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Chapter 1 
1.1 Introduction 

In recent years, a number of new econometric methods have been introduced that have the potential 

to introduce attitudinal effects and other elements into travel-behavior and safety models. Many of 

these methods have, at their core, an approach to address unobserved heterogeneity (factors 

affecting outcomes but unobserved to the analyst). Numerous studies in travel behavior and safety 

analysis have found unobserved heterogeneity to be statistically significant and important in 

forecasting outcomes. However, this presents a problem for the interpretation if the source of the 

unobserved heterogeneity is not known or fully understood. One could argue, however, that 

unobserved heterogeneity is really capturing the effects of attitudes and social interaction as well 

as other potentially measurable factors. But applied work in travel behavior and safety analysis 

has been limited in its guidance in this regard. The intent of this study is to explore unobserved 

heterogeneity and its interpretation by undertaking a series of empirical applications that use some 

of the most advanced heterogeneity models available. 

The project report begins by studying effect of information on changing opinions toward 

autonomous vehicle adoption (Chapter 2). There is extensive theoretical literature that looks at 

factors that make people more or less likely to change their opinions as additional information is 

gathered. People whose opinions are less likely to change in response to information may have 

strong anchoring effects (commitments to initial opinions) or may support their initial opinion by 

selectively processing information to confirm their initial opinion (confirmation bias). Selectively 

processing information can also result in opinion polarization where opinions become more 

extreme as additional information is provided. While theoretical literature has been relatively 

abundant on this topic, there has been limited empirical evidence with transportation-related 

opinions as to how anchoring effects and confirmation bias may affect changing opinions and 

possible opinion polarization. The intent of Chapter 2 is to provide some initial evidence of 

changing opinions and possible polarization as it relates to the potential adoption of autonomous 

vehicles, which will likely be a key element in future sustainable transportation strategies. 

Specifically, the chapter studies how people’s initial autonomous-vehicle adoption likelihoods 

change after being asked a common set of questions that leads them through an assessment of 

factors involved in adoption. A series of discrete outcome models were estimated to determine the 

factors that influence the likelihood of people changing their initial opinions. Although the 

empirical models identified many variables associated with opinion change, it is argued that 

traditional transportation surveys may not be gathering the type of data needed to truly understand 

how people’s transportation-related decisions evolve in response to new information. 

The report then moves to an analysis of bikesharing use and its potential as an auto-trip 

substitute. Bikesharing has become increasingly popular in urban areas as an alternative 

transportation mode that can help relieve congestion, protect the environment, and improve public 

health through increased physical activity. Given this, it is important to identify the factors that 

may influence how often registered users use bikesharing, and whether their bikesharing use is 

displacing an auto trip. For this purpose, a survey of individuals was conducted, and random 

parameters logit models were estimated to study bikesharing usage rates and modal substitution. 

In addition to standard socio-demographic and travel behavior characteristics of the survey 

respondents, health-related indicators were considered as explanatory variables in the estimated 

models. It was found that gender, age, income, household size, commute type and length, and 

vehicle ownership all played significant roles in bikesharing usage and modal substitution 

decisions. Regarding health measures, respondents’ body mass index (BMI) was also a significant 
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predictor of bikesharing usage.  Model estimation findings provide some initial insights into the 

bikesharing decision-making process that can help in the development of policies to improve the 

performance of bikesharing systems and making them a more viable transportation option.   

Chapter 4 addresses the emerging issue of temporal instability in travel and safety models 

by assessing the temporal instability of the factors determining motorcyclist injury severities. Two 

data sources are used; one covers the 2012 to 2016 crash histories of Florida motorcyclists who 

were newly licensed in 2012, and the second covers motorcycle crashes that occur on horizontal 

curves in Florida from 2005 to 2015. In the first dataset (2012 new riders), temporal changes may 

result from riders gaining experience as well as general temporal shifts. In the second dataset, rider 

experience is unknown (thus becoming a source of potential unobserved heterogeneity) but the 

temporal changes will be largely from general temporal shifts. With three possible motorcyclist 

injury severity outcomes (no visible injury, minor injury, and severe injury), random parameters 

multinomial logit models, that allow for heterogeneity in means and variances, were estimated for 

all possible annual time periods in each dataset. Likelihood ratio tests were conducted to examine 

the overall stability of model estimates across time periods, and marginal effects of each 

explanatory variable were also considered to investigate the temporal instability of the effect of 

individual parameter estimates on motorcyclist injury-severity probabilities. A wide range of 

variables was considered including motorcyclists’ attributes (such as ethnicity and age), roadway 

and environmental conditions (such as light and road surface conditions), motorcycle 

characteristics (such as motorcycle make and type of motorcycle), rider actions (such as speeding 

and improper driving actions), and roadway conditions (such as obstacles on the road and speed 

limits). The results show significant temporal instability in motorcyclist-injury severity models, 

which likely result from changes in motorcycle technology and performance, changes in 

macroeconomic conditions, changes induced by how riders respond to the changing behavior of 

other road users (whose behavior may be changing as a result of technology changes in their 

vehicles, evolving use of personal technologies in their vehicle, such as cell phones, etc.), and the 

changes in riders’ behavior and skills over time. 

Continuing along this temporal theme, Chapter 5 looks at time-of-day variations and 

temporal instability of the factors affecting injury severities in large-truck crashes. Using the data 

from large-truck crashes in Los Angeles over an eight-year period (January 1, 2010 to December 

31, 2017), the variation in the influence of factors affecting injury severities during different time 

periods of the day (morning and afternoon) and from year to year is studied. To capture potential 

unobserved heterogeneity, random parameters logit models with heterogeneity in the means and 

variances of the random parameters were estimated considering three possible crash injury-

severity outcomes (no injury, minor injury, and severe injury). Likelihood ratio tests were 

conducted to assess the transferability of model estimation results from different times of the day 

and from year to year. Marginal effects of the explanatory variables were also calculated to 

investigate the stability of individual parameter estimates on injury-severity probabilities across 

time-of-day/time-period combinations. A wide range of parameters were considered including 

drivers’ characteristics, driver actions, truck’s characteristics, weather and environmental 

conditions, and roadway attributes. The results show instability in the effect of factors that 

influence injury severities in large-truck vehicle crashes across daily time periods and from year 

to year. However, there are several variables that exhibit relatively stable effects on injury-severity 

probabilities including driver ethnicity, crashes occurring while backing, sideswipe crashes, hit-

object crashes, parked-vehicle crashes, fixed-object crashes, and truck-driver at fault crashes. The 
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findings of this chapter should be useful for decision makers and trucking companies to better 

regulate truck operations by time of day.  

Chapter 6 goes on to address some technical issues associated with a heterogeneity model 

used commonly in advanced travel behavior and safety studies. Specifically, the Mixed 

Generalized Ordered Response (MGOR) model, that allow random heterogeneity in thresholds, is 

considered. A potential limitation of these models is addressed (as applied in most empirical 

research) in that the variances of the random thresholds are implicitly assumed to be in a non-

decreasing order. This restriction is unnecessary and can lead to difficulty in estimation of random 

parameters in higher order thresholds. In this chapter the use of negative correlations between 

random parameters as a variance reduction technique to relax the property of non-decreasing 

variances of thresholds in MGOR models is investigated. To this end, a simulation-based approach 

was used (where multiple datasets were simulated assuming a known negative correlation structure 

between the true parameters), and two models were estimated on each dataset; one allowing 

correlations between random parameters, and the other not allowing such correlations. Allowing 

negative correlations is shown to relax the non-decreasing variance property of MGOR models. 

However, maximum simulated likelihood estimation of parameters on data with correlations 

occasionally encountered model convergence and parameter identification issues. Comparison of 

the models that did converge suggests that ignoring correlations leads to an estimation of fewer 

random parameters in the higher order thresholds and results in bias and/or loss of precision for a 

few parameter estimates. Importantly, ignoring correlations leads to an adjustment of other 

parameter estimates such that overall likelihood values, predicted percentage shares, and the 

marginal effects are similar to those from the models with correlations. 

Lastly, the project report concludes with Chapter 7, which gives an application of Lin’s 

conception of social capital as resources embedded in social networks as a basis for describing 

leisure activity outcomes. This is accomplished through using a position generator for indirect 

resource access, a resource generator for direct resource access, and a global name generator for 

social support size. The research in this chapter is the first in the transportation and activity 

literature to use both a position generator and resource generator to measure social capital. The 

validity of these measures is tested in a trial survey via self-administered web-based format across 

three non-probability samples of varying origin. Results indicate that care needs to be taken when 

using these measures (under the question and answer formats used) for mobile device users, older 

and less formally educated respondents, and across inattentive samples. The chapter concludes by 

providing evidence towards the conclusion that social capital is positively correlated with leisure 

activity variety. 
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Chapter 2: The Effect of Information on Changing Opinions Toward Autonomous 

Vehicle Adoption: An Exploratory Analysis 
2.1. Introduction 

Decision making, as it relates to transportation-related choices, has been studied for many decades. 

The use of random utility models, and associated econometric analyses, has enabled transportation 

researchers to empirically study a wide variety of transportation-related choices (McFadden, 

2007). However, an implicit assumption made in almost all these decision-making studies and 

empirical models is that individual opinions and preferences remain temporally stable. This 

assumption may not be problematic when analyzing well-established transportation technologies 

(conventional cars and buses), travel patterns, and other transportation-related decisions. However, 

with decisions relating to new technologies such as autonomous vehicles, where new information 

is being continuously gathered by decision makers, the assumption of the temporal instability of 

decision making could present a serious model-estimation concern that could ultimately adversely 

affect policy decisions. 

In a recent article, Mannering (2018) draws from a vast array of literature from psychology, 

neuroscience, economics, cognitive science and other fields to argue that temporal instability, due 

to changing preferences and behavior, is likely to play an important role in the analysis of 

transportation accident data. Similarly, with the introduction of a new transportation technology 

such as autonomous vehicles, individuals’ preferences and opinions regarding the likelihood of 

adoption are likely to be highly unstable, at least initially, as individuals gather information and 

modify their opinions based on this information. 

The intent of the current chapter is to provide some initial evidence as to how opinions 

with regard to individuals’ likelihood of adopting an autonomous vehicle may change when 

additional information is provided. To undertake this analysis, a survey that first asks respondents 

their likelihood of adopting an autonomous vehicle was developed. Then, after having respondents 

go through a series of questions that had them think about various detailed aspects of autonomous 

vehicle characteristics and likely their performance, the same adoption-likelihood question was 

asked again to see how their adoption opinions may have changed. A series of decision-change 

models were then estimated to understand various respondent characteristics that made them more 

or less likely to change their opinion. 

The chapter begins with an overview of considerations associated with autonomous 

vehicles followed by a description of the experimental approach. Model estimation results of 

peoples’ initial likelihood of autonomous vehicle adoption are then presented, and this is followed 

with a series of models that estimate people’s likelihood of changing their initial opinions after 

being provided additional information. The chapter concludes with a discussion of the implications 

of the chapter’s empirical findings and suggestions for future work. 

 

2.2 The Adoption of Autonomous Vehicles 

Automotive companies are committed to the development of autonomous vehicles because they 

anticipate that the technology will be highly profitable for them and beneficial to transportation-

system users. Safety is often touted as a primary benefit with autonomous-vehicle technology by 

potentially eliminating crashes involving human errors such as speeding, tailgating, distraction, 

drowsiness, and so on. However, the transition to autonomous technology has benefits beyond 

safety, including the movement toward a more sustainable transportation environment with 

reductions in traffic congestion, increased fuel efficiency, lower emissions, and other system-wide 

benefits (Bansal and Kockelman, 2017; Haboucha et al., 2017). 
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Still, there is considerable skepticism relating to the potential benefits of autonomous 

vehicle technology (Bansal and Kockelman, 2017). People continue to express strong concerns 

about software hacking/misuse, safety, potential litigation, and possible data transmission issues 

relating to automated vehicles (Haboucha et al., 2017; Bansal and Kockelman, 2017; Barbour et 

al., 2018). Additionally, recent highly-publicized crashes involving autonomous vehicles have 

raised more safety-related concerns and demonstrate that opinions and attitudes can be highly 

volatile in the early stages of this new and potentially disruptive technology (Edison and Geissler, 

2003; Heffner et al., 2007; Moore, 2009; Bansal and Kockelman, 2017). 

 

2.3. The Importance of Initial Opinions, Anchoring Effects, and Confirmation Bias 

As previously discussed, a critical concern in autonomous vehicle adoption is understanding how 

people’s autonomous vehicle adoption opinions change over time in response to new information. 

In determining the likelihood of changes in autonomous vehicle adoption opinions, initial opinion 

formation, potential anchoring effects, and confirmation bias may all play a role. There is an 

abundance of literature that shows that individual opinions and judgements are strongly influenced 

by the initial information provided, and the opinions formed based on this information. Early work 

in this area by Tversky and Kahneman (1974) refer to this as an anchoring effect, where opinions 

are biased towards initially gathered values. In our case (the likelihood of adopting an autonomous 

vehicle), people’s initial adoption-likelihood opinions capture a wide variety of initial information 

they may have gathered regarding autonomous vehicles. The question then becomes, how will 

their opinions evolve, given possible anchoring effects, after being directed through a group of 

questions that has them think more deeply about the potential characteristics and issues associated 

with autonomous vehicles? Given possible anchoring effects, people’s initial autonomous vehicle 

adoption likelihoods served as the starting point for our empirical analysis. 

With regard to how people’s opinions may change (overcoming anchoring effects) after 

being directed through informational questions, the extant literature provides some guidance. For 

example, Van Exel et al. (2006) argue that people with lower familiarity with a topic can be greatly 

influenced by an authoritative source resulting in stronger anchoring effects. For our autonomous 

vehicle case, this implies that individuals with little familiarity with autonomous-vehicle 

technology may have strong anchoring effects if what little information they have is from what 

they consider to be an authoritative source. However, Galinsky and Mussweiler (2000) and 

LeBoeuf and Shafir (2009) argue that this authoritative-source effect can be mitigated if specific 

types of confirmatory information is provided, but empirical work has found considerable 

uncertainty with regard to the types of information that can actually mitigate this effect.1 

How people adjust based on their initial opinions (anchoring effects) has been a topic of 

considerable debate among psychologists. Some have argued that anchoring values serve merely 

as a reference point from which people start to adjust when given additional information (Strack 

and Mussweiler, 1997).  However, the concept of confirmatory hypothesis testing has become a 

widely accepted behavioral response with regard to anchoring effects (Strack and Mussweiler, 

1997; Chapman and Johnson, 1999; Mussweiler and Strack, 2001; Wegener et al., 2010; Furnham 

and Boo, 2011). In this case, individuals consider their anchoring values to be plausible and 

 

 
1 As will be shown, the experimental design that is used in this paper cannot directly account for authoritative-source 

effects. However, it is important to keep in mind that one of the determinants of a strong anchoring effect is an 

authoritative-source effect, and that people with certain measurable characteristics may be more or less susceptible 

to such an effect. 
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continually test the hypothesis that the anchor value is correct. In doing so, individuals may tend 

to search for ways to reinforce their anchor value by selectively considering information that is 

consistent with their initial estimate, which leads to a confirmation bias (Nickerson, 1998). This 

confirmation bias can support polarization of opinions (with confirmatory information leading to 

more extreme positions as initial opinions are reinforced). Polarization is thus a process by which 

people with opposing opinions observe the same data and somehow strengthen their opposing 

beliefs (Lord et al., 1979; Jern et al., 2014; Benoit and Dubra, 2017). The manner in which 

individuals are affected by their initial opinions (anchors) and thus adjust to new information has 

also been found to be influenced by individual differences (Brandstatter, 1993) and information 

processing styles (Wegener et al., 2001).  

In the forthcoming empirical analysis, individuals were segmented based on their initial 

responses to their likely adoption of autonomous vehicles in an attempt to account for the 

anchoring effect. After classifying individuals on initial adoption opinions, the probability that 

additional information will change these initial opinions was studied. In essence, this research 

seeks to identify explanatory variables that capture the strength of individuals’ anchoring effects, 

tendency toward confirmation bias, and even individual informational processing styles, all of 

which may affect the likelihood that their opinions will change in response to new information. 

 

2.4. Experimental Approach 

To obtain insight into how additional information might affect peoples’ likelihood of adopting 

autonomous vehicles, a survey was developed to track the stated likelihood of autonomous-vehicle 

adoption before and after detailed information relating to key elements of autonomous vehicles 

were presented.2  The approach used was to first have individuals initially indicate their likelihood 

of autonomous vehicle adoption with responses provided on a 5-point scale ranging from extremely 

unlikely, unlikely, uncertain, likely, to extremely likely. After this initial likelihood assessment, 

individuals were led through a series of questions that had them think more carefully about the 

various aspects that might affect autonomous vehicle adoption (many of which they may not have 

fully considered in their initial assessment). In this series of questions individuals were asked to 

rate their opinions on various potential benefits and concerns related to autonomous vehicle 

adoption. Benefit-related questions had them consider autonomous-vehicle aspects such as fewer 

vehicle crashes and increased roadway safety, less traffic congestion, potentially less stressful 

driving experiences, and lower vehicle emissions. Concern-related questions had them consider 

autonomous vehicle related elements such as system/equipment failure, autonomous vehicle 

system hacking, performance in unexpected traffic situations and extreme weather conditions, 

giving up of control of the steering wheel to the vehicle, loss in human driving skill over time, 

safety of the vehicle occupants and other road users such as pedestrians and bicyclists, and liability 

in the event of a crash. After recording individuals’ initial opinions and having them go through 

the questions shown in Appendix 2.A, their likelihood of adopting an autonomous vehicle was 

 

 
2 An alternative to this experimental approach would be to gather longitudinal data and track changing opinions. 

However, in addition to the high cost associated with the acquisition of such longitudinal data, there would be 

significant challenges in survey design to capture the effects of people’s information gathering from media, social 

networks, and other sources. While the experimental approach adopted herein allows for a much tighter control on 

information availability, exploring this opinion-change issue with a detailed longitudinal survey is a promising 

direction for future research. 
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asked again with the same response options; extremely unlikely, unlikely, uncertain, likely, to 

extremely likely.3,4,5 

Data for this chapter were collected from a sample of American Automobile Association 

members across the southeastern United States in June 2015. Data from a total of 2,338 survey 

respondents, all of whom commuted to work or school, were obtained. The sample includes 

participants from 12 states, and roughly 1 in 4 households in the United States are members of the 

American Automobile Association. In comparison to the United States population as a whole, 

members of the American Automobile Association tend to come from wealthier households with 

higher vehicle ownership levels, a group that would be a natural target for autonomous vehicle 

adoption. For example, the sample used herein had 42% of respondents coming from households 

with annual household incomes greater than $100,000 (compared to 24.7% nationally). Household 

vehicle ownership in the American Automobile Association sample was 3.18 compared to 2.28 

nationally, and 59% of the respondents were male (compared to 49.2% nationally). It is important 

to note the source of the data used herein when projecting this chapter’s findings to other 

populations (for further details and additional applications of these data please see Menon et al., 

2016, 2018; Barbour et al., 2018).  

In addition to autonomous-vehicle-specific questions, the survey collected extensive data 

on respondents’ transportation-related decisions, commute experiences (all respondents were 

either worker or students and thus all had commutes), travel history, modal use, and extensively 

detailed socioeconomic data. 

 

2.5. Methodological Approach – Initial Opinion 

Initial opinions with regard to the likely adoption of autonomous vehicles were studied first. This 

is important because this initial opinion will establish a baseline for potential anchoring effects 

that will affect final opinions on the likelihood of adoption. Respondents had autonomous vehicle 

adoption choices of extremely unlikely, unlikely, uncertain, likely, and extremely likely. Given the 

ordered nature of the available responses to this question an ordered probability modeling approach 

was appropriate (Washington et al., 2011). Traditional ordered probability models are specified by 

defining an unobserved variable, z, for each respondent i as the linear function, 

zi = Xi + i ,      (2.1) 

 

where Xi is a vector of explanatory variables determining the discrete responses for respondent i, 

 is a vector of estimable parameters, and i is a disturbance term.  Using this equation, observed 

 

 
3 Consideration must also be given to the primacy/recency effect with regard to the questions in the appendix. That 

is, the fact that questions presented at the beginning (primacy) and the end (recency) are likely to be given more 

weight than questions in the middle. A potentially fruitful direction for future research would be to randomize 

these questions, or present respondents with a finite group of alternate orderings of these questions, to study the 

possible extent of the primacy/recency effect in this context. 
4 It should be pointed out here that the approach of asking questions as a means of having people think about 

elements of autonomous vehicle adoption is fundamentally different than providing them with specific information 

or have them gather information themselves through various media and social networks. Thus, some caution 

should be exercised in extending the findings to these other forms of information gathering. 
5 Please note that the experimental approach used is potentially susceptible to hypothetical bias. That is, in 

unfamiliar contexts (such as autonomous vehicle adoption) individuals may not fully understand or perceive how 

the hypothetical decision they are making will differ from an actual decision (Rakotonarivo et al., 2016). This 

point should be kept in mind in assessing the forthcoming empirical findings of this paper. 
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ordinal responses, yi, are defined as (with 1 = extremely unlikely, 2 = unlikely, 3 = unsure, 4 = 

likely, and 5 = extremely likely), 

yi = 1 if zi  0 

    = 2 if 0 < zi  1 

       = 3 if 1 < zi  2     (2.2) 

     = 4 if 2 < zi  3 

     = 5 if zi  3, 

where 's are estimable parameters (thresholds) that define yi and are estimated jointly with the 

model parameters .  With this, as shown in Washington et al. (2011) and other sources, if i is 

assumed to be normally distributed across respondents an ordered probit model results with 

ordered categorical selection probabilities (removing subscripting i for notational convenience and 

noting that without loss of generality, 0 can be set equal to zero thus requiring the estimation of 

only three thresholds, 1, 2, and 3 to define all 5 selection probabilities), 

P(y = 1) = (–X) 

P(y = 2) = (1–X) – (–X) 

          P(y = 3) = (2–X) – (1–X)     (2.3) 

P(y = 4) = (3–X) – (2–X) 

P(y = 5) = 1 – (3–X), 

where (.) is the cumulative normal distribution. 

For model interpretation, a positive value of β implies that an increase in Xi will increase 

the probability of getting the highest response (extremely likely) and will decrease the probability 

of getting the lowest response (extremely unlikely), but to interpret the intermediate categories (to 

estimate the direction of the effects of the interior categories of unlikely, uncertain and likely) and 

the probability effect of the any variable in the vector Xi on each outcome category, average 

marginal effects are computed as (Washington et al., 2011), 

( )
( ) ( )1

i

n i n i

i

P y = n
 −

 =  − − − 
βΧ βΧ β

X
,   (2.4) 

where Pi(y = n) is the probability of ordered discrete outcome n for respondent i, ϕ(.) is the normal 

density, and all other variables are as previously defined. The computed marginal effects quantify 

the effect that a one-unit change of an explanatory variable will have on outcome category n’s 

selection probability, and these marginal effects are averaged over all respondents to arrive at an 

average marginal effect for the population. 

Finally, the possibility of unobserved heterogeneity in the data was accounted for by 

allowing parameters to vary across respondents. A standard random parameters approach was used 

with (please see Mannering et al., 2016, for a full description of alternate heterogeneity modeling 

approaches), 

βki = βk + φki ,      (2.5) 

where βki is the parameter estimate for explanatory variable k (one of the elements in the parameter 

vector β) for respondent i, βk is the mean parameter estimate for explanatory variable k, and φi is 

a randomly distributed term (for example, normally distributed term with mean zero and variance 

σ2).  Estimation of the random parameters ordered probit was undertaken by simulated maximum 
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likelihood approaches (Washington et al., 2011). Previous studies have shown that Halton draws 

provide a more efficient distribution of simulation draws than purely random draws (Bhat, 2003).  

In the forthcoming model estimations 1,000 Halton draws were used in the simulated likelihood 

functions, a number that has been shown to be more than sufficient to provide accurate parameter 

estimates (Halton, 1960; Bhat, 2003; Anastasopoulos and Mannering, 2009). 

 

2.6. Initial-Opinion Estimation Results 

Random parameters ordered probit model estimates of the stated initial likelihood of adopting an 

autonomous vehicle are presented in Table 2.1, and corresponding marginal effects are presented 

in Table 2.2. Table 2.1 shows that eight variables were found to significantly influence initial 

autonomous vehicle adoption opinions, and the model has a reasonably good overall statistical fit 

with a McFadden ρ2 of 0.404. 

 

Table 2.1. Random parameter ordered probit model of the stated initial likelihood of adopting an 

autonomous vehicle [dependent variable responses are integers between 1 (extremely unlikely) to 

5 (extremely likely)]. All random parameters are normally distributed.  

Variable Estimated 

Parameter 
t Statistic 

Constant  0.608 4.55 

Younger adult indicator (1 if age less than 40 years, 0 

otherwise) (Standard deviation of parameter distribution) 

0.352 (0.592) 3.49 (6.13) 

Male indicator (1 if respondent is male, 0 otherwise) 

(Standard deviation of parameter distribution) 

0.174 (0.460) 2.61 (10.89) 

White ethnicity indicator (1 if the respondent identifies as 

being white, 0 otherwise) 

-0.184 -1.73 

No injury indicator (1 if the respondent has not encountered 

any injury in a crash, 0 otherwise) 

-0.108 -1.69 

Higher education indicator (1 if respondent holds a 

bachelor’s degree or above, 0 otherwise) 

0.220 3.16 

High income indicator (1 if the household has income 

greater than $100,000/year, 0 otherwise) 

0.239 3.40 

Recent new-vehicle purchase indicator (1 if the most 

recently acquired vehicle was a new vehicle; 0 otherwise) 

0.115 1.76 

Worker indicator (1 if the respondent is a worker, 0 

otherwise) 

0.128 1.83 

Threshold μ1 0.535 15.10 

Threshold μ2 1.23 25.70 

Threshold μ3 2.08 33.75 

Log-likelihood at zero [LL(0)] -2938.55 

Log-likelihood at convergence [LL(β)] -1751.98 
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McFadden ρ2 [1-LL(0)/LL(β)] 0.404 

Number of observations 1490 

 

Table 2.2. Average marginal effects for the initial adoption opinion model shown in Table 2. 

 

Variable 

Marginal Effects 

Extremely 

Unlikely 
Unlikely Uncertain Likely 

Extremely 

Likely 

Younger adult indicator (1 if 

age less than 40years, 0 

otherwise) 

-0.0875 -0.0397 -0.0082 0.0593 0.0590 

Male indicator (1 if respondent 

is male, 0 otherwise) 

-0.0497 -0.0171 0.0028 0.0325 0.0314 

White ethnicity indicator (1 if 

the respondent identifies as 

being white, 0 otherwise) 

0.0483 0.0199 0.0016 -0.0373 -0.0326 

No injury indicator (1 if the 

respondent has not 

experienced an injury in a 

vehicle crash, 0 otherwise) 

0.0300 0.0109 -0.0090 -0.1990 -0.0201 

Higher education indicator (1 if 

respondent holds a bachelor’s 

degree or above, 0 otherwise) 

-0.0601 -0.0229 0.0005 0.0400 0.0424 

High income indicator (1 if the 

household has income greater 

than $100,000/year, 0 

otherwise) 

-0.0659 -0.0244 0.0014 0.0437 0.0452 

Recent new-vehicle purchase 

indicator (1 if the most 

recently acquired vehicle was 

a new vehicle; 0 otherwise) 

-0.0323 -0.0116 0.0012 0.0213 0.0213 

Worker indicator (1 if the 

respondent is a worker, 0 

otherwise) 

-0.0360 -0.0128 0.0016 0.2374 0.0234 
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Turning to the estimation results shown in Table 2.1, two of the eight variables were found 

to produce normally distributed random parameters with statistically significant standard 

 deviations indicating significant unobserved heterogeneity in the data.6 Individuals less than 40 

years of age (an age cut-off that produced the most statistically significant findings) had a mean 

parameter estimate of 0.352 and standard deviation of 0.592 indicating that the effect of this 

variable increased the likelihood of being extremely likely to adopt for roughly 72 percent of 

respondents and decreased it for 28 percent. This reflects considerable variation in the preferences 

among this age group. Similarly, for male respondents, a statistically significant random parameter 

was found with a mean of 0.174 and a standard deviation of 0.460 indicating that the effect of this 

variable increased the likelihood of being extremely likely to adopt for roughly 65 percent of 

respondents and decreased it for 35 percent. The estimation results suggest that both younger 

respondents and male respondents had considerable unobserved heterogeneity in their initial 

opinions toward their likely adoption of autonomous vehicles. 

With regard to other statistically significant variables, respondents identifying themselves 

as white and those who had not experienced an injury in a vehicle crash were found to have had a 

lower probability of being likely or extremely likely to adopt an autonomous vehicle (see Table 

2.2). The reluctance among whites to adopt was likely reflecting some socio-demographic 

elements associated with this group that were not being captured by other questions in the survey. 

The finding that individuals not involved in injury crashes had lower probabilities of being likely 

or extremely likely to adopt suggests that these individuals may feel less of a need for the potential 

safety benefits that autonomous vehicles may provide relative to those who had experienced an 

injury crash. 

Tables 2.1 and 2.2 show that more highly educated individuals (holding a bachelor’s degree 

or above), those having household incomes greater than $100,000 per year, and those individuals 

whose most recent vehicle purchase was a new vehicle had higher probabilities of being likely or 

extremely likely to adopt autonomous vehicles. This highly educated, wealthy, and new-vehicle-

centric group of individuals seem a natural demographic target for autonomous vehicle adoption. 

Finally, workers were found to have higher probabilities of being likely or extremely likely to adopt 

an autonomous vehicle (Table 2.2). This likely reflects the potential these individuals see in 

autonomous vehicles to mitigate adverse commute-related conditions they may face. 

 

2.7. Methodological Approach – Opinion Change 

As the previous discussion on anchoring effects suggests, initial opinions are likely to be critical 

determinants of final opinions and serve as a guide to any change in these opinions. To establish 

that respondents’ opinions were not stable between their initial assessment of autonomous vehicle 

adoption likelihoods and their final assessment (after being provided additional information based 

on a series of questions as previously discussed), estimation results from three ordered probit 

models were used; an initial model (opinions before being led through the informational questions, 

previously estimated as shown in Table 2.1), a final model (opinions after being led through the 

informational questions), and an overall model that includes adoption likelihood responses before 

and after the questions.7 With these model estimates, a likelihood ratio test  was conducted as χ2 = 

 

 
6 In addition to the normal distribution, models were estimated with several other distributions, but no other 

distribution produced estimation results that were significantly better than the normal distribution. 
7 There is also the possibility that people may not remember their initial opinion selection and just select a new 

opinion by chance even though their core opinion has not changed. However, this possibility is believed to be 
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-2[LL(β)combined - LL(β)initial - LL(β)final], where LL(β)combined is the log-likelihood at convergence of 

a model using the data from both before and after, LL(β)initial is the log-likelihood at convergence 

of a model estimated before providing the information, and LL(β)final is the log-likelihood at 

convergence of a model after providing the information. The resulting χ2 statistic (with the degrees 

of freedom equal to the summation of the number of parameters in the before and after models 

minus the number of estimated parameters in the combined model) was found to be 24.00 and, 

with 10 degrees, this χ2 value suggests that there is more than 99% confidence that the before and 

after parameter values were not the same, suggesting that the informational questions were 

significantly affecting individual preferences. 

Given this result, a series of models were estimated to understand what factors determine 

the likelihood of respondents shifting from their initial opinions about autonomous vehicle 

adoption. With the previous ordered probit estimation results providing some insight into the 

factors that may determine initial opinions, attention was directed toward studying opinion change 

by segmenting respondents into four groups, those initially indicating likely, unlikely, extremely 

likely, and extremely unlikely to adopt an autonomous vehicle,8 and then developing a statistical 

model that determined their new probability of being extremely unlikely, unlikely, uncertain, likely 

and extremely likely (a discrete outcome that was conditional on their initial choice because of this 

population-segmentation approach) after being provided additional information by being given a 

series of questions that has them think more carefully about various aspects of autonomous-vehicle 

adoption. 

To develop an estimable model, for each of the four initial opinions considered (likely, 

unlikely, extremely likely, and extremely unlikely), a function that determines respondents’ new 

probability of being extremely unlikely, unlikely, uncertain, likely and extremely likely to adopt an 

autonomous vehicle conditioned on their initial adoption opinion is defined as (Washington et al., 

2011),9 

in|g i|g in|g in|gPLR = + β X ,     (2.6)  

where PLRin|g is a function that determines the probability of respondent n selecting response i 

(extremely unlikely, unlikely, uncertain, likely and extremely likely) conditioned on their initial 

response g (either extremely unlikely, unlikely, likely and extremely likely), βi|g is a vector of 

estimable parameters for corresponding to outcome response i, Xin|g is a vector of explanatory 

variables that affect the probability of outcome response i for respondent n, and εin|g is a disturbance 

term. If the disturbance terms are assumed to be generalized extreme-valued distributed, a standard 

multinomial logit model results as (McFadden, 1981), 

( )
( )

i|g in|g

n

I|g In|g

 I

EXP
P i | g   

EXP


  =


β X

β X
,     (2.7) 

 

 
highly unlikely since the survey’s focus was on autonomous vehicle adoption which implies this question would 

have been given careful thought before and after the informational questions. 
8 Respondents without an initial opinion (those who are initially uncertain) are not considered because the study 

focuses on anchoring effects and polarization. Those without an initial opinion will not have an anchoring effect, 

will not engage in confirmatory hypothesis testing, and thus will not technically polarize. 
9 Although the outcome data are still technically ordered (extremely unlikely, unlikely, etc.), conditioning on the 

initial adoption likelihood reduces the ranges of responses considerably. Given this, and the additional flexibility 

inherent in traditional non-ordered outcome models such as the multinomial logit, an unordered outcome modeling 

approach is chosen. Please see Mannering and Bhat (2014) for an extensive discussion of this point. 
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where ( )nP i | g  is the probability of respondent n giving response i given that their initial response 

places them in group g (either extremely unlikely, unlikely, likely and extremely likely).  

In model estimation, the possibility of unobserved heterogeneity across respondents (the 

possibility that individual respondents will be affected by explanatory variables differently due to 

unobserved reasons) was also considered. To account for the possibility of having one or more 

parameter estimates in the vector βi|g vary across respondents, a distribution of these parameters 

was assumed, and Equation 2.2 is rewritten as (Washington et al., 2011), 

( ) ( ) ( )n n i|g i|g i|gP i | g P i | g  f | d= 
X

β φ β ,      (2.8) 

where f(βi|g |φi|g) is the density function of βi|g, φi|g is a vector of parameters describing the density 

function (mean and variance), and all other terms are as previously defined. This gives the random 

parameters logit model, the estimation of which was undertaken by simulated maximum likelihood 

approaches as was the case for the previously estimated random parameters ordered probit model 

(again, 1,000 Halton draws are used). 

As with the previous ordered probit model estimation results, to determine the effect that 

individual explanatory variables will have on response probabilities, marginal effects were 

computed for each explanatory variable. As before, the marginal effect of an explanatory variable 

gives the effect that a one-unit increase in an explanatory variable has on the outcome probabilities 

and the average marginal effect over all respondents is reported. 

 

2.8. Opinion Change Estimation and Results  

Table 2.3 presents summary statistics of variables included in one or more of the four sub-group 

models; those initially likely, unlikely, extremely likely and extremely unlikely.10 Model 

 

Table 2.3. Mean values for variables found to be statistically significant in one or more models. 

 

 

Variable 

Initial Autonomous-Vehicle Adoption Opinion 

Likely Unlikely 
Extremely 

Likely 

Extremely 

Unlikely 

Younger adult indicator (1 if age less than 40 

years, 0 otherwise) 

0.13 0.10* 0.19* 0.10 

Middle age indicator (1 if age greater than 40 

years and less than 60 years,0 otherwise) 

0.48 0.43 0.53 0.48* 

White ethnicity indicator (1 if the respondent 

identifies as being white, 0 otherwise) 

0.90* 0.90 0.84* 0.89* 

Single status (1 if the respondent is single,  

0 otherwise) 

0.22* 0.22 0.16 0.21 

 

 
10 Because the focus of the paper was on anchoring effects and polarization, recall that the statistical analysis did not 

address the changing opinions of the 248 people who initially indicated that they were uncertain.  After going 

through the informational questions, 55% of these respondents remained uncertain, 26% became likely, 17% 

became unlikely, 2% became extremely likely, and 0% became extremely unlikely. These rather substantial shifts 

suggest that additional information definitely affects the likelihood of remaining uncertain. A study focusing on 

the effects that information has on uncertainty in the context of autonomous vehicle adoption would be a fruitful 

area for future research. 
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Larger household indicator (1 if respondent 

with household with 3 or more people; 0 

otherwise) 

0.27* 0.21* 0.36* 0.27 

Lower income indicator (1 if the household 

has an income less than $50,000/year, 0 

otherwise) 

0.11* 0.21 0.15 0.21 

Higher income indicator (1 if the household 

has an income greater than $100,000/year, 

0 otherwise) 

0.50* 0.38* 0.48* 0.35 

Higher education indicator (1 if respondent 

holds a bachelor’s degree or above, 0 

otherwise) 

0.71* 0.64 0.37 0.63 

Worker indicator (1 if the respondent is a 

worker, 0 otherwise) 

0.48 0.48 0.62 0.46* 

Retirement indicator (1 if the respondent has 

retired, 0 otherwise) 

0.41 0.48 0.34 0.48* 

Recent new-vehicle purchase indicator (1 if 

the most recently acquired vehicle was a 

new vehicle; 0 otherwise) 

0.52 0.51* 0.52* 0.48* 

Recent vehicle acquisition indicator (1 if the 

most recently acquired vehicle was in the 

last two years; 0 otherwise) 

0.59* 0.51 0.60 0.58* 

Recent vehicle lease indicator (1 if the most 

recent vehicle acquisition was a lease; 0 

otherwise) 

0.16* 0.10 0.14 0.16 

Lower commute distance indicator (1 if one-

way distance for the commute trip is less 

than 3 miles; 0 otherwise) 

0.11 0.14* 0.14* 0.12 

Lower parking time indicator (1 if respondent 

spends 5 minutes or less on average in 

order to park their vehicle, 0 otherwise) 

0.92 0.95* 0.88 0.94* 

Higher daily travel time indicator (1 if 

respondent travels more than 60 minutes 

every day for all their trips, 0 otherwise)  

0.32 0.25* 0.31 0.26 

Vehicle crash indicator (1 if the respondent 

has ever been involved in a vehicle crash, 0 

otherwise) 

0.78 0.72 0.768 0.72* 

No injury indicator (1 if the respondent has 

not experienced an injury in a vehicle 

crash, 0 otherwise) 

0.58 0.61 0.50* 0.56 

Number of observations 368 279 159 436 

* Indicates statistically significant in initial-opinion model 
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estimation results of likeliness to adopt autonomous vehicles (conditioned on respondent’s’ initial 

opinions) are presented in Tables 2.4 to 2.11.  Interestingly, for all model estimations no 

statistically significant random parameters were found. This suggests that unobserved 

heterogeneity is not playing a significant role in the model estimation results.11,12 Detailed model 

results are discussed in the sections below. 

 

2.8.1 Respondents with an initial opinion of likely 

Of the 368 respondents who initially indicated that they were likely to adopt an autonomous 

vehicle, roughly 80% made the same likely choice after the informational questions, 9% polarized 

to extremely likely, and 11% depolarized (8% to uncertain, 2% to unlikely, 1% to extremely 

unlikely). Given this distribution of outcomes, for model estimation, three possible outcomes were 

considered; extremely likely (polarize), likely (no change), and other (which includes uncertain, 

 

Table 2.4. Opinion model for respondents with an initial autonomous vehicle adoption likelihood 

opinion of likely. 
 

   Marginal Effect 

Variable 
Estimated 

parameter 
t-statistic Other Likely 

Extremely 

Likely 

Other (Uncertain, Unlikely and Extremely Unlikely) – Base set to 

zero 
   

Likely – no change    

Constant 0.765 1.67 - - - 

White ethnicity indicator (1 if the 

respondent identifies as being 

white, 0 otherwise) 

0.740 1.69 -0.0659 0.1147 -0.0488 

Higher education indicator (1 if 

respondent holds a bachelor’s 

degree or above, 0 otherwise) 

0.761 2.65 -0.0679 0.1181 -0.0502 

Lower income indicator (1 if the 

household has an income less than 

$50,000/year, 0 otherwise) 

0.842 1.59 -0.0751 0.1307 -0.0556 

Recent vehicle lease indicator (1 if 

the most recent vehicle acquisition 

was a lease; 0 otherwise) 

1.36 2.44 -0.1221 0.2124 -0.0904 

Extremely likely – polarize    

Constant -0.839 -1.75 - - - 

 

 
11 The possibility of heterogeneity in means and variances was also considered (Behnood and Mannering, 2017a, 

2017b; Seraneeprakarn et al., 2017). However, likelihood ratio tests showed that these formulations did not 

significantly improve the model estimation results. 
12 Latent-class logit models were also estimated but these did not result in statistically different classes. This adds 

additional support indicating that unobserved heterogeneity was not playing a significant role in the model 

estimations (Mannering et al., 2016). 
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Higher income indicator (1 if the 

household has an income greater 

than $100,000/year, 0 otherwise) 

0.856 2.00 -0.0099 -0.0565 0.0664 

Larger household indicator (1 if 

respondent with household with 3 

or more people; 0 otherwise) 

0.682 1.52 -0.0079 -0.0450 0.0529 

Single status indicator (1 if the 

respondent is single; 0 otherwise) 

0.992 1.99 -0.0115 -0.0655 0.0769 

Recent vehicle acquisition indicator 

(1 if the most recently acquired 

vehicle was in the last two years; 0 

otherwise) 

-0.734 -1.87 0.0085 0.0484 -0.0569 

Log-likelihood at zero [LL(0)] -404.28 

Log-likelihood at convergence [LL(β)] -225.40 

McFadden ρ2 [1-LL(0)/LL(β)] 0.442 

Number of observations 368 

 

Table 2.5. Factors increasing/decreasing the likelihood of opinion change with an initial 

autonomous vehicle adoption likelihood opinion of likely. 
 

Factors decreasing the likelihood of an opinion change 

White ethnicity indicator (1 if the respondent identifies as being white, 0 otherwise) 

Higher education indicator (1 if respondent holds a bachelor’s degree or above, 0 otherwise) 

Lower income indicator (1 if the household has an income less than $50,000/year, 0 otherwise) 

Recent vehicle lease indicator (1 if the most recent vehicle acquisition was a lease; 0 otherwise) 

Recent vehicle acquisition indicator (1 if the most recently acquired vehicle was in the last two 

years; 0 otherwise) 

Factors increasing the likelihood of an opinion change 

Higher income indicator (1 if the household has an income greater than $100,000/year, 0 

otherwise) 

Larger household indicator (1 if respondent with household with 3 or more people; 0 otherwise) 

Single status indicator (1 if the respondent is single; 0 otherwise) 
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Table 2.6. Opinion model for respondents with an initial autonomous vehicle adoption likelihood opinion of unlikely.  
 

   Marginal effect 

Variable 
Estimated 

Parameter 
t-statistic Other Unlikely 

Extremely 

Unlikely 

Other (Uncertain, Likely and Extremely likely) – Base set to zero    

Unlikely – no change    

Constant 0.955 5.49 - - - 

Younger adult indicator (1 if age less than 40 years, 0 otherwise) 1.317 2.40 -0.0771 0.2483 -0.1713 

Larger household indicator (1 if respondent with household with 3 

or more people; 0 otherwise) 

0.757 1.87 -0.0804 0.1691 -0.0888 

Extremely Unlikely - polarize    

Constant 1.590 2.35 - - - 

Higher income indicator (1 if household has an income greater 

than $100,000/year, 0 otherwise) 

-0.650 -1.94 0.0250 0.0748 -0.0999 

Lower commute distance indicator (1 if one-way distance for the 

commute trip is less than 3 miles; 0 otherwise) 

-0.826 -1.57 0.0314 0.0950 -0.1263 

Lower parking time indicator (1 if respondent spends 5 minutes or 

less on average in order to park their vehicle, 0 otherwise) 

-1.037 -1.57 0.0401 0.1216 -0.1618 

Higher daily travel time indicator (1 if respondent travels more 

than 60 minutes every day for all their trips, 0 otherwise)  

0.789 2.41 -0.0305 -0.0925 0.1230 

Recent new-vehicle purchase indicator (1 if the most recently 

acquired vehicle was a new vehicle; 0 otherwise) 

-0.860 -2.73 0.0333 0.1009 -0.1342 

Log-likelihood at zero [LL(0)] -306.51 

Log-likelihood at convergence [LL(β)]  -247.40 

McFadden ρ2 [1-LL(0)/LL(β)] 0.193 

Number of observations 279 
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Table 2.7. Factors increasing/decreasing the likelihood of opinion change with an initial 

autonomous vehicle adoption likelihood opinion of unlikely. 
 

Factors decreasing the likelihood of an opinion change 

Younger adult indicator (1 if age less than 40 years, 0 otherwise) 

Larger household indicator (1 if respondent with household with 3 or more people; 0 otherwise) 

Higher income indicator (1 if household has an income greater than $100,000/year, 0 otherwise) 

Lower commute distance indicator (1 if one-way distance for the commute trip is less than 3 

miles; 0 otherwise) 

Lower parking time indicator (1 if respondent spends 5 minutes or less on average in order to 

park their vehicle, 0 otherwise) 

Recent new-vehicle purchase indicator (1 if the most recently acquired vehicle was a new vehicle; 

0 otherwise)White ethnicity indicator (1 if the respondent identifies as being white, 0 otherwise) 

Factors increasing the likelihood of an opinion change 

Higher daily travel time indicator (1 if respondent travels more than 60 minutes every day for all 

their trips, 0 otherwise) 
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Table 2.8. Opinion model for respondents with an initial autonomous vehicle adoption likelihood opinion of extremely likely. 
 

   Marginal Effect 

Variable 
Estimated 

Parameter 
t-statistic 

Likely/ 

Uncertain 

Extremely 

Likely 

Likely/Uncertain – Base set to zero   

Extremely likely – no change   

Constant 0.64 1.20 - - 

White ethnicity indicator (1 if the respondent identifies as being 

white, 0 otherwise) 

-1.45 -2.75 0.2952 -0.2952 

Higher income indicator (1 if household has an income greater 

than $100,000/year, 0 otherwise) 

-0.99 -2.23 0.2035 -0.2035 

No injury indicator (1 if the respondent has not experienced an 

injury in a vehicle crash, 0 otherwise) 

0.908 2.53 -0.1849 0.1849 

Younger adult indicator (1 if age less than 40 years, 0 otherwise) -0.76 -1.45 0.1294 -0.1294 

Larger household indicator (1 if respondent with household with 3 

or more people; 0 otherwise) 

0.72 1.87 -0.1423 0.1423 

Lower commute distance indicator (1 if one-way distance for the 

commute trip is less than 3 miles; 0 otherwise) 

0.78 1.57 -0.1594 0.1594 

Recent new-vehicle purchase indicator (1 if the most recently 

acquired vehicle was a new vehicle; 0 otherwise) 

0.59 1.62 -0.1540 0.1540 

Log-likelihood at zero [LL(0)] -110.21 

Log-likelihood at convergence [LL(β)] -93.99 

McFadden ρ2 [1-LL(0)/LL(β)] 0.147 

Number of observations 159 
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Table 2.9. Factors affecting a change in an initial autonomous vehicle adoption likelihood 

opinion from extremely likely. 
 

