pp, t) should be since λ(pp, t) is the expected number of vehicles in pp 

at time t. Based on the above intuition, a straightforward way to set λ(pp, t) is to 

compute: 

 (5) 

where for each nearby class c, we assume a certain fraction γ of all the n(c) 

students will park at pp, where γ is a tunable parameter. However, for different 

classes, their γ’s could be different. For example, a class cA may have many 

nearby parking locations while another class cB may only have one nearby 

parking location; in this case, γ should be smaller for cA than cB since students of 

class cA has more parking options. We, therefore, defined γ to be class-

dependent as γ(c) = 1/|P(c)|, where P(c) is the set of parking locations near c. 
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We assumed that P(c) includes all parking locations within a distance of 150 

meters from class c, but this distance threshold is tunable. Intuitively, we here 

split students of a class c evenly among its nearby parking locations: 

 (6) 

To compute λ(pp, t) efficiently, we built an interval tree T(pp) for each parking 

location pp beforehand, so that given a timestamp t when a student arrives at a 

parking location, we can look up Ct(pp) to compute λ(pp, t) using the above 

formula. Here, T(pp) keeps all the classes that are near pp (within 150 meters), 

indexed by their time intervals [ts(c), te(c)] as the key, and stores a weight value 

w(c) = n(c)/|P(c)|. Given a time t as a point-query, T(pp) returns all ongoing 

classes c∈Ct(pp) since t ∈ [ts(c), te(c)]. 

We built the interval trees T(pp) for all the 125 parking locations pp together as 

follows: for each class c, we obtained its nearby parking locations P(c), and for 

each pp∈P(c), we inserted entry <key = [ts(c), te(c)], value = n(c)/|P(c)|> into the 

interval tree T(pp). 

Plan Time Generation. Recall that we need to determine the timestamp t to 

arrive at a parking location for Plan 1 in Figure 16. Additionally, we need to 

decide when a student should leave home in order not to be late for class. We 

next discuss how we determine these timestamps for different types of plans. 

Figure 17 shows a plan where a student travels directly from home to class, and 

then back home. The travel mode could be either car, walk, or e-scooter. For an 

activity (event) e, we denote its starting (resp. end) time by ts(e) (resp. te(e)). For 

example, the time to leave home is denoted by te(eh), i.e., the end time of the 

“staying home” event eh; and the time to attend a class c is denoted by ts(ec), i.e., 

the starting time of the “attending class c” event ec. 

Figure 17. Time Sampling for a Direct Home-to-Class Plan 

Additionally, we denote the time taken by the leg “Home → Class” by t(h→c), 

and the time taken by the leg “Class → Home” by t(c→h), both of which can be 

computed using Dijkstra’s (or A*) algorithm on the underlying road network 
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(depending on the vehicle speed for the selected travel mode, as well as the 

road freeflow speeds). 

To generate a realistic leaving-home time te(eh) for a student plan, we needed to 

make sure that the student is able to arrive at the classroom before the class c 

begins, i.e., ts(ec) < ts(c). In particular, we had to count the travel time t(h→c) and 

an additional amount of time t1 describing how much earlier a student typically 

tends to arrive at the classroom before a class begins as shown in Eq. 7. 

te(eh)  =  ts(ec)  – t(h→c)  =  ts(c) – t1 – t(h→c)     (7) 

To ensure the diversity of classroom arrival time by different students, we 

sample t1 from a normal distribution with 10 minutes as the mean, and a 

standard deviation of 5 minutes, modeling the fact that students tend to arrive 

at the classroom 10 ± 5 minutes earlier than the class beginning time ts(c). 

We also needed to generate the leaving-class time te(ec) and the back-home time 

ts(e’h), where we denote the event of “staying home” after the class by e’h to 

differentiate from the one before the class. Students do not leave before a class 

ends, and many students leave the classroom a few minutes after te(c), e.g., to 

discuss among peers, to ask the instructor questions, or just because the 

classroom door has a limited passing rate. We denote the length of the time 

from when class c ends to when a student leaves the classroom by t2, and to 

impose diversity, we sample t2 from an exponential distribution with rate 

parameter λ = 2 minutes. Note that since E(t2) = λ in the exponential distribution, 

we assume that on average a student leaves the classroom 2 minutes after the 

class ends. Exponential distribution is reasonable since most students leave the 

classroom quickly after the class, and only some students stay for a longer time. 

One may also use the gamma distribution instead with a proper shape 

parameter, to account for the fact that students need some time to move to the 

classroom door so that the density peak (aka. mode) is not at t2 = 0. Figure 18 

below illustrates the probability density functions (PDFs) of exponential and 

gamma distributions: 
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Figure 18. PDFs of Exponential Distributions (Left) and Gamma Distributions (Right) 

According to the above discussion, we should set the leaving-class time te(ec) and 

the back-home time ts(e’h) as follows: 

      te(ec)  =  te(c) + t2       (8) 

ts(e’h)  =  te(ec) + t(c→h)  =  te(c) + t2 + t(c→h)   (9) 

So far, we only considered plans without a parking location, i.e., Plans 2 and 3 in 

Figure 12. For Plan 1 in Figure 12, we also need to generate the plan timestamps 

related to the parking events (assuming that the parking location has been 

determined as described previously). Figure 19 summarizes time sampling for a 

plan with parking location. 

Figure 19. Time Sampling for a Plan with Parking Location 

For “Home → Parking → Class,” we denote that parking event by ep, and denote 

the travel times of the two legs by t(h→p) and t(p→c), respectively. Similarly, for 

“Class → Parking → Home,” we define parking event e’p, and travel times t(c→p) 

and t(p→h). Additionally, we assumed a typical time spent in the parking 

location to be 2 minutes. By default, MATSim increases the score of a plan if the 

activity (resp. leg) duration is longer (resp. shorter) in simulation. To avoid long 

waiting time in parking lots, we revised the plan score calculation code in 

MATSim to treat “Parking” also as a leg. 
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In summary, for Plan 1 in Figure 12, we compute for “Home → Parking → Class”, 

where tpark ~ N(μ = 2 min, σ = 1 min): 

te(ep)  =  ts(c) – t1 – t(p→c),    ts(ep)  =  te(ep) – tpark     (10) 

te(eh)  =  ts(ep) – t(h→p)                        (11) 

and we compute for “Class → Parking → Home”: 

te(ec)  =  te(c) + t2   (12) 
ts(e’p)  =  te(ec) + t(c→p),    te(e’p)  =  ts(e’p) + tpark (13) 

 ts(e’h)  =  te(e’p) + t(p→h)   (14) 

Finally, for Plan 1 in Figure 12, we computed travel times t(p→c) and t(c→p) 

using mode “walk” rather than “e-scooter” since MATSim may select either one 

during simulation when mutating the leg modes in its co-evolutionary algorithm, 

so calculating time using the slower “walk” mode ensures that students would 

not attend class late or leave class early. Similarly, for Plan 2 in Figure 12, we 

compute travel times t(h→c) and t(c→h) using mode “walk” rather than “e-

scooter.” 

