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Summary 

      This project advances technologies to support strategic planning of maintenance, repair, 
and rehabilitation options (improvement actions) and their implementation prioritization for 
our nation’s roadway systems. The work takes a multi-asset approach with emphasis on 
pavements and bridges. It accounts for system-wide traffic impacts of postponed treatments, 
downtime impacts of construction work zones on traffic performance, and post-action 
benefits in terms of capacity and speed. It further incorporates uncertainty in system state due 
to stochasticity in the evolution of deterioration and its underlying physical processes. The 
technologies enable a deeper understanding of the nature of sensed data and its utility specific 
to the perception of roadway condition and the ability to detect deteriorated conditions and 
ascertain relationships between sensed condition and serviceability levels across assets. 
Performance indices, deterioration rates, and collected data are often significantly different 
between asset classes. Consequently, maintenance planning tools and managing practices 
often focus on only one distinct asset class, without integrating other asset types into their 
analysis, resulting in different asset classes competing for limited funds and suboptimal 
performance of the larger roadway network. Compatible serviceability assessments of 
individual asset types, as well as overall system serviceability, are directly supported.  
      Outputs include artificial intelligence methods for extracting roadway quality metrics 
from crowdsourced smartphone data, which provide the ability to track roadway performance 
metrics over time for predictive purposes. Also developed are predictive models for multi-
asset (pavement and bridge deck) condition metrics and network performance considering 
maintenance and rehabilitation actions, as well as monitoring data and inspection intervals 
and their precision. Multi-asset infrastructure system management is enabled through 
dynamic programming approaches and deep reinforcement learning. The project creates 
descriptive and normative implementations, with algorithms, of the multi-asset planning and 
prioritization problem as bilevel, stochastic mathematical programs with embedded Markov 
decision process concept and traffic system representation that enables assessment of state-
based (threshold) maintenance strategies and development of a priori prioritization and 
scheduling.  
      This effort provides important tools needed to enhance decision making. Opportunities to 
integrate these tools into existing software are identified. Phase 2 of the project will extend 
the work to provide case studies that demonstrate the benefits to enhanced safety, reliability, 
and durability of these more sophisticated decision-making tools. 
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C H A P T E R  1  

Introduction 

BACKGROUND 
Advances in ubiquitous sensing enable enhanced predictive analytics and state-dependent 
decision making on the timing of maintenance, repair, rehabilitation, and improvement. The 
state of the assets can be provided in the form of measured serviceability levels, for example. 
Continuously sensed measurements from new data sources, such as pervasive imaging 
systems and connected vehicle sensor arrays, can be employed to supplement traditional data 
in identifying long-term system performance and usage trends and predicting the timing of 
categorical (level) changes.  

Mathematical and algorithmic techniques are needed to exploit these information-rich, 
high-frequency sources in strategic prioritization of projects and allocation of resources. 
These techniques ideally explicitly consider uncertainty in measurements and future 
deterioration rates. They enable the quantification of risk and system-wide consequences of 
postponed action. The benefits of timing treatments in response to current and updated 
predicted state changes as sensed, that is, state-based action, can be assessed off-line and 
demonstrated on a chosen application.  

Performance indices, deterioration rates and collected data are often significantly 
different between asset classes. Consequently, maintenance planning tools and managing 
practices often focus on only one distinct asset class, without integrating other asset types 
into their analysis, resulting in different asset classes competing for limited funds and 
suboptimal performance of the larger roadway network. Furthermore, the actions for any one 
class of assets result in service disruptions that are manifested across asset classes and 
influenced by network topology. 

In this project, the strategies utilized to support strategic planning with the support of 
continuously sensed data are explored considering compatible serviceability assessments of 
individual asset types, with emphasis on pavements and bridges, as well as overall system 
serviceability. The project consists of two phases. The first phase assembles the data, models, 
tools, and methods to support the project and includes an exploration of data from mobile 
phones. The second phase extends this work to other types of data, specifically exploiting 
continuously sensed data for condition assessement and integrating partial information on 
condition in the prioritization tool, and exploring other networks. This report presents the 
results for Phase 1. 

OBJECTIVES 
The objectives of the first phase of this project are to explore and develop: 

• Condition monitoring and forecasting capabilities that exploit continuously sensed 
data technologies; 

• Algorithms that incorporate continuously sensed asset condition states and 
updated forecasts in strategic planning of maintenance, repair, and rehabilitation 
options and their implementation prioritizations; 
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• Methods that explicitly account for uncertainty in state predictions; and 
• Tools that can be deployed in practice for large, complex roadway networks. 

 
Outcomes of the first phase are:  

• A deeper understanding of the nature of crowdsourced vehicle response data and 
its utility; 

• Quantification of the value of information regarding asset condition;  
• Assessment of existing practices in asset management decision making; 
• Development of probabilistic predictive models of roadway systems; 
• Conceptualization of the multi-asset, strategic planning of maintenance, repair, 

and rehabilitation options (improvement actions) and their prioritization for 
implementation as a bilevel, stochastic mathematical program;  

• Solution algorithms based on concepts of machine learning; 
• Comparison to existing mathematical modeling approaches; 
• Comparison of optimally derived prioritized schedules; and 
• Connection to current practices. 

OVERVIEW OF THE METHODOLOGY AND REPORT 
This work supports strategic long-term planning for maintaining and repairing our roadway 
systems. Phase 1 of the project is structured around five tasks leading to the development of 
this report. The task descriptions outline the methodology used and are summarized as 
follows: 

• Task 1. Predictive analytics: Machine-learning techniques are adapted for 
interpreting new forms of continuously collected data. The emphasis is on 
dynamic response measurements from on-board accelerometers and on-board 
imaging systems, data increasingly available on a continuous basis from 
connected vehicle communications technology. Originally, it was anticipated that 
such data were readily available in open databases. This proved to not be the case 
and data had to be collected. Algorithms were designed to autonomously identify 
long-term system performance trends in support of asset management and 
decision making. This was achieved through high-dimensional feature-space 
analysis of the signal data, adapting recent advances in speech recognition and 
language processing. Ultimately, the results of this task will support the decision 
making and prioritization aspects of subsequent tasks.  

• Task 2. Estimating and controlling serviceability of assets in multi-asset 
systems: Models are based on a comprehensive literature review including state 
DOT practices to predict the effects of inaction on asset serviceability, as well as 
controlling effects of available maintenance, repair, and rehabilitation actions, at 
component and system levels. This information is employed to update anticipated 
timing of categorical (level) serviceability changes. Particular emphasis is on 
measures of serviceability that will reflect the information obtained from 
continuously sensed data. The relevant Value of Information (VoI) framework is 
theoretically derived. Pavements and bridges are the focus, but the models can be 
extended to other asset classes. Serviceability objectives and metrics considered 
include measurements of travel time, ride quality, and remaining life, among 
others. 

• Task 3. Prioritization techniques: Models and algorithms for state-dependent 
decision making on the timing of maintenance, repair and rehabilitation actions 
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are created. The developed techniques exploit discrete information and 
serviceability forecasts in prioritizing and scheduling preventative and restorative 
actions, along with needed resources, while explicitly accounting for uncertainty 
in condition assessments and future deterioration rates. The techniques can be 
extended for assessing risk of deferred action due to other priorities or lack of 
funding. 

• Task 4. Decision tools: Opportunities to integrate and embed predictive analytics, 
serviceability estimation, prioritization, and resource allocation techniques in 
decision support tools for strategic planning are identified. The barriers and 
opportunities for using these tools in practice and on large-scale, complex 
roadway networks are considered.  

• Task 5. Evaluation and demonstration: The benefits of timing treatments in 
response to updated sensed or predicted state changes, that is, state-based action, 
are assessed off-line and demonstrated on a modest network, including the value 
of cross-asset optimization methods in place of single asset-class methods 
currently used in practice. Techniques from all earlier tasks are revisited based on 
evaluation findings. 

The techniques developed through this effort enhance condition-state monitoring and 
prediction, as well as current time- and threshold-based approaches to strategic planning of 
maintenance, repair, and rehabilitation scheduling of roadways and bridges (and can be 
extended to other assets such as light poles, pavement markings, and tunnels). By explicitly 
recognizing the uncertainty in deterioration rates and impacts of service actions, as well as 
impacts on traffic flows of reduced serviceability, the techniques can then be used to quantify 
the risk and system-wide consequences of postponed or reduced action. Additionally, through 
enhancing prediction capabilities, this effort projects future maintenance, repair, and 
rehabilitation needs. 

REPORT OUTLINE 
In addition to this introductory chapter, the report is organized in five chapters: 

• Chapter 2: Prioritization and Decision Support. This chapter connects the research 
to asset management requirements and practices, and documents the current 
practices in state DOTs. 

• Chapter 3: Stochastic Modeling of Pavements and Bridges for Cross-asset 
Management. This chapter reviews the processes, performance measures for 
serviceability, and costs and durations of various actions to preserve, maintain, 
and enhance pavements and bridges.   

• Chapter 4: A Bilevel Reinforcement Learning Method for Multi-Asset Roadway 
Improvement Scheduling Considering Traffic Impacts. This chapter develops 
optimal strategies for prioritizing actions. This chapter has been prepared as a 
paper that has been submitted to Journal of Infrastructure Systems for review. 

• Chapter 5: Value of Information in Infrastructure Asset Management Policies. 
This chapter presents an analysis of value-based information metrics and their 
computation for no information, optional inspection visits, and continuously 
available condition information. This chapter is largely based on the published 
paper: “Value of structural health information in partially observable stochastic 
environments” (Andriotis, Papakonstantinou, & Chatzi, 2021). 

• Chapter 6: Pavement Distress Recognition via Wavelet-Based Clustering of 
Smartphone Sensor Data. This chapter presents a framework for processing 
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crowdsourced data for pavement distress. An earlier version of this chapter was 
submitted to the Journal of Computing in Civil Engineering for review.  

• Chapter 7: Summary, Conclusions, and Future Work. This chapter presents a 
summary of and conclusions from the Phase 1 project and an outline of the Phase 
2 project.  

In addition, appendices provide supporting data developed as part of the project. Appendix A 
is a list of acronyms. Appendix B presents the pavement and bridge thresholds and targets 
used for each. Appendix C documents the decision trees used for pavement decisions in the 
Mid-Atlantic states. Appendix D provides details of the maintenance actions and 
deterioration models developed in Chapter 3. Appendices E through G provide the supporting 
details for the illustrative example in Chapter 4. 
 
 



 5          r3utc.psu.edu 
 

C H A P T E R  2  

Prioritization and Decision Support 

INTRODUCTION 
Asset management processes have been adopted by state departments of transportation in 
response to legislative requirements to use these processes to support decision making related 
to pavements and bridges on the National Highway System. These roadway assets function to 
provide a service to the users but these assets also degrade with time and age and require 
frequent maintenance and upgrading. Scheduling such upgrades must account for the impacts 
on the users, but there is a significant gap between the methods in the literature and current 
decision support tools that are embedded in asset management practices.  This chapter 
provides the context and background for the tools developed in this research. The challenges 
in developing the necessary inputs, solving a real-world network, and interpreting the results 
are presented in the context of the asset management processes used by most state 
departments of transportation. 

Background and Context 
Aging transportation infrastructure, traffic growth, higher expectations for improved 
mobility, accessibility and safety, and a declining funding base for infrastructure renewal and 
improvement place pressure on decision-makers. The need to do more with less underscores 
the role transportation asset management plays in the maintenance and renewal of these 
assets. 

Moving Ahead for Progress in the 21st Century Act (MAP-21) (112th Congress, 2012), 
the surface transportation legislation from 2012, required performance-based management 
and the development of risk-based asset management plans.  The subsequent 2015 legislation 
Fix America’s Surface Transport (FAST) Act (114th Congress, 2015) reinforced this. The 
final rule “Asset Management Plans and Periodic Evaluations of Facilities Repeatedly 
Requiring Repair and Reconstruction Due to Emergency Events” requiring each state to 
develop and maintain a risk-based asset management plan for pavements and bridges on the 
National Highway System (NHS) to improve or preserve the condition of the assets and the 
performance of the system became effective in October 2017 (FHWA, 2016).  

Asset management is a strategic and systematic process of operating, maintaining, and improving physical 
assets, with a focus on engineering and economic analysis based upon quality information, to identify a 
structured sequence of maintenance, preservation, repair, rehabilitation, and replacement actions that will 
achieve and sustain a desired state of good repair over the lifecycle of the assets at minimum practicable 
cost. (23 U.S.C. 101(a)(2), MAP-21 § 1103) (112th Congress, 2012) 

The fundamental elements of asset management are shown in the generic asset 
management process in Figure 2-1.  A key element is “Alternative Evaluation and Program 
Optimization” and takes as input the asset inventory, condition, and performance modeling. 
This element addresses the challenges in managing these assets. This element is implemented 
using many different strategies, constraints, scopes, scales, and timeframes. For example, the 
optimization may occur within a program (such as a pavement or bridge program) or across 
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programs (scope).  The evaluation of alternatives may simply be based on the cost of the 
action to the agency, the lifecycle costs, user costs including delays and disruptions, or a 
lifecycle assessment. The decisions can include uncertainty. Different districts, jurisdictions, 
or regions (scale) can be recognized. The decisions can be optimized for a year, a program 
(e.g., 5 or 10 years), or over the life of a project or network (timeframe).  

 

 

 
The simplest evaluations are rank and prioritize activities (Haas, Hudson, & Cowe Falls, 
2015). The more sophisticated and complex asset management tools use optimization to 
make decisions that select and prioritize activities. Formulations, which define the decision 
variables, objective function, and constraints, are classified as project or network level, single 
objective, or multi-objective, and deterministic, heuristic, or other (Chen & Bai, 2019). 
Another classification also considers whether the decision variables are discrete or 
continuous and whether uncertainty is considered. Optimization problems can also be classed 
as activity selection, scheduling, or both selection and scheduling. Invariably optimization 
problems focus on a discrete set of locations and activities, a finite time period (planning 
horizon), the condition of the asset, and the agency cost. To simplify the solution process or 
reduce the size of the solution space, assumptions are usually made. The assumptions limit 
the scale (for example, a class of roads, or a particular jurisdiction), the type of activities (for 
example, maintenance or rehabilitation), the type of assets (for example, pavements or 
bridges, although they are part of the same network), and the time frame (for example, 1 year, 
5 years, or 10 years) considered.   

Recognizing the importance of condition and its evolution as a performance measure, 
this research accounts for new types of condition data and the influence of facility downtime 
on users’ travel decisions. A bilevel program prioritizes and schedules roadway improvement 
activities recognizing users’ costs and disruption (Zhou, Miller-Hooks, Papakonstantinou, 
Stoffels, & McNeil, 2021). The upper level involves a Markov decision process (MDP) to 

Goals and Policies 

Asset Inventory 

Condition Assessment and 
Performance Modeling 

Alternatives Evaluation and 
Program Optimization 

Short and Long-Range Plans 

Program Implementation 

Budget 
 Allocations 

Performance Monitoring 
 

Figure 2-1. Asset management elements. 
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identify and prioritize potential roadway improvement actions. The MDP approach accounts 
for uncertainty in system component states reflecting roadway degradation over time while 
also capturing the benefits of improvement actions that are taken. The upper level takes as 
input estimates of traffic flows (obtained from the lower level), which affects roadway 
serviceability. The lower level seeks to determine traffic flows based on a network user 
equilibrium solution across paths that is affected by capacities determined through actions 
determined at the upper level. The optimal solution is obtained at a Stackelberg equilibrium 
between upper and lower-level programs. Karush–Kuhn–Tucker (KKT) conditions are 
applied to reduce the bilevel model to an equivalent, single-level program. The KKT 
conditions include nonlinear complementarity constraints that can be linearized through the 
inclusion of binary variables. As solution of the resulting stochastic mixed-integer linear 
program is formidable, a reinforcement learning method is applied.  

In addition to the challenges involved in solving these problems, acquiring realistic data 
and relevant deterioration models is another challenge. There is also a fear of “black box” 
solutions. Given this context, this paper addresses the following research questions: 

• How do optimization tools compare with common approaches used in practice in 
terms of data of needs and benefits? 

• What does it take for state departments of transportation to implement 
sophisticated decision support algorithms? 

The following section reviews the state of the art versus the state of the practice 
regarding decision making and optimization in asset management practice. The subsequent 
section structures an application based on the bilevel program tool. This section reviews the 
data and models required for its implementation, describes a proposed case study based on a 
realistic network, and presents the scenarios implemented including evaluation and 
validation. The final section presents anticipated opportunities and barriers to 
implementation.  

STATE OF THE PRACTICE VERSUS STATE OF THE ART 
Different tools are used to make decisions related to improvements to pavements and bridges 
for different purposes and at different levels of government. Consider the following three 
examples for pavements. The first example is the Highway Economic Requirements System 
(HERS). HERS is used to advise Congress on setting budgets (Government Accountability 
Office, 2000; Bryce, Elkins, & Thompson, 2020). In HERS, decisions about pavement 
improvements are made on the basis of an incremental benefit-cost analysis. A second 
example are the thresholds and targets that are used to make strategic decisions as part of the 
state Transportation Asset Management Plans (TAMPs). A third example are the decision 
trees that are commonly part of the pavement management systems used by state DOTs.  In 
this section, the federal asset management requirements for state Departments of 
Transportation (DOTs) are reviewed, together with the existing software tools used to support 
these requirements and asset management more generally. The role optimization plays is also 
reviewed. The section concludes with an analysis of the gaps between practice and the state 
of the art.  

Likewise, there are tools to support asset management for bridges for different purposes. 
For example, similar to HERS, the National Bridge Investment Analysis System (NBIAS) 
analyzes bridge investment needs based on lifecycle scenarios and increment benefit-cost 
analysis (Robert, 2018). A second example for bridges is the AASHTOWare™ Bridge 
Management (BrM) tool (Johnson & Boyle, 2017). BrM assesses the utility of decisions. 
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Asset Management Requirements 
The Moving Ahead for Progress in the 21st Century Act (MAP-21) (112th Congress, 2012), 
the surface transportation legislation from 2012, required performance-based management 
and the development of risk-based asset management plans.  The subsequent 2015 legislation, 
Fix America’s Surface Transport (FAST) Act (114th Congress, 2015), reinforced this 
requirement. The final rule, “Asset Management Plans and Periodic Evaluations of Facilities 
Repeatedly Requiring Repair and Reconstruction Due to Emergency Events,” requiring each 
state to develop and maintain a risk-based asset management plan for the National Highway 
System (NHS) to improve or preserve the condition of the assets and the performance of the 
system, became effective October 2017 (FHWA, 2016). Although focused on pavements and 
bridges on the National Highway System, the rules require state DOTs to develop investment 
strategies to achieve and sustain a state of good repair over the lifecycle of the asset, to 
improve or preserve condition, and to achieve targets for asset condition and performance. 

Software Tools 
State DOTs use a variety of homegrown and commercial off-the-shelf tools (COTS), often 
with some degree of customization, to perform asset management. Some of these tools are 
specific to a class of assets, others are purpose built to address specific issues. Table 2-1 
summarizes the tools used by eight states participating in an FHWA-sponsored asset 
management peer exchange in 2020 (FHWA, 2021), as well as the tools identified in the 
Transportation Asset Management Plans of states in the mid-Atlantic region (excluding 
Maryland, as the plan is not publicly available) and some selected other states. The table 
distinguishes among Enterprise Systems, Bridge Management, Pavement Management and 
Routine Maintenance to reflect how states are organized. Clearly there are common functions 
and data.   

The table illustrates the variety of software. Commercial products are italicized. 
AASHTO or FHWA products are shown in bold. The remaining systems are developed in-
house. For these selected states, no state has a single platform or tool to support asset 
management but uses a variety of tools and platforms to provide access to data, models, and 
decision support tools. Several vendors offer integrated platforms that are continuously 
evolving. Table 2-2 provides a snapshot of some of these resources and the attributes based 
on information on websites, presentations, and marketing material to provide a sense of the 
resources available. While most vendors claim to optimize decisions and consider cross-asset 
tradeoffs, the methods used are not described or accessible.  
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Table 2-1. Software systems used by selected states. 
State Enterprise Systems of Record (SoR) Bridge Management Pavement 

Management 
Routine Maintenance 

Connecticut (1) Transportation Enterprise Database (TED) dTIMS 
InspecTech 
 

dTIMS Maintenance Management 
System (MMS) 

Delaware (2) Transportation System Data Management 
(TSDM) 

AASHTOWare™ Bridge 
Management (BrM) 

AgileAssets 
Pavement Analyst 

Maximo 

District of Columbia 
(3) 

 BrM Paver SABER (Tunnel 
Management), CityWorks 

Hawaii (4)  BrM BrM (customized 
for pavements) 

 

Indiana (5) Arc GIS Roads and Highways National Bridge Investment 
Analysis System (NBIAS) 

dTIMS Agile Assets 

Michigan (5) Arc GIS BrM Project Identification 
Tool (PIT) 

VueWorks 

Minnesota (5)  BrM, Bridge Information 
Modeling (BrIM), InspecTech 

Highway Pavement 
Management 
Application (HPMA) 

AgileAssets 

New York (5) Systems of Engagement (SoE); 
AgileAssets – Enterprise Asset 
Management Project (EAMP) 
Arc GIS Roads and Highways (LRS) 

Bridge Data Information 
System (BDIS), Structure 
Management System (SMS) 

Pavement 
Management System 
(PMS) 

Maintenance Management 
System (MMS) 

North Dakota (5) Arc GIS, Arc GIS Roads and Highways BrM dTIMS  
Ohio (5) Transportation Information Mapping 

System (TIMS), Arc GIS Collector, Arc 
GIS Roads and Highways, Ellis (capital 
projects) 

BrM dTIMS Enterprise Information 
Management System (EIMS) 

Pennsylvania (5) Bridge Management System 2 (BMS2), 
Roadway Management System (RMS), 
Engineering and Construction 
Management System (ECMS) 

BridgeCare dTIMS 
RoadCare 

 

Rhode Island (6) Arc GIS Roads and Highways, VueWorks BrM dTIMS  
South Carolina (7)  Highway Maintenance Pavement Highway Maintenance 
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State Enterprise Systems of Record (SoR) Bridge Management Pavement 
Management 

Routine Maintenance 

Management System 
(HMMS) Bridge Deficiency 
Module 
BrM 

Management System 
(PMS) 

Management System 
(HMMS) 

Virginia (8)  BrM AgileAssets 
Pavement Analyst 

Pavement Maintenance 
Scheduling System (PMSS) 

West Virginia (5) Arc GIS Roads and Highways InspecTech 
BMS 

dTIMS  

Sources: (1) (Connecticut Department of Transportation, 2019); (2) (Delaware Department of Transportation, 2019); (3) (District Department of Transportation, 2019); (4) (Hawaii Department 
of Transportation, 2019); (5) (FHWA, 2021); (6) (Rhode Island Department of Transportation, 2019); (7) (South Carolina Department of Transportation, 2019); (8) (Virginia Department of 
Transportation, 2019). 
 

Table 2-2. Illustrative commercial asset management tools. 
Vendor Software Optimization Cross 

Asset 
Tradeoffs 

Website 

AgileAssets Transportation Asset Lifecycle 
Management Solution   https://www.agileassets.com/  

AssetWorks AssetWorks   https://www.assetworks.com/  
Deighton Associates dTIMS   https://www.deighton.com/  
Bentley Assetwise 

InspecTech   https://www.bentley.com/en/products/brands/assetwise  

ESRI 
 

ArcGIS Roads and Highways 
  https://www.esri.com/en-us/arcgis/products/arcgis-

roads-highways/overview 
DTS VueWorks   https://www.vueworks.com/  

https://www.agileassets.com/
https://www.assetworks.com/
https://www.deighton.com/
https://www.bentley.com/en/products/brands/assetwise
https://www.esri.com/en-us/arcgis/products/arcgis-roads-highways/overview
https://www.esri.com/en-us/arcgis/products/arcgis-roads-highways/overview
https://www.vueworks.com/
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AASHTO also supports the Multi-Objective Decision Analysis Tool (MODAT) that 
supports cross-asset tradeoffs (Maggiore & Ford, 2015; National Academies of Sciences, 
Engineering, and Medicine, 2019). The tool requires the input of potential projects details, 
including the measures, costs, and objectives. The scale of measures can be either linear or 
logistic with defined parameters. Measures may be weighted in terms of the contribution to 
the objectives. Two different methods can be used to prioritize projects based on the overall 
budget specified: 

• Weighted score, a linear combination of the weighted measures and the weighted 
objectives, and 

• Data envelopment analysis, which does not use the subjective weights but chooses 
weights to optimize the efficiency of each project.  

MODAT includes visualization tools and documents that analysis. Either method depends on 
expert judgement to determine the weights of the measures.  

In addition, some states use generic decision support software such as Decision Lens, 
which is based on the analytical hierarchical process.  

Decision Support Tools: State of the Art 
There is a large body of literature of decision support tools for asset management. Building 
from work in pavement management, the seminal work of Golabi, Kulkarni and Way 
(Golabi, Kulkarni, & Way, 1982) served as a foundation for advanced and more sophisticated 
optimization of maintenance and resurfacing decisions for pavements that recognized 
deterioration and uncertainty and then extended the work to bridges. 

A comprehensive review of the state of the art is beyond the scope of this project. Some 
recent review papers provide an overview and context. Chen and Bai (Chen & Bai, 2019) 
review over 300 papers on optimization in asset management. Chen et al. (Chen, Liang, Wu, 
& Sun, 2019) provide a review of optimization in transportation asset management for roads 
and bridges. Chen et al. (Chen, Henning, Raith, & Shamseldin, 2015) focus on multi-
objective optimization for maintenance decisions. These papers provide a clear picture of the 
variety of approaches to the problem formulation and solution methods, both of which are 
tailored to a particular application.  

Optimization in Practice 
A review of the selected state DOTs’ Transportation Asset Management Plans revealed1 that 
most states aim to optimize their investments but do not optimize in the mathematical sense 
of the word. The selected states included all Region 3 DOTs except Maryland (Delaware, 
District of Columbia, Pennsylvania, Virginia, and West Virginia) and a range of other states 
(Alaska, California, Connecticut, Hawaii, Minnesota, New Hampshire, North Carolina, 
Rhode Island, South Carolina, Virginia, Washington, and West Virginia), reflecting different 
geography, size, and types of assets.  

At best, the states optimized investment in their bridge program or pavement program. 
Most conduct scenario analysis and explore alternative strategies. However, the TAMPs do 
recognize the value of optimization, the potential gains, and the importance of good models 
and reliable data. The following quotes illustrate the range of sentiments expressed in the 
TAMPs: 

 
1 The plans were downloaded from the FHWA website that serves as a repository for TAMPs 
(http://www.tamptemplate.org/existing-tamp/?fwp_sections=11-risk) or from the AASHTO TAMP 
Library (https://www.tamptemplate.org/existing-tamp/). 

http://www.tamptemplate.org/existing-tamp/?fwp_sections=11-risk
https://www.tamptemplate.org/existing-tamp/
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• Alaska DOT (Alaska Department of Transportation & Public Facilities, 2019): In 
the message from the Commission, “We must become as skilled at optimizing the 
life-cycle planning and overall performance of transportation assets as we are 
traditionally at engineering and building them.” 

• California DOT (Caltrans, 2018): From the section on risk, “If we do not have 
reliable asset performance models (including reliable decay rates and reasonable 
goals), then investment decisions will not be optimal.” 

• Connecticut DOT (Connecticut Department of Transportation, 2019): A TAM 
objective is to “Deliver an efficient and effective program to optimize the life of 
our infrastructure.” An incremental benefit-cost analysis is used to optimize 
investments in pavements and bridges independently. The need to optimize cross-
asset decisions is also recognized.  

• Delaware DOT (Delaware Department of Transportation, 2019): The TAMP 
aligns with the first principle of the Long-Range Transportation Plan: “system 
preservation and optimization.”  For pavements, the optimization uses benefit as 
the objective function and costs as the constraint. For bridges, scenario analysis 
is based on maximizing utility or minimizing costs, both subject to performance 
constraints. 

• District DOT (District Department of Transportation, 2019): District DOT’s 
TAMP, in the section on pavement performance targets, states “the application of 
good practice asset management can enable DDOT to optimize available 
resources and performance.” 

• Hawaii DOT (Hawaii Department of Transportation, 2019): Hawaii DOT uses a 
weighted benefit-cost ratio to select work actions for bridges based on a score. 
The results are used to develop an “optimal” long-term network-level strategy.  

• Minnesota DOT (Minnesota Department of Transportation, 2018): From the 
section on investment priorities, “The infrastructure preservation investments 
documented in this TAMP are targeted to optimize investments in asset 
management (considering fiscal constraints) while making progress toward 
established goals and objectives.” 

• New Hampshire (New Hampshire Department of Transportation, 2019): The New 
Hampshire DOT plan seeks to “optimize employee health and safety” and states 
that operations and maintenance activities “optimize performance and existing 
capacity.” 

• North Carolina (North Carolina Department of Transportation, 2019): Pavement 
and bridge treatments are optimized based on lifecycle cost analysis.  

• Pennsylvania DOT (Pennsylvania Department of Transportation, 2018): 
Discusses optimal decisions in the context of lowest lifecycle costs (LLCC), “The 
combination of forecasts with professional judgment representing various 
viewpoints and in-depth data allows the optimal choices to be made in order to 
maintain the system to LLCC.” 

• Rhode Island Department of Transportation (Rhode Island Department of 
Transportation, 2019):  The network-level LCCA for pavements uses an 
optimization procedure that considers the objective and the resource constraints. 
The investment strategies are based on three optimization options: (1) maximizing 
benefits based on incremental benefit-cost ratios, (2) maximizing benefits using 
other criteria, and (3) minimizing cost. The performance gap analysis presents 
three targets: (1) optimal performance, (2) planned performance, and (3) 
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deteriorating performance. The optimal performance achieves and maintains a 
state of good repair for all bridge assets and NHS pavement assets.  

• South Carolina DOT (South Carolina Department of Transportation, 2019): A 
guiding principle is “to optimize investments” and the 10-year performance 
outcome is “to optimize system performance.” The target-setting process is 
intended to “provide optimal preservation/rehabilitation choices.” In action items, 
SCDOT plans to “Investigate alternative methods for cross-asset resource 
allocation, tradeoff analysis, and optimization to achieve system objectives.” 

• Virginia DOT (Virginia Department of Transportation, 2019): The lifecycle 
decisions are “intended to optimize available funding to meet network 
performance goals.” Optimized pavement and bridge needs and investments are 
identified using existing tools.  

• Washington DOT (Washington State Department of Transportation, 2018): 
Identifies the following system improvements to optimize asset management: (1) 
add other asset information into the web-based project management system; (2) 
create GIS Asset Management Web Application; (3) address bridge 
recommendations from a 2014 Study; (4) implement AASHTO Bridge 
Management Software (BrM); (5) strengthen the relation between assets and 
transportation projects; (6) increase management system functionality; and (7) 
implement use of priority and resource optimization software (Decision Lens). 

• West Virginia (West Virginia Division of Highways, 2019): Uses scenario 
analysis to perform lifecycle optimization analysis using various objectives 
(utility or cost) and constraints (budgets or performance targets).  

Overall, the states are aiming to develop optimal plans that deliver the best serviceability 
given the budget constraints. Invariably, the implementations focus on independently reached 
optimization decisions for pavements and bridges based on a predefined set of scenarios. 
Essentially, the objective function is computed for each scenario that meets the constraints 
and the “optimal” solution chosen. Given the fact that there are many tradeoffs in terms of 
actions, timing, and location, it is possible for an optimal solution to be overlooked. 
However, given that scenarios are developed based on experience and data, the optimal 
solution selected is likely to be very desirable, and for the given problem and objective, either 
optimal or near optimal.   

Gaps 
Thresholds for determining when to undertake a maintenance or improvement activity, 
decision trees, simulation, and scenario analysis are widely used in practice. While the 
strategies have proven to be effective for pavements and bridges independently, the need to 
consider cross-asset tradeoff and integrate more complex objectives, such as users’ costs, 
disruption, and sustainability, adds to the complexity. On the other hand, the “black box 
syndrome” means that agencies are skeptical of the outputs from elaborate mathematical 
models. Wang and Pyle (Wang & Pyle, 2019) recommend engaging the users, verification of 
results, and continued validation.  

Another important gap in developing and implementing optimal decisions is the 
difficulty in assembling the required data. These problems require current and predicted 
condition, the cost of implementing an action, the impact of the action in terms of the changes 
to the condition and the future condition, and the impacts for the users, including changes in 
travel time and disruption. Ideally, the decisions should capture the changes in users’ 
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behavior, any safety or security concerns, any damage to vehicles, and the relationship among 
the projects. Interdependencies can be physical or functional.  

This is important because data collection is costly, and resources for maintaining and 
improving roads are scarce. Taking advantage of innovative data collection methods, more 
accurate and more timely data, and making better use of resources is important. Although 
agencies may not implement an “optimal” solution, exploring alternative solution methods 
provides insight into the factors that influence these decisions and will ultimately help 
agencies to deliver better transportation services.  

APPLICATION 
The application of the results of this research requires data and models to support the 

appropriate decisions. While subsequent chapters elaborate on these data and models, this 
section outlines the potential sources and case studies, as well as the parameters that need to 
be explored in a sensitivity analysis of their application. These applications will be pursued in 
Phase 2 of this project.  

Data and Models Needed and Availability 
The basic data and models needed to identify appropriate actions are of three types: 

• Network inventory and condition: Typically, a network is depicted as a series of 
connected links. The network information includes link connectivity and link 
attributes, such as length and capacity. Usage is in the form of an origin-destination 
(O-D) matrix and may be differentiated by vehicle class and time of day. Condition 
data for each link is also critical.  Potential forms are discussed in Chapter 3 and 
potential sources are discussed in Chapter 7. 

• Potential maintenance and improvement actions: These actions are the decision 
variables (the decision is commonly represented as a binary variable indicating 
whether the action is taken or not). Actions can be differentiated by location and time 
of occurrence. Decisions require knowledge of costs, duration of activity, impact on 
capacity during and after the activity, and impact on condition after completion. 
These data are described in more detail in Chapter 3. 

• Deterioration models: These models, in this case Markov transition probabilities, are 
needed to understand how condition changes over time. These models are discussed 
in Chapter 3. 

In Phase 1 of the research, data collected from Northern Virginia are used to illustrate 
new data sources but are not integrated into the decision-making process.  The decision-
making process uses a simple network modified from (Medury & Madanat, 2013) to 
demonstrate the concepts.  

Phase 2 will explore more elaborate network models. While a variety of networks have 
been considered, the Hampton Road network (see https://www.hrpdcva.gov/page/maps/ and  
https://www.hrtpotip.org/) will be utilized, as the network is well-documented and has 
adequate complexity to illustrate the application and explore the relevant scenarios, compare 
the results to thresholds and decision trees, and complete a sensitivity analysis.  

Analysis, Evaluation and Validation 
To analyze our findings, multiple scenarios will be considered to explore the sensitivity of the 
results to changes in inputs, to explore, qualitatively and quantitatively, whether the models 
and the results are logical and consistent. The scenarios include changes to the following 
variables and models: 

https://www.hrpdcva.gov/page/maps/
https://www.hrtpotip.org/
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• Discount rate, 
• Costs including treatment cost and value of time, 
• Traffic predictions including growth rates, 
• Deterioration prediction including different parameters and models, 
• Observed condition including the quality of the data and the frequency at which 

data are updated,  
• Relationship between traffic and condition, for example, accounting for lower 

speeds on roads with very poor conditions, and  
• Role of downtime as captured by the weight parameter. 

The analysis in Phase 1 includes some limited exploration of the impacts of the changes 
in these variables and models. Phase 2 will include a more systematic analysis.  

Phase 2 will also involve a comparison of the results to existing methods commonly 
applied. In preparation for this comparison, materials are assembled for targets, thresholds, 
and decision trees. Appendix B summarizes threshold-based decision methods and targets for 
pavements on the National Highway System for all states as reported in the Transportation 
Asset Management Plan (TAMP).  Appendix C documents the decision trees used in the six 
Mid-Atlantic states for pavement-related decisions. 

The case study is also intended to provide insights into the decision making that can be 
used to determine appropriate policies and budgets and to enhance asset-specific tools.  