Factors decreasing the likelihood of an opinion change 

No injury indicator (1 if the respondent has not experienced an injury in a vehicle crash, 0 

otherwise) 

Larger household indicator (1 if respondent with household with 3 or more people; 0 otherwise) 

Lower commute distance indicator (1 if one-way distance for the commute trip is less than 3 

miles; 0 otherwise) 

Recent new-vehicle purchase indicator (1 if the most recently acquired vehicle was a new vehicle; 

0 otherwise) 

Factors increasing the likelihood of an opinion change 

White ethnicity indicator (1 if the respondent identifies as being white, 0 otherwise) 

Higher income indicator (1 if household has an income greater than $100,000/year, 0 otherwise) 

Younger adult indicator (1 if age less than 40 years, 0 otherwise) 
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Table 2.10. Opinion model for respondents with an initial autonomous vehicle adoption likelihood opinion of extremely unlikely. 
 

   Marginal Effect 

Variable 
Estimated 

Parameter 
t-statistic 

Unlikely/ 

Uncertain 

Extremely 

Unlikely 

Unlikely/Uncertain – Base set to zero   

Extremely Unlikely – no change    

Constant 0.284 1.74 - - 

White ethnicity indicator (1 if the respondent identifies as being 

white, 0 otherwise) 

-0.615 -1.84 0.1447 -0.1447 

Retirement indicator (1 if the respondent has retired, 0 otherwise) 0.359 1.50 -0.0845 0.0845 

Vehicle crash indicator (1 if the respondent has ever been 

involved in a vehicle crash, 0 otherwise) 

0.313 1.45 -0.0767 0.0767 

Lower parking time indicator (1 if respondent spends 5 minutes or 

less on average in order to park their vehicle, 0 otherwise) 

-0.769 -1.77 0.1810 -0.1810 

Middle age indicator (1 if age greater than 40 years and less than 

60 years,0 otherwise) 

-0.457 -2.16 0.1171 -0.1171 

Worker indicator (1 if the respondent is a worker, 0 otherwise) 0.703 2.68 -0.1652 0.1152 

Recent vehicle acquisition indicator (1 if the most recently 

acquired vehicle was in the last two years; 0 otherwise) 

-0.367 -1.80 0.0888 -0.0888 

Recent new-vehicle purchase indicator (1 if the most recently 

acquired vehicle was a new vehicle; 0 otherwise) 

-0.744 -1.96 0.1666 -0.1666 

Log-likelihood at zero [LL(0)] -302.21 

Log-likelihood at convergence [LL(β)] -288.85 

McFadden ρ2 [1-LL(0)/LL(β)] 0.046 

Number of observations 436 



 

 

26 

 

Table 2.11. Factors affecting a change in an initial autonomous vehicle adoption likelihood 

opinion from extremely unlikely. 
 

Factors decreasing the likelihood of an opinion change 

Retirement indicator (1 if the respondent has retired, 0 otherwise) 

Vehicle crash indicator (1 if the respondent has ever been involved in a vehicle crash, 0 

otherwise) 

Worker indicator (1 if the respondent is a worker, 0 otherwise) 

Factors increasing the likelihood of an opinion change 

White ethnicity indicator (1 if the respondent identifies as being white, 0 otherwise) 

Lower parking time indicator (1 if respondent spends 5 minutes or less on average in order to 

park their vehicle, 0 otherwise) 

Recent vehicle acquisition indicator (1 if the most recently acquired vehicle was in the last two 

years; 0 otherwise) 

Recent new-vehicle purchase indicator (1 if the most recently acquired vehicle was a new vehicle; 

0 otherwise) 

Middle age indicator (1 if age greater than 40 years and less than 60 years,0 otherwise) 

 

 

unlikely and extremely unlikely and was the base choice and was set to zero in the model 

estimation).  In this case, individuals that changed their opinion from likely to extremely likely may 

have had weaker anchoring effects and/or may have been undertaking confirmatory hypothesis 

testing to solidify their opinion and thus polarize. Those that moved to uncertain, unlikely and 

extremely unlikely would appear to have had relatively weak anchoring effects. 

Table 2.4 presents the results of model estimates and corresponding marginal effects. The 

overall statistical fit of the model was quite reasonable with a McFadden ρ2 of 0.442. Table 2.5 

summarizes the overall influence of explanatory variables based on their marginal effects. In 

looking at the summarized results in Table 2.5, it was found that respondents with white ethnicity, 

higher education levels, lower incomes, those recently leasing a vehicle, and those recently 

purchasing a vehicle were less likely to change their initial opinion after being presented the 

additional informational questions. In contrast, it was found that respondents with higher incomes, 

those living in larger households, and those identifying themselves as single were more likely to 

shift their opinion from likely to extremely likely. It is interesting that the factors found to be 

significant in this model mostly related to socio-demographic variables (education, ethnicity, 

household size, marital status and income) and not to commute-related characteristics (which will 

be shown to play a role in forthcoming model estimations). The notable exception to this was the 

vehicle acquisition variables (leasing and recent purchases) both of which were associated with 

respondents being less likely to change their opinion. These findings underscore the relationship 

between current vehicle ownership patterns and opinions regarding autonomous vehicle adoption, 

as previously found by Menon et al. (2018).  

The finding that respondents that leased vehicles were less likely to change their opinion 

relates to a whole body of literature that shows the characteristics of lessees differ significantly 

from those who finance or purchase vehicles with cash. For example, Mannering et al. (2002) 
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found that individuals who leased had significantly higher credit ratings and were more prone to 

vehicle-upgrading behavior (continually improving the quality and status-value of vehicles they 

acquire in successive acquisitions) relative to individuals who financed or paid cash. This variable 

is likely capturing fundamental vehicle acquisition and behavioral characteristics of lessees that 

spill over into their opinions of autonomous vehicle adoption. And, it is noteworthy that the 

marginal effect of this variable is quite large indicating the lessees have a 0.2124 higher probability 

of remaining likely relative to their non-lessee counterparts, an indication of strong anchoring 

effects. 

 

2.8.2 Respondents with an initial opinion of unlikely 

Of the 279 respondents who have initially indicated they were unlikely to adopt an autonomous 

vehicle, roughly 60% made the same unlikely choice after the informational questions, 22% 

polarized to extremely unlikely, and 19% depolarized (11% to uncertain, 8% to likely, 0% to 

extremely likely). Interestingly, while only 9% of respondents went from likely to extremely likely 

in our previous model estimate, a full 22% went from unlikely to extremely unlikely. This would 

seem to suggest that respondents in the unlikely category had inherently weaker anchoring effects 

and that the body of questions provided between initial and final opinions seem to result in more 

confirmatory bias in this group (which would tend to move them to more extreme positions as they 

reinforce their initial opinions), which results in a polarization to extremely unlikely. Table 2.6 

presents the results of model estimates and corresponding marginal effects (the McFadden ρ2 of 

0.193 suggesting less of an overall fit than for the likely case), and Table 2.7 summarizes the overall 

influence of explanatory variables based on their marginal effects.  

In looking at the summarized results in Table 2.7, it was found that, in contrast to the earlier 

findings in Tables 2.4 and 2.5, many commute-related variables were statistically significant with 

lower commute distance, lower parking times making people less likely to polarize to extremely 

unlikely, and daily travel times exceeding one hour making respondents more likely to polarize to 

a final opinion of extremely unlikely. Having lower commute distances and parking times likely 

reflects more satisfaction with present conditions and thus perhaps more stability in opinions 

relating to possible autonomous vehicle adoption. 

Table 2.6 also shows that younger adults (less than 40 years old) and those from larger 

households were much less likely than others to change their initial unlikely position. The marginal 

effects of these variables show a 0.2483 higher probability of staying in the unlikely category for 

respondents less than 40 and a 0.1691 higher probability of staying in the unlikely category for 

larger households. It would seem that individuals with these characteristics, and an initial unlikely 

opinion, had stronger anchoring effects and thus were less influenced by the additional information 

provided. 

Two variables (incomes exceeding $100,000 and households with 3 or more people) were 

common to models in both Tables 2.4 and 2.6. For respondents with an initial opinion of likely, 

these two variables made them more likely to move to extremely likely suggesting perhaps a 

combination of weaker anchoring effects and confirmation bias which would tend to move them 

to a more extreme position. For respondents with an initial opinion of unlikely, these two variables 

made them less likely to change their opinion, suggesting strong anchoring effects among this 

group. Thus, it is safe to say that these two variables consistently moved respondents to more 

favorable opinions with regard autonomous vehicle adoption. 

As with the initial likely opinion model shown in Table 2.4, it was also found that recent 

vehicle purchases were influential in final opinion formulation. In the unlikely model case, if the 
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most recently purchased vehicle was new (as opposed to pre-owned), individuals were less likely 

to polarize their decision. 

 

2.8.3 Respondents with an initial opinion extremely likely and extremely unlikely 

Of the 159 respondents who initially indicated that they were extremely likely to adopt an 

autonomous vehicle, roughly 75% made the same choice after the informational questions (21% 

moved to likely, 2% to uncertain, 2% to unlikely, and 0% to extremely unlikely). Table 2.8 presents 

the estimation results and Table 2.9 provides a summary of variable effects. 

Table 2.9 shows that respondents that were never injured in a vehicle crash, in households 

with 3 or more family members, having commute distances less than 3 miles, and whose most 

recent vehicle acquisition was new, were more likely to not change their opinion from extremely 

likely, indicating strong anchoring effects. Those respondents who identified as being white, had 

incomes greater than $100,000/year and were less than 40 years old were more likely to become 

less enthusiastic with regard to autonomous vehicle adoption suggesting weaker anchoring effects. 

At the other extreme, of the 436 respondents who initially indicated that they were 

extremely unlikely to adopt an autonomous vehicle, roughly 80% made the same choice after the 

informational questions (14% moved to unlikely, 4% to uncertain, 2% to likely, and 0% to 

extremely unlikely). Table 2.10 presents the estimation results and Table 2.11 provides a summary. 

Table 2.11 shows that respondents who were retired, had never been involved in a vehicle 

crash, and those who were currently working had strong anchoring effects and were less likely to 

change their opinion. Those respondents who identified as being white, spent less than 5 minutes 

parking their vehicle on average, had a vehicle acquisition within the last two years, whose most 

recently acquired vehicle was new, and were 41 to 59 years of age (an age grouping that produced 

the most statistically significant findings) had weaker anchoring effects and were more likely to 

become more enthusiastic with regard to autonomous vehicle adoption. 

Interestingly, for both extremely likely and extremely unlikely models the overall model fit, 

as reflected by the McFadden ρ2’s of 0.146 and 0.046, respectively, were notably less than those 

for the likely and unlikely models. This suggests that variables commonly collected in 

transportation surveys are less likely to explain how individuals with these extreme initial opinions 

respond to information relative to those individuals with less extreme opinions.  

 

2.9. Discussion of Findings 

Table 2.12 presents a summary of all variables found to be significant in at least one of the four 

previously discussed models. This table classifies variables by model into those variables making 

respondents more likely to change their opinion (+), less likely to change their opinion  

(–) or having no statistically significant effect on their opinion-changing probability (ns). 

Table 2.12 shows that there are few if any consistent results in terms of variables that 

increase or decrease the likelihood of changing opinion. Only the lower commute-distance variable 

made change less likely across two or more initial-opinion models. Many other variables were 

significant in only one of the initial-opinion models. Still others (respondents less than 40 years 

old, respondents in household with more than 3 people, respondents whose most recent vehicle 

purchase was new, and respondents facing average parking times of 5 minutes or less) actually 

had opposite effects, increasing the likelihood of opinion changes in some models and decreasing 

it in others. 

The inconsistency of these results is itself an important finding. It suggests that the 

anchoring effects, possible confirmation bias, and the resulting polarization from such bias cannot 
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be consistently explained by traditionally collected variables. In fact, this chapter’s model 

estimates are likely picking up correlations with some underlying psychological variables that truly 

explain the behavioral and psychological processes by which people process information to inform 

solidification or changes in their opinions. This has important implications for transportation 

survey design, particularly when studying topics that are likely to be associated with temporally 

unstable preferences, such as new vehicle technologies.  
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Table 2.12: Summary of changing-opinion model findings. 

 

 

 

Variable 

Initial Autonomous-Vehicle Adoption Opinion* 

Likely Unlikely 
Extremely 

Likely 

Extremely 

Unlikely 

Younger adult indicator (1 if age 

less than 40 years, 0 otherwise) 

ns – + ns 

Middle age indicator (1 if age 

greater than 40 years and less 

than 60 years,0 otherwise) 

ns ns ns + 

White ethnicity indicator (1 if the 

respondent identifies as being 

white, 0 otherwise) 

– ns + + 

Single status (1 if the respondent is 

single, 0 otherwise) 

+ ns ns ns 

Larger household indicator (1 if 

respondent with household with 

3 or more people; 0 otherwise) 

+ - – ns 

Lower income indicator (1 if the 

household has an income less 

than $50,000/year, 0 otherwise) 

– ns ns ns 

Higher income indicator (1 if the 

household has an income greater 

than $100,000/year, 0 otherwise) 

+ – + ns 

Higher education indicator  

(1 if respondent holds a 

bachelor’s degree or above, 0 

otherwise) 

– ns ns ns 

Worker indicator (1 if the 

respondent is a worker, 0 

otherwise) 

ns ns ns – 

Retirement indicator (1 if the 

respondent has retired, 0 

otherwise) 

ns ns ns – 

Recent new-vehicle purchase 

indicator (1 if the most recently 

acquired vehicle was a new 

vehicle; 0 otherwise) 

ns – – + 

Recent vehicle acquisition 

indicator  

(1 if the most recently acquired 

vehicle was in the last two years; 

0 otherwise) 

– ns ns + 

Recent vehicle lease indicator (1 if 

the most recent vehicle 

acquisition was a lease; 0 

otherwise) 

– ns ns ns 
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Lower commute distance indicator  

(1 if one-way distance for the 

commute trip is less than 3 miles; 

0 otherwise) 

ns – – ns 

Lower parking time indicator  

(1 if respondent spends 5 minutes 

or less on average in order to 

park their vehicle, 0 otherwise) 

ns – ns + 

Higher daily travel time indicator  

(1 if respondent travels more than 

60 minutes every day for all their 

trips, 0 otherwise)  

ns + ns ns 

Vehicle crash indicator (1 if the 

respondent has ever been 

involved in a vehicle crash, 0 

otherwise) 

ns ns ns – 

No injury indicator (1 if the 

respondent has not experienced 

an injury in a vehicle crash, 0 

otherwise) 

ns ns – ns 

* “+” is more likely to change opinion, “-” less likely to change opinion, “ns” not a statistically 

significant effect 

 

respondents whose most recent vehicle purchase was new, and respondents facing average parking 

times of 5 minutes or less) actually had opposite effects, increasing the likelihood of opinion 

changes in some models and decreasing it in others. 

The inconsistency of these results is itself an important finding. It suggests that the 

anchoring effects, possible confirmation bias, and the resulting polarization from such bias cannot 

be consistently explained by traditionally collected variables. In fact, this chapter’s model 

estimates are likely picking up correlations with some underlying psychological variables that truly 

explain the behavioral and psychological processes by which people process information to inform 

solidification or changes in their opinions. This has important implications for transportation 

survey design, particularly when studying topics that are likely to be associated with temporally 

unstable preferences, such as new vehicle technologies.  

So, what questions should be asked to understand how people’s opinions may evolve? 

Although the answer to this question is not readily apparent, it seems that a series of questions 

could be developed to get a better sense of how the effects of factors such as anchoring effects, 

confirmatory bias, and other opinion formation/changing factors may generally vary from one 

individual to the next. Developing questions that gather information on how people's attitudes and 

perceptions of previously disruptive technologies (such as smart phones for example) evolved 

could potentially provide explanatory variables that are far better predictors of changing opinions 

than the standard socioeconomic information currently gathered in transportation surveys. Also, it 

may be possible to set up a series of questions that have survey respondents go through an 

experiment within the survey that can be then used to form variables (through cluster analysis or 

latent-variable approaches) that would better capture the process and likelihood of opinion change. 
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2.10. Summary and Conclusions 

Autonomous vehicles arguably represent the most disruptive transportation technology since the 

motorized vehicle itself. Understanding factors that affect potential autonomous-vehicle adoption 

among consumers will be extremely important in forecasting the market penetration of the 

technology and the overall effect that it will have on the transportation system over time. 

The current chapter uses an extensive survey to estimate a statistical model of individuals’ 

initial likelihood of autonomous vehicle adoption, and then estimates a series of statistical models 

to assess how additional information may change this initial opinion. While the estimation findings 

identified explanatory variables that significantly affected opinion-change probabilities, the effect 

of explanatory variables on opinion change was found to vary greatly based on individuals’ initial 

opinions. As discussed in detail previously in this chapter, it is argued that this finding suggests 

that traditional transportation surveys may not be collecting the types of data necessary to fully 

understand how preferences toward new transportation technologies will evolve over time.  

However, it is important to note that the issues discussed in this chapter are really the same 

concerns that the introduction of any new disruptive technology would face. And, past experience 

has shown that forecasting the impact of disruptive technologies, in general, has proven to be a 

challenging task on many levels, with conventional data sources often proving inadequate. 

Autonomous vehicle adoption is not going to be an exception to this, and careful attention needs 

to be given to data collection with a particular emphasis on the opinion-formation concepts 

explored in this chapter. 
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Appendix 2.A. Questions between initial and final autonomous-vehicle adoption opinions 
 

 

1. How likely do you think the following benefits will occur when using autonomous vehicles? 

[response options: extremely unlikely, unlikely, uncertain, likely, extremely likely]  

 Fewer traffic crashes and increased roadway safety  

 Less traffic congestion  

 Less stressful driving experience  

 More productive (than driving) use of travel time  

 Lower car insurance rates  

 Increased fuel efficiency  

 Lower vehicle emissions  

2. How concerned are you about the following issues when using autonomous vehicles?  

[response options: not at all concerned, somewhat concerned, extremely concerned]  

 Safety of the vehicle occupants and other road users such as pedestrians, bicyclists.  

 System/equipment failure or autonomous vehicle system hacking  

 Performance in (or response to) unexpected traffic situations, poor weather conditions (like 

snowstorms) and low visibility/ dark environments  

 Motion sickness  

 Giving up my control of the steering wheel to the vehicle  

 Loss in human driving skill over time  

 Privacy risks from data tracking on my travel locations and speed  

 Difficulty in determining who is liable in the event of a crash  

3. How much do you agree with the following statements regarding Autonomous Vehicles?  

[response options: strongly disagree, disagree, uncertain, agree, strongly agree]  

 Autonomous vehicles would be as safe operating in normal traffic as they would be in dedicated 

autonomous vehicle lanes  

 Autonomous vehicles should be programmed so that they always follow the posted speed limit.  

 With the possibility of sharing autonomous vehicles and other innovative transportation services 

coming up with autonomous vehicles, I may not have to own a car  

 In future, when autonomous vehicles become a common mode of transportation, I would trust an 

autonomous vehicle to safely take my kids to school  

 I believe that a human driver should be able to take over the driving control of the vehicle as 

needed  

4.  Consider a situation where you are driving in mixed traffic (traffic with both human-driven vehicles 

and autonomous vehicles) and answer the following questions.  

[response options: strongly disagree, disagree, uncertain, agree, strongly agree]  

 An autonomous vehicle is in front of my vehicle. I would be comfortable maintaining a shorter 

separation distance between my vehicle and the autonomous vehicle than the distance I would 

typically maintain between my vehicle and a human-driven vehicle.  

 An autonomous vehicle is in front of my vehicle and I want to execute an overtaking maneuver. I 

would be more confident executing the overtaking maneuver than I would be if I was overtaking 

a human-driven vehicle.  

 An autonomous vehicle is next to my vehicle (in the next lane) and I want to execute a lane 

change. I would be more confident executing the lane change than I would be if it was a human 

driven vehicle.  

 An autonomous vehicle is behind my vehicle. I would be less concerned about braking suddenly, 

as I feel that the autonomous vehicle would be capable of stopping in time under that situation.  

 Under heavy traffic situation, I would be more confident cutting in the front of an autonomous 

vehicle than I would be to a human-driven vehicle.  
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Chapter 3: A Statistical Analysis of Bikesharing Use and Its Potential as an Auto-

Trip Substitute 
3.1. Introduction 

The concept of bikesharing has been around since 1960’s, but only recently has it begun to receive 

large-scale acceptance as a viable transportation option (Fishman, 2016; Nikitas, 2018). However, 

the success of bikesharing systems can be highly variable because bikesharing is inherently tied to 

a geographical location that is defined by factors such as weather, urban density, local culture, or 

design, and thus each bikesharing system has a set of unique characteristics. Depending on 

location, bikesharing system could exhibit variable popularity, level of interest, and operational 

features. The level of utilization is generally estimated by trips per day per bike, in order to 

determine the number of bikes required in each system (Fishman, 2016). Smaller networks are at 

an inherent disadvantage relative to their larger counterparts because lower bicycle densities imply 

less convenient for potential users to find bikes. It has been shown that each location and 

bikesharing network attract different types of users, including commuters, students, local residents, 

or tourists (O’Brien et al., 2014). Depending on the trip purpose and type of user, the trip duration 

can vary. However, it has been found that, with the data from Melbourne, Brisbane, Washington, 

D.C., Minnesota and London, the average bikesharing trip lasts between 16 and 22 minutes 

(Fishman et al., 2014). Interestingly, many bikesharing users do not seem to be regular users but 

rather use these networks as a complement to their primary mode of transportation (Fishman, 

2016). Also, the factors determining whether individuals decide to participate in bikesharing can 

vary significantly. If bikesharing is available, different individuals will have different sets of 

constraints that may prevent them from utilizing the system. Because of the wide number of factors 

(environmental or personal) influencing whether someone decides to use bikesharing, and the 

complexities of human decision making, understanding bikesharing use has been challenging.  

In addition, in recent years the impacts of transportation on public health has been the 

subject of multiple research efforts. However, how the health conditions (or perceived health 

conditions) of travelers affect their decisions of travel and mode choice, especially regarding active 

transportation, is not yet fully understood. Past studies targeting cycling behavior indicated that 

physical capability is an implicit constraint in the choice of bicycle use (Stinson and Bhat, 2004; 

Smith and Kauermann, 2011; Ehrgott et al., 2012; Garcıa-Palomares et al., 2012; Larsen et al., 

2013; Habib et al., 2014; Wadud, 2014), although this has often not been considered explicitly 

(Philips et al., 2018). In recognition of the potential issues associated with not explicitly 

considering physical capability, Menghini et al. (2010) suggested the need to investigate the 

heterogeneity of cyclists in more detail. Further, McArdle (2010) pointed out that age, gender, 

body mass index, and levels of physical activity are all known to be key determinants of fitness 

and thus the capability to cycle, and Shaheen (2016) indicated that understanding the physical and 

behavioral casual factors associated bikesharing usage remains a key challenge. Thus, in this 

research, the typical set of socio-demographic variables was expanded with health-related 

variables such as height, weight and self-reported health status. This data expansion was an attempt 

to minimize unobserved heterogeneity and potential omitted-variables bias in statistical-model 

estimation. It was hypothesized that body mass index (BMI) and overall wellbeing will be 

significant factors determining one’s willingness to use an active transportation mode (such as 

bikesharing) on more regular basis, and that these factors will affect their likelihood of using 

bikesharing as a substitute for auto trips. 

This chapter uses survey data gathered with help of CycleHop Bike Share Company as 

well the University of South Florida.  The survey was disseminated through multiple channels 
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such as CycleHop registered users list, University of South Florida mailing list, as well as social 

media. The questionnaires (distributed between February and April of 2018) incorporated a 

number of detailed questions relating to bikesharing, health, and socio-demographics. These 

collected data were then used to estimate two mixed logit models (random parameters logit 

models) addressing the frequency of bikesharing use and mode substitution while incorporating 

health-related factors.  

The remainder of this chapter begins with a literature review that focuses on various 

elements of bikesharing usage and modal substitution, followed by a detailed description of the 

survey, research design, methodological approach, and model estimation results. Finally, the 

chapter concludes with a summary and discussion of key findings.   

 

3.2. Bikesharing as a Sustainable Mode of Transportation 

Because biking does not involve harmful emissions while offering flexibility and convenience, it 

has become a valuable and environmentally friendly alternative to short auto trips in urban areas. 

The National Association of City Transportation Officials (2017) estimated that 25 percent more 

bikesharing trips were taken in 2016 than in 2015, and they also indicated that bikesharing growth 

is likely to continue to increase in future years as more people recognize it as a low cost and health-

inducing transportation option. Other research has found bikesharing to increase mobility, save 

cost, reduce traffic congestion and fuel use, increase use of public transit, environmental awareness 

and economic development as well as improve health (Shaheen et al., 2016). Fishman et al. (2014) 

estimated that there was a significant reduction in motor vehicle use due to the presence of 

bikesharing systems. Their analysis was performed in the cities located in the United States, Great 

Britain, and Australia, and in every one of these cities a decrease in auto usage was found. Lu et 

al. (2018) reported benefits of bikesharing to include reductions in greenhouse gas emissions and 

fuel consumption, increased public transport use, improved accessibility, decreased traffic 

congestion and noise, lower travel cost, and increased physical activity and thus improved health 

and physical fitness. Such results have also been supported by other studies (Shaheen et al., 2010; 

Shaheen et al., 2013; Bauman et al., 2016; Pal and Zhang, 2017). 

Bikesharing has also experienced significant growth in university-campus environments. 

This is because universities tend to have high population densities, large percentages of smart 

phone users, and extensive demands for shorter trips (between buildings on campus and to/from 

nearby student housing), all of which are potentially important ingredients for bikesharing success.  

Indeed, sustainability plans have become a concern in campus design and a bikesharing program 

is often a key element of such plans (Balsas 2003; Norton et al. 2007), because it can reduce traffic 

and parking congestion on and around campuses (Kaplan and Knowles, 2015).  

With regard to the environmental factors, multiple studies have found that they play a 

significant role in willingness to use bikesharing (Nikitas, 2018). Some research revealed that 

proximity to the workplace or home tends to increase the usage of bikesharing systems (Shaheen 

et al., 2011; Molina-Garcia et al., 2015). In other work, Sun et al. (2017) studied the impact of 

environmental factors on bikesharing usage and found that traffic congestion did not influence the 

usage of bikesharing. On the other hand, bus accessibility was found to be positively associated 

with the usage of bikesharing, while metro accessibility was negatively associated with its usage. 

As expected, safety also plays a key role in bikesharing usage, and Sun et al. (2017) found that 

both on-street and off-street violent crimes tended to decrease the usage of bikesharing systems. 

Other studies found high population density, high levels of public transit accessibility, and the 
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presence of upgraded facility types (bicycle lanes or bicycle paths), tended to increase the usage 

of bikesharing systems (Faghih-Imani et al., 2014; El-Assi et al., 2017).  

Although, bikesharing systems in different locations will have different designs, sizes, 

numbers of residents, and types of customers, they all are likely to share similarities with regard 

to user attitudes and perceptions. The difference between the desire to use a bikesharing program 

and their actual use has to do with impediments, which can be self-imposed or based on factors 

that cannot be changed, such as the weather (Kaplan and Knowles, 2015). It should be noted that 

because the data in the current chapter will be drawn from bikesharing registrants in the state of 

Florida (with its highly favorable weather), the possibility to explore some of these impediments 

(such as weather) will be limited. 

 

3.3. Socio-Demographics of Bikesharing Users 

Prior research has provided considerable insight into the relationship between socio-demographic 

characteristics and bikesharing usage. With regard to gender, Pucher et al. (2011) identified that 

about 65% to 90% of trips are done by men in countries where biking did not serve as a primary 

mode of transportation (US, UK, and Australia). In a study performed in London, less than 20% 

of bikesharing trips were made by females (Goodman and Cheshire, 2014). Akar et al. (2013) also 

found that women were less likely to ride a bicycle relative to men.  In Netherlands, in contrast, 

more women than men use bicycles (Harms et al., 2014). 

Where age is concerned, Buck et al. (2013) found that the users of shared-bike systems in 

Washington D.C. were, on average, younger than local cyclists. The average age for local cyclists 

was found to be 42 years old, whereas the average age for annual members of the shared-bike 

system and short-term users was 34 and 35 years old, respectively. In the U.S., Pucher, et al. 

(2011), concluded that the number of 40 to 64-year-old cyclists increased the most of all the age 

groups that they studied, and between 2001 and 2009, cyclists in this age group doubled their share 

of bike trips.  

Ethnicity has also been found to be an important factor determining whether an individual 

uses a bikesharing system. Studies in Washington D.C. and London found that the bikesharing 

population is not representative of the overall population composition of these cities (Buck et al., 

2013; Fishman, 2016). Caucasians were overrepresented in the samples of bikesharing users 

relative to other ethnicities. Similarly, Borecki et al. (2012) found that bikesharing was largely 

undertaken by Caucasians. 

With regard to income, prior studies found that people who use bikesharing had higher 

average income (Woodcock et al., 2014; Fishman et al., 2015; Fishman 2016). And, Shaheen et 

al. (2014) found that bikesharing participants tended to be wealthier. 

Another perspective on analyzing bikesharing adoption was undertaken by Gulsah et al. 

(2013). Their analysis was performed on the Ohio State University campus and was able to reveal 

some of the gender differences, as well as gender-based preferences and attitudes towards 

bikesharing.  Although, the surveyed population stayed in similar environments, women were 

found to feel less safe walking and biking (Gulsah et al., 2013). In other work, traffic, lack of 

awareness of bike lanes, pedestrians, safety and campus design were found to be main 

impediments to bikesharing usage (Kaplan and Knowles, 2015). Similarly, Swiers et al. (2017) 

analyzed the cycling behavior of a university-student population and found that the two primary 

barriers to cycling were weather and safety. 

Stinson and Bhat (2004) found a positive relationship between recreational cycling and 

cycling to commute. Moreover, Xing et al. (2010) found that 90% of those who cycled for 
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transportation were cycling for other purposes as well. This suggests an association in cycling 

behavior and possibly its connection to other modes of shared transportation systems (Wuerzer 

and Mason, 2015).  

There is also an extensive body of literature that links transportation and public health. The 

fact that active transportation modes help fight obesity and improve health has been addressed by 

many. Also, a correlation has been found between being overweight and living in less walkable 

communities (Ewing et al., 2003; Frank et al., 2004; Giles- Corti et al., 2003; Saelens et al., 2003; 

Lopez, 2004). Furthermore, Strum and Cohen (2004) found an association between urban sprawl 

in metropolitan areas and the prevalence of chronic diseases. Active transportation was also shown 

to significantly improve population health in California, with potential decreases in chronic 

diseases (Maizlish et al., 2017).  

Other researchers have analyzed the connection between active transportation, health, and 

the usage of social networking services.  For example, Hong et al. (2018) found that intensive users 

of social networking services were more likely to be obese, and tended to spend less time walking, 

making this group a natural target for interventions designed to increase physical activity.  

Past research has shown that expanding the set of variables could be essential for more 

fully understanding bikesharing behavior and developing strategies for bikesharing 

implementation and adoption. For example, Earl and Lewis (2018) suggested examining the role 

of context in health behavior and emphasized the importance of considering the environment while 

trying to influence health behavior.  

In the current research, in addition to traditional socio-demographic characteristics, travel 

behavior, and travel history variables, the body mass index (BMI) will be considered as an 

explanatory variable. The BMI gives an estimation of excess body weight, which is not a direct 

estimate of body fatness. Nevertheless, some studies have confirmed direct body fat measurements 

do correlate with BMI. Body mass index does have its limitations because of natural variances 

across factors such as age, gender, ethnicity and body composition (BMI does not distinguish 

between excess fat, muscle, water or bone). BMI is non-invasive and easily calculated and, in spite 

of these limitations, it has been widely shown to be a good overall predictor of morbidity, mortality 

and a good assessment of individual’s overall health risks.  

 

3.4. Survey and Research Design 

A web-based survey was designed to collect the data on the bikesharing usage of registered 

bikesharing users.  The survey dissemination took place between February and April of 2018. To 

make sure that a wide variety of demographic groups was reached, multiple distribution channels 

to disseminate the survey were used. CycleHop Bike Share Company, which operates bikesharing 

programs in Tampa, St. Petersburg, Orlando and the University of South Florida (Tampa campus) 

assisted in distributing the survey to its registered users as well as posting it on social media. To 

increase the number of responses, the survey was also sent to the students and faculty of the 

University of South Florida Tampa campus (where one of the bikesharing systems is operating). 

Respondents were asked about their use frequency of bikesharing. To determine the characteristics 

of usage, they were asked how often they used the bikesharing and were provided five possible 

answers; less than once a month, 1 to 3 times per month, 4 to 5 times per month, 6 to 10 times per 

month, and more than 10 times per month. Because the literature review concluded that 

bikesharing users do not generally bikeshare on a regular basis, the survey did not ask about the 

actual number of uses but rather a usage category. Based on the number of observations in each 

category, the data were two groups; one group indicating that they typically use bikesharing less 
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than once a month, and the other group indicating that they typically use bikesharing once a month 

or more. Of the 301 registered bikesharing users, 165 are in the first group and 134 in the second 

group.  

The second question in the survey focused on mode substitution. That is, which mode of 

transportation would the respondent use if bikesharing was not available on a trip that they chose 

to ride a shared bike. Because the substitution of auto trips is critical in terms of environmental 

impacts and relieving traffic congestion in urban areas, the focus was on identifying the 

characteristics of the group who would make their bikesharing trip by auto if bikesharing was not 

available on a trip they chose to use shared bikes. Out of 301 respondents, 140 indicated that they 

would use an automobile in the absence of bikesharing while the remaining 161 would use other 

modes including bus, personal bicycle, or walking.  

The survey covered a variety of socio-demographic and household characteristics, as well 

as travel behavior and travel history characteristics (commute time and distance, traffic-crash 

history, parking time, grocery store proximity, total daily travel time, and so on). Furthermore, 

health-related questions such as weight, height and self-assessed health were added. Given the 

responses, the body mass index (BMI) was calculated using self-reported height and weight. In the 

sample, 175 respondents had a normal BMI (BMI equals to 25 or less), 81 people were classified 

as overweight (BMI between 25 and 30) and 45 respondents were classified as obese (BMI greater 

than 30). The respondents were asked to assess their health on the following scale: extremely bad, 

slightly bad, neither good nor bad, good, extremely good. In the collected sample only 1% reported 

their health as extremely bad, followed 3% as slightly bad, 4% as neither good nor bad, whereas 

61% indicated good health and 31% extremely good. Respondents were also asked if they struggle 

with any illness or health condition on daily bases, and only 34 of the 301 respondents indicated 

such a struggle. Because of the exploratory nature of incorporating the health questions and 

potential issues with confidentiality regarding health information, the type of illness or health 

condition was not specified. 

To get a sense of the respondent sample, Table 3.1 provides summary statistics for select 

respondent attributes. 

 

Table 3.1. Some key survey statistics. 

Respondent Characteristic Mean Standard Deviation 

Age (in years) 37 13.9 

Height (in inches) 67.4 4.37 

Weight (in pounds) 164.4 42.19 

Body Mass Index 25.4 5.34 

Household size (persons) 2.4 1.21 

Household vehicle ownership (vehicles) 1.93 1.12 

Annual household income (in dollars) 82,000 61,000 
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3.5. Methodological Approach 

In this chapter, two questions were considered; whether the survey respondent bikeshares one or 

more times per month (monthly usage), and whether the respondent would make an auto trip if 

bikesharing was not available on a trip they chose to bikeshare. 

The above responses are discrete with a yes/no response indicating either monthly usage 

or auto trip substitution. To arrive at an estimable statistical model for both questions, a function 

that determines the probability of either using one or more times per month or substituting an auto 

trip (1 if the respondent is a monthly bikesharing user/substituting a bikesharing trip by an auto 

trip, 0 if not) was defined as,  

     (3.1) 

where Xn is a vector of explanatory variables that affect the probability of observation n being a 

monthly bikesharing user/substituting a bikesharing trip, β is a vector of estimable parameters, and 

εn is a disturbance term. If the disturbance term are assumed to be generalized extreme-valued 

distributed, a standard binary logit model results as (McFadden, 1981) 

    (3.2) 

where Pn(1) is the probability of the respondent being a monthly user/substituting a bikesharing 

trip, and other variables are as previously defined.  

In model estimation, it is essential to account for the possibility of unobserved 

heterogeneity across respondents. That is, the possibility that different respondents will be affected 

by explanatory variables differently due to unobserved reasons (this is particularly likely with 

analyzing complex human decision-making processes). To account for the possibility of having 

one or more parameter estimate in the vector β vary across respondents, a distribution of these 

parameters can be assumed, and Equation 2 can be rewritten as (Washington et al., 2011) 

      (3.3) 

where f(βi |φi) is the density function of β, φ is a vector of parameters describing the density 

function (mean and variance), and all other terms are as previously defined. The resulting model 

is referred to as random parameters or mixed logit model (see Mannering et al., 2016, for a 

description of alternate methods of accounting for unobserved heterogeneity). 

In the model estimation the possibility for the mean and variance of individual parameters 

to be a function of explanatory variables is also considered giving (Seraneeprakarn et al., 2017; 

Behnood and Mannering, 2017; Mannering, 2018),  

   (3.4) 

where β is the mean parameter estimate, Zn is a vector of explanatory variables that influence the 

mean of βn, Θ is a vector of estimable parameters, Wn is a vector of explanatory variables that 

captures heterogeneity in the standard deviation σn, ωn is the corresponding parameter vector, and 

φn is a randomly distributed term that captures unobserved heterogeneity across respondents. 

Estimation of the random parameters logit model was undertaken by simulated maximum 

likelihood approaches because the required integration of the logit formula over the distribution of 

parameters is not closed form. Prior research has shown that Halton draws can deliver more 

efficient distribution of simulation draws than purely random draws (McFadden and Ruud, 1994; 

Bhat, 2003), and 1,000 Halton draws were used in the estimation process. This is a number that 

has been shown to be more than enough to provide accurate parameter estimates (Bhat, 2003; 
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Milton et al., 2008; Anastasopoulos and Mannering, 2009; Behnood and Mannering, 2016). In this 

chapter, the normal distribution was used for random parameters because it provided the best 

statistical fit for both response models (other distributions such as the log-normal, uniform, and 

exponential were not found to produce statistically better results than the normal distribution). It 

should be noted that additional approaches to address the unobserved heterogeneity have been 

widely applied in accident and injury-severity research (Benhood and Mannering, 2016; Osama 

and Sayed, 2017; Fountas and Anastasopoulos, 2018; Fountas et al., 2018; Marcoux et al., 2018; 

Balusu et al., 2018). 

Marginal effects were calculated to determine the effect that individual explanatory 

variables have on response probabilities. The marginal effect of an explanatory variable gives the 

effect that a one-unit increase in an explanatory variable has on the response probabilities. For 

indicator variables (that assume values of zero or one), marginal effects will give the effect of the 

explanatory variable going from zero to one (Washington et al., 2011).  

 

3.6. Model Estimation Results 

Table 3.2 presents the summary statistics of variables found to be statistically significant in both 

models is presented. Tables 3.3 and Table 3.4 provide the random parameters logit model 

estimation results, including parameter estimates, t-statistics and marginal effects, for the usage of 

bikesharing and auto-mode substitution, respectively. The statistically significant explanatory 

variables in Table 3.3 and Table 3.4 were grouped into three categories; socio-demographic 

factors, travel behavior and history, and health indicators.  

As shown in Tables 3.3 and 3.4, two variables in each model produced a statistically 

significant random parameter. This significance was confirmed by conducting a likelihood ratio 

test to compare the random parameters logit model with fixed parameters model. For both models 

(as shown in Tables 3.3 and 3.4) the test rejected the null hypothesis that fixed and random 

parameters models are the same with over 95% confidence. Thus, only the results of random 

parameters models are presented.  

All explanatory variables are in the “Yes” response functions (use bike sharing once a 

month or more/substituting a bikesharing trip by an auto trip) with the “No” response functions 

(for both models) implicitly set to zero. Also, estimation results indicate that no variables produce 

an estimated parameter with statistically significant heterogeneity in the means and/or variances, 

so Equation 4 reduces to βn = β + φn. 

 

Table 2. Summary statistics for variables included in final model estimations. 

Variable Description  Mean Standard Deviation 

Male indicator (1 if respondent is a male, 0 otherwise) 0.46 0.50 

Caucasian indicator (1 if respondent is Caucasian, 0 otherwise) 0.76 0.43 

Younger millennial indicator (1 if respondent is less than 30 years 

old, 0 otherwise) 

0.53 0.50 

Low annual household income indicator (1 if annual household 

income is less than $50k, 0 otherwise) 

0.35 0.48 

One-person household indicator (1 if respondent lives alone, 0 

otherwise) 

0.24 0.43 
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High annual household income indicator (1 if annual household 

income is more than $200k, 0 otherwise) 

0.12 0.33 

Drive-alone commute indicator (1 if respondent most often 

commutes to work by driving alone, 0 otherwise) 

0.72 0.45 

Lack of commute indicator (1 if respondent does not commute, 0 

otherwise) 

0.06 0.24 

Daily travel time indicator (1 if respondent spends 90 minutes or 

more on total daily travel, 0 otherwise) 

0.08 0.28 

Higher vehicle ownership (1 if household owns or leases three or 

more vehicles, 0 otherwise) 

0.21 0.41 

Low average parking time indicator (1 if respondent spends less 

than 5 minutes total on finding a spot and walking to their 

destination, 0 otherwise) 

0.66 0.47 

Low parking time indicator (1 if respondent spends less than 3 

minutes on finding a parking spot during a normal trip, 0 

otherwise) 

0.79 0.41 

High BMI (body mass index) indicator (1 if respondent has BMI 

above 25, 0 otherwise) 

0.42 0.49 

Obese BMI (body mass index) indicator (1 if respondent has BMI 

above 30, 0 otherwise) 

0.15 0.35 
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Table 3. Random parameters logit model estimation results for the probability of using 

bikesharing one or more times per month (all random parameters are normally distributed). 

 

Variable Description  

Estimated 

Parameter 

 

t-Statistic 

Marginal 

Effect 

Constant 1.16 2.72  

Socio-demographic factors    

Male indicator (1 if respondent is a male, 0 

otherwise) 

0.72 2.77 0.17 

Caucasian indicator (1 if respondent is Caucasian, 0 

otherwise) 

0.50 1.86 0.12 

Low annual household income indicator (1 if annual 

household income is less than $50k, 0 otherwise) 

(Standard deviation of parameter distribution) 

-1.03 (4.60) -3.08 (5.79) -0.25 

One-person household indicator (1 if respondent 

lives alone, 0 otherwise) 

0.53 1.91 0.13 

Travel behavior and history    

Drive-alone commute indicator (1 if respondent 

most often commutes to work by driving alone, 0 

otherwise)  

-1.85 -5.30 -0.45 

Lack of commute indicator (1 if respondent does not 

commute, 0 otherwise)  

-1.51 -2.86 -0.37 

Daily travel time indicator (1 if respondent spends 

90 minutes or more on total daily travel, 0 

otherwise) 

1.19 2.69 0.29 

Higher vehicle ownership (1 if household owns or 

leases three or more vehicles, 0 otherwise) 

-0.64 -2.05 -0.16 

Low average parking time indicator (1 if respondent 

spends less than 5 minutes total on finding a spot 

and walking to their destination, 0 otherwise) 

-0.97 -3.55 -0.24 

Health indicators    

High BMI (body mass index) indicator (1 if 

respondent has BMI above 25, 0 otherwise) 

(Standard deviation of parameter distribution) 

0.30 (1.87) 1.21 (5.08) 0.07 

Number of observations 301   

Log likelihood at zero -232.20   

Log likelihood at convergence -174.22   
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Table 4. Random parameters logit model estimation results for the probability that a bikesharing 

trip would be substituted by an auto trip if bikesharing was not available (all random parameters 

are normally distributed). 

 

Variable Description  

Estimated 

Parameter 

 

t-Statistic 

Marginal 

Effect 

Constant -0.22 -0.59  

Socio-demographic factors    

Male indicator (1 if respondent is male, 0 otherwise) 

(Standard deviation of parameter distribution) 

-0.82 (5.30) -2.68 (5.97) -0.20 

Younger millennial indicator (1 if respondent is less 

than 30 years old, 0 otherwise) 

0.55 2.17 0.13 

High annual household income indicator (1 if annual 

household income is more than $200k, 0 otherwise)  

-0.69 -1.84 -0.17 

Travel behavior and history    

Drive-alone commute indicator (1 if respondent 

most often commutes to work by driving alone, 0 

otherwise)  

1.31 4.63 0.32 

Low parking time indicator (1 if respondent spends 

less than 3 minutes on finding a parking spot during 

a normal trip, 0 otherwise)  

-1.14 -3.59 -0.28 

Higher vehicle ownership (1 if household owns or 

leases three or more vehicles, 0 otherwise) 

-0.53 -1.86 -0.13 

Health indicators    

Obese BMI (body mass index) indicator (1 if 

respondent has BMI above 30, 0 otherwise) 

(Standard deviation of parameter distribution) 

1.40 (2.32) 3.18 (3.29) 0.34 

Number of observations 301   

Log likelihood at zero -208.6   

Log likelihood at convergence -181.6   

 

3.6.1 Model Estimation Results: Regular Use of Bikesharing 

With regard to the socio-demographic factors affecting the probability of registered bikesharing 

users using shared bikes one or more times per month (see Table 3), it was found that male 

respondents were more likely to be regular bikesharers (use it once a month or more). This finding 

aligns with prior research stating that males are more likely to use bikesharing in general (Pucher 

and Buehler, 2012; Goodman and Cheshire, 2014; Akar et al., 2013). The average marginal effect 

indicates that males have a 0.17 higher probability of using shared bikes one or more times per 

month relative to females. 

Respondents who identified themselves as Caucasian were found to be more likely to use 

bikesharing regularly. This result also aligns with prior studies that found Caucasians to be 

overrepresented in samples of bikesharing users relative to other ethnicities (Buck et al., 2013; 

Fishman, 2016; Borecki et al., 2012). Households with an annual income below $50,000 produced 

a normally distributed parameter with a mean of -1.03 and a standard deviation of 4.60. This results 
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in 58.9% of respondents from these households being less likely to use bikesharing one time a 

month or more, and 41.1% respondents being more likely to do so (relative to respondents from 

households making $50,000 or more per year). This finding is important because it shows 

considerable variation among lower-income households. While previous studies found that 

bikesharing membership and usage is usually associated with higher incomes (Fishman et al., 

2015; Fishman 2016; Woodcock et al., 2014; Shaheen, et al., 2014), the variance that was found 

in this effect shows that some respondents in lower-income households have higher bikesharing 

usage than their higher-income counterparts. Thus, bikesharing in lower socioeconomic areas 

could be viable and help improve equality and mobility of the most vulnerable members of the 

society. The variation in this effect across low-income respondents also suggests that there are 

factors relating to low-income respondents that are not captured by income alone (reflected by the 

significant unobserved heterogeneity).  

Respondents from single-person households were found to be more likely to be regular 

users compared to respondents from households with multiple occupants. This finding could be 

related to the presence of children in the household. Intuitively, the presence of children makes it 

harder for an individual to use a bicycle in general. Lack of the appropriate bike seats for small 

children coupled with the vehicle-dominant facilities do not encourage but rather discourage 

bikesharing use among individuals with small children.  It is important to stress the fact that most 

environments and bikesharing systems do not cater to the caregivers of small children, especially 

in a context of equality and equity in transportation.  

With regard to travel behavior and history, the indicator variable for commuters who 

mostly commute by driving alone and those who do not commute at all were found to be less likely 

to bikeshare regularly. For drive-alone commuters, the average marginal effect is quite large (in 

absolute terms) at -0.45 indicting that drive-alone commuters have a 0.45 lower probability of 

bikesharing one or more times per month than non-drive-alone commuters. Additionally, 

respondents who spent more than 90 minutes on total daily travel were found to be more likely to 

use bikesharing once a month or more, again with a relatively large average marginal effect of 

0.29. As might be expected (reflecting the ease of vehicle access and usage), respondents from 

households with higher vehicle ownership (owning or leasing three or more vehicles) as well as 

those whose average parking time for their most regular trip that is less than 5 minutes (including 

finding a spot and walking to the destination) were less likely to use bikesharing one or more times 

a month. 