Putting Things Together. Now that we have explained how we chose a parking 

location for an off-campus student plan, and how we determined the activity 

starting/end time for a plan, we are ready to describe our plan generation 

procedure below: 

Algorithm 1: Generation of Student Plans 

(Note: Walk Modes May Later be Mutated into E-scooter Modes) 

1:   for each class c ∈ ℂ: 

2:  repeat for n(c) times: 

3:  create a student plan object o 

4:  o’s on-campus flag ← sampling with prior probability PUAB obtained from 

survey 

5:  if o’s on-campus flag is set: 

6:   o’s home location ← sampling from Pon = KDE(Son) 

7:       align o’s home location to an actual on-campus apartment location 

8:  else: 

9:   o’s home location ← sampling from Poff = KDE(Soff) 

10:    align o’s home location to an actual apartment or OpenAddresses address 

11:    set o’s parking flag with a prior probability Ppark 

12:   if o’s on-campus flag is not set and o’s parking flag is set: 

13:    determine o’s parking location 

14:    determine o’s activity starting and end timestamps, with modes car and 

walk 

15:      else: 
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16:    if walking distance > 30 minutes:    o’s leg mode ← car 

17:    else:    o’s leg mode ← walk 

18:    determine o’s activity starting and end timestamps 

19:   write the created student plan object o to “plan.xml” 

Specifically, let ℂ be the set of all UAB classes on Wednesday in Fall 2020, the 

day we chose to simulate. For each class c ∈ ℂ, there are n(c) students taking 

the class, so Line 2 generates n(c) student plans for class c. 

For each student plan o that we created in Line 3 for class c, we set the activity 

locations and timestamps in Lines 4-18, and then write the generated plan o to 

“plan.xml” in Line 19 to be inputted to MATSim for simulation later.  Our earlier 

survey of 4,137 UAB students, can provide information to help us obtain a prior 

probability PUAB that a student lives on campus. In Line 4, we therefore set o to 

be an on-campus plan with probability PUAB, and off-campus otherwise. Then, 

Lines 5-18 generate the plan’s location and timestamp information as follows. 

First, consider an off-campus plan. Line 9 samples the home location from the 

distribution Poff that we obtained by KDE fitting over Soff, which is the set of off-

campus home/apartment locations reported by students in survey. Line 10 then 

aligns the sampled location to an actual apartment or home address. Line 11 

decides if the student parks at a parking location or just parks roadside near the 

classroom, using a prior probability Ppark (set as 10%) which acts as a tunable 

hyperparameter. 

If a student parks, Lines 13 and 14 will determine the parking locations and 

activity timestamps as we discussed previously. While if a student parks 

roadside, Lines 16-18 will set the travel mode and activity timestamps 

accordingly as we discussed previously. Note that even if a student lives off 

campus, he/she may still walk or ride an e-scooter to the classroom, if the 

student lives near UAB with a walking distance ≤ 30 minutes. 

Next, consider an on-campus plan. Then Line 6 samples the apartment location 

of the student from the distribution Pon that we obtained by KDE fitting over Son, 

which is the set of on-campus apartment locations reported by students in the 

survey. Line 7 then aligns the sampled location to an actual on-campus 

apartment. Subsequently, Lines 16-18 will set the travel mode and activity 

timestamps accordingly as we discussed previously. Note that, according to our 

design, students are most likely to walk or ride an e-scooter to the classrooms 

since they live on campus, and the condition in the if-branch in Line 16 is most 

likely false, but we do not rule out the possibility that a student may drive to the 

classroom if his/her apartment is far from the classroom (e.g., the student has to 
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travel across the entire campus). The threshold of 30 minutes is a tunable 

hyperparameter and can be further adjusted in future work. 

4.3.3 Employee traffic generation 
We next introduce how employee plans were generated in our study. Since most 

steps are the same as in student plan generation, we focus only on the 

differences. The first difference is that instead of classrooms, employees go to 

their workplaces. In our survey all the 4,920 employees report the building codes 

of their working places (Sisiopiku and Ramadan, 2017). Thus, so we can fit a 

working location distribution from these reported locations using KDE, denoted 

by Pwork. Later, when we generate employee plans, we sample the work locations 

from Pwork, and then align them to their nearest UAB buildings. 

The second difference is that the student plans have class starting and end time, 

but the working hours for employees are unknown. We sample the arrival time 

at the workplace randomly from [8 am, 10 am] (i.e., uniform distribution), and 

sample the departure time randomly from [4 pm, 6 pm], since most UAB 

employees commute during peak hours. 

The last difference is that in order to compute Poisson parameter λ(pp, t) for 

parking location sampling, we need to know the workplaces and 

arrival/departure time of all employees to be generated. So we sample them for 

all plans first, and for each workplace w, we obtain its nearby parking locations 

P(w), and for each pp∈P(w), we insert entry <key = [ts(w), te(w)], value = 

1/|P(c)|> into the interval tree T(pp). Note that the interval trees should 

aggregate the class and workplace intervals from all student and employee plans 

before being used to compute λ(pp, t) for parking location availability sampling. 

That also means that for all the partially generated employee plans mentioned 

above, we have to then determine their parking locations, the departure time 

from home and the arrival time back home. 

4.4 Simulation experiments and results 
4.4.1 Experimental setup 
Starting with the Birmingham MATSim model development in STRIDE Project B 

(Sisiopiku et al, 2019) and through updates and model refinements detailed in 

Guo et al. (2019a, and 2019 b) we have conducted a MATSim simulation by 

generating realistic day-plans for the entire population in Birmingham, AL. There, 

we obtained an origin-destination (OD) matrix M by iterative proportional fitting 

(IPF), where M[i][j] denotes the number of people traveling from region i to 

region j. Regions here correspond to the different ZIP Code Tabulation Areas 

(ZCTAs) from the US Census Bureau. Since UAB is in the zip code area 35233, we 
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are essentially generating “Home ➝ Class” plans that fall in M[i][ZCTA-35233] 

from different regions i in Birmingham. 

We note that the background traffic is still important since traffic through the 

UAB campus may just be passing by, with neither source nor destination being 

UAB. Such background traffic can be obtained by generating day-plans similarly 

as in Guo et al. (2019a), but each M[i][ZCTA-35233] should deduct the number of 

“Home ➝ Class” trips generated for UAB micromobility simulation. The 

background traffic generated by these plans, combined with the UAB student 

and employee plans generated for micromobility simulation, would produce a 

complete simulation. 

The network, population and demand data were prepared for use with MATSim. 

For efficiency reasons, a 10 % sample of the population was used for our 

simulations. This is a common practice in activity-based models.  In MATSim this 

is done by the countsScaleFactor parameter, which was set to 10 in our study.  

Details are available at Horni et al. (2016). 

We considered four scenarios. Scenario 1 refers to baseline conditions with no e-

scooter availability (baseline) and Scenarios 2, 3, and 4 consider availability of 

500, 750, and 1,000 e-scooters, respectively. In the baseline scenario, we only 

enabled the car and walking modes. In the e-scooters experiment, we enabled 

the e-scooter mode, so MATSim can change the leg modes among car, walking 

and e-scooter. 