ANTICIPATED OPPORTUNITIES AND BARRIERS TO 
IMPLEMENTATION 
Asset management, the strategic prioritization and planning of transportation infrastructure 
maintenance, rehabilitation, and improvements, is a data-driven process aimed at delivering 
the best levels of services given the available resources. Practices vary in sophistication and 
purposes and range from establishing policies and budgets, to demonstrating the connections 
between outcomes and investments, to selecting and scheduling specific actions. This project 
supports the selection and scheduling of actions, which in turn supports the other strategic 
initiatives. 

Opportunities for improving strategic prioritization and planning of transportation 
infrastructure maintenance, rehabilitation, and improvements abound. This project focuses on 
new data sources, accounting for uncertainty in deterioration, integrated user impacts, 
specifically the cost of disruption and understanding cross-asset tradeoffs. This involves 
exploring new data sources, enhancing existing deterioration models, and formulating and 
solving an alternative optimization model. The objective is to enhance condition and 
minimize user disruption by coordinating actions. Most importantly, the network impact and 
the impacts of downtime are recognized and accounted for.  

While there are many opportunities to enhance these decision-making processes, there 
are also many barriers. These barriers include:  

• The prevalence of commercial software to support state DOT asset management 
activities that use widely accepted methods, but the details are not accessible, nor 
are the codes open source; 

• Concern among agencies that the outputs from “black boxes” or complex 
mathematical relationships are not transparent; 

• A perception that the data needed to support new models and decision support 
tools are not available; and 

• “Siloing” of decision support functions, which makes cross-asset tradeoffs 
difficult. 

These barriers can be addressed through demonstrations and dissemination of new 
methods and research results.  
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C H A P T E R  3  

Stochastic Modeling of Pavements and 
Bridges for Cross-Asset Management 

INTRODUCTION & OVERVIEW 
Cross-asset management is essential nowadays with all the challenges facing the U.S. 
Department of Transportation (U.S. DOT), particularly the deteriorating infrastructure and 
the scarcity of resources. According to the 2021 ASCE infrastructure report card (ASCE, 
2021), the nation’s infrastructure is in fair to poor condition with a cumulative rating of C-, 
with elements approaching the end of their service life and having a high risk of failure. 
Pavements and bridges are part of this poor infrastructure: 1 out of every 5 miles of pavement 
in the United States is in poor condition, while 7.5% of the nation’s bridges are structurally 
deficient. However, DOTs have been changing their decision-making strategies to meet the 
serviceability demand. Thus, comprehensive modeling, which can incorporate multiple 
aspects of infrastructure assets over their lifecycle, such as structural degradation, age-related 
deterioration rates, different maintenance actions, and lifecycle costs, is needed now more 
than ever, so that it can be readily utilized for solving optimal planning and control problems 
for large transportation networks. 

In this work, we approach the modeling of infrastructure degradation and management 
using Markov decision processes and partially observable MDPs (POMDPs), as reported in 
the literature (Madanat & Ben-Akiva, 1994; Papakonstantinou & Shinozuka, 2014; 
Papakonstantinou, Andriotis, & Shinozuka, 2018; Madanat S. , 1993).  Many attempts have 
been made to solve optimal infrastructure management problems using stochastic models, 
some of which utilize stationary Markovian transition probabilities for bridges (Saydam & 
Frangopol, 2014; Frangopol, Lin, & Estes, 1997) and pavements (Madanat S. , 1993; 
Madanat & Ben-Akiva, 1994; Faddoul, Raphael, Soubra, & Chateauneuf, 2013). However, 
many studies have only considered hypothetical scenarios and have assumed stationarity for 
the transition probability models.  

In this chapter, a holistic modeling environment of both pavements and bridges is 
developed based on their corresponding damage state indices, which characterize their 
condition states. The stationary and nonstationary Markovian transition probabilities are 
obtained. Four broader categories of maintenance actions are also considered—namely, Do 
Nothing, Minor Repair, Major Repair, and Reconstruction—for both pavements and bridges. 
Observation actions are also defined as no inspection, low-fidelity inspection, and high-
fidelity inspection for both asset types. The costs for the maintenance and inspection actions 
are obtained from actual data and up-to-date literature, wherever possible.  

PAVEMENTS 
There are various indicators that can characterize the condition state of pavements, some that 
are used internationally and others that are state agency specific, such as Pavement Condition 
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Index (PCI), Pavement Quality Index (PQI), Critical Condition Index (CCI), and 
International Roughness Index (IRI), among many others. CCI and IRI are used in this work. 

Critical Condition Index 
The CCI model in this report is a modified version of the modeling described in (Katicha, 
Ercisli, Flintsch, Bryce, & Diefenderfer, 2016), where a regression model is presented that 
estimates mean CCI using collected data from years 2007-12, 2014, and 2015, from the 
Virginia Department of Transportation (VDOT) Pavement Management System (PMS). The 
age of the pavement is calculated as the difference between the year of condition reporting 
and the last year of recorded maintenance. The total dataset in (Katicha, Ercisli, Flintsch, 
Bryce, & Diefenderfer, 2016) consists of 3,473 observations from the years 2007 to 2012, 
and 1,560 observations from the years 2014 and 2015. The mean regression model in 
(Katicha, Ercisli, Flintsch, Bryce, & Diefenderfer, 2016) directly incorporates the effect of 
age of the pavement section and indirectly considers the impact of the traffic load and other 
pavement structural parameters. Figure 3-1 shows the mean CCI as a function of pavement 
age for different traffic levels (A to E), where levels A through E indicate heavy to light 
traffic conditions, assuming other structural parameters constant. In the following section, a 
nonstationary gamma process is fitted to estimate the relevant nonstationary transition 
probabilities. 

Fitting a nonstationary gamma process  

A gamma process is utilized in this section, with its mean in time equal to the modified mean 
CCI predictions in Figure 3-1 and a relevant model variance 𝜎𝜎𝑠𝑠2(𝑡𝑡), primarily determined 
based on (Katicha, Ercisli, Flintsch, Bryce, & Diefenderfer, 2016) and the observed data 
trends there. The marginal probability of CCI at every step t can be obtained by estimating 
the damage index 𝐷𝐷𝐷𝐷, where 𝐷𝐷𝐷𝐷 = 100 − CCI, using the gamma distribution with probability 
density function: 
 

𝐺𝐺𝐺𝐺�𝐷𝐷𝐷𝐷|𝑓𝑓(𝑡𝑡),𝑔𝑔(𝑡𝑡)� =
𝑔𝑔(𝑡𝑡)𝑓𝑓(𝑡𝑡)

𝛤𝛤�𝑓𝑓(𝑡𝑡)�
𝐷𝐷𝐼𝐼𝑓𝑓(𝑡𝑡)−1𝑒𝑒−𝑔𝑔(𝑡𝑡)𝐷𝐷𝐷𝐷 (3.1) 

The gamma process is parametrized here by a non-negative time-varying scale parameter 
function g(t) and a non-negative time-varying shape parameter function f(t), and 𝛤𝛤(𝑢𝑢) =
∫ 𝑣𝑣𝑢𝑢−1𝑒𝑒−𝑣𝑣𝑑𝑑𝑑𝑑∞
0 . The relevant parameters are estimated in time based on the mean DI

prediction model and the model variance 𝜎𝜎𝑠𝑠2(𝑡𝑡). The relationship between the gamma process 
parameter functions and 𝜇𝜇𝐷𝐷𝐷𝐷 ,𝜎𝜎𝑠𝑠 is given as: 
 

𝜇𝜇𝐷𝐷𝐷𝐷(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑔𝑔(𝑡𝑡)

,𝜎𝜎𝑠𝑠(𝑡𝑡) =
�𝑓𝑓(𝑡𝑡)
𝑔𝑔(𝑡𝑡)

 (3.2) 

Due to their monotonicity, gamma processes are readily used as a suitable modeling choice in 
stochastic deterioration engineering applications and can describe continuous Markovian 
transitions. For time instant 𝑡𝑡1 < 𝑡𝑡2, the increment of  DI follows a gamma distribution: 
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𝐷𝐷𝐷𝐷(𝑡𝑡2) − 𝐷𝐷𝐷𝐷(𝑡𝑡1)~𝐺𝐺𝐺𝐺�. |𝑓𝑓(𝑡𝑡2) − 𝑓𝑓(𝑡𝑡1),𝑔𝑔(𝑡𝑡2)�,   

with g(𝑡𝑡) assumed constant in �𝑡𝑡1, 𝑡𝑡2) 

(3.3) 

In Figure 3-2, relevant simulation results are indicatively shown for traffic level A with 300 
different realizations. All corresponding 𝑓𝑓(𝑡𝑡) and 𝑔𝑔(𝑡𝑡)values are shown in Table D-1 in 
Appendix D, for different traffic levels.  
 

 

Figure 3-2. Modeled mean CCI for different levels  
of traffic. 

Determining transition probabilities 

To determine the transition probabilities, the discrete condition states are first defined, as 
shown in Table 3-1. These discretized condition states in the table are herein largely adapted 
by the prescribed VDOT maintenance guidelines in (Virginia Department of Transportation, 
2016), which for interstate highways are:   

• For CCI values above 89 the treatment category is always Do Nothing (DN). 
• For CCI values above 84 the treatment category is always DN or Routine 

(Preventive) Maintenance (PM). 
• For CCI values below 60 the treatment category is at least Corrective Maintenance 

(CM), Restorative Maintenance (RM), or Rehabilitation/Reconstruction (RC). 
• For CCI values below 49 the treatment category is at least RM or RC. 
• For CCI values below 37 the treatment category is always RC.  

Sampling is then performed by generating CCI and pavement age pairs, which are further 
propagated in time following the described gamma process in the previous section. In total, 
106 sequences are generated to obtain the transition probabilities for a given traffic level. 
Figure 3-3 indicatively shows computed transition probabilities for traffic level A. 
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                                     (a)                                                                      

 
                                   (b) 

 

Figure 3-3.  (a) Fitted gamma model, (b) scatter plot for CCI for traffic level A. 

Table 3-3. State discretization based on CCI values. 

States of the pavement 
section CCI value 

6s =  100-90 

5s =  89-80 

4s =  79-61 

3s =  60-50 

2s =  49-37 

1s =  <37 

 

  
                                     (a) 
 

     
                                      (b) 
                                                                                           

Figure 3-4. Transition probabilities for Traffic level A, with (a) starting state = 6,  
(b) starting state = 5, smoothed over time with a 5-point window. 

Observation probabilities for CCI inspection action 

Observation uncertainty can be appropriately modeled by the likelihood functions 𝑝𝑝(𝑜𝑜𝑡𝑡|𝑠𝑠𝑡𝑡) 
which quantify the probability of observing an observation 𝑜𝑜𝑡𝑡 at time t given a state 𝑠𝑠𝑡𝑡 at that 
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instant. To calculate the observation probability 𝑝𝑝(𝑜𝑜𝑡𝑡|𝑠𝑠𝑡𝑡) a normal distribution is considered 
with mean equal to the actual CCI value and an error variance 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 = 72, based on 
(Katicha, Ercisli, Flintsch, Bryce, & Diefenderfer, 2016), and is considered as a low fidelity 
inspection due to the large error. The error variance is linked to the variability in the 
measurement of CCI and the error in the reported pavement condition by an inspector. These 
conditional observation probabilities 𝑝𝑝(𝑜𝑜𝑡𝑡|𝑠𝑠𝑡𝑡) are generated by calculating the area under the 
curve of the normal distribution, as shown in Figure 3-4. 

It has been observed that the observation probabilities are largely independent of 
different traffic levels (in reference to Figure 3-1) due to the constant 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 value, so the 
average values have been reported in CCI = 55. 

Table 3-2 can be used for all traffic levels. High-fidelity inspections can also be 
considered, which rely on higher precision, expensive devices, and multi-modality. These 
techniques may also require significant post-processing, which increases the overall 
inspection cost. Hence, a much smaller error variance, 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 = 18, is used to compute the 
observation probabilities, as compared to the previous case. Using these inspection 
techniques, we derive the observation probabilities as shown in Table 3-3. For the no-
inspection case, one has equal probability of observing each state, i.e., 𝑝𝑝(𝑜𝑜𝑡𝑡|𝑠𝑠𝑡𝑡) = 1/6 
∀ 𝑜𝑜𝑡𝑡, 𝑠𝑠𝑡𝑡 ∈ {1,2⋯ ,6}. In Table 3-2, we notice observation probabilities less than 50% for 
observing the actual states, which are attributed to the non-uniform CCI partitioning.  

As discussed earlier, the cost of inspections depends on the techniques used for 
observing the pavement condition along with the postprocessing time/complexity. The 
inspection techniques have been categorized into three precision categories of no-inspection, 
low-fidelity inspection, and high-fidelity inspection, as previously mentioned, and the 
associated costs informed from MDOT survey (MDOT, 2014) for monitoring highway assets. 
These costs are summarized in Table 3-4.   

Maintenance, rehabilitation, and reconstruction actions in relation to CCI 

For ease of notation and to simplify expressions, the word maintenance is used here forth as a 
general term encompassing all actions in relation to preventive treatments, repairs, 
restorations, and reconstructions. There are various guidelines for pavement maintenance for 
different agencies/states. According to VDOT (Virginia Department of Transportation, 2016), 
four different maintenance actions are recommended (Do Nothing, Minor Repair, Major 
Repair, and Reconstruction). Further details of maintenance actions are provided in Appendix 
D, Table D-2.  

 
Figure 3-5. Example of observation probability calculation for actual CCI = 55. 
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Table 3-4. Observation probability 𝒑𝒑(𝒐𝒐𝒕𝒕|𝒔𝒔𝒕𝒕) given actual state 𝒔𝒔𝒕𝒕, with 2 72errorσ = . 

Actual 
State 𝒑𝒑(𝒐𝒐𝒕𝒕 = 𝟔𝟔|𝒔𝒔𝒕𝒕) 𝒑𝒑(𝒐𝒐𝒕𝒕 = 𝟓𝟓|𝒔𝒔𝒕𝒕) 𝒑𝒑(𝒐𝒐𝒕𝒕 = 𝟒𝟒|𝒔𝒔𝒕𝒕) 𝒑𝒑(𝒐𝒐𝒕𝒕 = 𝟑𝟑|𝒔𝒔𝒕𝒕) 𝒑𝒑(𝒐𝒐𝒕𝒕 = 𝟐𝟐|𝒔𝒔𝒕𝒕) 𝒑𝒑(𝒐𝒐𝒕𝒕 = 𝟏𝟏|𝒔𝒔𝒕𝒕) 

6ts =  0.687 0.259 0.054 0.000 0.000 0.000 

5ts =  0.276 0.422 0.297 0.005 0.000 0.000 

4ts =  0.023 0.139 0.648 0.167 0.022 0.001 

3ts =  0.000 0.003 0.266 0.455 0.248 0.028 

2ts =  0.000 0.000 0.031 0.224 0.486 0.259 

1ts =  0.000 0.000 0.000 0.005 0.059 0.936 

Table 3-5. Observation probability 𝒑𝒑(𝒐𝒐𝒕𝒕|𝒔𝒔𝒕𝒕) given actual state 𝒔𝒔𝒕𝒕, with 𝝈𝝈𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝟐𝟐 = 𝟏𝟏𝟏𝟏. 

Actual 
State 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟔𝟔|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟓𝟓|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟒𝟒|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟑𝟑|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟐𝟐|𝒔𝒔𝒕𝒕) 

 𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟏𝟏|𝒔𝒔𝒕𝒕) 

6ts =  0.801 0.197 0.002 0.000 0.000  0.000 

5ts =  0.153 0.664 0.183 0.000 0.000  0.000 

4ts =  0.001 0.078 0.822 0.099 0.000  0.000 

3ts =  0.000 0.000 0.149 0.693 0.158  0.000 

2ts =  0.000 0.000 0.001 0.137 0.718  0.144 

1ts =  0.000 0.000 0.000 0.000 0.042  0.958 
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Table 3-6. Inspection action costs (in USD/lane-mile or USD/m2) for CCI using three  
different techniques. 

Inspection 
Technique Description Observation  

Error (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 ) 
Cost (USD/  
Lane-mile) 

Cost 
(USD/m2) 

2i  High fidelity 18 0.57 0.16 

1i  Low fidelity 72 0.27 0.08 

0i  No Inspection ∞  0.00 0.00 

 
The maintenance action transition probabilities for CCI are shown in Table 3-5 through 

Table 3-7, similar to the line of work presented in (Madanat & Ben-Akiva, 1994). It is 
assumed that the Minor Repair (crack filling, moderate patching, etc.) cannot change the rate 
of deterioration but the state of the component. The change in condition states is considered 
based on Table 3-5.  

For a Major Repair maintenance action, deterioration rate is reduced to that of an asset 
younger by 5 years or to that of a newly built pavement component, i.e., (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
𝑚𝑚𝑚𝑚𝑚𝑚( 0,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 5) years. Major Repairs also alter the CCI conditions, with the transition 
probabilities shown in Table 3-6.  

The Reconstruction maintenance action brings the CCI condition back to the intact state 
(i.e., 𝑠𝑠𝑡𝑡 = 6) with certainty, as shown in  Table 3-7, and its deterioration rate to the initial 
intact value. Transitions in these tables do not include the transition because of the 
environment. Decoupled environmental transitions can essentially allow us to include action 
duration effects, among others. In Table 3-5 and Table 3-6, we can observe that after 
applying maintenance actions the system can go to a worse state with a non-zero probability. 
This happens because we are accounting for the inherent uncertainty present in the outcome 
of the applied actions, which also includes the possibility of failed actions. 

Maintenance action costs  

The cost of different maintenance actions is considered from (Virginia Department of 
Transportation, 2016; FDOT, 2020; PennDOT, 2017; Russell, 2021) and provided for 
interstate, primary, and secondary roads in Table 3-8. It is reported in USD/m2 and the total 
cost can be calculated using the components’ length and width (which is considered as ~3.7 
m (12 ft) per lane). Here, it is important to mention that the action descriptions provided in 
Table 3-8  for Minor Repair, Major Repair are indicative actions of the corresponding 
category and these actions are a subset of actions used in (Virginia Department of 
Transportation, 2016) as presented in Appendix D, Table D-1. 
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Table 3-7. Minor Repair transition probabilities for 6 CCI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟔𝟔 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 6 0.97 0.03 0.00    

𝑠𝑠𝑡𝑡 = 5 0.87 0.10 0.03    

𝑠𝑠𝑡𝑡 = 4 0.40 0.47 0.10 0.03   

𝑠𝑠𝑡𝑡 = 3  0.40 0.47 0.10 0.03  

𝑠𝑠𝑡𝑡 = 2   0.40 0.47 0.10 0.03 

𝑠𝑠𝑡𝑡 = 1    0.40 0.47 0.13 

Deterioration rate Does not 
change 

Does not 
change 

Does not 
change 

Does not 
change 

Does not 
change 

Does not 
change 

Table 3-8. Major Repair transition probabilities for 6 CCI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟔𝟔 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 6 1.00 0.00 0.00    

𝑠𝑠𝑡𝑡 = 5 0.96 0.04 0.00    

𝑠𝑠𝑡𝑡 = 4 0.80 0.20 0.00    

𝑠𝑠𝑡𝑡 = 3 0.65 0.25 0.10    

𝑠𝑠𝑡𝑡 = 2 0.50 0.30 0.20    

𝑠𝑠𝑡𝑡 = 1 0.40 0.30 0.30    
Deterioration 
rate 

Reset by 5 
years 

Reset by 5 
years 

Reset by 5 
years 

Reset by 5 
years 

Reset by 5 
years 

Reset by 5 
years 

 Table 3-9. Reconstruction transition probabilities for 6 CCI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟔𝟔 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 6 1.00 0.00 0.00    

𝑠𝑠𝑡𝑡 = 5 1.00 0.00 0.00    

𝑠𝑠𝑡𝑡 = 4 1.00 0.00 0.00    

𝑠𝑠𝑡𝑡 = 3 1.00 0.00 0.00    

𝑠𝑠𝑡𝑡 = 2 1.00 0.00 0.00    

𝑠𝑠𝑡𝑡 = 1 1.00 0.00 0.00    

Deterioration 
rate 

Reset to 
new 
pavement 
section 

Reset to 
new 
pavement 
section 

Reset to 
new 
pavement 
section 

Reset to 
new 
pavement 
section 

Reset to 
new 
pavement 
section 

Reset to 
new 
pavement 
section 
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Table 3-10. Maintenance action costs for asphalt pavements, reported in USD/m2. 

Actions Description Cost (USD/m2) 
Interstate 

Cost (USD/m2) 
Primary 

Cost (USD/m2) 
Secondary 

Do Nothing NA 0.00 0.00 0.00 

Minor Repair 

Moderate 
patching (<10%), 
surface treatment, 
partial depth 
patching, thin 
overlay 

20 16 10 

Major Repair 

Heavy patching 
(<20% of the 
pavement area), 
full depth 
patching, 
structural overlay 

75 68 52 

Reconstruction 
Replacing the 
entire pavement 
section 

350 330 250 

Maintenance action durations  

The duration of different maintenance actions is inferred from (ADOT, 2018; PennDOT, 
2019).  It is further assumed that no action takes more than 2 years, and no Major action takes 
more than a year to complete for a component. This can be justified by assuming multiple 
maintenance activities at a time for longer and multi-lane components. These durations are 
provided in Table 3-9.  

International Roughness Index  
IRI (m/km) is another metric that quantifies the functional pavement condition in terms of the 
roughness experienced by vehicle passengers. IRI is calculated from measured longitudinal 
road profiles using the simulated vertical displacement response of a quarter-car (Sayer, 
Gillespie, & Paterson, 1986). IRI (m/km) in this work is discretized into 5 states, as in 
(Faddoul, Raphael, Soubra, & Chateauneuf, 2013; FHWA, 1999) presented in Table 3-10. 
The transition probabilities for IRI for the Do Nothing action are given in Table 3-11.                        

Table 3-11. Maintenance actions duration in days per lane-mile. 

Actions Days per Lane-mile Additional Days per 
Mile for Shoulder, etc. 

Do Nothing 0 0 

Minor Repair 3.5 1 

Major Repair 6.5 2 

Reconstruction 32 10 
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Table 3-12. State classification based on IRI (m/km) values. 

Condition 
State (s) IRI (m/km)  Pavement 

Condition 

𝑠𝑠 = 5 <0.95 Very Good 

𝑠𝑠 = 4 0.95-1.56 Good 

𝑠𝑠 = 3 1.57-2.19 Fair 

𝑠𝑠 = 2 2.20-3.14 Mediocre 

𝑠𝑠 = 1 ≥ 3.15 Poor 

                 Table 3-13. Do Nothing transition probabilities for 5 IRI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 5 0.840 0.121 0.039   

𝑠𝑠𝑡𝑡 = 4  0.788 0.142 0.070  

𝑠𝑠𝑡𝑡 = 3   0.708 0.192 0.01 

𝑠𝑠𝑡𝑡 = 2    0.578 0.422 

𝑠𝑠𝑡𝑡 = 1     1.000 

Maintenance actions in relation to IRI 

The same four maintenance actions are considered for IRI: Do Nothing, Minor Repair, Major 
Repair, and Reconstruction. The IRI transitions for Minor Maintenance to Reconstruction 
actions are given in Table 3-12 through Table 3-14, respectively, similar to the CCI case.  

Table 3-14. Minor Repair transition probabilities for 5 IRI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 5 0.97 0.03 0.00   

𝑠𝑠𝑡𝑡 = 4 0.85 0.12 0.03   

𝑠𝑠𝑡𝑡 = 3 0.45 0.40 0.12 0.03  

𝑠𝑠𝑡𝑡 = 2  0.45 0.40 0.12 0.03 

𝑠𝑠𝑡𝑡 = 1   0.45 0.40 0.15 
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Table 3-15. Major Repair transition probabilities for 5 IRI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 5 1.00 0.00 0.00   

𝑠𝑠𝑡𝑡 = 4 0.95 0.05 0.00   

𝑠𝑠𝑡𝑡 = 3 0.80 0.20 0.00   

𝑠𝑠𝑡𝑡 = 2 0.70 0.25 0.05   

𝑠𝑠𝑡𝑡 = 1 0.45 0.35 0.20   

Table 3-16. Reconstruction transition probabilities for 5 IRI states. 

Condition State 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟓𝟓 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟒𝟒 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟑𝟑 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟐𝟐 𝒔𝒔𝒕𝒕+𝟏𝟏 = 𝟏𝟏 

𝑠𝑠𝑡𝑡 = 5 1.00 0.00 0.00   

𝑠𝑠𝑡𝑡 = 4 1.00 0.00 0.00   

𝑠𝑠𝑡𝑡 = 3 1.00 0.00 0.00   

𝑠𝑠𝑡𝑡 = 2 1.00 0.00 0.00   

𝑠𝑠𝑡𝑡 = 1 1.00 0.00 0.00   

Maintenance action costs in relation to IRI 

The cost of maintenance actions in relation to IRI is the same as the one reported in Table 
3-8. Maintenance actions taken at any given time will improve both CCI and IRI indices 
simultaneously.  

Observation probabilities for IRI inspection actions 

Three assumed inspection actions of different fidelities are again considered in this case and 
the measurement errors related to the respective inspection technologies are assumed to be 
normally distributed with zero mean and standard deviations (SD) of 0.08, 0.32, and ∞ m/km, 
respectively, as reported in (Faddoul, Raphael, Soubra, & Chateauneuf, 2013). The 
observation probabilities are summarized in Table 3-15, where 𝑜𝑜𝑡𝑡 is the observed state and 𝑠𝑠𝑡𝑡 
is the (hidden) actual state. The underlying assumption is that more costly inspections are 
high-fidelity inspections and provide more accurate information. For the last inspection 
technique, an infinite standard deviation is considered, thus this inspection is completely 
uninformative, equivalent to a no-inspection action.  

Inspection costs are considered independent of the pavement state, as also considered in 
(Faddoul, Raphael, Soubra, & Chateauneuf, 2013), and depend on the fidelity of the 
inspection technology that is utilized. In Table 3-15 costs are equal to 0.10, 0.03, and 0 
dollars per m2, respectively.  
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Table 3-17. Observation probability ( | )t tp o s  for IRI given state ts . 

Inspection 
Technique 

SD 
(m/km) 

𝑃𝑃(𝑜𝑜𝑡𝑡
= 𝑗𝑗 − 2| 
𝑠𝑠𝑡𝑡 = 𝑗𝑗) 

𝑃𝑃(𝑜𝑜𝑡𝑡
= 𝑗𝑗 − 1| 
𝑠𝑠𝑡𝑡 = 𝑗𝑗) 

𝑃𝑃(𝑜𝑜𝑡𝑡 = 𝑗𝑗| 
𝑠𝑠𝑡𝑡 = 𝑗𝑗) 

𝑃𝑃(𝑜𝑜𝑡𝑡
= 𝑗𝑗 + 1| 
𝑠𝑠𝑡𝑡 = 𝑗𝑗) 

𝑃𝑃(𝑜𝑜𝑡𝑡
= 𝑗𝑗 + 2| 
𝑠𝑠𝑡𝑡 = 𝑗𝑗) 

Cost 
(USD/m2) 

𝑖𝑖2 0.08 0 0.05 0.90 0.05 0 0.10 

𝑖𝑖1 0.32 0 0.20 0.60 0.20 0 0.03 

𝑖𝑖0 ∞  0.20 0.20 0.20 0.20 0.20 0 

Combined Inspection Costs for IRI and CCI 

Table 3-4 and Table 3-15 provide the costs of individual inspection actions for CCI and IRI, 
respectively, while in Table 3-16 the joint cost of pavement inspection is considered, when 
both IRI and CCI are observed. 

Table 3-18. Pavement inspection cost (i.e., combined cost of IRI and CCI). 

Inspection 
Technique Description Cost (USD/m2) 

𝑖𝑖2 High fidelity 0.20 

𝑖𝑖1 Low fidelity 0.10 

𝑖𝑖0 No Inspection 0.00 

BRIDGES 
In the United States, 7.5% of the total 617,084 bridges were structurally deficient in 2020 
(ASCE, 2021), and 42% were 50 years old or older. On average, 178 million trips are 
occurring each day on structurally deficient bridges. Each bridge consists of various 
structural subsystems, yet only decks are considered in this report, due to their expensive and 
frequent maintenance needs, in relation to other subsystems. Decks often have the most rapid 
rate of deterioration among bridge components, and in the United States factors like 
corrosion-induced degradation, freezing and thawing cycles, and direct exposure to traffic 
loads contribute toward their degradation. 

Bridge Decks 
For bridge deck serviceability, nine total states are generally considered, with state 9 being 
the undamaged state, as per the convention adopted by (PennDOT, 2009) and other DOTs. 
For this report, state 4 characterizes all subsequent states, as also considered in (Manafpour, 
Guler, Radlinska, Rajabipour, & Warn, 2018). Thus, in this study, six bridge deck states 
along with a failure state are used. The transition probabilities of those six states are based on 
approximately 30 years of in-service performance data for over 22,000 bridges in 
Pennsylvania, as analyzed in (Manafpour, Guler, Radlinska, Rajabipour, & Warn, 2018) for 
different exogenous parameters, i.e., deck length, location, protective coating, span type, etc. 
Figure 3-5 shows an indicative case based on the following exogenous parameters: deck 
length = 90 ft; location type = 4; reinforcement bar protection = 1 (no protective coating); 
type of span interaction for main unit = 1 (simple, non-composite); primary load carrying 
members = 1 (reinforced concrete); deck surface type = 1 (concrete); total number of spans in 
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main unit = 2 (multi-span); NHS = 1 (interstate route); maintenance type = type 1 (no 
maintenance). Apart from these six nonstationary transitions, stationary failure probabilities 
are also considered, as shown in Table 3-17. 

Table 3-19. Bridge failure probability given bridge condition state.  

Condition State 𝒔𝒔𝒕𝒕 = 𝟗𝟗 𝒔𝒔𝒕𝒕 = 𝟖𝟖 𝒔𝒔𝒕𝒕 = 𝟕𝟕 𝒔𝒔𝒕𝒕 = 𝟔𝟔 𝒔𝒔𝒕𝒕 = 𝟓𝟓 𝒔𝒔𝒕𝒕 = 𝟒𝟒, . .. 𝒔𝒔𝒕𝒕
= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 

Failure prob.         
(𝑠𝑠𝑡𝑡+1 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 
 
 

0.001 0.001 0.005 0.005 0.005 0.01 1.0 

  
Figure 3-6. Transition probabilities in time, moving from states 9 (left) and  

8 (right) to lower states. 

Maintenance actions for bridge decks 

Similar to pavements, four maintenance actions are considered for maintaining the bridge 
decks: Do Nothing, Minor Repair, Major Repair, and Reconstruction. It is again assumed 
here that the Minor Repair action does not change the rate of deterioration of the deck, but it 
can change the condition state of the structure, as per the transition probabilities given in 
Table 3-18. However, a Major Repair action can improve the deterioration rate to that of a 
deck younger by 5 years or a reset to a newly made deck, i.e., (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
𝑚𝑚𝑚𝑚𝑚𝑚( 0,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 5) years, and the change in condition state is now considered as reported in 
Table 3-19. The transition probabilities for the Reconstruction action are shown in Table 3-20 
and reset the state and deterioration rate of the deck to a newly built one.   
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Table 3-20. Minor Repair transition probabilities for deck states. 

Condition 
State 𝒔𝒔𝒕𝒕 = 𝟗𝟗 𝒔𝒔𝒕𝒕 = 𝟖𝟖 𝒔𝒔𝒕𝒕 = 𝟕𝟕 𝒔𝒔𝒕𝒕 = 𝟔𝟔 𝒔𝒔𝒕𝒕 = 𝟓𝟓 𝒔𝒔𝒕𝒕 = 𝟒𝟒, . .. 𝒔𝒔𝒕𝒕

= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 

𝑠𝑠𝑡𝑡 = 9 0.97 0.03 0.00     

𝑠𝑠𝑡𝑡 = 8 0.85 0.12 0.03     

𝑠𝑠𝑡𝑡 = 7 0.40 0.45 0.12 0.03    

𝑠𝑠𝑡𝑡 = 6  0.40 0.45 0.12 0.03   

𝑠𝑠𝑡𝑡 = 5   0.40 0.45 0.12 0.03  

𝑠𝑠𝑡𝑡 = 4, . ..    0.40 0.45 0.15  

𝑠𝑠𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓       1.0 
Deterioration 
rate 

Does not 
change 

Does not 
change 

Does not 
change 

Does 
not 

 

Does not 
change 

Does not 
change  

Table 3-21. Major Repair transition probabilities for deck states. 

Condition 
State 𝒔𝒔𝒕𝒕 = 𝟗𝟗 𝒔𝒔𝒕𝒕 = 𝟖𝟖 𝒔𝒔𝒕𝒕 = 𝟕𝟕 𝒔𝒔𝒕𝒕 = 𝟔𝟔 𝒔𝒔𝒕𝒕 = 𝟓𝟓 𝒔𝒔𝒕𝒕 = 𝟒𝟒, . .. 𝒔𝒔𝒕𝒕 = 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 

𝑠𝑠𝑡𝑡 = 9 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 8 0.95 0.05 0.00     

𝑠𝑠𝑡𝑡 = 7 0.80 0.20 0.00     

𝑠𝑠𝑡𝑡 = 6 0.60 0.30 0.10     

𝑠𝑠𝑡𝑡 = 5 0.40 0.40 0.20     

𝑠𝑠𝑡𝑡 = 4, . .. 0.30 0.40 0.30     

𝑠𝑠𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓       1.0 

Deterioration 
rate 

Reset by 
5 years 

Reset by 
5 years 

Reset by 
5 years 

Reset by 
5 years 

Reset by 
5 years 

Reset by  
5 years 

Reset by  
5 years 
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Table 3-22. Reconstruction transition probabilities for deck states 
Condition 

State 𝒔𝒔𝒕𝒕 = 𝟗𝟗 𝒔𝒔𝒕𝒕 = 𝟖𝟖 𝒔𝒔𝒕𝒕 = 𝟕𝟕 𝒔𝒔𝒕𝒕 = 𝟔𝟔 𝒔𝒔𝒕𝒕 = 𝟓𝟓 𝒔𝒔𝒕𝒕 = 𝟒𝟒, . .. 𝒔𝒔𝒕𝒕
= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 

𝑠𝑠𝑡𝑡 = 9 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 8 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 7 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 6 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 5 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 4, . .. 1.00 0.00 0.00     

𝑠𝑠𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1.00 0.00 0.00     

Deterioration 
rate 

Reset to 
newly 
built deck 

Reset to 
newly 
built deck 

Reset to 
newly 
built deck 

Reset to 
newly built 
deck 

Reset to 
newly built 
deck 

Reset to 
newly built 
deck 

Reset to 
newly built 
deck 

Maintenance action costs for bridge decks 

The cost of maintenance actions has small dependence upon the current state of the bridge 
deck. As a result, maintenance costs are considered independent of the state of the deck here. 
The cost for a reconstruction action is obtained from (FHWA, 2019) and the costs for minor 
and major maintenance actions are considered as 15% and 45% of that, inferred from (Wells, 
1995). Table 3-21 shows the costs of performing individual actions in USD/m2. It can be 
observed that the unit costs of actions for bridges are higher than the unit costs of pavement 
actions. 

Maintenance action durations for bridge decks 

The duration of different maintenance actions is mainly inferred from (ADOT, 2018; 
Oakgrove, 2013; Goodspeed & Brown, 2017).  For large bridges it is assumed that 
maintenance activity is performed at multiple locations simultaneously to increase efficiency. 
The action durations are provided in Table 3-22 for three different types of bridges, types I-
III, categorized based on their sizes, where type I bridges are the largest size (length>2.0 km), 
type II are intermediate (length~1 km-2.0 km), and type III are the smallest (length <1 km). 

                   Table 3-23. Cost of maintenance actions in USD/m2. 

Actions Description Cost (USD/m2) 

Do Nothing NA 0.00 

Minor Repair 
Moderate cracks filling and patching 
area <10% of the deck area, minor 
replacement of reinforcement 

400.00 

Major Repair 
Fixing spalls/delamination with deck 
area <25%, major replacement of 
reinforcement 

1,200.00 

Reconstruction Replacing the entire deck 2,650.00 
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 Table 3-24. Maintenance action durations in days. 