Finally, respondents with BMI scores over 25 produced a normally distributed parameter 

with a mean 0.30 and a standard deviation of 1.87. This results in 56.4% respondents more likely 

to be a regular bikesharing user and 43.6% of respondents with high BMI being less likely, relative 

to their lower BMI counterparts. The fact that higher BMI respondents have higher usage 

probabilities than some of their lower BMI counterparts shows that bikesharing has some 

significant potential for improving public health. The fact that BMI was found to be significant 

factors in the model again underscores the importance of health-related factors in considering 

active-transportation modes such as bikesharing.  

To assure that the model with inclusion of the high BMI indicator provides statistically 

better fit for the data, a model without this variable was estimated. A likelihood ratio test 

comparing models with and without the BMI variable indicates that the null hypothesis that the 

models are the same can be rejected with 93% confidence. Also, for bikesharing usage there is the 

possibility that BMI could be an endogenous variable. That is, respondents who have high 

bikesharing usage rates may lower their BMI. However, in this case it is unlikely that the 
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bikesharing usage rates are high enough to directly affect BMI, although some caution should still 

be exercised when interpreting our results in this regard. 

 

3.6.2 Model Estimation Results: Auto-Trip Substitution  

With regard to the socio-demographic variables influencing the probability that a bikesharing trip 

would be substituted by an auto trip if bikesharing was not available (see Table 4), it was found 

that people who identified themselves as male produced a normally distributed parameter with a 

mean -0.82 and a standard deviation equal to 5.30. This suggests considerable heterogeneity 

among male respondents. The estimation results imply that 56.1% of males who use bikesharing 

were less likely to make the trip by auto if bikesharing was not available and 43.9% being more 

likely to do so. Once again, gender was found to play a key role in bikesharing-related behavior. 

The findings are generally consistent with prior studies that found males to be more likely to use 

bikesharing in general (Pucher and Buehler, 2012; Goodman and Cheshire, 2014; Akar et al., 

2013), but the considerable heterogeneity among male bikesharing users with regard to their 

substituting a bikesharing trip with an auto trip is an interesting finding. With regard to age, it was 

found that bikesharing respondents who are less than 30 years old were more likely to make an 

auto trip in the absence of bikesharing. It is noteworthy that other researchers have also found age 

to be a significant variable in bikesharing (Pucher, et al., 2011; Buck et al., 2013). Respondents 

with annual household income above $200,000 were found to be less likely to substitute their 

bikesharing trip by an auto trip in the absence of bikesharing. This finding suggests that high-

income households are less likely to increase their auto usage and they are more likely switch to 

another mode of active transportation in the absence of bikesharing. Prior studies also found 

income to be a significant variable while analyzing bikesharing. People who used bikesharing were 

found have higher average income (Woodcock et al., 2014; Fishman et al., 2015; Fishman 2016).  

With regard to travel behavior, respondents who commute by driving alone were found to 

be more likely to substitute their bikesharing trip by an auto trip in the absence of bikesharing. The 

high average marginal effect of this variable indicates that respondents that most often drive alone 

have a 0.32 higher probability of substituting their trip by auto relative to respondents that regularly 

commute by other means. This finding is like that found in the previous bikesharing usage model 

(see Table 3) and reflects the substantial residual effect of the auto culture among bikesharing 

registrants. Respondents who indicated a very low time (less than 3 minutes) to find a parking spot 

during their most regular trip and those whose households owned or leased three more vehicles, 

were found to be less likely to use an auto trip in the absence of bikesharing. 

Regarding the health indicators, respondents who had body mass index in the obese range 

(BMI above 30) produced a normally distributed parameter with a mean 1.40 and a standard 

deviation 2.32. This shows considerable variation across the population with regard to the effect 

of BMI, with 72.7% of people with the obese BMI being more likely to substitute their bikesharing 

trip with an auto trip if bikesharing was not available and 27.3% being less likely.  

Like the previous model on the usage of bikesharing, a separate model without the BMI 

indicator was estimated to underscore the statistical importance of the BMI indicator. A likelihood 

ratio test comparing the models with and without the BMI variable indicated that the hypothesis 

that the two models were equal could be rejected with over 99% confidence. 

 

3.7. Summary and Conclusions 

This research focuses on exploring the determinants of bikesharing use, and its potential as an 

auto-trip substitute, by including self-reported health factors. Both estimated statistical models 
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provide insights into how various survey respondents behave with regard to bikesharing decisions. 

For the frequency-of-use model it was found that Caucasian males, respondents from one-person 

households, and those with high total daily travel times (for all trips) were more likely to be a 

regular user of bikesharing (use it at least once a month). In contrast, respondents who drove alone 

for their commute trip and those who do not commute at all were less likely to bikeshare regularly. 

Also, respondents from households with higher auto ownership (leased or owned at least three 

vehicles) and low average parking time during their most regular trip were less likely to use 

bikesharing at least once a month. Variables that were found to vary across respondents included 

low annual household income (below $50,000) and the high body mass index (BMI) indicators.  

With regard to the auto-mode substitution model (asking if a respondent would make an 

auto trip if bikesharing was not available), younger respondents (under 30 years old) were found 

more likely to make an auto trip in the absence of bikesharing. In contrast, those from households 

with annual household income more than $200,000 were found to be less likely to make an auto 

trip in the absence of bikesharing. Respondents who identified themselves as male were less likely 

to exhibit homogenous behavior and this parameter varied across population. With regard to travel 

behavior, it was found that respondents who commuted by driving alone were more likely to make 

an auto trip if bikesharing was not available. In contrast, those who spent less than 3 minutes to 

find parking for their most regular trip and those whose households owned or leased three or more 

vehicles were less likely to make an auto trip. Obese BMI indicator (BMI above 30) was found to 

vary across population, which reflected the willingness of a percentage of this group being less 

likely to make an auto trip in the absence of bikesharing. This is important because it suggests that 

some people with obese BMI are willing to improve their health through participating in active 

transportation.  

The results of this chapter can potentially help guide and develop our understanding of how 

bikesharing decisions are made. Household composition and vehicle ownership were found to be 

some of the key factors in decisions related to bikesharing behavior. It was also found that the 

lingering effects of auto reliance (reflected by respondents who indicated that most often 

commuted by driving alone) adversely affected the likelihood of a registered bikesharing user 

using bikesharing frequently or substituting their bikesharing trip with a non-auto mode. Finally, 

the model estimations did not show that self-reported health-related factors other than BMI played 

a significant role in bikesharing use and behavior. While the self-reported health question was 

unable to produce statistically significant results, variables derived from actual detailed health data 

may still prove valuable in future research on bikesharing behavior. 
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Chapter 4: A Statistical Assessment of Temporal Instability in the Factors 

Determining Motorcyclist Injury Severities 
4.1. Introduction 

The number of fatalities from motorcycle crashes has increased considerably in recent years, 

reaching 5286 fatalities in 2016 in the U.S. (National Highway Traffic Safety Administration, 

2018). Reasons for this increase can potentially be attributed to a wide variety of factors ranging 

from standard possibilities such as increases in motorcycle registrations and usage, to less well 

understood factors such as changes in macroeconomic conditions that could affect motorcycle risk-

taking behavior (Behnood and Mannering, 2016; Abay and Mannering, 2016), the effect of 

distracted riding, and a variety of behavioral and psychological factors that may affect risk-taking 

behavior among motorcyclists over time (Mannering, 2018). 

The possibility that behavior may be changing fundamentally over time, thus resulting in 

temporal shifts in the factors that determine injury severity, is an issue that has not yet been 

adequately explored in the motorcycle injury-severity context, even though this topic has been a 

focus of considerable attention in recent research on automobile/truck drivers and their resulting 

crash-induced injuries. Because vehicle crashes are relatively rare events, gathering enough 

observations to statistically analyze factors affecting resulting injury severity requires that crash 

observations be gathered over some period of time. However, because driver behavior, risk 

perceptions, and other factors may vary overtime, the time-separation of crashes potentially 

problematic for model estimation.  In fact, past studies have shown that there is ample evidence to 

suggest temporal instability in the effect that explanatory variables have on crash-injury 

probabilities for car/truck drivers even over small periods of time. For example, Malyshkina and 

Mannering (2009) estimated a Markov switching model that showed that injury-severity model 

parameters shifted between two states over time (from week to week). In subsequent work, Xiong 

et al. (2014) also found temporal shifting crash-injury determinants again using a random 

parameters Markov switching approach. Using more traditional statistical approaches that capture 

temporal variations over longer periods of time, Behnood and Mannering (2015) found that the 

factors that determined driver injury severities in single-vehicle automobile/truck crashes in 

Chicago, Illinois varied significantly from year to year using data from 2004 to 2012 inclusive. In 

subsequent work, again using data from Chicago, Behnood and Mannering (2016) found that the 

factors influencing pedestrian injury severities resulting from crashes with automobiles and trucks 

also varied significantly over time, and that these variations corresponded to changes in 

macroeconomic conditions induced by the great recession of 2007 to 2009.  In fact, Mannering 

(2018) argues that there are compelling reasons to believe vehicle-driver behavior will shift over 

time and that these changes will result in fundamental shifts in the factors that determine crash 

injury severities. The reason for these shifts could potentially include temporal changes in driver 

decision-making, in cognitive biases and information gathering, in the effect of macroeconomics 

risk taking, and in the dissonance between driver attitudes and behavior (Mannering, 2018). 

In comparison automobile/truck drivers, one would expect motorcyclists’ behavior to 

exhibit similar temporal instability with regard to factors influencing injury severity. However, 

motorcycling is different in several ways. First, motorcyclists have far less physical protection in 

a crash relative to their automobile/truck counterparts. Thus, even small changes in behavior and/or 

risk taking are more likely to show up in resulting injury severities since protective features that 

may dissipate crash forces before reaching body are far less than those in automobile/trucks. 

Second, motorcycle operation is a much more complex task relative to driving an automobile or 

truck. Motorcycle operation typically requires excellent motor skills and physical coordination 
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because, in addition to steering and acceleration/braking, motorcyclists must allocate braking 

forces between front and rear brakes, manually shift gears (automatic transmissions are far less 

common than in automobile/truck counterparts), and must perform what can be counter-intuitive 

steering tasks13 all while maintaining balance (Rothe and Cooper, 1987). This additional 

complexity will make the effect of behavioral changes over time much more pronounced. Third, 

because of the complexity of the motorcycling task, the effect of experience on reducing crash 

probabilities and resulting injuries is likely to be much more pronounced than it is for 

automobile/truck driving. This implies that the passage of time and subsequent experience gain 

will alter injury-severity probabilities. 

This third point has long been recognized as a serious problem in motorcycle safety. In the 

U.S., to deal with the fact that the complexities of motorcycle operation mean that most riders will 

start off at a very low skill level and with a high risk for serious injury, the Motorcycle Safety 

Foundation offers a Basic Rider Course where the basic skills required to successfully operate 

motorcycle are demonstrated and experienced through classroom and field exercises. Several U.S. 

states require motorcyclist to pass the Basic Rider Course before being licensed to operate a 

motorcycle. For example, in Florida all motorcyclists licensed since July 1, 2008 have been 

required to pass the Motorcycle Safety Foundation’ s 15-hour Basic Rider Course. Over the years, 

the effectiveness of the course has generally been difficult to assess for at least two reasons. First, 

in states where the course is not required to obtain a license, individuals choosing to take the course 

may tend to be less skilled riders. Thus, although the course likely improves their riding abilities, 

it may not improve them to the level of the riders who did not take the course. As a result, the crash 

rates of those taking the course may still be higher than those who did not, making assessment of 

course effectiveness difficult. Savolainen and Mannering (2007a) found this to be the case in their 

study of Indiana motorcyclists. Second, even courses that are mandatory for licensing may tend to 

attract less skilled riders to motorcycling and thus diminish the average skill set of licensed 

motorcyclists overall. In this case, riders who would not normally seek a license may be tempted 

into motorcycling by passing the course which will enable them to achieve some minimum 

competency. But such riders may be inherently more accident prone relative to motorcyclists who 

would have self-selected to become licensed even if a course was not required. 

The intent of the current chapter is to provide some empirical insight into the potential 

temporal instability in the factors affecting motorcycle crash-injury severities. To do this, only 

single-vehicle motorcycle crashes will be considered, thus simplifying the crash to be one of 

mostly rider error.14 For these single-vehicle crashes, possible temporal effects will be considered 

from two perspectives. One is to consider the crash experiences, over time, of riders that passed 

the Basic Rider Course in a single year. For these individuals, their crash risk and resulting 

severities will be affected by their rapid initial accumulation of experience, which will tend to 

make them particularly susceptible to temporal instability in their early years of riding. The second 

perspective is to consider crash experiences of a more general motorcyclist population by looking 

at crashes occurring on roadway curves (referred to as horizontal curves in highway engineering), 

and how the determinants of these crashes will change over time. Roadway curves are a common 

 

 
13 Single track vehicles such as motorcycles and bicycles require riders to initiate a turn toward a given direction by 

momentarily steering counter to the desired direction. Failure of motorcycles to counter steer when a crash is 

imminent has been shown to be a major factor in crash causality (Hurt et al., 1981). 
14 Single-vehicle crashes are quite common and accounted for nearly 50% of the total motorcycle fatalities in the U.S. 

from 2007 to 2016 (National Highway Traffic Safety Administration, 2018). 
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location for single-vehicle motorcycle crashes since riding on a curve involves steering inputs, 

friction assessments, and the stability of the motorcycle in a curve can easily be disrupted by 

improper front/rear brake applications and inappropriate throttle use. 

The chapter begins with a review of relevant literature on motorcycle injury severities and 

the temporal instability of crash-injury severities. This is followed by a description of the 

methodological approach and the data. Finally, estimation results are presented and discussed, and 

a summary of findings and directions for future work are presented. 

 

4.2. Review of Motorcycle Injury-Severity Modeling Methodologies 

Police data of motorcycle crashes typically report rider injury severities as no injury, possible 

injury, evident injury, disabling injury, and fatality. These injury-levels are discrete, necessitating 

the application of discrete-outcome modeling methods when developing statistical models of the 

probabilities of the various injury outcomes. Over the years, a wide variety of discrete-modeling 

approaches have been applied to model injury-outcome probabilities. For example, a traditional 

multinomial logit approach was used by Shankar and Mannering (1996) to investigate injury 

severities resulting from single motorcycle crashes in the State of Washington from 1989 to 1994. 

Accounting for the ordered nature of injury severities (ranging from no injury to fatality), Quddus 

et al. (2002) used ordered probit model to study motorcycle damage severity and injury severity 

resulting from motorcycle crashes in Singapore from 1992 to 2000. Savolainen and Mannering 

(2007b) considered a nested logit approach to study motorcyclists’ injury severities resulting from 

single and multi-vehicle crashes in the state of Indiana from 2003 to 2004. The nested logit 

approach they considered addressed potential limitations of traditional multinomial logit 

approaches, and they found that different statistical forms of the model were valid depending on 

the crash type (the nested logit model was valid for single vehicle crashes whereas the traditional 

multinomial logit form was valid for multivehicle crashes). Regarding the choice of 

methodological approach, Savolainen et al. (2011) provide an extensive discussion of the potential 

limitations of using models that do not account for the ordered nature of injury-severity data 

(multinomial logit, nested logit) and those that do (ordered logit/probit). Models that do not 

account for the ordering of injury outcomes are not considering for information (that the severity 

outcomes are ordered) while those that do account for the ordering typically impose restrictions 

on how explanatory variables influence outcome probabilities.15 The choice of a specific 

methodological approach is often data dependent, and there have been some studies that have 

explored empirical differences in the approaches (Rifaat et al., 2012).  

Many of the previous models that have been used to study motorcycle injury severity have 

restricted the estimated model parameters to be the same across crash observations. However, the 

effects of explanatory variables could vary across the individual crash-injury observations due to 

factors that are not observed by the analyst. This is referred to as unobserved heterogeneity and 

has led to development of a variety of models that allow for the potential of some or all of the 

models’ explanatory variables to vary across individual crash observations or groups of 

observations. These heterogeneity modeling approaches include the mixed logit model, random 

parameters ordered probit, mixed generalized ordered models, latent class models (also referred to 

as finite mixture models), latent class models with random parameters, Markov switching models, 

and bivariate/multivariate models with random parameters. In the context of vehicle injury 

 

 
15 Mannering and Bhat (2014) provide an extensive discussion of alternate methodological approaches and Balusu et 

al. (2018) provide numerical assessments of extensions of the ordered modeling approach. 
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severity, these heterogeneity models have been extensively applied in recent years. For example, 

Milton et al. (2008), Anastasopoulos and Mannering (2011), Morgan and Mannering (2011), Kim 

et al. (2013), Shaheed et al. (2013), Cerwick et al. (2014), Behnood et al. (2014), Behnood and 

Mannering (2016) and Xin et al. (2017) have all estimated random parameter logit models (also 

called mixed logit models) of crash-injury severities.  In other studies, Eluru et al. (2008) and 

Balusu et al. (2018) estimated mixed generalized ordered response models; Shaheed and Gkritza 

(2014), Behnood et al. (2014), Cerwick et al. (2014), Yasmin et al. (2014), and Behnood and 

Mannering (2016) have estimated latent class models; and Abay et al. (2013) and Russo et al. 

(2014) estimated bivariate/multivariate models with random parameters. Recently, several studies 

developed and applied methodological approaches that can potentially capture complex layers of 

unobserved heterogeneity. These include Bayesian random parameters models, random thresholds 

random parameters ordered probability models, correlated random parameters models, grouped 

random parameters models, grouped latent class models with class probability functions and others 

(Alarifi et al., 2017; Sarwar et al., 2017; Fountas and Anastasopoulos, 2017; Fountas et al., 2018a; 

Marcoux et al., 2018; Fountas et al., 2018b; Wali et al., 2018). 

The choice of one heterogeneity-modeling approach over another tends to be highly 

dependent on the data, and the structure of the unobserved heterogeneity within a specific dataset. 

For random parameters models, the analyst is typically required to assume a distribution of 

heterogeneity (normal, lognormal, logistic, etc.), and while a variety of distributional assumptions 

can be tested, the various parametric assumptions may limit how unobserved heterogeneity is 

captured. In contrast, latent class approaches do not require a distributional assumption of the 

heterogeneity, but estimation can be computationally cumbersome, and finding more than two or 

three latent classes is often difficult even though more latent classes may more accurately track the 

unobserved heterogeneity in the data. Approaches that combine both latent class and random 

parameters approaches (latent class models with random parameters within each class) have shown 

promise but have proven to be computationally cumbersome (Xiong and Mannering, 2013). 

To provide more flexibility in capturing unobserved heterogeneity within the context of 

random parameters, recent research has estimated random parameters with heterogeneity in means 

(Behnood and Mannering, 2017), and with heterogeneity in means and variances (Seraneeprakarn 

et al., 2017, Behnood and Mannering, 2017, Waseem et al., 2019). By allowing heterogeneity in 

the means and variances, the required distributional assumption for the random parameters 

approach becomes less of an issue since the parameters can now vary across observations in more 

complex ways. While most applications of this approach have been across traditional motorized 

vehicle types, Waseem et al. (2019) have successfully applied it in the context of motorcycle injury 

severities. 

For reference, Table 4.1 provides a summary of methodological approaches that have been 

previously used in motorcycle injury-severity research. 

 

4.3. General Findings of Previous Motorcycle Injury-Severity Studies 

Table 4.2 provides a summary of variables found to significantly influence motorcycle rider-injury 

severities in previous studies. The table groups variables into the following broad categories; 

motorcyclist characteristics, motorcycle characteristics, roadway characteristics, roadway and 

environmental conditions, and other variables. Motorcyclist characteristics seek to capture the 

effects that risk-taking tendencies and physiological characteristics of the rider may have on 

resulting injury severity. Examples of variables found to significantly influence injury severities 
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in past studies include rider age, gender, and alcohol consumption. Motorcycle 

 

Table 1. Summary of previous methodological approaches used in the study of motorcyclist 

injury severities. 

Methodological Approach Previous Research 

Binary logit model Pai (2009) 

Ordered logit/probit model Quddus et al. (2002); Pai and Saleh (2007); Pai and Saleh 

(2008); Rifaat et al. (2012); Chung et al. (2014); Wang 

et al. (2014) 

Mixed ordered logit model Cunto and Ferreira (2017); Chang et al. (2016) 

Generalized ordered 

logit/outcome model 

Rifaat et al. (2012); Wang et al. (2014) 

Heterogeneous outcome model Rifaat et al. (2012), Wang et al. (2014) 

Partially constrained generalized 

logit model 

Rifaat et al. (2012) 

Empirical Bayesian method De Lapparent (2006) 

Multinomial logit model Shankar and Mannering (1996); Savolainen and 

Mannering (2007); Geedipally et al. (2011); Schneider 

and Savolainen (2011); Jung et al. (2013) 

Nested logit model Savolainen and Mannering (2007) 

Latent class multinomial logit 

model 

Shaheed and Gkritza (2014) 

Mixed (random parameters) logit 

model 

Shaheed et al. (2013); Xin et al. (2017) 

Mixed (random parameters) logit 

model with heterogeneity in 

means and variances 

Waseem et al. (2019) 
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Table 4.2. Summary of variables found to be statistically significant in past motorcycle injury-

severity studies. 

Variables  Previous Research 

Motorcyclist 

characteristics 

 

Age Likelihood of fatality and incapacitating injury in motorcycle crashes increases 

with increasing in age (Shankar and Mannering, 1996; De Lapparent, 2006; Pai 

and Saleh, 2007; Pai and Saleh, 2008; Pai, 2009; Savolainen and Mannering, 

2007b; Schneider and Savolainen, 2011; Cunto and Ferreira, 2016) 

Older riders (generally more than 50 years old) have a higher likelihood of fatal 

and incapacitating injury in motorcycle crashes (Quddus et al., 2002; 

Geedipally et al., 2011; Wang et al. 2014; Xin et al., 2017) 

Younger riders (generally less than 25 years old have a higher likelihood of 

slight injury or no injury in motorcycle crashes (Geedipally et al., 2011, 

Shaheed and Gkritza, 2014; Wang et al. 2014; Xin et al., 2017). 

Gender Male riders have a higher likelihood of fatal and incapacitating injury in 

motorcycle crashes (Pai and Saleh, 2008; Wang et al. 2014; Shaheed and 

Gkritza, 2014). 

Male riders decrease the probability of severe injury in motorcycle crashes (Xin 

et al., 2017). 

Female riders have a higher likelihood of fatal injury and have a higher 

likelihood of incapacitating injury in motorcycle crashes (Geedipally et al., 

2011; Jung et al., 2013; Shaheed et al., 2013). 

Female riders have a lower likelihood of non-incapacitating injury and possible 

injury in motorcycle crashes (De Lapparent, 2006; Savolainen and Mannering, 

2007b; Schneider and Savolainen, 2011; Rifaat et al., 2012). 

Alcohol Alcohol-impaired riding increases the probability of severe and minor injury in 

motorcycle crashes (Shankar and Mannering, 1996; Savolainen and Mannering, 

2007b; Geedipally et al., 2011; Rifaat et al., 2012; Schneider and Savolainen, 

2011; Shaheed and Gkritza, 2014; Jung et al., 2013; Chung et al., 2014; Xin et 

al., 2017). 

Motorcycle characteristics 
 

Engine size Motorcycles with a larger engine sizes are associated with a higher likelihood 

of injury severity in motorcycle crashes (Quddus et al., 2002; De Lapparent, 

2006; Pai and Saleh, 2007; Pai and Saleh, 2008; Pai, 2009; Waseem et al., 

2019).  

Motorcycle type Riders on sport bikes are more likely to have non-incapacitating injuries in 

motorcycle crashes (Savolainen and Mannering, 2007b).  
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Rider actions 
 

Speeding Speeding increases the injury severity in motorcycle crashes (Shankar and 

Mannering, 1996; Savolainen and Mannering, 2007b; Pai and Saleh, 2008; 

Rifaat et al., 2012; Jung et al., 2013; Shaheed and Gkritza, 2014; Wang et al., 

2014; Xin et al., 2017). 

Improper driving or action Improper driving or action decrease the likelihood of severe injury in 

motorcycle crashes (Xin et al., 2017) 

 

Improper weaving through traffic increases the likelihood of severe injury in 

motorcycle crashes (Chung et al., 2014). 

Roadway characteristics 
 

Horizontal curve  Presence of horizontal curves tends to increase injury severity in motorcycle 

crashes (Savolainen and Mannering, 2007b; Geedipally et al., 2011; Schneider 

and Savolainen, 2011). 

Increasing the curve radius is more likely to decrease injury severity in 

motorcycle crashes (Wang et al., 2014).  

Rural road Rural roads tend to increase the probability of fatal and incapacitating injury in 

motorcycle crashes (Shaheed and Gkritza, 2014). 

Intersection  Motorcycle crashes influenced by intersections experience a lower probability 

of fatal, incapacitating, and non-incapacitating injury (Savolainen and 

Mannering, 2007b; Geedipally et al., 2011; Schneider and Savolainen, 2011). 

Pavement surface 

condition 

Good pavement-surface conditions increase the probability of fatal, 

incapacitating, and non-incapacitating injury in motorcycle crashes (Geedipally 

et al., 2011). 

Poor Pavement condition decreases the likelihood of severe injury in 

motorcycle crashes (Xin et al., 2017). 

Pavement roughness The likelihood of severe injuries in motorcycle crashes decreases as pavement 

roughness index increases (Xin et al., 2017). 

Pavement friction Roads with larger friction skid test numbers are associated with a higher 

probability of having a severe injury in motorcycle crashes (Xin et al., 2017). 

Posted speed limit Higher speed limits increase injury severity in motorcycle crashes (Shankar and 

Mannering, 1996; Pai and Saleh, 2007; Savolainen and Mannering, 2007b; 

Schneider and Savolainen, 2011; Shaheed et al., 2013; Shaheed and Gkritza, 

2014; Waseem et al., 2019). 

Vegetation in median Roads with vegetation in median tend to increase the likelihood of injury 

severity in motorcycle crashes (Xin et al., 2017). 
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Roadway access control When roads have full or partial access control, the likelihood of severe injuries 

in motorcycle crashes decreases (Xin et al., 2017). 

Paved shoulder Roads with paved shoulders tend to increase the probability of having severe 

injuries in motorcycle crashes (Xin et al., 2017). 

Roadway and 

environmental conditions 

 

Road surface condition  Wet roadway surfaces tend to increase the likelihood of no injury in motorcycle 

crashes (Shankar and Mannering, 1996; Quddus et al., 2002; Savolainen and 

Mannering, 2007b; Jung et al., 2013).  

Dry pavement has been associated with a higher likelihood of fatality in 

motorcycle crashes (Shaheed et al., 2013; Shaheed and Gkritza, 2014; Xin et 

al., 2017). 

Weather Adverse weather (rain, fog, snow, etc.) tends to increase the likelihood of minor 

injury and no injury in motorcycle crashes (Schneider and Savolainen, 2011). 

Dry weather tends to increase the likelihood of severe injury and fatal injury in 

motorcycle crashes (De Lapparent, 2006; Waseem et al., 2019). 

Lighting  Daylight tends to increase injury severity in motorcycle crashes (Schneider and 

Savolainen, 2011).  

Daylight tends to decrease the likelihood of fatality in motorcycle crashes 

(Shaheed et al., 2013; Wang et al., 2014; Cunto and Ferreira, 2016; Chang et 

al., 2016).  

Darkness tends to increase the probability of no injury in motorcycle crashes 

(Shaheed and Gkritza, 2014). 

Darkness tends to increase likelihood of fatality and incapacitating injury in 

motorcycle crashes (De Lapparent, 2006; Savolainen and Mannering, 2007b; 

Pai and Saleh, 2007; Geedipally et al., 2011; Rifaat et al., 2012; Jung et al., 

2013; Shaheed et al., 2013; Chung et al.,2014; Xin et al., 2017).  

Darkness with streetlights increases the likelihood of severe injury in 

motorcycle crashes (Xin et al., 2017). 
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Other variables 
 

Hit fixed object  Fixed-object collisions increase the likelihood of fatality and incapacitating 

injury in motorcycle crashes (Shankar and Mannering, 1996; Quddus et al., 

2002; Savolainen and Mannering, 2007b; Schneider and Savolainen, 2011; Jung 

et al., 2013; Shaheed and Gkritza, 2014; Xin et al., 2017).  

Ejection  Rider ejection during a motorcycle crash increases the likelihood of severe 

injury in motorcycle crashes (Shankar and Mannering, 1996; Jung et al., 2013). 

Helmet use Wearing a safety helmet tends to decrease likelihood of fatal injury and 

incapacitating injury in motorcycle crashes (De Lapparent, 2006; Savolainen 

and Mannering, 2007b; Geedipally et al., 2011; Schneider and Savolainen, 

2011; Jung et al., 2013; Shaheed et al., 2013; Shaheed and Gkritza, 2014; Wang 

et al., 2014; Cunto and Ferreira, 2016; Chang et al., 2016; Xin et al., 2017). 

Day of week  Motorcycle crashes on weekends tend to cause more severe injuries (Pai and 

Saleh, 2007; Jung et al., 2013; Shaheed and Gkritza, 2014; Cunto and Ferreira, 

2016; Xin et al., 2017). 

Time of day  Riding in early morning hours increases the probability of fatality and 

incapacitating injury in motorcycle crashes (Quddus et al., 2002; Pai and Saleh, 

2007; Pai and Saleh, 2008; Pai, 2009). 

Passenger Presence  Passenger presence increases the likelihood of fatal and incapacitating injury in 

motorcycle crashes (Quddus et al., 2002).  

Passenger presence increases the likelihood of non-incapacitating injury in 

motorcycle crashes (Savolainen and Mannering, 2007b). 

Passenger presence increases the likelihood of property damage only in 

motorcycle crashes (Schneider and Savolainen, 2011). 

 

characteristics seek to capture riders’ risk-taking tendencies (with riskier riders being attracted to 

larger displacement engines and performance-oriented sport bike models) as well as the 

braking/crash avoidance capability of the motorcycle (with weight and braking performance being 

correlated with engine displacement). Rider actions such as speeding and improper driving act as 

proxies for the amount of energy that must be absorbed by the body during a crash. Roadway 

characteristics seek to identify areas where required rider inputs for roadway navigation could 

affect resulting injury severities, or riders may be altering their behavior to compensate for 

potentially dangerous conditions. These characteristics include the presence of a horizontal curve, 

riding on a rural road or intersection, pavement surface condition and roughness, pavement 

friction, posted speed limit, vegetation in the median, roadway access control, and the presence of 

paved shoulders. Roadway and environmental conditions attempt to capture the effects of road 

surface condition (dry or wet), environmental conditions (rain, fog, snow, etc.), and lighting on 

rider behavior before and during the crash. In adverse road and weather conditions, and in 

darkness, riders may tend to compensate by riding more cautiously. Thus, in the event of a crash, 

the likelihood of severe injury may be reduced if they overcompensate for these conditions.  
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Finally, other variables (see Table 4.2), seek to capture a wide variety of effects on 

motorcycle-injury severity. In this category, variables such as hitting a fixed object and being 

ejected from the motorcycle act as proxies for the amount of energy that will be transmitted to the 

body during the crash. Helmet use captures the protection afforded to the head during the crash 

but may also be capturing the risk tendencies of the riders in states where helmet use is not 

mandatory. The day of the week and time of the day capture ambient behaviors and traffic 

conditions that may be encountered during riding, which would affect speed selection and other 

factors that may influence injury severities. Passenger presence can affect injury severities by 

influencing rider behavior and risk taking and can alter braking distances because the weight 

distribution of the motorcycle is significantly altered when a passenger is present.  

As shown in Table 4.2, while there is broad agreement among the findings of previous 

motorcycle injury severity studies in terms of the direction of the effect of explanatory variables, 

there are important exceptions.  For example, regarding gender, some studies have found male 

riders to have a higher likelihood of severe injuries and other studies have found female riders to 

have a higher likelihood of severe injuries. And, a more detailed look at the findings of studies 

show that the magnitude of variables, in terms of their influence on injury severity, does vary even 

though the general direction of the influence may not. 

There are several explanations for the observed disparity of findings across past studies. 

First, as shown in Table 4.1, past studies have used a wide variety of methodological approaches. 

These approaches can give at least slightly different results because of the various distributional 

assumptions that are made, and some of the approaches capture the effects of unobserved 

heterogeneity and others do not. Second, the various studies have had access to varying amount of 

data, with some studies having more explanatory variables than others. Studies that have had 

access to fewer explanatory variables could suffer from an omitted variables bias that could affect 

the magnitude of explanatory variable effects as well as the direction of their influence. While 

addressing the omitted variable-bias issue as unobserved heterogeneity can provide some relief 

from this, it is not a substitute for having more complete data (Mannering et al., 2016). Third, these 

studies were conducted at various locations and it is not clear that the effects of explanatory 

variables on motorcyclist injury severities will be the same from one study are to the next. The 

fourth and final point is that these studies have been conducted at different points in time, which 

could affect the direction and magnitude of their findings. In fact, there is ample empirical evidence 

from research on car/truck injury severities to suggest that the effect of explanatory variables on 

injury severities may change even over relatively small periods of time (a year or less) at the same 

location. As previously mentioned in the introduction, this fourth point will be a primary emphasis 

in the forthcoming empirical analysis. 

 

4.4. Methodological Approach 

In the forthcoming empirical analysis, motorcyclist-injury severities, in single-vehicle motorcycle 

crashes, are studied by considering three discrete motorcyclist-injury severity outcomes; no visible 

injury (property damage only and possible injury), minor injury (non-incapacitating injury), and 

severe injury (incapacitating injury and fatal). As discussed above, a wide variety of 

methodological approaches have been used to study crash-injury severities. In this chapter, a 

random parameters multinomial logit approach, with heterogeneity in means and variances, is 

applied to study the temporal stability of factors affecting motorcyclist injury severities in single-

vehicle motorcycle crashes. Recent empirical work has shown this methodological approach to be 
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among the most flexible in injury-severity modeling in terms of its ability to capture unobserved 

heterogeneity (Mannering et al., 2016).  

To begin, a function that determines the probability of motorcyclist-injury outcomes 

(Washington et al, 2011) is defined as; 

kn k kn knS =  + X        (4.1) 

where Skn is a function determining the probability of motorcyclist injury-severity category k in 

crash n, Xkn is a vector of explanatory variables that affect motorcyclist injury-severity level k, βk 

is a vector of estimable parameters, and εkn is the error term which is assumed to be generalized 

extreme value distributed. With this, a random parameters multinomial logit model of injury 

severity probabilities can be derived as (McFadden and Train, 2000; Washington et al, 2011), 

      ( )
( )

( )
( )k kn

n

k kn

K

EXP
P k f | d

EXP


=  

β X
β φ β

β X
,   (4.2) 

where Pn(k) is the probability that crash n results in injury category k, f(β | φ) is the density function 

of β with φ referring to a vector of parameters of the density function (mean and variance), and all 

other terms are as previously defined. Unobserved heterogeneity in the means and variances of 

random parameters is accounted for by allowing βkn to be a vector of estimable parameters that 

varies across crashes defined as (Seraneeprakarn et al., 2017; Behnood and Mannering, 2017; 

Waseem et al., 2019) 

( )kn k kn kn kn kn kn kn 
 +  EXP=   +  β Z ω W ,   (4.3) 

where βk is the mean parameter estimate across all crashes, Zkn is a vector of explanatory variables 

that captures heterogeneity in the mean that affect motorcyclist injury-severity level k, Θkn is a 

corresponding vector of estimable parameters, Wkn is a vector of explanatory variables that 

captures heterogeneity in the standard deviation σkn with corresponding parameter vector ωkn, and 

vkn is a disturbance term. 

With regard to f(β | φ) in equation 4.2, numerous density functions can be specified, but 

our forthcoming empirical analysis will show that none were found to be statistically superior to 

the normal distribution, so this will be used in all forthcoming empirical analyses (this finding is 

consistent with past work including Milton et al., 2008; Moore et al., 2011; Shaheed et al., 2013). 

The models were estimated by simulated maximum likelihood with 1,000 Halton draws 

(McFadden and Train, 2000; Washington et al., 2011). To assist in the interpretation of the 

findings, marginal effects were also computed to capture the effect that a one-unit change in any 

specific explanatory variable has on the probability of an injury-severity outcome. The values of 

the corresponding marginal effects were calculated for each observation and were averaged over 

the population of observations.  

 

4.5. Empirical Setting 

Data for this chapter were gathered from the state of Florida, which offers near ideal conditions 

for motorcycle riding year-round,16 and has experienced strong growth in motorcycling, with the 

number of registered motorcycles in the state nearly doubling since 2005, reaching nearly 600,000 

in 2017 (Insurance Institute for Highway Safety, 2017). As previously discussed, two different 

datasets for single-vehicle motorcycle crashes are used. The first source is based on a sample of 

 

 
16 Unlike many traditional transportation modes, motorcycling is highly sensitive to weather making riding in many of 

the northern U.S. states unlikely for several of the winter months. 
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motorcyclists that passed the Florida Rider Training Program in the 2012 calendar year. The 

Florida Rider Training Program that offers the Motorcycle Safety Foundation’s Basic Rider 

Course which is required to complete in order to obtain a motorcycle-only license or motorcycle-

also endorsement (Florida Highway Safety and Motor Vehicles, 2018). The course is designed for 

beginning riders of all ages and seeks to teach course participants the essential mental and physical 

skills needed for safe motorcycle operations. The course offers from 8 to 10 hours classroom-style 

instruction on the motorcycle safety fundamentals and 10 hours of motorcycle-riding training. 

More than 8 million motorcyclists have graduated from basic rider course since 1974 in the United 

States (Motorcycle Safety Foundation, 2016). Using 2012 motorcyclists who graduated from the 

basic rider course in the state of Florida in 2012, graduate’s information was linked to Florida 

police crash database from 2012 to 2016 to determine the number of 2012 Basic Rider Course 

graduates who had single-vehicle motorcycle crashes during this time period. Detailed information 

on a total 1,058 single-vehicle motorcycle police-reported crashes were obtained. For these riders 

specifically, the available crash data provide comprehensive information on time and location, 

motorcycle characteristics (such as motorcycle make, model year of the motorcycle, and the type 

of the motorcycle), rider attributes (such as age, gender, ethnicity, and if under the influence 

alcohol or drug), roadway conditions (such as traffic controls, obstacles on the road, and speed 

limits), roadway and environmental conditions (such as light and road surface conditions), and 

crash attributes (such as manner of crash and events contributing to crash). 

The second dataset focuses exclusively on single-vehicle motorcycle crashes that occur on 

roadway curves (horizontal curves). These data include all motorcyclists (not just those who 

passed the Basic Riding Course and obtained their license in 2012). A total of 8,579 horizontal 

curves (with a 300-ft buffer at each end were identified) were identified for observation on the 

basis there being detailed roadway information available (horizontal curves that were influenced 

by signalized intersections were excluded from the dataset). On these identified curves, a total of 

2,430 single-vehicle motorcycle crashes were observed between 2005 and 2015. Roadway 

geometrics, traffic characteristics, and pavement information for each curve were compiled from 

the roadway characteristics inventory database. Individual crashes were then matched to the 

Florida police-reported accident data that includes characteristics of crash, rider, and motorcycle.  

As mentioned in the introduction of this chapter, these two databases have the potential to 

provide interesting temporal perspective. The new-rider data has the potential to capture the 

change in accident risk over time as riders accumulate experience, as well as general changes in 

risk that may vary over time. The horizontal-curve data can capture general changes in risk over 

time; changes that will likely be most noticeable on horizontal curves which can present a 

challenge for motorcycles as previously discussed. 

 

4.6. Temporal Stability Tests 

Attention is directed first to the analysis of the Florida new-rider data.  With crash data covering 

2012 to 2016 for motorcyclists initially licensed in the 2012 calendar year, some initial 

observations of the 1,058 police-reported crashes that these motorcyclists incurred over this period 

suggested a general reduction in the number of crashes over time. For example, the number of 

crashes in 2014 was roughly 50% less than the number of crashes in 2013 (the first full year of 

licensure for everyone in the sample). It is speculated that this decrease may be largely due to the 

effect of experience reducing crash probabilities, and one would expect a similar effect on resulting 
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crash severities.17 After extensive empirical testing for possible temporal instability over all time 

periods, it was found that splitting the data into a 2012-13 beginning or learning period, and a 

2014-16 experienced period, provided the only statistically significant temporal separation. 

To statistically show that motorcyclist-injury severity models are significantly different 

across these specified time periods, two likelihood tests were conducted to compare learning 

(2012-13) and experienced (2014-16) time periods. The test statistic is written as (see Washington 

et al., 2011), 

( ) ( )
2 1 1

2 2 t t tX LL LL = − −
 

β β     (4.5) 

where subscripting t1 refers to the learning time period (2012-13) and subscripting t2 is the 

experienced time period (2014-16), ( )
2 1t tLL β  is the log-likelihood at convergence of a model 

containing converged parameters based on using time-period t2's data, while using data from time-

period t1, and ( )
1t

LL β  is the log-likelihood at convergence of the model using time-period t1's data 

(with parameters no longer restricted to being time-period t2's converged parameters as is the case 

for ( )
2 1t tLL β ). This test was also reversed such that time-period t1 above becomes time period t2 

and time period t2 above becomes subset t1 (thus giving two test results for the time-period 

comparisons). The resulting value X2 is χ2 distribution (with degrees of freedom equal to the 

number of estimated parameters) and can be used to determine the confidence level at which the 

null hypothesis that the parameters are equal in the two periods can be rejected. The test results 

show that using time period 2’s converged parameters with time period 1’s data, and comparing 

this to a converged model from time period 1 using variables in time-period 2’s model but no 

longer constraining the parameters to be restricted to time period 2’s converged parameters gives 

a χ2 statistic of 52.01 with 13 degrees of freedom. This suggests we are more than 99.99% confident 

that the hypothesis that learning and experienced tome periods are the same can be rejected. 

Reversing this (using time period 1’s converged parameters with time period 2’s data, and 

comparing this to a converged model from time period 2 using variables in time-period 1’s model 

but no longer constraining the parameters to be restricted to time period 1’s converged parameters), 

gives a χ2 statistic of 41.61 with 14 degrees of freedom, meaning that the null hypothesis that the 

two time periods are the same can be rejected with more than 99.99% confidence. 

This result provides substantial evidence that the motorcyclist-injury severity models 

developed using the new-rider crash data are not temporally stable over the time periods (a more 

detailed discussion of individual variable findings will be provided later). The significant 

difference between learning and experienced models suggest that the effect of explanatory 

variables on injury-severity outcomes have shifted over the time. This shift could be due to a 

combination of riders acquiring motorcycle skills over time as well as general temporal shift that 

may have occurred during this time period. 

To get a sense of the general temporal shifts that might be occurring, the 2005 to 2015 

Florida horizontal curves data can provide some insight. Interestingly, this 2005-15 data collection 

period includes the great recession period that has been shown previously to be temporally unstable 

with regard to pedestrian injury-severities resulting from motor-vehicle crashes (Behnood and 

Mannering, 2016). In their work, Behnood and Mannering (2016) found significant temporal 

 

 
17 In comparing the aggregate number of crashes of these data with the second horizontal curve dataset, it is noted that 

the number of observed crashes on horizontal curves actually declined by 15% from 2013 to 2014. 
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instability that they argue resulted from the influence of economic recession as well as a long-term 

evolution of the influence of factors affecting pedestrian-injury severities resulting from road 

crashes. Using crash data from 2005 to 2011, they found statistical differences in three time 

periods; pre-recession, recession, and post-recession. Their pre-recession-period model was 

developed by using the collected data from 2005 and 2006. The year of 2007 was assumed to be 

the transition year between the pre-recession period and recession period and was excluded from 

the analysis. Their recession-period model was estimated with data from 2008 and 2009. The year 

2010 was assumed to be a transition year between the recession period and post-recession period 

and was excluded from the analysis, and their post-recession-period model was developed by using 

the collected data in the year 2011.  

Following these earlier findings, and after extensive statistical testing of other time periods, 

the random parameters approach with heterogeneity in means and variances was applied using 

data from 2005 and 2006, 2008 and 2009, and 2011 (consistent with Behnood and Mannering’s 

findings). Because the data available in the current chapter goes beyond the time periods of data 

available to Behnood and Mannering (2016), the empirical analysis found further statistically 

significant differences between the years 2012 and 2013 and the years 2014 and 2015. 

To statistically show that motorcyclist-injury severity models are significantly different 

across these specified time periods, a series of likelihood tests were conducted. As before with the 

new-rider data, likelihood ratio tests were applied to compare time-period models to determine if 

parameter estimates were stable between these periods. Equation 4.5 is applied more generally in 

comparing all time periods with, ( )
2 1t tLL β  is the log-likelihood at convergence of a model 

containing converged parameters based on using time-period t2's data, while using data from time-

period t1, and ( )
1t

LL β  is the log-likelihood at convergence of the model using time-period t1's data 

(with parameters no longer restricted to being time-period t2's converged parameters as is the case 

for ( )
2 1t tLL β ). This test was also reversed such that time-period t1 above becomes time period t2 

and time period t2 above becomes subset t1 (thus giving two test results for each pair of time-period 

comparisons). Again, the resulting value X2 in Equation 4.5 is χ2 distributed and can be used to 

determine the confidence level at which the null hypothesis that the parameters are equal in the 

two periods can be rejected.  

Table 4.3 presents the results of likelihood ratio tests conducted based on Equation 4.5. 

This table shows that the null hypotheses that time periods are the same can be rejected with very 

high confidence, suggesting statistically significant temporal instability. The significant difference 

between the 2012-13 and the 2014-15 models is consistent with the previous finding of the new-

rider data, suggesting that temporal instability resulting from improvement in rider skills may be 

confounded by general changes in the effect that explanatory variables have on resulting injury 

severities.18 

 

 

 
18 Although the new-rider data ends in 2016 and the horizontal curve data ends in 2015, the new-rider data did not find 

temporal instability over the 2014-16 time period, so we choose to include the 2016 new-rider to improve model 

estimates (since the estimator is consistent, more observations will reduce the standard errors of parameter 

estimates). 
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Table 4.3. Likelihood ratio test results between different time periods based on random 

parameters approaches with heterogeneity in means and variances of Florida horizontal curves 

crash data (χ2 values with degrees of freedom in parenthesis and confidence level in brackets). 

 

 

t1 (Equation 5) 

t2 (Equation 5) 

2005-2006 2008-2009 2011 2012-2013 2014-2015 

2005-2006 - 35.78 (13) 

[> 99.94%] 

111.74 (12) 

[> 99.99%] 

34.61 (14) 

[> 99.83%] 

39.49 (13) 

[> 99.98%] 

2008-2009 18.65 (10) 

[> 95.51%] 

- 128.52 (12) 

[> 99.99%] 

74.23 (14) 

[> 99.99%] 

44.52 (13) 

[> 99.99%] 

2011 16.59 (10) 

[> 91.61%] 

26.42 (13) 

[> 98.51%] 

- 16.53 (14) 

[> 71.79%] 

32.24 (13) 

[> 99.78%] 

2012-2013 43.89 (10) 

[> 99.99%] 

33.22 (13) 

[> 99.85%] 

117.15 (12) 

[> 99.99%] 

- 58.12 (13) 

[> 99.99%] 

2014-2015 20.77 (10) 

[> 97.73%] 

39.29 (13) 

[> 99.99%] 

107.08 (12) 

[> 99.99%] 

32.92 (14) 

[> 99.71%] 

- 

 

4.7. Model Estimation Results: New-Rider Data 

Turning to specific new-rider model estimates, Table 4.4 provides overall summary statistics, and 

Table 4.5 gives the estimation results for the model estimated using 2012-13 (learning period).  