In Scenario 2 we conducted our Birmingham micromobility simulation 

considering 500 e-scooters to match the number of scooters deployed as part of 

the 2021 Birmingham micromobility pilot program [City of Birmingham, 2021b]. 

Then in Scenarios 3, and 4 we increased the number of scooters to 750 and 

1,000, respectively.   

As mentioned earlier, MATSim runs in iterations, where each iteration executes 

the selected plans of all agents over an underlying road network. We chose the 

number of iterations to be 50. In addition to the background traffic for 

Birmingham as previously described, we also used the methodology proposed in 

Section 4.3 to generate the student and employee plans specific to the UAB 

campus. The number of students was directly available from the course 

enrollment numbers reported by UAB Class Schedule. We generated 20k 

employee plans. The number of UAB students and employees used in the 

MATSim simulation scenarios is comparable to the number of total students 

(22.85k) and the UAB employee number (27k) reported by Birmingham Business 

Alliance [BBA, 2021]. We assumed 80% students (resp. 90% employees) who 
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drive a car would use parking lots/decks, and the remaining 20% (resp. 10%) park 

roadside.  

MATSim’s “subtourmodechoice” strategy for replanning was enabled, so that 

after each iteration, the leg modes may change among car, walk and e-scooter. 

However, MATSim does not provide a mechanism to lock the mode of a 

particular leg in a plan. More advanced customization on the allowed mutation 

restrictions would require changing the Java code of MATSim, which we avoid 

for now. However, a bad mutation (e.g., where a student walks from a home far 

from UAB) would get a very bad score and thus being dropped during the co-

evolutionary algorithm of MATSim ultimately, and it would be selected with a 

very small probability since MATSim uses a logit model for plan selection (i.e., 

the selection probabilities are computed by softmax over the plan scores). We 

did observe a very small number of plans that are bad after the last round of 

simulation, but since the vast majority of the plans are good, the overall trend is 

informative and sheds light on the real traffic. 

A demo video of our simulation with e-scooters (Scenario 2) can be found at 

https://youtu.be/zh_mHQ6ck4U. 

4.4.2 MATSim simulation model outputs 
In our study, we used Via (https://simunto.com/via/) to visualize the simulated 

traffic. Via is a software designed to visualize MATSim’s output traffic. In Via, 

each vehicle is displayed using a customizable icon such as a green triangle (  ), 

where the color can be changed based on the vehicle speed and mode. Via also 

contains a time slider that can be used to choose a specific time for display. For 

example, one can move the slider to 8:00 AM to check the traffic at that time. 

The simulation video is replayed by sliding this time slider at a certain speed that 

can be adjusted. 

The expectation from the deployment of shared e-scooter services at university 

campuses, such as UAB, is that they will contribute to the improvement of the 

on-campus traffic operations, especially during peak hours.  Some students may 

choose to ride an e-scooter to the classrooms instead of driving thus reducing 

the traffic demand and the need of parking. Also, students and employees who 

live off campus may park their vehicle at a remote parking lot/deck and then 

travel to their trip destination by e-scooter rather than drive around campus 

until they can find roadside parking. 

In order to quantify the impacts on traffic congestion on or around university 

campuses from mode choice shifts toward micromobility options, we can 

compare MATSim outputs from the simulation of a) baseline conditions (no 

micromobility options considered) and b) conditions with the presence of 
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micromobility options (i.e, Scenarios 1 through 4 in our study).  Figure 20 shows 

the distribution of trips by mode generated by MATSim for the Birmingham case 

study (i.e., car, walk and e-scooter) for all 4 simulation scenarios considered. 

Figure 20. MATSim Simulated Mode Choices for Birmingham Case Study Scenarios 

In our study, we obtained and compared two performance metrics (i.e., link 

hourly volumes and average speeds) from a sample of network links under four 

study scenarios (i.e., with and without e-scooter availability).  For demonstration 

purposes, in this report, we share a sample of our findings considering two major 

road segments at the center of UAB (around UAB Green) where many classroom 

buildings and office/lab buildings locate along University Boulevard and 14th St S, 

as shown in Figure 21. 
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Figure 21. Sample Road Segments Used for Evaluation 

4.5 Sample Birmingham study results 
Given the planned pilot deployment of 500 e-scooters in the Birmingham region, we 

first considered how the option of having 500 e-scooters available on and around the 

UAB campus impacts traffic volumes (vehicles per hour). It should be noted that the 

road volume data output was scaled according to the sample used (10%) and 

aggregated to an hourly count per link. Also, we limited comparisons during times that 

e-scooters are allowed to operate on Birmingham streets (6AM-11PM) and classes and

other activities are scheduled on campus (till 7PM).

4.5.1 Comparison of scenarios 1 and 2 
Link Volumes: Results from the comparison of Scenario 1 (baseline) and Scenario 

2 (500 e-scooters available) are displayed in Figure 22 and show that using e-

scooters clearly reduces the link traffic volumes of both road segments in almost 

all hours of the day. It is further observed that the 14th Street South sees much 

more improvement in traffic volume than the University Boulevard. This is 

expected as the traffic on 14th Street South is mainly contributed by students 

taking classes or employees going to offices in the various buildings round UAB 

Green whereas University Boulevard is a major arterial providing access to the 

UAB campus from/to major highways where traffic is more diversified and 

includes background traffic. 
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Figure 22. Sample Hourly Link Traffic Volumes (vph) – Cars Only 

Average Speeds: Figure 23 shows the hourly average car speed (meter/sec) 

comparison on two road segments between Scenario 1 (baseline) and Scenario 2 

(500 e-scooters available). We can see that allowing 500 e-scooters to operate 

on and around campus generally increases the average hourly speeds, especially 

during peak hours. These findings indicating that traffic flow is improved as a 

result of modal shifts towards the e-scooter mode. Thus, the availability of 

shared micromobility options shows promise toward easing traffic congestion 

and improving mobility of UAB students and employees alike. 
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Figure 23. Sample Hourly Link Hourly Average Car Speed (meter/sec) 

4.5.2 Sensitivity analysis 
City Planning officials and e-scooter operators often find it hard to answer the 

question of how many shared e-scooters should be deployed.  From the network 

operational performance perspective one can consider potential benefits of e-

scooters on congestion mitigation for various levels of e-scooter deployment.  

For demonstration purposes we performed a sensitivity analysis by simulating 

the Birmingham network in MATSim for 4 levels of e-scooter deployment and 

comparing performance on the basis of volumes and speeds.  The four levels 

correspond to our four scenarios (Scenario 1: 0 e-scooters available; Scenario 2: 
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500 e-scooters; Scenario 3: 750 e-scooters, and Scenario 4: 1,000 e-scooters 

available). 

Link Volumes: Results from the comparison of Scenario 1 (baseline) and e-

scooter Scenarios 2, 3 and 4 are displayed in Figure 24 and are fairly consistent. 