Actions Type I Bridges  Type II 
Bridges  

Type III 
Bridges  

Do Nothing 0 0 0 

Minor Repair 25 12 6 

Major Repair 70 30 15 

Reconstruction 300 150 70 

Inspection actions and observation probabilities 

There are a variety of destructive and nondestructive inspection techniques that are used for 
bridge decks, like visual inspection, acoustic sensing, infrared (IR)/thermal imaging, ground 
penetrating radar (GPR), coring and chipping, and half-cell potential test, among many 
others. Based on their accuracy, inspection techniques can be characterized as 𝑖𝑖0, 𝑖𝑖1, and 𝑖𝑖2, 
corresponding to uninformative, low-fidelity, and high-fidelity inspection techniques, 
respectively, and the relevant inspection costs are related to their accuracy. As assumed for 
the pavements, we here again relate the inspection costs to the reconstruction cost of the 
bridge and we consider 0.1% and 0.5% of the rebuild cost for less and more accurate 
inspection techniques, respectively. The resulting costs are shown in Table 3-23. 

Table 3-25. Inspection action costs for three different techniques. 

Inspection 
Technique Example techniques Cost 

(USD/m2) 

2i  High fidelity 1.20 

1i  Low fidelity 0.50 

0i  No Inspection 0.00 

Table 3-26. Observation probability 𝒑𝒑(𝒐𝒐𝒕𝒕|𝒔𝒔𝒕𝒕) given state 𝒔𝒔𝒕𝒕, for low-fidelity inspection 
techniques. 

Actual 
State 

( )ts  

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟗𝟗|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟖𝟖|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟕𝟕|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟔𝟔|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟓𝟓|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟒𝟒, . . . |𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇|𝒔𝒔𝒕𝒕) 

𝑠𝑠𝑡𝑡 = 9 0.80 0.15 0.05     

𝑠𝑠𝑡𝑡 = 8 0.15 0.65 0.15 0.05    

𝑠𝑠𝑡𝑡 = 7 0.05 0.15 0.60 0.15 0.05 0.0  

𝑠𝑠𝑡𝑡 = 6  0.05 0.15 0.60 0.15 0.05  

𝑠𝑠𝑡𝑡 = 5   0.05 0.15 0.65 0.15  

𝑠𝑠𝑡𝑡 = 4, . ..    0.05 0.15 0.80  
𝑠𝑠𝑡𝑡
= 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓       1.0 
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The observation probabilities for the bridge decks are considered similarly to (Madanat 
& Ben-Akiva, 1994; Faddoul, Raphael, Soubra, & Chateauneuf, 2013; Madanat S. , 1993) 
and for the no-inspection case 𝑝𝑝(𝑜𝑜𝑡𝑡|𝑠𝑠𝑡𝑡) = 1/6 ∀ 𝑜𝑜𝑡𝑡, 𝑠𝑠𝑡𝑡 ∈ {1,2⋯ ,6} is used. Table 3-24 and 
Table 3-25 describe observation probabilities for low- and high-fidelity inspection 
techniques, respectively.  

Table 3-27. Observation probability 𝒑𝒑(𝒐𝒐𝒕𝒕|𝒔𝒔𝒕𝒕) given state 𝒔𝒔𝒕𝒕, for high fidelity inspection 
techniques. 

Actual 
State 

( )ts  

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟗𝟗|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟖𝟖|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟕𝟕|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟔𝟔|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟓𝟓|𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝟒𝟒, . . . |𝒔𝒔𝒕𝒕) 

𝒑𝒑(𝒐𝒐𝒕𝒕
= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇|𝒔𝒔𝒕𝒕) 

𝑠𝑠𝑡𝑡 = 9 0.90 0.10      

𝑠𝑠𝑡𝑡 = 8 0.10 0.80 0.10     

𝑠𝑠𝑡𝑡 = 7  0.10 0.80 0.10    

𝑠𝑠𝑡𝑡 = 6   0.10 0.80 0.10   

𝑠𝑠𝑡𝑡 = 5    0.10 0.80 0.10  

𝑠𝑠𝑡𝑡 = 4, . ..     0.10 0.90  
𝑠𝑠𝑡𝑡
= 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓       1.0 

CONCLUSION 
This chapter has developed a detailed, realistic modeling framework, following principles of 
Markov decision processes and partially observable MDPs, for both pavements and bridges. 
For pavements, two indices are considered, the Critical Condition Index and the International 
Roughness Index, as the structural condition and serviceability indicators, and the 
corresponding transition probabilities are obtained for both indices. For bridges, the deck 
performance is used due to its faster rate of deterioration and its high cost of maintenance. 
Four maintenance action categories are considered for both pavements and bridges: Do 
Nothing, Minor Repair, Major Repair, and Reconstruction. The actual actions within these 
categories may be different for the different asset classes. The state transitions and the costs 
associated with each maintenance action are appropriately quantified. Similarly, three 
inspection action types are considered: no-inspection, low-fidelity, and high-fidelity 
inspections, and their corresponding inspection accuracies and costs are reported. Overall, the 
developed framework can be used in modeling and management decisions support of a wide 
variety of transportation networks with different types of pavements and bridges. 
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C H A P T E R  4  

A Reinforcement Learning Method for 
Multi-asset Roadway Improvement 
Scheduling Considering Traffic Impacts 

INTRODUCTION 
Roadway improvements through maintenance, repair, and rehabilitation actions on 
pavements and bridge decks are essential to overall traffic network performance and travel 
reliability. The implementation of these actions requires system downtime, which is primarily 
in the form of reduced roadway capacity and occasional roadway or bridge closures. These 
improvements are typically scheduled by asset class, yet downtime scheduling for either asset 
type will impact network-wide performance. Thus, coordinating actions across assets to 
minimize the impact on roadway users is important. The impact of downtime due to 
improvement actions on one or more network components, from one or more asset classes, on 
the performance of the entire traffic network over a time horizon can be assessed, and this 
information can be used to provide decision support for optimal, multi-asset class 
improvement action scheduling. This work proposes and develops mathematical tools to 
support such multi-asset (pavements and bridge decks) roadway network improvement 
prioritization and scheduling for a designated planning horizon.  

These prioritization and scheduling tools are developed using a bilevel, stochastic, 
dynamic programming formulation with an embedded Markov decision process (Puterman, 
1994) model at the upper level. The MDP conceptualization enables state-dependent 
decision-making under stochastic condition state deterioration. The model accounts for the 
effects of reduced roadway capacity on traffic congestion resulting from the downtime 
needed to execute chosen improvement actions. The approach facilitates the inclusion of 
multiple asset classes, each with unique deterioration processes and multiple improvement 
action options.  

Decisions in the upper level of the bilevel program on which actions to take and the 
order in which to take them account for the experience of roadway users as assessed in the 
lower level through a user equilibrium (UE) formulation. By considering multiple asset 
classes simultaneously, prioritization and scheduling decisions of both asset classes can be 
coordinated to have reduced traffic impacts.  

In addition to including delays due to reduced roadway capacity from execution of the 
chosen improvement actions, the model also accounts for other roadway user costs, including 
increased fuel costs and vehicle depreciation due to poor roadway conditions. User costs are 
mitigated by favorable actions, such as improved pavement serviceability resulting from the 
improved roadway condition they induce. Tradeoffs between these benefits and detriments of 
action and inaction are considered simultaneously.  

Threshold-based methods are widely used in roadway maintenance prioritization 
(USDOT, 2017; Wei & Tighe, 2004; Wei & Tighe, 2004).  The bilevel model can be reduced 
to a simpler threshold version wherein the upper level calculates now the expected total cost 
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of maintaining the system to prespecified thresholds. The model presumes that improvement 
actions are implemented when asset conditions fall below these preset levels. Solution is 
achievable by complete enumeration of potential threshold settings as it is applied on a small 
problem instance, but formidable for large, more realistic problem instances. Results from 
runs of this approach provide a baseline for comparison. 

Threshold-based methods are widely used in roadway maintenance prioritization (Wei & 
Tighe, 2004; USDOT, 2017). The bilevel model can be reduced to a simpler threshold 
version wherein the upper level calculates now the expected total cost of maintaining the 
system based on optimally specified thresholds. The approach presumes that improvement 
actions are implemented when asset conditions reach or fall below these designated levels. 
Solution is achievable by complete enumeration of potential threshold settings in this case, 
but this is formidable, in general, for larger problem instances. Results from runs of this 
approach provide a baseline for comparison. 

To solve the proposed bi-level formulation in this work, a cutting-edge Deep Centralized 
Multi-agent Actor Critic (DCMAC) method is proposed (Andriotis & Papakonstantinou, 
2019; Andriotis & Papakonstantinou, 2021) . Its performance is compared with that of the 
typical temporal difference (TD)-learning method, SARSA (State Action Reward State 
Action) (Sutton & Barto, 2018), which has also been previously used in the literature for 
related asset management problems (Medury & Madanat, 2013). The solution quality of 
SARSA depends on the choice of feature functions needed to approximate a Q-function. In 
this application, Q-functions provide an estimate of expected cumulative cost that is updated 
over the steps of the algorithm. The selection of these feature functions can be difficult (even 
combinatorial). The DCMAC method addresses the state and action dimensionality problem 
by: (1) using neural networks, and thus nonlinear, approximations for state values and (2) 
assuming conditional independence in generating policies. The use of the more efficient 
DCMAC enables inclusion of the various complicating factors of traffic impact, stochastic 
deterioration models in the form of transition matrices, and multiple assets. 

To solve the proposed bilevel formulation in this work, a cutting-edge Deep Centralized 
Multi-agent Actor Critic (DCMAC) deep reinforcement learning method is proposed 
(Andriotis & Papakonstantinou, 2019; Andriotis & Papakonstantinou, 2021) . Its performance 
is compared with that of the typical temporal difference (TD)-learning method, SARSA 
(State Action Reward State Action) (Sutton & Barto, Reinforcement Learning: An 
Introduction, 2018), which has also been previously used in the literature for related asset 
management problems (Medury & Madanat, 2013). The solution quality of SARSA depends 
on the choice of feature functions needed to approximate a Q-function. Q-functions are key to 
reinforcement learning techniques. Here, it provides an estimate of expected cumulative cost 
that is updated over the steps of the algorithm. The selection of these feature functions can be 
difficult (even combinatorial). DCMAC does not rely on such a Q-function. Moreover, it 
addresses the state and action dimensionality problem by using neural network 
approximations for state values and the mathematically derived policy. 

In the next section, relevant literature is reviewed and this work’s contributions in light 
of prior works are established. The Multi-asset Roadway Improvement Scheduling 
Considering Traffic Impacts problem is formulated as a stochastic, bilevel program in Section 
3 and DCMAC, a deep reinforcement learning algorithm, is presented for its solution in 
Section 4. The model application is illustrated on a hypothetical network adapted from the 
literature (Medury & Madanat, 2013). Adaptations are related to advancements in 
deterioration and improvement activity effectiveness modeling from (Faddoul, Raphael, 
Soubra, & Chateauneuf, 2013; Virginia Department of Transportation, 2016). Results of the 
numerical experiments show the importance of considering traffic delays, stochastic 
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deterioration, downtime from improvement actions, and multi-asset class management into 
the optimization framework.  

LITERATURE REVIEW 
This work contributes to this literature through the presentation of a multi-asset-class model 
that simultaneously accounts for deterioration stochasticity, downtime and improvement 
action impacts, and traffic network effects. Further, a cutting-edge, efficient deep 
reinforcement learning methodology is utilized for its solution. 

Optimal resurfacing frequency and intensity in roadway maintenance, repair, and 
rehabilitation is a focus of numerous relevant works. Pavement deterioration is a continuous 
process unless rehabilitation or maintenance actions are taken to reduce or reverse its effects. 
Resurfacing decreases the roughness of roadway assets and the level of roughness 
improvement depends on the number of applications, material, and other factors, as described 
in numerous related works (e.g., (George, Rajagopal, & Lim, 1989; Labi & Sinha, 2003; 
Ouyang & Madanat, 2004; Ouyang & Madanat, 2006)). Li and Madanat (Li & Madanat, 
2002) and Ouyang and Madanat (2004, 2006) aimed to minimize lifecycle costs consisting of 
cost for resurfacing pavement assets incurred by a transportation agency and user operating 
costs.  

Extending on earlier advances, (Ouyang, 2007) and (Durango-Cohen & Sarutipand, 
2009) incorporated traffic network effects by associating deterioration and maintenance 
actions with roadway conditions (e.g., pavement roughness) that affect driver experience and 
route choice. Ouyang (2007) modeled these traffic effects through a UE model that is 
embedded at the lower level of a bilevel modeling framework. The upper level in their work 
seeks an optimal resurfacing plan for the highway network. The lower level uses a UE 
formulation to model traffic flows and downtime effects were not considered. A policy 
iteration method was proposed for solution of their model on a network with two pavement 
segments. Such an exact methodology can only be employed on small problem instances. 
Durango-Cohen and Sarutipand (2009) measured the demand for use of a roadway segment 
as a function of its condition. Deterioration, as well as the results of maintenance actions 
taken to reverse deterioration effects, impact long-term roadway capacity and connectivity. 
Thus, in their paper they use capacity loss to account for the impacts of deterioration and 
implemented improvements on roadway facility condition within their model. Both works 
presume that deterioration processes are known deterministically.  

Infrastructure deterioration also affects user operating costs and safety, but the actions 
that are taken to rehabilitate the deteriorated infrastructure and eliminate these effects create 
capacity losses during their implementations. The time for implementation can be extensive, 
affecting performance in a period as short as multiple hours to as long as multiple weeks or 
even months.  

While most studies in the network-level, strategic prioritization literature account for the 
improved roadway segment performance resulting from maintenance actions that are 
completed, few consider the downtime effects of pavement improvement actions during the 
period of action implementation (e.g., while the roadway is being resurfaced) (Medury & 
Madanat, 2013; Ng, Lin, & Waller, 2009). Medury and Madanat (2013) incorporated these 
downtime effects in roadway asset management by accounting for differences in capacity due 
to various maintenance actions. Solution in their work was obtained through a TD-learning 
(SARSA) approach. However, they also employed a simplified traffic model that merely 
restricts maximum flows. Building on the bilevel formulation in (Ouyang, 2007), Ng et al. 
(2009) incorporated capacity loss during maintenance activities in optimal maintenance 
planning. They account for the downtime associated with the related activities in increments 
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of years. A heuristic genetic algorithm with arbitrary performance was used for problem 
solution.   

Chu and Chen (Chu & Chen, 2012) also applied a bilevel optimization approach with UE 
at the lower level, capturing deterioration and downtime effects on traffic. However, at the 
upper level their approach uses a threshold-based maintenance plan. The model presumes a 
deterministic but continuous deterioration process. A tabu search algorithm is applied to 
choose from various threshold options. Chu and Huang (Chu & Huang, 2018) proposed 
mixed-integer programs (MIPs) for scheduling pavement maintenance actions under worst-
first, best-first, threshold-based, optimization-based, and mixed strategies. A solution 
procedure is proposed for the optimization-based and mixed strategies that uses concepts 
from MIP, greedy algorithms and Lagrangian relaxation. 

A synthesis of these most relevant works is given in Table 4-1. The table also highlights 
the contributions of this work: accepted traffic modeling, incorporation of downtime impacts 
from activity execution, stochastic deterioration, multi-asset class consideration, and a 
cutting-edge solution methodology that can scale for large problem instances. 

The MDP-based approach is widely used in infrastructure management, as it relies on 
firm stochastic dynamic programming principles that can tackle the curse of history, provides 
closed-loop stochastic control optimum solutions, and can combine, in a unified 
mathematical framework, stochastic deterioration modeling with relevant observations 
collected in time (Papakonstantinou & Shinozuka, 2014; Puterman, 1994). Despite their 
unique qualities, MDP solutions for transportation systems can often suffer from the curse of 
dimensionality, as system state and action spaces scale exponentially with the number of 
components and Markovian transition matrices can become extremely large. Reinforcement 
Learning (RL) is theoretically able to alleviate the curse of dimensionality related to the state 
space, either under model-free approaches that do not utilize explicit information on 
transition dynamics in the solution process, or via model-based approaches (Sutton & Barto, 
2018).  
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Table 4-28. Contribution of most relevant works. 

Citation Model 
Characteristics 

Solution 
Methodology 

Network Size Traffic Network 
Modeling 

Downtime from 
Improvement 

Actions 

Stochasticity in 
Deterioration 

Multi-
asset Class 

Ouyang & 
Madanat 
(2004)  

Mixed-integer 
nonlinear program 

Branch-and-bound 
and greedy 
heuristics  

Single 
pavement 
segment 

   
 

 

Ouyang 
(2007) 

Dynamic 
programming model 

Policy iteration 2 pavement 
segments 

 
Delays 
approximated 

   

Ng et al. 
(2009) 

Mixed-integer 
bilevel model with 
UE at lower level 

Genetic algorithm 24 two-lane 
pavement 
segments 

 
UE 

 
by year  

  

Medury &  
Madanat 
(2013) 

Approximate 
dynamic 
programming model 

TD learning – (i.e. 
SARSA) 

11 pavement 
segments 

 
Max flow 
restrictions  

  
 

 

Chu & Chen 
(2012) 

Mixed-integer 
bilevel dynamic 
model, seeks optimal 
maintenance 
threshold 

Tabu search 270 pavement 
segments 

 
UE 

   

Our work Bilevel approximate 
dynamic 
programming model 
in upper level with 
UE at lower level 

Deep 
reinforcement 
learning 
(DCMAC); 
SARSA 

11 pavement 
segments + 2 
bridges 

 
UE 

 
by day 

 
 

 
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Unfortunately, RL suffers from several limitations in practice when deployed in stochastic 
system domains, mainly manifesting algorithmic instabilities with solutions that can significantly 
diverge from optimal regions. However, with the aid of deep learning, RL has become a viable 
option with excellent performance (Mnih, et al., 2015).  

Deep Reinforcement Learning (DRL) agents have proven capable of discovering meaningful 
parameterizations for problems with immense state spaces through appropriate deep neural 
network architectures and learning near-optimal control policies by interacting with the 
environment. Reinforcement learning was previously employed by Medury and Madanat (2013) 
and (Durango-Cohen P. L., 2004) for a related, simpler problem class. This work significantly 
extends their work by including a more realistic representation of traffic through a UE traffic 
representation, a leader-follower (bilevel) conceptualization, where the leader makes decisions 
that affect the roadway conditions and the followers respond by changing routes, and a 
significantly more advanced RL approach (a multi-agent DRL with actor-critic neural network 
structure and independent output layers) for efficiently solving this complicated, large-scale 
problem class. By more realistically capturing traffic, the impacts of improvement activity 
execution can be accounted for in prioritization and scheduling. 

 The Deep Centralized Multi-agent Actor Critic (DCMAC) RL algorithm is utilized in this 
work. DCMAC is a deep, off-policy, actor-critic algorithm with experience replay. DCMAC 
interacts directly with models of pavement deterioration and improvement action effects that 
determine condition states, and thus operates in the state space of the underlying MDP problem. 
It can provide efficient solutions in otherwise practically intractable problems of multi-
component systems with high-dimensional state and action spaces. This is important here, as the 
state and action spaces are expanded by the inclusion of multiple assets and asset classes, 
stochastic deterioration represented by state transition matrices, and traffic modeling. Very 
generally, DCMAC may be viewed as a consistently formulated multi-agent version of the 
advantage actor-critic (A2C) method (Mnih, et al., 2016). 

MATHEMATICAL MODEL 

Model Construction 
Before proceeding to the formulation of the Multi-asset Roadway Improvement Scheduling 

Considering Traffic Impacts problem, nomenclature used in its development is presented. 
 

Sets  
𝑲𝑲 set of roadway pavement 𝑘𝑘 = {1, 2, 3, … , |𝑲𝑲|} 
𝑩𝑩 set of bridge 𝑏𝑏 = {1,2,3, … , |𝑩𝑩|} 
𝐵𝐵𝑘𝑘 set of bridge b on segment k, k ∈ K 
ℕ set of nodes n connecting adjacent roadway segments 
𝑂𝑂 set of origin 𝑟𝑟 
𝐷𝐷 set of destination 𝑞𝑞 
𝛹𝛹𝑟𝑟𝑟𝑟 set of OD pairs 𝑟𝑟𝑟𝑟, r∈ 𝑂𝑂, 𝑞𝑞 ∈ 𝐷𝐷 
𝑆𝑆𝑘𝑘 state space of condition of roadway segment 𝑘𝑘 
𝒮𝒮𝑏𝑏 state space of condition of bridge 𝑏𝑏 
𝐴𝐴𝑘𝑘 set of potential pavement improvement actions for pavements, 

𝑎𝑎𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘 
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𝐴𝐴𝑏𝑏 set of potential bridge improvement actions for bridges, 𝑎𝑎𝑏𝑏 ∈ 𝐴𝐴𝑏𝑏 
𝑃𝑃 set of paths 𝑝𝑝 through the roadway network 
𝑃𝑃𝑟𝑟𝑟𝑟 set of paths between OD pair 𝑟𝑟𝑟𝑟, r∈ 𝑂𝑂, 𝑞𝑞 ∈ 𝐷𝐷 
𝑻𝑻 set of years that together comprise the planning horizon, T = {1, 2, 

…, T}, for 𝑇𝑇 the number of years in the planning horizon 
𝓣𝓣 set of time increments on a planning year, 𝓉𝓉 ∈ 𝓣𝓣 = {1, 2, …, 365} 
  
Parameters  
𝛼𝛼,𝛽𝛽,𝜑𝜑𝑘𝑘 parameters of roadway segment k performance function where φk 

is the free flow travel time along segment k, 𝛼𝛼 is the scale 
parameter and 𝛽𝛽 is the shape parameter of the function 

𝛾𝛾 a discount factor for time-value of money 
𝑐𝑐𝑎𝑎𝑘𝑘
𝑘𝑘  cost of implementing action 𝑎𝑎𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘 on segment 𝑘𝑘 ∈  𝑲𝑲 
𝑐𝑐𝑎𝑎𝑏𝑏
𝑏𝑏  cost of implementing action 𝑎𝑎𝑏𝑏 ∈ 𝐴𝐴𝑏𝑏 on bridge b ∈  𝑩𝑩 
𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡  traffic demand for OD pair rq at year 𝑡𝑡, 𝑟𝑟 ∈ 𝑂𝑂,  𝑞𝑞 ∈ 𝐷𝐷  
ℓ𝑘𝑘(𝑎𝑎𝑘𝑘) downtime duration in days on segment 𝑘𝑘 ∈ 𝑲𝑲 under action 𝑎𝑎𝑘𝑘 ∈

𝐴𝐴𝑘𝑘 
ℓ𝑏𝑏(𝑎𝑎𝑏𝑏) downtime duration in days on bridge b ∈ 𝑩𝑩 under action 𝑎𝑎𝑏𝑏 ∈ 𝐴𝐴𝑏𝑏 
𝑙𝑙𝑘𝑘(𝑎𝑎𝑘𝑘) percentage of capacity loss of segment 𝑘𝑘 ∈  𝑲𝑲 under action 𝑎𝑎𝑘𝑘 ∈

𝐴𝐴𝑘𝑘 
𝑐𝑐𝑐𝑐𝑐𝑐�����𝑘𝑘 initial capacity of pavement segment k while no road improvement 

actions are taken and segment is in perfect condition 
𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣 estimated value of time (VoT) of roadway users in one time 

increment 
𝜌𝜌 weight parameter for traffic delay, >0 (with a highest value of 1) 

to account for traffic delay costs or =0 if traffic delay costs are to 
be excluded 

  
Upper-level 
variables 

 


Decision variables 

 

𝑥𝑥𝑎𝑎𝑘𝑘,𝑡𝑡
𝑘𝑘  binary variable, equals 1 if action 𝑎𝑎𝑘𝑘 is selected for application on 

pavement segment k at year 𝑡𝑡; 0 otherwise 
𝑦𝑦𝑎𝑎𝑏𝑏,𝑡𝑡
𝑏𝑏  binary variable, equals 1 if action 𝑎𝑎𝑏𝑏 is selected for application on 

bridge 𝑏𝑏 at year 𝑡𝑡; 0 otherwise 
 
Dependent 
Variables 

 

𝑧𝑧t,ik  binary variable, equals 1 if any action is taken on pavement 
segment 𝑘𝑘 in day 𝑖𝑖 during year t; 0 otherwise 

𝓏𝓏t,i𝑏𝑏  binary variable, equals 1 if any action is taken on bridge deck 𝑏𝑏 in 
day 𝑖𝑖 during year t; 0 otherwise 

𝑠𝑠𝑡𝑡𝑘𝑘 end state of pavement segment 𝑘𝑘 reached at the beginning of 
month 𝑡𝑡, 𝑠𝑠𝑡𝑡𝑘𝑘 ∈ 𝑆𝑆𝑘𝑘 
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𝓈𝓈𝑡𝑡𝑏𝑏 end state of bridge 𝑏𝑏 reached at the beginning of month 𝑡𝑡, 𝓈𝓈𝑡𝑡𝑏𝑏 ∈ 𝑆𝑆𝑏𝑏 
u𝑘𝑘(𝑠𝑠𝑡𝑡𝑘𝑘) user cost for pavement segment 𝑘𝑘 in year 𝑡𝑡 ∈ 𝑻𝑻, a state-based cost 

that includes costs of damage, wear-and-tear, and fuel 
u𝑏𝑏(𝓈𝓈𝑡𝑡𝑏𝑏) user costs for bridge 𝑏𝑏 in year 𝑡𝑡 ∈ 𝑻𝑻, a state-based cost that 

includes costs of damage, wear-and-tear, and fuel 
Lower-level  
variables 

 

Decision variables  
𝓎𝓎𝑡𝑡,𝓉𝓉
𝑝𝑝  traffic flow along path 𝑝𝑝 of day 𝓉𝓉 ∈ 𝒯𝒯 at year 𝑡𝑡 ∈ 𝑻𝑻 

 
Dependent 
Variables 

 

𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 total traffic flow on segment 𝑘𝑘 ∈ 𝐾𝐾 during day 𝓉𝓉 ∈ 𝒯𝒯of year 𝑡𝑡 ∈ 𝑻𝑻 
τk�𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉

𝑡𝑡 � travel time along pavement segment k at time increment 𝑡𝑡 ∈ 𝑻𝑻 
under capacity of 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉

𝑡𝑡  and traffic flow of 𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉  
𝛿𝛿𝑘𝑘,𝑟𝑟𝑟𝑟,𝑡𝑡,𝓉𝓉
𝑝𝑝  binary variable, equals to 1 if path 𝑝𝑝 between OD pair 𝑟𝑟𝑟𝑟 contains 

segment k at day 𝓉𝓉 ∈ 𝒯𝒯  of year 𝑡𝑡 ∈ 𝑻𝑻, 0 otherwise 
 

Upper-level model 
The problem of identifying an optimal multi-asset class roadway maintenance and 

improvement prioritization schedule under stochastic deterioration, accounting for traffic impacts 
from deteriorated pavements and bridge decks, reduced capacity during improvement 
implementation, and benefits from improved post-activity pavement and bridge deck 
serviceability is presented in this section. The goal of the model is to minimize the total 
improvement investment and the traffic delays resulting from capacity reduction due to the 
execution of the actions within the planning horizon. 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝛾𝛾𝑡𝑡−1(𝑐𝑐1( 𝒂𝒂𝑡𝑡) + 𝑐𝑐2(𝒔𝒔𝑡𝑡) +  𝜌𝜌𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣ℊ(𝒂𝒂𝑡𝑡))
𝑇𝑇

𝑡𝑡=1

 (4.4) 

where 𝒔𝒔𝑡𝑡 = {𝑠𝑠𝑡𝑡𝑘𝑘}𝑘𝑘=1
|𝑲𝑲| ∪ {𝓈𝓈𝑡𝑡𝑏𝑏}𝑏𝑏=1

|𝑩𝑩|  is a vector representing joint pavement and bridge condition 
states. The joint state space for pavements and bridges is, thus, 𝑺𝑺 = 𝑆𝑆1 × 𝑆𝑆2 … × 𝑆𝑆|𝑲𝑲| × 𝒮𝒮1 ×
𝒮𝒮2 × … × 𝒮𝒮|𝑩𝑩|. 𝒂𝒂𝑡𝑡 =  ( 𝒙𝒙𝑡𝑡,𝒚𝒚𝑡𝑡) denotes the pair of pavement and bridge actions taken at time t, 
where 𝒙𝒙𝑡𝑡 = {𝒙𝒙𝑡𝑡1,𝒙𝒙𝑡𝑡2, … ,𝒙𝒙𝑡𝑡

|𝑲𝑲|} is the set of action vectors over |𝑲𝑲| pavement segments for 𝒙𝒙𝑡𝑡k =
{𝑥𝑥1,t

k ,𝑥𝑥2,t
k , … , 𝑥𝑥|𝐴𝐴𝑘𝑘|,t

k } and ∑ 𝑥𝑥𝑎𝑎𝑘𝑘,t
k

𝑎𝑎𝑘𝑘∈𝐴𝐴𝑘𝑘 = 1, and 𝒚𝒚𝑡𝑡 = {𝒚𝒚𝑡𝑡1,𝒚𝒚𝑡𝑡2, … ,𝒚𝒚𝑡𝑡
|𝐁𝐁|} is the set of action vectors 

over |𝑩𝑩| bridge deck for 𝒚𝒚𝑡𝑡b = {𝑦𝑦1,t
b ,𝑦𝑦2,t

b , … ,𝑦𝑦|𝐴𝐴𝑏𝑏|,t
b } and ∑ 𝑦𝑦𝑎𝑎𝑏𝑏,t

b
𝑎𝑎𝑏𝑏∈𝐴𝐴𝑏𝑏 = 1. The joint action space 

is then 𝑨𝑨 = 𝐴𝐴𝑘𝑘 |𝑲𝑲| × 𝐴𝐴𝑏𝑏|𝑩𝑩|. 
In Eqn. (4.1), term 𝑐𝑐1( 𝒂𝒂𝑡𝑡) denotes the total costs for improvements at year 𝑡𝑡, the term 

𝑐𝑐2(𝒔𝒔𝑡𝑡) (Eq. (3)) reflects the cost for roadway users and the term 𝜌𝜌𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣ℊ(𝒂𝒂𝑡𝑡) denotes the minimal 
traffic delay cost under improvement actions 𝒂𝒂𝑡𝑡. 𝜌𝜌𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣ℊ(𝒂𝒂𝑡𝑡) is obtained via solution of a UE 
lower-level subproblem. For small problem instances, these values can be determined in a pre-
processing stage. The term 𝑐𝑐1( 𝒙𝒙𝑡𝑡,𝒚𝒚𝑡𝑡) can be expanded, as in Eqn. (4.2). 
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𝑐𝑐1( 𝒙𝒙𝑡𝑡,𝒚𝒚𝑡𝑡) =  � � 𝑐𝑐𝑎𝑎𝑘𝑘
𝑘𝑘

𝑎𝑎𝑘𝑘∈𝐴𝐴𝑘𝑘𝑘𝑘∈𝑲𝑲

∙ 𝑥𝑥𝑎𝑎𝑘𝑘,𝑡𝑡
𝑘𝑘 + � � 𝑐𝑐𝑎𝑎𝑏𝑏

𝑏𝑏

𝑎𝑎𝑏𝑏∈𝐴𝐴𝑏𝑏𝑏𝑏∈𝑩𝑩

∙ 𝑦𝑦𝑎𝑎𝑏𝑏,𝑡𝑡
𝑏𝑏  (4.5) 

The second term in Eqn. (4.1) enables the inclusion of user costs, specifically fuel and 
vehicle value depreciation, associated with the pavement segments and bridge decks. 𝒔𝒔𝑡𝑡 =
{𝑠𝑠𝑡𝑡1, 𝑠𝑠𝑡𝑡2, … , 𝑠𝑠𝑡𝑡

|𝐾𝐾|}⋃{𝑠𝑠𝑡𝑡1, 𝑠𝑠𝑡𝑡2, … , 𝑠𝑠𝑡𝑡
|𝐵𝐵|} is a set of state of bridges and pavement states. 

𝑐𝑐2(𝒔𝒔𝑡𝑡) = � 𝑢𝑢𝑘𝑘(𝑠𝑠𝑡𝑡𝑘𝑘)
𝑘𝑘∈𝐾𝐾

+ � 𝑢𝑢𝑏𝑏(𝑠𝑠𝑡𝑡𝑏𝑏)
𝑏𝑏∈𝐵𝐵

 (4.6) 

Worse roadway conditions lead to higher fuel costs and faster depreciation in vehicle value. 
Thus, user costs are a function of condition state. Adapted from (Medury & Madanat, 2013)  and 
(Faddoul, Raphael, Soubra, & Chateauneuf, 2013), total user cost, 𝑐𝑐2(𝒔𝒔𝑡𝑡), is calculated in this 
work with a presumed traffic flow rate. 
ℊ(𝒂𝒂𝑡𝑡) denotes the traffic delay in hours during planning year 𝑡𝑡 when applying joint improvement 
actions 𝒂𝒂𝑡𝑡 and is evaluated via Eqn. (4.4). 

ℊ(𝒂𝒂𝑡𝑡) =  ���𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 ∙ 𝜏𝜏𝑘𝑘�𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉
𝑡𝑡 � − 𝓎𝓎𝑘𝑘,𝑡𝑡 ∙ 𝜏𝜏𝑘𝑘�𝓎𝓎𝑘𝑘,𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐�����𝑘𝑘��

𝑘𝑘∈𝐾𝐾

365

𝓉𝓉=0

 (4.7) 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝑖𝑖
𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐�����𝑘𝑘 ∗ �1 − 𝑧𝑧𝑡𝑡,𝓉𝓉

𝑘𝑘 ∑ 𝑙𝑙𝑘𝑘(𝑎𝑎1)𝑥𝑥𝑎𝑎1,𝑡𝑡
𝑘𝑘

𝑎𝑎1∈𝐴𝐴1 � ∗ �1 − 𝓏𝓏𝑡𝑡,𝓉𝓉
𝑏𝑏 � for 𝑏𝑏 ∈ 𝐵𝐵𝑘𝑘. 𝑏𝑏 ∈ 𝐵𝐵𝑘𝑘 maps the 

bridges to the pavement segments. The capacity of a bridge affects the capacity of the relevant 
pavement segment. If a bridge is closed, the pavement segment will have zero capacity. 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝑖𝑖

𝑡𝑡  
reflects how the capacity of segment 𝑘𝑘 at day 𝑖𝑖 of year 𝑡𝑡 is influenced by the ongoing 
improvement action. It is presumed that improvement action 𝒙𝒙𝑡𝑡k = {𝑥𝑥1,t

k , 𝑥𝑥2,t
k , … , 𝑥𝑥|𝐴𝐴𝑘𝑘|,t

k }  on 
pavement segment 𝑘𝑘 in year 𝑡𝑡 starts at the beginning of the year and lasts ∑ ℓ𝑘𝑘(𝑎𝑎𝑘𝑘)𝑥𝑥𝑎𝑎𝑘𝑘,t

k
𝑎𝑎∈𝐴𝐴𝑘𝑘  

days. Likewise, improvement action 𝒚𝒚𝑡𝑡b = {𝑦𝑦1,t
b ,𝑦𝑦2,t

b , … ,𝑦𝑦|𝐴𝐴𝑏𝑏|,t
b }  on bridge 𝑏𝑏 in year 𝑡𝑡 starts at the 

beginning of the year and lasts ∑ ℓ𝑏𝑏(𝑎𝑎𝑏𝑏)𝑦𝑦𝑎𝑎𝑏𝑏,t
b

𝑎𝑎∈𝐴𝐴𝑏𝑏  days.  𝑧𝑧𝑡𝑡,𝓉𝓉
𝑘𝑘  and 𝓏𝓏t,𝓉𝓉𝑏𝑏  equal 1 when pavement 

segment 𝑘𝑘 or bridge deck 𝑏𝑏 is under improvement action execution. These binary variables aid 
Eqn. (4.4) in ensuring that the appropriate partial or zero capacity of a pavement or pavement 
segment overlaying a bridge deck, respectively, is applied when the asset is being maintained 
and is at full capacity otherwise. Traffic flow then changes according to the lower-level UE 
model. 