Estimates shown in Table 4.5 indicate that there was one statistically significant random parameter 

for the variable indicating that anti-lock brakes were not present.19 Marginal 

 

 

 

 

 

 

 

 

 

 

 
19 The correct test for the statistical significance of random parameters is the likelihood ratio test comparing model 

estimations with and without random parameters, all estimations in this paper passed this test with at least 90% 

confidence (at least 90% confident that the fixed parameters, random parameters, and random parameters with 

heterogeneity in the mean were not the same). Also note that if the standard deviation of the random parameter is 

significantly different from zero, the statistical significance of the mean of the random parameter is generally not 

important in justifying the inclusion of a random parameter. If the mean is not significantly different from zero it 

simply suggests that the distribution of parameters across observations are likely to have close to an equal number of 

positive and negative parameter values. For heterogeneity in a statistically insignificant mean, βk in equation 3 

would become zero, but Θkn and ωkn could still have statistically significant values. 
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Table 4.4. Summary statistics of variables included in the models of Florida new riders’ crash data. 

 

 

Variable Description 

All years 2012-2013 2014-2016 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

No visible/minor/severe injury 0.32/0.45/0.23 0.33/0.47/0.20 0.34/0.41/0.25 

Motorcyclist characteristics 
   

Ethnicity of rider indicator (1 if white, 0 otherwise) 0.720 

(0.448) 

0.712 

(0.452) 

0.733 

(0.442) 

Condition of rider indicator (1 if rider is in normal 

condition and not under drug nor alcohol influence, 0 

otherwise) 

0.847 

(0.359) 

0.863 

(0.343) 

0.820 

(0.383) 

Young motorcyclist indicator (1 if motorcyclist is younger 

than 30 years old, 0 otherwise) 

0.486 

(0.499) 

0.555 

(0.497) 

0.364 

(0.481) 

Older motorcyclist (1 if motorcyclist is older than 60 years 

old, 0 otherwise) 

0.063 

(0.243) 

0.044 

(0.205) 

0.097 

(0.296) 

Motorcycle characteristics 
   

Motorcycle equipped with antilock brakes indicator (1 if 

no, 0 otherwise) 

0.761 

(0.426) 

0.770 

(0.420) 

0.746 

(0.435) 

Motorcycle make indicator (1 if Harley Davidson, 0 

otherwise) 

0.190 

(0.393)      

0.163 

(0.369) 

0.240 

(0.427) 

Type of motorcycle indicator (1 if motorcycle is cruiser or 

chopper, 0 otherwise) 

0.364 

(0.481)     

0.340 

(0.473) 

0.408 

(0.491) 

Roadway and environmental conditions 
   

Road surface condition indicator (1 if dry, 0 otherwise) 0.848 

(0.358)       

0.846 

(0.360) 

0.852 

(0.355) 

Weather condition indicator (1 if cloudy, 0 otherwise) 0.139 

(0.346)   

0.148 

(0.355) 

0.124 

(0.329) 

Other variables 
   

Speed limit indicator (1 if road speed limit is 50 mi/h or 

higher, 0 otherwise) 

0.241 

(0.427) 

0.234 

(0.423) 

0.253 

(0.435) 

Ejection of rider indicator (1 if rider is totally or partially 

ejected, 0 otherwise) 

0.298 

(0.457)     

0.300 

(0.458)  

0.295 

(0.456) 

Riding direction indicator (1 if south, 0 otherwise) 0.232 

(0.422) 

0.235 

(0.424) 

0.226 

(0.419) 

Driver vision obstruction indicator (1 if vision not 

obstructed, 0 otherwise) 

0.958 

(0.199) 

0.964 

(0.184) 

0.947 

(0.223) 

Helmet indicator (1 if motorcyclist wears safety helmet, 0 

otherwise) 

0.628 

(0.483) 

0.653 

(0.475) 

0.583 

(0.493) 
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Table 4.5. Random parameters approach with heterogeneity in means and variances results for 

single-vehicle motorcycle crash-injury severity for learning period (from 2012 to 2013) of 

Florida new riders’ crash data (parameters defined for: [NVI] No visible injury; [MI] Minor 

injury; [SI] Severe injury). 

   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

t-statistic No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [MI] -1.8984 -2.46    

Constant [SI] -1.3305 -1.99    

Random parameters (normally distributed) 
     

Motorcycle equipped with antilock brakes indicator (1 if 

no, 0 otherwise) [MI] 

-0.2739 -0.65 -0.0144  0.0221  -0.0077 

Standard deviation of motorcycle equipped with antilock 

brakes indicator 

2.7279 1.88    

Heterogeneity in the mean of the random parameters 
     

Motorcycle equipped with antilock brakes indicator; 

older motorcyclist indicator 

(1 if motorcyclist is older than 60 years old, 0 

otherwise) [MI] 

-1.7058 -1.43    

Motorcycle equipped with antilock brakes indicator; 

ethnicity of rider indicator  

(1 if white, 0 otherwise) [MI] 

0.6812 1.45    

Motorcyclist characteristics 
     

Condition of rider indicator (1 if rider is in normal 

condition and not under drug nor alcohol influence, 0 

otherwise) [NVI] 

0.8596 2.88 0.1284 -0.0687 -0.0597 

Condition of rider indicator (1 if rider is in normal 

condition and not under drug nor alcohol influence, 0 

otherwise) [MI] 

1.3446 3.21 -0.1074  0.1694  -0.0620 

Young motorcyclist indicator  

(1 if motorcyclist is younger than 30 years old, 0 

otherwise) [NVI] 

0.3607 1.80 0.0351  -0.0184 -0.0167 

Roadway and environmental conditions 
     

Road surface condition indicator  

(1 if dry, 0 otherwise) [NVI] 

-0.6954 -2.57 -0.1007  0.0505  0.0502 

Other variables 
     

Driver vision obstruction indicator (1 if vision not 

obstructed, 0 otherwise) [NVI] 

-0.9990 -1.69 -0.1676  0.0848 0.0828 

Ejection of rider indicator (1 if rider is totally or partially 

ejected, 0 otherwise) [MI] 

1.1639 3.51 -0.0271  0.0498 -0.0226 

Ejection of rider indicator (1 if rider is totally or partially 

ejected, 0 otherwise)) [SI] 

0.4881 1.86 -0.0099  -0.0095  0.0194 

Speed limit indicator (1 if road speed limit is 50 mi/h or 

higher, 0 otherwise) [SI] 

0.4144 1.68 -0.0092  -0.0061  0.0153 

Model statistics 
     

Number of observations 679 

Log-likelihood at zero -745.957 

Log-likelihood at convergence -684.023 
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effects in Table 4.5 show that the average effect of this variable was to increase the likelihood of 

minor injury. However, this variable also had statistically significant heterogeneity in the mean, 

with the effect of not having antilock brakes varying by motorcyclists age (riders older than 60) 

and ethnicity (white riders). This finding shows that there is great variability in the braking skills 

of entry-level riders on motorcycles without antilock brakes. This is to be expected since the 

allocation of braking forces between front and rear brakes is among the most difficult motorcycling 

skills to master (Mannering and Grodsky, 1995). Antilock brakes help considerably by providing 

more efficient braking, and this is reflected in this finding. This random parameter did not have 

statistically significant heterogeneity in variance. 

Variables that produced statistically significant parameters that were fixed across crash 

observations include an indicator variable of riding unimpaired by alcohol or drugs. This variable 

had a complex effect as suggested by the marginal effects in Table 4.5, but there was generally a 

lower probability of severe injury if the rider is riding sober. 

Estimation findings show that young motorcyclists (less than 30 years old) had a higher 

probability of being in crashes with no visible injury relative to their older counterparts. Table 4.5 

also shows that crashes occurring on dry road surfaces tended to be more severe (as indicated by 

marginal effects) with a 0.0502 higher probability of severe injury relative to other roadway 

conditions. This is quite a large increase given that severe injury crashes comprise roughly a 0.20 

proportion of all crashes (see Table 4.4). The higher likelihood of severe injury on dry road 

surfaces may be related to over-confidence and changes in risk-taking behavior relative to other 

surface conditions.20 

Other variables include an indicator for driver vision obstruction, that marginal effects in 

Table 4.5 show increase the probability of minor and sever injury. Having the rider being ejected 

from the motorcycle decreased the probability of no visible injury and riding on a roadway with a 

speed limit of 50 mi/h or greater increased the probability of severe injury relative to lower speed 

limit roads, reflecting the impact of higher speeds on injury potential. 

For the experienced time period (2014-16), the estimation results shown in Table 4.6 

indicate that many different explanatory variables were found to influence injury severities relative 

to the beginning rider period (2012-13). Table 4.6 now shows that the type of motorcycle 

(individuals riding cruisers and choppers) was a statistically significant determinant of injury 

severity, and that this varies across the crash observations (statistically significant random 

parameter). Also, there was significant heterogeneity in the mean with the use of a helmet reducing 

the mean and making severe injuries less likely (heterogeneity in the variance was not statistically 

significant). 

In addition to the type of motorcycle, several other explanatory variables were found to be 

statistically significant in the experienced time period (2014-16) but not in the learning time period 

(2012-13). These include: a young motorcyclist indicator (1 if motorcyclist is younger than 30 

years old, 0 otherwise); an older motorcyclist indicator (1 if motorcyclist is older than 60 years 

old, 0 otherwise), although this variable also influenced the mean of the antilock-brakes indicator 

in the learning period; the ethnicity of rider indicator (1 if white, 0 otherwise), although this 

variable also did influence the mean of the antilock brakes indicator in the learning period; a 

 

 
20 For there is also the possibility of self-selectivity here, with more risky riders being more likely to ride during dry 

roadway-surface conditions. This self-selectivity and resulting identification issue could potentially afflict other 

variables as well, for example riskier riders may ride at night, etc. Please see Mannering (2018) for a detailed 

discussion of this possibility. 
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Table 4.6. Random parameters approach with heterogeneity in means and variances results for 

single-vehicle motorcycle crash-injury severity for experienced period (from 2014 to 2016) of 

Florida new riders’ crash data (parameters defined for: [NVI] No visible injury; [MI] Minor injury; 

[SI] Severe injury). 
   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [MI] -0.4821 -1.43    

Random parameters (normally distributed)      

Type of motorcycle indicator  

(1 if motorcycle is cruiser or chopper,  

0 otherwise) [SI] 

-0.3331 -0.51 -0.0035  -0.0058  0.0093 

Standard deviation of type of motorcycle 

indicator’ 

1.9589 1.47    

Heterogeneity in the mean of the random 

parameters 

     

Type of motorcycle indicator; Helmet 

indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) [SI] 

-1.7058 -1.29    

Motorcyclist characteristics      

Condition of rider indicator (1 if rider is in 

normal condition and not under drug nor 

alcohol influence, 0 otherwise) [NVI] 

1.4050 4.41 0.2512  -0.1865    -0.0647 

Condition of rider indicator (1 if rider is in 

normal condition and not under drug nor 

alcohol influence, 0 otherwise) [MI] 

1.8296 4.49 -0.2428  0.3514 -0.1085 

Older motorcyclist indicator 

(1 if motorcyclist is older than 60 years 

old, 0 otherwise) [NVI] 

0.4283 1.52 0.0178 -0.0118 -0.0060 

Ethnicity of rider indicator  

(1 if white, 0 otherwise) [NVI] 

-0.4282 -1.89 -0.0641  0.0446  0.0194 

Motorcycle characteristics      

Motorcycle make indicator  

(1 if Harley Davidson, 0 otherwise) [SI] 

0.7525 2.13 -0.0124  -0.0149  0.0274 

Roadway and environmental conditions      

Weather condition indicator  

(1 if cloudy, 0 otherwise) [MI] 

0.5976 1.79 -0.0112 0.0169  -0.0057 

Other variables      

Riding direction indicator  

(1 if south, 0 otherwise). [SI] 

-0.5604 -1.50 0.0075 0.0082  -0.0157 

Ejection of rider indicator (1 if rider is totally 

or partially ejected, 0 otherwise)) [SI] 

0.7055 2.10 -0.0163   -0.0181 0.0345 

Speed limit indicator (1 if road speed limit is 

50 mi/h or higher, 0 otherwise) [SI] 

1.0615 3.16 -0.0202    -0.0244 0.0447 

Model statistics 
     

Number of observations 379 

Log-likelihood at zero -416.374 

Log-likelihood at convergence -381.786 
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weather condition indicator (1 if cloudy, 0 otherwise); and a riding direction indicator (1 if riding 

south, 0 otherwise), which is likely capturing visibility issues relating to sun angles and other 

unobserved factors. 

To more directly compare learning and experienced model estimation findings, Table 4.7 

provides a side-by-side comparison of the marginal effects by each injury-severity level. The dash 

values in this table indicate that the explanatory variable was not statistically significant for the 

time period in question (learning or experienced). Table 4.7 shows that the variables found to be 

significant in both time periods include the condition of the rider indicator (1 if rider is in normal 

condition and not under drug nor alcohol influence, 0 otherwise), the ejection of rider indicator (1 

if rider is totally or partially ejected, 0 otherwise), and the speed limit indicator (1 if road speed 

limit is 50 mi/h or higher, 0 otherwise). However, even the marginal effects of these common 

variables (shown side-by side in Table 4.7) show considerable temporal instability between 

learning and experienced time periods. 

The considerable disparity between learning and experienced periods is perhaps to be 

expected since motorcyclist skills rapidly evolve in the early years of riding as previously 

discussed. However, the role of general trends in temporal instability could also be a factor as will 

be explored with the Florida horizontal curves data. 

 

4.8. Model Estimation Results: Florida Horizontal Curves Data 

Table 4.8 presents the summary statistics for the variables found to be statistically significant in 

the Florida horizontal curves data model estimations. Tables 4.9, 4.10, 4.11, 4.12 and 4.13 provide 

estimation results for models using 2005-06, 2008-09, 2011, 2012-13 and 2014-15 data, 

respectively.
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Table 4.8. Summary statistics of variables included in the models of Florida horizontal curves crash data. 

 

 

Variable Description 

All Years 2005-2006 2008-2009 2011 2012-2013 2014-2015 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

Mean 

(Std. Dev.) 

No visible/minor/severe injury 0.19/0.41/0.40 0.17/0.42/0.41 0.15/0.41/0.44 0.18/0.44/0.38 0.21/0.43/0.36 0.24/0.40/0.36 

Motorcyclist characteristics 
      

Older motorcyclist indicator  

(1 if motorcyclist is older than 60 years 

old, 0 otherwise) 

0.093 (0.291) 0.059 (0.236) 0.098 (0.298) 0.070 (0.256) 0.116 (0.321) 0.110 (0.314) 

Middle-age motorcyclist indicator  

(1 if motorcyclist is 30 years old or older 

and 60 years old or younger, 0 otherwise) 

0.543 (0.498) 0.564 (0.496) 0.543 (0.498) 0.530 (0.499) 0.538 (0.498) 0.533 (0.499) 

Alcohol or drugs indicator (1 if motorcycle 

crash is under the influence of alcohol or 

drugs, 0 otherwise) 

0.090 (0.287) 0.145 (0.352) 0.145 (0.352) 0.039 (0.195) 0.039 (0.195) 0.049 (0.217) 

Roadway and environmental conditions 
      

Weather condition indicator  

(1 if clear, 0 otherwise) 

0.756 (0.429) 0.761 (0.426) 0.749 (0.433) 0.783 (0.412) 0.749 (0.433) 0.752 (0.431) 

Weather condition indicator  

(1 if rain, 0 otherwise) 

0.056 (0.230) 0.047 (0.213) 0.050 (0.219) 0.057 (0.233) 0.064 (0.246) 0.064 (0.245) 

Daylight indicator (1 if light condition is 

daylight, dawn, or dusk, 0 others) 

0.597 (0.490) 0.588 (0.492) 0.591 (0.491) 0.615 (0.486) 0.580 (0.493) 0.626 (0.483) 

Road surface condition indicator  

(1 if dry, 0 otherwise) 

0.879 (0.325) 0.907 (0.290) 0.890 (0.311) 0.831 (0.374) 0.866 (0.340) 0.880 (0.324) 

Darkness indicator (1 if light condition is 

darkness, 0 otherwise) 

0.140 (0.347) 0.130 (0.337) 0.159 (0.366) 0.141 (0.348) 0.144 (0.351) 0.119 (0.324) 

Darkness with streetlight indicator  

(1 if light condition is darkness with 

streetlight, 0 otherwise) 

0.257 (0.437) 0.273 (0.446) 0.242 (0.428) 0.243 (0.429) 0.269 (0.443) 0.250 (0.433) 

Rider actions 
      

Speeding indicator (1 if motorcycle crash 

cause exceeds speed limit, 0 otherwise) 

0.060 (0.237) 0.071 (0.257) 0.056 (0.231) 0.066 (0.249) 0.054 (0.226) 0.055 (0.228) 
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Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) 

0.224 (0.417) 0.188 (0.390) 0.181 (0.385) 0.238 (0.426) 0.240 (0.427) 0.297 (0.457) 

Roadway Characteristics 
      

Friction indicator (1 if skid test number is 

larger than 45, 0 otherwise) 

0.295 (0.456) 0.319 (0.466) 0.337 (0.472) 0.300 (0.458) 0.308 (0.462) 0.183 (0.387) 

Flat curve indicator (1 if curve radius is 

greater than 4,000 ft., 0 otherwise) 

0.414 (0.492) 0.383 (0.486) 0.418 (0.493) 0.371 (0.483) 0.467 (0.499) 0.399 (0.490) 

Vegetation in median indicator  

(1 if median type is vegetation,  

0 otherwise) 

0.359 (0.479) 0.357 (0.479) 0.359 (0.480) 0.376 (0.484) 0.388 (0.487) 0.309 (0.462) 

Road access control indicator  

(1 if road access is full or partial control, 

0 otherwise) 

0.313 (0.463) 0.297 (0.457) 0.296 (0.457) 0.340 (0.474) 0.367 (0.482) 0.262 (0.440) 

Paved shoulder indicator  

(1 if paved, 0 otherwise) 

0.805 (0.395) 0.761 (0.426) 0.802 (0.398) 0.783 (0.412) 0.862 (0.344) 0.801 (0.398) 

Vertical Indicator (1 if road has a vertical 

grade, 0 otherwise) 

0.235 (0.424) 0.238 (0.426) 0.248 (0.432) 0.199 (0.399) 0.237 (0.426) 0.233 (0.423) 

Roughness indicator (1 if pavement 

roughness index is more than 80 in./mi, 0 

otherwise) 

0.376 (0.484) 0.400 (0.490) 0.397 (0.489) 0.358 (0.479) 0.311 (0.463) 0.419 (0.493) 

Other variables 
      

Helmet indicator (1 if motorcyclist wears 

safety helmet, 0 otherwise) 

0.587 (0.492) 0.647 (0.477) 0.612 (0.487) 0.579 (0.493) 0.530 (0.499) 0.565 (0.495) 

Higher motorcycle speed indicator  

(1 if motorcycle speed is more than 50 

mi/h, 0 otherwise) 

0.442 (0.496) 0.476 (0.499) 0.454 (0.498) 0.415 (0.493) 0.469 (0.499) 0.364 (0.481) 

Motorcycle’s travel direction indicator (1 if 

right-turn, 0 otherwise) 

0.477 (0.499) 0.464 (0.498) 0.462 (0.498) 0.420 (0.493) 0.505 (0.500) 0.516 (0.499) 

Motorcycle’s registration indicator (1 if 

registered in Florida, 0 otherwise) 

0.091 (0.288) 0.092 (0.290) 0.096 (0.296) 0.101 (0.302) 0.081 (0.273) 0.090 (0.286) 

Motorcycle’s passenger indicator (1 if 

motorcycle has a passenger, 0 otherwise) 

0.104 (0.306) 0.111 (0.315) 0.115 (0.319) 0.123 (0.329) 0.091 (0.288) 0.087 (0.282) 
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Table 4.9. Model estimation results for 2005-06 single-vehicle motorcycle crash-injury severities on Florida 

horizontal curves (parameters defined for: [NVI] No visible injury; [MI] Minor injury; [SI] Severe injury). 

   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [NVI] -0.5819 -2.58    

Random parameters (normally distributed)      

Helmet indicator (1 if motorcyclist wears 

safety helmet, 0 otherwise) [MI] 

-0.0620 -0.15 -0.0051  0.0239 -0.0187 

Standard deviation of the helmet indicator 3.6396 2.01    

Motorcyclist characteristics      

Middle-age motorcyclist indicator (1 if 

motorcyclist is 30 years old or older and 60 

years old or younger, 0 otherwise) [MI] 

0.3880 1.61 -0.0096   0.0306 -0.0210 

Roadway and environmental conditions      

Darkness indicator (1 if light condition is 

darkness, 0 otherwise) [MI] 

-1.3099 -2.41 0.0048  -0.0172  0.0124 

Rider actions      

Speeding indicator (1 if motorcycle crash 

cause exceeds speed limit, 0 otherwise) [SI] 

1.3992 2.34 -0.0050 -0.0080  0.0130 

Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) 

[MI] 

1.3982 2.80 -0.0103  0.0321 -0.0218 

Roadway Characteristics      

Roughness indicator (1 if pavement roughness 

index is more than 80 in./mi, 0 otherwise) 

[NVI] 

0.5768 2.02 0.0348  -0.0136 -0.0212 

Other variables      

Higher motorcycle speed indicator (1 if 

motorcycle speed is more than 50 mi/h, 0 

otherwise) [SI] 

0.8304 3.30 -0.0296 -0.0370  0.0666 

Motorcycle’s passenger indicator (1 if 

motorcycle has a passenger, 0 otherwise) 

[NVI] 

-1.2028 -1.91 -0.0078 0.0024 0.0054 

Model statistics 
     

Number of observations 420 

Log-likelihood at zero -461.417 

Log-likelihood at convergence -405.175 
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Table 4.10. Model estimation results for 2008-09 single-vehicle motorcycle crash-injury severities on Florida 

horizontal curves (parameters defined for: [NVI] No visible injury; [MI] Minor injury; [SI] Severe injury). 

   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [NVI] -0.2944 -0.73    

Random parameters (normally distributed) 
     

Helmet indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) [MI] 

-0.7495 -1.34 0.00001 0.0074 -0.0074 

Standard deviation of the helmet indicator 2.9699 1.96    

Heterogeneity in the mean of the random parameters 
     

Helmet indicator; vegetation in median indicator (1 

if median type is vegetation, 0 otherwise) [MI] 

1.1864 1.61    

Motorcyclist characteristics 
     

Older motorcyclist indicator (1 if motorcyclist is 

older than 60 years old, 0 otherwise) [SI] 

0.9214 2.35 -0.0058    -0.0103     0.0160 

Alcohol or drugs indicator (1 if motorcycle crash is 

under the influence of alcohol or drugs, 0 

otherwise) [SI] 

1.6452 4.78 -0.0109    -0.0255     0.0363 

Roadway and environmental conditions 
      

Weather condition indicator (1 if clear, 0 

otherwise) [NVI] 

0.6708 1.65 0.0623  -0.0225 -0.0398 

Road surface condition indicator (1 if dry, 0 

otherwise) [NVI] 

-0.8211 -1.69 -0.0834  0.0294 0.0541 

Rider actions 
     

Speeding indicator (1 if motorcycle crash cause 

exceeds speed limit, 0 otherwise) [SI] 

1.4414 2.49 -0.0035    -0.0074     0.0110 

Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) [MI] 

0.8324 2.08 -0.0061   0.0204 -0.0144 

Roadway Characteristics 
     

Flat curve indicator (1 if curve radius is greater 

than 4,000 ft., 0 otherwise) [MI] 

0.6625 2.53 -0.0123     0.0429    -0.0306 

Vertical indicator (1 if road has a vertical grade, 0 

otherwise) [SI] 

0.5089 1.99 -0.0080    -0.0141     0.0221 

Other variables 
     

Motorcycle’s passenger indicator (1 if motorcycle 

has a passenger, 0 otherwise) [NVI] 

-0.8902 -1.59 -0.0059     0.0019 0.0040 

Model statistics 
     

Number of observations 495 

Log-likelihood at zero -543.813 

Log-likelihood at convergence -462.173 
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Table 4.11. Model estimation results for 2011 single-vehicle motorcycle crash-injury severities on Florida 

horizontal curves (parameters defined for: [NVI] No visible injury; [MI] Minor injury; [SI] Severe injury). 

   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [NVI] -0.1451 -0.42    

Random parameters (normally distributed) 
     

Helmet indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) [MI] 

-0.6984 -0.89 -0.0095  0.0355 -0.0260 

Standard deviation of the helmet indicator 1.7605 1.44    

Heterogeneity in the mean of the random parameters 
     

Helmet indicator; weather condition indicator  

(1 if clear, 0 otherwise) [MI] 

1.4008 1.62    

Motorcyclist characteristics 
     

Middle-age motorcyclist indicator (1 if 

motorcyclist is 30 years old or older and 60 

years old or younger, 0 otherwise) [MI] 

-0.9692 -2.94 0.0306  -0.0834 0.0528 

Roadway and environmental conditions 
      

Daylight indicator (1 if light condition is 

daylight, dawn, or dusk; 0 others) [SI] 

-0.7437 -2.40 0.0257 0.0449 -0.0706 

Rider actions 
     

Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) [MI] 

0.7649 1.71 -0.0109      0.0300    -0.0192 

Roadway Characteristics 
     

Friction indicator (1 if skid test number is larger 

than 45, 0 otherwise) [NVI] 

-0.9810 -1.99 -0.0236     0.0113     0.0122 

Road access control indicator (1 if road access is 

full or partial control, 0 otherwise) [SI] 

-2.2004 -3.53 0.0294 0.0810 -0.1104 

Other variables 
     

Higher motorcycle speed indicator (1 if 

motorcycle speed is more than 50 mi/h, 0 

otherwise) [NVI] 

-1.2895 -2.26 -0.0298     0.0118 0.0180 

Higher motorcycle speed indicator (1 if 

motorcycle speed is more than 50 mi/h, 0 

otherwise) [SI] 

2.1254 3.50 -0.0296    -0.1107     0.1403 

Motorcycle’s travel direction (1 if right-turn, 0 

otherwise) [NVI] 

-0.9003 -2.08 -0.0348     0.0185 0.0163 

Model statistics 
     

Number of observations 226 

Log-likelihood at zero -248.286 

Log-likelihood at convergence -194.892 



 

 

72 

 

Table 4.12. Model estimation results for 2012-13 single-vehicle motorcycle crash-injury severities on Florida 

horizontal curves (parameters defined for: [NVI] No visible injury; [MI] Minor injury; [SI] Severe injury). 

   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [NVI] 0.6802 1.34    

Random parameters (normally distributed) 
     

Road surface condition indicator  

(1 if dry, 0 otherwise) [NVI] 

-1.5618 -1.36 0.0152 -0.0083 -0.0069 

Standard deviation of the Road surface condition 

indicator 

2.0733 1.43    

Heterogeneity in the mean of the random parameters 
     

Road surface condition indicator; Proper driving 

indicator (1 if crash cause is improper driving or 

action, 0 otherwise) [NVI] 

1.3164 1.91    

Motorcyclist characteristics 
     

Older motorcyclist indicator (1 if motorcyclist is older 

than 60 years old, 0 otherwise) [SI] 

0.8079 2.54 -0.0050 -0.0156 0.0206 

Roadway and environmental conditions 
      

Daylight indicator (1 if light condition is daylight, 

dawn, or dusk; 0 others) [SI] 

-0.4278 -2.39 0.0111 0.0367 -0.0478 

Weather condition indicator (1 if rain, 0 otherwise) [SI] -1.0809 -2.07 0.0035 0.0056 -0.0091 

Rider actions 
     

Speeding indicator (1 if motorcycle crash cause exceeds 

speed limit, 0 otherwise) [SI] 

1.0329 2.26 -0.0031 -0.0086 0.0117 

Roadway Characteristics 
     

Friction indicator (1 if skid test number is larger than 

45, 0 otherwise) [NVI] 

-0.8843 -2.01 -0.0226  0.0130 0.0096 

Paved shoulder indicator (1 if paved, 0 otherwise) 

[NVI] 

-1.0765 -2.23 -0.0972 0.0549 0.0423 

Other variables 
     

Helmet indicator (1 if motorcyclist wears safety helmet, 

0 otherwise) [MI] 

0.4878 2.60 -0.0162 0.0565  -0.0402 

Higher motorcycle speed indicator (1 if motorcycle 

speed is more than 50 mi/h, 0 otherwise) [MI] 

-0.6337 -3.22 0.0163 -0.0629 0.0467 

Motorcycle’s registration indicator (1 if registered in 

Florida, 0 otherwise) [MI] 

0.5697 1.56 -0.0030 0.0101 -0.0071 

Motorcycle’s passenger indicator (1 if motorcycle has a 

passenger, 0 otherwise) [SI] 

-0.6969 -1.82 0.0026 0.0083 -0.0108 

Model statistics 
     

Number of observations 479 

Log-likelihood at zero -526.235 

Log-likelihood at convergence -475.426 
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Table 4.13. Model estimation results for 2014-15 single-vehicle motorcycle crash-injury severities on Florida 

horizontal curves (parameters defined for: [NVI] No visible injury; [MI] Minor injury; [SI] Severe injury). 

   Marginal effects 

 

Variable Description 

Estimated 

Parameter 

 

t-statistic 

No visible 

injury 

Minor 

injury 

Severe 

injury 

Constant [MI] -0.5295 -1.70    

Random parameters (normally distributed) 
     

Daylight indicator (1 if light condition is daylight, 

dawn, or dusk; 0 others) [SI] 

-1.5624 -1.71 -0.0012 0.0036 -0.0024 

Standard deviation of the Daylight indicator 3.2745 1.75    

Heterogeneity in the mean of the random parameters 
     

Daylight indicator; Older motorcyclist  

(1 if motorcyclist is older than 60 years old, 0 

otherwise) [SI] 

2.2267 1.64    

Roadway and environmental conditions 
      

Road surface condition indicator  

(1 if dry, 0 otherwise) [NVI] 

-1.6612 -3.48 -0.2169 0.1556 0.0613 

Weather condition indicator  

(1 if clear, 0 otherwise) [NVI] 

0.7755   1.80 0.0920 -0.0648 -0.0272 

Darkness with streetlight indicator  

(1 if light condition is darkness with streetlight, 

0 otherwise) [MI] 

0.5077 1.67 -0.0111 0.0290 -0.0179 

Rider actions 
     

Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) [SI] 

-1.4142 -2.63 0.0155 0.0290 -0.0445 

Roadway Characteristics 
     

Friction indicator (1 if skid test number is larger 

than 45, 0 otherwise) [SI] 

0.9240 2.07 -0.0083 -0.0167 0.0250 

Other variables 
     

Helmet indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) [NVI] 

1.1917 3.10 0.1172 -0.0869 -0.0303 

Helmet indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) [MI] 

0.8086 2.23 -0.0590 0.0939 -0.0350 

Higher motorcycle speed indicator (1 if motorcycle 

speed is more than 50 mi/h, 0 otherwise) [SI] 

0.9294 2.53 -0.0167 -0.0317 0.0485 

Motorcycle’s travel direction indicator 

(1 if right-turn, 0 otherwise) [NVI] 

-0.7417 -2.72 -0.0491 0.0350 0.0141 

Model statistics 
     

Number of observations 343 

Log-likelihood at zero -376.824 

Log-likelihood at convergence -340.396 
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Regarding random parameters, all five time period models had one statistically significant 

random parameter, but the explanatory variable generating the random parameter varied by time 

period. Three of the time period models also had statistically significant heterogeneity in the mean 

of their random parameter. None of the models produced statistically significant heterogeneity in 

random-parameter variance. The 2005-06, 2008-09, and 2011 models all had statistically 

significant random parameters in the effect of helmet use on injury severities, suggesting variation 

in the effectiveness of helmets perhaps due to helmet design variations or being improperly used 

(strapped, etc.). The 2011 model also had statistically significant heterogeneity in the mean as a 

function of clear weather conditions, with clear weather conditions making helmet use more likely 

to be associated with minor injury. For the 2012-13 model (Table 4.12), the dry roadway surface 

indicator produced a random parameter with the overall effect being a decrease in injuries under 

these conditions. There was significant heterogeneity in the mean with this variable, with improper 

driving action making no visible injury more likely. Finally, for the 2014-15 model, the daylight 

indicator produced a statistically significant random parameter with the overall effect in such 

conditions being a decrease in the likelihood of severe injury. There was also significant 

heterogeneity in the mean for this variable with motorcyclists over 60 years of age being more 

likely to be severely injured in daylight conditions.  

As mentioned in a previous footnote, some caution should be exercised in interpreting these 

findings because the effects of helmet use, for example, may not necessarily only be capturing the 

effectiveness of the helmet but may also be capturing the more cautious riding behavior of 

motorcyclists that chose to wear a helmet. If this is the case, having a non-helmet-wearing rider 

wear a helmet would not produce the same impact on injury-severity probabilities (see Mannering, 

2018 for a discussion of this point). Similarly, motorcyclists riding on dry roads and in daylight 

may be a self-selected group of riders that differs from the riders in the comparison group 

(motorcyclists riding on roads other than dry and conditions other than daylight). This general 

issue is likely to be much more pronounced than it would be for car/truck drivers since 

motorcycling is impacted far more by environmental conditions than other transportation modes. 

To generally compare the variables found to be statistically significant in each of the five 

time periods, marginal effects tables are presented. Table 4.14 provides the marginal effects for all 

time periods for the no visible injury-severity category, Table 4.15 for the minor injury severity 

category, and Table 16 for the severe injury category. All three of these tables will display a 

marginal effect value if the variable in question was found to be statistically significant, and a 

“dash” if the variable in question was not statistically significant for that time period. As an 

example, to see the range of variables found to be statistically significant across time periods, 

consider the severe injury category marginal effects displayed in Table 4.16. In this table (and the 

other injury severity category Tables 4.14 and 4.15), we see considerable variation in the variables 

found to be statistically significant from year to year. In fact, only one variable, an indicator for a 

motorcyclist wearing a helmet, was found to be statistically significant in all time periods. And, 

although the effect of the variable was to decrease the probability of severe injury in all time 

periods, the effect that it had on severe-injury probability ranged from -0.0074 in 2008-09 to  

-0.0653 in 2014-15. In addition to many specific variables being significant in some periods and 

insignificant in others, one significantly changed sign. The middle-aged motorcyclist indicator (1 

if motorcyclist is 30 years old or older and 60 years old or younger, 0 otherwise) results in a 0.0210 

lower probability of severe injury in 2005-06 and a 0.0528 higher probability of injury in 2011 

(and the variable is statistically insignificant in all other time periods). 

  



 

 

75 

 

Table 4.14. The marginal effects of no visible injury in all the time periods of Florida horizontal 

curves crash data.   

  2005-06 2008-09 2011 2012-13 2014-15 

Variable Description 

No 

Visible 

Injury 

No 

Visible 

Injury 

No 

Visible 

Injury 

No 

Visible 

Injury 

No 

Visible 

Injury 

Motorcyclist characteristics 

     

Middle-age motorcyclist indicator 

(1 if motorcyclist is 30 years old or older 

and 60 years old or younger, 0 otherwise) 

-0.0096 - 0.0306 - - 

Older motorcyclist indicator 

(1 if motorcyclist is older than 60 years old, 

0 otherwise) 

- -0.0058 - -0.0050 - 

Alcohol or drugs indicator  

(1 if motorcycle crash is under the influence 

of alcohol or drugs, 0 otherwise) 

- -0.0109 - - - 

Roadway and environmental conditions 

     

Darkness indicator (1 if light condition is 

darkness, 0 otherwise) 

0.0048 - - - - 

Weather condition indicator  

(1 if clear, 0 otherwise) 

- 0.0623 - - 0.0920 

Road surface condition indicator  

(1 if dry, 0 otherwise) 

- -0.0834 - 0.0152 -0.2169 

Daylight indicator (1 if light condition is 

daylight, dawn, or dusk; 0 others) 

- - 0.0257 0.0111 -0.0012 

Weather condition indicator  

(1 if rain, 0 otherwise) 

- - - 0.0035 - 

Darkness with streetlight indicator  

(1 if light condition is darkness with 

streetlight, 0 otherwise) 

- - - - -0.0111 

Rider actions 

     

Speeding indicator (1 if motorcycle crash cause 

exceeds speed limit, 0 otherwise) 

-0.0050 -0.0035 - -0.0031 - 

Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) 

-0.0103 -0.0061 -0.0109 - 0.0155 

Roadway characteristics 

     

Roughness indicator (1 if pavement roughness 

index is more than 80 in./mi, 0 otherwise) 

0.0348 - - - - 

Flat curve indicator  

(1 if curve radius is greater than 4,000 ft.,  

0 otherwise) 

- -0.0123 - - - 

Vertical indicator (1 if road has a vertical 

grade, 0 otherwise) 

- -0.0080 - - - 



 

 

76 

 

Friction indicator  

(1 if skid test number is larger than 45,  

0 otherwise) 

- - -0.0236 -0.0226 -0.0083 

Road access control indicator  

(1 if road access is full or partial control,  

0 otherwise) 

- - 0.0294 - - 

Paved shoulder indicator  

(1 if paved, 0 otherwise) 

- - - -0.0972 - 

Other variables 

     

Higher motorcycle speed indicator  

(1 if motorcycle speed is more than  

50 mi/h, 0 otherwise) 

-0.0296 - -0.0594 0.0162 -0.0167 

Motorcycle’s passenger indicator  

(1 if motorcycle has a passenger,  

0 otherwise) 

-0.0078 -0.0059 - 0.0025 - 

Motorcycle’s travel direction  

(1 if right-turn, 0 otherwise) 

- - -0.0348 - -0.0491 

Motorcycle’s registration indicator  

(1 if registered in Florida, 0 otherwise) 

- - - -0.0030 - 

Helmet indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) 

-0.0051 -0.00001 -0.0095 -0.0163 0.0583 

 

Table 4.15. The marginal effects of minor injury in all the time periods of Florida horizontal 

curves crash data.   

  2005-06 2008-09 2011 2012-13 2014-15 

Variable Description 

Minor 

injury 

Minor 

injury 

Minor 

injury 

Minor 

injury 

Minor 

injury 

Motorcyclist characteristics 

     

Middle-age motorcyclist indicator  

(1 if motorcyclist is 30 years old or older 

and 60 years old or younger, 0 otherwise) 

0.0306 - -0.0834 - - 

Older motorcyclist indicator (1 if motorcyclist 

is older than 60 years old, 0 otherwise) 

- -0.0103 - -0.0156 - 

Alcohol or drugs indicator (1 if motorcycle 

crash is under the influence of alcohol or 

drugs, 0 otherwise) 

- -0.0255 - - - 

Roadway and environmental conditions 

     

Darkness indicator (1 if light condition is 

darkness, 0 otherwise) 

-0.0172 - - - - 

Weather condition indicator  

(1 if clear, 0 otherwise) 

- -0.0225 - - -0.0648 
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Road surface condition indicator 

(1 if dry, 0 otherwise) 

- 0.0294 - -0.0083 0.1556 

Daylight indicator (1 if light condition is 

daylight, dawn, or dusk; 0 others) 

- - 0.0449 0.0367 0.0036 

Weather condition indicator  

(1 if rain, 0 otherwise) 

- - - 0.0056 - 

Darkness with streetlight indicator  

(1 if light condition is darkness with 

streetlight, 0 otherwise) 

- - - - 0.0290 

Rider actions 

     

Speeding indicator (1 if motorcycle crash cause 

exceeds speed limit, 0 otherwise) 

-0.008 -0.0074 - -0.0086 - 

Proper driving indicator (1 if crash cause is 

improper driving or action, 0 otherwise) 

0.0321 0.0204 0.0300 - 0.0290 

Roadway characteristics 

     

Roughness indicator (1 if pavement roughness 

index is more than 80 in./mi, 0 otherwise) 

-0.0136 - - - - 

Flat curve indicator (1 if curve radius is greater 

than 4,000 ft., 0 otherwise) 

- 0.0429 - - - 

Vertical indicator (1 if road has a vertical 

grade, 0 otherwise) 

- -0.0141 - - - 

Friction indicator (1 if skid test number is 

larger than 45, 0 otherwise) 

- - 0.0113 0.0130 -0.0167 

Road access control indicator (1 if road access 

is full or partial control, 0 otherwise) 

- - 0.0810 - - 

Paved shoulder indicator  

(1 if paved, 0 otherwise) 

- - - 0.0549 - 

Other variables 

     

Higher motorcycle speed indicator  

(1 if motorcycle speed is more than 50 mi/h, 

0 otherwise) 

-0.037 - -0.0989 -0.0629 -0.0317 

Motorcycle’s passenger indicator  

(1 if motorcycle has a passenger,  

0 otherwise) 

0.0024 0.0019 - 0.0083 - 

Motorcycle’s travel direction (1 if right-turn,  

0 otherwise) 

- - 0.0185 - 0.0350 

Motorcycle’s registration indicator  

(1 if registered in Florida, 0 otherwise) 

- - - 0.0101 - 

Helmet indicator (1 if motorcyclist wears safety 

helmet, 0 otherwise) 

0.0239 0.0074 0.0355 0.0565 0.0070 
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Table 4.16. The marginal effects of severe injury in all the time periods of Florida horizontal 

curves crash data.   

  2005-06 2008-09 2011 2012-13 2014-15 

Variable Description 

Severe 

injury 

Severe 

injury 

Severe 

injury 

Severe 

injury 

Severe 

injury 

Motorcyclist characteristics 
     

Middle-age motorcyclist indicator 

(1 if motorcyclist is 30 years old or 

older and 60 years old or younger,  

0 otherwise) 

-0.0210 - 0.0528 - - 

Older motorcyclist indicator (1 if 

motorcyclist is older than 60 years old,  

0 otherwise) 

- 0.0160 - 0.0206 - 

Alcohol or drugs indicator  

(1 if motorcycle crash is under the 

influence of alcohol or drugs, 0 

otherwise) 

- 0.0363 - - - 

Roadway and environmental conditions 
     

Darkness indicator (1 if light condition is 

darkness, 0 otherwise) 

0.0124 - - - - 

Weather condition indicator  

(1 if clear, 0 otherwise) 

- -0.0398 - - -0.0272 

Road surface condition indicator  

(1 if dry, 0 otherwise) 

- 0.0541 - -0.0069 0.0613 

Daylight indicator (1 if light condition is 

daylight, dawn, or dusk; 0 others) 

- - -0.0706 -0.0478 -0.0024 

Weather condition indicator  

(1 if rain, 0 otherwise) 

- - - -0.0091 - 

Darkness with streetlight indicator  

(1 if light condition is darkness with 

streetlight, 0 otherwise) 

- - - - -0.0179 

Rider actions 
     

Speeding indicator  

(1 if motorcycle crash cause exceeds 

speed limit, 0 otherwise) 

0.0130 0.0110 - 0.0117 - 

Proper driving indicator  

(1 if crash cause is improper driving or 

action, 0 otherwise) 

-0.0218 -0.0144 -0.0192 - -0.0445 

Roadway characteristics 
     

Roughness indicator (1 if pavement 

roughness index is more than 80 in./mi, 

0 otherwise) 

-0.0212 - - - - 

Flat curve indicator (1 if curve radius is 

greater than 4,000 ft., 0 otherwise) 

- -0.0306 - - - 
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Vertical indicator (1 if road has a vertical 

grade, 0 otherwise) 

- 0.0221 - - - 

Friction indicator (1 if skid test number is 

larger than 45, 0 otherwise) 

- - 0.0122 0.0096 0.0250 

Road access control indicator  

(1 if road access is full or partial 

control, 0 otherwise) 

- - -0.1104 - - 

Paved shoulder indicator  

(1 if paved, 0 otherwise)  

- - - 0.0423 - 

Other variables 
     

Higher motorcycle speed indicator  

(1 if motorcycle speed is more than 50 

mi/h, 0 otherwise) 

0.0666 - 0.1583 0.0467 0.0485 

Motorcycle’s passenger indicator  

(1 if motorcycle has a passenger,  

0 otherwise) 

0.0054 0.0040 - -0.0108 - 

Motorcycle’s travel direction  

(1 if right-turn, 0 otherwise) 

- - 0.0163 - 0.0141 

Motorcycle’s registration indicator  

(1 if registered in Florida, 0 otherwise) 

- - - -0.0071 - 

Helmet indicator (1 if motorcyclist wears 

safety helmet, 0 otherwise) 

-0.0187 -0.0074 -0.0260 -0.0402 -0.0653 

 

The statistically significant temporal instability in the horizontal curves data suggests that 

the temporal instability found in the new rider data is not solely due to riders gaining motorcycling 

experience. As discussed extensively in Mannering (2018), there are likely fundamental behavioral 

reasons for this temporal variation. And, because motorcyclists’ bodies are more directly exposed 

to potential injury without the energy-dissipating structure and safety features of cars and trucks, 

it is likely that any driver/rider behavioral changes over time will be more directly measured in 

resulting injury severities. 

 

4.9. Summary and Conclusions 

Aggregate data in the motorcycle safety field has shown that fatality rates (fatalities per mile 

ridden) have increase in recent years, most notably in 2015 and 2016 (National Highway Safety 

Administration, 2018). The reasons for this increase are not fully understood, but there is a body 

of research that suggest temporal instability may be the cause. This chapter presents some 

empirical evidence of temporal instability in motorcyclist-injury severity models. To explore this 

possibility, this chapter used two different datasets; the first dataset is for single-vehicle 

motorcycle crashes in the state of Florida from 2012 to 2016 for new riders who graduated from 

Motorcycle Safety Foundation training and were licensed in 2012, and the second dataset is for 

single-vehicle motorcycle crashes in horizontal curves in the state of Florida from 2005 to 2015. 

With three possible motorcyclist injury severity outcomes considered (no visible injury, minor 

injury, and severe injury), random parameters models that allow for possible heterogeneity in 

means and variances were estimated for a variety of time periods in each dataset. The models 

included a wide variety of factors relating motorcyclist characteristics (such as ethnicity and age), 

roadway and environmental conditions (such as light and road surface conditions), motorcycle 
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characteristics (such as motorcycle make and type of motorcycle), rider actions (such as speeding 

and improper driving actions) and roadway characteristics (such as obstacles on the road and speed 

limits).   

The results show that the determinants of motorcyclist injury severities in single-vehicle 

motorcycle crashes have been unstable over time, and this temporal instability is confirmed in both 

datasets. Even though there were several common variables among the various time-period 

models, few variables were statistically significant in all time periods and the marginal effects for 

the injury-severity outcomes for some specific variables showed considerable variation between 

all the periods in each dataset. 