The findings show that e-scooters’ availability reduces the link traffic volumes of 

both study road segments in almost all hours of the day. Close inspection of the 

graphs further confirms that the more e-scooters are available, the higher is the 

reduction of the link volumes (compared to the baseline). However, the 

differences resulting from modal shifts from automobile toward e-scooter use 

are small. This is due to the dominance of the automobile presence on the UAB 

campus and is properly captured by the Birmingham MATSim model which 

assigns more than 95% of the total trips to automobiles, even in the presence of 

micromobility options (see Figure 20). 

Figure 24. Comparison of Volumes on Two Study Links (Baseline versus E-scooters Scenarios) 
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Average Speeds: Figure 25 displays changes in average hourly car speeds 

(meter/sec) for baseline and the three e-scooter scenarios considered in this 

study and for two sample study links (14th Street South and University 

Boulevard). 

Figure 25. Comparison of Speeds on Two Study Links (Baseline versus E-scooters Scenarios) 

Figure 25 confirms that, compared to baseline conditions, average automobile 

speeds improve when e-scooters operate on and around campus. Increases in 

average speeds are more pronounced during peak hours and when larger shared 

e-scooter fleets are available.

The sample findings from the two representative network links (i.e., 14th St S and 

University Blvd) presented in Figures 22 through Figure 25 are consistent across 

other simulated network links on the UAB campus where e-scooters are 

available for use. The results of the study are also consistent with expectations 

and suggest that the replacement of short trips in personal vehicles by e-scooter 

trips not only offers convenience to the users but also has a positive impact on 
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traffic operations, helping to ease traffic congestion and related adverse impacts 

on university campuses and similar settings. 

4.6 Conclusions and study contributions 
In this study, we used MATSim to simulate traffic for a base case scenario at an urban 

university campus.  Then, we developed an extended module that allowed the 

consideration of e-scooter use for shared micromobility simulation. This was done by 

successfully applying proper modifications to MATSim’ carsharing module to enable the 

simulation with the mode of dockless e-scooters. We also changed the scoring function 

for cars and e-scooters, so both modes can work together in a way that realistic plans 

get better scores. In addition, we developed an effective pipeline to generate synthetic 

student plans by using different real data sources. 

The updated MATSim framework was utilized to generate realistic day plans for 

travelers in a case study that considered 500, 750 and 1000 e-scooters on and around 

the UAB campus.  The case study results confirmed that the simulated traffic volumes 

are lower and travel speeds are higher when e-scooters are available, compared to the 

base case scenario. 

A major contribution of this study is the demonstration of the feasibility of integrating 

micromobility options in simulation modeling. Our pioneering work on the modification 

of the MATSim carsharing module now allows for the consideration of e-scooters as a 

travel mode option in the generation of travel plans when using MATSim. This is a 

notable achievement, given the recent increase in the popularity of micromobility 

modes and the current lack of simulation models that allow the incorporation of such 

options into their structures.  Our study also offers examples of resources that can 

provide data inputs for making the traffic simulation model of a university campus a 

realistic one. Moreover, it shares valuables details on how to address issues arising from 

the use of a complex simulation platform like MATSim for conducting large scale 

simulations with (or without) e-scooters. Enabling the modeling of e-scooters in the 

MATSim framework gives researchers a new tool that they can use to study and quantify 

impacts on traffic congestion due to modal shifts from private automobile to e-scooters.  

The study fulfilled its stated goal of improving activity-based traffic simulation models to 

account for new travel modes in different kinds of scenarios and improving the accuracy 

of traffic simulations for future scenarios. Given that case studies of this nature are very 

limited, the study is expected to be of great interest to researchers, e-scooter providers 

and decision makers interested in the deployment of e-scooters and other 

micromobility options and its potential impact on traffic operations. 

Future research will focus on refinement and enhancement of the Birmingham MATSim 

model. Our plan is to run more iterations (at least 100) in MATSim to ensure the plans 

outputted are of good quality. In this demonstration study, we incorporated some 
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assumptions. For example, we assumed that on average students leave the classroom 2 

min after the class ends; drivers spent an average of 2 min at the parking location, and 

parking locations sought off are within a distance of 150 meters from class.  However, 

these assumed parameter values may vary from location to location, thus calibration is 

recommended in future work.  We also recommend conducting a more comprehensive 

study on the impact of using e-scooters on UAB campus traffic, by observing the traffic 

heatmap on various roads in UAB, and further varying the number of deployed e-

scooters until the optimal number of available e-scooters can be determined.  

Future plans include a) the incorporation of actual e-scooter ridership data gathered 

from the Veo and Gotcha e-scooters during their pilot deployment in Birmingham, b) 

comprehensive analysis of actual and simulated e-scooter usage patterns and related 

network performance impacts, and c) development of a set of recommendations to 

assist decision makers in effectively integrating e-scooters into the urban mobility 

ecosystem in their communities. 

5.0 TASK 3-1: POLICY ANALYSIS 
Many of the concerns of scooter-shares involve the implementation of services in a regulatory 

environment. Alternatively, many of the concerns surrounding scooter share, as well as their 

perceived benefits can be matured to full potential within the regulatory environment through 

thoughtful and educated discussion as well as considerations based on data analysis. At the 

heart of this discussion is an appropriate combination of these elements that correspond to 

engineers and planners, often in separate discussions, but arriving at similar targets. 

Three crucial points that should be at the forefront of the discussion on scooter-share programs 

since they are fundamental in the regulatory approach that local governments and operators 

should have on these programs in the coming years. These include considerations of scooter 

shares as environmentally beneficial when considering the mode substitution, rebalancing, and 

life cycle costs of scooters. 

One of these points is related to a general perception that assumes that scooter-shares are 

environmentally beneficial. Chrispoforou et al., (2021) and Hollingsworth, Copeland and 

Johnson (2019) reach similar conclusions when they claim that this is not entirely true. The 

suggestions come as the result of a perception that scooters – because they are electric – do 

not contribute to a significant amount of carbon emissions. Relative to the average car, this 

may be true, however, the collective impact of scooters must be evaluated according to various 

factors that make scooters less sustainable.  

Rebalancing is the process by which scooters are picked-up by operators, recharged, and 

redistributed. This process is especially taxing on the environment when scooters are 
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distributed in areas of low demand, at a distance, and far from each other, as well as far from 

the locations where they will be recharged. The issue surrounding rebalancing has less to do 

with the scooters themselves, and more to do with the vans used for this process. Both 

Christoforou et al., (2021) and Hollingsworth, Copeland and Johnson (2019) attempt to quantify 

this process and conclude that they attach a significant amount of carbon emissions on a per 

scooter trip basis.  

Additional factors contributing to the environmental concerns have to with the scooter 

production process compared to the life cycle. During production, many elements, namely the 

lithium battery, are acquired in processes that produce significant levels of carbon emissions for 

the lifespan of the shared vehicles. It is estimated that shared scooters last around 6 months. 

The only positive aspect is that nearly 95% of the scooters are recyclable. This situation is 

marginal when compared to the highly used personal vehicle, which are responsible for much 

larger carbon emissions than a scooter even when life cycle costs are considered. 