The deterioration of the roadway assets and condition improvements achieved through 
improvement actions follow a one-step transition probability. Thus, only the present state 𝒔𝒔𝑡𝑡 of 
an asset and action 𝒂𝒂𝑡𝑡 taken on it will affect the state of that asset in the next planning year 𝒔𝒔𝑡𝑡+1 
(Eqn. (4.5)). 

𝑃𝑃(𝒔𝒔𝑡𝑡+1|𝒔𝒔1, 𝒔𝒔2, … , 𝒔𝒔𝑡𝑡 ,𝒂𝒂1,𝒂𝒂2, … ,𝒂𝒂𝑡𝑡) = 𝑃𝑃(𝒔𝒔𝑡𝑡+1|𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡) (4.8) 
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Lower-level model 

𝑀𝑀𝑀𝑀𝑀𝑀�� 𝜏𝜏𝑘𝑘�𝓎𝓎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉
𝑡𝑡 �𝑑𝑑𝓎𝓎

𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉

0𝑘𝑘𝑘𝑘𝑘𝑘

 (4.9) 

s.t. 
� 𝓎𝓎𝑡𝑡,𝓉𝓉

𝑝𝑝

𝜋𝜋∈𝑃𝑃𝑟𝑟𝑟𝑟

= 𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡                                            ∀𝑟𝑟𝑟𝑟 ∈ 𝑂𝑂𝑂𝑂,∀𝑡𝑡 ∈ 𝑻𝑻, 𝓉𝓉 ∈ 𝒯𝒯 (4.10) 

𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 = � � 𝛿𝛿𝑘𝑘,𝑟𝑟𝑟𝑟,𝑡𝑡,𝓉𝓉
𝜋𝜋 𝓎𝓎𝑡𝑡,𝓉𝓉

𝜋𝜋

𝑝𝑝∈𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∈𝑂𝑂𝑂𝑂

          ∀𝑟𝑟𝑟𝑟 ∈ 𝑂𝑂𝑂𝑂,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑡𝑡 ∈ 𝑻𝑻, 𝓉𝓉 ∈ 𝒯𝒯 (4.11) 

𝓎𝓎𝑡𝑡,𝓉𝓉
𝑝𝑝 ≥ 0                                                            ∀𝑟𝑟𝑟𝑟 ∈ 𝑂𝑂𝑂𝑂,∀𝑝𝑝 ∈ 𝑃𝑃𝑟𝑟𝑟𝑟 ,∀𝑡𝑡 ∈ 𝑻𝑻, 𝓉𝓉 ∈ 𝒯𝒯 (4.12) 

𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 ≥ 0                                                          ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑡𝑡 ∈ 𝑻𝑻, 𝓉𝓉 ∈ 𝒯𝒯 (4.13) 

The lower level seeks a user equilibrium under improvement actions determined in the upper 
level, accounting for capacity reduction associated with the downtime required for action 
implementation. The UE formulation follows Beckmann’s formulation (Beckmann et al., 1956) 
and objective function (Eqn. (4.6)) is known as the Beckmann function. A Bureau of Public 
Roads (BPR) function (United States Department of Commerce, 1964) is used as the link 
performance function as in Eqn. (4.11) (i.e., 𝜏𝜏𝑘𝑘(𝓎𝓎)=𝜏𝜏𝑘𝑘�𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉

𝑡𝑡 �): 

𝜏𝜏𝑘𝑘�𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉
𝑡𝑡 � = 𝜑𝜑𝑘𝑘 �1 + 𝛼𝛼 ∗ �

𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉

𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉
𝑡𝑡 �

𝛽𝛽

�   ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑡𝑡 ∈ 𝑻𝑻, 𝓉𝓉 ∈ 𝒯𝒯 (4.14) 

Constraints in Eqn. (4.7) ensure that, for all pairs 𝑟𝑟-𝑞𝑞, flow on paths from origin 𝑟𝑟 to 
destination 𝑞𝑞 equal fixed OD pair demand for pair 𝑟𝑟-𝑞𝑞. Constraints in Eqn. (4.8) connect link 
flows to path flows. Nonnegativity is ensured through constraints in Eqns. (4.9) and (4.10). 
Upper-level solutions, 𝒙𝒙𝑡𝑡𝑘𝑘 and 𝒚𝒚𝑡𝑡𝑏𝑏, affect asset element capacities, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉

𝑡𝑡  of link performance 
function (Eqn. (4.11)) is employed in the lower-level objective in Eqn. (4.6). With the value of 
traffic flow 𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 and travel time of each link 𝜏𝜏𝑘𝑘�𝓎𝓎𝑘𝑘,𝑡𝑡,𝓉𝓉 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘,𝓉𝓉

𝑡𝑡 �, traffic delay can be calculated 
through Eqn. (4.4). Note that O-D demand is presumed to be fixed. 

SOLUTION METHODS 
A DCMAC method is adapted to solve the Multi-asset Roadway Improvement Scheduling 
Considering Traffic Impacts problem. Descriptions of the threshold-based and SARSA-LFA 
methods precede presentation of the DCMAC approach. They were implemented to provide 
appropriate baselines for comparison. Alternative baselines, such as worst-first, can be also used, 
as suggested in Chu and Huang (2018), for example. 

Threshold-based Method 
A threshold-based method is adapted as a basis for comparison. This method finds the optimal 
threshold settings {�𝜁𝜁1, 𝜁𝜁2, … , 𝜁𝜁|𝐴𝐴1|�, �𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎|𝐴𝐴2|�} for pavements and bridges as a function of 
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their condition state. �𝜁𝜁1, 𝜁𝜁2, … , 𝜁𝜁|𝐴𝐴1|� is the set of thresholds settings for pavements with 𝜁𝜁1 <
𝜁𝜁2 <  … , < 𝜁𝜁|𝐴𝐴1| ≤ |𝑆𝑆𝑘𝑘| and �𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎|𝐴𝐴2|� is the set of threshold settings for bridges with 
𝜎𝜎1 < 𝜎𝜎2 <  … <  𝜎𝜎|𝐴𝐴2| ≤ |𝑆𝑆𝑏𝑏| . In this work, the optimal thresholds are identified through an 
exhaustive testing of all thresholds options as in Eqn. (4.12). 

𝑀𝑀𝑀𝑀𝑀𝑀
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜~𝑇𝑇𝑇𝑇

𝔼𝔼𝒂𝒂𝑡𝑡~𝑡𝑡ℎ𝑟𝑟(�𝛾𝛾𝑡𝑡−1�𝑐𝑐1( 𝒂𝒂𝑡𝑡) + 𝑐𝑐2(𝒔𝒔𝑡𝑡) +  𝜌𝜌𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣ℊ(𝒂𝒂𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1

) (4.15) 

where 𝑇𝑇𝑇𝑇 is a set of all threshold options. Pseudo code for the threshold-based method is shown 
in Table 4-2.  

Table 4-29. Pseudo code for threshold-based method  
{N set to number of iterations} 

List all the threshold settings {[�𝜁𝜁1, 𝜁𝜁2, … , 𝜁𝜁|A1|�, �𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎|A2|�]𝑖𝑖 } and store the mean cost 
in order in 𝑪𝑪 = {𝐶𝐶1/𝑁𝑁,𝐶𝐶2/𝑁𝑁, … }. 
For each threshold setting [�𝜁𝜁1, 𝜁𝜁2, … , 𝜁𝜁|A1|�, �𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎|A2|�]𝑖𝑖: 
        𝐶𝐶𝑖𝑖 = 0 
        For each iteration: 
                𝐶𝐶𝑛𝑛 = 0 
                Initialize 𝒔𝒔1 and take action 𝒂𝒂1 given the threshold setting. 
                Call lower-level UE and compute cost  𝐶𝐶𝑛𝑛 = 𝐶𝐶𝑛𝑛 + 𝐶𝐶(𝒔𝒔1,𝒂𝒂1). 
                For t = 2, 3, …, T: 

         Observe state 𝒔𝒔𝑡𝑡 and take action 𝒂𝒂𝑡𝑡  given the threshold setting. 
                        Call lower-level UE and compute cost  𝐶𝐶𝑛𝑛 = 𝐶𝐶𝑛𝑛 + 𝐶𝐶(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡). 
                𝐶𝐶𝑖𝑖 =  𝐶𝐶𝑖𝑖 +  𝐶𝐶𝑛𝑛 
        𝑪𝑪 = 𝑪𝑪 ∪  𝐶𝐶𝑖𝑖

𝑁𝑁
  

Pick optimal threshold index 𝑖𝑖∗ = argmin
𝐶𝐶𝑖𝑖 ∈ 𝑪𝑪

𝐶𝐶𝑖𝑖  

The MDP Formulation  
MDPs take as input transition probability matrices that provide the probabilities, 𝑃𝑃𝑃𝑃(𝒔𝒔𝑡𝑡+1|𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡), 
of each system element transitioning from a given state 𝒔𝒔𝑡𝑡 , to another 𝒔𝒔𝑡𝑡+1 in the next time 
increment 𝑡𝑡 + 1 given any action 𝒂𝒂𝑡𝑡 that is taken in the current time increment t.   

With the aim of maximizing total reward (or minimizing total cost), a mathematical policy 
𝜋𝜋 = {𝜋𝜋1𝑘𝑘}𝑘𝑘=1

|𝑲𝑲| ∪ {𝜋𝜋2𝑏𝑏}𝑏𝑏=1
|𝑩𝑩| is sought, which gives a mapping from system state to suitable actions. 

Action-value 𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) denotes the expected cost through the end of the planning horizon for 
taking action 𝒂𝒂𝑡𝑡 when in system state 𝒔𝒔𝑡𝑡 at time 𝑡𝑡 from policy 𝜋𝜋: 

𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) =  𝔼𝔼𝜋𝜋(∑ 𝛾𝛾𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘𝑇𝑇−𝑡𝑡
𝑘𝑘=0 �𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡),∀𝑡𝑡 ∈ 𝑻𝑻 (4.16) 

with 𝑐𝑐𝑡𝑡 = c1( 𝒙𝒙𝑡𝑡,𝒚𝒚𝑡𝑡) + 𝑐𝑐2(𝐬𝐬t) +  𝜌𝜌𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣ℊ(𝒙𝒙𝑡𝑡) denoting the current cost. The state value is 
equivalently calculated as the expected return from state 𝒔𝒔𝑡𝑡 to the end of the planning horizon 
following policy 𝜋𝜋. 𝒂𝒂𝑡𝑡~𝜋𝜋 in the value function V denotes that 𝒂𝒂𝑡𝑡 follows from policy 𝜋𝜋. 
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𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡) = 𝔼𝔼𝒂𝒂𝑡𝑡~𝜋𝜋�𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡)�,               ∀𝑡𝑡 ∈ 𝑻𝑻 (4.17) 

Value function 𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡) can be equivalently expressed as the sum of the cost at time t plus the cost 
of the succeeding state-value at time 𝑡𝑡 + 1, 𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡+1). 

𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡) =  𝔼𝔼𝒂𝒂~𝜋𝜋(𝑐𝑐𝑡𝑡 +  𝛾𝛾 ∙ 𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡+1)), ∀𝑡𝑡 ∈ 𝑻𝑻 (4.18) 

Dynamic programming provides an approach for computing the optimal policy 𝜋𝜋∗ based on 
Bellman equations (Eqn. (4.16)) (Puterman, 1994). Eqn. (4.15) can be then expanded, as in Eqn. 
(4.16). 

𝑉𝑉∗(𝒔𝒔𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝒂𝒂𝑡𝑡

𝔼𝔼(𝑐𝑐𝑡𝑡 +  𝛾𝛾 ∙ 𝑃𝑃𝑃𝑃(𝒔𝒔𝑡𝑡+1|𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) ∙ 𝑉𝑉∗(𝒔𝒔𝑡𝑡+1)).     ∀𝑡𝑡 ∈ 𝑻𝑻 (4.19) 

The Multi-asset Roadway Improvement Scheduling Considering Traffic Impacts problem is 
a high-dimensional, stochastic, bilevel program with recursive objective function. The state 
space increases exponentially as the number of roadway assets increases, and therefore exact 
solutions are formidable due to the high dimensionality. In the next section, the DCMAC 
algorithm, introduced in (Andriotis & Papakonstantinou, 2019), a deep reinforcement learning 
method, is proposed for the MDP solution. It is particularly well suited for stochastic control 
problems with multiple components. DRL is well designed for problem instances with large 
dimensionality and complexity, enabling exceptional parameterization capabilities for huge state 
spaces. However, this is not the case, in general, for similarly large discrete action spaces, which 
are also present in multi-component transportation systems. The DCMAC approach was 
introduced in (Andriotis & Papakonstantinou, 2019) and is particularly well suited for stochastic 
control problems of systems with multiple components. DCMAC takes advantage of the 
parameterization capabilities of deep policy gradient methods in large state spaces, and further 
originally extends them to large action spaces that have numerous distinct action categories. 

The SARSA-LFA algorithm and state-action value approximation 

The SARSA algorithm is an on-policy TD learning method, a type of reinforcement learning 
methodology, that builds on concepts of both Monte Carlo control and dynamic programming 
(Sutton & Barto, Reinforcement Learning: An Introduction, 2018). In general, RL techniques 
seek a mapping from system state to suitable action vectors that seek to optimize defined 
objectives, such as total cost minimization or total reward maximization. In this work, a 
minimum total cost to both the system and its users is sought. As discussed in (Sutton & Barto, 
2018), RL methods learn from experience over their iterations and are particularly useful when 
the problem’s dimensionality is too large to obtain an exact solution, a modeling environment is 
only provided through black box solvers, or only actual data are available.  

For problems with multiple states, the SARSA method does not scale up. To address this, a 
SARSA with linear function approximation (SARSA-LFA) method was proposed in (Sutton, et 
al., 2009), wherein manually chosen feature functions are used to approximate the action-value 
𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡). Thus, the SARSA-LFA method is highly dependent on the quality of the feature 
functions. As the number of roadway assets grows, state space 𝑺𝑺 and action space 𝑨𝑨 grow 



 45 r3utc.psu.edu 
 

exponentially, making these feature functions also difficult to construct for larger problem 
instances. Most SARSA methods use this approximate approach. Instead, DRL methods, such as 
deep Q-network (DQN) methods (Mnih, et al., 2015), embed a neural network structure to 
represent these feature functions that lead to more efficient parametrization of 𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡). These 
approaches are also similarly problematic to scale up with respect to the action space. 

The SARSA-LFA algorithm approximates the state-action value 𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) using a weighted 
sum of feature functions, 𝑓𝑓𝑖𝑖(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡, 𝑡𝑡) as in Eqn. (4.17).  

𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) = �𝑤𝑤𝑖𝑖 ∗ 𝑓𝑓𝑖𝑖(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡, 𝑡𝑡)
𝑖𝑖∈𝜴𝜴

 (4.20) 

where the total number of feature functions is given by |𝜴𝜴|, for 𝛺𝛺 the set of feature functions, 
and feature function 𝑖𝑖 is weighted by 𝑤𝑤𝑖𝑖 ∈ 𝒘𝒘. Given weight 𝒘𝒘 and state 𝒔𝒔𝑡𝑡, the temporal error is 
calculated: 

∆𝑡𝑡=  �𝛾𝛾𝑘𝑘𝑐𝑐𝑡𝑡+𝑘𝑘

𝑛𝑛−1

𝑘𝑘=0

+ 𝛾𝛾𝑛𝑛𝑄𝑄(𝒔𝒔𝑡𝑡+𝑛𝑛,𝒂𝒂𝑡𝑡+𝑛𝑛) −  𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) (4.21) 

The first two terms of Eqn. (4.18) approximate the total cost within the planning horizon 
using the summation of sample cost from time step 𝑡𝑡 to 𝑡𝑡 + 𝑛𝑛 − 1 and action-value 
𝑄𝑄(𝒔𝒔𝑡𝑡+𝑛𝑛,𝒂𝒂𝑡𝑡+𝑛𝑛). When 𝑛𝑛=1, the TD method is a one-step look ahead approach. At the other 
extreme, when n=T, the TD method is equivalent to a Monte Carlo control approach. 

Weights are updated given updated ∆𝑡𝑡 for increased accuracy following Eqn. (4.19).  

𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑙𝑙𝑙𝑙 ∗ ∆𝑡𝑡 (4.22) 

The learning rate, 𝑙𝑙𝑙𝑙, in Eqn. (4.19) affects algorithm convergence. 
The SARSA method balances exploration of the search space against exploitation in a local 

neighborhood in determining actions to take under a given state. The action is chosen 
probabilistically either from a feasible action set with probability ε or, with probability 1- ε, to be 
the action that leads to the minimal action-value 𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡). A synthesis of the proposed 
SARSA-LFA method as specified for the Multi-asset Roadway Improvement Scheduling 
Considering Traffic Impacts problem is given in pseudo code for SARSA-LFA in Table 4-3. 

Deep Centralized Multi-agent Actor Critic 

The Multi-asset Roadway Improvement Scheduling Considering Traffic Impacts problem is a 
single-agent RL problem in which the agent schedules improvement actions on all pavement 
segments and bridges. The problem can be defined as a 6-tuple of pavements, bridge decks, 
states, actions, transition probabilities and costs: 〈𝑲𝑲,𝑩𝑩, 𝑺𝑺,𝑨𝑨,𝑃𝑃,𝐶𝐶〉, where 𝑃𝑃 represents the 
transition function: 𝑺𝑺 × 𝑨𝑨 × 𝑺𝑺 → [0,1]. To reduce the solution size of the action space, the 
problem is reformulated as a multi-agent problem, where each agent makes decisions on 
improvement actions for only one pavement segment or bridge. The states of all roadway assets 
and the value of the objective function are shared to enable agents to work cooperatively. A joint 
policy for application across all roadway assets, 𝜋𝜋: 𝑺𝑺 → 𝑨𝑨, is finally, thus, identified. It 
minimizes the total cost incurred, 𝐶𝐶. 
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Table 4-30. Pseudo code for SARSA-LFA 

Initialize feature function weights 𝒘𝒘 and learning rate 𝑙𝑙𝑙𝑙 
Repeat: 

t=1 
Randomly generate 𝒔𝒔1, take action 𝒂𝒂1 as identified by (𝒖𝒖𝑡𝑡 the vector of feasible actions 

over all segments for time t, 𝒖𝒖𝑡𝑡 ∈ 𝑼𝑼 for t = 1, 2, …, T): 

        𝒂𝒂𝑡𝑡 = �𝒖𝒖𝑡𝑡: such that𝑄𝑄(𝒔𝒔𝑡𝑡,𝒖𝒖𝑡𝑡) is minimum                   chosen with probability 1 − ε
any feasible solution 𝒖𝒖𝑡𝑡                                 chosen with probability ε  

Calculate 𝐶𝐶1, calling lower-level UE as needed  
Store 𝒔𝒔1,𝒂𝒂1,𝐶𝐶1,𝑄𝑄(𝒔𝒔1,𝒂𝒂1) for training purposes  

        For t = 2, 3, …, T: 
Observe state 𝒔𝒔𝑡𝑡, take action 𝒂𝒂𝑡𝑡, call lower-level UE to calculate 𝐶𝐶𝑡𝑡, and calculate 

the value of 𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) following Eqn. (4.17) 
                Store 𝒔𝒔𝑡𝑡 ,𝒂𝒂𝑡𝑡,𝐶𝐶𝑡𝑡,𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) for training purposes 
                Compute cost 𝐶𝐶(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) 
        For t = T, T-1, …, 1: 
                Calculate ∆𝑡𝑡 according to Eqn. (4.18) 
                Update weights 𝒘𝒘 = 𝒘𝒘 +  𝑙𝑙𝑙𝑙 ∙ ∆𝑡𝑡 ∙ ∇𝑓𝑓(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡, 𝑡𝑡),  for future 𝑄𝑄(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) computation 
 

 
The DCMAC method adapted from (Andriotis & Papakonstantinou, 2019) is a DRL 

technique. It evolved from actor-critic methods that sometimes use two neural networks, splitting 
evaluation from action (for example, (Konda & Tsitsiklis , 2003)). The multi-agent reformulation 
assumes that actions on system components are conditionally independent of one another as a 
means of reducing the size of the action space. With this assumption, the policy set that guides 
the actions can be given by 𝜋𝜋 = ∏ 𝜋𝜋1𝑘𝑘

|𝑲𝑲|
1 × ∏ 𝜋𝜋2𝑏𝑏

|𝑩𝑩|
1 , where 𝜋𝜋1𝑘𝑘:𝑺𝑺 → 𝐴𝐴𝑘𝑘 denotes the policy for 

pavement 𝑘𝑘 ∈ 𝑲𝑲 and 𝜋𝜋2𝑏𝑏:𝑺𝑺 → 𝐴𝐴𝑏𝑏 denotes the policy for bridge 𝑏𝑏 ∈ 𝑩𝑩, greatly reducing the action 
space and making it possible to solve larger problem instances. For example, for a study location 
with 5 components for which 3 actions each are considered, 35=243 different Q-functions would 
be required to approximate the values of the actions in the action space for the SARSA, and 
traditional DRL methods. The same problem with the multi-agent formulation of DCMAC can 
be formulated based on 5*3=15 different actions, 3 for each component, without any loss of 
generality and/or accuracy. 
In DCMAC, deep neural networks are applied to generate the improvement actions and 
approximate the critic value using actor and critic network parameter vectors 𝜽𝜽𝜋𝜋 and 𝜽𝜽𝑉𝑉, 
respectively. To optimize the parameters 𝜽𝜽𝜋𝜋, an efficient method is used to compute the off-
policy gradient estimator 𝒈𝒈𝜽𝜽𝜋𝜋 (Eqn. (4.20)) with samples generated by a behavior policy 𝜇𝜇 ≠ 𝜋𝜋 
using importance sampling. 

𝒈𝒈𝜽𝜽𝜋𝜋 = 𝐸𝐸𝒔𝒔𝑡𝑡~𝝎𝝎,𝒂𝒂𝑡𝑡~𝝁𝝁[𝑤𝑤𝑡𝑡�𝛻𝛻𝜽𝜽𝜋𝜋𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖�𝑎𝑎𝑡𝑡
(𝑖𝑖)�𝒔𝒔𝑡𝑡,𝜽𝜽𝜋𝜋�

𝑛𝑛

𝑖𝑖=1

)𝐴𝐴𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡)] (4.23) 

with 𝑤𝑤𝑡𝑡 = 𝜋𝜋(𝒂𝒂𝑡𝑡 |𝒔𝒔𝑡𝑡)/𝜇𝜇(𝒂𝒂𝑡𝑡 |𝒔𝒔𝑡𝑡), whereμ is a 𝑛𝑛-dimensional vector of agent behavior policies and 
𝑛𝑛 is equal to the number of control units; ω is the |𝐾𝐾|-dimensional vector of limiting state 
distributions under these policies. 
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The advantage function 𝐴𝐴𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) in Eqn. (4.21) can be seen as a zero-mean measure 
expressing how advantageous an action at each state is. It is defined as: 

𝐴𝐴𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) =  𝑄𝑄𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) − 𝑉𝑉𝜋𝜋 (4.24) 

DCMAC approximates the advantage function following the temporal difference: 

𝐴𝐴𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡|𝜽𝜽𝑉𝑉) =  𝑐𝑐(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) +  𝛾𝛾𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡+1 |𝜽𝜽𝑉𝑉) −  𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡 |𝜽𝜽𝑉𝑉) (4.25) 

The critic network is accordingly updated through the mean squared error:  

𝐿𝐿𝑉𝑉(𝜽𝜽𝑉𝑉) = 𝐸𝐸𝒔𝒔𝑡𝑡~𝜔𝜔,𝒂𝒂𝑡𝑡~𝝁𝝁[𝑤𝑤𝑡𝑡(𝑐𝑐(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡) +  𝛾𝛾𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡+1 |𝜽𝜽𝑉𝑉) − 𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡 |𝜽𝜽𝑉𝑉))2] (4.26) 

and its respective gradient, which is computed by backpropagating the weighted advantage 
function through the critic network: 

𝒈𝒈𝜽𝜽𝑉𝑉 = 𝐸𝐸𝒔𝒔𝑡𝑡~𝜔𝜔,𝒂𝒂𝑡𝑡~𝝁𝝁[𝑤𝑤𝑡𝑡𝛻𝛻𝜽𝜽𝑉𝑉𝑉𝑉𝜋𝜋(𝒔𝒔𝑡𝑡 |𝜽𝜽𝑉𝑉)𝐴𝐴𝜋𝜋(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡|𝜽𝜽𝑉𝑉)] (4.27) 

DCMAC extends the hidden layers of the actor network, as shown in Figure 4-1, into 
distinct output nodes, each utilizing centralized system-state information to decide which action 
to take in each studied sub-system (here, each roadway segment). In this application, |𝐾𝐾| output 
nodes are defined, one output layer for each segment. Each output node associated with a bridge-
free pavement segment generates a probability distribution over the action options for its 
segment, as portrayed with the bar plots in the bottom right of Figure 4-1. Each output layer for 
segments with both pavements and a bridge generates the joint distribution over combinations of 
action options for both the pavement and bridge portions. These distributions are shown as the 
bar plots in the bottom right of Figure 4-1.  

A critic neural network (upper part in Figure 4-1) is constructed to approximate the total cost 
of the improvement action plan over the planning horizon, including implementation impacts, 
over the planning horizon. This requires evaluation of the recursive cost functions (Eqn. (4.14)). 
To train the actor and critic neural networks, the DCMAC method is run over repeated episodes. 
A realization of the condition states is simulated under each episode and the improvement 
actions to take over the entire planning horizon under this realization are identified. During this 
training process, realized pavement and bridge deck states, actions selected, and associated total 
costs are stored in a replay buffer. The replay buffer is used for training the actor and critic 
networks simultaneously through a process of backpropagation commonly used for training 
neural networks (Werbos, 1988). Table 4-4 shows the details of the DCMAC algorithm as 
applied to this roadway improvement problem class. 
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Table 4-31. Pseudo code for DCMAC. 

Construct the actor and critic neural networks; initialize the networks’ parameters 𝜽𝜽𝜋𝜋 and 
𝜽𝜽𝑉𝑉 . 

For training, set a replay buffer to store experiences in terms of actions under different 
states and their costs, batch size, and exploration noise 𝜖𝜖 used in avoiding local optima; 

Loop for each episode (iteration or replication): 
Initialize states 𝒔𝒔1 of the roadway segments at the start of the planning horizon; 

Loop for t = 1, 2, …, T (e.g. years 1, 2, …. in a multi-year planning horizon of 
length T): 

Generate behavior policy 𝜇𝜇𝑡𝑡 at random with exploration noise, otherwise 
𝜇𝜇𝑡𝑡~ 𝜋𝜋(∙ |𝒔𝒔𝑡𝑡,𝜽𝜽𝜋𝜋) 

Take actions 𝒂𝒂𝑡𝑡 according to  𝜇𝜇𝑡𝑡  
Call lower-level UE and calculate associated cost 𝑐𝑐𝑡𝑡; 

Store 𝒔𝒔𝑡𝑡, 𝒔𝒔𝑡𝑡 + 1, 𝒂𝒂𝑡𝑡, 𝝁𝝁𝑡𝑡, 𝑐𝑐𝑡𝑡 within replay buffer; 
Update states for a given simulated realization; 

Sample batch (𝒔𝒔𝜏𝜏, 𝒔𝒔𝑡𝑡 + 1,𝒂𝒂𝜏𝜏,𝝁𝝁𝜏𝜏 𝑐𝑐𝜏𝜏) from the replay buffer and approximate the 
advantage function with Eqn. (4.22):  

𝐴𝐴𝜋𝜋(𝒔𝒔𝜏𝜏,𝒂𝒂𝜏𝜏 |𝜽𝜽𝑉𝑉)  =  𝑐𝑐𝑖𝑖 +  𝛾𝛾𝑉𝑉𝜋𝜋(𝒔𝒔𝜏𝜏+1 |𝜽𝜽𝑉𝑉) −  𝑉𝑉𝜋𝜋(𝒔𝒔𝜏𝜏 |𝜽𝜽𝑉𝑉) 
Calculate the truncated sample weights: 

𝒘𝒘𝕥𝕥 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝒞𝒞, 𝜋𝜋�𝒂𝒂𝕥𝕥�𝒔𝒔𝕥𝕥�
𝝁𝝁𝕥𝕥�𝒂𝒂𝕥𝕥�𝒔𝒔𝕥𝕥�

}, where 𝒞𝒞 represents the value at which the 

sample weights are truncated. 
Update the actor and critic parameters according to the gradients:  

𝒈𝒈𝜽𝜽𝜋𝜋 =  �[𝑤𝑤𝜏𝜏(�∇𝜽𝜽𝜋𝜋log𝜋𝜋𝑖𝑖�𝑎𝑎𝜏𝜏
(𝑖𝑖)�𝒔𝒔𝜏𝜏,𝜽𝜽𝜋𝜋�

𝑛𝑛

𝑖𝑖=1

)𝐴𝐴𝜋𝜋(𝒔𝒔𝜏𝜏,𝒂𝒂𝜏𝜏 |𝜽𝜽𝑉𝑉) ]
𝜏𝜏

 

𝒈𝒈𝜽𝜽𝑉𝑉 =  �[𝑤𝑤𝜏𝜏𝑉𝑉𝜋𝜋(𝒔𝒔𝜏𝜏 |𝜽𝜽𝑉𝑉)𝐴𝐴𝜋𝜋(𝒔𝒔𝜏𝜏,𝒂𝒂𝜏𝜏 |𝜽𝜽𝑉𝑉) ]
𝜏𝜏
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Figure 4-7. Deep centralized multi-agent actor critic neural network  

(generated with NN-SVG (LeNail, 2019)) 
 

EVALUATING THE PROPOSED MULTI-ASSET ROADWAY 
IMPROVEMENT SCHEDULING MODEL AND SOLUTION METHOD ON AN 
ILLUSTRATIVE NETWORK 

Roadway Network Description 
The proposed methodology is applied on a hypothetical traffic network presented in (Medury & 
Madanat, 2013) expanded to include two bridges. Deterioration dynamics and post-improvement 
action benefits for pavement segments were adapted from relevant literature (Madanat & Ben-
Akiva, 1994; Faddoul, Raphael, Soubra, & Chateauneuf, 2013) and for bridge decks in 
(PennDOT, 2009; Manafpour, Guler, Radlinska, Rajabipour, & Warn, 2018). The aim of this 
application is to illustrate the importance of considering uncertainty in deterioration processes, 
traffic delays at a network level while also incorporating downtime impacts from roadway 
improvement actions, and post-improvement action conditions. Figure 4-2 and Table 4-5 provide 
the topology of the network representation and its attributes. As in Medury and Madanat’s 
network, the roadway links are directed with 𝑂𝑂 as the origin node and 𝐷𝐷 as the destination node. 
Two bridge decks are added to pavement segments No. 7 and No. 9. Each bridge deck has six 
discrete states. Deterioration transition matrices of the pavements and bridge decks, along with 
improvement action benefits, are detailed in Appendix E, Table E-1 through Table E-6. The 
costs and durations of the improvement actions and the user costs are detailed in Appendix F,  
Table F-1 through Table F-6.  

 Table 4-5 introduces values used in characterizing the roadway segments (links), including 
lengths and free flow speeds. Medury and Madanat (2013) provided only capacities that were not 
within a range that matches realistic roadway characteristics. In this work, segment capacities 
were computed assuming 2,250 vehicles per hour per lane and a free flow speed of 55 mph 
(United States Department of Transportation (USDOT), 2021). Minor and major repair actions 
are assumed to cause the closure of half of the lanes, while any improvement actions taken on the 
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bridges require full closure. The value of travel time ($18.70/person-hour) was taken from the 
USDOT (USDOT, 2016) to calculate travel delay costs. Average vehicle occupancy was set to 
1.67 persons per vehicle according to the USDOT (USDOT, 2017). Thus, travel delay costs were 
set to $31.22/vehicle-hour. Total OD demand was set to 8,700 vehicles per hour. The test 
network can be characterized as congested (level of service E) with little redundancy, making 
even small events disruptive. 

Experimental Results 
Numerical experiments were conducted to investigate the importance of accounting for traffic 
impacts and uncertainty in pavement and bridge deck deterioration when developing optimal 
improvement action schedules. These experiments were run on the roadway network of Figure 
4-2, and improvement actions were sampled and implemented according to the computed 
stochastic policy, 𝜋𝜋(∙ |𝒔𝒔𝑡𝑡,𝜽𝜽𝜋𝜋). Results are given in following subsections.  
 

Table 4-32. Roadway information. 

Segment# Number 
of lanes 

Free flow 
speed 

(mile/hour) 

Length 
(mile) 

1 4 55 5 
2 4 55 5 
3 4 55 5 
4 2 55 5 
5 1 55 5 
6 1 55 5 
7 1 55 5 
8 1 55 5 
9 2 55 5 
10 2 55 5 
11 2 55 5 

 

Figure 4-8. Roadway network. 

Accounting for traffic impacts 

To evaluate the importance of incorporating more realistic traffic delays at the network level in 
improvement action scheduling, decisions obtained from the proposed bilevel model are 
compared against those from a single-level version that excludes traffic impacts. This model 
seeks to minimize total improvement action cost over a planning horizon of 20 years with 
discount factor of 0.95. For the sake of comparing results to the single-level version that 
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excludes traffic impacts to the proposed bilevel model solutions, the cost of travel delays 
incurred during the execution of improvement actions is included in the cost objective in runs of 
both models.  As exact solution is not obtainable due to the high dimensionality of the problem 
instance, best threshold policies for both single and bilevel models were obtained as a basis for 
comparison. 

Table 4-6 shows the lifecycle costs incurred for solutions with and without traffic disruption 
for each of the three solution approaches over a planning horizon of 20 years for 5,000 
replications, each with a randomly chosen initial state. Road improvement and user costs of the 
solution obtained for the bilevel model (considering traffic impacts) are significantly higher than 
the costs associated with the single-level model solution that does not account for traffic impacts. 
However, the overall cost of the solution of the bilevel model is lower.  

The total costs for the solutions of both single- and bilevel threshold models are also 
provided (Table 4-6). For the single-level model, the total costs excluding/including costs of 
traffic delay under all methods are $9.58/$41.60 (threshold), $10.06/$43.68 (SARSA) and 
$9.51/$40.07 (DCMAC) million. When reassessed in a bilevel conceptualization, where traffic 
effects are included, these values, including the cost of traffic delay, are $37.15 (threshold), 
$39.28 (SARSA) and $36.02 (DCMAC) million. Savings in total costs of approximately 10% 
was attained by accounting for traffic impacts in the execution of improvement actions. The 
difference in total cost savings between the threshold and optimal scheduling approaches may 
widen for larger problem instances, where complete enumeration over the threshold values, and 
therefore identification of the optimal threshold, may not be possible. Similarity in total costs for 
the solutions is likely due to the homogeneity of the network elements.  

DCMAC outperforms SARSA for both single and bilevel models (i.e., with and without 
inclusion of traffic impacts). Figure 4-3 and Figure 4-4 show how the total costs evolve during 
the training process of the SARSA and DCMAC methods applied to the bilevel formulation, 
respectively. The figures indicate that the SARSA method converges faster than the DCMAC 
method; however, the final policy generated by the DCMAC method outperforms that produced 
by the SARSA method. The parameters used for SARSA and DCMAC methods are included in 
Appendix G. It is noteworthy that the threshold solutions also consistently outperformed the 
activity schedules obtained through the SARSA method. 

An example of pavement states and transitions for pavement segment 3 over the planning 
horizon found using optimal prioritization via DCMAC and accounting for traffic disruption is 
shown in Figure 4-5. Minor repairs are applied in years 8 and 10 while the pavement is in 
mediocre, fair, or good condition. Major repairs are implemented in years 1 and 18 when the 
pavement has deteriorated to a poor condition. State transitions for all pavement segments and 
bridges are given in Figure 4-6.  
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Table 4-33. Road improvement cost and traffic delay cost (with 𝝆𝝆 = 𝟎𝟎.𝟎𝟎𝟎𝟎). 