The cause of the observed temporal instability is not entirely clear. In the first dataset 

(Florida new riders crash data), it was initially speculated that motorcyclists gaining riding skill 

and experience over time would cause temporal instability in the data. However, the second dataset 

(Florida horizontal curves crash data), which included riders that would not be in this initial-

learning period, resulted in temporally unstable models over the same time period, suggesting a 

more fundamental temporal shift that goes beyond beginning motorcyclists learning. Following 

the temporal instability discussion in Mannering (2018), the findings of this chapter suggests that 

the effects of evolving performance and safety features of the motorcycles, changes in riders’ 

behaviors and skills, changes induced by how riders respond to the changing behavior of other 

road users (whose behavior may be changing as a result of technology changes in their vehicles, 

evolving use of personal technologies in their vehicle, such as cell phones, etc.) and changes of 

the macroeconomic conditions (which could affect risk-taking behavior) may all play a role in the 

observed temporal instability of motorcyclist injury-severity models. In addition to these factors, 

there is also the possibility that police-related judgements made in recording the data could be 

changing over time. For the dependent variable (injury severity outcome) we have attempted to 

mitigate this possibility by combining the two injury severity levels with the most judgement (no-

injury and possible injury) into to a single no-visible injury category. However, it is also possible 

that police judgments in potential explanatory variables such as opinions relating to the crash cause 

(speeding, improper riding, etc.) may be changing over time.  This is yet another point that could 

be addressed in future studies that seek to untangle the temporal elements in crash injury severity 

analysis in an effort to improve motorcycle safety.  
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Chapter 5: Time-Of-Day Variations and Temporal Instability of Factors Affecting 

Injury Severities in Large-Truck Crashes 

5.1. Introduction 

Freight transportation systems play a significant role in the economic vitality of countries. The 

U.S. freight transportation system moves about 55 million tons of goods daily (U.S. Department 

of Transportation, 2017). As a dominant freight-carrier mode, trucks carry about 64% of the U.S. 

freight tonnage (U.S. Department of Transportation, 2017). However, due to the specific features 

of the large trucks21, they impose significant safety issues on roadways. The large size and heavy 

weight of large trucks, while being advantageous in transporting freight efficiently, make them 

difficult to control, maneuver, and stop. Compared to crashes of other types of vehicles, truck 

crashes are associated with higher economic losses and traffic-flow disruptions. In addition, the 

size and weight of large trucks increase the likelihood of severe-injury crashes (Ahmed et al., 

2018). According to the National Highway Traffic Safety Administration (NHTSA), in truck-

involved crashes from 2007 to 2016, 72% of the fatalities were the occupants of other vehicles and 

11% of the fatalities were not vehicle occupants (pedestrians, pedal cyclists, etc.) (National 

Highway Traffic Safety Administration, 2018). This clearly shows that large trucks significantly 

affect the safety of other road users. However, a review of the literature shows that, although the 

severity of crashes involving large trucks has been the focus of many previous studies, 

comparatively few studies have investigated the temporal stability of the factors influencing the 

injury severities of truck-involved crashes (by time of day and by year). The intent of the current 

chapter is to develop statistical models that consider the possibility that the effect of variables that 

determine resulting injury severities in large-truck crashes may vary by time-of-day and from year 

to year.  

There are at least two reasons to suspect that the factors affecting injury severity change 

over the day. First, it is possible that human behavior varies by time of day (due to possible fatigue, 

biorhythms, etc.). In fact, there is a considerable body of literature that suggests this. For example, 

Leone et al. (2017) found people to be more cautious in decision making in the morning, Hasler et 

al. (2014) found temporal differences in people’s neural responses to monetary awards, and Fabbri 

et al. (2008) found that people had higher subjective alertness in mid-day relative to mornings. 

And second, unobserved factors related to visibility, lighting, and so on, may vary, particularly 

throughout the day. Both suggest that time-of-day variations may be playing a significant role in 

resulting injury severities, and that this role may go beyond the simple use of indicator variables 

(indicating various time of day intervals) in statistical models. This chapter considers the 

possibility that the effect of all factors that determine injury severities may vary by time of day as 

opposed to a simple shift in probabilities that results with the use of indicator variables.  

With regard to the possibility that the effects of injury-severity determinants change over 

time (from year to year), there is a growing body of empirical evidence that supports this 

possibility. For example, using a Markov switching approach, research by Malyshkina and 

Mannering (2009) and Xiong and Mannering (2013) found the influence of factors determining 

 

 
21 The National Highway Traffic Safety Administration (NHTSA) defines a large truck as any medium or heavy 

truck, excluding buses and motor homes, with a gross vehicle weight rating (GVWR) greater than 10,000 pounds 

(National Highway Traffic Safety Administration, 2018). According to the Federal Highway Administration 

(FHWA), large trucks mainly include vehicles classified as class 5 to class 13. 
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injury severity shifted over time. In other work, using data from Chicago, Behnood and Mannering 

(2015) found that the effect of factors that determined driver injury severities in single-vehicle 

automobile/truck crashes significantly varied from year to year, and Behnood and Mannering 

(2016) also found that the effect of factors influencing pedestrian-injury severities resulting from 

crashes with automobiles and trucks varied significantly from year to year. Mannering (2018) 

points out that such year to year changes are likely to result from several factors including changes 

in driver decision making, information processing, risk assessment, and safety attitudes that are 

driven by changes in vehicle, communication, and information technologies. 

The remainder of the chapter is organized as follows. We begin with summarizing the 

findings of the current literature regarding the factors affecting the crash/driver injury severities in 

crashes involving large trucks. This is followed by a detailed literature review summarizing the 

methodological approaches used to study injury severities in large-truck crashes. The 

methodological approach and data used in the current chapter are then presented. Finally, a 

discussion on the model estimation findings is provided along with a summary and conclusions. 

 

5.2. Review of Factors Affecting the Injury-Severity of Crashes Involving Large Trucks 

A wide range of factors have been found to affect injury-severity outcomes in previous large-truck 

injury-severity studies. Table 5.1 presents a summary of past research findings with factors found 

to influence injury severity grouped by driver characteristics, driver actions, crash characteristics, 

truck characteristics, roadway attributes, environmental conditions, and other variables. Driver 

characteristics include the driver-related and physiological characteristics of large-truck drivers 

that significantly affect injury-severity outcomes. Examples of these variables include driver age, 

gender, and apparent physical condition (alcohol/drug-impaired, fatigued,  

 

Table 5.1. Significantly affecting variables on the injury severity of truck-involved crashes: A 

summary of findings in previous studies. 

 

Variables Findings 

Driver characteristics  

Age Inconsistent trends have been reported regarding the effects of age on injury-

severity of crashes involving large trucks. For example, Chang and Mannering 

(1999) reported that young drivers increase the likelihood of property damage only 

in truck crashes. Young drivers have also been reported to decrease the likelihood 

of no-injury in truck crashes (Pahukula et al., 2015), and increase the likelihood of 

fatalities (Zheng et al., 2018). Chen and Chen (2011) reported that old drivers 

(older than 50 years old) increased the likelihood of incapacitating injury/fatality 

in single-vehicle crashes while they had opposite effects in multivehicle crashes. 

The contradicting observations regarding the age might be due to the unobserved 

heterogeneity associated with “age” (physical and health condition of the driver). 

In addition, in previous research, age has been mainly treated as a categorical 

factor, where researchers have defined their own age categories.  

Gender Like age, gender has also been found to have complicated effects on the injury 

severity of large-truck crashes. However, a fair number of studies have reported 

that female drivers increase the likelihood of severe and fatal injuries (Chang and 

Mannering, 1999; Khorashadi et al., 2005; Pahukula et al., 2015). Chen and Chen 
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(2011) reported that in crashes involving large trucks, female drivers increased the 

likelihood of incapacitating injury/fatality in single-vehicle crashes while they had 

opposite effects in multi-vehicle crashes. It should be noted that the number of 

female drivers operating large trucks are much lower than that of male drivers. 

This significantly affects the number of observations associated with the female 

drivers in large-truck crashes. Therefore, some crash-related studies may suffer 

from insufficient observations for female drivers.   

Fatigued – 

asleep/fainted  

Fatigued drivers increase the probability of severe injuries during peak hours (Hao 

et al., 2016). Fatigued drivers increase the likelihood of incapacitating 

injury/fatality in multi-vehicle crashes and have the opposite effects in single-

vehicle crashes (Chen and Chen, 2011). Asleep/fainted drivers increase the 

likelihood of more severe injuries (Chen and Chen, 2011). 

Alcohol-impaired Alcohol consumption does not significantly affect the injury severity of truck 

crashes (Zhu and Srinivasan, 2011).  

Seat-belt and air 

bag 

In single-vehicle and multi-vehicle crashes involving large trucks, the use of seat-

belts and the availability of airbags are associated with less severe injuries (Chang 

and Mannering, 1999; Chen and Chen, 2011; Zhu and Srinivasan, 2011). 

Driver actions 

Speeding Speeding increases the likelihood of severe and fatal injuries in truck crashes 

(Ahmed et al., 2018; Chang and Mannering, 1999). Speeding has also been 

reported to have random effects on driver-injury severities involving large trucks 

in both single-vehicle and multi-vehicle crashes (Chen and Chen, 2011).  

Failing to grant 

right of way 

“Failing to grant right of way” decreases the likelihood of possible injuries and 

increases the likelihood of property damage only and severe injuries (Chang and 

Mannering, 1999). 

Improper passing Improper passing as the primary collision factor decreases the likelihood of more 

severe injuries in both rural and urban areas (Khorashadi et al., 2005). 

Crash characteristics  

Entering/leaving 

driveway 

Crashes when trucks enter/leave the driveway are associated with higher 

likelihood of possible injuries (Chang and Mannering, 1999). 

Right/left turn  The likelihood of severe injuries in truck crashes increases when a vehicle makes a 

right/left turn (Chang and Mannering, 1999). In rural/urban areas, a right/left turn 

is associated with decreased likelihood of more severe injuries (Khorashadi et al., 

2005). 

Rear end Rear end crashes are associated with a higher probability of having a severe injury 

in truck-involved crashes (Chang and Mannering, 1999). In rural areas, rear end 

crashes increase the likelihood of complaint of pain and visible injury outcomes 

and decrease the likelihood of no injury and severe-fatal injury outcomes while in 

urban areas they only decrease the likelihood of complaint of pain outcome and 

increase the likelihood of other injury-severity outcomes (Khorashadi et al., 2005). 

Collision with 

opposite direction 

Collisions with opposite directions increases the likelihood of more severe injuries 

(Zheng et al., 2018).  

Ran off the 

roadway 

Ran off the roadway increase the likelihood of minor and severe injuries in single-

vehicle and multi-vehicle truck-involved crashes (Chen and Chen, 2011). 

Number of 

vehicles 

Truck crash severity increases with an increase in the number of vehicles in the 

crash (Zheng et al., 2018). 

Truck characteristics  
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Vehicle weight Heavy gross vehicle weight (over 20,000lb) increase the likelihood of more severe 

injuries (Zheng et al., 2018). 

Cargo body Cargo tank, flatbed, and grain trucks, or trucks towing another vehicle are 

associated with higher injury severities (Zheng et al., 2018).  

Single unit truck in single-vehicle and multi-vehicle crashes, respectively, 

decreases and increases the likelihood of incapacitating injury/fatal (Chen and 

Chen, 2011). Carrying hazardous materials is associated with increased likelihood 

of more severe injuries (Chen and Chen, 2011). 

Roadway attributes 

Speed control Speed control for truck drivers significantly reduces the truck driver’s injury 

severity (Hao et al., 2016). 

Posted speed 

limit 

Higher speed limits increase injury severity in truck crashes (Chang and 

Mannering, 1999).  

Stop sign/flasher A fair number of studies has reported that stop sign/flasher decreases the 

likelihood of more severe injuries (Chen and Chen, 2011). In single-vehicle 

crashes involving large truck, stop sign/flasher decreases the likelihood of both 

possible injury/non-incapacitating injury and incapacitating injury/fatal outcomes. 

Highway-railroad 

crossing 

Highway-railroad crossing increases the likelihood of more severe injuries (Hao et 

al., 2016). 

Concrete median 

barrier 

Concrete median barrier increases the likelihood of severe/fatal injuries 

(Khorashadi et al., 2005). 

Environmental conditions 

Visibility Poor visibility tends to increase the likelihood of severe injuries in large truck 

crashes (Hao et al., 2016).   

Weather 

condition 

Bad weather such as sleet, snow, fog, rain, and cloudiness increase the likelihood 

of more severe injuries (Ahmed et al., 2018; Hao et al., 2016; Zheng et al., 2018). 

In urban areas, rain decreases the likelihood of more severe injuries (Khorashadi et 

al., 2005). Strong crosswind increases the likelihood of more severe injuries 

(Zheng et al., 2018). Good weather increases the likelihood of fatal crashes (Zheng 

et al., 2018). 

Roadway surface 

condition 

Dry road surface condition tends to increase the likelihood of severe injury and 

fatal injury in truck crashes (Chang and Mannering, 1999). Wet road surface 

condition tends to increase the likelihood of more severe injuries (Zheng et al., 

2018). Snow/slush road surface has random effects on driver-injury severity in 

single-vehicle and multi-vehicle truck-involved accidents (Chen and Chen, 2011). 

In multi-vehicle accidents, snow/slush road surface increase the likelihood of 

possible injury/non-incapacitating injury severities and decrease the likelihood of 

incapacitating injury/fatal severities. In single-vehicle accidents, snow/slush road 

surface decreases both possible injury/non-incapacitating injuries and 

incapacitating injury/fatal injuries. Ice road surface increases the likelihood of no-

injury crashes (Chen and Chen, 2011). 

Darkness  Dark condition including dawn and dusk is associate with an increase in the 

probability of severe more severe injuries (Pahukula et al., 2015). 

Other variables 

Time of crash Peak-hours crashes increase the probability of driver’s injury severity in truck-

involved crashes (Chang and Mannering, 1999; Hao et al., 2016; Zhu and 
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Srinivasan, 2011). Truck crashes on weekends are associated with increased 

likelihood of property damage only in truck crashes (Chang and Mannering, 

1999).  

Other party type Truck accidents with passenger cars, small trucks, and large trucks are associated 

with higher likelihood of property damage only crashes (Chang and Mannering, 

1999; Khorashadi et al., 2005).  

 

asleep/fainted). Drivers’ actions include variables such as speeding and failing to grant right of 

way. Crash characteristics include variables such as the type of crash (rollover, rear-end, etc.), 

movements prior to crash (turning, etc.), and number of vehicles involved in the crash. Truck 

characteristics include specific features of the truck involved in the crash such as size and weight 

of the truck, cargo type, and type of the carried goods (hazardous materials, etc.). Roadway 

attributes include the presence of various types of traffic-control signs and roadway geometry 

conditions. Environmental conditions include various weather conditions (fog, rain, snow, etc.), 

roadway surface conditions (dry or wet), and visibility and lightening. Other crash-related factors 

(other than the above-mentioned factors) are classified as “other variables” include variables such 

as the time of the crash (day of the week and time of the day), and characteristics of the other 

vehicles involved in the crash.  

Note from the presentation of past findings in Table 5.1 that some variables were found to 

have similar effects on crash-injury severities in terms of the direction of the effect, and others 

have been found to have opposite effects from study to study. This observed disparity of findings 

could be due to several reasons such as22; temporal instability of the data, spatial instability of the 

data, insufficient number of observations, incompleteness of the data23, variations in 

methodological approaches used in past research, and unobserved heterogeneity in the data.  

 

5.3. Methodological Approaches Used in Large-Truck Injury-Severity 

Previous research has used a wide variety of methodological approaches to study the injury-

severity of crashes involving large trucks (Table 5.2 presents a summary). Many of the previous 

studies on the injury-severity of large-truck crashes have used a discrete-outcome modeling 

because available data on traffic-related crashes typically report discrete outcomes for injury-

levels. Therefore, logit, probit, and their extension statistical models have been used in most 

 

  

 

 
22 Detailed discussion regarding the variation in the direction of explanatory variables is given in previous studies 

(see Alnawmasi and Mannering, 2019, Behnood and Mannering, 2016, Behnood and Mannering, 2015, Mannering 

et al., 2016). 
23 There are also parameters that might be reported as statistically significant factors in some studies while some 

other studies do not report them as significant factors. This could be the result of missing variables or 

multicollinearity in the data which may make it difficult to find two highly correlated explanatory variables both 

statistically significant.  
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Table 5.2. Summary of methodological approaches previously used in the study of large-truck crashes 

injury severities. 

 

 

Methodological Approach 

 

Previous Research  

Multinomial logit model Khorashadi et al. (2005) 

Nested Logit model Chang and Mannering (1999) 

Ordered logit/probit model Hao et al. (2016); Uddin and Huynh (2018) 

Random parameters ordered probit model Islam and Hernandez (2013a); Uddin and Huynh (2018) 

Heteroskedastic ordered probit model Lemp et al. (2011); Zhu and Srinivasan (2011) 

Spatial generalized ordered probit model Zou et al. (2017) 

Random parameters (mixed) logit model Chen and Chen (2011); Islam and Hernandez (2013b); 

Pahukula et al. (2015) 

Gradient boosting data mining model Zheng et al. (2018) 

Bayesian binary logit model Ahmed et al. (2018) 

 

prior studies.24 In an early work, Chang and Mannering (1999) used a nested logit model to study 

the injury-severities of the most severely injured vehicle occupant in truck-involved and non-truck-

involved accidents using data from the State of Washington during 1994. To investigate the 

difference between rural and urban driver-injury severities in large-truck crashes in California 

from 1997 to 2000, Khorashadi et al. (2005) used a standard multinomial logit model. In other 

work, Hao et al. (2016) used ten-years of accident data starting from 2002 to develop an ordered 

probit model for the driver injury-severities in truck-involved accidents at highway-rail grade 

crossing in the United States.   

Most recent studies have recognized the importance of unobserved heterogeneity in model 

estimation. In crash-related data, unobserved heterogeneity may arise from various sources such 

as unobserved driver characteristics, vehicle characteristics, roadway attributes, and environmental 

factors (Mannering et al., 2016). In general, previous research has shown that, depending on the 

nature of the data, models accounting for unobserved heterogeneity can be statistically superior. 

These heterogeneity models can account for observation-specific variations in the effects of 

explanatory variables (Behnood et al., 2014; Anastasopoulos et al., 2016; Behnood and Mannering, 

2016; Sarwar and Anastasopoulos, 2017). Specifically, regarding the study of injury-severity of 

large-truck crashes, Chen and Chen (2011), Islam and Hernandez, 2013b, and Pahukula et al., 

(2015) estimated random parameters multinomial logit models, and Islam and Hernandez (2013a) 

and Uddin and Huynh, 2018 estimated random-parameters ordered probit models.  

 

 
24 For injury severity analysis in general (including studies not restricted to large-truck involvement), a wide variety 

of ordered and unordered discrete outcome methodological approaches have been used to study the crash-injury 

severities including ordered logit/probit models, multinomial logit models, latent class models, Markov-switching 

logit models, random parameters logit models with heterogeneity in means and/or variances, and others 

(Savolainen et al., 2011; Mannering and Bhat, 2014; Mannering et al., 2016). While modeling approaches have 

become more sophisticated over time, it is important to note that the choice of one modeling approach over 

another is often data-dependent and thus a universal statement of the methodological superiority of one method 

over another cannot be made. 
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However, in the study of large truck25 injury severities, the authors are not aware of any 

research to date that has extended random parameters models to account for possible heterogeneity 

in the means and variance of random parameters. Such an extension allows a more generalized 

approach to capture unobserved heterogeneity (Mannering et al., 2016) and this has been shown 

to produce statistically superior models in a number of recent crash-injury-severity studies 

(Seraneeprakarn et al., 2017; Behnood and Mannering, 2017b; Waseem et al., 2019; Alnawmasi 

and Mannering, 2019). This chapter will allow for possible heterogeneity in the means and 

variances of random parameters while studying various temporal aspects of injury severities in 

large-truck crashes. 

 

5.4. Methodological Approach 

Heterogeneity models include a wide variety of models such as random parameters logit models 

(Cerwick et al., 2014, Behnood and Mannering, 2015, 2017a, 2017b, Seraneeprakarn et al., 2017), 

latent class models (Xiong and Mannering, 2013, Behnood et al., 2014, Yasmin et al., 2014, 

Fountas et al. 2018a), random parameters ordered probit model (Fountas and Anastasopoulos, 

2017, 2018, Fountas et al. 2018b), bivariate/multivariate models with random parameters (Abay 

et al., 2013, Russo et al., 2014), and Markov switching models (Malyshkina and Mannering, 2009, 

Xiong et al., 2014). 

In this chapter, crash-injury severities (the most severely injured person26 in a crash 

involving a large truck) are studied by considering three discrete crash-injury severity levels; no 

injury (property damage only), minor injury (possible injury and non-incapacitating), and severe 

injury (incapacitating or fatal). To arrive at a random parameters logit model that allows for 

heterogeneity in the means and variances of the random parameters, a function that determines the 

crash injury-severity of the most severely injured person in a crash involving a large truck is 

defined as; 

kn k kn knS = + β X      (5.1) 

where Skn is an injury-severity function determining the probability of large-truck crash injury-

severity category k in crash n, Xkn is a vector of explanatory variable that affect large-truck crash 

injury-severity level k, βk is a vector of estimable parameters, and εkn is the error term which is 

 

 
25 The injury-severity analysis could benefit from estimating separate models for different truck classes (truck class 

5 to truck class 13) and/or service types (long haul vs. short haul, less-than-truckload vs. truckload, etc.). 

Identifying different classes of data that share common features to estimate separate models for different sub-

groups of data has been the approach used by several researchers (Morgan and Mannering, 2011; Behnood et al., 

2014; Anderson and Hernandez, 2017; Fountas et al., 2019). As an example, Behnood and Mannering (2016) 

studied the effects of occupants on drive-injury severities in single-vehicle crashes by using three different injury-

severity sub-groups that were defined based on the number of occupants in the vehicles. However, careful 

consideration needs to be given to having a sufficient number of observations for model estimation when dealing 

with sub-group estimations. In the current study, to account for the unobserved heterogeneity in the data, a random 

parameters logit model with heterogeneity in the means and variances of the random parameters was used. The 

unobserved heterogeneity found with such an estimation could be capturing the effect of truck-class effects as well 

as other sources of unobserved heterogeneity. 
26 The crash injury-severity of the truck driver was also initially considered. However, it was observed that the 

“severe injury” outcome did not have a sufficient number of observations to produce reliable results. One reason 

for this could be due to the large size and heavy weight of trucks, which makes truck drivers less likely to be 

severely injured. However, crashes involving large trucks significantly affect the injury severity of other road-

users. Therefore, in the current study, it was decided to statistically assess the injury-severity of the most injured 

person as opposed to the injury-severity of the truck driver. 



 

 

88 

 

assumed to be generalized extreme value distributed. The outcome probabilities of a random 

parameters logit model of crash injury severity, which accounts for unobserved heterogeneity in 

the data, can be derived as (McFadden and Train, 2000; Washington et al., 2011), 

( )
( )

( )
( )k kn

n

k kn

K

EXP
P k f | d

EXP

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β X
β φ β

β X
    (5.2) 

where Pn(k) is the probability of crash n having the crash injury severity k, f(β|φ) is the density 

function of β with φ referring to vector of parameters (mean and variance) of that density function, 

and all other terms are as previously defined. To account for the unobserved heterogeneity in the 

means and variances of random parameters, βkn is treated as a vector of estimable parameters that 

varies across crashes as (Seraneeprakarn et al., 2017; Behnood and Mannering, 2017b; Waseem et 

al., 2019; Alnawmasi and Mannering, 2019): 

( )kn k kn kn kn kn kn kn 
 +  EXP=   +  β Z ω W    (5.3) 

where βk is the mean parameter estimate across all crashes, Zkn is a vector of explanatory variables 

that captures heterogeneity in the mean that affect large-truck injury severity level k, Θkn is a 

corresponding vector of estimable parameters, Wkn is a vector of explanatory variables that 

captures heterogeneity in the standard deviation σkn with corresponding parameter vector ωkn, and 

vkn is a disturbance term.  

In this chapter, a wide range of density functions were considered in the empirical analysis 

including the normal, lognormal, triangular, and uniform distributions. However, the empirical 

analysis showed that no distribution was statistically superior to the normal distribution. The model 

estimation was undertaken using simulated likelihood with 1000 Halton draws (McFadden and 

Train, 2000). Marginal effects, which give the effect that one-unit increase in an explanatory 

variable has on the injury-severity outcome probabilities, were also calculated to further interpret 

the model estimation results (Washington et al., 2011). 

 

5.5. Empirical setting 

The data used for this chapter were collected from police-reported crashes that involved large 

trucks in Los Angeles over an eight-year period from January 1, 2010 to December 31, 2017. In 

addition to resulting injury severities, the available crash data provided comprehensive information 

on crash-related factors (such as primary cause of crash and events contributing to crash), driver 

attributes (such as age, gender, and physical condition), vehicle characteristics (such as type of the 

vehicle and model year of the vehicle), roadway, weather, and environmental conditions (such as 

road surface condition and light), and time and location of the crash.  
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5.6. Temporal Stability Tests  

After extensive empirical testing27, it was determined that models that produced the best statistical 

results were, for different times of day, morning (6:00 A.M. to 11:59 A.M.) and afternoon (12:00 

P.M. to 5:59 P.M.)28, and for the years from 2010 to 2013 and from 2014 to 2017. Table 5.3 

 

Table 5.3. Crash injury frequency and percentage distribution by different time periods 

Time period 
Severe injury 

frequency (%) 

Minor injury 

frequency (%) 

No injury 

frequency (%) 
Total (%) 

Morning (2010-13) 35 (2.10) 449 (26.98) 1,180 (70.91) 1,664  

Morning (2014-17) 31 (1.98) 453 (28.93) 1,082 (69.09) 1,566  

Afternoon (2010-13) 39 (3.01) 486 (37.50) 771 (59.49) 1,296  

Afternoon (2014-17) 44 (3.63) 463 (38.23) 284 (58.13) 1,211  

Total (%) 149 (2.60) 1,851 (32.26) 3,737 (65.14) 5,737 (100) 

  

presents the injury distribution in these time-of-day and time-period combinations. Table 5.4 

provides the summary statistics for variables found to be statistically significant in the estimated 

models, and Tables 5.5-5.8 present the model estimation results for the four time-of-day/time-

period combinations. To statistically test if injury-severities in crashes involving large trucks were 

significantly different across different times during the day (morning and afternoon) and different 

time periods (2010-13 and 2014-17), a series of likelihood ratio tests were conducted. The test 

statistic is (see Washington et al., 2011), 

( ) ( )
2 1 1

2 2 m m mX LL LL = − −
 

β β     (5.4) 

where, ( )
2 1m mLL β  is the log-likelihood at convergence of a model containing converged parameters 

of time-of-day/time-period data m2, while using data from time-of-day/time-period data m1, and 

1
( )mLL β is the log-likelihood at convergence of the model using time-of-day/time-period data m1, 

with the same explanatory variables but with parameters no longer restricted to the converged 

parameters of time-of-day/time-period data m2. This process is repeated for all combinations of 

the four time-of-day/time-period data sets giving a total of 12 likelihood ratio 

 

 
27 Regarding time-of-day, we focused on the time periods to cover morning peak hours and afternoon peak hours. 

For yearly classification of the data, several scenarios were assumed and tested for potential temporal stability 

using likelihood ratio tests. The classifications used in this study included: (a) 2010-2011, 2012-2013, 2014-2015, 

and 2016-2017; (b) 2010-2011, 2012-2015, and 2016-2017, and (c) 2010-2013 and 2014-2017. Of these, the 

classification of data into the years from 2010 to 2013 and from 2014 to 2017 provided the most statistically 

defensible results as indicated by likelihood ratio tests. 
28 Other times of day (late evening and early morning) produced too few observations to reliably test for temporal 

stability. 



 

 

90 

 

Table 5.4. Descriptive statistics of the variables used in the estimations 

Variable  

Morning 

2010-2013 

Morning 

2014-2017 

Afternoon 

2010-2013 

Afternoon 

2014-2017 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Weekday (1 if crash occurred during the weekday; 0 otherwise) 0.938 0.242 0.934 0.249 0.892 0.310 0.903 0.295 

Weekend (1 if crash occurred during the weekend; 0 otherwise) 0.063 0.242 0.066 0.249 0.108 0.310 0.097 0.295 

At fault (1 if truck driver is at fault; 0 otherwise) 0.517 0.500 0.525 0.499 0.522 0.500 0.500 0.500 

Male (1 if truck driver is male; 0 otherwise) 0.959 0.198 0.958 0.201 0.939 0.239 0.936 0.246 

Young-age (1 if truck driver is younger than 31 years old; 0 otherwise) 0.120 0.325 0.127 0.333 0.145 0.352 0.158 0.365 

Middle age (1 if truck driver is younger than 51 years old and older than 30 years 

old; 0 otherwise) 

0.560 0.496 0.493 0.500 0.525 0.499 0.486 0.500 

Old-age (1 if truck driver is older than 50 years old; 0 otherwise) 0.320 0.467 0.380 0.485 0.329 0.470 0.357 0.479 

Had not been drinking (1 if apparent physical condition of driver is had not been 

drinking; 0 otherwise) 

0.949 0.220 0.923 0.267 0.927 0.259 0.898 0.302 

Had been drinking, under influence (1 if apparent physical condition of driver is had 

been drinking and under influence; 0 otherwise) 

0.002 0.049 0.003 0.050 0.011 0.103 0.008 0.091 

Stopped (1 if movement preceding collision is stopped; 0 otherwise) 0.133 0.340 0.148 0.355 0.102 0.302 0.124 0.329 

Proceeding straight (1 if movement preceding collision is proceeding straight; 0 

otherwise) 

0.416 0.493 0.429 0.495 0.458 0.498 0.449 0.497 

Making right turn (1 if movement preceding collision is making right turn; 0 

otherwise) 

0.127 0.333 0.115 0.319 0.140 0.347 0.120 0.325 

Making left turn (1 if movement preceding collision is making left turn; 0 

otherwise) 

0.092 0.289 0.080 0.271 0.100 0.299 0.089 0.285 

Making U-turn (1 if movement preceding collision is making U-turn; 0 otherwise) 0.009 0.095 0.011 0.104 0.012 0.110 0.010 0.099 

Backing (1 if movement preceding collision is backing; 0 otherwise) 0.098 0.297 0.102 0.303 0.073 0.259 0.083 0.277 

Asian (1 if truck driver is Asian; 0 otherwise) 0.012 0.109 0.008 0.091 0.013 0.114 0.015 0.121 

Black (1 if truck driver is Black; 0 otherwise) 0.213 0.409 0.218 0.413 0.166 0.372 0.181 0.385 

Hispanic (1 if truck driver is Hispanic; 0 otherwise) 0.505 0.500 0.550 0.498 0.492 0.500 0.528 0.499 

White (1 if truck driver is White; 0 otherwise) 0.216 0.411 0.156 0.363 0.258 0.437 0.183 0.387 

New truck (1 if truck is less than 6 years old; 0 otherwise)  0.363 0.481 0.355 0.479 0.357 0.479 0.372 0.484 

Old truck (1 if truck is above 15 years old; 0 otherwise) 0.077 0.266 0.112 0.315 0.137 0.344 0.142 0.349 

Intersection (1 if intersection-related crash; 0 otherwise) 0.205 0.404 0.201 0.401 0.225 0.418 0.237 0.425 

Clear (1 if weather condition is clear; 0 otherwise) 0.846 0.361 0.881 0.324 0.899 0.301 0.919 0.273 

Cloudy (1 if weather condition is cloudy; 0 otherwise) 0.125 0.331 0.097 0.296 0.069 0.253 0.064 0.244 

Rainy (1 if weather condition is rainy; 0 otherwise) 0.025 0.155 0.015 0.120 0.022 0.148 0.013 0.114 

Driving under the influence of alcohol or drug (1 if violation category is driving 

under the influence of alcohol or drug; 0 otherwise 

0.009 0.095 0.006 0.080 0.019 0.135 0.015 0.121 

Unsafe speed (1 if violation category is unsafe speed; 0 otherwise) 0.165 0.371 0.167 0.373 0.160 0.367 0.167 0.373 
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Wrong side of road (1 if violation category is wrong side of road; 0 otherwise) 0.038 0.191 0.027 0.162 0.034 0.181 0.037 0.189 

Improper passing (1 if violation category is improper passing; 0 otherwise) 0.084 0.277 0.073 0.260 0.052 0.223 0.042 0.201 

Unsafe lane change (1 if violation category is unsafe lane change; 0 otherwise) 0.124 0.329 0.125 0.331 0.137 0.344 0.120 0.325 

Improper turning (1 if violation category is improper turning; 0 otherwise) 0.150 0.357 0.178 0.382 0.133 0.340 0.160 0.367 

Truck right of way (1 if violation category is truck right of way; 0 otherwise) 0.085 0.279 0.075 0.263 0.122 0.327 0.121 0.327 

Traffic signals and signs (1 if violation category is traffic signals and signs; 0 

otherwise) 

0.032 0.177 0.043 0.202 0.042 0.202 0.037 0.189 

Felony (1 if crash is felony hit-and-run; 0 otherwise) 0.005 0.069 0.014 0.118 0.016 0.126 0.019 0.137 

Misdemeanor (1 if crash is misdemeanor hit-and-run; 0 otherwise) 0.099 0.298 0.096 0.294 0.083 0.276 0.112 0.316 

Not Hit and Run (1 if crash is not hit-and-run; 0 otherwise) 0.897 0.304 0.890 0.313 0.900 0.299 0.869 0.338 

Head-on (1 if type of crash is head-on; 0 otherwise) 0.031 0.174 0.029 0.167 0.037 0.189 0.040 0.197 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) 0.488 0.500 0.462 0.499 0.408 0.492 0.403 0.491 

Rear end (1 if type of crash is rear end; 0 otherwise) 0.144 0.351 0.160 0.366 0.180 0.384 0.187 0.390 

Broadside (1 if type of crash is broadside; 0 otherwise) 0.152 0.359 0.144 0.351 0.181 0.385 0.191 0.393 

Hit object (1 if type of crash is hit object; 0 otherwise) 0.098 0.297 0.109 0.311 0.113 0.316 0.094 0.292 

Pedestrian (1 if truck is involved with Pedestrian; 0 otherwise) 0.023 0.149 0.025 0.156 0.033 0.179 0.026 0.160 

Other motor vehicle (1 if truck is involved with other motor vehicle; 0 otherwise) 0.657 0.475 0.656 0.475 0.679 0.467 0.675 0.468 

Parked motor vehicle (1 if truck is involved with parked motor vehicle; 0 otherwise) 0.132 0.338 0.142 0.349 0.100 0.300 0.131 0.338 

Bicycle (1 if truck is involved with bicycle; 0 otherwise) 0.019 0.135 0.017 0.130 0.024 0.153 0.017 0.127 

Fixed object (1 if truck is involved with fixed object; 0 otherwise) 0.118 0.322 0.123 0.328 0.127 0.333 0.120 0.325 

Dry (1 if road surface condition is dry; 0 otherwise) 0.942 0.234 0.960 0.197 0.944 0.231 0.961 0.193 

Wet (1 if road surface condition is wet; 0 otherwise) 0.052 0.221 0.031 0.174 0.041 0.198 0.029 0.168 

Daylight (1 if light condition is daylight; 0 otherwise) 0.975 0.157 0.976 0.154 0.962 0.191 0.957 0.203 

Dark - street lights (1 if light condition is dark - street lights; 0 otherwise) 0.005 0.069 0.005 0.071 0.022 0.148 0.024 0.153 

Passenger car/station wagon (1 if at fault vehicle type is passenger car/station 

wagon; 0 otherwise) 

0.225 0.417 0.226 0.418 0.214 0.410 0.249 0.433 

Truck or truck tractor (1 if at fault vehicle type is truck or truck tractor; 0 otherwise) 0.518 0.500 0.526 0.499 0.523 0.500 0.501 0.500 
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Table 5.5. Random parameters logit model (allowing for possible heterogeneity in means and variances) results of large-truck crash injury-severities 

during the morning time, 2010-2013. 

Variable 
Parameter 

estimate 
t-Stat. 

Marginal effects 

No  

injury 

Minor 

injury 

Severe 

injury 

Defined for severe injury 

Constant -0.672 -0.64    

Hispanic (1 if truck driver is Hispanic; 0 otherwise) 1.319 0.62 -0.0027 -0.0013 0.0039 

Standard deviation of “Hispanic” 1.858 1.74    

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) -1.412 -1.64 0.0013 0.0003 -0.0016 

Other motor vehicle (1 if truck is involved with other motor vehicle; 0 otherwise) -2.205 -4.69 0.0097 0.0077 -0.0174 

Daylight (1 if light condition is daylight; 0 otherwise) -1.949 -2.34 0.0142 0.0127 -0.0269 

Defined for minor injury 

Male (1 if truck driver is male; 0 otherwise) -2.209 -3.61 0.0700 -0.0847 0.0147 

Standard deviation of “Male” 1.859 2.63    

At fault (1 if truck driver is at fault; 0 otherwise) 0.441 1.79 0.3675 -0.3383 -0.0292 

Traffic signals and signs (1 if violation category is traffic signals and signs; 0 

otherwise) 

0.990 1.62 -0.0027 0.0032 -0.0005 

Felony (1 if crash is felony hit-and-run; 0 otherwise) 8.530 3.57 -0.0018 0.0019 -0.0001 

Head-on (1 if type of crash is head-on; 0 otherwise) 1.306 2.08 -0.0040 0.0045 -0.0005 

Pedestrian (1 if truck is involved with Pedestrian; 0 otherwise) 1.567 2.23 -0.0023 0.0041 -0.0018 

Bicycle (1 if truck is involved with bicycle; 0 otherwise) 2.368 2.88 -0.0027 0.0046 -0.0019 

Dry (1 if road surface condition is dry; 0 otherwise) -0.808 -1.77 0.0575 -0.0629 0.0053 

Defined for no injury 

Constant -0.437 -0.40    

Parked motor vehicle (1 if truck is involved with parked motor vehicle; 0 otherwise) 4.256 2.41 0.0049 -0.0044 -0.0005 

Standard deviation of “Parked motor vehicle” 2.941 1.82    

Weekday (1 if crash occurred during the weekday; 0 otherwise) 1.615 3.28 0.1264 -0.1146 -0.0119 

Stopped (1 if movement preceding collision is stopped; 0 otherwise) 1.640 3.58 0.0182 -0.0163 -0.0019 

Proceeding straight (1 if movement preceding collision is proceeding straight; 0 

otherwise) 

2.313 3.72 0.0822 -0.0766 -0.0056 

Backing (1 if movement preceding collision is backing; 0 otherwise) 4.215 4.90 0.0171 -0.0162 -0.0009 

Black (1 if truck driver is Black; 0 otherwise) 1.491 3.89 0.0210 -0.0189 -0.0021 

White (1 if truck driver is White; 0 otherwise) 0.621 2.10 0.0108 -0.0094 -0.0014 

Intersection (1 if intersection-related crash; 0 otherwise) -0.756 -2.86 -0.0158 0.0138 0.0020 

Improper passing (1 if violation category is improper passing; 0 otherwise) 0.911 1.90 0.0042 -0.0041 -0.0002 

Not Hit and Run (1 if crash is not hit-and-run; 0 otherwise) -5.069 -4.58 -0.4169 0.3785 0.0384 
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Sideswipe (1 if type of crash is sideswipe; 0 otherwise) 2.375 4.95 0.0824 -0.0803 -0.0021 

Hit object (1 if type of crash is hit object; 0 otherwise) 2.724 3.57 0.0075 -0.0061 -0.0013 

Fixed object (1 if truck is involved with fixed object; 0 otherwise) 3.491 4.43 0.0116 -0.0093 -0.0022 

Heterogeneity in the mean of the random parameters 

Male: Proceeding straight (1 if movement preceding collision is proceeding straight; 0 

otherwise) 

1.621 2.66    

Hispanic: Proceeding straight (1 if movement preceding collision is proceeding 

straight; 0 otherwise) 

1.796 2.01    

Hispanic: Not Hit and Run (1 if crash is not hit-and-run; 0 otherwise) -3.806 -2.21    

Model statistics 

Number of observations 1,664 

Log-likelihood at zero, LL(0) -1,828.09 

Log-likelihood at convergence, LL(β) -724.12 

ρ2 = 1-LL(β)/LL(0) 0.604 

 

 

Table 5.6. Random parameters logit model (allowing for possible heterogeneity in means and variances) results of large-truck crash injury-severities 

during the afternoon time, 2010-2013. 

Variable 
Parameter 

estimate 
t-Stat. 

Marginal effects 

No  

injury 

Minor 

injury 

Severe 

injury 

Defined for severe injury 

Constant -2.791 -2.69    

Weekday (1 if crash occurred during the weekday; 0 otherwise) 1.895 1.83 -0.0168 -0.0312 0.0480 

At fault (1 if truck driver is at fault; 0 otherwise) -1.107 -2.90 0.0037 0.0072 -0.0109 

Old truck (1 if truck is above 15 years old; 0 otherwise) 1.083 2.81 -0.0028 -0.0052 0.0080 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) -1.452 -3.05 0.0042 0.0023 -0.0065 

Rear end (1 if type of crash is rear end; 0 otherwise) -2.435 -3.26 0.0013 0.0024 -0.0037 

Passenger car/station wagon (1 if at fault vehicle type is passenger car/station wagon; 

0 otherwise) 

-1.727 -3.24 0.0018 0.0045 -0.0063 

Defined for minor injury 

Making U-turn (1 if movement preceding collision is making U-turn; 0 otherwise) 1.564 1.93 -0.0480 0.0847 -0.0367 

Rainy (1 if weather condition is rainy; 0 otherwise) 1.865 1.91 -0.0043 0.0046 -0.0002 

Automobile right of way (1 if violation category is automobile right of way; 0 

otherwise) 

0.818 3.41 -0.0116 0.0148 -0.0033 

Pedestrian (1 if truck is involved with Pedestrian; 0 otherwise) 0.681 1.80 -0.0025 0.0041 -0.0016 



 

 

94 

 

Defined for no injury 

Constant -1.400 -6.93    

Wet (1 if road surface condition is wet; 0 otherwise) 1.120 1.40 0.0040       -0.0039 -0.0001 

Standard deviation of “Wet” 2.373 2.02    

Stopped (1 if movement preceding collision is stopped; 0 otherwise) 0.753 2.84 0.0128 -0.0123 -0.0006 

Proceeding straight (1 if movement preceding collision is proceeding straight; 0 

otherwise) 

0.581 3.25 0.0378 -0.0353 -0.0025 

Backing (1 if movement preceding collision is backing; 0 otherwise) 2.249 6.03 0.0162 -0.0149 -0.0012 

Black (1 if truck driver is Black; 0 otherwise) 0.684 3.17 0.0147 -0.0137 -0.0011 

White (1 if truck driver is White; 0 otherwise) 0.468 2.58 0.0160 -0.0151 -0.0009 

Intersection (1 if intersection-related crash; 0 otherwise) -0.353 -1.86 -0.0110 0.0101 0.0009 

Improper passing (1 if violation category is improper passing; 0 otherwise) 1.236 3.19 0.0072 -0.0068 -0.0004 

Unsafe lane change (1 if violation category is unsafe lane change; 0 otherwise) 0.506 2.16 0.0106 -0.0100 -0.0005 

Misdemeanor (1 if crash is misdemeanor hit-and-run; 0 otherwise) 4.275 5.35 0.0057 -0.0053 -0.0004 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) 1.473 8.09 0.0850 -0.0807 -0.0043 

Hit object (1 if type of crash is hit object; 0 otherwise) 1.895 3.86 0.0100 -0.0083 -0.0017 

Parked motor vehicle (1 if truck is involved with parked motor vehicle; 0 otherwise) 2.238 5.33 0.0107 -0.0098 -0.0009 

Fixed object (1 if truck is involved with fixed object; 0 otherwise) 2.514 5.33 0.0155 -0.0136 -0.0019 

Model statistics 

Number of observations 1,296 

Log-likelihood at zero, LL(0) -1,423.80 

Log-likelihood at convergence, LL(β) -674.97 

ρ2 = 1-LL(β)/LL(0) 0.526 
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Table 5.7. Random parameters logit model (allowing for possible heterogeneity in means and variances) results of large-truck crash injury-severities 

during the morning time, 2014-2017. 

Variable 
Parameter 

estimate 
t-Stat. 

Marginal effects 

No  

injury 

Minor 

injury 

Severe 

injury 

Defined for severe injury 

Constant 1.053 0.91    

Middle age (1 if truck driver is younger than 51 years old and older than 30 years old; 

0 otherwise) 

-3.262 -1.70 -0.0017 -0.0008 0.0025 

Standard deviation of “Middle age” 2.662 2.06    

Weekday (1 if crash occurred during the weekday; 0 otherwise) -1.490 -2.03 0.0061 0.0119 -0.0179 

At fault (1 if truck driver is at fault; 0 otherwise) -1.629 -3.08 0.0036 0.0051 -0.0087 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) -1.685 -2.34 0.0015 0.0016 -0.0030 

Rear end (1 if type of crash is rear end; 0 otherwise) -2.547 -2.40 0.0007 0.0014 -0.0021 

Other motor vehicle (1 if truck is involved with other motor vehicle; 0 otherwise) -1.780 -3.20 0.0040 0.0088 -0.0128 

Bicycle (1 if truck is involved with bicycle; 0 otherwise) -1.767 -1.93 0.0001 0.0018 -0.0019 

Dark - street lights (1 if light condition is dark - street lights; 0 otherwise) 3.992 2.55 -0.0008 -0.0005 0.0013 

Passenger car/station wagon (1 if at fault vehicle type is passenger car/station wagon; 

0 otherwise) 

-1.948 -2.27 0.0015 0.0036 -0.0051 

Defined for minor injury 

Young age (1 if truck driver is younger than 31 years old; 0 otherwise) 1.388 4.62 0.1536 -0.1221 -0.0316 

Passing another vehicle (1 if movement preceding collision is passing another vehicle; 

0 otherwise) 

0.738 2.56 -0.0068 0.0077 -0.0009 

Pedestrian (1 if truck is involved with Pedestrian; 0 otherwise) 1.622 3.31 -0.0034 0.0061 -0.0027 

Dry (1 if road surface condition is dry; 0 otherwise) -1.415 -1.76 0.1085 -0.1211 0.0126 

Defined for no injury 

Constant -1.787 -2.20    

Old truck (1 if truck is above 15 years old; 0 otherwise) -1.753 -3.91 -0.0128 0.0119 0.0009 

Standard deviation of “Old truck” 1.852 2.92    

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) 3.402 5.25 0.0230 -0.0223 -0.0006 

Standard deviation of “Sideswipe” 2.763 3.59    

Stopped (1 if movement preceding collision is stopped; 0 otherwise) 1.012 3.92 0.0152 -0.0147 -0.0005 

Backing (1 if movement preceding collision is backing; 0 otherwise) 2.743 6.76 0.0166 -0.0152 -0.0014 

Black (1 if truck driver is Black; 0 otherwise) 0.747 2.61 0.0105 -0.0099 -0.0006 

New truck (1 if truck is less than 6 years old; 0 otherwise) -0.452 -2.19 -0.0138 0.0130 0.0008 

Wrong side of road (1 if violation category is wrong side of road; 0 otherwise) -1.706 -2.42 -0.0037 0.0036 0.0002 

Improper passing (1 if violation category is improper passing; 0 otherwise) 3.618 2.30 0.0125 -0.0121 -0.0004 
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Traffic signals and signs (1 if violation category is traffic signals and signs; 0 

otherwise) 

-1.531 -3.40 -0.0057 0.0053 0.0004 

Felony (1 if crash is felony hit-and-run; 0 otherwise) -7.512 -2.63 -0.0017 0.0016 0.0001 

Misdemeanor (1 if crash is misdemeanor hit-and-run; 0 otherwise) 5.113 4.87 0.0047 -0.0044 -0.0004 

Hit object (1 if type of crash is hit object; 0 otherwise) 3.256 5.64 0.0116 -0.0075 -0.0041 

Parked motor vehicle (1 if truck is involved with parked motor vehicle; 0 otherwise) 3.254 5.65 0.0124 -0.0109 -0.0015 

Bicycle (1 if truck is involved with bicycle; 0otherwise) -3.623 -2.59 -0.0019 0.0018 0.0001 

Fixed object (1 if truck is involved with fixed object; 0otherwise) 1.789 3.52 0.0081 -0.0060 -0.0021 

Wet (1 if road surface condition is wet; 0 otherwise) 2.698 2.78 0.0064 -0.0063 -0.0002 

Heterogeneity in the mean of the random parameters 

Sideswipe: Backing (1 if movement preceding collision is backing; 0 otherwise) -4.125 -3.05    

Sideswipe: Black (1 if truck driver is Black; 0 otherwise) 1.298 1.80    

Sideswipe: Improper passing (1 if violation category is improper passing; 0 otherwise) -2.786 -1.62    

Sideswipe: Passenger car/station wagon (1 if at fault vehicle type is passenger 

car/station wagon; 0 otherwise) 

-1.027 -1.96    

Model statistics 

Number of observations 1,566 

Log-likelihood at zero, LL(0) -1,720.43 

Log-likelihood at convergence, LL(β) -637.04 

ρ2 = 1-LL(β)/LL(0) 0.630 
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Table 5.8. Random parameters logit model (allowing for possible heterogeneity in means and variances) results of large-truck crash injury-severities 

during the afternoon time, 2014-2017. 