However, the main concern is the modal shift to scooter-share. As discussed in the literature 

review, various articles estimate that less than 10 percent of individual car drivers are shifting 

from car trips to scooter share. The more alarming statistic is that more than 60 percent of trips 

made on scooter-shares could have been feasibly done by walking. As such, when talking about 

the environmental impact of scooters, the issue needs to be framed as a question of modal 

shift. If the statistics were inversely true, it could be said that scooters are in fact a sustainable 

alternative since many vehicle owners would be replacing car trips with scooter trips. This is not 

true at the current moment in most places, and therefore, the suggestion that scooter-shares 

are unquestionably a sustainable alternative should be restated with caution and framed within 

the considerations mentioned here. 

5.1 Modal Shift 
Following from the point made on sustainability, the second crucial discussion point is 

the modal shift. Certainly, it is conceivable that under the appropriate circumstances, 

scooter-share services may be sustainable. The measure by which this is possible is by 

influencing the modal shift from personal car to scooter share. We can now begin 

referring to the growing literature that is giving operators and local governments an 

idea on how to do this. As is the case with modes of public transportation, there are 

places in which scooter-shares are more suitable given other considerations. Given the 

research so far, it is possible to recommend that scooters be used around certain land 

uses such as commercial and multifamily, especially if these coincide with the 

downtown area or a local university. Areas of interest that may open at odd times or 

hours, as well as large events that are generally less served by other transportation 

modes can also benefit from scooter-shares. While a broad city coverage can be desired, 

the sustainable benefits of scooters are curtailed when and where the demand for them 

is low. As such, local governments would be highly advised to assess areas of demand 

and reduce the coverage areas adequately. Moreover, a good measure to keep in mind 
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when planning for scooter-shares is the sustainable trip range of 0.5-to-2 miles, which 

most researchers in this area agree provide the greatest level of benefits. Areas with 

high levels of walkability may contribute to a negative pedestrian to scooter-share 

modal shift, but areas with high levels of bikeability may help promote an accessible 

alternative especially when they exist within the 0.5-to-2-mile range. At the current 

moment, providing scooter shares in low-income, single-family areas may not be 

advisable since this generates low rates of usage. While an equitable approach is 

desired, it is possible that the current pricing structure is a deterrent in achieving an 

equitable scooter-share system. Equitable concerns should not be at all discarded 

however, and perhaps modifications to the existing relationship between government 

and operator may be key in addressing this concern. 

A point that is hardly discussed but that would be beneficial to consider, especially if 

equity goals are of great concern, is the establishment of a membership scooter-share 

program. In their research, Younes et al. (2020) and Bai and Jiao (2020) found that 

scooter-shares and bikeshares have similar attributes that group them in the same 

micromobility family. When Younes et al. (2020) found that scooter shares and non-

member bikeshares in Washington D.C. shared similar characteristics when compared to 

member bikeshares, the resulting question would be to consider whether a membership 

type scooter-share service could operate similar to membership type bikeshare systems. 

A simple evaluation of membership-type systems demonstrate that commuters do in 

fact use membership bikeshares given how they peak during morning and afternoon 

peak hours. While this may cause competition between both micromobility types, it is 

possible to further understand their respective strengths and adequately serve the 

needs they address. It would be in the best interest of planners to begin thinking of 

micromobility as a toolbox capable of addressing small scale mobility solutions instead 

of individual tools that operate independently or in competition with each other. In 

addition, a service in this direction would be capable of addressing equity concerns 

previously noted, if local governments would provide fare-reduction programs that 

would help make scooter trips cheaper in low-income communities. Creating a 

membership type scooter program could help facilitate a goal in multi-modality where 

riding scooters to bus stops or trains could be completed seamlessly. Establishing MaaS 

systems that include scooters could achieve the highest potential of a dockless scooter 

share system and could help to improve alternative mobility systems enough to produce 

a significant shift from personal cars in such a way that we could state that 

micromobility is a sustainable transportation alternative. In order for scooters to reach 

their maximum potential as a mobility service, an evaluation of the current policy 

recommendations should be considered. 
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5.2 NACTO’s Guidelines for Regulating Shared Micromobility 
In 2019, the National Association of City Transportation Officials developed a set of 

Guidelines for Regulating Shared Micromobility that included two broad sections – Best 

Practice Recommendations and Current State of the Practice. The Best Practices section 

includes discussions of regulating shared mobility, general terms and conditions, scope 

and operations insight, public engagement, mobility data and user privacy, and 

infrastructure.  Instead of repeating their information on bets practices, we will present 

policy recommendations on regulatory structure, general terms and conditions, 

operations oversight, public engagement, data, and infrastructure. 

5.3 Regulatory Structure 
Multiple scooter-share programs already exist around the world and continue to expand 

to more cities. However, the implementation of regulations that adequately respond to 

the nature of these programs are not mature enough because of the program’s relative 

novelty and a lack of consistency in regulatory structure. It is likely that in the coming 

years, a more structured regulatory framework should be proposed. Already NACTO 

(2019) has published its first set of regulatory considerations, especially focused on 

micromobility implementation in North American cities. Concern for public safety in all 

stages of operation is necessary for the operation of scooter-share systems. There are 

two ways to think of public safety regarding these programs: safety with regards to the 

scooter’s interaction with the public and safety with regards to the scooter users; in this 

section we discuss the former. When discussing the regulatory framework, it is 

important that municipalities firmly discuss expectations of operators in favor of 

dockless, scooter-share services. The main concern is the scooter’s interaction with the 

right-of-way, which local governments can address. One of the larger issues within this 

area is the clutter of scooters on sidewalks and within the right-of-way. In favor of public 

safety, and for the long-term operability of micromobility, it will be important to 

mitigate issues in whichever way possible. In later sections, we identify several 

infrastructural recommendations that may help to consider what kinds of investments 

would help to address safety on the right-of-way. 

It is highly recommended that any micromobility program be first observed as a pilot 

program. However, when the pilot program is developed, it should be for at least a year 

to account for seasonal variabilities. Moreover, the purpose of the pilot program must 

be to evaluate mobility trends and hotspots that could eventually lead to adopting a 

solid coverage zone. Pilots should never try to adjust usage patterns or adopt policies as 

the program moves along. Some of the first cities that allowed scooters have had issues 

ensuring that scooter users stay on roadways and not sidewalks after they were initially 

used on sidewalks. There was great confusion for users and operators whenever policies 

were implemented on where to use them, and then making other adjustments as was 

seen fit. This has led to the improper use of scooters from the beginning of their 
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implementation in many of the first cities that adopted them leading to safety issues 

and reducing the life cycle of the scooters themselves. Rather, all policies and modes of 

use need to be in place from the beginning to mitigate confusion and challenging 

circumstances with operators and users. 

5.4 General Terms and Conditions 
Many cities had multiple operators providing scooter-share services, which led to 

multiple issues and possibly excess competition. Now many cities are only allowing 

three operators maximum to operate in their cities. When this happens, operators need 

to be committed to addressing the various sustainable considerations recommended 

and stipulated by the local governments that are allowing the permits. Fewer operators 

ensure ease of data sharing and makes the interaction between the local governments 

easier since the governments only need to correspond with three operators, at most.  