  Road Improvement 
Costs, 𝒄𝒄𝟏𝟏( ∙), + User 
Costs  𝒄𝒄𝟐𝟐(∙)  
($M) 

Weighted Traffic 
Delay Costs,  
𝝆𝝆𝒄𝒄𝒗𝒗𝒗𝒗𝒗𝒗𝓰𝓰(𝒂𝒂𝒕𝒕)  
($M) 

Total 
Costs 
($M) 

Excluding 
traffic (single-
level) 

Optimal threshold 
(complete 
enumeration) 

9.58 32.02 41.60 

Excluding 
traffic (single-
level) 

~Optimal 
prioritization via 
SARSA 

10.06 33.62 43.68 

Excluding 
traffic (single-
level) 

~Optimal 
prioritization 
via DCMAC 

9.51 30.56 40.07 

Including 
traffic (bilevel) 

Optimal threshold 
(complete 
enumeration) 

12.23 24.92 37.15 

Including 
traffic (bilevel) 

~Optimal 
prioritization 
via SARSA 

12.86 26.42 39.28 

Including 
traffic (bilevel) 

~Optimal 
prioritization 
via DCMAC 

13.45 22.57 36.02 

 

 
Figure 4-9. Expected total cost during SARSA learning  

for bilevel model (with traffic). 
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Figure 4-10. Expected total cost evolution during learning by the  

DCMAC method applied on the bilevel model (with traffic). 

 

Figure 4-11. Pavement states and decisions for pavement segment 3. 
 

The choice to execute minor or major repairs for pavements and bridges is influenced by 
improvement action costs, user costs, and traffic delays. Most pavement segments are maintained 
to a level of at least state 4. Due to their costs, major repairs are seldom implemented on 
pavement segments before they are in poor condition (state 1). Bridges are maintained to their 
highest level (state 6) through minor repairs to avoid high user costs that exceed the costs of 
minor repairs. Improvement actions may be postponed to the following year to avoid the 
potential traffic delay impacts of taking an action in the current year. 

 



 54 r3utc.psu.edu 
 

 
Figure 4-12. States and decisions for all pavements and bridges. 

 

 
Figure 4-13. Costs under different values of 𝝆𝝆. 

 
To test the traffic flow impacts on prioritization, parameter 𝜌𝜌 is assigned a value between 

0.01 and 0.10. The higher the value of 𝜌𝜌, the greater the weight given to traffic delay in the total 
cost function of Eqn. (4.1). Results are plotted in Figure 4-7 and show that accounting for traffic 
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delay in determining activity priorities and schedules (i.e., solution of the bilevel program) leads 
to lower total cost solutions. When the traffic delays are included in the total cost for the single-
level model (that does not account for traffic delays in solution determination), the resulting 
schedules are substantially more costly. Moreover, as 𝜌𝜌 increases, improvement actions are more 
likely to be deferred. This leads to increased user costs.  
By accounting for traffic delays in developing an improvement plan, the range in savings spans 
between 18.99% and 38.36% in traffic delay and 1.39% to 17.90% in total cost for 𝜌𝜌 set to 0.01 
and 0.1, respectively. Even giving some influence to traffic effects in prioritization and 
scheduling results in scheduling substantially fewer improvement activities, as the cost to users 
in terms of delay of even a few actions is substantial. That is, it was found that accounting for 
traffic delay in prioritization and scheduling led to less traffic delay and decreased total cost over 
the planning horizon. 
       It was also noted that when 𝜌𝜌 is set to 0.13 or higher, even fewer activities are scheduled. It 
is surmised that added delays are avoided by limiting improvement activities; that is, their 
benefits do not outweigh their costs in terms of traffic delays. This avoidance would be 
eliminated by incorporating delays due to poor roadway condition due to inaction. The literature, 
however, frequently indicates that within the range of highway pavement roughness and vehicle 
types in more developed countries, the application of pavement treatments has minimal effect on 
vehicle speeds (Wang, Harvey, Lea, & Kim, 2014). Therefore, the effect of pavement condition 
on travel time was not evaluated as a primary impact on vehicle operating costs in a related 
NCHRP study (Chatti & Zaabar, 2012). 

Importance of stochasticity 

To assess the value of the stochastic solution, the expected cost of the optimal stochastic 
solution, obtained over 5,000 realizations of pavement and bridge conditions drawn from the 
transition matrices, is compared with the cost of the optimal deterministic solution obtained by 
presuming deterioration measures for pavements and bridge decks that transition 
deterministically according to expected state conditions obtained from the transition matrices. 
For example, while a pavement is in state 3 and given that minor repair is implemented, a 
stochastic transition could imply that this improvement action changes the pavement’s state to 
state 5 with probability of 0.45, state 4 with probability of 0.4, 3 with probability of 0.12 and 2 
with probability of 0.03. Under the deterministic transition assumption, the pavement’s state will 
then become 4 (5 ∗ 0.45 + 4 ∗ 0.4 + 3 ∗ 0.12 + 2 ∗ 0.03 = ⌊4.27⌋ = 4). Thus, the deterministic 
policy is generated assuming deterministic transitions, but its outcomes are evaluated under the 
stochastic deterioration transition matrices. The cost of the resulting actions, i.e. policy, was re-
evaluated under the stochastic deterioration transition matrices. This cost was then compared to 
that of the optimal solution obtained given the original stochastic deterioration transition 
matrices. These costs are compared in Figure 4-8. 

Figure 4-8 shows that failure to recognize uncertainty in deterioration rates leads to 
increasing expected roadway improvement and traffic delay costs. Roadway improvement costs, 
summation of improvement and user costs, cost of traffic delays and, thus, the total cost of the 
deterministic model are each higher than the same costs of the solution obtained from running 
the stochastic model. The roadway improvement cost of the solution obtained from the stochastic 
model is 32% lower than that of the deterministic model. The stochastic model also produced 
schedules with 27% lower cost in terms of traffic delays than the deterministic model. This 
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implies that taking stochasticity into consideration can generate significantly improved policies 
and the complexity of modeling uncertainty is worth the effort. 

 

 
Figure 4-14. Influence of including stochasticity in deterioration on realized  

cost of the optimal improvement action schedule (with 𝝆𝝆 = 𝟎𝟎.𝟎𝟎𝟎𝟎). 

Taking a multi-asset class approach 

Experiments were run to compare the difference between single and multi-asset roadway 
improvement strategies. 

To reflect how well the assets are maintained during the planning horizon, a metric of asset 
state is used as introduced in Eqn. (4.25). 

𝔼𝔼�𝑠𝑠𝑖𝑖� = 𝔼𝔼�
1
𝑁𝑁𝑖𝑖
��

𝑠𝑠𝑡𝑡𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆𝑖𝑖)

𝑇𝑇

𝑡𝑡=1

𝑁𝑁𝑖𝑖

𝑘𝑘=1

� (4.28) 

Equation (4.25) computes the expected value of the mean condition over the perfect condition of 
all the assets belonging to the same class (pavements or bridges). A higher value of 𝔼𝔼�𝑠𝑠𝑖𝑖� 
implies better condition.  

Two approaches were implemented for assessing the value of taking a multi-asset class 
approach. The problem was first solved to produce a policy on only the pavements of the test 
network while presuming that both bridges are in ideal condition. Given the state of the 
pavements and the impact of planned improvements to the pavements assuming the determined 
policy is implemented, the problem is re-solved from the bridge perspective. In a second 
approach, the optimal policies for the pavements and bridges were generated separately 
presuming the other asset to be in ideal condition. The total costs of the outcomes from these two 
approaches were compared to the total cost obtained from solution of the multi-asset class 
formulation as proposed herein.  

Results of these comparisons are given in Table 4-7. The costs for the single-asset approach 
when trained separately or sequentially were $37.28M and $37.85M, respectively. Both costs are 
greater than the total cost at $36.02M of the solution obtained from the multi-asset class 
approach. That is, taking a multi-asset approach created a substantial savings at 5%. Greater 
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savings can be expected for roadway networks with increased heterogeneity in the network 
attributes. 

Table 4-34. Multi-asset class versus single-asset class management (with 𝝆𝝆 = 𝟎𝟎.𝟎𝟎𝟎𝟎). 

 Single- 
asset 

Mgmt 
(trained 

separately 
by asset 

class) 
Pavements 

Single-
asset 

Mgmt 
(trained 

separately 
by asset 

class) 
Bridges 

Single-
asset 

Mgmt 
(trained 
sequen-
tially) 

Pavements 

Single-
asset 

Mgmt 
(trained 
sequen-
tially) 

Bridges 

Multi-asset 
Mgmt 

Pavements 

Multi-
asset 

Mgmt 
Bridges 

Improvement 
cost ($M) 

3.53 0.31 3.59 0.44 3.55 0.47 

Expected 
condition, 
𝔼𝔼�𝑠𝑠𝑖𝑖� (Eqn. 
(4.19)) 

0.84 0.92 0.84 0.89 0.85 0.88 

User costs 
($M) 

9.37 0.34 9.46 0.42 8.92 0.51 

Cost of 
traffic 
delay($M) 

23.73a 23.73a 23.94 a 23.94 a 22.57 a 22.57 a 

Total cost 
($M) 

37.28 a 37.28 a 37.85 a 37.85 a 36.02 a 36.02 a 

a Denotes pavements + bridges. 
The results indicate that the total cost of the multi-asset class strategy ($36.02 million) is 

significantly reduced from the sum of the two single-asset management strategies. While both 
single asset approaches spent similarly on improvements, the multi-asset class approach invested 
more in pavements. With only two small bridges, the pavements constitute the vast majority of 
the network by length. Thus, they contribute more to total user costs. Improvements to 
pavements, thus, can significantly reduce user costs, and therefore, total costs. 

CONCLUSIONS 
Maintaining roadway pavements and bridge decks is key to providing high levels of service for 
road users. Yet activities associated with maintenance, rehabilitation, and improvement of the 
roadway surfaces entail downtime with negative impacts for roadway network users. The focus, 
traditionally, of prioritizing and scheduling roadway improvement activities is on the outcome, 
and thus, often does not account for this downtime; however, such activities are frequent and 
users regularly live with some level of ongoing roadway improvement activity and its effects. 
Many agencies have included these downtime effects in project-level lifecycle analysis (Walls & 
Smith, 1998), but the recognition of these negative impacts during such activities should also be 
included in network-level asset maintenance and improvement planning.  
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This work presents the Multi-asset Class Roadway Improvement Scheduling Problem that 
considers capacity loss during improvement actions (i.e., downtimes), traffic impacts of 
improved serviceability after the actions are complete, and uncertain deterioration mechanisms 
jointly across multiple asset classes. Solution is obtained through cutting-edge, deep 
reinforcement learning methods. This formulation and solution framework can support the 
agencies responsible for roadway improvement and the users these roadways serve. They can 
provide the core needed for a decision support tool that can aid them in making cost-effective 
investment decisions over integrated roadway asset classes (specifically pavements and bridge 
decks), explicitly recognizing traffic impacts to the public and scheduling with them in mind.  

The authors are extending this work to address additional complexities, including the impact 
of traffic congestion on deterioration and incorporation of updated deterioration data through 
continuous roadway condition monitoring to support condition-based prioritization and 
scheduling. For the latter, the role of new data sources to provide frequently updated bridge and 
pavement conditions is under investigation to ensure that decisions reflect current conditions. 
The proposed DRL methodology can support this dynamic application. DRL approaches can 
directly use continuous state-spaces in MDP problems. Thus, they can be used to model 
deterioration in a continuous framework as well, providing the relevant continuous state vector at 
the input layer.  

The approach here balances user experience (i.e., user costs and travel delays) against 
spending on improvements. It implicitly presumes an agency will spend funds to maintain a 
certain level of service. This work can be also extended to include constraints on annual and/or 
multi-year maintenance budgets, as the suggested framework can support such formulations as 
well.  
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C H A P T E R  5  

Value of Information in Infrastructure Asset 
Management Policies 

INTRODUCTION & OVERVIEW 
Efficient management of structures and infrastructure is an ever-timely issue of paramount 
importance, aiming at proper inspection and maintenance policies, handling various stochastic 
deteriorating effects, and suggesting optimal actions that serve multi-purpose lifecycle 
objectives. In overall lifecycle management, inspection plays a key role, especially for critical 
infrastructure and rapidly deteriorating systems. The development of new and innovative sensing 
technologies, data acquisition techniques, and information processing methodologies further 
encourage the use of Structural Health Monitoring (SHM) in essential facilities (Farrar & 
Worden, 2012; Frangopol, Strauss, & Kim, 2008). However, these new possibilities come with 
relevant questions related to the actual value and necessity of increased quality measurements or 
continuous structural health information in facilitating optimal actions. SHM is defined as the 
development of online and automated condition assessment and damage detection capabilities 
for all types of infrastructure (Worden, Dervilis, & Farrar, 2019). Further, SHM frameworks seek 
to determine appropriate mappings from raw response measurements to condition and 
performance indicators, which can subsequently support decision-making toward cost-effective 
intervention and maintenance actions that increase safety and mitigate risks (Chatzi, 
Papakonstantinou, Hajdin, & Straub, 2017). Quantification of gains using SHM is a multi-stage 
process ranging from instrumentation to data processing and inference using state-of-the-art 
techniques like relevant machine learning algorithms. Nonetheless, the primary focus in this 
chapter is the final decision stage, which uses extracted and post-processed values of condition 
indicators resulted from the manifested system dynamics. More specifically, the decision stage 
pertains to the type and sequence of actions that are selected in order to optimize a predefined 
lifecycle objective. When the objective is to maximize long-term safety and resilience and to 
effectuate preventive maintenance actions, SHM typically constitutes a natural choice, as it can 
be used to diagnose faults and even determine the root cause of performance and condition 
deterioration processes, e.g., (Abdallah, et al., 2018). However, to what measurable extent is the 
acquired information able to support improved policy-planning in an engineering environment, 
and how can we objectively quantify the resulting gains?  

An important discussion in this direction, originating beyond infrastructure decision-making 
(Raiffa, 1968; Lindley, 1971; Howard, 1966 ), is whether the benefits of the various 
observational strategies (e.g., SHM-aided plans or in situ visual and specialized non-destructive 
evaluation inspections) can be quantified in terms of lifecycle value-based metrics. The question 
that summarizes this discussion is how much is information worth or, similarly, how much is an 
SHM system worth investing in? (Pozzi & Der Kiureghian, 2011; Thöns & Faber, 2011; Straub, 
et al., 2017). In response, recent research efforts have systematically focused on 
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describing an overarching risk- and reliability-based framework for quantifying the Value of 
Information (VoI) and, similarly, the Value of Structural Health Monitoring (VoSHM), which 
can universally accommodate different lifecycle phases and types of stressors and hazards 
(Thöns, 2019; Diamantidis, Sykora, & Sousa, 2019).  

This chapter casts the pertinent formulations within the context of stochastic optimal control, 
particularly Markov decision processes and partially observable Markov decision processes. 
Regardless of the employed decision rule, the concept of VoI can be utilized to (i) evaluate the 
amount the decision-maker is willing to pay for information prior to a single decision step of the 
decision process, either considering the long- or short-term benefits, e.g., (Straub & Faber, 2005) 
or (Fauriat & Zio, 2018), respectively; or (ii) to quantify the overall gain that information may 
yield as per a fixed inspection/monitoring policy, applied over the entire service life of a system, 
e.g. (Straub, 2014). The latter measure of VoI may be used to assess whether it is worth adopting 
a certain observational strategy over others from the beginning or the remainder of the system’s 
life. Similarly, within the context of SHM, VoI may be quantified as the difference between the 
expected cost of maintaining the system in absence of SHM information, and the cost given 
availability of monitoring information (Thöns & Faber, 2011; Thöns, Schneider, & Faber, 2015; 
Pozzi & Der Kiureghian, 2011; Zonta, Glisic, & Adriaenssens, 2014). Along the same lines, 
POMDP-based VoI analysis and quantification approaches have been developed in 
(Papakonstantinou, Andriotis, & Shinozuka, 2016; Memarzadeh & Pozzi, 2016; Li & Pozzi, 
2019). VoSHM is herein examined as a more specialized definition of VoI, describing relative 
costs between intermittent/optional observational schemes (e.g., periodic, or non-periodic 
inspection visits) and SHM-aided plans, where the flow of observations/data is typically 
continuous (Papakonstantinou, Andriotis, Gao, & Chatzi, 2019).  

In this chapter, within the context of MDPs/POMDPs, an analysis of these value-based 
information metrics is presented and the underlying steps for their computation are demonstrated 
in a numerical experiment of a three-component deteriorating engineering system operating in a 
stochastic environment under different information scenarios, including no information, optional 
inspection visits, and continuous availability of observations, also resembling SHM systems. 
Quantification is based on point-based POMDP value iteration solutions of the respective service 
life inspection and maintenance optimization problems. Overall, the presented methodology can 
answer the practical question of how much inspection or monitoring data information is 
eventually worth in each case.    

MARKOV DECISION PROCESS 
MDPs provide solutions for optimal sequential decision-making in stochastic environments with 
uncertain action outcomes and exact observations. The environment, E, is defined by a finite set 
of states, S, a stochastic interstate transition model, a reward function, r, and a finite set of 
actions, A. At each decision step t, the decision-maker (called agent) observes the current state 
𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆, takes an action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴, receives a reward as a result of this state and action, 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡), and 
goes to the next state 𝑠𝑠𝑡𝑡+1 ∈ 𝑆𝑆, according to the underlying Markovian transition probabilities, 
𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). It is, therefore, assumed that the current state and selected action are sufficient 
statistics for the next state, regardless of the entire prior history of state and action sequences. It 
is also important to note here that the Markovian property is not restrictive in any sense, since 
environments that do not directly possess it can be easily transformed to Markovian ones through 
state augmentation techniques, e.g., (Papakonstantinou & Shinozuka, 2014). 
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The state-dependent sequence of actions defines the agent’s policy, 𝜋𝜋. Agent’s policy can be 
either deterministic, 𝜋𝜋(𝑠𝑠𝑡𝑡):𝑆𝑆 → 𝐴𝐴, mapping states to actions, or stochastic, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡):𝑆𝑆 → 𝑃𝑃(𝐴𝐴), 
mapping states to action probabilities. For a deterministic policy, 𝜋𝜋 is a single value, given 𝑠𝑠𝑡𝑡. In 
the case of discrete actions, a stochastic policy 𝜋𝜋, given 𝑠𝑠𝑡𝑡, is a vector defining a probability mass 
function over all possible actions, whereas for continuous actions, the policy is a probability 
density function. To keep notation succinct and general, all policies are shown in non-vector 
notation in the remainder of this work. Policy, 𝜋𝜋, is associated with a corresponding total return, 
𝑅𝑅𝑡𝑡𝜋𝜋, which is the total reward collected under this policy, from any time step t to the end of the 
planning horizon T: 

𝑅𝑅𝑡𝑡𝜋𝜋 = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)+. . . +𝛾𝛾𝑇𝑇−𝑡𝑡𝑟𝑟(𝑠𝑠𝑇𝑇 ,𝑎𝑎𝑇𝑇) = �𝛾𝛾𝑖𝑖−𝑡𝑡𝑟𝑟(𝑠𝑠𝑖𝑖,𝑎𝑎𝑖𝑖)
𝑇𝑇

𝑖𝑖=𝑡𝑡

 (5.29) 

where 𝛾𝛾 is the discount factor, a positive scalar less than 1, indicating the increased importance 
of current against future decisions. The total return in Eqn. (5.1) is a random variable, as state 
transitions and, potentially, policies are stochastic. Conditioning the total return on the current 
state-action pair, 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, the action-value function, 𝑄𝑄𝜋𝜋, is defined as the expected return over all 
possible future states and actions: 

𝑄𝑄𝜋𝜋 (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝔼𝔼𝑠𝑠𝑖𝑖>𝑡𝑡~𝐸𝐸,𝑎𝑎𝑖𝑖>𝑡𝑡~𝜋𝜋[𝑅𝑅𝑡𝑡𝜋𝜋|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡] (5.30) 

Using Eqns. (5.1) and (5.2), the action-value function can be defined through the following 
convenient recursive form for any given policy, 𝜋𝜋: 

𝑄𝑄𝜋𝜋 (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝔼𝔼𝑠𝑠𝑡𝑡+1~𝐸𝐸,𝑎𝑎𝑡𝑡+1~𝜋𝜋[𝑄𝑄𝜋𝜋 (𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)] (5.31) 

The value function, or total expected return from state 𝑠𝑠𝑡𝑡, for policy 𝜋𝜋, is defined as the 
expectation of the action-value function over all possible actions at the current step: 

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝔼𝔼𝑎𝑎𝑡𝑡~𝜋𝜋[𝑄𝑄𝜋𝜋 (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)] (5.32) 

Under standard conditions for discounted MDPs, out of all possible policies there exists at 
least one deterministic policy that is optimal, maximizing 𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) (Puterman, 1994). For a 
deterministic policy, with a given model of transitions 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) and the aid of Eqns. (5.3) 
and (5.4), the optimal action-value and value functions, 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)and 𝑉𝑉(𝑠𝑠𝑡𝑡), respectively, follow 
the Bellman equation: 
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𝑉𝑉(𝑠𝑠𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑡𝑡∈𝐴𝐴

{𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)} 

= 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑡𝑡∈𝐴𝐴

�𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝔼𝔼𝑠𝑠𝑡𝑡+1~𝐸𝐸 � 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡+1∈𝐴𝐴
𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)�� 

= 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑡𝑡∈𝐴𝐴

�𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝔼𝔼𝑠𝑠𝑡𝑡+1~𝐸𝐸[𝑉𝑉(𝑠𝑠𝑡𝑡+1)]� 

= 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑡𝑡∈𝐴𝐴

�𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛾𝛾 � 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑉𝑉(𝑠𝑠𝑡𝑡+1)
𝑠𝑠𝑡𝑡+1∈𝑆𝑆

� 

 
 

(5.33) 

Eqn. (5.5) describes the standard MDP objective, which is typically solved using value 
iteration, policy iteration, or linear programming formulations. A concise MDP presentation can 
also be seen in (Papakonstantinou & Shinozuka, 2014). 

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS 
POMDPs generalize Markov decision processes to partially observable environments, i.e., to 
cases where observations are unable to reveal the actual state of the system with certainty. 
Similar to MDPs, in the POMDP framework the decision-maker/agent starts at a state, 𝑠𝑠𝑡𝑡 at 
every decision step, t, takes an action, 𝑎𝑎𝑡𝑡, receives a reward, 𝑟𝑟𝑡𝑡, transitions to the next state, 𝑠𝑠𝑡𝑡+1, 
and receives an observation, 𝑜𝑜𝑡𝑡+1∈ Ω, based on its state and action, according to the probability 
defined by an observation model, 𝑝𝑝(𝑜𝑜𝑡𝑡+1|𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡). This process is schematically depicted in 
Figure 5-1. More formally, a POMDP is a 7-tuple ℒ = ⟨𝑆𝑆,𝐴𝐴,𝑷𝑷,𝛺𝛺,𝑶𝑶,𝑹𝑹, 𝛾𝛾⟩  where S, A and Ω are 
finite sets of states, actions, and possible observations, respectively, and P, O, and R are the 
transition, observation, and reward models, respectively. 

As a result of partial observability, at every decision step t, the agent cannot be fully aware 
of its state, 𝑠𝑠𝑡𝑡 (shaded nodes in Figure 5-1), which may only be perceived through an observation 
𝑜𝑜𝑡𝑡 that is a noisy indicator of that state. Therefore, the agent can now only form a belief 𝒃𝒃𝑡𝑡 about 
its state, where 𝒃𝒃𝑡𝑡 is a probability distribution over the set S of all possible discrete states. The 
new belief 𝒃𝒃𝑡𝑡+1, i.e., the posterior state distribution for a given action and observation, can be 
readily computed through a Bayesian update (Papakonstantinou & Shinozuka, 2014): 

𝑏𝑏(𝑠𝑠𝑡𝑡+1) = 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑜𝑜𝑡𝑡+1,𝑎𝑎𝑡𝑡,𝒃𝒃𝑡𝑡) 

                =
𝑝𝑝(𝑜𝑜𝑡𝑡+1|𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡)
𝑝𝑝(𝑜𝑜𝑡𝑡+1|𝒃𝒃𝑡𝑡,𝑎𝑎𝑡𝑡)

�𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
𝑠𝑠𝑡𝑡∈𝑆𝑆

𝑏𝑏(𝑠𝑠𝑡𝑡) (5.34) 

where probabilities 𝑏𝑏(𝑠𝑠𝑡𝑡), for all 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆, form the belief vector 𝒃𝒃𝑡𝑡 of length|𝑆𝑆|, and the 
denominator of Eqn. (5.6), 𝑝𝑝(𝑜𝑜𝑡𝑡+1|𝒃𝒃𝑡𝑡,𝑎𝑎𝑡𝑡), is the standard normalizing constant. As such, beliefs 
can be seen as alternative states of this environment, and POMDPs can be accordingly regarded 
as belief-MDPs, as the schematic in Figure 5-2 shows. Further, the total expected return takes an 
expression similar to Eqn. (5.5):   

𝑉𝑉(𝒃𝒃𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑡𝑡∈𝐴𝐴

�� 𝑏𝑏(𝑠𝑠𝑡𝑡)𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
𝑠𝑠𝑡𝑡∈𝑆𝑆

+ 𝛾𝛾 � 𝑝𝑝(𝑜𝑜𝑡𝑡+1|𝒃𝒃𝑡𝑡,𝑎𝑎𝑡𝑡)𝑉𝑉(𝒃𝒃𝑡𝑡+1)
𝑜𝑜𝑡𝑡+1∈𝛺𝛺

� (5.35) 
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Despite this convenient conceptual consistency with MDPs, POMDPs are not as easy to 
solve. Note that the new belief-state space is not discrete but continuous now, forming a 
(|𝑆𝑆| − 1) −dimensional simplex. However, it has been proven that the optimal value function is 
piece-wise linear and convex and can thus be described by a finite number of affine hyperplanes, 
(Sondik, 1971). This important result reduces the decision problem to determining a finite set of 
vectors, also known as α-vectors: 

𝑉𝑉(𝒃𝒃𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜶𝜶∈𝛤𝛤

�� 𝑏𝑏(𝑠𝑠𝑡𝑡)𝛼𝛼(𝑠𝑠𝑡𝑡)
𝑠𝑠𝑡𝑡∈𝑆𝑆

� (5.36) 

A suitable set Γ and its corresponding 𝛼𝛼 vectors, properly supporting the belief space, is 
what point-based algorithms seek to determine in order to solve the problem. Further details and 
insights about point-based methods can be found in (Shani, Pineau, & Kaplow, 2013). Eqn. (5.8) 
is eventually solved using value iteration. However, performing exact value iteration on the α-
vector space is generally impractical, except for very small POMDP problems, since the new set 
of α-vectors generated at every iteration step scales exponentially with the cardinality of the 
observation set, |Ω| (Pineau, Gordon, & Thrun, 2003).  

 

  
Figure 5-15. Probabilistic graphical model of a 
POMDP in time (shaded nodes denote hidden 

states). 

Figure 5-16. Probabilistic graphical model of a 
POMDP as a belief-MDP in time (observations 

depend on states which are hidden). 

VALUE-BASED INFORMATION GAINS 

Stepwise Value of Information in POMDPs 

As described above, a POMDP can be defined through a tuple ℒ = ⟨𝑆𝑆,𝐴𝐴,𝑷𝑷,𝛺𝛺,𝑶𝑶,𝑹𝑹, 𝛾𝛾⟩. Based on 
the decomposable nature of the reward and the effects of different observational and intervention 
actions, the tuple can be rewritten as ℒ = �𝑆𝑆,𝐴𝐴𝑀𝑀 × 𝐴𝐴𝑂𝑂 , �𝑷𝑷𝑎𝑎𝑀𝑀�𝑎𝑎𝑀𝑀∈𝐴𝐴𝑀𝑀 ,𝛺𝛺𝑒𝑒 × 𝛺𝛺𝑂𝑂 , �𝑶𝑶𝑎𝑎𝑂𝑂�𝑎𝑎𝑂𝑂∈𝐴𝐴𝑂𝑂 ,𝑹𝑹𝑀𝑀 +

𝑹𝑹𝑂𝑂 + 𝑹𝑹𝐷𝐷 , 𝛾𝛾�, where MA  is a set of maintenance actions Ma ; OA  is a set of observation actions 

Oa ; 
MaP  is the transition model for different maintenance actions Ma ; eΩ is a set of default 

observations (which the decision-maker always receives from the environment, regardless of the 
selected action); OΩ  is a set of observations, and is a union of observation sets 𝛺𝛺𝑎𝑎𝑂𝑂of the 
different observation actions 𝑎𝑎𝑂𝑂; 𝑶𝑶𝑎𝑎𝑂𝑂is the observation model for different observation 
actions 𝑎𝑎𝑂𝑂; 𝑹𝑹𝑀𝑀, 𝑹𝑹𝑂𝑂, and 𝑹𝑹𝐷𝐷 are the reward matrices for maintenance, observations, and damage 
state costs, respectively. Although, for notational efficiency, we assume the reward matrices to 

… 
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have the same dimensions |S|×|A|, the maintenance costs are independent of Oa , and the 
observation action costs are independent of Ma , whereas the damage costs are independent of 
both.  

If the decision-maker chooses a trivial observation action (which is uninformative and has a 
zero-cost associated), it will receive the default observation from 𝛺𝛺𝑒𝑒 plus an uninformative 
observation from Ωo. Thus, the decision-maker will overall receive the default observation, i.e., 
𝛺𝛺 ≡ 𝛺𝛺𝑒𝑒. Default observations are not necessarily uninformative; hence the respective POMDPs 
do not necessarily imply that the trivial actions yield no information. In deteriorating systems, 
failure, or near-failure states, for example, are often self-announcing, meaning that they are 
“observable” regardless of the selected observation action.  

Similarly, the trivial maintenance action is an action with no cost, i.e., 𝑟𝑟𝑀𝑀 = 0, and yields a 
natural (uncontrolled) environment transition. As denoted by the respective subscripts, state 
transitions 𝑷𝑷𝑎𝑎𝑀𝑀merely depend on maintenance actions, meaning that only maintenance actions 
𝑎𝑎𝑀𝑀 can change the state of the system, whereas observation actions 𝑎𝑎𝑂𝑂 can only change the 
agent’s perception about the state of the system, thus perfectly sufficing to define the observation 
model 𝑶𝑶𝑎𝑎𝑂𝑂 . Based on the above, we can define the stepwise VoI associated with a certain policy 
π as: 

VoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 (𝑎𝑎𝑂𝑂) = 𝔼𝔼𝑜𝑜𝑒𝑒,𝑜𝑜𝑂𝑂[𝑉𝑉𝜋𝜋(𝒃𝒃𝑎𝑎𝑀𝑀,𝑎𝑎𝑂𝑂,𝑜𝑜𝑒𝑒,𝑜𝑜𝑂𝑂)]− 𝔼𝔼𝑜𝑜𝑒𝑒[𝑉𝑉𝜋𝜋(𝒃𝒃𝑎𝑎𝑀𝑀,𝑜𝑜𝑒𝑒)] (5.37) 

Eqn. (5.9) describes the gain the decision-maker expects when taking an observation action at a 
certain time step t, following a policy π in the future. Subtracting the actual cost of the 
observation action 𝑟𝑟𝑏𝑏,𝑜𝑜 ∈ Ro from this gain, we obtain the net step VoI under a policy π as: 

netVoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 (𝑎𝑎𝑂𝑂) = VoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 − �𝑟𝑟𝑏𝑏,𝑂𝑂� (5.38) 

Net step VoI expresses the net gain at step t as a result of additional information, also 
considering the cost to acquire this information (e.g., inspection cost). If  nontrivial  observation  
actions  reveal  the  actual  state  of  the  system  with  certainty, i.e., Onontrivial=I (identity matrix),  
we  can  similarly  define  the  stepwise  Value  of  Perfect  Information  (stepwise VoPI), 
VoPI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 ,  and  net  stepwise VoPI, netVoPI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 , similarly to Eqns. (5.9) and (5.10). In such a 
case, in the term 𝔼𝔼𝑜𝑜𝑒𝑒,𝑜𝑜𝑂𝑂[𝑉𝑉𝜋𝜋(𝒃𝒃𝑎𝑎𝑀𝑀,𝑎𝑎𝑂𝑂,𝑜𝑜𝑒𝑒,𝑜𝑜𝑂𝑂)] of Eqn. (5.9), uncertainty is only attributed to the state 
transition, which is controlled by the chosen maintenance, VoPI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 (𝑎𝑎𝑂𝑂) = 𝔼𝔼𝑠𝑠′~𝒃𝒃𝑎𝑎𝑀𝑀[𝑉𝑉𝜋𝜋(𝑠𝑠′)]−
𝔼𝔼𝑜𝑜𝑒𝑒[𝑉𝑉𝜋𝜋(𝒃𝒃𝑎𝑎𝑀𝑀,𝑜𝑜𝑒𝑒)]. It has been derived in (Andriotis, Papakonstantinou, & Chatzi, 2021) that for 
policy π: VoPI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 ≥ VoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 ≥ 0 and equality VoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 = 0 hold if 𝛺𝛺𝑎𝑎𝑂𝑂is a unit set, i.e., 
nontrivial observation actions also yield uninformative observations. Equality VoPI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 =VoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋  
holds if Onontrivial=I; that is, nontrivial observation actions  reveal  the  actual  system  state  with 
certainty. This also holds for optimal policy π = π*, thus VoPI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋∗ ≥ VoI𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋∗ ≥ 0. 

Lifecycle Gain from Changing Control Settings 
The expected lifecycle gain of one control setting versus another can be expressed as the value 
difference between the two settings, when different action sets are available for each setting, but 
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these apply to the same system, i.e., the two settings have the same state space and the same 
deterioration dynamics (transition model for the uncontrolled case) as well as the same 
discounted horizon. Further, to assess the expected lifecycle gain of one observational scheme 
versus another (e.g., SHM, inspection visits, etc.), the tuple elements related to maintenance 
actions have to be the same, thus we considered the following two tuples as the POMDP settings: 

ℒ1 = �𝑆𝑆,𝐴𝐴𝑀𝑀 × 𝐴𝐴𝑂𝑂1 , �𝑷𝑷𝑎𝑎𝑀𝑀�𝑎𝑎𝑀𝑀∈𝐴𝐴𝑀𝑀 ,𝛺𝛺𝑒𝑒 × 𝛺𝛺𝑂𝑂1 , �𝑶𝑶𝑎𝑎𝑂𝑂
1 �

𝑎𝑎𝑂𝑂∈𝐴𝐴𝑂𝑂
1 ,𝑹𝑹𝑀𝑀 + 𝑹𝑹𝑂𝑂1 + 𝑹𝑹𝐷𝐷 ,𝛾𝛾� 

ℒ2 = �𝑆𝑆,𝐴𝐴𝑀𝑀 × 𝐴𝐴𝑂𝑂2 , �𝐏𝐏𝑎𝑎𝑀𝑀�𝑎𝑎𝑀𝑀∈𝐴𝐴𝑀𝑀 ,Ω𝑒𝑒 × Ω𝑂𝑂2 , �𝐎𝐎𝑎𝑎𝑂𝑂
2 �

𝑎𝑎𝑂𝑂∈𝐴𝐴𝑂𝑂
2 ,𝐑𝐑𝑀𝑀 + 𝐑𝐑𝑂𝑂

2 + 𝐑𝐑𝐷𝐷 , 𝛾𝛾� 

(5.39) 

 
Then, the expected life-cycle gain, 𝐺𝐺ℒ1,ℒ2, from following the optimal policy in ℒ2versus ℒ1ℒ1, 
starting at any belief 𝒃𝒃 ∈ 𝐵𝐵, is computed as: 

𝐺𝐺ℒ1,ℒ2(𝒃𝒃) = 𝑉𝑉2∗(𝒃𝒃) − 𝑉𝑉1∗(𝒃𝒃) (5.40) 

where 𝑉𝑉1∗,𝑉𝑉2∗ are the optimal value functions of each tuple, ℒ1, ℒ2, respectively. Equivalently, 
Eqn. (5.12) describes the potential benefits as a result of different sources and/or accuracy of 
information from scheme ℒ1 to ℒ2 at belief b. Thus, Eqns. (5.11) and (5.12) will be used to 
derive and elaborate the gains related to different observational schemes and their relation to VoI 
and VoSHM. 