Variable 
Parameter 

estimate 
t-Stat. 

Marginal effects 

No  

injury 

Minor 

injury 

Severe 

injury 

Defined for severe injury 

Constant -0.499 -1.12    

At fault (1 if truck driver is at fault; 0 otherwise) -0.630 -1.61 0.0022 0.0049 -0.0072 

Making left turn (1 if movement preceding collision is making left turn; 0 otherwise) 1.154 2.46 -0.0015 -0.0054 0.0069 

Hispanic (1 if truck driver is Hispanic; 0 otherwise) 0.780 1.93 -0.0045 -0.0112 0.0156 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) -2.277 -3.57 0.0035 0.0035 -0.0070 

Rear end (1 if type of crash is rear end; 0 otherwise) -3.073 -3.60 0.0015 0.0031 -0.0047 

Broadside (1 if type of crash is broadside; 0 otherwise) -1.289 -2.56 0.0024 0.0089 -0.0113 

Other motor vehicle (1 if truck is involved with other motor vehicle; 0 otherwise) -1.636 -2.89 0.0070 0.0171 -0.0241 

Defined for minor injury 

Middle age (1 if truck driver is younger than 51 years old and older than 30 years old; 

0 otherwise) 

0.632 3.03 -0.0245 0.0254 -0.0009 

Standard deviation of “middle aged” 0.973 2.13    

Young age (1 if truck driver is younger than 31 years old; 0 otherwise) 0.702 2.63 0.4724 -0.4185 -0.0539 

New truck (1 if truck is less than 6 years old; 0 otherwise) 0.327 1.77 -0.0135 0.0152 -0.0016 

Rainy (1 if weather condition is rainy; 0 otherwise) -1.353 -2.03 0.0025 -0.0031 0.0006 

Automobile right of way (1 if violation category is automobile right of way; 0 

otherwise) 

0.923 3.17 -0.0121 0.0149 -0.0028 

Head-on (1 if type of crash is head-on; 0 otherwise) 0.822 1.79 -0.0025 0.0043 -0.0018 

Other motor vehicle (1 if truck is involved with other motor vehicle; 0 otherwise) -0.806 -2.06 0.0708 -0.0793 0.0084 

Defined for no injury 

Constant -1.652 -3.12    

Old truck (1 if truck is above 15 years old; 0 otherwise) -1.356 -3.74 -0.0141 0.0127 0.0014 

Standard deviation of “old truck” 1.197 1.61    

Fixed object (1 if truck is involved with fixed object; 0 otherwise) 4.305 2.46 0.0059 -0.0044 -0.0015 

Standard deviation of “fixed object” 3.558 2.02    

Had not been drinking (1 if apparent physical condition of driver is had not been 

drinking; 0 otherwise) 

0.655 1.95 0.0677 -0.0627 -0.0050 

Proceeding straight (1 if movement preceding collision is proceeding straight; 0 

otherwise) 

0.339 1.78 0.0186 -0.0174 -0.0012 

Making U-turn (1 if movement preceding collision is making U-turn; 0 otherwise) -3.330 -1.89 -0.0019 0.0015 0.0004 

Backing (1 if movement preceding collision is backing; 0 otherwise) 1.987 4.61 0.0132 -0.0118 -0.0015 
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Black (1 if truck driver is Black; 0 otherwise) 0.959 3.81 0.0193 -0.0185 -0.0008 

White (1 if truck driver is White; 0 otherwise) 0.776 3.04 0.0155 -0.0145 -0.0010 

Intersection (1 if intersection-related crash; 0 otherwise) -0.481 -2.01 -0.0129 0.0118 0.0011 

Unsafe speed (1 if violation category is unsafe speed; 0 otherwise) -1.702 -5.03 -0.0307 0.0278 0.0029 

Wrong side of road (1 if violation category is wrong side of road; 0 otherwise) -1.046 -2.26 -0.0049 0.0045 0.0004 

Traffic signals and signs (1 if violation category is traffic signals and signs; 0 

otherwise) 

-1.504 -2.51 -0.0044 0.0040 0.0004 

Misdemeanor (1 if crash is misdemeanor hit-and-run; 0 otherwise) 5.529 6.59 0.0086 -0.0081 -0.0006 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) 1.453 6.31 0.0682 -0.0660 -0.0023 

Hit object (1 if type of crash is hit object; 0 otherwise) 3.014 3.31 0.0123 -0.0089 -0.0034 

Parked motor vehicle (1 if truck is involved with parked motor vehicle; 0 otherwise) 3.296 5.94 0.0243 -0.0213 -0.0030 

Bicycle (1 if truck is involved with bicycle; 0 otherwise) -2.174 -1.85 -0.0015 0.0013 0.0002 

Heterogeneity in the mean of the random parameters 

Middle age: Unsafe speed (1 if violation category is unsafe speed; 0 otherwise) -1.201 -2.81    

Model statistics 

Number of observations 1,211 

Log-likelihood at zero, LL(0) -1,330.42 

Log-likelihood at convergence, LL(β) -600.17 

ρ2 = 1-LL(β)/LL(0) 0.549 
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tests. The resulting value 
2X  in Equation 4 is χ2 distributed, with degrees of freedom equal to the 

number of estimated parameters, and can be used to determine if the null hypothesis that the 

parameters are equal between any two time-of-day/time-period data sets can be rejected. The 

results of these 12 tests are presented in Table 5.9. This table shows that in all cases the null 

hypothesis that the 12 time-of-day/time-period combinations tested produced equal parameters can 

be rejected with over 99% confidence, suggesting that separate models are warranted for the time-

of-day and time-periods used in this analysis. These results are in line with the findings of previous 

research efforts that have studied of crash-injury severity models across different time periods 

while considering crashes involving all vehicle types, large trucks and all others (Alnawmasi and 

Mannering, 2019; Behnood and Mannering, 2015; Behnood and Mannering, 2016).  

 

Table 5.9. Likelihood ratio test results between morning and afternoon in different time periods  

(χ2 values with degrees of freedom in parenthesis and confidence level in brackets). 

                       m2   

m1   

Morning 

2010-13 

Afternoon 

2010-13 

Morning 

2014-17 

Afternoon 

2014-17 

Morning 

2010-13 
– 

117.46 

(27) 

[>99.99%] 

183.36 

(34) 

[>99.99%] 

298.81 

(37) 

[>99.99%] 

Afternoon 

2010-13 

526.44 

(33) 

[>99.99%] 

– 

293.18 

(37) 

[>99.99%] 

97.12 

(36) 

[>99.97%] 

Morning 

2014-17 

77.06 

(30) 

[>99.99%] 

101.42 

(27) 

[>99.99%] 

– 

230.74 

(37) 

[>99.99%] 

Afternoon 

2014-17 

748.46 

(33) 

[>99.99%] 

58.00 

(27) 

[>99.95%] 

241.68 

(37) 

[>99.99%] 

– 

 

5.7. Discussion of Estimation Results 

The estimation results provided in Tables 5.5 through 5.8 show plausible parameter sign and very 

good overall model fit with ρ2 values exceeding 0.60 in three of the models and exceeding 0.50 in 

the fourth. It should be noted that, although heterogeneity in the means of random parameters was 

found to be statistically significant in some of the models, heterogeneity in the variances of random 

parameters was not found to be statistically significant in any of the estimated models. 

Tables 5.5 through 5.8 also show considerable variation in the variables found to be 

statistically significant in the four time-of-day/time-period combinations. To better illustrate these 

differences, Table 10 provides a side-by-side presentation of the marginal effects of explanatory 

variables (organized by variable category) for the four time-of-day/time-period models, of day and 

across the two time periods. A discussion of model results by variable category is presented below. 

 

5.7.1 Driver Characteristics  

With regard to driver’s characteristics, black drivers consistently were involved in crashes that 

resulted in less severe injuries (positive marginal effects for no injury and negative marginal effects 

for minor injury and severe injury) in both morning and afternoon and across time periods, relative 

to other ethnicities (see Table 10). White drivers also tended to be involved in crashes that resulted 

in less severe injuries, although the white indicator variable was not statistically significant in the 
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2014-17 morning time period. Hispanic drivers were involved in more severe injury crashes in the 

2010-13 morning period (this was a random parameter in this period) and the 2014-17 afternoon 

period. However, for these ethnicity results, some caution should be exercised in their 

interpretation because various ethnicities of drivers may be more likely to be assigned to certain 

routes and at certain times of day. Thus, this finding could be reflecting truck routing and delivery 

characteristics (some with higher or lower risk) rather than ethnicity itself.



 

 

101 

 

Table 5.10. The marginal effects of the explanatory variables in different time periods of the day (italic value indicates random parameter).  

Variable 

No Injury Minor Injury Severe Injury 
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Driver characteristics  

Black (1 if truck driver is Black; 0 otherwise) 0.0210 0.0147 0.0105 0.0193 -0.0189 -0.0137 -0.0099 -0.0185 -0.0021 -0.0011 -0.0006 -0.0008 

White (1 if truck driver is White; 0 otherwise) 0.0108 0.0160 - 0.0155 -0.0094 -0.0151 - -0.0145 -0.0014 -0.0009 - -0.0010 

Hispanic (1 if truck driver is Hispanic; 0 otherwise) -0.0027 - - -0.0045 -0.0013 - - -0.0112 0.0039 - - 0.0156 

Male (1 if truck driver is male; 0 otherwise) 0.0700 - -  -0.0847 - -  0.0147 - - 0.0156 

Young age (1 if truck driver is younger than 31 years old; 0 otherwise) - - 0.1536 0.4724 - - -0.1221 -0.4185 - - -0.0316 -0.0539 

Middle age (1 if truck driver is younger than 51 years old and older 

than 30 years old; 0 otherwise) 

- - -0.0017 -0.0245 - - -0.0008 0.0254 - - 0.0025 -0.0009 

Had not been drinking (1 if apparent physical condition of driver is 

had not been drinking; 0 otherwise) 

- - - 0.0677 - - - -0.0627 - - - -0.0050 

Driver actions 

Stopped (1 if movement preceding collision is stopped; 0 otherwise) 0.0182 0.0128 0.0152 - -0.0163 -0.0123 -0.0147 - -0.0019 -0.0006 -0.0005 - 

Proceeding straight (1 if movement preceding collision is proceeding 

straight; 0 otherwise) 

0.0822 0.0378 - 0.0186 -0.0766 -0.0353 - -0.0174 -0.0056 -0.0025 - -0.0012 

Backing (1 if movement preceding collision is backing; 0 otherwise) 0.0171 0.0162 0.0166 0.0132 -0.0162 -0.0149 -0.0152 -0.0118 -0.0009 -0.0012 -0.0014 -0.0015 

Making U-turn (1 if movement preceding collision is making U-turn; 0 

otherwise) 

- -0.0480 - -0.0019 - 0.0847 - 0.0015 - -0.0367 - 0.0004 

Making left turn (1 if movement preceding collision is making left 
turn; 0 otherwise) 

- - - -0.0015 - - - -0.0054 - - - 0.0069 

Passing another vehicle (1 if movement preceding collision is passing 

another vehicle; 0 otherwise) 

- - -0.0068 - - - 0.0077  - - -0.0009 - 

Crash characteristics 

Sideswipe (1 if type of crash is sideswipe; 0 otherwise) 0.0837 0.0892 0.0245 0.0711 -0.0800 -0.0784 -0.0207 -0.0625 -0.0037 -0.0108 -0.0036 -0.0093 

Head-on (1 if type of crash is head-on; 0 otherwise) -0.0040 - - -0.0025 0.0045 - - 0.0043 -0.0005 - - -0.0018 

Hit object (1 if type of crash is hit object; 0 otherwise) 0.0075 0.0100 0.0116 0.0123 -0.0061 -0.0083 -0.0075 -0.0089 -0.0013 -0.0017 -0.0041 -0.0034 

Rear end (1 if type of crash is rear end; 0 otherwise) - 0.0013 0.0007 - - 0.0024 0.0014 - - -0.0037 -0.0021 - 

Parked motor vehicle (1 if truck is involved with parked motor 

vehicle; 0 otherwise) 

0.0049 0.0107 0.0124 0.0243 -0.0044 -0.0098 -0.0109 -0.0213 -0.0005 -0.0009 -0.0015 -0.0030 

Other motor vehicle (1 if truck is involved with other motor vehicle; 0 
otherwise) 

0.0097 - 0.0040 0.0708 0.0077 - 0.0088 -0.0793 -0.0174 - -0.0128 0.0084 

Pedestrian (1 if truck is involved with Pedestrian; 0 otherwise) -0.0023 -0.0025 -0.0034 - 0.0041 0.0041 0.0061 - -0.0018 -0.0016 -0.0027 - 

Bicycle (1 if truck is involved with bicycle; 0 otherwise) -0.0027 - 0.0017 -0.0015 0.0046 - 0.0036 0.0013 -0.0019 - -0.0019 0.0002 

Fixed object (1 if truck is involved with fixed object; 0 otherwise) 0.0116 0.0155 0.0081 0.0059 -0.0093 -0.0136 -0.0060 -0.0044 -0.0022 -0.0019 -0.0021 -0.0015 

Traffic signals and signs (1 if violation category is traffic signals and 
signs; 0 otherwise) 

-0.0027 - -0.0057 -0.0044 0.0032 - 0.0053 0.0040 -0.0005 - 0.0004 0.0004 

Improper passing (1 if violation category is improper passing; 0 

otherwise) 

0.0042 0.0072 0.0125 - -0.0041 -0.0068 -0.0121 - -0.0002 -0.0004 -0.0004 - 
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Unsafe lane change (1 if violation category is unsafe lane change; 0 
otherwise) 

- 0.0106 - - - -0.0100 - - - -0.0005 - - 

Automobile right of way (1 if violation category is automobile right of 

way; 0 otherwise) 

- -0.0116 - -0.0121 - 0.0148 - 0.0149 - -0.0033 - -0.0028 

Wrong side of road (1 if violation category is wrong side of road; 0 
otherwise) 

- - -0.0037 -0.0049 - - 0.0036 0.0045 - - 0.0002 0.0004 

Unsafe speed (1 if violation category is unsafe speed; 0 otherwise) - - - -0.0307 - - - 0.0278 - - - 0.0029 

Felony (1 if crash is felony hit-and-run; 0 otherwise) -0.0018 - -0.0017 - 0.0019 - 0.0016 - -0.0001 - 0.0001 - 

Not Hit and Run (1 if crash is not hit-and-run; 0 otherwise) -0.4169 - - - 0.3785 -  - 0.0384 - - - 

Misdemeanor (1 if crash is misdemeanor hit-and-run; 0 otherwise) - 0.0057 0.0047 0.0086 - -0.0053 -0.0044 -0.0081 - -0.0004 -0.0004 -0.0006 

Passenger car/station wagon (1 if at fault vehicle type is passenger 
car/station wagon; 0 otherwise) 

- 0.0018 0.0015 - - 0.0045 0.0036 - - -0.0063 -0.0051 - 

Crash time 

Daylight (1 if light condition is daylight; 0 otherwise) 0.0142 - - - 0.0127 - - - -0.0269 - - - 

Dark - street lights (1 if light condition is dark - street lights; 0 
otherwise) 

- - -0.0008 - - - -0.0005 - - - 0.0013 - 

Weekday (1 if crash occurred during the weekday; 0 otherwise) 0.1264 -0.0168 0.0061 - -0.1146 -0.0312 0.0119 - -0.0119 0.0480 -0.0179 - 

Other variables 

At fault (1 if truck driver is at fault; 0 otherwise) 0.3675 0.0037 0.0036 0.0022 -0.3383 0.0072 0.0051 0.0049 -0.0292 -0.0109 -0.0087 -0.0072 

Dry (1 if road surface condition is dry; 0 otherwise) 0.0575 - 0.1085 - -0.0629 - -0.1211 - 0.0053 - 0.0126 - 

Wet (1 if road surface condition is wet; 0 otherwise) - 0.0040 0.0064 - - -0.0039 -0.0063 - - -0.0001 -0.0002 - 

Rainy (1 if weather condition is rainy; 0 otherwise) - -0.0043 - 0.0025 - 0.0046 - -0.0031 - -0.0002 - 0.0006 

Intersection (1 if intersection-related crash; 0 otherwise) -0.0158 -0.0110 - -0.0129 0.0138 0.0101 - 0.0118 0.0020 0.0009 - 0.0011 

Old truck (1 if truck is above 15 years old; 0 otherwise) - -0.0028 -0.0128 -0.0141 - -0.0052 0.0119 0.0127 - 0.0080 0.0009 0.0014 

New truck (1 if truck is less than 6 years old; 0 otherwise) - - -0.0138 -0.0135 - - 0.0130 0.0152 - - 0.0008 -0.0016 
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In the 2010-13 mornings, male drivers (comprising 96% of all drivers) were more likely to 

be involved in either severe injury or no-injury crashes than their female counterparts, but this 

effect was from a random parameter (suggesting variability across observations) and was 

statistically insignificant in other time-of-day/time-period categories. As with ethnicity, this 

finding could also be related to different truck routing and delivery characteristics assignments 

that may vary by gender. 

The young-age indicator, middle-age indicator and non-drinking indicator did not produce 

results that were consistent across time-of-day/time-period combinations. However, relative to 

their older counterparts, drivers younger than 31 years of age were involved in less severe crash 

outcomes in the 2014-17 time period. Interestingly, the marginal effect for no-injury in the 

afternoon was more than 2.5 times the marginal effect for no-injury in the morning, making no-

injury crash outcomes involving younger drivers much more likely in the afternoon than morning 

(the magnitude of the afternoon marginal effect of 0.4724 is substantial, and well above other no-

injury marginal effects). This finding suggests trucking firms may want to check the routes of 

younger drivers (morning versus afternoon) and consider that they may be more susceptible to 

time-of-day variations in performance relative to their older counterparts.  

In 2014-17 for middle-aged drivers had a lower probability of a no-injury crash in the 

afternoon than in the morning, but this was a random parameter suggesting significant variation in 

the effect of this variable across crashes. 

 

5.7.2 Driver Actions 

Table 5.10 shows that being stopped before the collision generally resulted in less severe crash 

outcomes (positive marginal effects for no injury and negative marginal effects for minor injury 

and severe injury) in all time-of-day/time-period combinations except for the afternoons in 2014-

17. Proceeding straight before the collision also resulted in less severe crash outcomes in general, 

except for the mornings in 2014-17 where it was statistically insignificant. 

Backing (1 if movement preceding collision is backing; 0 otherwise) consistently resulted 

in less severe injuries (likely because of the low speed involved) in all time-of-day/time-period 

combinations, without much change across time-of-day/time-period combinations. Interestingly, 

trucks making a U-turn resulted in a higher probability of minor injury in the afternoons across 

years, but trucks making a U-turn did not significantly affect injury-severity probabilities in the 

morning. This may be a function of traffic conditions and other related factors but may be worth 

safety-conscious trucking companies investigating further. 

Table 5.10 shows that making a left turn results in more severe crash outcomes in the 

afternoons of 2014-17 and passing a vehicle results in a higher probability of minor injury in the 

morning of 2014-17. Neither of these variables had a statistically significant effect on injury 

severities in 2010-13. 

 

5.7.3 Crash Characteristics 

Table 10 shows that a wide variety of crash characteristics were found to be significant in one or 

more of the time-of-day/time-period models. Of these, several were statistically significant in all 

models. Sideswipe crashes consistently resulted in less severe injuries (positive marginal effects 

for no injury and negative marginal effects for minor injury and severe injury) in all models. The 

hit-object indicator also consistently resulted in less severe crashes in all models (with little 

variation by time of day). A collision with a parked vehicle consistently resulted in a higher 

probability of no injury and lower probabilities of minor injuries and severe injuries (although this 
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variable produced a random parameter in the 2010-13 morning model). It is also interesting to note 

that the effect of this variable on injury-outcome probabilities is about twice in the afternoon as it 

is in the morning across the two time periods.  

Collisions with fixed objects consistently resulted in less severe crashes (a higher 

likelihood of no injury and a lower likelihood of minor and severe injury) but produced a random 

parameter for the 2014-17 afternoon model. There was comparatively little difference in the 

marginal effects of this variable between morning and afternoon periods. 

While other explanatory variables in this category mostly show considerable variation in 

their effect on injury severities across the time-of-day/time-period models, there are some 

exceptions. For example, the indicator variable for automobiles violating the right of way 

consistently resulted in a higher likelihood of minor injury over the years, but only in the afternoon 

time period. In contrast, crashes that were classified as hit-and-run felonies resulted in a higher 

likelihood of minor injury over the years, but only for the morning time period. These findings 

underscore important morning/afternoon differences even when effects are generally unstable over 

the years. 

 

5.7.4 Crash Time 

Table 5.10 shows the indicator variables for daylight, dark-street lights and weekdays do not 

generally produce consistent findings across time-of-day/time-period combinations. It is important 

to note here that because we consider times 6:00 a.m. to 5:59 p.m., daylight and dark streetlight 

will only be contrasted with non-daylight and non-dark streetlight in the late fall and winter months 

when the daylight time is short. Table 10 marginal effects show daylight significantly decreases 

severe injury crash outcomes in the mornings of 2010-13 (relative to non-daylight conditions), and 

in 2014-17, dark with streetlights increases severe-injury crash outcomes (relative to non-dark 

streetlight conditions). So, these variables are capturing the same morning effect across the two 

time periods in that dark mornings (occurring in late fall and winter) result in more severe crash 

outcomes. 

The weekday-indicator marginal effects show that, in the morning, weekdays resulted in 

less severe morning crash outcomes in 2010-13 (a higher likelihood of no injury and lower 

likelihoods if minor injury and severe injury) relative to weekend crashes. But in the afternoons of 

the 2010-13 period, weekday crashes resulted in more severe crash outcomes (a higher likelihood 

of severe injury with a lower likelihood of no injury and minor injury), relative to weekend crashes. 

The morning time period in 2014-17 resulted in a somewhat different findings with weekdays 

resulting in a higher likelihood of minor injury and lower likelihoods of no injury and severe injury 

relative to weekend crashes. The afternoon effect of weekday crashes was statistically insignificant 

in 2014-17 (no significant difference between weekday and weekend crashes). 

 

5.7.5 Other variables 

Table 5.10 shows that if the truck driver was deemed to be at fault, there is a higher probability of 

no injury and lower probability of severe injury in all time-of-day/time-period combinations. This 

may suggest that truck-driver training may provide them the skills to mitigate crash consequences 

after they made a driving error. Interestingly, dry road-surface conditions increased the probability 

of both no-injury and severe injury crashes, but only in the morning time period. This may suggest 

a high variance in morning-driver behavior in dry-road conditions with conservative and 

aggressive behaviors, a finding that is consistent with earlier research that explored the effect of 

road surface conditions on injury severity (Morgan and Mannering, 2011). In contrast, the wet-
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road condition indicator and the rain indicators were significant in several afternoon periods but 

did not produce consistent marginal effects (Table 5.10). 

Intersection-related crashes generally resulted in more severe crash outcomes (lower 

probability of no injury and higher probabilities of minor and severe injuries) but were statistically 

insignificant in the afternoons in the 2014-17 time period. Finally, truck age was statistically 

significant in several time periods (and with random parameters in both daily time periods in 2014-

17) but did not produce temporally stable results. 

 

5.7.6. Heterogeneity in the Means of Random Parameters 

Table 5.5 shows that, in 2010-23 morning model, two variables were found to produce random 

parameters with heterogeneity in means; an indicator variable for male drivers and an indicator 

variable for Hispanic drivers.  For the male-indicator and Hispanic-indicator, proceeding straight 

before collision resulted in an increase in their mean, making no injuries more likely (relative to 

other types of movements preceding collision). For the Hispanic-indicator, non-hit-and-run 

crashes decreased its mean, making no injuries less likely. As indicated in Table 5.6, none of the 

explanatory variables were found to significantly affect the mean or variance of the random 

parameter in 2010-13 afternoon model.   

With regard to the 2014-17 morning model (Table 5.7), the sideswipe indicator variable 

was found to produce a random parameter with heterogeneity in mean. For this variable, backing 

or improper passing resulted in a decrease in the mean (making no injuries less likely) while black 

drivers had an increase in the mean (making no injuries more likely). Passenger cars/station 

wagons, when being at fault, were also found to decrease the mean of sideswipe-indicator, making 

severe injuries less likely.  

As shown in Table 5.8, in 2014-17 afternoon model, and indicator variable for middle age 

drivers (1 if truck driver is younger than 51 years old and older than 30 years old; 0 otherwise) 

produced a random parameter with heterogeneity in mean. Unsafe speed decreased the mean of 

this variable, making no injuries less likely.   

 

5.8. Summary and Conclusions  

Using data on large truck crashes in Los Angeles from January 1, 2010 to December 31, 2017, this 

chapter examined the effect of time-of-day and time periods on resulting injury severities in large-

truck crashes. With three possible crash-injury severity outcomes (measured by the most severely 

injured individual in the crash) of no injury, minor injury, and severe injury, a wide range of 

possible factors affecting large-truck crash-injury severities such as driver’s characteristics, driver’ 

actions, crash characteristics, and roadway and environmental conditions were considered in the 

analysis.  

Likelihood ratio tests show that the effect of factors that determine injury severity varies 

significantly across time-of-day/time-period combinations. However, there were several 

explanatory variables that do produce temporally stable effects in terms of their impact on resulting 

injury severities. Black drivers, crashes occurring while backing, sideswipe crashes, hit-object 

crashes, parked-vehicle crashes, fixed-object crashes, and truck-driver at fault crashes all 

consistently produced less severe crashes across all times-of-day/time-periods combinations. 

There are also some interesting time-of-day effects. For example, 2014-17 models show that 

younger truck drivers are more likely to have a no-injury crash outcome in the afternoon than they 

are in the morning, and the hit-object indicator variable has roughly twice the effect on injury 

probabilities in the afternoon time period relative to the morning time period. 
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The findings of this research underscore the importance of accounting for the time-

dependent effect that variables have on resulting injury-severity outcomes in crashes involving 

large trucks. The findings of this research should be of value to decision makers and trucking 

companies seeking to improve truck safety, and also serve as a starting point for future research in 

this topic that may explore this temporal phenomenon in different regions of the country and in 

other parts of the world. Future research can also benefit from combining severity models with 

frequency models since decreasing the number of crashes (even those with less severe injuries) 

provides considerable economic advantages to the society and trucking companies.   
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Chapter 6: Non-Decreasing Threshold Variances in Mixed Generalized Ordered 

Response Models: A Negative Correlations Approach to Variance Reduction 
6.1. Introduction  

Ordered outcomes, such as those encountered in accident-injury severity (no injury, injury, 

fatality), measurements of satisfaction (highly dissatisfied, dissatisfied, neutral, satisfied, highly 

satisfied), measurements of levels of agreement or disagreement (strongly disagree, disagree, 

neutral, agree, strongly agree), and so on, are often modeled using ordered response models. These 

models have a potential advantage over unordered response models, such as the multinomial logit 

model and its variants, because ordered models recognize the inherent ordinal pattern of outcome 

responses. Standard ordered response models are based on an underlying continuous latent 

propensity function that is assumed to be a function of observed explanatory variables and an 

unobserved random component (Aitchison and Silvey, 1957; McKelvey and Zavoina, 1975; 

Washington et al., 2011). The latent propensity function is mapped to observed outcomes using a 

set of thresholds that are increasing in order. The major drawback associated with this standard 

ordered response (SOR) model is that it assumes the thresholds to be same for all individuals, 

which might not be appropriate in all applications.  

To overcome this threshold restriction in the standard ordered response models, Maddala 

(1986) and Ierza (1985) proposed a generalized-thresholds version of the ordered response model 

where the thresholds were expressed as a linear function of explanatory variables. As an extension 

to this model structure, Srinivasan (2002) expressed the thresholds as correlated random variables 

with their mean as a linear function of observed explanatory variables. However, this linear 

specification of thresholds does not ensure the increasing order of thresholds and might result in 

negative probabilities (Greene and Hensher 2010a). To address this issue, Eluru et al. (2008) and 

Greene and Hensher (2010b) used a nonlinear specification for thresholds where each threshold 

was obtained by adding a non-negative term to the preceding threshold, so that the ordering of 

thresholds was ensured. The non-negative term was specified as an exponential function of a linear 

function of explanatory variables. Researchers have termed this generalized-thresholds version as 

the generalized ordered response model. To avoid confusion with the model names used in the 

literature, we term the linear-thresholds specification models as the ordered mixed response 

(OMR) model and the nonlinear-thresholds specification generalized ordered response (GOR) 

model. With regard to the GOR model, to account for heterogeneity in the parameter estimates due 

to unobserved factors, researchers have considered random parameters in both the propensity 

function and the thresholds. This model structure is referred to as the mixed generalized ordered 

response (MGOR) model by Eluru et al. (2008) and hierarchical ordered probit (HOPIT) model 

by Greene and Hensher (2010a). We use the term “MGOR” hereafter to avoid confusion with the 

model names. It is worth noting here that the random parameters in the thresholds are typically 

assumed to follow distributions with an unbounded support, such as the normal distribution. 

Due to the flexibility offered by generalized ordered response (GOR) and mixed 

generalized ordered response (MGOR) models relative to the standard ordered response (SOR) 

model, many researchers (Yasmin et al. 2015a, 2015b; Forbes and Habib 2015; Fountas and 

Anastasopoulos 2017) have used these models in various contexts. Chiou et al. (2013) proposed a 

bivariate generalized ordered probit model and used it to model accident-injury severities in two-

vehicle crashes. Castro et al. (2013) developed spatial random parameters generalized ordered 

probit model to accommodate the spatial dependencies in the accident-injury severity levels. 

Yasmin et al. (2014) proposed a latent segmentation based generalized ordered logit model 

assuming the presence of different latent groups of observations. Table 1 summarizes various 
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studies that have used the GOR family of models in the context of modeling traffic accident injury 

severity outcomes29.  

Despite the above-discussed evolution of the MGOR family of models, to the best of our 

knowledge, all implementations of the MGOR models to date impose an implicit restriction on the 

order of variances of thresholds. Specifically, as discussed earlier, the thresholds in ordered 

response models must be in an increasing order, which is ensured in MGOR models by specifying 

a higher order threshold as a sum of its preceding threshold and a non-negative random term that 

is typically in the form of an exponential function. Such a hierarchical specification of thresholds 

with random parameters leads to the restriction that the variances of thresholds are also in a non-

decreasing order. However, this restriction is not necessary and can potentially lead to difficulty 

in the estimation of random parameters in higher order thresholds (more later).  

To be sure, the MGOR model structure, in its very general form, does allow the analyst to 

relax the non-decreasing order of threshold variances. This can be done in at least two ways. The 

first approach is to allow negative correlations between the random parameters of different 

thresholds. Since a higher order threshold is specified as a sum of two terms (its preceding 

threshold with random parameters and an exponential term with random parameters), negative 

correlation between the two terms allows for the overall variance of the higher order threshold to 

 

 
29 Mannering et al. (2016), provide a general discussion of unobserved heterogeneity in accident injury-severity 

modeling. Apart from the accident injury-severity modeling, there are other research areas (sociology, psychology 

and economics) that have used OMR and MGOR model structures (Pudney and Shields, 2000; Boes and 

Winkelmann, 2006; Greene et al., 2008; Baba, 2009; Mentzakis and Moro, 2009; Boes and Winkelmann, 2010; 

Stanley et al., 2011; Greene et al., 2014; and Shabanpour et al., 2017).  
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Table 1: Summary of empirical studies that used generalized ordered response models in accident research. 

Study 
Abbreviation(s) of 

considered 

model(s) 

Ordered outcome 

response 

representation 

Estimation of random parameters (RP) Major findings/ contributions from 

methodological stand point 
Propensity function Thresholds 

Srinivasan (2002) Standard Ordered 

Response Logit 

(SORL) and 

Ordered Mixed 

Logit (OML) 

Traffic crash injury 

severity – four 

category variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Each threshold in the OML model was 

expressed as a linear function of 

explanatory variables, and RP with 

correlations between them were allowed 

over the constants. 

• All the correlated random parameters 

were found to be statistically significant. 

• Interestingly, the variances of thresholds 

were 0.013, 0.937, and 0.0026 and did not 

follow any order. 

• OML model provided a better fit for the 

observed crash data than SORL model. 

• Prediction capability of OML model was 

significantly better than the SORL model. 

Eluru et al. (2008) SORL and Mixed 

Generalized 

Ordered Response 

Logit (MGORL) 

Pedestrian and 

bicyclist injury 

severity - four 

category variable 

• Propensity function 

specification allowed for the 

estimation of RP in MGORL 

model. 

• No RP were found to be 

statistically significant. 

• Threshold specification allowed for the 

estimation of RP in MGORL model. 

• No RP were found to be statistically 

significant. 

• SORL model estimation resulted in 

inconsistent estimates for several 

variables. 

• MGORL model provided better statistical 

fit over SORL model. 

Clifton et al. 

(2009) 

Ordered Mixed 

Probit (OMP) 

Pedestrian injury 

severity - three 

category variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Threshold specification did not allow for 

the estimation of RP. 

• Incorporating built environment 

characteristics and environmental 

conditions significantly improved the 

explanatory power of OMP model. 

Chiou et al. (2013) Bivariate 

Generalized 

Ordered Response 

Probit (BGORP) 

and Bivariate 

Standard Ordered 

Response Probit 

(BSORP) 

Injury severity of 

the drivers in a two 

vehicle crash - four 

category variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Threshold specification did not allow for 

the estimation of RP. 

 

• BGORP model performed significantly 

better than the BSORP model in terms of 

goodness-of-fit indices. 

• BGORP model had better prediction 

accuracy than the BSORP model.  

Castro et al. (2013) Spatial Random 

Parameters 

Generalized 

Ordered Response 

Probit (SRP-

GORP) and 

Standard Ordered 

Response Probit 

(SORP) 

Injury severity of 

highway crashes - 

four category 

variable 

• Propensity function 

specification allowed for the 

estimation of RP in SRP-GORP 

model. 

• No RP were found to be 

statistically significant. 

• Threshold specification did not allow for 

the estimation of random parameters. 

 

• SRP-GORP model provided statistically 

better data fit than the Standard Ordered 

Response Probit (SORP). 

• Predicted shares of different injury 

severity levels from SRP-GORP model 

were closer to the actual shares as 

compared to SORP. 
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Eluru (2013) GORL, SORL, and 

Multinomial Logit (MNL) 

Four alternatives 

ordered variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Threshold specification did not allow 

for the estimation of RP. 

• SORL model was found to be restrictive 

as compared to MNL model for analyzing 

an ordered response outcome.  

• GORL model can act as a true ordered 

equivalent of MNL model. 

• Irrespective of aggregate shares, GORL 

model performed well as compared to the 

MNL model. 

Yasmin and Eluru 

(2013) 

SORL, GORL, MGORL, 

MNL, Nested Logit (NL), 

and Mixed Multinomial 

Logit (MMNL) 

Passenger 

vehicle injury 

severity - four 

category 

variable 

• Propensity function 

specification allowed for the 

estimation of RP in MGORL 

model. 

• Three random parameters were 

found to be statistically 

significant, and corresponding 

variables were  

1. Restrained system use – 

Unrestrained (base: restrained) 

2. Airbag deployment – 

deployed (base: not deployed) 

3. Collision location: 

Intersection (base: non-

intersection). 

• Threshold specification allowed for 

the estimation of random parameters in 

MGORL model. 

• Two random parameters were found 

to be statistically significant and were 

in the thresholds demarcating 

1. second and third injury severity 

levels 

a. Vehicle rolled over  

2. third and fourth injury severity 

levels 

a. Collision with stationary object 

(base: another moving object). 

 

• Elasticities obtained using the under-

reported sample were incorrect in both the 

MGORL and MMNL models. 

• Both the MMNL and MGORL models 

had similar prediction results at the 

aggregate and disaggregate levels. 

Yasmin et al. 

(2014) 

SORL, GORL, and Latent 

Segmentation based 

Standard Ordered Response 

Logit (LS-SORL) 

Pedestrian 

injury severity - 

three category 

variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• GORL and LS-SORL models provided 

better data fit as compared to the SORL 

model. 

• Also, LS-SORL model provided better 

data fit than GORL. 

• In the model validation, GORL model 

performed marginally better than LS-

SORL. 

Yasmin et al. 

(2014) 

Latent Segmentation based 

Generalized Ordered 

Response Logit(LS-GORL) 

and LS-SORL 

Driver injury 

severity – three 

category 

variable 

• Propensity function 

specification did not allow the 

estimation of RP. 

• Threshold specification did not allow 

for the estimation of RP. 

• At an aggregate level, LS-GORL model 

performed well as compared to LS-SORL 

on validation sample. 

Hosseinpour et al. 

( 2014) 

Random Effects Ordered 

Mixed Probit (REOMP), 

Head on crash 

severity injury 

severity - four 

• Propensity function 

specification in REOMP model 

allowed for the estimation of 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• REOMP model was found to be 

statistically better than the OMP and 

SORP models in terms of data fit. 
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Ordered Mixed Probit 

(OMP) and SORP 

category 

variable 

random effects parameter on the 

constant and was found to be 

statistically significant. 

Habib and Forbes 

(2014) 

OMP with Non-Linear 

Thresholds specification 

(OMPNLT) and SORP 

Bicyclist injury 

severity - five 

category 

variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• OMPNLT model with neighborhood and 

land use characteristics was found to be 

statistically better than OMPNLT model 

without such characteristics and SORP 

model.  

Yasmin et al. 

(2015a) 

Mixed Generalized Ordered 

Logit Response Model 

(MGORL) 

Severity of fatal 

injury - seven 

category 

variable 

obtained using 

the survival time 

in a fatal crash    

• Propensity function 

specification allowed for the 

estimation of RP. 

• Two random parameters were 

found to be statistically 

significant, and corresponding 

variables were  

1. Previous record of other 

harmful motor vehicle 

convictions 

2. Speed limit above 50 mph 

(base: speed limit < 26mph). 

• Threshold specification allowed for 

the estimation of random parameters. 

• No random parameters were found to 

be statistically significant. 

• Endogeneity on the outcome variable due 

to emergency medical service (EMS) 

response time variable was addressed 

using a 2-stage model comprising 

MGORL for the fatality timeline and 

regression equation for the EMS response 

time. 

Yasmin et al. 

(2015b)  

Generalized Ordered 

Response Logit Model 

(GORL) 

Passenger 

vehicle driver 

injury severity - 

eleven category 

variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• A simple approach was developed to 

combine information from Fatality 

Analysis Reporting System (FARS) data 

and Generalized Estimates System (GES) 

data.  

Forbes and Habib 

(2015) 

OMPNLT and SORP Pedestrian 

injury severity - 

five category 

variable 

• Propensity function 

specification did not allow for 

the estimation of RP. 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• OMPNLT model performed well as 

compared to SORP model in terms of 

model fit. 

Fountas and 

Anastasopoulos 

(2017) 

Mixed Generalized Ordered 

Response Probit (MGORP), 

Generalized Ordered 

Response Probit (GORP), 

SORP, and Random 

Parameters SORP 

(RPSORP) 

Single vehicle 

crash injury 

severity - four 

category 

variable 

• Propensity function 

specification allowed for the 

estimation of RP in MGORP and 

RPSORP models. 

• Seven random parameters were 

found to be statistically 

significant in both MGORP and 

RPSORP models, and 

corresponding indicator 

variables were  

• Threshold specification allowed for 

the estimation of random parameters 

on the constants in the thresholds in 

MGORP model. 

•  Both constants in the thresholds were 

statistically significant at 95% 

confidence level. 

• MGORP model was found to be 

statistically better than the GORP, SORP, 

and RPSORP models in terms of data fit. 

• MGORP models had better forecasting 

accuracy as compared to its model 

counterparts.  
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1. Presence of  vertical curve 

with the curve length greater 

than 400 feet 

2. Average annual daily traffic 

per lane greater than 8500 

vehicles. 

3. Driving under the influence of 

alcohol or drugs 

4. Vehicle crashed due to out of 

control 

5. Vehicle exceeded a 

reasonable safe level or speed 

limit 

6. Vehicle was travelling straight 

at the time of crash 

7. Pedestrian was involved in the 

crash. 

Anarkooli et al. 

(2017) 

REOMP, OMP, Random 

Effects Ordered Response 

Probit (REORP), SORP,  

MNL, and MMNL 

Single vehicle 

rollover crash 

severity - three 

category 

variable 

• Propensity function 

specification allowed for the 

estimation of random effects 

parameter on the constant in 

REOMP model and was found 

to be statistically significant. 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• REOMP model was found to be 

statistically better than the OMP, REORP, 

SORP, MNL and MMNL models in terms 

of model fit. 

Zou et al. (2017) SRP-GORP and RPSORP Single-vehicle 

and multi-

vehicle truck 

crash injury 

severity - four 

category 

variable 

• Propensity function 

specification allowed for the 

estimation of RP in both SRP-

GORP and RPSORP models. 

  

• One random parameter was 

found to be statistically 

significant in RPSORP model 

for single vehicle crash severity 

and corresponding variable is 
 

1. Truck registered weight. 

• Threshold specification did not allow 

for the estimation of random 

parameters. 

• Spatial dependency and temporal effects 

have significant effect on the single 

vehicle and multi-vehicle truck crash 

severity.  

Xin et al. (2017) MGORP with Heterogeneity 

in Means and Variances 

(MGORPHMV), MGORP, 

GORP and ORP 

Pedestrian 

injury severity - 

four category 

variable 

• Propensity function 

specification allowed for the 

estimation of RP in 

MGORPHMV and MGORP 

models. 

• Two random parameters were 

found to be statistically 

significant in both 

MGORPHMV and MGORP 

• Threshold specification allowed for 

the estimation of random parameters in 

both MGORPHMV and MGORP 

models. 

• No random parameters were found to 

be statistically significant. 

• The order of statistical superiority (high 

to low) of models in terms of data fit is 

MGORPHMV, MGORP, GORP and ORP 

model.  
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models, and corresponding 

variables were 
 

1. Elderly pedestrian indicator 

2. Very elderly pedestrian 

indicator. 
 

• Moreover, the random 

parameter on elderly pedestrian 

indicator had significant 

heterogeneity in both means and 

variance. 
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be lower than the variance of its preceding threshold. The second approach is to use truncated 

distributions for thresholds, where the distribution of a higher order threshold is left-truncated by 

the distribution of its preceding threshold. Between these two approaches, the former is easier to 

implement. The latter approach is a non-trivial30 modification of the MGOR structure, albeit it is 

a fruitful avenue for future research. Even in the context of the former approach, we are not aware 

of studies in the literature that explored correlated random parameters in MGOR models.  

The intent of this chapter is to highlight the above-discussed implicit assumption made by 

most implementations of MGOR models that the thresholds follow a non-decreasing order of 

variances. In addition, the chapter explores the use of negative correlations as a variance reduction 

technique for relaxing the non-decreasing variances restriction in the MGOR family of models. 

We explore these variance and correlation issues through a simulation experiment. Specifically, 

we simulate ordinal outcome datasets with known negative correlation structures among an 

underlying true set of random parameters in threshold functions. For each of the simulated datasets, 

two models were estimated; one allowing correlations between random parameters and the other 

not allowing such correlations. The impact of ignoring correlations is then evaluated by comparing 

the two models using various evaluation criteria to assess the efficacy of introducing negative 

correlations as a variance reduction technique in the thresholds of MGOR models. 

The remainder of our chapter is structured as follows. Section 6.2 presents the model 

structure of SOR and MGOR models. Section 6.3 provides a simple, mathematical proof for the 

non-decreasing order of variance of thresholds in the absence of correlation between random 

parameters in thresholds. In addition, this section presents a hypothetical scenario to explain how 

such a restriction (due to ignoring correlations) can potentially lead to difficulties in estimating 

random parameters in higher order thresholds. Section 6.4 describes the methodology (simulation 

experiments) adopted to evaluate correlations as a variance reduction technique in the thresholds 

of MGORL models. Section 6.5 presents the results and findings. Section 6.6 concludes the 

chapter.  

 

6.2. Model structure 

In this section, we present the basic model structures for the standard ordered response 

model (SOR) and the mixed generalized ordered response model (MGOR). 

 

6.2.1 Standard ordered response model (SOR) 

Let n (1, 2, 3...N) denote each observation and k (1, 2, 3...K) denote ordered outcomes. The 

latent propensity function yn
* for observation n is expressed as 

𝒚𝒏
∗ =  𝜷𝑿𝒏 +  𝜺𝒏 (6.1) 

where 𝑿𝑛 is a vector of explanatory variables that influence 𝑦𝑛
∗, β is a corresponding vector of 

estimable parameters, and εn is an unobserved random term which is assumed to follow a known 

probability distribution. Observed ordinal outcome 𝑦𝑛 is then defined by the latent propensity 

function 𝑦𝑛
∗ using a set of threshold parameters as follows: 

𝒚𝒏 = 𝒌, 𝒊𝒇 𝜳𝒌−𝟏 < 𝒚𝒏
∗ < 𝜳𝒌 (6.2) 

 

 
30 The left truncation point of the distribution for a higher order threshold is another random variable (given by the 

distribution of the preceding threshold), as opposed to a deterministic value. Therefore, deriving an MGOR model 

structure with randomly truncated threshold distributions is a non-trivial extension and beyond the scope of this 

paper.  
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where 𝛹𝑘−1 and 𝛹𝑘 are a pair of estimable thresholds associated with kth ordered outcome. All the 

thresholds are restricted to be in an increasing order, and the lower most and upper most thresholds 

are assumed to be negative infinity and positive infinity (−∞ < 𝛹1 < 𝛹2 < ⋯ < 𝛹𝐾−1 < ∞), 

respectively (this is assuming that the latent propensity function yn
* follows an unbounded 

distribution). For identification reasons, either the constant in the propensity function or any one 

of the thresholds must be fixed to zero. In this exposition, the constant in the propensity function 

is fixed to zero, and all the K-1 thresholds are parameters to be estimated. The log-likelihood 

(𝐿𝐿𝑛𝑘) for observation 𝑛 facing kth ordered outcome is: 

𝑳𝑳𝒏𝒌 = 𝑷𝒓(𝒚𝒏 = 𝒌 | 𝑿𝒏) =  𝜞[𝜳𝒌 − 𝜷𝑿𝒏] −  𝜞[𝜳𝒌−𝟏 − 𝜷𝑿𝒏] (6.3) 

where 𝛤[∙] is the cumulative distribution function of the random error term εn.  

 

6.2.2 Mixed generalized ordered response (MGOR) model 

The MGOR model structure is an extension of the SOR model structure with the thresholds 

parameterized as a function of explanatory variables, and the inherent ordering of the thresholds 

is ensured using a nonlinear specification for thresholds where each threshold is specified by 

adding a non-negative term to the preceding threshold. Moreover, to account for unobserved 

heterogeneity in the parameter estimates across observations, random parameters are included in 

the propensity function and the threshold functions as shown in Equations 6.4, 6.5 and 6.6. 

𝒚𝒏
∗ = 𝜷𝑿𝒏 + 𝜸𝒏𝒀𝒏 +  𝜺𝒏 (6.4) 

𝜳𝒏𝒌 =  𝜶𝒌𝑼𝒏𝒌 + 𝜽𝒏𝒌𝑽𝒏𝒌, if k = 1 (6.5) 

𝜳𝒏𝒌 =  𝜳𝒏,𝒌−𝟏 + 𝒆𝒙𝒑(𝜶𝒌𝑼𝒏𝒌 + 𝜽𝒏𝒌𝑽𝒏𝒌) , ∀ 𝒌 > 𝟏  (6.6) 

where Xn and Yn are vectors of exogenous variables in the propensity function, β is a vector of 

fixed parameters and 𝜸𝑛 is a vector of random parameters in the propensity function. Similarly, 

Unk and Vnk are vectors of exogenous variables, 𝜶𝑘 and 𝜽𝑛𝑘 are vectors of fixed and random 

parameters, respectively, in the kth threshold. For identification reasons, and without loss of 

generality, all the parameters in the first threshold except a constant are set to zero ( 𝛹n1 =  𝛼1).  