When discussing terms and conditions, it is highly recommended that cities request 

more detailed information on the supply-side of micromobility. Operators are often 

concerned with how their operations may be affected if the supply-side is shared with 

competitors, however, in a public-private partnership, it may be easier to manage the 

supply side in a discrete manner. Being able to access information on supply-side data 

will allow for more appropriate analysis to be made. One of the glaring shortcomings of 

current research is the lack of discussion on this matter and it is one of the challenges of 

modelling since there is no way of knowing if low usage is due to demographics and the 

built environment or to the lack of availability of scooters on the supply-side. 

It is becoming more common to see the establishment of consolidated mobility 

departments that join public transit, bike/pedestrian and micromobility programs in an 

effort to tackle mobility objectives collaboratively. An office of mobility would help to be 

a liaison between local governments and operators. This would help to manage 

compliance of operators and to clearly define performance measures that are similar to 

those in other programs, while at the same time considering the local needs. This same 

office could help provide data analytics internally that would help determine how to 

collaborate with other mobility modes in an effort to achieve greater multimodality. 

Additionally, when pilot periods are over, a mobility department can focus on the data 

collected over the year and strategize on a concerted effort to address hidden mobility 

patterns that could be addressed by other mobility modes such as mass transit, buses or 

trams. 

5.5 Operations Oversight 
The largest discussion and the greatest change in operations needs to occur in 

rebalancing methods. Local governments need to discourage rebalancing and not simply 

on the basis of usage but by establishing alternative methods to remediate rebalancing. 

In a later section, we go into more detail about corrals and docking that may help to 
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reduce the amount of rebalancing needed. Adjusting the coverage area after the pilot 

period should be directly linked to efforts in reducing rebalancing and aiming for modal 

shift. 

While NACTO (2019) considers that equity in distribution should be of high priority, 

especially in low-income communities, it is highly advised to proceed with caution in this 

regard. Equity should be a concern but only when pricing schemes use incentives to not 

only use scooters, but to adopt them as a feasible mobility mode. Additionally, 

rebalancing techniques need to be well strategized to reduce further environmental 

impacts, considering that low demand and long driving distances may make rebalancing 

in these areas less sustainable overall. This is perhaps more achievable when some 

degree of multi-modality is achieved by the combined efforts of a mobility department, 

the operators, and the use of a MaaS platform. 

There are further discussions on the impact of the wheel size on the scooter itself when 

compared to bicycles. This is because scooters have been regulated as a personal 

consumer product rather than a shared-use fleet vehicle (NACTO, 2019). The result is 

that scooter users experience greater deformities on the pavement more severely than 

on bicycles for example. NACTO (2019) estimates that on average bicycle wheel sizes 

measure more than 26 inches, where scooter wheel sizes range between 8 and 10 

inches in diameter. Other standards that are not addressed include center of gravity, 

platform size, acceleration and braking interface, and lights (NACTO, 2019). A lack of 

precise standards, coupled with geometric design features of the paths used by scooters 

have led to numerous safety issues. Reports that safety concerns, injuries and fatalities 

exceed those of bicycles are alarming, and justify a need to pay attention to the design 

of the vehicles and to design for the vehicles, a task that may interest some factions of 

transportation engineering. In fact, NACTO (2019) suggests that bicycle infrastructure 

planned by local governments be expedited since the demand to use these lanes seem 

to continue increasing, creating a pressing need for engineers to respond. 

5.6 Public Engagement 
To engage the public more broadly, local governments should provide incentives to 

participate in a user survey as a part of the terms and conditions for usage of DSS. Using 

the in-app experience creates the advantage of being able to reach users very broadly. 

Public engagement can also manifest itself in providing educational materials that 

promote the use of scooters as well as adequate understanding as to the benefits of 

scooter usage. Additionally, other forms of public engagement could be to incentivize 

independent contractors to recharge scooters, especially in low-income communities. 

Moreover, these communities, as NACTO (2019) highly suggests, should be involved in 

the planning process, as opposed to planning micromobility for these communities. 
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5.7 Data 
One of the initial challenges (and a continued challenge) of scooter-share analytics was 

the lack of data accessibility. Louisville is one of few cities that has a consistent and 

streamlined open data service that has allowed for a clean analysis of the scooter share 

services since they were first adopted in August 2018. Two factors led to this, primarily 

that operators did not wish to share data with other competitors and secondly that the 

data was kept anonymous for the scooter user’s sake. It is essential that local 

governments require data from operators for the purposes of analysis. This data should 

be as detailed as Louisville’s Open Data source (LOJIC, 2019). Many operators are only 

required to have an API; however, this kind of data structure requires detailed computer 

science techniques that are often not used by local governments, neither are they easily 

accessible to the general public. It is essential nonetheless to maintain user anonymity. 

In many cases, this is done best by aggregating trip data to the third latitude and 

longitude points and by assigning an anonymized data name to each trip. 

5.8 Infrastructure 
There are two main areas where infrastructural investment could help micromobility 

develop into full potential: on the curbside and on corridors. 

Curbside management has emerged as an important area of concern in planning in 

recent years. In recent years, scooter-share programs have added to the challenges of 

managing the curbside as a part of their operations. One of the main qualms about 

dockless micromobility is the propensity to clutter on the curb, especially in high 

demand areas. At the same time, what has made dockless scooters so popular have 

been their dockless attribute, therefore, attending to clutter would mean to address 

how and where they are placed at the end of trips. Additionally, this would require 

higher investments on behalf of operators for a service that they perhaps would not feel 

inclined to provide. A suggested approach would be to wait until the end of the pilot 

program to identify areas of high demand and areas of constant demand, in addition to 

hotspot areas. Considering that scooters are most beneficial when they are ridden in a 

.5 mile to 2-mile area, the first .5-mile areas around hotspots and high demand areas 

should allow for corrals and docking if possible. Placing corrals at adequate distances 

may also deter too many pedestrian trips from becoming scooter trips while at the same 

being accessible enough to make a .5 mile to 2-mile trip. Moreover, considerations on 

rechargeable docks would help to reduce rebalancing if scooters in these zones were 

required to be docked at the end of use. Areas of constant demand, where usage is 

significantly lower than in areas of high demand could allow for dockless trips, allowing 

for the service to retain its hallmark style. 

Corridor management may be the area that most concerns transportation engineers. 

While some recommendations are made by AASHTO, there is very little consistent push 

to establish design requirements for micromobility lanes when compared to the uniform 
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requirements stipulated for roadways. One of the challenges of corridors or bike lanes 

where scooters (and bikes for that matter) operate on is that they travel right next to 

heavy cars without a buffer between them. Additionally, a lack of buffering does not 

deter vehicles from disregarding these lanes and using them to pull aside from the road. 

Therefore, it is important for AASHTO to provide more consistent updates on roadway 

design that is inclusive of micromobility lanes. This could be determined as a function of 

demand, and land use. Suggested considerations could include the requirement for 1-

foot buffers with plastic bollards on roads in downtown areas or university areas. 