Value of Information 

Considering Eqn. (5.11) suppose 𝐴𝐴𝑂𝑂1  is a unit set, containing only a trivial observation action. 
Then, 𝑹𝑹𝑂𝑂1 = 𝟎𝟎. This technically means that 𝛺𝛺𝑂𝑂1  is defined by a unit set as well. As such, overall, 
from all states, only one observation is possible, which is the default observation, i.e., 𝛺𝛺1 ≡ 𝛺𝛺𝑒𝑒. 
In this case, tuple  ℒ1 defines the default control problem (also often called prior in the literature) 
of ℒ2, i.e., ℒ1 ≐ ℒ𝑑𝑑𝑑𝑑𝑑𝑑 and ℒ2 ≐ ℒ, thus Eqn. (5.12) gives the VoI of the observational scheme 
adopted in ℒ2 (Straub, 2014): 

𝐺𝐺ℒ𝑑𝑑𝑑𝑑𝑑𝑑,ℒ(𝒃𝒃) = 𝑉𝑉𝑉𝑉𝐼𝐼ℒ(𝒃𝒃) = 𝑉𝑉∗ (𝒃𝒃)− 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑∗ (𝒃𝒃) (5.41) 

In addition to the previous assumption, let us now assume that 𝐴𝐴𝑂𝑂2  is a unit set with only a 
nontrivial action available at no cost, and |𝛺𝛺𝑂𝑂2 | = |𝑆𝑆|with 𝑶𝑶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

2 = 𝑰𝑰 (identity matrix). In  
this case, the  agent operates under  perfect information at every  decision  step of ℒ. This 
reduces the POMDP defined by ℒ  to an MDP problem, i.e., ℒ ≐ ℒ𝑀𝑀𝑀𝑀𝑀𝑀. Under these 
assumptions, using Eqn. (5.12) we obtain the Value of Perfect Information (VoPI): 

𝐺𝐺ℒ𝑑𝑑𝑑𝑑𝑑𝑑,ℒ𝑀𝑀𝑀𝑀𝑀𝑀(𝒃𝒃) = 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼ℒ(𝒃𝒃) = 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀∗ (𝒃𝒃) − 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑∗ (𝒃𝒃) (5.42) 

If the value functions in Eqns. (5.13) and (5.14) include the cost related to observational 
actions, then, according to (Straub, et al., 2017), they can also be associated with the net VoI, as 
explained in the previous section. As intuitively understood and formally proven in (Andriotis, 
Papakonstantinou, & Chatzi, 2021), VoPI is an upper bound of VoI, and both information gains 
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should be non-negative, in the sense that information should not be expected to hurt decisions. 
Notwithstanding its intuitive nature, it is also showcased in (Andriotis, Papakonstantinou, & 
Chatzi, 2021) that this remark is not necessarily true if the decision-maker is following an 
inspection and maintenance policy other than the optimal policy prescribed by the solution of 
Eqn. (5.8).  

Value of Structural Health Monitoring 
The VoSHM refers to the possible gains from investing in lifelong SHM devices and continuous 
data practices, instead of, or in addition to, planning inspection visits at distinct times during the 
structural service life. As such, the VoSHM relates to the critical decision, either at the design 
stage or later, of whether a monitoring scheme is worth being adopted, and if so, of which type. 
VoSHM quantifies essentially the benefits of continuous data collection and information inflow 
in the decision-support system.  

In this work, to quantify the VoSHM, we examine another special case of Eqn. (5.11). We 
assume that 𝐴𝐴𝑂𝑂1  contains at least one nontrivial available action. Conversely, 𝐴𝐴𝑂𝑂2  contains only 
one available observation action, which is, however, not the trivial one and is costless, i.e., 𝑹𝑹𝑂𝑂2 =
𝟎𝟎. For the two POMDP settings, the nontrivial observation actions may follow different 
observation models. Thereby, ℒ1 ≐ ℒ1,𝑜𝑜𝑜𝑜𝑜𝑜 corresponds to the scenario of optional inspection 
visits, whereas  ℒ2 ≐ ℒ2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 corresponds to an alternative observational scheme with 
permanent characteristics, as is provided by an SHM system. Along these lines, the VoSHM is 
defined as: 

𝐺𝐺ℒ1,𝑜𝑜𝑜𝑜𝑜𝑜,ℒ2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝒃𝒃) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀ℒ1,𝑜𝑜𝑜𝑜𝑜𝑜,ℒ2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝒃𝒃) = 𝑉𝑉2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∗ (𝒃𝒃)− 𝑉𝑉1,𝑜𝑜𝑜𝑜𝑜𝑜

∗ (𝒃𝒃) (5.43) 

It should be noted that the expected VoSHM lifecycle gain defined in Eqn. (5.15) cannot be 
strictly seen as VoI, as it can also take negative values. This may happen, for example, if the 
state information provided by an optional inspection visit is more accurate than the outcome of 
the permanent monitoring system, for any possible reason.  A VoSHM value lower than the cost 
of a SHM system (including acquirement, installation, maintenance, and operation costs, etc.) 
simply suggests that there is no benefit for the decision-maker to invest in SHM but, instead, 
optimal planning with selected inspection visits should be preferred.   

Using Eqn. (5.15) we can compute the VoSHM at every possible belief point that the system 
can visit throughout the planning horizon. Typically, the belief of foremost interest is the root 
belief, 𝒃𝒃0, which reflects the probability distribution over all possible states at the initial 
conditions, i.e., for the defined time step t = 0. In this case, the VoSHM quantifies the lifecycle 
value of the monitoring system. For t>0, which usually corresponds to 𝒃𝒃𝑡𝑡 ≠ 𝒃𝒃0, Eqn. (5.15) 
describes the remaining VoSHM from that time onward. The notion of remaining VoSHM can 
be of particular practical importance in cases where the optimal salvage time of the SHM system 
needs to be determined. 

If the nontrivial observation actions in ℒ1,𝑜𝑜𝑜𝑜𝑜𝑜,ℒ2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 share the same observation probability 
model, i.e., with the respective settings denoted as ℒ1,𝑜𝑜𝑜𝑜𝑜𝑜 ≐ ℒ, ℒ2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≐ ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, we obtain a 
non-negative value in  Eqn. (5.15). This could practically refer to a case where both inspections 
and SHM are based on the same sensing units. Thus, the VoSHM can be seen in this case as the 
Relative Value of Continuous Information (RVoCI), since it quantifies the possible gain if the 
nontrivial observation is continuously and freely available: 
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𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀ℒ,ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝒃𝒃) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼ℒ(𝒃𝒃) 
                                                  = 𝑉𝑉𝑉𝑉𝐼𝐼ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝒃𝒃) − 𝑉𝑉𝑉𝑉𝐼𝐼ℒ(𝒃𝒃) 

                                         = 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗ (𝒃𝒃) − 𝑉𝑉∗ (𝒃𝒃) 
(5.44) 

The obtained 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼ℒ value from Eqn. (5.16) will be a non-negative gain in the above inspection 
settings, as shown in (Andriotis, Papakonstantinou, & Chatzi, 2021). 

NUMERICAL APPLICATION WITH THREE-COMPONENT SYSTEM  
Here, we have considered a three-component inspection and maintenance problem with 
stationary deterioration to assess VoI, VoSHM, and their specialized cases, as discussed in 
previous sections. For the reported results, the point-based algorithms of Focused Real-Time 
Dynamic Programming (FRTDP) (Smith & Simmons, 2005; Smith & Simmons, 2006; 
Kurniawati, Hsu, & Lee, 2008), and Perseus (Spaan & Vlassis, 2005) have been implemented to 
solve the POMDP problems and to determine the optimal service life strategies. 

Environment and Description of Control Settings  
For the purposes of a parametric numerical investigation in the presence of various observability 
accuracy levels, we consider a small three-component system. An infinite horizon case with 
γ=0.95 is analyzed. The discount factor, γ, reflects the current value of future costs, thus largely 
depending on economic features, such as interest rate and inflation. Stochastic deterioration of 
the components, for all i ∈{1,2,3}, is defined by independent transition matrices, P(i),0, whereas 
whenever a repair action is taken the components share the same transition matrix P(i=1,2,3),rep: 
 

𝑷𝑷(1),0 = �
0.82 0.13 0.05

0.87 0.13
1.00

� ,𝑷𝑷(2),0 = �
0.72 0.19 0.09

0.78 0.22
1.00

� , 

𝑷𝑷(3),0 = �
0.79 0.17 0.04

0.85 0.15
1.00

� ,𝑷𝑷(𝑖𝑖=1,2,3),𝑟𝑟𝑟𝑟𝑟𝑟 = �
0.90 0.10
0.80 0.20

0.70 0.30
� 

(5.45) 

 
As indicated by Eqn. (5.17), each component is described by three condition levels with 

stationary transition dynamics, i.e., transition from condition level k to j is independent of time, 
component age or deterioration rate. For example, for component 3, the transition probability 
from state 1 to state 3 is 0.04. Overall, the examined system can be fully specified by 27 states. 
Markovian transition probabilities of structural systems can be constructed based on simulated or 
real data of longitudinal responses, system conditions, rankings, etc., e.g., in (Papakonstantinou 
& Shinozuka, 2014; Andriotis & Papakonstantinou, 2018; Manafpour, Guler, Radlinska, 
Rajabipour, & Warn, 2018), either through maximum likelihood estimation or expectation-
maximization schemes in the presence of latent state variables. In order to quantify the VoSHM 
for this three-component system, two POMDP control settings are evaluated. For Setting 1, four 
observation and maintenance control actions are available for each component, including the 
possibility of inspection visits at belief points suggested by the POMDP solution. These actions 
are ‘no observation and no repair,’ ‘observation and no repair,’ ‘no observation and repair,’ and 
‘observation and repair.’ The ‘no observation’ observation action is the trivial observation action, 
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and the default observation is considered uninformative. As such, the default control problem is 
here called blind, ℒ𝑑𝑑𝑑𝑑𝑑𝑑 ≐ ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The total number of system actions is 64. For Setting 2, 
observations of nontrivial actions are available at no cost at every decision step, corresponding to 
a permanent monitoring observation scheme. Accordingly, only 2 maintenance control actions 
need to be considered, i.e., ‘no-repair’ and ‘repair.’ Based on the possible action combinations, 8 
system actions are available for Setting 2. Observation matrices, for all components, are given 
as: 

𝑶𝑶(𝑖𝑖=1,2,3) =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑝𝑝

(1 − 𝑝𝑝)
2

(1 − 𝑝𝑝)
2

(1 − 𝑝𝑝)
2

𝑝𝑝
(1 − 𝑝𝑝)

2
(1 − 𝑝𝑝)

2
(1 − 𝑝𝑝)

2
𝑝𝑝 ⎦

⎥
⎥
⎥
⎥
⎤

 (5.46) 

Eqn. (5.18) assigns an observation accuracy of 0 ≤ 𝑝𝑝 ≤ 1 every time an ‘observation’ is 
taken, meaning that the correct state is observed with probability p, whereas either one of the 
other states is observed uniformly at random with probability 1-p. Negative rewards (or costs) 
for individual components are given in Table 5-1 for different states and actions. Observation 
actions are considered 1/12, 1/18, and 1/30 of the repair cost for condition levels 1, 2, and 3, 
respectively. Observation actions have constant costs with respect to states, whereas repair costs 
are considered to increase with damage severity. These values establish representative 
proportions between inspection and repair costs (Jiang, Corotis, & Ellis, 2000; Luque & Straub, 
2019) and can vary as per the specific nature of the studied engineering system. System-level 
interdependence among components is established though the reward function, with certain 
penalties added to the cumulative component costs at different system state configurations. That 
is, for system states {(2,2,1)}, {(2,2,2),(1,2,3),(2,2,3)}, {(3,3,1),(3,3,2)}, and {(3,3,3)}, penalties 
are -5.0, -10.0, -14.0, and -18.0, respectively, where vector (i,j,k) denotes component condition 
level combinations, i.e., (3,3,1) indicates that there are 2 components in condition level 3 and one 
component in condition level 1. These system-level state rewards are combined with the rewards 
of the individual components, shown in Table 5-1. 

Obtained Optimal Policies 
For both POMDP settings, FRTDP, SARSOP, and Perseus point-based algorithms are 
implemented. As shown in the analysis results presented in Figure 5-3 and Figure 5-4, for 
p=0.90, Setting 1 practically converges after 1,000 s, whereas Setting 2 converges after 110 s for 
all algorithms. It can be seen that the precision of the solution of Setting 1 is somewhat lower 
that the precision of Setting 2, for FRTDP and SARSOP. This can be attributed to the fact that 
the system in Setting 1 operates in a much more challenging POMDP environment with more 
actions and, consequently, larger reachable belief space. A realization of the converged policy is 
shown in Figure 5-5 and Figure 5-6. For Settings 1 and 2, each component needs to perform 
different policies in order for their combined behavior to collectively minimize the total expected 
cost of the system. In Figure 5-5, depicting a policy realization for the case of optional 
inspections, component 1 requires an inspection visit roughly every two years, whereas its 
‘repair’ actions are mostly taken at the inspection times. Component 2 requires inspections at 
almost every decision step (all time steps except t=10 in the realization of  Figure 5-5). 
Component 3 policy combines features of the other two policies, choosing frequent inspections, 
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with a few ‘no observation and no repair’ actions. These policy patterns are intuitively 
anticipated, as the transition dynamics of component 3 are between the other two cases defined 
by components 1, 2. Figure 5-6 illustrates a service life policy realization for the case of 
permanent monitoring (Setting 2). In this POMDP setting, observations are always available at 
no cost due to the permanent monitoring system and continuous data assumption, as explained in 
earlier sections.  

 

Table 5-35. Individual component costs (negative rewards) of maintenance and 
 observation actions for three-component deteriorating system. 

Condition Levels  1 2 3 
Maintenance rewards (rM) 1: Do Nothing 0 0 0 
Maintenance rewards (rM) 2: Repair -12 -18 -30 
Observation rewards (rO) 1: No observation 0 0 0 
Observation rewards (rO) 2: Observation -1 -1 -1 
Damage rewards (rD)  0 -5 -12 

 
 

  
 

Figure 5-17. Performance of different point-
based POMDP algorithms in the three-

component system problem, with p=0.90, for 
Setting 1 (optional monitoring setting).  

 
Figure 5-18. Performance of different point-

based POMDP algorithms in the three-
component system problem, with p=0.90, for 

Setting 2 (permanent monitoring setting).  
 
The converged value functions and VoI for each setting as well as the VoSHM are shown as 

functions of the observability accuracy level, p, in Figure 5-7. VoSHM equals the RVoCI, as 
Settings 1 and 2 share the same observation matrices for their observation actions. It can be 
observed that as the observation accuracy increases, the VoSHM increases and is concave down, 
reaching a plateau at higher levels of accuracy. The VoSHM of the system ranges from ~3% to 
~11% of the value of Setting 1, for p=0.50 to p=1.00, respectively. This means that any 
permanent monitoring system with continuous data and lifetime cost lower than these amounts 
should be preferred, in place of any inspection plan, including the optimal one. The VoI also 
increases with increased observability, for both settings; however, it is concave up. This pattern 
is more prominent for the value function of Setting 1, where a plateau is practically reached for 
p<0.60. This indicates that the observation quality is quite poor at this region, so the decision-
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maker does not choose to pay for inspection and, consequently, the value of Setting 1 becomes 
equal to the value of the optimal blind policy. The VoPI is ~25% of the optimal blind policy cost 
and, by definition, is reached by the VoI of Setting 2, for p=1.00. 
 

  

  

  
 

Figure 5-19. Policy realization of three-
component system Setting 1 (optional 
inspection setting), with p=0.90, for all 

components. 

 
Figure 5-20. Policy realization of three-

component system Setting 2 (permanent 
monitoring setting), with p=0.90, for all 

components. 
 
 

 
Figure 5-21. Optimal value functions of three-component system for 

Settings 1 and 2 and respective VoSHM and VoI, for different 
observability levels. 
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CONCLUSIONS 
In this chapter, a methodology to compute the Value of Information (VoI) and the Value of 

Structural Health Monitoring (VoSHM) within the context of MDP/POMDPs is presented. 
Respective stepwise and long-term value-based information metrics are analyzed, and their 
relations to the POMDP optimality equations are provided. The key findings are summarized 
below: 

• For the quantification of VoI, the first POMDP setting evaluated involves 
optimization of maintenance actions for the default decision problem (no observation 
actions available), whereas the second setting optimizes both maintenance and 
observation actions. This process complies with standard VoI definitions. For the 
quantification of VoSHM, the first setting corresponds to an observational scheme 
with optimal optional inspections, whereas the second setting operates under the 
assumption of continuously available data and observations. 

• The two metrics are defined over the operational life of the system, quantifying the 
expected long-term cumulative gains upon availability of inspection- or monitoring-
based structural health information. A stepwise definition of VoI is also introduced, 
which is a non-negative convex function, over the space of all possible posterior state 
probability distributions. 

• Details for formulating the underlying MDP/POMDP problem settings and the 
quantification of possible gains related to structural health information (either 
obtained by inspections or SHM) are presented using point-based value iteration 
algorithmic approaches.  

• Results are presented for a three-component deteriorating system, which verifies the 
theoretical discussion and results. The overall outcome of this analysis is a 
quantitative answer to the practical question of how much is structural health 
information and data from inspections and/or monitoring worth, as well as how 
information of increased precision can affect decisions. 

Potential extensions of the present work include, among others, consideration of different 
types of inspection and continuous monitoring observation models directly calibrated based on 
real data, and integration of advanced learning techniques with the decision-making process for 
online extraction of efficient damage and condition indicators from high-dimensional and 
heterogeneous monitoring data. 
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C H A P T E R  6  

Pavement Distress Recognition via 
Wavelet-based Clustering of Smartphone 
Sensor Data 

INTRODUCTION 
Road condition maintenance is a persistent challenge due to the scale of transportation systems 
and the logistical complexities of roadway inspections (Wang K. C., 2000; Flintsch & McGhee, 
2009; Wu, et al., 2020). Timely response to road pavement distress not only is crucial to keep 
vehicle passengers safe, but also extends ride quality and comfort. It is also highly desirable to 
distinguish pavement degradations at early stages before they transform to severe abnormalities, 
which may cause safety incidents and increase the cost of restorative maintenance. 

Manual visual inspections were formerly the conventional way to monitor road quality; 
however, human factors, safety, personal biases, and the time-consuming nature of the process 
have led researchers to explore alternative approaches. The current state-of-the-practice on most 
U.S. highways is the highway-speed collection of images and laser scans with subsequent 
human-augmented analysis of both distresses and ride quality. A growing number of studies have 
pursued the use of on-vehicle sensing combined with machine learning (ML) to enhance the 
visual inspection process (Tsai & Chatterjee, 2017; Basavaraju, Du, Zhou, & Ji, 2019). In 
particular, a recent focus has been on using smart phone accelerometer data, given the ubiquity 
of the sensors and the direct connection between vehicle dynamics and roadway quality. These 
efforts have predominantly employed supervised ML and so rely on the availability of labeled 
sensor data. This severely limits the generalizability of the results.  

This chapter explores an unsupervised learning approach that does not require exhaustively 
labeled data sets and generalizes across variations in vehicle dynamics and roadway 
characteristics. The main idea is to automatically identify and characterize deviations in vehicle 
response for a particular combination of smartphone and vehicle. While the detector itself cannot 
generalize over different vehicles, the detection of anomalies along a specific roadway segment 
can do so. In an envisioned deployment setting, unsupervised defect detection would be 
repeatedly reported for a specific road segment for many different types of vehicles, and the 
aggregate of these reports could be used to derive a deeper understanding into roadway quality.  

As a first step toward realizing this concept, here we present an unsupervised learning 
framework for road quality assessment. The framework brings wavelet signal processing and 
clustering techniques together in an analytical process that eliminates the need for empirical 
hyperparameter tuning. It takes advantage of multi-objective Pareto optimization to organize the 
hyperparameter space and automatically select optimal configurations over features and 
clustering techniques. Evaluation over real-world data shows the capability of the framework in 
detecting road pavement distress, but also shows that low-cost crowdsourced data may not be 
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adequate to distinguish nuanced variations in pavement distress. The presented framework is 
generalizable, allowing it to be used in future studies on the aggregation of unsupervised learning 
analyses from multiple vehicles.  

Prior Work  
In general, pavement assessment can be categorized as manual visual, image processing, laser 
profiles/scans, or vibration-based (Chang, Chang, & Chen, 2006; Ho, Snyder, & Zhang, 2020; 
Lee & Yoon, 2018). Here we focus on vibration-based methods, in particular those that utilize 
ML for data analysis. Due to the need for data sets in ML, data acquisition has attracted the 
majority of attention in prior studies (Marcelino, de Lurdes Antunes, & Fortunato, 2018). This is 
often achieved with purpose-built sensor arrays onboard a vehicle, for instance to identify the 
impact of temperature change on pavement distress (Ho, Snyder, & Zhang, 2020). In particular, 
in (Ho, Snyder, & Zhang, 2020) four sensors on each wheel's control arm and one sensor inside 
the vehicle were mounted for this purpose.  

As an alternative to custom-designed sensor arrays, other research efforts have explored 
using smartphone accelerometer data to crowdsource pavement condition assessment 
(Basavaraju, Du, Zhou, & Ji, 2019; Allouch, Koubâa, A., Abbes, & Ammar, 2017). These 
studies utilized a supervised ML approach to fit a statistical model to labeled sensor data. 
Applications of these methods have varied from simple binary classification to more complex 
multi-class surface condition classification. For example, work in (Basavaraju, Du, Zhou, & Ji, 
2019) developed Support Vector Machine (SVM)-, Decision Tree (DT)-, and Neural Network 
(NN)-based models to classify smartphone-based data as smooth condition, potholes, and 
transverse cracks. Work in (Allouch, Koubâa, A., Abbes, & Ammar, 2017) created a real-time 
android application named RoadSense to predict the condition of pavement according to all three 
smartphone accelerometer axes (x, y, and z) and gyroscope by using the C4.5 DT classifier 
(Quinlan, 1992). Two additional classification tasks were investigated in (Souza, Souza, 
Cherman, Rossi, & Souza, 2017). The first was a binary classification task to recognize regular 
versus irregular road segments. The second was a multi-class classification task to distinguish 
between speed hump, vertical patch, raised pavement markers, and raised crosswalk 
irregularities. Four classifiers (SVM, Random Forest (RF), Naive Bayes (NB), and 1-Nearest 
Neighbor) were trained on various designed features for these tasks. 

Unsupervised learning comprises less of the existing literature  (Wang, Wang, Xiao, Qiu, & 
Zhang, 2018; Eriksson, Girod, Hull, & Newt, 2008). Many of the works that utilize unsupervised 
learning make specific assumptions on accessibility to road performance indicators as their input 
for roadway clustering and asset management. For instance, work in (Taleqani, Bridgelall, 
Hough, & Nygard, 2019) used the DBSCAN clustering algorithm to classify the quality of road 
segments, using the accelerometer and gyroscope sensors of a smartphone (Ester, Kriegel, 
Sander, & Xu, 19969). The roughness of clusters was investigated using the road impact factor 
(RIF) index that is defined as average g-force magnitude per unit of distance. The RIF-index was 
calculated on raw sensor data based on different window sizes (25 cm to 150 cm) to estimate the 
effect of window size. The silhouette coefficient (SC) metric was used to evaluate the quality of 
identified clusters (Rousseeuw, 1987). The use of agglomerative clustering for data pre-
processing was investigated in (Titus-Glover, 2019). 

Both supervised and unsupervised ML models are highly impacted by the quality of the 
features extracted from raw data (Souza, Souza, Cherman, Rossi, & Souza, 2017). Using NNs to 
automatically learn features from sensor data has been evaluated in image-based assessment 
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studies (Roberts, Giancontieri, Inzerillo, & Di Mino, 2020; Eisenbach, et al., 2017). Feature 
learning via deep NNs is ideal, but deep models are also data-hungry; they need a large training 
dataset, which currently remains impractical. More conventionally, statistical features are 
extracted from acceleration data represented in the time or spectral domains, or via wavelet 
transforms. There is no clear preference on any of these domains for pavement condition 
assessment. Time and spectral domain features were extracted from accelerometer and gyroscope 
sensors in (Allouch, Koubâa, A., Abbes, & Ammar, 2017). The authors of (Souza, Souza, 
Cherman, Rossi, & Souza, 2017) extended their work in (Souza, Giusti, & Batista, 2018) and 
provided a real-time mobile-based system, named Asfault, for road pavement condition 
evaluation by using built-in smartphone sensors and ML techniques; 62 features, including 23 
temporal and 39 spectral statistics, were extracted from the magnitude acceleration time series. 
The ReliefF algorithm was utilized in this work to rank these features based on their importance 
on the target task (Robnik-Šikonja & Kononenko, 2003). Spectral irregularity, average 
magnitude, fundamental frequency, spectral flux, and root-mean-square (RMS) were reported as 
the top five features in this study.  In (Basavaraju, Du, Zhou, & Ji, 2019), 23 temporal, 39 
spectral, 20 linear spectral frequencies (LFS), and 36 continuous wavelet transform (CWT) 
statistics (using the Haar function) from different acceleration axes (x-, y-, z-, and magnitude-
acceleration) were considered. The performance of four classifiers on different combinations of 
these features (varied from 20 to 472 features) was reported.  

Compared to featurization over the time and spectral domains, wavelet-based featurization 
presents two clear advantages. Its resolution in both time and spectral domains allows it to 
resolve complex non-stationary signals (Javed, Gouriveau, & Zerhou, 2014). Additionally, a 
variety of available mother wavelet types have proven useful for capturing the different 
frequency characteristics of road distress (Wu, et al., 2020). However, determining a wavelet's 
optimal set of hyperparameters, such as the number of scales/orders, has typically required 
extensive empirical calibration and model fitting (Seraj, van der Zwaag, Dilo, Luarasi, & 
Havinga, 2015).  

Contributions of this Work  
In this work, we pursue the combination of wavelet featurization and unsupervised clustering. 
The core contribution of this work is the integration of these processes in a manner that enables 
automated optimization of both featurization and clustering, without the need for exhaustive 
empirical hyperparameter fitting. In particular, the framework we propose leverages multi-
objective Pareto optimization to identify the ideal wavelet representation and clustering 
hyperparameters that optimize the quality of the resulting data clusters. This contribution 
expands the generalizability of unsupervised ML for pavement assessment, as each individual 
vehicle's dynamics and instrumentation can be featurized and clustered separately and then 
considered in aggregate for network-level asset management. As such, the work presented here 
opens up avenues for establishing a low-cost crowdsourcing framework capable of working in a 
variety of realistic settings. 

METHODOLOGY 
The schematic overview of the proposed framework is shown in Figure 6-1. In summary, the raw 
sensor data are vibration responses of a vehicle in the z-direction. The Featurization component 
extracts features from the raw data. The Unsupervised Distress Recognition carries out 
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unsupervised learning in the constructed features space via clustering. The Clustering Evaluation 
evaluates the identified clusters along several metrics. Finally, the Automated Design Selection 
searches over the hyperparameter space to identify optimal settings that correspond to optimal 
organizations of the sensor data into various pavement conditions. The rest of this section 
describes each of these components in greater detail. 

 
Figure 6-22. Schematic overview of the proposed framework. 

Featurization  
As summarized in the introduction, there is currently no well-established process for featurizing 
accelerometer response data for pavement assessment. However, recent research has indicated 
that wavelets are more effective than other approaches, due to their ability to overcome the 
complexity of non-stationary signals. It is worth noting that time and frequency domain 
representations can be combined with wavelet descriptors; however, this subsequently expands 
the dimensionality of the feature space (the number of features), which then poses further 
demands on the amount of data needed to fit ML models. Therefore, in this study we focus on 
wavelet featurization. 

The wavelet transform utilizes wavelike finite duration oscillations/functions known as 
wavelets. Shifting and scaling are two main concepts in wavelet transformation. A wavelet can 
be stretched or shrunk in time to match the shape of a signal and shifted over the entire signal to 
capture various locations. The scale factor is a key hyperparameter in wavelet featurization 
which determines the degree of compression and expansion of the mother wavelet and is 
inversely proportional to frequency. In other words, larger-scale values stretch the wavelet and 
correspond to gradual changes of signal; small-scale values compress the wavelet and relate to 
rapid changes of signal. Scale value determination is a non-trivial task in wavelet domain 
analysis which is usually performed at various scales to decompose the signal into various 
frequencies (Wei, Fwa, & Zhe, 2005). The correlation between the signal and the wavelet 
function is indicated through a coefficient. The higher the value of the coefficient, the better the 
correlation between the signal and wavelet function (Griffiths, 2012). 

The Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT) are the 
two established classes of wavelet transformation. DWT coefficient computation is more 
efficient than CWT, because DWT coefficients are calculated on selected scales and time 
intervals. In contrast, CWT coefficients are computed by decomposition of continuous time-
series signal into wavelets over the real axis and provide a more fine-grained representation of a 
signal. In DWT, the level of decomposition is a key hyperparameter that needs to be determined. 
At each level of decomposition, the signal is separated into two parts using a low-pass and a 
high-pass filter. The result from the high-pass filter is kept, and the result from the low-pass is 
filtered again until the desired number of levels is reached (Griffiths, 2012). The result is an 
array of ordered coefficients, including approximation and detail coefficients. 
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The comparison of these two different transforms and discussion on how they differ from 
each other is outside the scope of this work. Interested readers can find more details in 
(Altunkaynak & Ozger, 2016). Prior work has shown the continuous Morlet and discrete 
Daubechies 6 (DB6) wavelets to be the most effective for pavement condition assessment due to 
their ability to identify essential features of the signal (Basavaraju, Du, Zhou, & Ji, 2019; 
Altunkaynak & Ozger, 2016). Per the extensive study conducted in (Griffiths, 2012), Morlet and 
DB6 mother wavelets are capable of capturing frequency variations of vehicle vibration signal. 
As a result, they are the focus of this work, and they provide a reasonable comparison of 
continuous and discrete wavelet featurizations. These two mother wavelet functions are shown in 
Figure 6-2. The statistical features obtained here, as well as their number, are shown in the 
experimental evaluation. 

 
  

 
 
 
 
 
 
 
 
 
 
                                         (a)                                                                                     (b)         Source: (Griffiths, 2012) 

Figure 6-23. Common mother wavelet functions suitable for vibration signal (a) DB6 (b) Morlet. 

Unsupervised Distress Recognition  
Following featurization to obtain features from raw sensor data, unsupervised clustering is 
performed to separate the accelerometer responses corresponding to different types of roadway 
defects from responses that indicate sound roadway surfaces in good condition. The premise is 
that different types of pavement defects will each cause different deviations in vehicle response, 
causing them to fall into separate clusters. From a condition assessment point of view, the largest 
cluster is expected to correspond to “sound'” pavement. While there are many clustering 
algorithms, we consider two popular distance-based clustering algorithms: k-means and 
agglomerative hierarchical clustering. 

K-means, a commonly employed clustering algorithm, works by finding cluster centroids 
and then associates each data point (in feature space) with a cluster based on Euclidean distance. 
The algorithm proceeds in iterations. The k centroids are initially selected at random over the 
data, and the rest of the data are assigned to the various clusters represented by the centroids in a 
way that optimizes a designed objective function. The objective function measures the sum of 
squared errors, which effectively means that at each iteration, data points are assigned to the 
centroid to which they are closest. The centroids are then recomputed to reflect the distribution 
of data points in a cluster. This process of assigning data points based on current centroids and 
updating centroids based on the current data assignment continues until a convergence criterion 
has been met; centroids do not change anymore (Xiong, Wu, & Chen, 2008). The number of 
clusters, k, must be determined a priori, making it a critical hyperparameter. 
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In contrast to k-means, the number of clusters does not need to be specified ahead of time 
for agglomerative clustering. This algorithm belongs to a family of clustering algorithms that 
construct nested clusters by successive merging/agglomeration or splitting (Zaman, Kamranfar, 
Domeniconi, & Shehu, 2019). The agglomerative algorithm is a merging approach that starts 
with the assumption that each point is a cluster, and it continues by merging such clusters until 
the dendrogram root is reached. Different numbers of clusters are achieved by cutting the 
dendrogram at different places. Linkage distance is the criterion used in the agglomerative 
algorithm as the merging strategy to quantify how close two clusters are, and the algorithm 
combines pairs of clusters, which minimizes this criterion (Pedregosa, et al., 2011). The Ward 
function is used as the linkage criterion in this study (Ward, 1963). It measures the sum of 
squares growth that is experienced by merging two clusters and picks the pairs that minimizes 
this amount. Although agglomerative clustering does not require the number of clusters as a 
hyperparameter, in order to provide the same experimental setting as k-means and to have a 
better understanding of where the best dendrogram cut is according to clustering validation 
metrics, we consider the same number of clusters, k, as specified in k-means for the 
agglomerative algorithm. 

Clustering Evaluation 
Unsupervised learning is challenging to evaluate. The absence of ground-truth labels makes the 
data acquisition phase easy and inexpensive, but it makes the evaluation phase harder. Internal 
metrics are designed to describe the quality of found cluster based on how well the clusters 
capture the structure of the data in the absence of any ground truth (Rendón, Abundez, & 
Arizmen, 2011). While such an evaluative approach is considered here, we also consider the 
potential of using a small subset of labeled data to augment Pareto optimization, referred to here 
as external metrics. There is a clear trade-off; having a small set of labeled data is labor-intensive 
but, as will be shown, it aids in evaluating the quality of clusters and in turn improves the 
optimization of the automated design selection. As it is realistic to assume that there are some 
labeled data but not sufficient for generalizable supervised learning, this component of our 
framework considers both external and internal metrics to evaluate the quality of identified 
clusters along several "performance indices." These performance indices are utilized as the input 
objectives for optimization in the following component of our framework, as we describe later. 
We first list the internal and external metrics we employ to obtain performance indices. 

Internal Metrics 
Internal metrics are designed in unsupervised learning literature to quantify the relationship of 
points within each cluster and the relationship of the clusters to each other. The main intuition is 
that if the data points within a cluster are closer to one another than to data points in other 
clusters, this indicates that the clustering quality is good and should be reflected in the 
performance indices. Specifically, we use the Calinski-Harabasz Index (CH) (Caliński & 
Harabasz, 1974) and the Davies-Bouldin Index (DB) (Davies & Bouldin, 1979). 

Calinski-Harabasz Index (CH): Introduced as one of the best validation clustering indices, it 
is also known as the variance ratio criterion. CH-index is defined as the ratio of the within-
cluster variance SSW and between-cluster variance SSB (Arbelaitz, Gurrutxaga, Muguerza, Pérez, 
& Perona, 2013; Pedregosa, et al., 2011). It is desired to obtain a large value for SSB indicating 
large distances between clusters' centroids and the centroid of the whole dataset compared to 



 78 r3utc.psu.edu 
 

small SSW value indicating small distances of data points to their assigned cluster's centroids. In 
essence, a higher CH-index value suggests the clusters are dense and well-separated.  

𝐶𝐶𝐶𝐶 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑆𝑆𝑆𝑆𝐵𝐵
𝑆𝑆𝑆𝑆𝑊𝑊

∗
𝑁𝑁𝑐𝑐 − 𝑘𝑘
𝑘𝑘 − 1

 (6.47) 

where Nc is the number of data points that are clustered into k clusters. The CH-Index equation 
can be expanded in terms of SSB and SSW definitions as follows: 

𝐶𝐶𝐶𝐶 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
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𝑘𝑘
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∗
𝑁𝑁𝑐𝑐 − 1
𝑘𝑘 − 1

 (6.48) 

 
where Ci is the centroid of cluster i, M is the centroid of the entire dataset, and CLi is cluster i 
(Łukasik, Kowalski, Charyanowicz, & Kulczycki, 2016).   

Davies-Bouldin Index (DB): Distances of data points inside clusters are calculated according 
to their corresponding cluster representative, and they are compared with cluster representatives' 
distances.  

𝐷𝐷𝐷𝐷 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1
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𝑘𝑘

𝑖𝑖=1

𝛿𝛿(𝐶𝐶𝐶𝐶𝑖𝑖) + 𝛿𝛿(𝐶𝐶𝐶𝐶𝑗𝑗)
𝐷𝐷(𝐶𝐶𝐶𝐶𝑖𝑖,𝐶𝐶𝐶𝐶𝑗𝑗)

 (6.49) 

where k is the number of clusters, CLi is cluster i, and δ denotes the intra-cluster, while D 
indicates the inter-cluster distances; δ and D can be calculated as follows:  

𝛿𝛿(𝐶𝐶𝐶𝐶𝑖𝑖) = �
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(6.50) 

where Ci is the centroid of cluster I (Petrovic, 2006). In contrast to the CH-index, smaller values 
of the DB-index indicate better clustering results. 