As discussed earlier, the hierarchical specification of thresholds in Equation 6.6, where a 

higher order threshold (Ψnk) is specified as a sum of its preceding threshold (Ψn,k−1) plus a non-

negative random term, ex p(𝛂k𝐔nk + 𝛉nk𝐕nk), ensures that the thresholds are in an increasing 

order.  

The random parameters vectors 𝜸𝑛 and 𝜽𝑛, where 𝜽𝑛 is obtained by stacking the 𝜽𝑛𝑘 

vectors across all k, are realizations from multivariate distributions 𝑓(𝜸) and 𝑓(𝜽). The log-

likelihood (𝐿𝐿𝑛𝑘) for observation n facing kth ordered outcome is written as, 

𝑳𝑳𝒏𝒌 =  ∫ ∫ 𝜞[(𝜳𝒏𝒌|𝜽) − (𝜷𝑿𝒏|𝜸)] −  𝜞[(𝜳𝒏,𝒌−𝟏|𝜽) − (𝜷𝑿𝒏|𝜸)]𝒇(𝜽)𝒇(𝜸)𝒅(𝜽)𝒅(𝜸)
𝜽𝜸

 (6.7) 

Note that 𝑓(𝜸) and 𝑓(𝜽) are multivariate distributions. Therefore, the structure of the MGOR 

model allows for correlations among the random parameters, in the latent propensity function as 

well as in the threshold functions. However, it is a common practice in empirical research to ignore 

such correlations; as indicated earlier, we are not aware of empirical studies that explored 

correlations between random parameters in the threshold functions of ordered response models.  

 

6.3 Non-decreasing order of variances of thresholds in MGOR models with uncorrelated 

random parameters  

In this section, we prove the non-decreasing order of variances of thresholds in MGOR 

models with uncorrelated random parameters and demonstrate, through a hypothetical example, 

how such restriction might lead to difficulties in estimating random parameters in higher order 

thresholds.  
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6.3.1 The order of variance of thresholds 

Let 𝑉𝐴𝑅(∙) and 𝐸(∙) represent the variance and the expected value of a random variable, 

respectively, and let 𝐶𝑂𝑉(∙) represent the covariance between any two random variables. 

Thresholds and non-negative terms are random in the presence of random parameters and the 

variance of a threshold 𝛹𝑛𝑘 is expressed as 𝑉𝐴𝑅(𝛹𝑛𝑘) = 𝑉𝐴𝑅(𝛹𝑛,𝑘−1) + 𝑉𝐴𝑅(Δ𝑛𝑘) +

2𝐶𝑂𝑉(𝛹𝑛,𝑘−1, Δ𝑛𝑘), where Δ𝑛𝑘 is a non-negative term that is added to 𝛹𝑛,𝑘−1 to obtain 𝛹𝑛𝑘. As 

can be observed in Equation 6.6, the non-negative term Δ𝑛𝑘 is  exp(𝛂k𝐔nk + 𝛉nk𝐕nk). If the 

correlations between the random parameters in 𝛹𝑛,𝑘−1 and Δ𝑛𝑘 are ignored or restricted to zero, 

the covariance term, 𝐶𝑂𝑉(𝛹𝑛,𝑘−1, Δ𝑛𝑘), becomes zero and forces the variance of each threshold 

to be either greater than or equal31 to the variance of the preceding threshold. On the other hand, a 

negative correlation between the random parameters in 𝛹𝑛,𝑘−1 and Δ𝑛𝑘 allows for a possibility that 

𝑉𝐴𝑅(𝛹𝑛𝑘) < 𝑉𝐴𝑅(𝛹𝑛,𝑘−1), depending on the level of correlation between the random parameters 

and the magnitude of the deterministic components. 

Considering normally distributed random parameters, which are generally employed in 

empirical research involving MGOR models, the thresholds can be viewed as a sum of multiple 

log-normally distributed random variables.32 Following the notation used in section 6.2.2, the 

expressions for the variance of first three thresholds with normally distributed random parameters 

can be written as shown below (see Appendix 6.A for a detailed derivation).   

𝑉𝐴𝑅(𝛹𝑛1) = 0, 

𝑉𝐴𝑅(𝛹𝑛2) = 𝑉𝐴𝑅(exp (𝜶2𝑼𝑛2 +  𝜽𝑛2𝑽𝑛2)),     (6.8) 

𝑉𝐴𝑅(𝛹𝑛3) = 𝑉𝐴𝑅(exp(𝜶2𝑼𝑛2 +  𝜽𝑛2𝑽𝑛2)) +  𝑉𝐴𝑅(exp(𝜶3𝑼𝑛3 +  𝜽𝑛3𝑽𝑛3)) +  𝐶𝑛23, 

where 𝐶𝑛23 = exp [𝜶2𝑼𝑛2  + 𝜶3𝑼𝑛3 + 𝐸(𝜽𝑛2𝑽𝑛2  + 𝜽𝑛3𝑽𝑛3)  +  
𝑉𝐴𝑅(𝜽𝑛2𝑽𝑛2)+𝑉𝐴𝑅(𝜽𝑛3𝑽𝑛3)

2
] ×

[exp(𝐶𝑂𝑉(𝜽𝑛2𝑽𝑛2, 𝜽𝑛3𝑽𝑛3)) − 1].  

If the random parameters are uncorrelated, the covariance term 𝐶𝑂𝑉(𝜽𝑛2𝑽𝑛2, 𝜽𝑛3𝑽𝑛3) is 

equal to zero, which implies that 𝐶𝑛23 = 0 and 𝑉𝐴𝑅(𝛹𝑛3) = 𝑉𝐴𝑅(𝛹𝑛2) +  𝑉𝐴𝑅(exp(𝜶3𝑼𝑛3 +
 𝜽𝑛3𝑽𝑛3)). Therefore, in the presence of uncorrelated random parameters in the thresholds, the 

variance of thresholds are restricted to be in a non-decreasing order for a given observation. But 

there is no need for imposing such a restriction on the order of variance of thresholds. For example, 

in the ordered response model (with the linear specification for thresholds and with correlation 

between the random parameters in thresholds) estimated by Srinivasan (2002), the variances of the 

estimated thresholds do not follow any order.  

This inherent restriction on the variance of thresholds can be relaxed by allowing 

correlations between random parameters in thresholds, which indeed makes the covariance 

term 𝐶𝑂𝑉(𝜽𝑛2𝑽𝑛2, 𝜽𝑛3𝑽𝑛3) ≠ 0. Depending on the sign and level of correlation between the 

random parameters, and the magnitude of the deterministic component in the thresholds, the 

variance of a threshold can be less than the variance of the preceding threshold. Specifically, 

negative correlations allow for the possibility of non-decreasing order in the variances of the 

 

 
31 The variances would be equal when the non-negative term Δ𝑛𝑘  does not have random parameters. For example, 

when an empirical specification does not yield statistically significant random parameters in Δ𝑛𝑘. 
32 This is assuming that the first threshold, which is not an exponential function, is not a random parameter (for 

identification reasons). However, if the first threshold is a normally distributed random parameter (with other 

normalization restrictions for identification), then the subsequent thresholds will become a sum of normal 

distribution and lognormal distributions.  
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thresholds. Although we derived these expressions for normally distributed random parameters, 

the above-discussed restriction on the order of variance of the thresholds will occur with the other 

parametric distributions as well when correlations are not allowed.  

 

6.3.2 Potential Issues with Estimation of Random Parameters in Thresholds 

Due to the hierarchical specification of thresholds in the MGOR model, observed variables and 

their coefficients (along with the random components) entering the threshold function of a lower 

order threshold (say, the kth threshold) also enter the threshold functions of all higher order 

thresholds (greater than kth thresholds). Therefore, an independent variable entering kth threshold 

function influences the probabilities of the corresponding kth order outcome as well as potentially 

all higher order outcome responses.  

For example, let us consider the injury severity of motorcycle crashes on freeways. Let the 

outcome injury severity levels be no injury, non-incapacitating injury, incapacitating injury, and 

fatal injury and the corresponding thresholds are 𝛹1𝑛, 𝛹2𝑛, and 𝛹3𝑛. Define a variable 𝑃𝐶𝑛 for 

protective clothing, which is equal to one if the motorcyclist wore protective clothing during the 

crash, and zero otherwise (protective clothing may include jacket, gloves, heavy pants, boots, knee 

pads and elbow guards). Let the threshold specifications be as  𝛹1 = 𝛼1, 𝛹2𝑛 = 𝛼1 +  exp(𝛼2 +
𝜃2𝑃𝐶𝑛) and 𝛹3𝑛 = 𝛼1 + exp(𝛼2 + 𝜃2(𝑃𝐶𝑛)) + exp(𝛼3) , where, 𝛼1, 𝛼2,  and 𝛼3  are fixed 

constants and 𝜃2 is a positive fixed parameter on protective clothing indicator variable entering 

directly only in the second threshold33. Figure 6.1a shows the position of thresholds for two groups 

of individuals: (a) who wore a protective clothing during the crash and (b) who did not wear it 

during the crash. In the case when 𝑃𝐶𝑛 enters only the second threshold (𝛹2𝑛) and takes the value 

1, the second and third thresholds move to the right by x (= exp(𝛼2 + 𝜃2) −  exp(𝛼2))  on the 

propensity scale, resulting in an increase in the probability of non-incapacitating injury and 

decrease in the probability of fatal injury (while all the independent variables and parameters in 

the propensity function remains same). 

  

 

 
33 Note that the protective clothing variable enters the third threshold through the second threshold but not directly.  
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a) Shift in the thresholds when protective clothing variable enters only the second threshold directly and takes value 1 

 

b) Shift in the thresholds when protective clothing variable enters both the second and third thresholds directly and 

takes value 1 

 

Figure 1: Influence of protective clothing variable on the shift of thresholds. 
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In reality, however, wearing protective clothing during a high impact crash, such as those 

likely to occur on freeways, will likely reduce the injury severity level from incapacitating injury 

to non-incapacitating injury, but may have little influence on reducing higher injury-severity levels 

(fatal injury level in our case). See, for example, Erdogan et al. (2013) for a supporting finding 

that wearing protective clothing protects from soft tissue injuries but not from severe fractures. To 

incorporate such differential effect of protective clothing on incapacitating and fatal injury levels, 

the 𝑃𝐶𝑛 variable should enter directly into the Δ𝑛𝑘 term of the third threshold as well (along with 

its entry through the second threshold), but with a negative coefficient, that is, when the third 

threshold is specified as 𝛹3𝑛 = exp(𝛼2 + 𝜃2(𝑃𝐶𝑛)) + exp(𝛼3 + 𝜃3(𝑃𝐶𝑛)), where 𝜃3 < 0. With 

such specification, when 𝑃𝐶𝑛 takes the value 1, the second term of 𝛹3𝑛 shrinks by -y 

(= exp(𝛼3 + 𝜃3) − exp(𝛼3)) making the overall shift in the third threshold equal to x - y (as 

shown in Figure 6.1b). That is, a rightward shift of 𝛹3𝑛 through a positive coefficient (𝜃2) will be 

counteracted by a leftward shift through a negative coefficient (𝜃3). Naturally, the higher is the 

value of 𝜃2, the lower should be the value of 𝜃3 (a negative number of larger magnitude) for 

counteracting the influence of 𝜃2 on 𝛹3𝑛.  

Now, let us extend this discussion when we have random parameters on PCn. Let the 

parameter estimates of PCn in second and third thresholds be represented by two random 

parameters 𝜃2𝑛 and 𝜃3𝑛, respectively. Analogous to the discussion above, a negative dependency 

can be allowed between 𝜃2𝑛 and 𝜃3𝑛 through a negative correlation between the two random 

parameters. Ignoring such dependency (or negative correlation), as discussed earlier, imposes that 

the variance of 𝛹3𝑛 is greater than that of 𝛹2𝑛. Since variability in the influence of unobserved 

influences on the third threshold need not always be greater than that on the second threshold, 

ignoring negative correlation between 𝜃2𝑛 and 𝜃3𝑛 might make it difficult to estimate a statistically 

significant variance parameter for 𝜃3𝑛. In other words, the above-discussed restriction might make 

it difficult to estimate statistically significant random parameters in higher order thresholds, simply 

because random parameters from lower order thresholds would simply carry forward to higher 

order thresholds.  

As evident from the literature reviewed in Table 6.1, Eluru et al. (2008), Yasmin et al. 

(2015a) and Xin et al. (2017) tried to estimate random parameters in the thresholds without 

allowing correlations between them. However, perhaps due in part to the above-mentioned 

reasons, they were unable to find statistically significant random parameters in thresholds. 

Therefore, ideally, the model structure should not restrict an order on the variances of thresholds 

while specifying and testing the model. 

 

6.4. Experimental Design 

To evaluate the efficacy of introducing negative correlations as a variance reduction technique in 

the thresholds of MGOR models, we simulated motorcycle crash datasets with known negative 

correlation structures among an underlying true set of random parameters in threshold functions. 

While one may use a real data to evaluate the technique, it is difficult to control for the unobserved 

internal relationships which might exist between the independent variables and injury outcomes. 

In order to avoid such issues, a simulation-based approach is used in this chapter. For each of the 

simulated datasets, we estimated two models – one allowing correlations between random 

parameters and the other not allowing correlations. The impact of ignoring correlations was then 

evaluated by comparing the two models using various evaluation criteria. 

The outcome injury severity levels in the simulated datasets were no injury, non-

incapacitating injury, incapacitating injury, and fatal injury. We assumed that three explanatory 
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variables – age of motorcyclist, male indicator (1 if a motorcyclist is male, zero otherwise), and 

intersection indicator (1 if a crash occurred at an intersection, zero otherwise) – influence the latent 

injury risk propensity of a motorcyclist. Specifically, the latent propensity function is specified as: 

 𝑦𝑛
∗ = (𝛽1 × 𝑎𝑔𝑒𝑛) + (𝛽2 × 𝑚𝑎𝑙𝑒𝑛) + (𝛽3  ×  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛) +  𝜀𝑛   (6.9) 

where 𝛽1, 𝛽2, 𝛽3 are the parameters and 𝜀𝑛 is the random component of the propensity function.   

To simulate data with the above propensity function, values for the age variable were drawn 

from a truncated normal distribution with mean 40 years, standard deviation 15 years, and 16 years 

and 75 years as the left and right truncation limits, respectively. Values for the indicator variables 

were drawn from Bernoulli distributions with mean 0.5. Values for the error term 𝜀𝑛 in the 

propensity function were drawn from a standard logistic distribution. 

 

6.4.1 Threshold Scenarios 

We simulated five different scenarios for the thresholds, as summarized in Table 6.2. The second 

column of the table specifies the propensity function and the threshold functions used, including 

the parameter values assumed, in each scenario. The parameter of the age variable in the propensity 

function is assumed to be positive considering that the older people tend to be susceptible to a 

higher injury severity levels relative to younger people (Savolainen and Mannering 2007). 

Literature suggests that males tend to sustain lower injury severities relative to females and 

therefore a negative parameter is selected for the male indicator variable (Quddus et al. 2002; 

Rifaat et al. 2012). Similarly, a negative parameter is considered for the intersection indicator 

variable assuming that the crashes occurring at intersections tend to be less severe due to driver 

caution and other factors (Savolainen and Mannering 2007). 
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Table 6.2: Summary of different scenariosa simulated for motorcyclist injury severity. 

Scenario 

numberb 
Scenario detail 

Scenario 

description 

Sample 

size 

Average percentage shares across simulated datasets 

No 

injury 

Non-incapacitating 

injury 

Incapacitating 

injury 

Fatal 

injury 

S1 

𝑦𝑛
∗ = 0.1 × 𝑎𝑔𝑒𝑛 − 0.3 × 𝑚𝑎𝑙𝑒𝑛 − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛 + 𝜀𝑛 

𝛹1𝑛 = 0.2 

𝛹2𝑛 = 0.2 + 𝑒𝑥𝑝(0.25 + 𝜃𝑛2 × 𝑃𝐶𝑛) 

𝛹3𝑛 = 0.2 + 𝑒𝑥𝑝(0.25 + 𝜃𝑛2 ×  𝑃𝐶𝑛) + 𝑒𝑥𝑝(0.75 + 𝜃𝑛3 × 𝑃𝐶𝑛) 

𝜃𝑛2 = 𝑁(0.5, 0.75), 𝜃𝑛3 = 𝑁(−0.5, 0.75), and 𝜌23 = −0.7 

Greater share for 

higher ordered 

outcome 

5,000 4.4 18.2 27.1 50.3 

S2 

𝑦𝑛
∗ = 0.1 × 𝑎𝑔𝑒𝑛 − 0.3 × 𝑚𝑎𝑙𝑒𝑛 − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛 + 𝜀𝑛 

𝛹1𝑛 = 3.5 

𝛹2𝑛 = 3.5 + 𝑒𝑥𝑝(0.25 + 𝜃𝑛2 × 𝑃𝐶𝑛) 

𝛹3𝑛 = 3.5 + 𝑒𝑥𝑝(0.25 + 𝜃𝑛2 ×  𝑃𝐶𝑛) + 𝑒𝑥𝑝(0.75 + 𝜃𝑛3 × 𝑃𝐶𝑛) 

𝜃𝑛2 = 𝑁(0.5, 0.75), 𝜃𝑛3 = 𝑁(−0.5, 0.75), and 𝜌23 = −0.7 

Greater share for 

lower ordered 

outcome 

5,000 48.2 27.4 17.8 6.6 

S3 

𝑦𝑛
∗ = 0.1 × 𝑎𝑔𝑒𝑛 − 0.3 × 𝑚𝑎𝑙𝑒𝑛 − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛 + 𝜀𝑛 

𝛹1𝑛 = 2.1 

𝛹2𝑛 = 2.1 + 𝑒𝑥𝑝(0.06 + 𝜃𝑛2 × 𝑃𝐶𝑛) 

𝛹3𝑛 = 2.1 + 𝑒𝑥𝑝(0.06 + 𝜃𝑛2 ×  𝑃𝐶𝑛) + 𝑒𝑥𝑝(0.56 + 𝜃𝑛3 × 𝑃𝐶𝑛) 

𝜃𝑛2 = 𝑁(0.5, 0.75), 𝜃𝑛3 = 𝑁(−0.5, 0.75), and 𝜌23 = −0.7 

Approximately 

equal shares for 

all outcomes 

5,000 24.7 25.9 24.8 24.6 

S4 

𝑦𝑛
∗ = 0.1 × 𝑎𝑔𝑒𝑛 − 0.3 × 𝑚𝑎𝑙𝑒𝑛 − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛 + 𝜀𝑛 

𝛹1𝑛 = 𝛼1𝑛 

𝛹2𝑛 = 𝛼1𝑛 + 𝑒𝑥𝑝(𝛼2𝑛 + 0.5 × 𝑃𝐶𝑛) 

𝛹3𝑛 = 𝛼1𝑛 + 𝑒𝑥𝑝(𝛼2𝑛 + 0.5 ×  𝑃𝐶𝑛) + 𝑒𝑥𝑝(0.75 − 0.5 × 𝑃𝐶𝑛) 

𝛼1𝑛 = 𝑁(3.5, 1.75), 𝛼2𝑛 = 𝑁(0.25, 0.75), and 𝜌12 = −0.7 

Greater share for 

lower ordered 

outcome 

5,000 48.2 28.4 15.8 7.6 

S5 

𝑦𝑛
∗ = 0.1 × 𝑎𝑔𝑒𝑛 − 0.3 × 𝑚𝑎𝑙𝑒𝑛 − 0.75 × 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛 + 𝜀𝑛 

𝛹1𝑛 = 0.2 

𝛹2𝑛 = 0.2 + 𝑒𝑥𝑝(0.25 + 𝜃𝑛2 × 𝑃𝐶𝑛) 

𝛹3𝑛 = 0.2 + 𝑒𝑥𝑝(0.25 + 𝜃𝑛2 ×  𝑃𝐶𝑛) + 𝑒𝑥𝑝(0.75 + 𝜃𝑛3 × 𝑃𝐶𝑛) 

𝜃𝑛2 = 𝑁(0.5, 0.75), 𝜃𝑛3 = 𝑁(−0.5, 0.75), and 𝜌23 = −0.7 

Greater share for 

higher ordered 

outcome 

10,000 4.4 18.2 27.1 50.3 

a For each of the five scenarios, a total of 100 datasets were simulated.  
b See text for complete scenario-number definitions.  
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As can be observed from the second column of Table 6.2, scenarios S1, S2, S3, and S5 

simulated threshold functions based on the example discussed in Section 6.3.2. Specifically, 

thresholds were assumed to depend on whether a motorcyclist was wearing a protective clothing 

or not, using an indicator variable (PCn) that was equal to 1 if the motorcyclist was wearing a 

protective clothing when the crash happened (zero otherwise). This indicator variable was assumed 

to be Bernoulli distributed with mean 0.5. Random parameters were allowed on the protective-

clothing indicator variable in the second and third thresholds while keeping the first threshold fixed 

(to 𝛼1), as in Equation 6.10 below: 

𝛹1 =  𝛼1, 

𝛹2𝑛 = 𝛼1 +  exp(𝛼2 +  𝜃2𝑛  × 𝑃𝐶𝑛),       (6.10) 

𝛹3𝑛 = 𝛼1 +  exp(𝛼2 +  𝜃2𝑛  ×  𝑃𝐶𝑛) + exp (𝛼3 +  𝜃3𝑛  × 𝑃𝐶𝑛). 

The random parameters 𝜃2𝑛 and 𝜃3𝑛 in all the four scenarios (S1, S2, S3, and S5) were simulated 

from two normal distributions 𝑁(𝜃2, 𝜎2) and 𝑁(𝜃3, 𝜎3) with a correlation level of 𝜌23 (which was 

assumed to be −0.7).  

In the fourth scenario (S4), however, correlated random parameters were introduced on 

constants in the first and second thresholds (with a correlation parameter 𝜌12 = −0.7)34, while 

keeping the coefficients of the protective clothing variable to be fixed, as shown in Equation 6.11 

below. 

𝛹1𝑛 =  𝛼1𝑛, 

𝛹2𝑛 = 𝛼1𝑛 +  exp(𝛼2𝑛 + 𝜃2 × 𝑃𝐶𝑛),       (6.11) 

𝛹3𝑛 = 𝛼1𝑛 +  exp(𝛼2𝑛 + 𝜃2 ×  𝑃𝐶𝑛) + exp (𝛼3 + 𝜃3 × 𝑃𝐶𝑛). 

Note from Table 6.2 that scenario S1 simulated a high percentage (50.3%) of fatal crashes 

(although empirical contexts with such a high percentage of fatal crashes are rare), S2 simulated a 

low percentage (6.6%) of fatal crashes, S3 simulated approximately equal shares for all injury-

severity levels, S4 simulated a low percentage (7.6%) of fatal crashes, and S5 simulated a high 

percentage of fatal crashes. This allows us to examine the above-discussed issues in different data 

generation settings as defined by the percentage of different ordered outcomes. For the first four 

scenarios (S1, S2, S3, and S4), a sample size of 5,000 motorcyclists was generated from the 

assumed distributions for 𝑎𝑔𝑒𝑛, 𝑚𝑎𝑙𝑒𝑛, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑛, and 𝑃𝐶𝑛 variables. For the fifth scenario 

(S5), the S1 scenario was simply repeated by increasing the sample size of motorcyclists from 

5,000 to 10,000. This was done to evaluate the influence of sample size, while keeping all else 

same.  

In each of the five scenarios, the outcome injury-severity level for each observation was 

obtained by mapping the propensity function with the thresholds as shown in Equation 6.2. For 

each of the five scenarios, the data generation process was repeated 100 times to obtain 100 

 

 
34 With regard to the equation 8, the variance of higher threshold can be less than the variance of higher threshold 

only when there is a negative covariance between those thresholds. We considered a higher negative correlation 

value of -0.7 to achieve a higher negative covariance and make the variance reduction technique possible. Other 

correlation values of -0.5 and -0.9 were tried in the experimental design and found to produce similar findings. 
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different datasets by drawing different values for the random components (𝜀𝑛 and random 

parameters) from their corresponding distributions. 

For each of the 100 datasets in each of the five scenarios, two MGORL models were 

estimated (a total of 100×5×2=1,000 MGORL model estimations). In the first model, correlation 

was allowed (estimated) between random parameters in the thresholds. In the second model, the 

correlation term was fixed to zero. To examine the recovery of random parameters and negative 

correlations in the thresholds, under different severity scenarios, propensity function and 

thresholds specifications are forced to be the same as the ones considered during the data 

simulation process. All models were estimated using the maximum simulated likelihood (MSL) 

approach with 400 Halton draws to simulate the distribution of random parameters (Bhat, 2003). 

Model estimations were carried out using codes written in the Gauss matrix programming language 

for the MGORL model with correlated random parameters. 

 

6.4.2 Model Performance Metrics  

To evaluate the performance of MGORL models estimated with and without correlated random 

parameters (on simulated data with correlations), the following criteria were considered: 

a. The Log-likelihood improvement in the MGORL model after allowing correlated random 

parameters in thresholds was evaluated using a likelihood ratio test. Here, a model without 

correlation was a restricted version of a model with correlation, and the number of restrictions 

was equal to the difference in the number of parameter estimates in both the models. Chi-square 

value (𝜒2) which is equal to −2×[𝐿𝐿𝑚𝑤𝑜𝑐 −  𝐿𝐿𝑚𝑤𝑐] was computed for each dataset and was 

then compared with the critical chi-square value for a given number of   restrictions at 95% 

confidence level.   

b. The Absolute Percentage Bias (APB) for each parameter was calculated as the absolute 

percentage difference of the mean parameter estimate from the true parameter value. The mean 

estimate of each parameter was the average of all estimates across 100 datasets. This metric is 

a measure of accuracy of parameter estimates, expressed as given below:  

𝐴𝑃𝐵 = |
𝑚𝑒𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒−𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
|  × 100      (6.12) 

c. The Finite Sample Standard Error (FSSE) for a given parameter was calculated as the 

standard deviation of that estimated parameters across 100 datasets. FSSE for a parameter may 

be interpreted as the empirical standard error of its estimate in finite samples. Comparison of 

this metric for each parameter in the two models (model with correlation and model without 

correlation) was used to assess the loss/gain in the precision of parameter estimate when the 

correlation between random parameters was allowed. 

d. The Coverage Probability (CP) for each parameter was calculated using the formula: 𝐶𝑃 =

 1 𝑁⁄ ∑ 𝐼[𝛽̂𝑋
𝑛 −  𝑡𝛼 × 𝑠𝑒(𝛽̂𝑋

𝑛)  ≤  𝛽𝑋  ≤  𝛽̂𝑋
𝑛 +  𝑡𝛼 × 𝑠𝑒(𝛽̂𝑋

𝑛) ]𝑁
𝑛=1 , where N is the total number 

of datasets (100), 𝛽̂𝑋
𝑛 is the estimated parameter for a dataset 𝑛, 𝛽𝑋 is the true parameter value, 

𝑠𝑒(𝛽̂𝑋
𝑛) is the asymptotic standard error of 𝛽̂𝑋

𝑛, and 𝐼[∙] is an indicator function which takes a 

value 1 if the condition inside the bracket satisfies, otherwise equals to zero, and 𝑡𝛼 is the t-

statistic value for a given confidence level (1 −  𝛼) × 100. The confidence interval in this 

chapter was set to 95%. If the computed coverage probability is less than the nominal coverage 

probability (0.95), it suggests that the confidence intervals of the estimated parameter do not 

provide sufficient empirical coverage of the true parameter.  

e. Predicted percentage shares were calculated for each injury-severity level using the 

estimated parameters from each dataset and were averaged across all datasets. The predicted 
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percentage shares for both the models (model with correlation and model without correlation) 

were compared to each other to understand the impact of ignoring correlations on the predicted 

aggregate shares.   

f. The marginal effects were calculated to understand the effect of each variable on the 

outcome response for the model with correlation and the model without correlation. For a 

continuous variable, marginal effects were calculated as the average change in the probability 

of injury severity levels for all individuals with a unit increase in the variable of interest from 

its current value. Marginal effects for an indicator variable were computed using the procedure 

presented by Eluru and Bhat (2007).  

 

6.4.3 Additional Scenarios 

Apart from the five scenarios discussed in Section 6.4.1, additional scenarios were simulated. 

Recall that all the indicator variables (such as gender) were simulated as Bernoulli distributed with 

mean 0.5. However, the simulated data may not always represent the actual data. Therefore, 

scenario S1 was repeated with a gender split of 68% males 32% females, as observed in the 

motorcycle crashes reported in the 2016 crash data by Fatality Analysis Reporting System (FARS), 

keeping all other variables same. Such a scenario is labelled S6. The overall findings from this 

scenario aligned with those from scenario S1 suggesting that the inferences from this chapter are 

applicable for simulated data based on real-world scenarios. Therefore, we retained the mean value 

of 0.5 for all the indicators in all other simulations. 

To check the influence of number of draws on model estimation, we repeated scenario S1 

by increasing the number of Halton draws from 400 to 1000 and the new scenario is termed S7. 

Results suggested that there is no notable change in the evaluation metrics, marginal effects, or 

percentage shares after increasing the number of Halton draws. Therefore, we used 400 Halton 

draws for all other estimations in this chapter. 

Scenario S1 was repeated with a smaller sample size of 1000 (and labelled scenario S8). It 

was found that there is a decrease in the consistency of predictions with a decrease in the sample 

size. Moreover, there is a reduction in the consistency (and increase in the APB and FSSE) of 

parameter estimates with a decrease in the sample size. However, the comparison of models with 

and without correlation suggested that the new findings with regard to the evaluation of the 

variance-reduction technique are consistent with the S1’s findings. Therefore, the results and 

findings of the scenario with a smaller sample size are not discussed further in the chapter. 

We repeated the scenario S4 with a higher proportion (43%) of fatal injuries and the new 

scenario is termed as S9. Table 6.1 contains the number of datasets with converged models and 

significantly improved log-likelihood for S9. Table 6.2, Table 6.3 and Figure 6.1 contains the 

evaluation metrics, marginal effects and predicted percentage shares respectively for S9. Similar 

to S4, S9 results suggest that the model with correlations is superior to that of a model without 

correlations in retrieving the parameter estimates in higher order thresholds. Moreover, there is no 

notable change in the evaluation metrics, marginal effects and percentage shares for S4 even after 

increasing the percentage of fatal crashes in the data. 

Note that the results from the additional scenarios S6, S7, S8, and S9 are not reported in 

the chapter to conserve space. Only the results from scenarios S1 through S5 are reported on the 

next section, because the overall findings from the additional scenarios are similar to those from 

the first set of scenarios. 
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6.5. Results 

This section presents the results and findings of the simulation experiments to evaluate the efficacy 

of negative correlations as a variance reduction technique in threshold functions of MGORL 

models.  
 

Table 6.3: Summary of results from simulation experiments. 

Scenario numbera Scenario description 
Number of datasets with 

converged models 

Number of datasets with 

significantly improved log-

likelihoodb 

S1 Greater share for higher 

ordered outcome 
91 6 

S2 Greater share for lower 

ordered outcome 
86 4 

S3 Approximately equal 

shares for all outcomes 
94 3 

S4 Greater share for lower 

ordered outcome 
82 0 

a See text for complete scenario-number definitions.  

b A likelihood ratio test was carried out between the models with and without correlation between the random 

parameters at 95% confidence level, with 2 degrees of freedom. 

 
 

6.5.1 Order of Variance in MGORL Models with Negatively Correlated Random Parameters in 

Thresholds 

We examined the order of threshold variances in simulated MGORL data with and without 

correlated random parameters. Since scenarios S1, S2, S3, and S5 include random parameters on 

a binary variable (PCn) entering the threshold functions, the thresholds are random only when the 

PCn variable takes a value of 1. Therefore, in all these four scenarios, random parameters kick in 

only for 50% of the cases where the PCn variable takes a value of 1. For all these cases, as discussed 

in Section 3, variances of the second and third thresholds (𝜓𝑛2 and 𝜓𝑛3) in the data without 

correlated random thresholds were in an increasing order, with the variance of 𝜓𝑛2 as 5.94 and 

that of 𝜓𝑛3 as 8.14. This order reversed in data with correlated random thresholds, with the 

variance of 𝜓𝑛2 as 5.94 and that of 𝜓𝑛3 as 5.02, demonstrating the use of negative correlations for 

relaxing the assumption of non-decreasing variances. In the scenario S4, since random parameters  

are associated with the constants of the threshold functions, the thresholds are random for all cases 

in any of the 100 datasets. Therefore, introducing a negative correlation of -0.7 rendered the order 

of thresholds to be decreasing for all cases.  

 

6.5.2 Estimation Issues of MGORL Models with Negatively Correlated Random Parameters in 

Thresholds 

During the estimation of MGORL models with correlated random thresholds (on the simulated 

data with correlated random thresholds), we encountered non-convergence issues for at   least 10% 

of the datasets in each scenario. More specifically, the number of simulated datasets (out of 100) 

for which the MGORL models with correlated random thresholds converged in each scenario are 

reported in Table 6.3 (second column). For the remaining datasets in each scenario, the non-

convergence issues arose due to the occurrence of maximum value for the log-likelihood (𝐿𝐿) 
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function at the boundary value (-1) of the correlation term, which was not a stationary point to 

satisfy the convergence criterion.  

To examine this issue, we plotted the 𝐿𝐿 function profiles of un-converged models (in 

scenario S2) with respect to the correlation term while fixing the other parameter estimates. Figure 

6.2 shows the variation of the 𝐿𝐿 function with respect to the correlation term for each of the 14 

datasets on which the models did not converge in scenario S2. It can be observed that the 𝐿𝐿 

function is monotonic in the range of the correlation term (-1 to +1). The maximum value of the 

log-likelihood function for all 14 profiles in Figure 6.2 is at the correlation level of -1 where the 

𝐿𝐿 function is not stationary.  

 

 

 
Figure 6.2. Log-likelihood profiles of unconverged models with respect to the correlation term. 

Interestingly, by changing the starting values of the parameters to be estimated, 

convergence was achieved for 3 out of the 14 datasets mentioned above, with correlation values 

different from -1. However, although the parameter estimates (including those of the correlation 

parameter) obtained from both the converged and the corresponding un-converged models were 

different, the final 𝐿𝐿 values were not different between the converged models and the 

corresponding un-converged models at boundary values. This suggests a flat 𝐿𝐿 function profile, 

potentially due to identification problems in models with correlated random parameters in 

thresholds. Besides, the parameter estimates for the correlation term and the standard deviation of 

the second random parameter (𝜎3, the random parameter in the higher threshold function) had high 

standard errors in some converged models, which again points to issues of parameter 

identifiability. Note also that for some of the converged models, the Hessian matrix could not be 

inverted at the final parameter estimates, and the t-statistics could not be computed using the 

sandwich estimator. So, the t-statistics were computed using the cross products of the first order 

derivatives. For subsequent analysis, we ignored the un-converged models and computed the 

evaluation measures only for the converged models in each scenario. 
Interestingly, when we estimated models without correlation between random parameters 

in thresholds (again on simulated data with correlated random parameters), the standard deviation 

of the random parameter in the higher order random threshold (third threshold in S1, S2, S3, and 
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S5 and second threshold in S4) was statistically insignificant at 95% confidence interval in almost 

all datasets for all five scenarios. This suggests difficulty in estimating random parameters in 

higher order thresholds of MGORL models, as discussed in Section 6.3.2. Therefore, the 

insignificant random parameter was replaced with a fixed parameter, and the model was re-

estimated with only one random parameter, instead of two correlated random parameters35. 

 

6.5.3 Data Fit of MGORL Models with Negatively Correlated Random Parameters in 

Thresholds Vis-À-Vis Those Without Correlated Random Parameters 

For each dataset on which we could estimate a model with correlated random parameters 

without facing convergence issues (see column 3 of Table 6.3), a likelihood ratio test was 

conducted between the model without correlation and the model with correlation. This likelihood 

ratio test was associated with two degrees of freedom, since both the standard deviation of the 

random parameter in the higher order threshold and the correlation term were constrained to zero 

in the model without correlated random parameters. The results of the likelihood ratio tests are 

shown in Table 6.3 (last column) in the form of the number of datasets which show a statistically 

significant improvement in log-likelihood when correlated random thresholds were allowed. 

Interestingly, allowing correlated random parameters did not yield a significant improvement in 

data fit in a majority of the datasets in all five scenarios. Note also that increasing the sample size 

from 5,000 (in S1) to 10,000 (in S5) did not substantially change the results. 

 

6.5.4 Recovery of Parameters 

Table 6.4 reports, for all the five scenarios, the metrics of parameter recovery from the maximum 

simulated likelihood estimation technique for both the models (the model with correlated random 

parameters36 and the model without correlated random parameters). Recall that these metrics 

(APB, FSSE, and CP) have already been defined in Section 4. 

Comparing the metrics between scenario S5 and scenario S1, it can be observed that 

increasing the sample size did not change the APB, FSSE and CP values drastically for any of the 

parameters.  

Comparison of mean estimates and APB values between the two models for scenarios S1, 

S2, S3, and S5 indicate that ignoring correlations lead to a greater rightward bias in the parameter 

estimate of the protective clothing variable in the third threshold. In scenario S4, ignoring 

correlations between random parameters resulted in a greater rightward bias in the estimates of 

mean values of constants for all three thresholds as well the standard deviations of random 

 

 
35 Even in the model with correlated random parameters in second, third, and fourth scenarios, standard deviation of 

the second random parameter turned out to be statistically insignificant in at least 50% of the datasets. This could be 

due to the flat nature of the log-likelihood function and lower t-statistics resulting from the calculation of covariance 

matrix for the parameter estimates using the first order derivatives instead of using the sandwich estimator. 

Removing the insignificant random parameters in the model with correlation, and re-estimating the model, 

eliminates the need for the correlation term. We elected to keep the insignificant random parameter in the model and 

retain the correlation term to keep the results as general as possible.  
36 For models with correlated random parameters, we ignored the un-converged models and computed the evaluation 

metrics only for the converged models in each scenario. 
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Table 6.4. Evaluation of estimated parameters in the presence and absence of correlations between random parameters.a 

Parameters 
Performanc

e metricsb 

Scenario-S1 Scenario-S2 Scenario-S3 Scenario-S4 Scenario-S5 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

Propensity 

function 

Age 

True value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Mean 

estimate 
0.1 0.101 0.1 0.1 0.1 0.1 0.112 0.28 0.1 0.101 

APB 0 1 0 0 0 0 12 180 0 1 

FSSE 0.004 0.004 0.002 0.002 0.003 0.003 0.053 0.549 0.003 0.003 

CP 0.967 0.912 0.976 0.988 0.957 0.936 0.931 1 0.966 0.933 

Gender 

True value -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 

Mean 

estimate 
-0.312 -0.313 -0.31 -0.309 -0.308 -0.308 -0.345 -0.774 -0.309 -0.311 

APB 4 4.33 3.33 3 2.67 2.67 15 158 3 3.67 

FSSE 0.065 0.066 0.057 0.055 0.059 0.059 0.193 1.219 0.046 0.047 

CP 0.978 0.978 0.964 0.952 0.947 0.957 0.958 1 0.944 0.944 

Intersection 

indicator 

True value -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 

Mean 

estimate 
-0.756 -0.758 -0.751 -0.749 -0.761 -0.76 -0.846 -2.122 -0.752 -0.755 

APB 0.8 1.07 0.13 0.13 1.47 1.33 12.8 182.93 0.27 0.67 

FSSE 0.067 0.067 0.05 0.05 0.054 0.053 0.397 4.219 0.045 0.045 

CP 0.967 0.978 0.988 0.988 0.957 0.947 0.972 1 0.978 0.966 

First 

threshold 
Constant 

True value 0.2 0.2 3.5 3.5 2.1 2.1 
3.5 

 (1.75) 

3.5  

(1.75) 
0.2 0.2 

Mean 

estimate 
0.191 0.183 3.512 3.504 2.09 2.086 

3.904 

(2.028) 

9.846 

(6.016) 
0.193 0.179 

APB 4.5 8.5 0.34 0.11 0.48 0.67 
11.54 

(15.89) 

181.31 

(243.77) 
3.5 10.5 

FSSE 0.132 0.129 0.108 0.106 0.104 0.104 
1.811 

(1.454) 

19.53 

(13.01) 
0.104 0.102 

CP 0.934 0.956 0.976 0.964 0.968 0.957 
0.944 

(0.958) 

1 

(1) 
0.933 0.944 

Second 

threshold 

 

Constant 

True value 0.25 0.25 0.25 0.25 0.06 0.06 0.25 (0.75) 0.25(0.75) 0.25 0.25 

Mean 

estimate 
0.247 0.247 0.255 0.254 0.071 0.07 0.277 (0.78)c 1.053 (-) 0.251 0.251 

APB 1.2 1.2 2 1.6 18.33 16.67 10.8 (4) 321.2 (-) 0.4 0.4 
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FSSE 0.055 0.055 0.037 0.037 0.039 0.038 
0.375 

(1.605) 
1.147 (-) 0.038 0.038 

CP 0.945 0.945 0.94 0.929 0.968 0.968 
0.986 

(0.856) 
1 (-) 0.978 0.978 

Protective 

clothing 

True value 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 (0.75) 0.5 0.5 0.5 (0.75) 0.5 (0.75) 

Mean 

estimate 
0.487 (0.77) 0.488 (0.77) 0.503 (0.79) 0.502 (0.77) 0.486 (0.77) 

0.488 

(0.77) 
0.526 0.437 0.495 (0.75) 0.494 (0.75) 

APB 2.6 (3.2) 2.4 (2.93) 0.6 (5.33) 0.4 (2.8) 2.8 (3.07) 2.4 (2.4) 5.2 12.6 1 (0.53) 1.2 (0.67) 

FSSE 0.07 (0.082) 0.069 (0.08) 0.06 (0.197) 0.06 (0.189) 0.05 (0.096) 
0.05 

(0.093) 
0.12 0.075 0.05 (0.061) 0.05 (0.062) 

CP 0.96 (0.989) 0.96 (0.978) 0.94 (0.952) 0.94 (0.94) 0.97 (0.989) 
0.97 

(0.979) 
0.875 0.653 0.97 (0.955) 0.98 (0.944) 

Third 

threshold 

 

 

Constant 

True value 0.75 0.75 0.75 0.75 0.56 0.56 0.75 0.75 0.75 0.75 

Mean 

estimate 
0.755 0.755 0.756 0.755 0.561 0.561 0.807 1.282 0.753 0.754 

APB 0.67 0.67 0.8 0.67 0.18 0.18 7.6 70.93 0.4 0.53 

FSSE 0.029 0.029 0.038 0.038 0.03 0.03 0.298 0.958 0.022 0.022 

CP 0.967 0.967 0.976 0.976 0.957 0.957 0.917 1 0.966 0.978 

Protective 

clothing 

True value -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5(0.75) -0.5 -0.5 -0.5(0.75) -0.5(0.75) 

Mean 

estimate 

-0.53 

(0.78) 

-0.175 

(-) 

-0.43c 

(0.85)c 

-0.17 

(-) 

-0.48c 

(0.75)c 

-0.17 

(-) -0.501 -0.514 
-0.42c 

(0.56)c 

-0.18 

(-) 

APB 5.2 (4.13) 65 (-) 14.2 (12.8) 66.2 (-) 3 (0.27) 65.6 (-) 0.2 2.8 15 (24.93) 64.2 (-) 

FSSE 0.19 (0.30) 0.33 (-) 0.17 (0.25) 0.341 (-) 0.124 (0.18) 0.337 (-) 0.083 0.083 0.19 (0.41) 0.328 (-) 

CP 0.956 (0.98) 0.978 (-) 1 (1) 0.94 (-) 1 (1) 0.979 (-) 0.903 1 0.843 (0.86) 0.944 (-) 

Parameters 
Performance 

metricsb 

Scenario-S1 Scenario-S2 Scenario-S3 Scenario-S4 Scenario-S5 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

Correlation term 

True value -0.7 - -0.7 - -0.7 - -0.7 - -0.7 - 

Mean 

estimate 
-0.689 - -0.632c - -0.652c - -0.76c - -0.566 - 

APB 1.57 - 9.71 - 6.86 - 8.57 - 19.14 - 

FSSE 0.198 - 0.265 - 0.208 - 0.178 - 0.351 - 

CP 0.956 - 1 - 1 - 0.931 - 0.933 - 

a Values in parentheses represent the standard deviation of random parameters. 
b APB = Absolute Percentage Bias; FSSE = Finite Sample Standard Error; CP = Coverage Probability. 
c Parameter estimates are statistically insignificant (in at least 50% of datasets) at 95% confidence level. 
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parameters. Further, coefficients of the gender and intersection dummy variables in the propensity 

function became biased to the left, where as the coefficient of the age variable became biased to 

the right. 

In the context of precision (FSSE values) in parameter estimates, allowing or ignoring 

correlations did not have much influence in scenarios S1, S2, S3, and S5, except for the coefficient 

of the protective clothing variable in the third threshold. Although the parameter estimates in a 

model with correlation are typically expected to have better precision, probably due to the issues 

faced during estimation, the precision of parameters for the protective clothing variable was worse 

when correlations were allowed. In Scenario S4, parameters with greater bias were associated with 

greater FSSE values, particularly for the mean and standard deviation estimates of the first random 

threshold. In the context of the coverage probability (CP) values, there were not much differences 

between models with correlation and models without correlation. 

It is important not to get carried away by the above reported loss in accuracy and/or 

precision of parameter estimates in models without correlation. This is because a single parameter 

estimate does not offer much interpretation by itself in ordered response models. That is, it is 

difficult to use an individual parameter estimate to assess the change in probability of an outcome 

response when the corresponding independent variable changes. It is the combination of all 

parameters in the propensity and the threshold functions that determine outcome probabilities. 

Therefore, in the next section, we compare the predicted percentage shares and marginal effects 

between the model with correlation and the model without correlation.   

 

6.5.5 Predicted Percentage Shares and Marginal Effects 

Figure 6.3 shows comparisons of predicted percentage shares for different injury severity levels 

by models with and without correlated random parameters for all the five scenarios. It can 



 

 

131 

 

 

    

(a) No injury - S1 (b) Non-incapacitating injury - S1 (c) Incapacitating injury - S1 (d) Fatal injury - S1 

    

(e) No injury - S2 (f) Non-incapacitating injury - S2 (g) Incapacitating injury - S2 (h) Fatal Injury - S2 
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(i) No injury - S3 (j) Non-incapacitating injury - S3 (k) Incapacitating injury - S3 (l) Fatal Injury - S3 

    

(m) No injury - S4 (n) Non-incapacitating injury - S4 (o) Incapacitating injury - S4 (p) Fatal Injury - S4 
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(q) No injury – S5 (r) Non-incapacitating injury – S5 (s) Incapacitating injury – S5 (t) Fatal Injury – S5 

 

Figure 3: (Continued) Predicted percentage shares of different injury severity levels by the models with and without correlated random 

parameters. 
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be observed that the predicted percentage shares by the model with correlated random parameters 

and the model without correlation are close in scenarios S1, S2, S3, and S5 but differ slightly for 

scenario S4. Also, there is no discernible difference between the predictions in scenarios S1 and 

S5, which have different sample sizes but control for all other factors.  

In scenario S4, the model without correlated random parameters slightly overestimates the 

share of non-incapacitating injuries and underestimates the share of incapacitating injuries (when 

compared to the model with correlated random parameters). To further examine the differences 

between the two models in scenario S4, we computed the root mean square error (RMSE) between 

predicted and actual shares for each injury severity level (for all datasets with converged models) 

and then averaged across all injury severity levels. The average RMSE values were 1.675 and 

1.574 for the model with correlations and model without correlations, respectively. While these 

RMSE values are close to each other, it is interesting to note that the model without correlation 

has a slightly lower RMSE than the model with correlation.  