Perhaps the .5 mile to 2-mile area could be used as a reference for the implementation 

of such design characteristics. If requirements were made in this direction, safer 

scooter-usage could be the results. Similarly curb cuts with cross-slopes adequate for 

the wheel-size could help prolong the life cycle of scooters. To avoid right hook hits from 

cars for the safety of micromobility users, a two second delayed red-light signal should 

be considered in highly trafficked mobility lanes. 

6.0 TASK 3-2: DECISION-SUPPORT TOOL: SERMOS 
In this project, we developed a new decision-support tool, called SERMOS, which is 

partially based on the products of Task 1. SERMOS collects and analyzes the e-scooter-

related data (e.g., GBFS data, e-scooter equity zone data, e-scooter parking zone data, 

among others), which is expected to benefit various stakeholders. For example, cities 

can use the tool to monitor and regulate micromobility operations. MPOs can use the 

tool to assist long-term planning of multimodal transportation systems.  

For the SERMOS system, there are three modules, including reporting module, mapping 

module, and analytics module. The overall structure of the system is shown in Figure 26. 

 Micromobility as a Solution to  Reduce Urban Traffic Congestion 



89 

Figure 26. Overall structure of SERMOS system 

The reporting module provides the functionality that users can click any location on the 

map to report an e-scooter incident or just leave a comment. Figure 27 shows the user 

interface of the reporting module. After the report is submitted, the reported location 

and the reporting time will also be recorded. All these information will be then stored 

and maintained in the database to serve as the input for the mapping module. 

Figure 27. Overall structure of SERMOS system 
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All the reports that have been gathered in the reporting module are illustrated at the 

corresponding locations in the mapping module. The user interface is shown in Figure 

28. Users like a city’s mobility manager can click the marker to view the report details.

Figure 28. User interface of mapping module 

The analytics module includes equity monitor, parking violation detector, and trip 

pattern analysis. In Figure 29, we present an example of trip pattern analysis. The 

analytics module will be fully developed if additional funding is available. 

Figure 29. Number of trip origins and destinations by hour of day 
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7.0 CONCLUSION 
This project conducted a comprehensive study to analyze, quantify, and understand the 

impacts of micromobility on urban mobility and recommend corresponding intervention 

strategies for stakeholders.  E-scooters have been welcomed as a transportation option that 

can expand transportation options by replacing short trips by automobile and provide first-

mile-last mile access to public transit.  Some transportation experts suggest that e-scooters can 

be a part of the solution to reducing congestion and to mitigate the environmental impacts 

associated with automobile usage.   This project included three tasks: 1) Task 1: e-scooter big 

data analytics and travel demand modeling; 2) Task 2: traffic simulation of e-scooters - a pilot 

study for an urban university campus; 3) Task 3: shared micromobility policy analysis and 

decision-support tool – that were designed to understand policy issues and model the demand 

for e-scooters.  E-scooters are still in the early stages of adoption and will continue to evolve 

and adapt to the urban environments in which they are placed.  

In Task 1, we firstly inferred origins and destinations of e-scooter trips in Washington, D.C. 

based on GBFS data. Then we modeled the trip origin demand of e-scooter services in 

Washington, D.C. The independent variables included socioeconomic and demographic 

variables, built environment variables, and transit supply variables. The OLS, Lasso, DT, RF, and 

Boosting models were used to predict the trip origin demand in census block group level. 

Comparisons of in-sample and out-of-sample performance of these five models were 

performed using MAE and RMSE. The results of the best performed model, the RF model, were 

further interpreted using FI and PDPs. The results showed that the most important variable was 

WalkScore and the most important category of variable was built environment variables. From 

PDPs, we observed nonlinear relationships between the dependent variable and independent 

variables such as WalkScore, parking density, hotel density, proportion of young population, 

proportion of white population. For example, when WalkScore increases from 85 to 95, there is 

a sharp increase in trip origin demand. This task improved the predictive accuracy as well as 

provide rich insights of how black-box machine-learning models make such predictions to 

facilitate the policy analysis. 

In Task 2, we used MATSim to simulate traffic for a base case scenario at an urban university 

campus (i.e., UAB campus). Then, we developed an extended module that allowed the 

consideration of e-scooter use for shared micromobility simulation. This was done by 

successfully applying proper modifications to MATSim’ carsharing module to enable the 

simulation with the mode of dockless e-scooters. We also changed the scoring function for cars 

and e-scooters, so both modes can work together in a way that realistic plans get better scores. 

In addition, we developed an effective pipeline to generate synthetic student plans by using 

different real data sources. The updated MATSim framework was utilized to generate realistic 

day plans for travelers in a case study that considered 500, 750 and 1000 e-scooters on and 

around the UAB campus.  The case study results confirmed that the simulated traffic volumes 

are lower and travel speeds are higher when e-scooters are available, compared to the base 
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case scenario. This task improved the existing activity-based traffic simulation models by 

considering new travel modes as well as generating more accurate simulation outcomes. 

In Task 3, we discussed the policy related to shared micromobility operation and developed a 

decision-support tool named SERMOS. Firstly, we discussed considerations of scooter shares as 

environmentally beneficial when considering the mode substitution, rebalancing, and life cycle 

costs of scooters. Then we presented policy recommendations on regulatory structure, general 

terms and conditions, operations oversight, public engagement, data, and infrastructure. We 

also developed a decision-support system, named SERMOS, that can collect and analyze the e-

scooter-related data to facilitate e-scooter planning (e.g., where to plan bike lanes and how to 

best deploy e-scooters) and real-time management (e.g., where parking violations occur and 

when and where equity requirements of e-scooter availability are not met).  SERMOS provides 

information for decision makers to overcome two of the major concerns of policy makers about 

the implementation of e-scooters – safety and equitable access to vehicles in low-income 

neighborhoods.  This task can help local stakeholders to facilitate better-targeted decision 

making and policy interventions when deciding where to expand, change or reduce service 

throughout an urban area. 

In conclusion, this project integrated big data analytics, demand modeling, traffic simulation, 

and policy analysis to provide a comprehensive assessment of the impacts of micromobility on 

congestion mitigation. It developed machine learning methodologies to model and interpret 

travel demand of micromobility, improved activity-based traffic simulation models, suggested 

micromobility related policy and developed an interactive decision-support tool for local 

stakeholders. This project provided rich insights of key factors associated with micromobility 

demand, examined the potential impact of deployment of e-scooters and other micromobility 

options on traffic operations, and generated new insights for key stakeholders to facilitate 

planning micromobility policies and practices. 

8.0 RECOMMENDATIONS 
Several issues require future research. For Task 1, more features may be needed to develop a 

more comprehensive demand forecasting model and to generate richer insights. For example, 

since the usage of micromobility can be significantly influenced by the weather conditions 

(Noland, 2021), taking the weather information as additional model input may enhance the 

predicting accuracy. In addition, the results and insights regarding the trip origin demand found 

in Washington D.C may not be directly transferable to other cities with different characteristics. 

Transferability of the models requires further research.  