External Metrics 
We consider three external metrics that allow us to exploit a small set of labeled data to provide 
insight into the quality of the clusters identified over the larger (mostly unlabeled) dataset: 
Cluster Entropy, Label Distribution Entropy, and F-measure. The first two metrics are 
adaptations of our own. 

Cluster Entropy (CE): Cluster entropy estimates the purity of the clusters by means of the 
class labels assigned to its participating data points. By considering all labeled data points within 
a cluster i∈{1,…,k}, CEi summarizes the distribution of the class labels inside a cluster i 
(Rendón, Abundez, & Arizmen, 2011). Specifically, 

𝐶𝐶𝐶𝐶𝑖𝑖 = −�𝑝𝑝(𝑐𝑐|𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑐𝑐|𝑖𝑖)
𝑐𝑐

 (6.51) 
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where i is the cluster being considered, c varies over the available class labels, and p(c|i) 
measures the probability that a class label c falls in cluster i. The ideal value for CEi is zero, 
which occurs when all data points inside a cluster carry the same class label. In our adaptation, 
we use a weighted version of CE to provide a summary metric over all clusters and additionally 
differentiate between large and small clusters. Specifically, 

𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑁𝑁𝑖𝑖
𝑁𝑁

𝑘𝑘

𝑖𝑖=1
∗ 𝐶𝐶𝐶𝐶𝑖𝑖 (6.52) 

where k is the number of clusters, Ni is the number of data points inside cluster i, N is the size of 
the entire dataset, and CEi is the CE value of cluster i measured as above. Per the adaption, the 
contribution of larger clusters is more. 

Label Distribution Entropy (LDE): LDE was introduced in (Kamranfar, Bynum, Lattanzi, & 
Shehu, 2020) to track the distributions of labels over clusters. LDE modifies CE to consider the 
fraction of each class label that is captured in each cluster instead of the frequency of class labels 
within a cluster. Like CE, a smaller value of LDE indicates better clustering quality.   
       F-score: This metric uses a combination of two important concepts that are widely used in 
supervised learning, precision, and recall (Rendón, Abundez, & Arizmen, 2011). F-score allows 
us to consider both the purity and label distribution of clusters. Specifically,  

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
2 ∗ 𝑃𝑃𝑎𝑎,𝑏𝑏 ∗ 𝑅𝑅𝑎𝑎,𝑏𝑏

𝑃𝑃𝑎𝑎,𝑏𝑏 + 𝑅𝑅𝑎𝑎,𝑏𝑏
 (6.53) 

where P and R stand for precision and recall, respectively. 𝑅𝑅𝑎𝑎,𝑏𝑏 = 𝑁𝑁𝑎𝑎,𝑏𝑏
𝑁𝑁𝑎𝑎

, Ra,b = Na,b
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 and  𝑃𝑃𝑎𝑎,𝑏𝑏 =
𝑁𝑁𝑎𝑎,𝑏𝑏
𝑁𝑁𝑏𝑏

;Pa,b = Na,b
Nb

 where Na,b is the number of samples from class a placed in cluster b, Nb is the size 
of cluster b, and Na is the number of samples with label a. Larger values of F-score indicate 
better clusters. 

Automated Design Selection 
The process of featurizing data and then clustering them requires significant hyperparameter 
selection, regardless of the particular features or clustering algorithm chosen. Such 
hyperparameters include the level/scale of wavelet resolution that results in viable features, as 
well as clustering hyperparameters such as the number of clusters for k-means and agglomerative 
clustering in this study. Conventionally, finding the optimal or near-optimal set of 
hyperparameters is challenging and is routinely addressed empirically by researchers. However, 
this poses significant difficulties for practical implementations in a crowdsourced setting, as each 
individual vehicle-sensor combination will result in a different set of optimal parameters, directly 
impacting the generalizability of the end result. In addition, choosing among the various types of 
wavelet or clustering algorithms among all available ones is a problem. Therefore, this work 
goes beyond conventional hyperparameter selection and effectively considers decisions with 
regard to types of wavelet and types of clustering algorithms as hyperparameters themselves. In 
other words, we are not only interested in tuning the featurization and learning algorithms' 
hyperparameters, but we are also interested in determining in an automated manner which 
featurization and learning algorithms yield best results.    
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The question of what constitutes best results is an important one. When the target/objective 
is optimizing a single performance index, such as the CH-index, optimization is straightforward. 
However, various indices capture different performance indices, as described above. So, instead 
we consider here a multi-objective setting, where the various indices listed above are each 
optimization objectives. Rather than aggregating them into one single objective function, which 
would necessitate an ad-hoc process of weighting them based on some arbitrary decision on what 
is more important, we employ multi-objective Pareto optimization (Santiago, et al., 2014). In 
principle, multi-objective optimization can identify superior configurations over the 
hyperparameter space compared to single-objective optimization; however, various objectives 
can be conflicting. That is, changes to one or more hyperparameters may improve on one 
objective but worsen another. For instance, a clustering result with lower cluster entropy does not 
necessarily also have a higher CH-index.  

Multi-objective Pareto optimization addresses specifically the above setting via the concept 
of dominance. When a configuration a is better than configuration b in terms of all indices of 
interest, configuration a is said to dominate configuration b. This definition is also known as 
strong dominance. Occasionally, in the literature, equality is permitted, diluting better to no 
worse, and the result is known as weak dominance. We employ strong dominance in our 
framework. The concept of dominance allows two concepts to be associated with each 
configuration, a Pareto Rank (PR) and a Pareto Count (PC). The PR of a configuration a is the 
number of other configurations that dominate a. The PC of a configuration a is the number of 
other configurations that a dominates. It follows that desirable configurations are those with 
smaller PR values (ideally zero). When two configurations have the same PR value, the desired 
configuration is the one with larger PC values. PR is a powerful concept that is very popular in 
optimization literature, particularly under the umbrella of evolutionary computation. In 
particular, configurations with PR values of 0 are known as the Pareto Front. 

The Automated Design Selection component of our framework carries Pareto-based multi-
objective optimization, computing the PR and PC of each configuration in the hyperparameter 
space. Configurations are first ordered from low to high PR. Configurations with the same PR 
value are further ordered from high to low PC. 

EXPERIMENTAL EVALUATION 

Dataset   
In order to prototype and illustrate the capabilities of the proposed framework, an experimental 
study was performed. First, a series of representative residential roadways in the northern 
Virginia region were identified based on observed defects and roadway conditions. Five different 
road conditions were identified: normal, cracking, patching, bridge joints, and potholes.  

A 2018 Honda Accord vehicle and iPhone XS smartphone were used to collect response 
data along these road segments. The built-in accelerometer sensor of an iPhone XS model was 
utilized, with data capture in the z-direction of the accelerometer, representing vertical motion of 
the vehicle. To maximize the accuracy of measurement, we mounted the phone horizontally on 
the floor mat of the passenger side footwell in order to eliminate complications from 
accelerometer axis reorientation. Acceleration was sampled at 1,000 Hz, with subsampling to 
200 Hz in order to account for inconsistencies in the sample rate. Prior work in pavement 
suggested that this was a reasonable choice for sample rate (Chatterjee & Tsai, 2020; Yi, 
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Chuang, & Nian, 2015; Basavaraju, Du, Zhou, & Ji, 2019; Eriksson, Girod, Hull, & Newt, 2008). 
Stratified sampling was used for subsampling, with the data split into equal intervals and a 
sample drawn randomly from each interval to generate 200 samples per second. This process 
minimized the probability of information loss (Neyman, 1992). In order to generate labels for 
some data, videos were collected during driving. The dataset contains about 30 minutes of 
response recordings, with about 3% (less than a minute) labeled. The data were windowed into 
one-second segments. This resulted in 1,706 individual observations of 200 samples each. Only 
54 out of 1,706 data points were labeled by a pavement expert according to the videos. The 
distribution of the labels is as follows: normal: 16, cracking: 20, patching: 5, bridge joints: 5, and 
pothole: 8.   

Analytical Configuration  
Each data point was featurized using a wavelet transformation approach, as described in the 
methodology. Both discrete and continuous wavelets were considered, in particular, the DB6 and 
Morlet wavelets described previously. Other than wavelet type, the scale and level of wavelets 
are hyperparameters that must be tuned. For the DB6 wavelet, the level range from 3 to 6 was 
chosen as the common interval, while the common scale values of factor 2 such as 1, 2, 4, 8, 16, 
and 32 were considered for the Morlet wavelet. This effectively set the range for the 
hyperparameter optimization. Larger ranges could be selected, with a cost to the computational 
efficiency of the optimization.  

Both approximation and detail coefficients of DB6 were computed, and the skewness, 
kurtosis, standard deviation, mean, and root mean square (rms) statistics were extracted out of all 
coefficients as features. This resulted in 20, 25, 30, and 35 features for levels of 3, 4, 5, and 6, 
respectively. Standard deviation, rms, median, skewness, kurtosis, mean, and maximum values 
were extracted from each scale of the Morlet wavelet as well and appended to the previously 
extracted features from lower scales to create the comparable number of features from both types 
of wavelets. As an example, we extracted 7 features from both scales 1 and 2, but for scale 1 the 
first 7 features were utilized while for scale 2 the first 14 features were considered. Therefore, in 
the continuous domain we dealt with 7, 14, 21, 28, 35, and 42 features per wavelet scale. For the 
number of clusters in both k-means and agglomerative, a range of 2 to 11 clusters was identified. 
Overall, hyperparameter choices included 10 possible numbers of clusters, 2 choices of 
clustering algorithms, and 4 potential levels of wavelets for discrete wavelet (DB6). Another 
option was to use continuous wavelets (Morlet) with six possible scales. Given all of the 
potential hyperparameter choices, 200 design/hyperparameter configurations were deemed 
feasible. As described in the methodology, since there is no limitation for using internal metrics, 
we first considered them as the only optimization objectives over the 200 hyperparameter 
configurations. Then the results of all five evaluation metrics (combination of internal and 
external) for evaluating the clustering results were investigated. 

Dataset Evaluation  
To illustrate the behavior of the presented framework in greater detail, this chapter presents an 
analysis from two roads in the dataset. A normal driver's perspective on quality of one road was 
good, while the other one was labeled as poor. Such information was expected to be reflected in 
the spectrogram and scalogram diagrams of vibration signals. Figure 6-3 indicates (a) the 
vibration signal (b) spectrogram, and (c) scalogram obtained from the Morlet wavelet. All three 
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diagrams agree on detecting two different behaviors in the signal. The vibration pattern of the 
first 30 seconds (first 6000 samples) is different from the rest, and such separation was also 
reflected in the spectrogram and scalogram. The first part of the shown signal was considered as 
typical “normal” roadway condition, with lower response amplitudes and frequencies. The 
second part was from a poor-quality roadway. Note the existence of a short normal behavior 
(good road condition) within the second part of the signal, also visible in all three diagrams. 

 

  
                              (a)                                                                        (b) 

 
(c) 

 

Figure 6-24. Good- versus poor-quality road condition from a user’s perspective:  
(a) z-acceleration signal, (b) spectrogram, and (c) scalogram from Morlet wavelet.  
All three diagrams detect two different behaviors in the signal, with the second  

starting after the first 30 seconds (first 6,000 samples). 
 

To provide a deeper insight into the results, we execute two settings. First, we only consider 
the internal metrics as the objectives for optimization by the framework and relate the 
configurations in the Pareto Front with the highest Pareto Count in Table 6-1. For comparison, 
Table 6-2 shows the top Pareto Count configurations in the Pareto Front when all the nternal 
anexternal metrics are considered as optimization objectives by the framework. This comparison 

(c) 
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helps us understand if the optimal configuration is changed by additionally considering the 
external metrics as optimization objectives.    

A comparison of the Pareto-optimal configurations selected across the above-described 
settings shows that the continuous wavelet is more suitable for this dataset (regardless of internal 
or external indices). By considering both wavelet types, the Morlet was always found to be the 
best configuration among all generated ones. 

A comparison of Table 6-1 to Table 6-2 shows that, when both wavelet types are considered, 
adding external metrics does not dramatically change the optimal configuration. There are slight 
differences between winners of “both wavelet types” reported in Table 6-1 and Table 6-2, 
particularly in terms of clustering and number of clusters, but wavelet type and number of 
features remained constant (Morlet with 7 features). While the presence of labeled data can 
always assist in finding the best configuration, the above comparison shows that external metrics 
do not play a significant role in the optimization; even with no label information, similar results 
can be obtained by merely using internal indices.  

Table 6-36. Pareto-optimal winners selected by internal evaluation metrics. 

Wavelet Type 
Mother Wavelet, No. Features, Clustering, 
No. Clusters CH-Index DB-Index 

Discrete Wavelet DB6, 20, k-means, 2 
DB6, 20, hierarchical, 2 

872.86 
812.18 

1.1 
1.095 

Continuous 
Wavelet 

Morlet, 7, k-means, 9  
Morlet, 7, hierarchical, 11  

17,135.8 
17,078.54 

0.51 
0.51 

Both Types Morlet, 7, k-means, 9 
Morlet,7, hierarchical, 11  

17,135.8 
17,078.54 

0.51 
0.51 

 

Table 6-37. Pareto-optimal winners selected by internal and external evaluation metrics. 

Wavelet 
Type 

Mother Wavelet, 
No. Features, 
Clustering, No. 
Clusters 

CH-
Index 

DB-
Index 

Cluster 
Entropy 

Label 
Distribution 

Entropy 
F-

measure 
Discrete 
Wavelet 

DB6, 20, k-means, 7  4558 1.33 1.12 0.90 2.36 

Continuous 
Wavelet 

Morlet, 7, 
hierarchical, 9  

1383 0.52 0.8 0.83 2.45 

Both Types Morlet, 7, 
hierarchical, 9  

1383 0.52 0.8 0.83 2.45 

 
The best design configuration for the experimental dataset was selected as the Morlet 

wavelet in scale 1 (7 features) for featurization, with nine clusters found by agglomerative 
hierarchical clustering. Distribution of known conditions over the nine detected clusters is shown 
in Figure 6-4 and Table 6-1. Figure 6-4 visualizes the proportion of class labels within each 
cluster as pie charts. Table 6-3 discloses more details about the distribution of samples in each 
cluster. It can be inferred from Figure 6-4 and Table 6-3 that the majority of good/normal road 
segments are clustered together (in Cluster 1) and they are distinguishable from other segments, 
a promising result that suggests that underlying structure exists among the good-quality roads. 
Therefore, Cluster 1 can be labeled as good, and data points that are assigned to this cluster can 
be classified as good-quality roads.  
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Among the four pavement defects considered here, cracking can be considered as the 
starting point in the pavement damage process, except for bridge joints. The cracking label has 
the most overlap among the clusters due to the fact that cracking can manifest in various ways; 
however, this more nuanced representation is not captured in the dataset labels. Alligator cracks 
may cause a different vehicle response than transverse cracks, and sometimes they are even so 
fine as to be clustered with normal condition roadways. This behavior is shown in Clusters 1 and 
9 in Figure 6-4, with good and cracking segments placed together, while in Clusters 5 and 6 
cracked roadways segments are grouped with other forms of distress. Additionally, Clusters 3 
and 8 contain only cracked segments, suggesting an underlying structure among vehicle 
responses on roadways with cracking labels. 

Cluster 7 contains 4 out of the 5 road segments with the patching label. Only one segment of 
patched roadway is placed in Cluster 5, where the majority of observations correspond to cracks. 
An image of a representative patched road segment in Cluster 7 and the one in Cluster 5 are 
shown in Figure 6-5. The left panel in Figure 6-5 shows a utility patch, categorized as Cluster 5. 
The right panel shows another, more generalized patch. Vehicle response would be expected to 
vary significantly across these two patches and result in two different cluster labels. As Figure 
6-4 shows, potholes and bridge joints are clustered together (Clusters 4, 6, and 7). Like previous 
roughness types, shallow and severe potholes are not individually categorized, nor are the 
various types of bridge joints. A pothole and a bridge joint could potentially cause similar 
vehicle responses, generally as high-amplitude, short-duration impulses. Less severe potholes 
were categorized as Clusters 2 and 5, dominated by cracked pavement. More severe potholes 
were placed in Clusters 4, 6, and 7, along with bridge joints. In practical applications, the 
clustering of potholes with bridge joints is not a major concern, as bridge joint locations are 
known to roadway management agencies, and these responses can be filtered out prior to any 
asset management application. 
 

 
 

Figure 6-25. Distribution of known conditions over nine clusters recognized by  
hierarchical clustering. 
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Table 6-38. Distribution of samples with known conditions over nine clusters detected by  
Pareto-optimal winner. 

Cluster Good Cracking Patching Bridge Joints Potholes 
Cluster 1 14 1 0 0 0 
Cluster 2 1 2 0 0 1 
Cluster 3 0 2 0 0 0 
Cluster 4 0 0 0 3 1 
Cluster 5 0 7 1 0 1 
Cluster 6 0 1 0 1 3 
Cluster 7 0 0 4 1 2 
Cluster 8 0 4 0 0 0 
Cluster 9 1 3 0 0 0 
Total known labels 16 20 5 5 8 

 
 

 
Figure 6-26. Two roads with patching labels. 

 
Additionally, the similarities among CWT-extracted feature distributions were computed for 

all road qualities in 54 labeled data points. Since the Pareto optimization process identified 7 
features for 5 distress types, a distance matrix of 35 by 35 was created and the Earth Mover 
Distance (EMD) was computed to measure the distance/similarity of any two distributions. The 
EMD can be defined as the minimum required work/cost for the best match between two sets of 
data points (Andoni, Indyk, & Krauthgamer, 2008). Figure 6-6(a) illustrates the EMD matrix for 
CWT features per class label, with darker shading indicating shorter distances. Therefore, it can 
be seen that distances of feature distributions among patching, bridge joints, and potholes labels 
are small, which confirms that they are difficult to separate via statistical categorization. Normal 
road segments are distinguishable from other road abnormalities, although some overlap with 
cracking is apparent. Figure 6-6(b) illustrates the EMD matrix for the clusters rather than class 
labels for the Pareto-optimal configuration. Cluster 1 is the most distinctive cluster. This cluster 
was labeled as good/normal pavement condition and has strong separability from other pavement 
conditions. The similarity of feature distributions in Clusters 4 through 9 also confirms the label 
overlaps detected in Figure 6-4. 
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(a)                                                                            (b) 

 
Figure 6-27. (a) Earth Mover Distance matrix per class label among CWT feature distributions  

for 54 labeled data, (b) Earth Mover Distance matrix among CWT feature distributions of  
Pareto-optimal configuration. 

CONCLUSIONS 
In this chapter, we present an unsupervised learning framework that combines Pareto-optimized 
wavelet featurization with clustering for pavement condition assessment. Wavelet features are 
ideal, as they address the non-stationary behavior of vehicle vibration dynamics. However, 
significant empirical tuning is required to find the optimal setting and configuration for any 
given wavelet representation. We take advantage of the concept of Pareto optimality to go 
beyond conventional hyperparameter selection and automate the process of selecting the wavelet 
type as well as the choice of clustering algorithm. The study is motivated by the appeal of 
crowdsourcing any particular vehicle’s response data, using only the z-acceleration data gathered 
from a smartphone as a low-cost data collection device in a multi-condition road environment. 
The experimental results show that the presented framework is capable of detecting various 
pavement distress classes, even at early stages, but that low-cost smartphone data may not be 
adequate to distinguish fine-grained pavement defects. Our proposed low-cost framework is 
general and scalable with no dependence on human-intensive data labeling. 

The framework suggested in this chapter can be readily applied in real-world roadways and 
scaled to a variety of applications. Other vibration axes like X-, Y-, or other wavelet types or 
clustering algorithms can be substituted in data acquisition, featurization and learning phases of 
the framework, respectively. It should be noted that the framework is generalizable in terms of 
other ranges of wavelet levels/scales. Moreover, we tested the framework on a single vehicle to 
investigate what can be obtained from the baseline setting where there is limited access to data 
resources, but the final goal is to evaluate it with the presence of multiple vehicle dynamics. To 
expand the current work, we intend to fuse various vibration signals from multiple vehicle sensor 
configurations for monitoring the condition of the roadways in terms of multiple clusters of 
pavement defects. This can also bring the focus on tracking these clusters over time to see if 
gradual pavement degradations can be captured in an agnostic manner. 
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C H A P T E R  7  

Summary, Conclusions and Future Work 

SUMMARY 
In summary, the outcomes of the first phase of this research are: 

• A deeper understanding of the nature of crowdsourced vehicle response data and its 
utility, specific to the perception of asset (roadway and bridge) condition, with its 
impact on free-flow speeds and capacities, and the ability to detect deteriorated 
conditions through latent space modeling of the data and developed machine learning 
algorithms; 

• Development of probabilistic predictive models for multi-asset (pavement and bridge) 
roadway system serviceability levels, with and without maintenance or other 
improvements, while considering inspection accuracy needs, activity impacts and 
other associated costs; 

• Conceptualization of the multi-asset, strategic planning of maintenance, repair, and 
rehabilitation options (improvement actions) and their prioritization for 
implementation as a bilevel, stochastic mathematical program that: 

o explicitly accounts for system-wide traffic impacts from reduced capacity 
from deterioration and construction work zones, and post-improvement 
increased capacity and speed (a user equilibrium is sought in a lower-level 
traffic assignment problem);  

o takes into account uncertainty in asset state over time due to stochastic 
evolution of deterioration processes (a Markov decision process problem 
formulation of the upper-level decision process involving probabilistic 
state transitions due to deterioration); 

• Solution algorithms based on concepts of machine learning: 
o Comparison to existing mathematical modeling approaches missing one or 

more of the key study elements through analysis of a test network from the 
literature; 

o Comparison of optimally derived prioritized schedules using the 
developed normative approach to schedules derived from a relevant 
descriptive, state-based (threshold) maintenance strategy implementation;  

• Comparison with other current practices, including decision-tree approaches; and 
• Development of a value of information framework and strategies for assessing the 

value of information. 

CONCLUSIONS 
Asset management is a data-driven process aimed at delivering the best levels of service for 
roadway assets given the available resources. Current practices vary in sophistication. 
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Consequently, there are many opportunities to improve the data collection process, the models 
used to support decisions that select actions, and the process used to determine the most 
appropriate action at any point in time for an asset. However, there are also significant barriers to 
implementation, including the role played by proprietary data and software in the asset 
management process, the desire of agencies to understand the decision-making process, and the 
organizational structures that silo decision making by asset type.  

This project demonstrated the applicability of new types of data, including processing, 
models for asset deterioration and activity cost and duration that reflect current practices, 
strategies for assessing the value of information, and an optimization model for scheduling 
activities that captures uncertainty in deterioration, disruption to users, and cross-asset tradeoffs.   

Use of crowdsourced vehicle response data shows promise as a low-cost way to perform 
asset collection at high frequency (potentially near-continuously on high-volume systems). An 
unsupervised learning framework that combines Pareto-optimized wavelet featurization with 
clustering is developed to provide low-cost pavement condition data using methods that are 
general and scalable. While there may be some limitation regarding fine-grained pavement 
defects, the framework can be extended to capture data from multiple vehicles over time. It can 
also be extended to other sources of data, for instance on-board vehicle imaging or LIDAR.  

A detailed, realistic deterioration modeling framework, following principles of Markov 
decision processes and partially observable MDPs, is developed for both pavements and bridges. 
The framework uses common condition measures (IRI and CCI for pavements, and deck 
condition for bridges) and four maintenance categories (Do Nothing, Minor Repair, Major 
Repair, and Reconstruction) to determine state transition probabilities and costs.  Condition data 
are also dependent on the inspection type: no inspection, low-fidelity, and high-fidelity 
inspections. The accuracy of the information and the cost of inspection are associated with each 
inspection type.  

A methodology to compute the Value of Information and the Value of Structural Health 
Monitoring within the context of MDP/POMDPs is presented. Respective stepwise and long-
term value-based information metrics are analyzed, and their relations to the POMDP decision 
making are provided.  These results provide quantitative answers to the practical question of how 
much condition information is worth and how that information affects decisions.  

A multi-asset class roadway improvement scheduling problem that considers capacity loss 
during improvement actions (i.e., downtimes), traffic impacts of improved serviceability after the 
actions are complete, and uncertain deterioration mechanisms jointly across multiple asset 
classes is formulated and solved. The solution found using cutting-edge, deep reinforcement 
learning methods for an illustrative example shows the value of decisions integrated over asset 
classes (in this case, pavements and bridge decks) and the importance of user disruption.   

FUTURE WORK 
Phase 2 of this research will extend the work of Phase 1. The objectives of this proposed effort 
are to: 

• Extend developed condition monitoring and forecasting capabilities to exploit 
continuously sensed, multi-sourced data technologies for persistent condition updates 
on multiple assets from varying vehicle types; 

• Extend methods from Phase 1 for capturing roadway characteristics from sensed data 
for continuous, multi-vehicle sensing implementations;  
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• Extend the MDP upper-level conceptualization of the prioritization problem to a 
partially observable MDP model to incorporate data uncertainty and continuously 
sensed and updated-predicted asset condition states; 

• Create methods that explicitly account for uncertainty in state predictions with data 
updates;  

• Develop a solution algorithm for adapting decisions that exploit updated information 
as captured in the stochastic, bilevel program with POMDP at the upper-level and 
user equilibrium (UE) at the lower-level;  

• Employ developed methods to evaluate and demonstrate the potential benefits of 
continuous monitoring for updated prioritization and policy options; and 

• Create simpler, intuitive tools, prescriptive guidelines, and/or implementable policies 
based on knowledge gained from earlier tasks that can be deployed in practice for 
large, complex roadway networks. 

The objectives of the proposed effort will be realized through completion of tasks focused 
on predictive analytics, estimating and controlling serviceability, enhanced prioritization, adding 
context to decision tools, and evaluation and demonstration.  

The outcomes of this effort will include condition monitoring and prediction techniques that 
use the latest sensing technologies, machine learning techniques and decision support tools for 
prioritizing and scheduling maintenance, repair, and rehabilitation actions across assets in a 
dynamically changing and uncertain environment with high-frequency asset condition data and 
updated forecasts. 
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Appendix A: List of Acronyms 

AC – Asphalt concrete 
ADT – Annual Daily Traffic 
AADTT – Annual Average Daily Truck Traffic 
AASHTO – American Association of State Highway and Transportation Officials 
ADOT – Arizona Department of Transportation 
ARTBA – The American Road Transportation Builders Association 
ASCE – American Society of Civil Engineers 
BPR – Bureau of Public Roads 
BrM - AASHTOWare™ Bridge Management \CCI – Critical Condition Index 
CCI – Critical Condition Index 
CE – Cluster entropy  
CH – Calinski-Harabasz Index 
CI – Condition Index 
CM – Corrective maintenance 
CWT – Continuous Wavelet Transform 
DB – Davies-Bouldin Index 
DCMAC - Deep Centralized Multi-Agent Actor Critic  
DN – Do Nothing 
DOT – Department of Transportation 
DRIMS – Dynamic Response Intelligent Management System 
DRL - Deep Reinforcement Learning  
DT – Decision Tree 
DWT – Discrete Wavelet Transform 
EMD - Earth Mover Distance 
FHWA – Federal Highway Administration 
FRTDP - Focused Real-Time Dynamic Programming  
HERS – Highway Economic Requirements Systems 
IRI – International Roughness Index 
LCCA – Life cycle cost assessment 
LFS – Linear spectral frequencies 
LLCC – Lowest life cycle cost 
LRDI – Load Related Distress Index 
MDP – Markov Decision Process 
ML – Machine Learning 
MODAT – Multi-Objective Decision Analysis Tool 
NB – Naïve Bayes 
NBIAS – National Bridge Investment Analysis System 
NHS – National Highway System 
NN – Neural Network 
O-D – origin-destination 
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OPC – Overall pavement condition 
PCI - Pavement Condition Index 
PennDOT- Pennsylvania Department of Transportation 
PM – Preventive or routine maintenance 
PMS – Pavement Management Systems 
POMDP  - Partially Observable Markov Decision Process 
RC- Rehabilitation/Reconstruction 
RIF – Road impact factor 
RF – Random Forest 
RL – Reinforcement Learning 
RM – Restorative maintenance 
RMS – Root mean square 
SARSA - State Action Reward State Action 
SARSA_LFA - SARSA with linear function approximation 
SARSOP - Successive Approximation of the Reachable Space under Optimal Policies 
SC – Silhouette Coefficient 
SHM – Structural Health Monitoring 
SVM - Support Vector Machine 
TAMP – Transportation Asset Management Plan 
TD – Temporal Difference 
UE – User Equilibrium 
VDOT – Virginia Department of Transportation 
VoI – Value of Information 
VoSHM – Value of Structural Health Monitoring 
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Appendix B: Tamp Thresholds and Targets 
for Bridges and Pavements  

To analyze how states classify and categorize thresholds and targets, a comparison table was 
constructed. Information was gathered from each state’s Transportation Asset Management Plan 
(TAMP)1. This information included current conditions of National Highway System (NHS) 
pavements and bridges in all U.S. states, including Puerto Rico and the District of Columbia. The 
objective was to determine the percent good, percent fair, and percent poor of NHS interstates, 
non-interstates, and bridges. By using these percentages, states were able to determine the 
performance repair targets of interstates, non-interstates, and bridges, which consisted of 
maintenance, preservation, rehabilitation, or reconstruction.  

The National Highway System “comprises a network of roadways that are critically 
important to national security, defense, and the economy” (Delaware Department of 
Transportation, 2019). The NHS is comprised of major and minor highways throughout a state, 
as well as arterials and major strategic and intermodal connectors. In addition to the NHS 
system, there are also two acts: the Moving Ahead for Progress in the 21st Century Act (MAP-
21) and Fixing America’s Surface Transportation (FAST) Act that “requires each state 
department of transportation to develop and implement a risk-based asset management plan in 
accordance with the National Highway Performance Program” (112th Congress, 2012; 114th 
Congress, 2015). In summary, each date is required to meet certain pavement and bridge 
thresholds and targets as mandated by the Federal Highway Administration (FHWA). These 
thresholds, also known as performance measures, are typically found in each state’s 
Transportation Asset Management Plan and also outline the necessary precautions to take in 
order to get pavements and/or bridges to said target. 

The Transportation Asset Management Plan (TAMP) Thresholds and Targets table can be 
found in Table B-1. The data presented in this table were collected directly from each state’s 
TAMP. Starting with pavement thresholds, each state measures the length of NHS pavements in 
the number of lane miles (or some states use the number of centerline miles). By definition, a 
lane mile is the total length and count of a given pavement section (highway, arterial or 
connector, as mentioned above). To calculate lane miles, you multiple the centerline mileage of a 
road by the number of lanes it has (lane mile). This calculation becomes especially important for 
those states that do not measure pavements by lane mile, instead by centerline mile. According to 
the FHWA Pavement Condition Criteria, which can be found in 23 CFR Part 490.313(b) and 
409(b), the following conditions shown in Table B-2 must be met to determine if a pavement or 
bridge is in good, fair, or poor pavement condition. Similar criteria are provided for bridges as 
shown in Table B-3. 

 
1 FHWA’s repository for TAMPs (http://www.tamptemplate.org/existing-tamp/?fwp_sections=11-risk)  
and the AASHTO TAMP Library (https://www.tamptemplate.org/existing-tamp/). 

https://itstillruns.com/centerline-miles-vs-lane-miles-8721056.html
http://www.tamptemplate.org/existing-tamp/?fwp_sections=11-risk
https://www.tamptemplate.org/existing-tamp/
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Table B-1. Pavement targets and thresholds from TAMPs. 