Table 6.5 compares the marginal effects of each variable on different injury severity levels 

for the two models (the model with correlated random parameters and the model without correlated 

random parameters). For scenarios S1, S2, S3, and S5, the marginal effects of all the variables 

except the protective clothing (on which random parameters were estimated) are almost same for 

the two models. Even for the protective clothing variable, the marginal effects are not substantially 

different. In S4, the marginal effects of protective clothing variable differ slightly (but not 

drastically) for the incapacitating, non-incapacitating and fatal injuries.  
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Table 5: Comparison of marginal effects for the estimated models with and without correlation between random parameters. 

 

Scenario 

Variable description Age Gender Intersection indicator Protective clothing indicator 

Model 
With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

With 

correlations 

Without 

correlations 

S1 

No injury -0.004 -0.004 0.024 0.024 0.058 0.058 0 0 

Non-incapacitating injury -0.007 -0.007 0.041 0.041 0.101 0.101 0.397 0.396 

Incapacitating injury -0.006 -0.006 0.035 0.034 0.087 0.085 -0.145 -0.13 

Fatal Injury 0.016 0.016 -0.1 -0.1 -0.245 -0.244 -0.252 -0.266 

S2 

No injury -0.018 -0.018 0.112 0.112 0.273 0.273 0 0 

Non-incapacitating injury 0.005 0.005 -0.033 -0.033 -0.08 -0.08 0.215 0.215 

Incapacitating injury 0.008 0.008 -0.047 -0.047 -0.116 -0.116 -0.19 -0.187 

Fatal Injury 0.005 0.005 -0.032 -0.032 -0.077 -0.076 -0.024 -0.028 

S3 

No injury -0.014 -0.014 0.089 0.089 0.221 0.221 0 0 

Non-incapacitating injury -0.002 -0.002 0.011 0.011 0.028 0.029 0.329 0.33 

Incapacitating injury 0.003 0.003 -0.019 -0.02 -0.049 -0.049 -0.213 -0.204 

Fatal Injury 0.013 0.013 -0.081 -0.081 -0.201 -0.2 -0.117 -0.125 

S4 

No injury -0.0183 -0.0205 0.1137 0.1274 0.2803 0.3138 0 0 

Non-incapacitating injury 0.0047 0.0093 -0.0308 -0.0596 -0.0762 -0.1486 0.2297 0.2102 

Incapacitating injury 0.0077 0.0082 -0.0475 -0.0503 -0.1178 -0.1243 -0.228 -0.2064 

Fatal Injury 0.006 0.003 -0.0354 -0.0175 -0.0863 -0.0409 -0.0018 -0.0038 

S5 

No injury -0.004 -0.004 0.024 0.024 0.057 0.057 0 0 

Non-incapacitating injury -0.007 -0.007 0.041 0.041 0.101 0.101 0.4 0.399 

Incapacitating injury -0.006 -0.006 0.036 0.035 0.086 0.089 -0.146 -0.131 

Fatal Injury 0.016 0.016 -0.1 -0.1 -0.244 -0.246 -0.254 -0.267 
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Bringing together the findings in this section with those in the previous section, it appears 

that when correlations are ignored between random parameters in thresholds, the estimates of other 

parameters are adjusted in such a way that the marginal effects and predicted percentage shares 

are similar to those when correlation is considered.  

 

6.6. Summary and Conclusions 

This chapter highlights a potential limitation of MGOR models, as applied in most empirical 

research, that the variances of the random thresholds are implicitly assumed to be in a non-

decreasing order. This restriction is not necessary and likely causes difficulty in estimating random 

parameters in higher order thresholds. To relax this restriction, we evaluated the use of negative 

correlations between the random parameters as a variance reduction technique. To do so, a 

simulation-based approach was used, where five different MGOR data scenarios were simulated 

with 100 datasets in each scenario using a known correlation structure between the random 

parameters. Two MGOR models were estimated on each simulated dataset – one allowing 

correlations between random parameters and the other not allowing correlations – and the 

performance of these two models was evaluated using various evaluation criteria. 

Allowing negative correlations helped relax the non-decreasing variance property of 

MGOR models. However, when negative correlations were considered between random 

parameters in thresholds, convergence issues and parameter identification problems were 

encountered. In addition, for a considerable number of simulated datasets, the correlation 

parameter estimate was associated with a high standard error. All these issues suggest the difficulty 

of the maximum simulated likelihood estimation and inference method for MGOR models with 

correlated random parameters in thresholds. 

Comparison of the models that did converge suggests that ignoring correlations leads to an 

estimation of fewer random parameters in higher order thresholds and results in bias and/or loss 

of precision for a few parameter estimates. However, when the converged models with correlated 

random parameters were compared with the corresponding models without correlations, we did 

not observe significant benefits of accounting for correlations. Neither did the data fit (as measured 

by likelihood ratio test) improve significantly nor did the predicted shares of different severity 

levels or the marginal effects differ substantially from those of the models that ignored 

correlations. In our experimental setup (in all five different scenarios), ignoring correlations lead 

to an adjustment of other parameter estimates such that overall likelihood values, predicted 

percentage shares, and the marginal effects were similar to those from the models with correlations. 

This again suggests potential identifiability issues of MGOR models with correlated random 

parameters in thresholds. 

In summary, the technique of using negative correlation as a variance reduction technique 

was not effective in our experimental setup, in part due to convergence and identification issues 

associated with estimating MGORL models that have correlated parameters in thresholds. 

Therefore, more research is needed for an advanced model structure that can relax the assumption 

on the order of variance of thresholds in MGOR models (see Paleti and Pinjari, 2018). A relevant 

question in this context is whether (and to what extent) such assumption is an egregious restriction 

to be concerned with. Finally, the issues explored with regard to the MGOR models in this chapter 

add to the discussion of using ordered versus unordered models in the analysis of accident-injury 

data. Specifically, the tradeoff between the high-degree of model flexibility that an unordered 

model analysis can provide (such as the standard mixed logit and its various extensions) versus 
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that ability to account for the ordering of alternatives that an ordered response model allows (see 

Eluru, 2013; Yasmin and Eluru 2013; Mannering and Bhat 2014).  
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Appendix 6.A. Computation of variance of thresholds in MGOR models 

Let VAR(.), COV(.) and E(.) represent the variance, covariance and expected value of random 

variables. Let the first 3 thresholds be 

𝛹𝑛1 = 0, 

𝛹𝑛2 = exp (𝜶2𝑼𝑛2 + 𝜽𝑛2𝑽𝑛2), 

𝛹𝑛3 = exp(𝜶2𝑼𝑛2 +  𝜽𝑛2𝑽𝑛2) +  exp(𝜶3𝑼𝑛3 + 𝜽𝑛3𝑽𝑛3), 

In the presence of normally distributed random parameters, variance of the third threshold is 

𝑉𝐴𝑅(𝛹𝑛3) = 𝑉𝐴𝑅(exp(𝜶2𝑼𝑛2 +  𝜽𝑛2𝑽𝑛2)) + 𝑉𝐴𝑅(exp(𝜶3𝑼𝑛3 +  𝜽𝑛3𝑽𝑛3)) + 𝐶23, 

where, 

𝐶23 = 2𝐶𝑂𝑉(exp(𝜶2𝑼𝑛2 + 𝜃𝑛2𝑽𝑛2) , exp(𝜶3𝑼𝑛3 +  𝜽𝑛3𝑽𝑛3))  

= 2[𝐸(exp(𝜶2𝑼𝑛2 +  𝜽𝑛2𝑽𝑛2) ×  exp(𝜶3𝑼𝑛3 +  𝜽𝑛3𝑽𝑛3))] − 𝐸(exp(𝜶2𝑼𝑛2 +  𝜽𝑛2𝑽𝑛2)) 

    × 𝐸[exp(𝜶3𝑼𝑛3 + 𝜽𝑛3𝑽𝑛3)] 

= 2 × exp(𝜶2𝑼𝑛2 +  𝜶3𝑼𝑛3) [𝐸(exp(𝜽𝑛2𝑽𝑛2  +  𝜽𝑛3𝑽𝑛3)) − 𝐸(exp (𝜽𝑛2𝑽𝑛2) ×

𝐸(exp (𝜽𝑛3𝑽𝑛3))] 

If the mean and variance of normally distributed random variable X are 𝜇 and 𝜎2, then the 

expected value of exp(X) is exp (𝜇 +  
𝜎2

2
). 

Therefore,  

𝐶23 =  2 exp(𝜶2𝑼𝑛2 +  𝜶3𝑼𝑛3 + 𝐸(𝜽𝑛2𝑽𝑛2  +  𝜽𝑛3𝑽𝑛3)) × 

[exp(
𝑉𝐴𝑅(𝜽𝑛2𝑽𝑛2  +  𝜽𝑛3𝑽𝑛3)

2
) − exp (

𝑉𝐴𝑅(𝜽𝑛2𝑽𝑛2)  +  𝑉(𝜽𝑛3𝑽𝑛3)

2
)] 

=   2 exp(𝜶2𝑼𝑛2 +  𝜶3𝑼𝑛3 + 𝐸(𝜽𝑛2𝑽𝑛2  +  𝜽𝑛3𝑉𝑛3) +
(𝑉𝑎𝑟(𝜽𝑛2𝑽𝑛2) + 𝑉𝑎𝑟(𝜽𝑛3𝑽𝑛3)

2
) × 

[exp(𝐶𝑂𝑉(𝜽𝑛2𝑽𝑛2, 𝜽𝑛3𝑽𝑛3))  − 1] 
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Chapter 7: A Social Resources and Leisure Activity Survey: Methodology and 

Sample Comparison for A Trial Version 
7.1. Introduction  

The need for travel is often perceived as demand derived from participation in various activities. 

From an activity-travel perspective, most trips are categorized by purpose such as mandatory, 

maintenance or discretionary/leisure travel. Differentiating it from the first two purposes, leisure 

travel is of a social and voluntary nature. Although offering freedom and satisfaction, leisure 

activities also strengthen individual’s relationships with friends and families and create new 

connections. 

Gathering evidence of the linkage between social networks and activity generation, Kim 

and colleagues (2018) reviewed transportation articles that analyzed the impacts of individuals’ 

social network characteristics on activity choices and travel behavior. These studies estimated the 

frequency of social activity participation based on three measures: network size (Carrasco et al, 

2008a; Carrasco and Miller, 2006; Sharmeen et al., 2014; van den Berg et al., 2009, 2010, 2012b, 

2015); relationship type (Carrasco et al., 2008a; Carrasco and Miller, 2006, 2009; Frei and 

Axhausen, 2008; Sharmeen et al., 2014; van den Berg et al., 2009, 2012a); tie strength (Carrasco 

et al., 2008a; Carrasco and Miller, 2006, 2009; Sharmeen et al., 2014; van den Berg et al., 2012a). 

Regarding network size, more frequent activity participation was associated with larger 

networks. Regarding relationship types, there was no clear consensus on its impact on ego-alter 

activity frequency due to varying methodologies and classification schemes. Although 

relationships type can indicate tie strength, several studies asked specifically about whether 

respondents had strong, medium, or weak ties with their alters.  Each study found that higher social 

activity frequency was generated by stronger ties. But there is a lack of a cohesive theory linking 

social network characteristics to leisure activity outcomes (Parady et al., 2019). 

Lin’s resource-based formulation of social capital posits that individuals invest in their 

social contacts and mobilize the resources within those contacts to reap instrumental (for profit 

and to access new resources) and expressive (to maintain access to existing resources) outcomes. 

To operationalize those essential outcomes flourished from embedded resources, Lin emphasized 

that social capital should be captured through the measurements of network characteristics and 

relations. Lin particularly emphasizes the hierarchical nature of social resource access through the 

use of the position generator instrument.  

Examining tie strength effects on activity generation, Maness (2017a) theorized that larger 

strong ties networks and weak tie diversification and status upper reachability increases activity 

variety and frequency. The theory was tested by using name generator data for strong tie 

characteristics and a position generator for weak tie characteristics. Seeing improved model fit 

Maness (2017a) suggests that including these social capital measures may account for additional 

heterogeneity not captured by common individual and household characteristics. Maness’s 

(2017a) study, however, was restrained by limited information on the activity space, travel 

mobility, and directly accessible resources.  

The current study proposes to develop a survey instrument to explore the links between 

Lin’s social capital theory and leisure activity outcomes. By including measures of social support 

and direct and indirect social resource access, aspects of Lin’s social capital theory can be tested 

in a leisure activity context. Limitations of Maness (2017a) effort will be accounted for with an 

expansive list of leisure activities and the inclusion of a resource generator to directly measure 

social resource embeddedness. As a first effort, the quality of the survey instrument for self-

administered web survey was tested across three varying sample sources. Particularly, the quality 
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of the three social capital measures (number of strong ties, position and resource generators) will 

be tested. Additionally, the effect of these social capital measures will be shown to positively 

impact the outcome: leisure activity variety. These validity analysis and outcome results suggest 

that the survey instrument can enable the answering of various questions related to social network 

characteristics, accessed social resource, and leisure activity outcomes.Ordered outcomes, such as 

those encountered in accident-injury severity (no injury, injury, fatality), measurements of 

satisfaction (highly dissatisfied, dissatisfied, neutral, satisfied, highly satisfied), measurements of 

levels of agreement or disagreement (strongly disagree, disagree, neutral, agree, strongly agree), 

and so on, are often modeled using ordered response models. These models have a potential 

advantage over unordered response models, such as the multinomial logit model and its variants, 

because ordered models recognize the inherent ordinal pattern of outcome responses. Standard 

ordered response models are based on an underlying continuous latent propensity function that is 

assumed to be a function of observed explanatory variables and an unobserved random component 

(Aitchison and Silvey, 1957; McKelvey and Zavoina, 1975; Washington et al., 2011). The latent 

propensity function is mapped to observed outcomes using a set of thresholds that are increasing 

in order. The major drawback associated with this standard ordered response (SOR) model is that 

it assumes the thresholds to be same for all individuals, which might not be appropriate in all 

applications.  

 

7.2 Social Capital and Leisure Activity Behavior 

This section starts by describing the interpretation of how social capital enables outcomes through 

the use of embedded social resources, then methods to measure social resource access, and 

concludes by briefly linking leisure activity behavior to embedded social resource access. 

 

7.2.1 Social Capital and Embedded Social Resources 

The concept of social capital describes how individuals acquire beneficial assets and services by 

using social interactions. Social capital has a variety of conceptions, but the three most prominent 

forms view social capital as: (1) indirect access to resources, (2) social cohesion, and (3) brokerage 

(Crossley et al. 2015). While the social cohesion and brokerage formulations are popularly 

invoked, the resource formulation has the strongest measurement traditional and methodological 

rigor. Specifically, Lin’s defines social capital as resources embedded in a social structure that can 

be accessed and/or mobilized in purposive actions. In other words, social capital is equivalent to 

assets in one’s social network (Lin et al., 2001). Under this view, the three primary elements of 

social capital are (1) resources embeddedness in social networks, (2) resource accessibility, and 

(3) resource use for action-oriented aspects. This individual-level focus of seeing social capital as 

embedded social resources fits in well with the individual-level basis of most activity and travel 

research. 

Lin (2001) defines three processes involved in the creation and use of social capital: (1) 

investment in social capital, (2) access to and mobilization of social capital, and (3) returns of 

social capital. Häuberer (2011) schema (Figure 1) summarizes and clarifies Lin’s theory of these 

three processes and thus providing a causal representation between preconditions, social capital, 
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Figure 1. Häuberer (2011) Conceptual Diagram of Social Capital and Outcomes 

and outcomes. Under preconditions, individuals are placed in a societal context and have access 

 to individually owned resources and assets. These are leverage to connect with people determined 

by one’s place in society and the assets and resource that are able to provide and leverage. Access 

to social resources is enabled through social networks and their structural properties. Generally, 

smaller, more tight-knit networks promote maintenance of social contact over brokerage between 

social circles. These dense networks promote continued access to group resources and promote 

trust and reciprocation. This leads to more resources for expressive actions and better performance 

of expressive outcomes. Lin (2001) classifies expressive outcomes as: mental health, physical 

health, and life satisfaction. In contrast, larger, wide social networks promote exploration but 

results in less intimate social support. These wider networks may enable to creation of new contacts 

and thus access to new resources for profit or resource gain. This leads to more resources for 

instrumental action and thus greater performance in instrumental outcomes. Lin (2001) classifies 

instrumental outcomes as: wealth, power, and status. 

 

7.2.2 Measuring Social Resource Access 

Lin (2001) speaks of measuring social capital as assets in social networks. A simple approach to 

this would involve asking individuals about their social contacts and each contacts’ available 

resources. Called the name generator approach, this is the primary technique used in transportation 

studies of social capital (Kim et al., 2018). While the name generator approach provides detailed 

information, it is limited due to respondent burden and contact recall biases. Additionally, there 

are concerns about its sensitivity to survey mode, particularly self-administered formats (Joye et 

al. 2019). 
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The position generator instrument measures access to social capital indirectly. This 

approach focuses on hierarchal measures of people’s access to resources by relating them with 

their contacts societal positions. Generally, those with higher societal position have more access 

(Lin, 2001). To determine resource access, the position generator measures a person’s ties with 

individuals across various occupations – which have varying levels of prestige and status across 

society. A position generator presents an occupation list and asks respondents whether they have 

individuals in their social network with those occupations. “From the responses … network 

resource indexes [can be constructed] such as extensity (number of position accessed), range or 

heterogeneity (the ‘distance’ between ‘highest’ and ‘lowest’ positions accessed), and upper 

reachability (‘highest’ position accessed)” (Lin, 2001: p. 17). The limitation is that this indirect 

approach’s focus on hierarchical relations may not be appropriate for all social capital related 

inquiries (van der Gaag and Snijders, 2005). 

The resource generator approach combines the name generator/interpreter and position 

generator to directly measure social resource access. Using a list of specific resources, “the 

resource generator asks if [respondents] would have anyone to turn to should they need to access 

one or more of a range of resources” (Crossley et al., 2015: p. 49). This enables the resource 

generator flexibility in answering a range of research questions. This is particularly importance 

since all social capital is not equivalent and cannot be mobilized for all purposes. Van der Gaag 

and Snijders (2005) note that their Netherlands-focused resource generator identified four types of 

social resources: personal support, political and financial skills, personal skills, and prestige and 

education related social capital. This provides a technique to measure differences between 

instrumental and expressive outcomes.  

By combining the position generator and resource generator approaches, an individual’s 

social integration and network range can be measured alongside their “concrete resources available 

through social relations” (Joye et al. 2019: p. 23). Perry et al. (2018) also explain why the position 

generator is restricted to give instrumental outcomes whereas the resource generator is more leaned 

towards expressive outcomes but may help achieve instrumental goals. 

 

7.2.3 Linking Leisure Activities and Social Capital 

Carrasco and Cid-Aguayo (2012) and Maness (2017b) attempt to link social capital to activity 

behavior through measuring social network characteristics. Maness (2017a) attempts to build such 

theory from the basics of social tie creation (social safety, brokerage, and status). Parady et al. 

(2019) also links network size and club membership to social activity variety. But their efforts are 

limited by an unclear linkage between what the networks offer in terms of resources and what 

expected leisure activity behavior could result. By using Lin’s social capital concept with the 

ability to measure structural and mobilized embedded resources, the effects of leisure activity for 

enabling expressive and instrumental outcomes could be explored. Lin’s theory allows for clear 

relations between network structure and resources to test the validity of the social resource 

conception of social capital in the leisure activity space. 

 

7.3 Survey Methodology 

A cross-sectional survey was designed to test the validity of the social capital measures chosen to 

begin development of a social capital theory of leisure activity behavior. This effort focused on 

response differences between varying non-probability sample sources. Data collection occurred 

from March to June 2019. The sampling frame and design varied by sample source (details 
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provided in a subsection below). The survey was self-administered by web with varying personal 

computer and mobile browser versions. 

 

7.3.1 Survey Layout and Design 

A web-based survey instrument was developed to better understand social factors influencing the 

leisure activity participation. The questionnaire consists of 27 questions over five categories: 1) 

activity space, 2) social capital, 3) mobility/accessibility, 4) individual and household 

characteristics, and 5) personality traits. 

 

Activity Space 

The activity space section of the survey asks about: (1) leisure activity variety and frequency, (2) 

household mandatory and maintenance activities, and (3) work and school demand. Leisure 

activity variety and frequency were asked over a list of 87 unique activity types. Adopted from 

Tinsley and Eldredge (1995), 78 out of their 82 activities were adopted – with arcade games, 

collecting bottles, shortwave radio listening, and volunteering for crisis intervention excluded due 

to decreased popularity or being too dependent on specific crisis events. Nine additional leisure 

activities were added including: attending festivals and parades, board gaming, joyriding, 

gambling, gardening in community gardens, softball, singing karaoke, video games, visiting 

amusement/theme parks. The 87 activities list was presented alphabetically across two pages. 

Survey respondents were asked to choose the specific activities they participated in over the last 

three months. Respondents were then asked about the frequency of each selected activities in one 

of two formats: choice categories and open-ended. The choice categories format required 

respondents to select one frequency among six choices (Once, Twice, Less than once a month, 1-

3 times a month, About once a week, 2 or more times a week). The open-ended format included 

text input fields to select an integer frequency for each activity. Future work will be performed to 

examine difference in response burden and frequency distribution from both formats. 

The household mandatory and maintenance activity space was measured by asking 

respondents to recall the hours spent on ten different activities over the last week: (1) housework 

and chores, (2) food preparation and cleanup, (3) lawn and garden care, (4) paying bills and other 

household paperwork, (5) grocery shopping, (6) other shopping for the household, (7) caring for 

children in your household, (8) caring for children from other households, (9) caring for adults in 

your household, and (10) caring for adults from other households.  

Work and school demand were measured by asking respondents to input their hours spent 

working for a job and attending school over the last week. School hours were specified as the time 

spent on campus, in educational building or online course content, not including the travel time 

to/from school. 

 

Social Capital 

The next group of questions applies the strong ties measure, position generator, and resource 

generator to measure respondents’ social capital through their access to social resources and social 

support. Accessed social support was measured using the question: “From time to time, most 

people discuss important matters with other people. Looking back over the last three (3) months, 

think about the people whom you discussed matters that are important to you. How many people 

were you able to recall?” Respondents were free to choose any integer number of contacts between 

0 and 9 or “10 or more” contacts. Selection of the number of people who they discussed important 
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matters over the last three months were a generalized version of Burt’s name generator used in the 

General Social Survey (Burt 1984). 

Access to social resources was measured indirectly through a position generator and 

directly through a resource generator. In the position generator, respondents were asked: 

“This question is about types of jobs and whether people you know hold such jobs. These 

people include relatives, friends, and acquaintances. For each profession below, please indicate if 

you know someone on a first-name basis with that profession and if they are a close friend or 

family relative. 

Example: For the job category of Nurse, if you personally know three nurses then you 

would check the first box (‘Knows Someone’). Additionally, if at least one of these nurses is a 

close friend check the second box (‘Close Friend / Relative’).” 

Two check boxes were presented for each profession corresponding to the “Know 

Someone” and “Close Friend or Close Relative” category. The profession list follows from that 

used by Hampton et al. (2009) and Maness (2017a) with the following 22 occupations: 

 

1. Nurse 

2. Farmer 

3. Lawyer 

4. Middle-school teacher 

5. Full-time babysitter 

6. Janitor 

7. Personnel manager 

8. Hairdresser 

9. Bookkeeper 

10. Production manager 

11. Operator in a factory 

12. Computer programmer 

13. Taxi driver 

14. Professor 

15. Policeman 

16. Chief executive officer of a large company 

17. Writer 

18. Administrative assistant in a large company 

19. Security guard 

20. Receptionist 

21. Congressman or congresswoman 

22. Hotel bell boy 

 

In order to explore the availability of resources that individuals can access through their 

social network, a resource generator was including in the questionnaire. This questionnaire used 

the list refined by Foster and Mass (2016) for the US context. Respondents were asked: “For the 

following questions, please indicate if you know someone on a first-name basis who”: 

 

1. Knows how to fix a car  

2. Give advice on using a personal computer  

3. Has a professional occupation  
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4. Is an elected official  

5. Works at City Hall  

6. Can sometimes employ people  

7. Knows a lot about government regulations  

8. Has good contacts at TV/radio/newspaper  

9. Give advice about money problems  

10. Give advice on problems at work  

11. Help dispose of bulky items  

12. Help with small household jobs  

13. Do your shopping if you are ill  

14. Provide care for a serious health condition  

15. Lend large sum of money  

16. Lend small sum of money  

17. Give career advice  

18. Provide a place to stay for a week  

19. Discuss politics  

20. Give sound legal advice  

21. Give a good job reference  

22. Can babysit others’ children  

23. Help find someplace to live  

24. Watch home or pets while away  

25. Be there to talk about the day  

26. Owns a car 

 

The resource generator was implemented as a multiple answer question with check boxes 

used to indicate which resources respondents could access. 

 

Mobility/Accessibility 

This survey has further questions related to respondent’s travel behaviors. Respondents were 

asked to report the number of vehicles in their household, commute mode, driver license status, 

and whether they have a disability, condition, or illness affecting their ability to travel. 

Additionally, respondents were asked about their weekly/monthly usage frequency for bicycle, 

transit, and ridehailing services. 

 

Individual and Household Characteristics 

There are twelve sociodemographic questions asking about the respondent’s age, education, 

employment, gender, home type/zipcode, income, marital status, number of people in different 

age groups, number of workers, and race/ethnicity. 
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7.3.2 Sample Designs 

Samples were recruited from three sources and are compared below by recruitment, sampling 

frame, sampling method, and target population. Descriptive statistics across each sample are 

described in Table 1. 

 

Table 1 Survey Descriptive Statistics by Sample Type 
Variables Sub-description MTurk Qualtrics TTE Class 

Number of observations  121 134 108 

Age 18-24 5.0% 12.7% 65.7% 

 25-34 45.5% 14.9% 11.1% 

 35-44 28.9% 18.7% 1.9% 

 45-54 10.7% 14.9% 10.2% 

 55-64 6.6% 18.7% 3.7% 

 65-74 2.5% 17.2% 1.9% 

 75 or older 0.8% 0.0% 0.0% 

 Missing data 0.0% 3.0% 5.6% 

Education attainment Less than high school 0.8% 6.0% 0.9% 

 High school graduate/GED 10.7% 23.1% 19.4% 

 Some college 12.4% 26.1% 30.6% 

 Vocational/technical training 0.8% 3.7% 0.9% 

 Associate degree 9.9% 14.9% 21.3% 

 Bachelor's degree 59.5% 19.4% 14.8% 

 Graduate degree 5.8% 6.0% 10.2% 

 Missing data 0.0% 0.7% 1.9% 

Employment status Employed full-time 75.2% 35.1% 18.5% 

 Employed part-time 8.3% 15.7% 35.2% 

 Retired 2.5% 21.6% 3.7% 

 Student (and not employed for pay) 0.8% 5.2% 33.3% 

 Disabled (and not employed for pay) 0.0% 7.5% 0.0% 

 Not employed for pay 9.1% 9.7% 6.5% 

 Other 4.1% 5.2% 2.8% 

 Missing data 0.0% 0.0% 0.0% 

Gender Female 45.5% 49.3% 40.7% 

 Male 53.7% 48.5% 58.3% 

 Not listed 1.5% 0.0% 0.0% 

 Missing data 0.7% 2.2% 0.9% 

Household income Under $15,000 3.3% 16.4% 26.9% 

 $15,000–$24,999 9.1% 9.0% 15.7% 

 $25,000–$34,999 15.7% 12.7% 10.2% 

 $35,000–$49,999 24.0% 23.1% 6.5% 

 $50,000–$74,999 24.0% 14.2% 9.3% 

 $75,000–$99,999 14.0% 11.2% 9.3% 

 $100,000–$149,999 5.0% 8.2% 10.2% 

 $150,000–$199,999 3.3% 2.2% 2.8% 

 $200,000–$249,999 1.7% 3.0% 1.9% 

 $250,000 or more 0.0% 0.0% 1.9% 

 Missing data 0.0% 0.0% 5.6% 

Household people One 29.8% 17.2% 8.3% 

 Two 22.3% 36.6% 15.7% 

 Three or more 47.9% 46.3% 75.9% 

 Missing data 0.0% 0.0% 0.0% 

Marital status Married 34.7% 40.3% 20.4% 

 Living with a partner 10.7% 11.9% 5.6% 
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 Widowed 0.8% 3.0% 0.0% 

 Divorced 5.8% 13.4% 1.9% 

 Separated 0.8% 0.7% 0.9% 

 Never been married 47.1% 29.9% 69.4% 

 Missing data 0.0% 0.7% 1.9% 

Race/ethnicity American Indian or Alaska Native 0.0% 0.7% 1.9% 

 Asian 5.8% 2.2% 12.0% 

 Black or African American 8.3% 14.9% 5.6% 

 Hispanic, Latino, or Spanish origin 2.5% 5.2% 13.0% 

 Middle Easterner or North African 0.0% 0.0% 8.3% 

 White 79.3% 70.1% 39.8% 

 Other race, ethnicity, or origin 0.0% 1.5% 3.7% 

 Mixed race 4.1% 2.2% 8.3% 

 Prefer not to answer 0.0% 1.5% 6.5% 

 Missing data 0.0% 1.5% 0.9% 

Household vehicles No Vehicle 5.8% 13.4% 10.2% 

 One 45.5% 32.8% 14.8% 

 Two 34.7% 35.1% 26.9% 

 Three or more 9.9% 9.7% 32.4% 

 Missing data 4.1% 9.0% 15.7% 

 

Mechanical Turk Recruitment. The recruitment consisted of a task advertised on the MTurk 

platform with the title: “Answer a survey about Leisure Activities (10-15 minutes).” Monetary 

incentive was directly advertised as $3.20 for a completed questionnaire.  

Sampling Frame. The sampling frame consisted of people with internet access who are 

registered MTurk workers located in the United States with task approval rates greater than 90% 

and more than 100 approved tasks. Respondents were age 18 years and over. 

Sampling Method. The MTurk sample was a non-probability convenience sample. 

Target Population. The target population was US adults age 18 years and over. 

 

Qualtrics Panels 

Recruitment. The respondents were recruited via email. Incentives were provided in 

various forms (cash, gift cards, reward points), but the recruitment source from the panel and the 

form of incentive was kept anonymous and hidden from the researchers.¬¬¬¬¬ 

Sampling Frame. The Quatrics Panels sampling frame consisted of panel participants 

from various sources, but the details were not disclosed to the researchers. These participants 

were adults who are located in the United States with internet access. 

Sampling Method. The sampling method was a non-probability sample utilizing a gender 

quota. 

Target Population. The target population was US adults age 18 years and over. 

 

Class and Related Contacts 

Recruitment. The initial participants were recruited via an undergraduate civil 

engineering class at the University of South Florida. Additional participants were recruited by 

having these students send the survey to their friends and family. The students were offered extra 

credit for taking the survey and for each additional participant referred (up to four). Students 

were also allowed to perform an alternative homework assignment for the same amount of extra 

credit if desired. There was no monetary recruitment involved. 
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Sampling Frame. The sampling frame consisted of undergraduate civil engineering 

students in the course and their social contacts with internet access. 

Sampling Method. This sample was a non-probability snowball (convenience) sample. 

Target Population. The target population was US adults age 18 years and over. 

 

7.4 Accessed Social Capital 

Figure 2 shows the distributional difference across three social capital measures: occupational 

extensity, total resource variability, and social support size. Due to demographic differences 

between the samples, it was not expected that the social capital characteristics would be 

equivalent across the samples. But, the samples had variations in the experiences and ability of 

the respondents in taking online surveys. It was hypothesized that these additional factors could 

include: inattentiveness, mobile computing, and survey taking familiarity. To test the validity of 

the social capital survey instruments, statistical inference was performed to explore the causes of 

unexpected response patterns across the samples. 

 

7.4.1 Indirect Social Resources: Position Generator 

To test the validity of the resource generator, the distribution of the sampled extensity (total 

number of accessed occupations) for each sample is compared to that obtained in the Social 

Networks and Community Survey (Hampton et al., 2009; Maness, 2017a). The distribution in the 

Social Networks and Community Survey sample had a mean of 9.7 occupations with about 3.5% 

of the sample choosing zero occupations and less than 0.5% choosing more than 20 occupations. 

In this study, the sample distribution encountered a spike at 22 occupations whereas prior research 

shows no such characteristics. The general shape of the rest of the graph is similar with most 

people’s networks containing 5-15 occupations. To explore the cause of the unexpected increase 

in reported extensity (occupational diversity), a logistic regression model was estimated on the 

dependent variable: reporting more than 20 occupations accessed. 
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Figure 2 Distributions of Accessed Social Capital across Three Samples 

 

To test for inattentiveness, an attention check was included for the resource generator’s 

question: know someone who owns a car. In the United States, almost everyone knows someone 

with a car, and Foster and Maas (2016) observed 100% car ownership access in their dataset. 

Respondents who failed the attention check were more likely to report greater than 20 occupations 

accessed (odds ratio: 2.26, p-value: 0.02). 

Due to differences in screen size, response differences between personal computer and 

mobile phone users may differ. Horizontal formatting of matrix questions can lead to response 

difficulties with mobile users, particularly due to horizontal scrolling (Couper et al. 2017). This 

may have lead PC users to understand that the question only entailed answering for the profession 

in their network due to seeing more of the question and answer format at first glance. In contrast, 
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mobile users may have seen fewer answer choices at once and interpreted this to indicate that each 

occupation needed a response. Mobile users were 2.49 times (p-value = 0.01) more likely to report 

excessive occupational access compared to PC users. 

Online survey taking familiarity was assumed to correlate with age and formal education. 

Being less familiar with online forms and surveys may cause respondents to misinterpret check 

boxes to indicate required answers rather than multiple optional answers. Older respondents were 

more likely to report more than 20 occupations accessed with an odds ratio of 1.26 per decade (p-

value: 0.01). College educated respondents were less likely to report excessive occupational access 

with a 20% chance for bachelor’s degree earners (p-value: <0.01) and 58% chance for others with 

some college experience (p-value: 0.13). 

These results follow the differences in extensity between the three samples. The Qualtrics 

Panels sample contained the most mobile users followed by the class sample. No MTurk 

respondents used a mobile device. Additionally, the Qualtrics Panels sample contained a higher 

proportion of users who failed the attention check – tending towards older and less formally 

educated respondents. Also note that the MTurk sample was quite selective as respondents were 

required to pass most previous assignments so attentiveness and survey taking experience was 

expected to be higher. 

 

7.4.2 Direct Social Resources: Resource Generator 

Foster et al. (2019) tested the importance of geographic distance on social capital by measuring 

network embedded resources using a resource generator tailored for the United States for social 

capital resources, tests the importance of geographical distance with a sample of 698 records from 

Atlanta. Using their analysis as a base for comparison, Foster and colleagues identified two 

categories of resource access: social capital via family (mean 10.55, standard deviation 6.31) and 

social capital via friends (mean 8.85, standard deviation 6.31). Hence this is used to check the 

credibility of the data collected for the current study. The mean total resource access is lower across 

the three samples compared to the Atlanta dataset.  

The relationship between the three samples distributions is relatively similar except for the 

spike at the choice of 1 or 2 resources which is almost exclusive to Qualtrics Panels. Logistic 

regression was used to analyze which respondents were more likely to choose 1 or 2 resources 

accessed. Inattentiveness may cause this since respondents may lacking interest in answering this 

long question over a single page. Measured by the natural logarithm of page submit time in 

seconds, inattentiveness was found to increase the propensity to choose 1 or 2 resources (odds ratio 

= 0.13, p-value: <0.01). Mobile device users, who may have found the long list of check box 

responses also daunting, also had a higher propensity to choose 1 or 2 resources (odds ratio = 2.32, 

p-value: 0.06). Additionally, older respondents (odds ratio = 1.31 per decade, p-value: 0.03) and 

those without college education (odds ratio = 1.99, p-value: 0.13) were more likely to choose 1 or 

2 resources. 

 

7.4.3 Social Support 

The social support question based on the number of network members respondents discussed 

important matters with is based on the question asked in Burt (1984) and also analyzed in Maness 

(2017a). But the modification cannot be easily compared to prior work since the majority of that 

work used a name generator. Name generators typically limit the number of contacts that can be 

named – often to 5 – 10 contacts (Burt 1984; Hampton et al. 2009). The general pattern assumed 

is a power law relationship with many people having a few contacts and few people having many 
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contacts. That relationship mostly holds but there is possibly a high proportion of respondents 

reporting 10 or more contacts for discussing important matters. The propensity of this occurring 

was tested and only mobile phone users were more likely to report 10 or more contacts. It is unclear 

why this would be expected of mobile phone users. The lack of results from inattentiveness and 

survey taking familiarity follow expectation as this question was displayed as the only question on 

a single page with radio button options. 

 

7.5 Outcomes: Leisure Activity Variety 

From the given list of 87 activities, 363 survey respondents selected a minimum of one (1) activity 

and a maximum of 41 activities. Figure 3 shows the distribution of the number of activities an 

individual participated in the last three months. More than half of the people reported to have done 

between 5 and 15 activities over the three-month period. Less than 5% of the people participated 

in less than 5 or more than 25 different activities. 

Negative binomial models were estimated to analyze the factors influencing the number of 

different activities the respondents participated in over the last three months. 

 

 
 

Figure 3 Activity Variety Distribution (with Cleaned Sample Used for Analysis) 

 

7.5.1 Modeling Methodology 

The dependent variable, activity variety, was the number of different leisure activities that survey 

takers had participated in over the last three months. With a mean of 12.9 activities and standard 

deviation of 8.1 activities, the over-dispersion supported use of negative binomial regression. 
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Activity variety was assumed to depend on individual and household factors and social capital 

indicators. The model is specified through the following mathematical expectation: 

 

𝐸(𝑦𝑛|𝑥𝑛, 𝑠𝑛, 𝑝𝑛, 𝑟𝑛) = exp(𝛽𝑥𝑛 + 𝛼𝑠𝑛 + δ𝑑𝑛 + θ𝑟𝑛))     (7.1) 

 

where 

𝑦𝑛 = activity variety for individual n, 

𝑥𝑛 = individual and household characteristics for individual n, 

𝑠𝑛 = individual n’s core network size (number of strong ties), 

𝑝𝑛 = sum of the professions known through individual n’s social network (as measured by 

the position generator), 

𝑟𝑛 = sum of the accessible social resources in individual n’s social network (as measured 

by the resource generator), and 

𝛽, 𝛼, 𝛿, 𝜃 = model parameters. 

 

In NB regression, an individual’s probability P(yn) of participating in yn different activities 

is defined as follows:  

𝑃(𝑦𝑛) =
Γ(1

𝛼⁄ +𝑦𝑛)

Γ(1
𝛼⁄ )𝑦𝑛!

(
1/𝛼

(1
𝛼⁄ )+𝜆𝑛

)
1/𝛼

(
𝑦𝑛

(1
𝛼⁄ )+𝜆𝑛

)
𝑦𝑛

           (7.2) 

where Γ(∙) is the gamma function, 𝜆𝑛 = exp(𝛽(𝑥𝑛 + 𝑠𝑛 + 𝑑𝑛 + 𝑟𝑛) + 𝜀𝑖), and 𝑒𝑥𝑝 (𝜀𝑛) is a 

Gamma-distributed disturbance term with unit mean and variance given by the dispersion 

parameter 𝛼. Model parameters were estimated using maximum likelihood estimation. 

 

7.5.2 Leisure Activity Variety Model 

The empirical estimation results of the activity variety model are provided in Table 2. Marginal 

effects were calculated for each variable and averaged across each sampling source to examine 

sample-level differences (Table 3). The MTurk sample has the highest impact across all variables 

on the activity variety followed by the class sample.  
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Table 2 Estimation Results of Negative Binomial Regression of Activity Variety 

Variable Description Estimate SE 

Constant 1.610 *** 0.160 

Position generator (number of occupations divided by 20) 0.583 *** 0.157 

Resource generator (number of resources divided by 26) 0.444 *** 0.153 

Network support (number of important people divided by 10) 0.328 *** 0.117 

Driver license indicator (1 if yes, 0 if no) 0.233 * 0.125 

Education level indicator (1 if not attending college, 0 otherwise) -0.184 ** 0.082 

Income indicator (1 if household earned $100k or more, 0 otherwise) -0.089  0.081 

Employment indicator (1 if working full or part-time, 0 otherwise) 0.189 ** 0.091 

Number of hours spent on working per week -0.002  0.002 

Retiree indicator (1 if yes, 0 if no) 0.298 ** 0.144 

Age group indicator (1 if being 65 years or older, 0 otherwise) -0.310 ** 0.139 

Race indicator (1 if identified as white, 0 otherwise) 0.103  0.066 

Gender indicator (1 if identified as women, 0 otherwise) -0.165 *** 0.058 

Number of children under 5 years old in the household -0.067  0.064 

Home type indicator (1 if living in single-family houses,  

0 otherwise) 

0.126 ** 0.061 

Sampling source (1 if collected from MTurk panel, 0 otherwise) 0.233 *** 0.065 

Number of observations 261 

Log likelihood at convergence -818.16 

Log likelihood at constant -952.61 

Note: SE = standard error  

* = estimate p-value  0.10 and > 0.05; ** = estimate p-value  0.05 

and > 0.01; *** = estimate p-value  0.01. 

 

 

Sociodemographic Attributes  

Regarding mobility and accessibility aspect, having a driver license results in a sample-

level average activity variety increase of 2.42 to 3.29 activities. This effect direction is 

expected as drivers tend to have greater accessibility and flexibility thus enabling increased 

out-of-home activity variety and increasing a person’s available activity space temporally 

and spatially. 
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Table 3. Average Marginal Effects on Activity Variety by Sample 

 Average Marginal Effect 

Variable MTurk Qualtrics Class 

Position generator (number of occupations)a 0.46 0.34 0.38 

Resource generator (number of resources)a 0.27 0.20 0.22 

Network support (number of important people)a 0.51 0.38 0.43 

Driver license indicator (1 if yes) 3.29 2.42 2.74 

Education level indicator (1 if not attending college) -2.88 -2.12 -2.42 

Income indicator (1 if household earned $100k or more) -1.39 -1.02 -1.17 

Employment indicator (1 if working full or part-time) 2.96 2.18 2.49 

Number of hours spent on working per week -0.03 -0.02 -0.03 

Retiree indicator (1 if yes) 5.41 3.75 4.53 

Age group indicator (1 if being 65 years or older) -4.85 -3.57 -4.08 

Race indicator (1 if identified as white) 1.61 1.19 1.36 

Gender indicator (1 if identified as women) -2.58 -1.90 -2.17 

Number of children under 5 years old in the household -1.05 -0.78 -0.89 

Home type indicator (1 if living in single-family houses) 1.98 1.46 1.66 

Sampling source (1 if collected from MTurk panel) 3.65 2.68 3.06 

Note: a are not normalized as in TABLE 2    

 

Individuals who have not attended college have significantly less activity variety (decrease 

of 2.23 to 2.88 activities) compared to college educated respondents. Joyce et al. (2019) 

regarded education as cultural capital and emphasized its importance on social outcomes. 

Higher income was expected to enable individuals to have greater activity variety because 

stronger financial capital can afford people’s participation in more costly activities (e.g. 

golfing, boating). The observed effect of household income was negative but statistically 

insignificant. This could be due to correlation between financial and social capital as the 

inequalities in social capital often line up with wealth inequality. This may warrant further 

study to more fully differentiate financial and social capital aspects. 

Working respondents averaged 2.18 to 2.96 more activities than those who were students or 

unemployed. But retirees can afford more time and even financial security to increase their 

activity space. Results reveals that the age group indicator for people who are 65 years or 

older and the retirees have similar parameter estimates, but with opposite signs. Older 

people may have health constraints that limit their ability to participate in some activities.  

White respondents participate in about one more activity than minorities. There is a 

significant gender difference on activity variety. Women participated in an average of 1.90 

to 2.58 activities less than their male counterpart. It is unclear if this due to the activity list 

or cultural societal aspects. The number of children under the age of five in the household 

also decreased an individual’s expected activity variety. 

Individuals living in single-family houses have significantly positive effect on their activity 

variety. These individuals are likely homeowners and may have self-selected into locations 

that support their preferred activities. Finally, results also show that survey respondents in 

the MTurk panel had more activity variety. It is unclear what unobservable factor may 

cause this differentiation between samples but perhaps may relate to differing participation 

motivations/needs. 
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7.6 Discussion and Future Work 

This study presents a survey designed to test for correlations between social resources and 

leisure activity behavior. An outcome was tested, leisure activity participation variety, 

which showed positive correlations with instrumental and expressive social resource access. 

This work motivates the use of this survey instrument with a larger sample to increase the 

inferential strength of this social capital theory in explaining leisure activity behavior. 

It is important to note that although the Qualtrics Panel sample had the greatest issue with 

validity, this was partially due to greater mobile device usage. The greater diversity of that 

sample may outweigh this and careful consideration of survey design for mobile devices is 

warranted. 

 

7.6.1 Exploring Social Capital and Leisure Activity Connections 

Further study of the connections between leisure activity and social capital is motivated. In 

particular, it was unclear whether social activity variety is an instrumental and/or 

expressive outcome. The authors’ first assumption is that variety is primarily instrumental 

and this is supported by position generator’s extensity measure having the greatest impact. 

Additionally, the survey instrument also allows for the exploration of leisure activity 

frequency. The authors’ interpretation of Lin’s (2001) theory as applied to leisure activity 

behavior suggests that increasing activity frequency is used primarily to maintain social 

ties and this could be tested against expressive resources. 

The activity list used has been group by psychological needs as determined in Tinsley and 

Eldredge (1995). It may be theorized that having access to a greater variety social resources 

may correspond increased knowledge of possible activities (types and locations) thus 

increasing one’s activity space. Thus, increases in non-social and social activities may still 

be expected with greater social resource variety. But, it may be expected that having an 

increase in social activities are expected for those with more expressive resources but that 

an increase in non-social activities would not be expected. But exploring the varying 

psychological needs (specifically affiliation, nurturance, and status) of individuals’ 

activities would allow for more thorough analysis of the validity of this social capital 

approach to leisure activity behavior. 

 

7.6.2 Instrument Design 

Recommended changes to the social capital questions include: 

• Position generator: Include another grid option: “No contacts”; change to multiple 

choice format for each occupation; remove the grid format for mobile users and 

change to an item-by-item format; separate the list into two pages 

• Resource generator: Change to a multiple choice, grid format with “Know 

someone” and “Do not know someone” as options; use an item-by-item format for 

mobile users; separate the list into two pages 

 

7.6.3 Limitations 

Activity lists can never be exhaustive as the activity space is nearly limitless. The activity 

list used may be biased and may have some limitations that could affect inference related to 

demographic factors. Specifically, the authors did not explore possible gender-based 

cultural biases in the activity list. As future research, the activity lists used for such work 

could analyze the tendencies for each activity to sway more towards one gender over 
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another. This could be done similarly to how Tinsley and Eldredge (1995) used respondents 

to classify activities by psychological needs. This could then be used to create a gender-

weighted measure of activity variety if significant bias is found in the activity list. 

Another limitation is the use of a retrospective survey for understanding leisure activity 

behavior. Leisure activities do not occur regularly enough for one-day or even week-long 

surveys to get a fair assessment of one’s full activity space (particularly variety). But there 

are issues related to recall that exist with a retrospective survey. This study chose three 

months, but that time period is too short to account for seasonality effects as well. This 

suggests that some repeated measure of leisure activity behavior could give a fuller picture. 

Additionally, the unit of analysis with the survey instruments develop is at the activity type 

and frequency level. Each activity does not have equivalent commitment requirements or 

time scales. This analysis did not account for those different and it may be difficult without 

time use and locational data. Thus, long-term activity diary data would be useful for 

exploring the leisure activity further and the corresponding changes and changes in social 

resources usage. 
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