For Task 2, future research will focus on refinement and enhancement of the Birmingham 

MATSim model. Our plan is to run more iterations (at least 100) in MATSim to ensure the plans 

outputted are of good quality. We also recommend conducting a more comprehensive study on 

the impact of using e-scooters on UAB campus traffic, by observing the traffic heatmap on 
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various roads in UAB, and further increasing the number of deployed e-scooters (>1,000) until 

the optimal number of available e-scooters can be determined. Future plans include a) the 

incorporation of actual e-scooter ridership data gathered from the Veo and Gotcha e-scooters 

during their pilot deployment in Birmingham, b) comprehensive analysis of actual and 

simulated e-scooter usage patterns and related network performance impacts, and c) 

development of a set of recommendations to assist decision makers in effectively integrating e-

scooters into the urban mobility ecosystem in their communities. 

For Task 3, we plan to include more analytics modules in the decision-support tool in future 

work. For example, we will add a hot spot identification module to identify areas with high 

micromobility demand. 
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10.1 APPENDIX A - Acronyms, abbreviations, etc. 

Acronyms Definition 

ABM Agent-Based Model 

API Application Programming Interface 

CA Cellular Automata 

CDF Cumulative Distribution Function 

DSS Dockless Shared Scooters 

DT Decision Tree 

FI Feature Importance 

GBFS General Bikeshare Feed Specification 

GIS Geographic Information System 

IIHS Insurance Institute for Highway Safety 

IPF Iterative Proportional Fitting 

KDE Kernel Density Estimation 

LADOT Los Angeles Department of Transportation 

MaaS Mobility as a Service 

MAE Mean Absolute Error 

MATSim Multi-Agent Transport Simulation 

MDS Mobility Data Specification 

ML Machine Learning 

NPMRDS National Performance Management Research Data Set 

OD Origin-Destination 

OLS Ordinary Linear Squares 

PDF Probability Density Function 

PDP Partial Dependence Plots 

PMF Probability Mass Function 

QR Quick Response 

RF Random Forest 

RMSE Root Mean Squared Error 

TNC Transportation Network Companies 

UAB University of Alabama at Birmingham 

VIF Variance Inflation Factor 

XML Extensible Markup Language 

ZCTA ZIP Code Tabulation Area 

 Micromobility as a Solution to  Reduce Urban Traffic Congestion 



102 

10.2 APPENDIX B - Associated websites, data, etc., produced 

Website: https://faculty.eng.ufl.edu/sermos-lab/transit-innovative-mobility 
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10.3 APPENDIX C - Summary of Accomplishments 

Date Type of 
Accomplishment 

Detailed Description 

01/2020 Conference Paper Zhao, X., Liu, X., Yan, X. (2020). Modeling demand for ridesourcing 

services in the City of Chicago: A direct demand machine learning 

approach. Proceedings of Transportation Research Board 99th Annual 

Meeting, Washington, DC. 

01/2020 Conference 

Presentation 

Xu, Y., Yan, X., Liu, X., Zhao, X. (2020) Applying Interpretable Machine 

Learning to Identify Key Factors Associated with Ride-Splitting 

Adoption Rate and to Model Their Nonlinear Relationships. 

Transportation Research Board 99th Annual Meeting, Washington, 

DC. 

02/2020 Publication Yan, X., Liu, X., Zhao, X. (2020). Using machine learning for direct 

demand modeling of ridesourcing services in Chicago. Journal of 

Transport Geography, 83, 102661. 

02/2020 Publication Zhao, X., Yan, X., Yu, A., Van Hentenryck, P. (2020). Prediction and 

behavioral analysis of travel mode choice: A comparison of machine 

learning and logit models. Travel Behaviour and Society, 20, 22-35. 

06/2020 Conference 

Presentation 

Elefteriadou, L., Du, L., Zhao, X. (2020). Autonomous vehicles and 

micromobility in a disruptive society and transportation system. The 

5th Conference on Sustainable Urban Mobility. 

08/2020 Conference 

Presentation 

Sisiopiku, V., Zhao, X., Xu, Y., Yan, D., Steiner, R. (2020) Can Micro-

mobility Reduce Urban Traffic Congestion? ITE Annual Meeting. 

12/2020 Conference 

Presentation 

Zhao, X. (2021). Micromobility for smart cities: Planning, design, and 

operations. Interstate Transit Research Symposium. 

01/2021 Conference Paper Zhang, X., Zhao, X. (2020). A Clustering-aided Ensemble Method for 

Predicting Ridesourcing Demand in Chicago. Proceedings of 

Transportation Research Board 100th Annual Meeting. 

01/2021 Conference Paper Noei, S., Zhao, X. (2020). Longitudinal Dynamics in Traffic 

Microsimulation. Proceedings of Transportation Research Board 

100th Annual Meeting. 
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01/2021 Conference Paper Xu, Y., Yan, X., Sisiopiku, V. P., Merlin, L. A., Xing, F., Zhao, X. (2020). 

Micromobility Trip Origin and Destination Inference using General 

Bikeshare Feed Specification (GBFS) data. Proceedings of 

Transportation Research Board 100th Annual Meeting. 

01/2021 Educational 

Product 

Xu, Y., Paliwal, M., Zhao, X. (2020). Real-time forecasting of 

micromobility demand: A context-aware recurrent multi-graph 

convolutional neural network approach. 2021 TRB workshop 

sponsored by AED50. 

01/2021 Publication Xu, Y., Yan, X., Liu, X., Zhao, X. (2021). Identifying key factors 
associated with ride-splitting adoption rate and modeling their 
nonlinear relationships. Transportation Research Part A: Policy and 
Practice. https://doi.org/10.1016/j.tra.2020.12.005 

01/2021 Publication Merlin, L. A., Yan, X., Xu, Y., Zhao, X. (2021). A segment-level model of 
shared, electric scooter origins and destinations. Transportation 
Research Part D: Transport and Environment.  

03/2021 Media (article, 

etc.) 

https://www.sciencedaily.com/releases/2021/03/210301091147.htm 

03/2021 Media (article, 

etc.) 

https://nyc.streetsblog.org/2021/03/04/e-scooters-are-best-for-
short-trips-to-transit-shops-study/ 

03/2021 Educational 

Product 

Zhao, X. (2021). Planning micromobility for future smart cities. 
University of Miami School of Architecture.  

05/2021 Faculty 

Accomplishment 

or Award 

Our lab’s paper led by Dr. Xilei Zhao won the Travel Behaviour & 
Society (TBS) Outstanding Paper Award 2020. Find more details here: 
https://www.journals.elsevier.com/travel-behaviour-and-
society/news/tbs-outstanding-paper-award-2020. 

06/2021 Media (article, 

etc.) 

https://www.alligator.org/article/2021/06/eletric-scooters-are-
coming-to-uf 

06/2021 Media (article, 

etc.) 

https://joyride.city/3-ways-micromobility-services-can-socially-
impact-cities/ 

07/2021 Educational 

Product 

Zhao, X. (2021). Planning innovative mobility systems with machine 
learning. Transportation Data Science Seminar Series, Texas A&M 
University. (Invited talk) 

09/2021 Educational 

Product 

Xu, Y. (2021). Real-time forecasting of dockless scooter-sharing 
demand: A spatio-temporal multi-graph convolutional network 
approach. The UF AI Research Catalyst Fund Seminar Series. (Invited 
talk) 
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