State 
T

ot
al

 #
 o

f 
L

an
e-

M
ile

s 

B
as

el
in

e 
Y

ea
r NHS Interstate Condition NHS Non-Interstate Condition 

Interstate 
Lane 
Miles 

% Good % Fair % Poor Non-
Interstate 

Lane 
Miles 

% Good % Fair % Poor 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Alabama 
(AL) 11,491 2016 3,221.55 76.98 50.0 - - 8.33 5.0 8269.75 86.22 40.00 - - 22.66 5.0 

Alaska (AK) 2,085 2018 1159.7 32.8 10.0 65.8 - 1.4 10.0 924.943 22.6 15.0 69.3 - 8.1 15.0 

Arizona (AZ) 13,899 2018 5,405.00 53.1 48.00 46.0 - 0.90 2.00 8,494 34.6 31 61.9 - 3.60 6 
Arkansas 
(AR) - - - - - - - - - - - - - - - - 

California 
(CA) 36,649 2017 14,159.00 44.90 60.0 52.10 39.0 3.10 1.0 22,490.00 43.50 34.2 54.00 60.90 2.50 5.0 

Colorado 
(CO) - 2018 - 44.00 46.50 - - 2.50 1.0 - 42.0 50.5 - - 3.00 1.50 

Connecticut 
(CT) 4,945 2017 1,738 75.10 64.40 24.40 - 0.50 2.60 3,207 37.1 31.90 59.50 - 3.40 7.60 

Delaware 
(DE) 1,695 2019 - 54.7 50.0 - - 0.8 2.0 - 59.7 55.0 - - 1.2 2.0 

District of 
Columbia 
(DC) 

- 2018 - 78.80 - 17.40 - 3.80 - - 68.20 54.00 22.20 - 9.60 14.00 

Florida (FL) 36,928 2018 8,495 54.40 60.00 45.00 - 0.60 5.00 28,433.00 39.70 40.00 60.00 - 0.30 5.00 

Georgia (GA) - 2018 - 63.00 50.00 37.00 - 0.00 5.00 - 42.00 40.00 57.00 - 1.00 5.00 

Hawaii (HI) - 2017 - 15.00 7.00 83.00 - 2.00 4.00 - 18.00 15.00 76.00 - 6.00 4.00 

Idaho (ID) - 2018 - 65.60 50.00 - - 0.20 4.00 - 50.80 50.00 - - 0.30 8.00 

Illinois (IL) - 2018 - 85.00 65.00 - - 15.00 4.90 - 37.60 27.00 - - 19.40 6.00 
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Target 

Current 
% 

2021 
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Current 
% 

2021 
Target 

Indiana (IN) 12,441 2018 5,079.00 48.00 - 51.00 - 1.00 - 7,362.00 40.00 - 58.00 - 2.00 - 

Iowa (IA) 16,805 2018 3,436.00 57.80 49.40 41.70 - 0.50 2.70 13,369.00 37.50 46.90 58.80 - 3.70 14.50 

Kansas (KS) - 2017 - 67.00 65.00 33.00 - 1.00 0.50 - 63.00 55.00 36.00 - 1.00 1.50 
Kentucky 
(KY) - 2018 - 35.00 37.00 32.00 23.00 33.00 40.00 - - - - - - - 

Louisiana 
(LA) 11,070 2018 4,005.00 16.50 10.00 - - 1.10 4.00 7,065.00 18.40 14.00 - - 10.20 12.00 

Maine (ME) 3,109 2017 1,017.00 36.30 40.00 62.50 - 1.20 1.50 2,092.00 31.20 34.00 63.30 - 5.50 5.00 
Maryland 
(MD) - 2019 - 60.40 60.2 39.10 - 0.50 1.1 - 33.70 34.20 59.30 - 7.00 7.40 

Massachusetts 
(MA) - 2019 - 70.10 70.00 29.70 - 0.30 4.00 - 32.90 30.00 35.70 - 31.40 30.00 

Michigan 
(MI) 22,427 2017 6,078.00 57.40 47.80 37.70 - 4.90 10.00 16,349.00 49.20 43.70 31.90 - 18.90 24.60 

Minnesota 
(MN) 15,795 2017 4,036.00 60.10 55.00 - - 0.90 2.00 11,759.00 53.40 50.00 - - 1.30 4.00 

Mississippi 
(MS) - 2017 - 67.00 55.00 - - 0.50 5.00 - 35.00 25.00 - - 4.00 10.00 

Missouri 
(MO) - 2017 - 78.00 77.50 - - 0.00 0.00 - 61.00 61.10 - - 0.00 1.00 

Montana 
(MT) 11,205 2017 4,700.00 56.70 54.00 41.60 - 0.00 3.00 6,505.00 50.90 44.00 48.30 - 0.40 6.00 

Nebraska 
(NE) - 2016 - - 50.00 - - - 5.00 - - 40.00 - - - 10.00 

Nevada (NV) - 2017 - 78.00 75.00 - - 1.00 5.00 - 93.00 40.00 - - 0.00 5.00 
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New 
Hampshire 
(NH) 

1,483 2017 586.00 97.00 95.00 - - 0.20 0.80 897.00 73.10 65.00 - - 9.10 12.00 

New Jersey 
(NJ) 12,233 2017 9,251.00 55.02 50.00 - - 1.36 2.50 2,982.00 30.37 25.00 - - 1.18 2.50 

New Mexico 
(NM) - 2016 - 58.50 60.00 - - 0.80 8.30 - 34.10 33.80 - - 5.50 17.00 

New York 
(NY) 26,756 2016 8,054.00 42.40 47.30 54.60 48.70 3.00 4.00 18,702.00 19.10 14.70 72.30 71.00 8.60 14.30 

North 
Carolina (NC) - 2018 - 70.12 37.00 31.86 - 0.26 2.20 - 35.83 21.00 63.57 - 2.76 4.70 

North Dakota 
(ND) - 2017 - 80.20 75.60 - - 0.10 3.00 - 78.50 58.30 - - 3.40 3.00 

Ohio (OH) - 2018 - 60.10 50.00 - - 0.10 1.00 - 47.10 35.00 - - 1.10 3.00 
Oklahoma 
(OK) 12,010 2018 3,956.00 64.40 50.00 34.60 - 1.00 3.00 8,054.00 43.20 45.00 54.10 - 2.70 7.00 

Oregon (OR) - 2018 - 57.00 35.00 42.70 - 0.30 0.50 - 37.00 50.00 60.60 - 2.40 10.00 
Pennsylvania 
(PA) - 2017 - 67.2 60.0 - - 0.4 2.0 - 36.8 33.0 - - 2.3 5.0 

Puerto Rico 
(PR) 2,613 2017 1,243.01 10.80 5.00 72.50 - 13.2 14.0 1,370.02 2.20 2.00 67.50 - 9.00 20.0 

Rhode Island 
(RI) 1,826 2018 378.15 55.05 55.00 44.95 41.00 0.00 4.00 1,447.85 18.01 10.00 62.08 70.00 19.91 20.00 

South 
Carolina (SC) 13,200 2016 3,846 65.00 92.00 - - 11.00 3.00 9,354 28.00 72.00 - - 45.00 16.00 

South Dakota - 2018 - 73.20 80.50 - - 0.00 0.00 - 53.20 74.90 - - 0.80 0.80 



 108 r3utc.psu.edu 
 

State 

T
ot

al
 #

 o
f 

L
an

e-
M

ile
s 

B
as

el
in

e 
Y

ea
r NHS Interstate Condition NHS Non-Interstate Condition 

Interstate 
Lane 
Miles 

% Good % Fair % Poor Non-
Interstate 

Lane 
Miles 

% Good % Fair % Poor 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

Current 
% 

2021 
Target 

(SD) 

Tennessee 
(TN) - 2018 - 70.00 60.00 - - 0.00 1.00 - 40.00 40.00 - - 3.20 4.00 

Texas (TX) - 2018 - 67.23 66.40 32.67 - 0.10 0.30 - 42.57 52.30 31.81 - 35.49 14.30 

Utah (UT) - 2018 - 65.00 60.00 35.00 - 0.00 5.00 - 57.00 35.00 37.00 - 6.00 5.00 
Vermont 
(VT) 1,141 2019 699.00 53.70 35.00 45.80 - 0.50 4.90 442.00 44.40 30.00 46.30 - 9.30 9.90 

Virginia (VA) 18,755 2018 5,503 57.80 45.00 41.80 - 0.40 3.00 13,252 33.50 25.00 65.60 - 0.90 5.00 
Washington 
(WA) 14,319 2018 3,812 34.16 30.00 63.98 - 1.87 4.00 10,507 23.74 18.00 74.08 - 2.17 5.00 

West Virginia 
(WV) 3,451 2018 1,103 82.57 75.00 17.27 - 0.16 4.00 2,348 60.70 45.00 39.11 - 0.20 5.00 

Wisconsin 
(WI) 16,613 2018 3,931.75 59.10 45.00 39.20 - 1.70 5.00 12,681.61 36.20 20.00 57.90 - 5.90 12.00 

Wyoming 
(WY) - 2018 - 85.00 - 12.00 - 3.00 - - 68.00 - 22.00 - 10.00 - 
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Table B-2. Bridge targets and thresholds from TAMPs 

State Baseline 
Year 

Total Deck 
Area 

NHS Bridge Condition 
% Good % Fair % Poor 
Current 
% 

2021 
Target Deck Area Current 

% 
2021 
Target Deck Area Current 

% 
2021 
Target 

Deck 
Area 

Alabama (AL) 2016 60,662,258 41.90 27.0 17,202,404 56.7 - 42,268,110 1.4 3.0 1,191,744 
Alaska (AK) 2018 - 39.80 40.0 - 54.2 - - 6.4 10.0 - 
Arizona (AZ) 2018 34,467,021.00 47.80 52 34,467,021.00 51.25 - - 0.95 4 - 
Arkansas (AR) - - - - - - - - - - - 
California (CA) 2017 234,285,883 66.5 83.5 234,285,883 28.7 15.0 - 4.8 1.5 - 
Colorado (CO) 2018 29,940,530 47.0 44.5 14,165,330 49.0 - 14,632,998 4.0 4.0 1,142,202 
Connecticut 
(CT) 2017 32,200,666 15.2 14.0 3,977,856 70.8 - 18,558,709 14.0 8.0 9,664,101 

Delaware (DE) 2019 5,939,155 17.4 16.7 1,389,613 77.2 - 4,315,344 5.4 3.0 234,198 
District of 
Columbia (DC) 2018 4,882,712 15.0 25.0 4,882,712 80.2 - - 4.8 4.0 - 

Florida (FL) 2018 - 66.2 50.0 - - - - 1.2 10.0 - 
Georgia (GA) 2019 - 52.0 60.0 - 47.0 39.0 - 1.0 10.0 - 
Hawaii (HI) 2017 11,614,198 23.0 20.0 11,614,198 75.0 - - 2.0 2.0 - 
Idaho (ID) 2018 8,816,021 18.7 19.0 8,816,021 - - - 3.2 3.0 - 
Illinois (IL) 2018 73,598,000 29.0 27.0 73,598,000 - - - 11.6 14.0 - 
Indiana (IN) 2018 32,182,300 98.6 48.3 32,182,300 1.4 - - 0.0 2.6 - 
Iowa (IA) 2017 34,277,439 48.9 44.6 34,277,439 48.4 - - 2.0 3.2 - 
Kansas (KS) 2017 31,801,554 75.0 70.0 31,801,554 24.0 - - 1.0 3.0 - 
Kentucky (KY) 2018 15,477,160 35.0 59.0 3,901,675 60.0 39.0 10,501,301 5.0 2.0 1,074,184 
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State Baseline 
Year 

Total Deck 
Area 

NHS Bridge Condition 
% Good % Fair % Poor 
Current 
% 

2021 
Target Deck Area Current 

% 
2021 
Target Deck Area Current 

% 
2021 
Target 

Deck 
Area 

Louisiana (LA) 2018 79,472,254 44.8 30.0 79,472,254 - - - 6.7 9.9 - 
Maine (ME) 2017 5,984,451 30.0 40.0 5,984,451 66.3 53.0 - 3.8 7.0 - 
Maryland (MD) 2018 - 27.4 28.4 - 70.0  - 2.6 2.4 - 
Massachusetts 
(MA) 2019 29,659,839 16.1 15.5 29,659,839 - - - 12.6 12.5 - 

Michigan (MI) 2017 36,980,431 32.7 26.0 36,980,431 57.5 - - 9.8 7.0 - 
Minnesota 
(MN) 2017 31,444,986 48.0 50.0 31,444,986 - - - 1.9 4.0 - 

Mississippi 
(MS) 2017 70,670,552 62.0 60.0 70,670,552 - - - 2.0 5.0 - 

Missouri (MO) 2017 55,027,309 36.0 30.9 19,794,713 - - 31,260,698 7.1 7.1 3,971,898 
Montana (MT) 2017 11,367,900 17.4 12.0 11,367,900 75.3 - - 7.3 9.0 - 
Nebraska (NE) 2016 - 61.2 55.0 - 35.5 - - 3.3 10.0 - 
Nevada (NV) 2017 11,805,470 41.4 40.9 11,805,470 58.0 54.5 - 0.6 4.6 - 
New Hampshire 
(NH) 2017 7,282,238 57.0 57.0 7,282,238 - - - 7.0 7.0 - 

New Jersey 
(NJ) 2017 61,396,535 20.8 18.6 61,396,535 73.3 - - 6.0 6.5 - 

New Mexico 
(NM) 2017 13,968 37.0 26.3 13,968 59.9 - - 3.1 5.1 - 

New York 
(NY) 2016 96,732 20.1 24.0 96,732 68.0 64.3 - 11.9 11.7 - 
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Year 

Total Deck 
Area 

NHS Bridge Condition 
% Good % Fair % Poor 
Current 
% 

2021 
Target Deck Area Current 

% 
2021 
Target Deck Area Current 

% 
2021 
Target 

Deck 
Area 

North Carolina 
(NC) 2018 48,739,495 38.1 30.0 48,739,495 55.2 - - 6.7 9.0 - 

North Dakota 
(ND) 2017 - 65.3 60.0 - 30.9 - - 3.8 4.0 - 

Ohio (OH) 2018 87,682,012 64.9 50.0 87,682,012 - - - 2.7 5.0 - 
Oklahoma (OK) 2018 36,370 47.2 60.0 36,370 49.6 - - 3.2 7.0 - 
Oregon (OR) 2018 30,200,000 12.6 10.0 30,200,000 85.6 - - 1.8 3.0 - 
Pennsylvania 
(PA) 2017 88,856,979 25.6 26.0 88,856,979 - - - 5.5 6.0 - 

Puerto Rico 
(PR) 2017 1,584,328 18.5 10.0 292,632 - 40.0 1,155,332 8.6 10.0 136,364 

Rhode Island 
(RI) 2018 1,778,176 13.1 16.0 1,778,176 63.0 63.0  24.0 21.0 - 

South Carolina 
(SC) 2018 39,508,348 48.0 66.0 39,508,348 - - - 6.0 0.0 - 

South Dakota 
(SD) 2019 6,992,061 27.6 22.0 6,992,061 - - - 2.8 5.0 - 

Tennessee (TN) 2018 25,586,902 39.5 36.0 25,586,902 - - - 39.5 36.0 - 
Texas (TX) 2018 345,900,000 50.63 50.5 345,900,000 - - - 0.88 0.8 - 
Utah (UT) 2018 14,451,169 53.0 40.0 14,451,169 - - - 46.0 10.0 - 
Vermont (VT) 2019 - - 35.0 - - - - 2.0 6.0 - 
Virginia (VA) 2018 69,243,663 33.6 33.0 69,243,663 62.9 - - 3.5 3.0 - 
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State Baseline 
Year 

Total Deck 
Area 

NHS Bridge Condition 
% Good % Fair % Poor 
Current 
% 

2021 
Target Deck Area Current 

% 
2021 
Target Deck Area Current 

% 
2021 
Target 

Deck 
Area 

Washington 
(WA) 2018 53,000,000 38.4 30.0 53,000,000 73.30 - - 7.5 10.0 - 

West Virginia 
(WV) 2019 24,504,470 13.1 15.3 24,504,470 71.6 - - 15.3 10.0 - 

Wisconsin (WI) 2018 38,900,000 55.6 50.0 38,900,000 42.7 - - 1.7 3.0 - 
Wyoming 
(WY) 2018 - 22.1 - 8,198,622 69.9 - - 8.1 - - 
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Table B-3. FHWA Pavement condition rating system (Source: (Pennsylvania Department of 
Transportation, 2018)) 

Pavement Condition 
Measure 

Rating 
Good 

Rating 
Fair 

Rating 
Poor 

IRI (inches/mile) <95 95-170 >170 
Cracking  

<5 
CRCP: 5-10 
Jointed: 5-15 
Asphalt: 5-20 

CRCP: >10 
Jointed: >15 
Asphalt: >20 

Rutting Inches <0.20 0.20-0.40 >0.4 
Faulting (inches) <0.10 0.10-0.15 >0.15 

Table B-4. FHWA Bridge condition rating system (Source: (Pennsylvania Department of 
Transportation, 2018)) 

Bridge Component Rating 
Good 

Rating 
Fair 

Rating 
Poor 

Deck ≥ 7 5 or 6 ≤ 4 
Superstructure ≥ 7 5 or 6 ≤ 4 
Substructure ≥ 7 5 or 6 ≤ 4 
Culvert ≥ 7 5 or 6 ≤ 4 

 
A pavement section receives an overall condition rating of Good only if all three condition 

ratings (IRI, cracking, and rutting or faulting) are in good condition. The pavement system 
receives an overall condition rating of Poor if two or more of the three condition ratings are in 
Poor condition. For all other combinations, the pavement system receives an overall condition 
rating of Fair.  

For the Bridge Condition Rating System, a bridge receives an overall condition rating of 
Good if the lowest rating of the National Bridge Inventory (NBI) items, consisting of deck, 
superstructure, and substructure, is a 7, 8, or 9. The bridge system receives an overall condition 
of Fair if the lowest rating of any NBI item is a 5 or 6. The bridge system receives an overall 
condition rating of Poor, the lowest rating, if any NBI item is a 1, 2, 3, or 4 (Delaware 
Department of Transportation, 2019).  

For instance, the State of Delaware is currently comprised of 1,695 total lane miles for NHS 
interstate and non-interstate pavements for the year 2019. There is a dash on the table for 
“Interstate Lane Miles,” as Delaware’s TAMP only identified total NHS lane miles (that is, the 
DE TAMP did not separate the lane miles for interstate and non-interstate.) For NHS interstate 
condition, Delaware has 54.7% of interstate pavements in good condition with a 2021 target of 
greater than or equal to 50% in good condition and 0.8% of pavements in poor condition with a 
target of less than or equal to 2.0%. For non-NHS pavements, Delaware has 59.7% of non-
interstate pavements in good condition with a 2021 target of greater than or equal to 55% and a 
poor condition of 1.2% with a 2021 target also less than or equal to 2.0%. For bridges, Delaware 
has measured approximately 6 million square feet of deck area in the baseline year of 2019. 
There are 17.4% of bridges in good condition with a 16.7% target, 77.2% in fair condition and 
5.4% currently in poor condition, with a 2021 target of less than or equal to 3.0% (Delaware 
Department of Transportation, 2019).  
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Appendix C: Decision Trees 

Taking a further look at the six Mid-Atlantic states, information can be gathered from decision 
trees to determine the strategies use to achieve the performance repair targets for interstates, non-
interstates, and bridges. These strategies include maintenance, preservation, rehabilitation, or 
reconstruction action. For the six Mid-Atlantic states, Delaware, Maryland, Pennsylvania, 
Washington D.C., Virginia, and West Virginia, decisions trees are available for Delaware, 
Maryland, Pennsylvania, and Virginia. For each of these states, an explanation of each state’s 
decision tree is presented. Where feasible, visuals and tables are included. In all cases, links or 
references to source documents are included. 

DELAWARE  
Illustrative decision trees are provided for flexible pavements. The trees are based on structural 
distress, non-structural distress, and other distress. Indices are determined by inspection.  
Source: 
https://www.penndot.gov/ProjectAndPrograms/Construction/QAW/2018_QAW_Presentations/
Maint%20and%20Assett%20Mngt/Current%20Pavement%20Management%20Initiatives%20of
%20Delaware%20DOT.pdf  

Structural Distress  
The structural distress index is a function of the fatigue index and patches/potholes for flexible 
and composite pavements; and the fatigue index, patches/potholes, and edge index for surface-
treated pavements. Flexible pavement structural index decision trees are differentiated for four 
roadway classes: interstate/freeway/principal arterial, minor arterial/major collector/minor 
collector, local, and suburban. Treatments are assigned on the basis of the class and structural 
index. The structural distress treatments include do nothing, reconstruction, structural overlay, 
functional overlay, and asphalt concrete (AC) patching.  The decision trees are shown in Figure 
C-1. 

Non-Structural Distress 
The flexible pavement non-structural index decision tree is also broken into four roadway 
classes: interstate/freeway/principal arterial, minor arterial/major collector/minor collector, local, 
and suburban. The non-structural index is based on the transverse index, block index, NWP long 
index, and raveling. Based on the class and the non-structural index, a treatment is assigned. The 
non-structural distress treatments include doing nothing, structural overlay, functional overlay, 
microsurfacing, and crack seal. The decision trees are shown in Figure C-2. 

https://www.penndot.gov/ProjectAndPrograms/Construction/QAW/2018_QAW_Presentations/Maint%20and%20Assett%20Mngt/Current%20Pavement%20Management%20Initiatives%20of%20Delaware%20DOT.pdf
https://www.penndot.gov/ProjectAndPrograms/Construction/QAW/2018_QAW_Presentations/Maint%20and%20Assett%20Mngt/Current%20Pavement%20Management%20Initiatives%20of%20Delaware%20DOT.pdf
https://www.penndot.gov/ProjectAndPrograms/Construction/QAW/2018_QAW_Presentations/Maint%20and%20Assett%20Mngt/Current%20Pavement%20Management%20Initiatives%20of%20Delaware%20DOT.pdf
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Other Distress  
Decision trees for flexible pavement are also based on IRI and rutting. The IRI decision tree is 
used for both flexible and composite pavements, and treatments are either do nothing or mill and 
overlay. The decision tree is shown in Figure C-3.  For rutting treatments including do nothing, 
AC patching, functional overlay, and structural overlay, the rutting decision tree is shown in 
Figure C-4.  
 

 
Figure C-1. Delaware flexible pavement decision tree for structural distress. 

 

 
Figure C-2. Delaware flexible pavement decision tree for non-structural distress. 
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Figure C-3. Delaware flexible and composite pavement decision tree for IRI. 

 

 
Figure C-4. Delaware flexible pavement decision tree for rutting. 

MARYLAND  
The Maryland State Highway Authority has comprehensive decision trees for flexible, composite, and 
rigid pavements. The decision trees are clearly defined and give a variety of options based on the criteria 
defined in the decision trees.  

Source: https://www.pavementpreservation.org/wp-content/uploads/2011/06/MDSHA-
Pavement-Preservation-Guide-March-2011.pdf 

Flexible and Composite Pavement 
For flexible and composite pavements, data on IRI, Condition Index (CI), and Friction and 
Rutting data are maintained in the pavement management system.  The initial decision tree is 
based on the Annual Daily Traffic (ADT) of a particular pavement section. The ADT is split into 
three categories: 1-4,000 vehicles/day, 4,001-25,000 vehicles/day, and greater than 25,000 
vehicles/day. The decision tree then splits each ADT category into three IRI sections: 1-100 
inches/mile, 101-170 inches/mile, and greater than 170 inches/mile. Depending on the IRI value, 
the reader is referred to different decision trees. The decision trees differentiate among: 

• CI values of 0-50, 51-75, and 76-100; 
• Friction >40 and <40; 
• Cracking that is load-related and non-load-related; and  
• Low, medium, and high rutting.  

A variety of treatments in different classes (for example, overlay, patching or grinding, and 
grooving) are identified. 

Rigid Pavement  
For rigid pavement, data on percent patching and the specific types of structural distresses are 
used. The decision tree for rigid pavements is based on percent patching. If the percent patching 
is less than 25, then the reader is guided to another table. If the percent patching is greater than or 
equal to 25, then major (heavy) rehabilitation/reconstruction is the treatment measure. 
  

https://www.pavementpreservation.org/wp-content/uploads/2011/06/MDSHA-Pavement-Preservation-Guide-March-2011.pdf
https://www.pavementpreservation.org/wp-content/uploads/2011/06/MDSHA-Pavement-Preservation-Guide-March-2011.pdf
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PENNSYLVANIA  
The Pennsylvania Department of Transportation does not have a clear, concise decision tree for 
their pavements and bridges. Instead, in the 2015 Edition of Publication 242, Appendix H 
discusses the ‘Interstate Management Program Pavement Treatment Matrices’ (PennDOT, 
2015). Unfortunately, these treatment matrices are only for interstates. However, these treatment 
matrices play the same role as a decision tree. The treatment matrices define the treatment based 
on pavement distress and their severity. To use the matrix, a user identifies the appropriate 
treatment matrix based on the pavement type and distress, selects the extent (length, area, or 
number of slabs/joints) and severity, and the matrix identifies the treatment.  Treatment strategies 
are identified in Table C-1 for bituminous pavements, jointed concrete pavement, and 
continuously reinforced concrete pavements.   

Table C-5. PennDOT treatment strategies. 

# Bituminous Pavement Jointed Concrete Pavement Continuously Reinforced 
Concrete Pavement 

0 Do Nothing Do Nothing Do Nothing 
1 Crack Seal Joint Seal Spot Joint Seal 
2 Skin patch Crack Seal Joint Seal 
3 Manual Patch Spray Patch Crack Seal 
4 Manual Patch, Crack Seal Mechanized Patch Spall Repair 
5 Manual patch, Skin Patch Concrete Path (Full Depth) Longitudinal Joint Repair 
6 Mechanized Patch Slab Stabilization CRC Patch 
7 Base Repair, Manual Patch Slab Stabilization, Diamond 

Grind 
Concrete Pavement Patch 

8 Base Repair, Mechanized 
Patch 

Concrete Patch, Diamond 
Grind 

Replace Terminal Joint 

9 Micro Surface/Thin Overlay Diamond Grind Rut Filling 
10 Resurface Micro Surface Major Rehabilitation 
11 Level, Resurface CPR and Overlay  
12 Level, Resurface, Base 

Repair 
Major 
Rehabilitation/Reconstruction 

 

13 Mill, Level, Resurface   
14 Mill, Level, Resurface, Base 

Repair 
  

15 Major 
Rehabilitation/Reconstruction 

  

 
To illustrate the application of the treatment matrices for bituminous pavements, Table C-2 
shows the treatments associated with each Distress Type.  Table C-3 is the treatment matrix for 
fatigue cracking.  A pavement with 25% by length medium severity fatigue cracking requires 
treatment 6 – mechanized patch. That is, treatment matrices connecting distresses to their 
assigned treatment strategies.  
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Table C-6. PennDOT treatments for bituminous pavements distress types. 

Distress Treatment 
Fatigue Cracking 0, 6, 14, 15 
Edge Deterioration 0, 1, 4, 7 
Transverse Cracking 0, 1, 13, 14, 15 
Raveling/Weathering 0, 6, 9, 13 
Miscellaneous Cracking 0, 1, 6, 10, 13, 15 
Rut Depth 0, 6, 13 
Roughness 0, 11 

Table C-7. PennDOT treatment matrix for bituminous pavements for fatigue cracking. 

Extent 
(% length) 

Treatment 
Low Severity 

Treatment 
Medium Severity 

Treatment 
High Severity 

0 0 0 0 
>0-5% 0 6 14 
6-10% 0 6 14 

11-15% 0 6 15 
16-20% 0 6 15 
21-30% 0 14 15 
31-40% 0 14 15 
41-50% 0 14 15 
>50% 0 14 15 

VIRGINIA  
Virginia DOT uses decision trees to identify preventive maintenance treatment. The decision tree 
for flexible pavements for interstate highways is based on condition, age, and usage.  The 
condition data serves as a preliminary screening.  This data is collected annually. The data 
includes transverse cracking, longitudinal cracking, alligator cracking, longitudinal joint 
cracking, patching, potholes, delamination, bleeding, and rutting.  The distress is assembled into 
three indices: Load-Related Distress Rating (LDR), Non-Load Related Distress Rating (NDR), 
and Critical Condition Index. The CCI is the lower of the LDR and NDR. IRI data is also 
collected. 
Source: https://www.virginiadot.org/vtrc/main/online_reports/pdf/16-r3.pdf  
 
Figure C-5 shows the decision tree. The initial filter is based on the current Distress Decision 
Matrix and Critical Condition Index filter. Preventive maintenance is considered if the CCI is 
between 85 and 90. The tree then follows these steps: 

• The pavement age since the last resurfacing (trigger value) determines if the 
pavement is “Old” or “New” 

• For “Old” pavements the structural condition, based on the falling weight 
deflectometer (FWD) data determines is the pavement is “Level 1” or Level 2 
(strong) 

• “Level 2” pavements receive Preventative Maintenance (PM) 
• For “Level 1” pavements, the annual average daily truck traffic (AADTT) is used to 

determine the actions 

https://www.virginiadot.org/vtrc/main/online_reports/pdf/16-r3.pdf
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• Level 1 Corrective Maintenance (CM), Level 2 Restorative Maintenance (CM), or 
Level 3 Restorative Maintenance (RM).  

• For “New” pavements, if it is a Level 1, the AADTT is used to determine if the 
pavement needs Level 1 Do Nothing (DN), Level 2 Do Nothing (DN), or Level 3 
Restorative Maintenance (RM). 

 

 
Figure C-5. VDOT decision tree for preventive maintenance on bituminous interstate  

highways (de León Izeppi, Morrison, Flintsch, & McGhee, 2015).  
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Appendix D: Maintenance Activities and 
Gamma Process Parameters 

Table D-8. Maintenance activities for interstate and primary pavements under  
different categories (Virginia Department of Transportation, 2016). 

Activity Category Activities 

Do Nothing (DN) N/A 

Routine 
(Preventive) 
Maintenance (PM) 

1. Minor Patching (<5 of Pavement Area; Surface Patching; 
Depth 2”) 

2. Crack Sealing 

3. Thin Treatments (Chip Seal, Slurry Seal, Latex, Thin 
Hotmix Asphalt Concrete (THMACO), ‘Novachip’ etc.) 

Corrective 
Maintenance (CM) 
 

1. Moderate Patching (<10 of pavement area; Partial Depth 
Patching; Depth 6”) 
2. Partial Depth Patching (<10 of Pavement Area; Depth 4”-
6”) and Surface Treatment 

3. Partial Depth Patching (<10 of Pavement Area; Depth 4”-
6”) and Thin (≤ 2”) AC Overlay 

4. ≤ 2” Milling and ≤ 2” AC Overlay 

Restorative 
Maintenance (RM) 

1. Heavy Patching (<20 of Pavement Area; Full Depth 
Patching; Depth 12”) 

2. ≤4” Milling and Replace with ≤4” AC Overlay 

3. Full Depth Patching (<20 of Pavement Area; Full Depth 
Patching; Depth 9”-12”) and 4” AC Overlay 

4. Cold In-Place Recycling 

Rehabilitation 
/Reconstruction 
(RC) 

1. Mill, Break and Seat and 9”-12” AC Overlay 

2. Reconstruction 

3. Full Depth Reclamation 
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Table D-9. Gamma process scale and shape parameters, f(t) and g(t). 

Time 
(years) 

Traffic 
level 
(A) 
( )f t  

Traffic 
level 
(A) 
( )g t  

Traffic 
level 
(B) 
( )f t  

Traffic 
level 
(B) 
( )g t  

Traffic 
level 
(C) 
( )f t  

Traffic 
level 
(C) 
( )g t  

Traffic 
level 
(D) 
( )f t  

Traffic 
level 
(D) 
( )g t  

Traffic 
level 
(E) 
( )f t  

Traffic 
level 
(E) 
( )g t  

1 0.922 0.178 1.217 0.280 1.394 0.349 1.560 0.420 1.679 0.473 
2 0.649 0.101 0.857 0.158 0.981 0.197 1.098 0.237 1.182 0.267 
3 0.475 0.061 0.628 0.096 0.718 0.119 0.804 0.143 0.866 0.161 
4 0.354 0.038 0.467 0.059 0.535 0.074 0.599 0.089 0.644 0.100 
5 12.759 1.135 12.759 1.350 12.759 1.469 12.759 1.577 12.759 1.651 
6 12.759 0.952 12.759 1.133 12.759 1.233 12.759 1.323 12.759 1.386 
7 12.759 0.801 12.759 0.953 12.759 1.037 12.759 1.113 12.759 1.166 
8 12.759 0.675 12.759 0.804 12.759 0.874 12.759 0.938 12.759 0.982 
9 12.759 0.570 12.759 0.678 12.759 0.738 12.759 0.792 12.759 0.829 
10 12.759 0.481 12.759 0.573 12.759 0.623 12.759 0.669 12.759 0.700 
11 12.759 0.407 12.759 0.484 12.759 0.527 12.759 0.566 12.759 0.592 
12 12.759 0.344 12.759 0.410 12.759 0.446 12.759 0.479 12.759 0.501 
13 12.759 0.292 12.759 0.347 12.759 0.378 12.759 0.405 12.759 0.424 
14 12.759 0.247 12.759 0.294 12.759 0.320 12.759 0.343 12.759 0.359 
15 12.759 0.209 12.759 0.249 12.759 0.271 12.759 0.291 12.759 0.305 
16 12.759 0.177 12.759 0.211 12.759 0.230 12.759 0.247 12.759 0.258 
17 12.759 0.151 12.759 0.179 12.759 0.195 12.759 0.209 12.759 0.219 
18 12.759 0.128 12.759 0.152 12.759 0.165 12.759 0.177 12.759 0.186 
19 12.759 0.108 12.759 0.129 12.759 0.140 12.759 0.151 12.759 0.158 
20 12.759 0.092 12.759 0.109 12.759 0.119 12.759 0.128 12.759 0.134 
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Appendix E: State Transition Probabilities 
for Illustrative Example 

This appendix documents the state transportation probabilities for the illustrative example in 
Chapter 4. Table E-1 through Table E-3 show the transition probabilities for pavements for the 
Do Nothing, Minor Repair, and Major Repair options. Table E-4 through Table E-6 show the 
transition probabilities for bridge decks for the Do Nothing, Minor Repair, and Major Repair. 

Table E-10. State transition probabilities for pavements: Do Nothing. 

States 5 4 3 2 1 
5 0.840 0.121 0.039   
4  0.788 0.142 0.070  
3   0.708 0.192 0.100 
2    0.578 0.422 
1     1.000 

Table E-11. State transition probabilities for pavements: Minor Repair. 

States 5 4 3 2 1 
5 0.97 0.03    
4 0.85 0.12 0.03   
3 0.45 0.40 0.12 0.03  
2  0.45 0.40 0.12 0.03 
1   0.45 0.40 0.15 

Table E-12. State transition probabilities for pavements: Major Repair. 

States 5 4 3 2 1 
5 1.00     
4 0.95 0.05    
3 0.80 0.20    
2 0.70 0.25 0.05   
1 0.45 0.35 0.20   
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Table E-13. State transition probabilities for bridge decks: Do Nothing. 

States 6 5 4 3 2 1 
6 0.85 0.09 0.06    
5  0.77 0.13 0.10   
4   0.78 0.14 0.08  
3    0.92 0.04 0.04 
2     0.82 0.18 
1      1.00 

Table E-14. State transition probabilities for bridge decks: Minor Repair. 

States 6 5 4 3 2 1 
6 0.97 0.03     
5 0.85 0.12 0.03    
4 0.40 0.45 0.12 0.03   
3  0.40 0.45 0.12 0.03  
2   0.40 0.45 0.12 0.03 
1    0.40 0.45 0.15 

Table E-15. State transition probabilities for bridge decks: Major Repair. 

States 6 5 4 3 2 1 
6 1      
5 0.95 0.05     
4 0.80 0.20     
3 0.60 0.30 0.10    
2 0.40 0.40 0.20    
1 0.30 0.40 0.30    
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Appendix F: Cost and Duration for 
Improvement Actions for Illustrative 
Example 

This appendix includes cost and durations of pavement and bridge activities for the illustrative 
example in Chapter 4. Also included is user cost data.  

Table F-1. Cost of pavement improvement actions. 

Actions   Cost ($/m2) 
Do Nothing    0 
Minor Repair   16 
Major Repair   68 
Reconstruction   330 

Sources: (Virginia Department of Transportation, 2016; FDOT, 2020; PennDOT, 2017; Russell, 
2021)   

Table F-16. Duration of pavement improvement actions. 

Actions  Days per lane-mile Additional days per 
mile for shoulders, etc.  

Do Nothing   0 0 
Minor Repair  3.5 1 
Major Repair  6.5 2 
Reconstruction  35 10 

Table F-17. Cost of improvement actions for bridges. 

Actions Cost ($/m2) 
Do Nothing  0 
Minor Repair 400 
Major Repair 1,200 
Reconstruction 2,650 

Table F-18. Duration of bridge improvement actions. 

Actions Days per bridge 
Do Nothing  0 
Minor Repair 12 
Major Repair 30 
Reconstruction 150 
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Table F-19. User cost for pavements. 

States Cost ($/m2) 
5 0 
4 8 
3 14 
2 25 
1 200 

Table F-20. User cost for bridges. 

States Cost ($/m2) 
6 0 
5 10 
4 20 
3 50 
2 100 
1 500 
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Appendix G: SARSA-LFA and DCMAC 
Parameters 

 

SARSA-LFA PARAMETERS 

The feature functions defined in Table G-1 were used in Q-value approximation 𝑄𝑄�(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡, 𝑡𝑡) in 
the experiments. 
 

Table G-1. Feature function 

Function class Description 
𝑰𝑰𝕥𝕥(𝑡𝑡) = 1 if 𝑡𝑡 = 𝕥𝕥; = 0 otherwise 

𝑰𝑰𝕤𝕤𝕥𝕥𝕜𝕜,𝕒𝕒𝕥𝕥𝕜𝕜,𝕜𝕜,𝕥𝕥(𝑠𝑠𝑡𝑡
𝑘𝑘,𝑎𝑎𝑡𝑡𝑘𝑘 ,𝑘𝑘, 𝑡𝑡) = 1 if 𝑠𝑠𝑡𝑡𝑘𝑘 = 𝕤𝕤𝕥𝕥𝕜𝕜 and 𝑎𝑎𝑡𝑡𝑘𝑘 = 𝕒𝕒𝕥𝕥𝕜𝕜 for pavement 𝑘𝑘 = 𝕜𝕜 in year 

𝑡𝑡 = 𝕥𝕥; = 0 otherwise 
𝑰𝑰𝕤𝕤𝕥𝕥𝕓𝕓,𝕒𝕒𝕥𝕥𝕓𝕓,𝕜𝕜,𝕥𝕥(𝑠𝑠𝑡𝑡

𝑏𝑏 ,𝑎𝑎𝑡𝑡𝑏𝑏 , 𝑏𝑏, 𝑡𝑡) = 1 if 𝑠𝑠𝑡𝑡𝑏𝑏 = 𝕤𝕤𝕥𝕥𝕓𝕓 and 𝑎𝑎𝑡𝑡𝑏𝑏 = 𝕒𝕒𝕥𝕥𝕓𝕓 for bridge 𝑏𝑏 = 𝕓𝕓 in year 𝑡𝑡 =
𝕥𝕥; = 0 otherwise 

𝑰𝑰𝕤𝕤𝕥𝕥𝔾𝔾1 ,𝕒𝕒𝕥𝕥
𝔾𝔾1 ,𝔾𝔾1,𝕥𝕥(𝒔𝒔𝑡𝑡

𝐺𝐺1 ,𝒂𝒂𝑡𝑡
𝐺𝐺1 ,𝐺𝐺1, 𝑡𝑡) = 1 if 𝒔𝒔𝑡𝑡

𝐺𝐺1 = 𝕤𝕤𝕥𝕥
𝔾𝔾1 and 𝒂𝒂𝑡𝑡

𝐺𝐺1 = 𝕒𝕒𝕥𝕥
𝔾𝔾1 for roadway assets group 

𝐺𝐺1 = 𝔾𝔾1 in year 𝑡𝑡 = 𝕥𝕥; = 0 otherwise 
𝑰𝑰𝕤𝕤𝕥𝕥𝔾𝔾2 ,𝕒𝕒𝕥𝕥

𝔾𝔾2 ,𝔾𝔾1,𝕥𝕥(𝒔𝒔𝑡𝑡
𝐺𝐺2 ,𝒂𝒂𝑡𝑡

𝐺𝐺2 ,𝐺𝐺2, 𝑡𝑡) = 1 if 𝒔𝒔𝑡𝑡
𝐺𝐺2 = 𝕤𝕤𝕥𝕥

𝔾𝔾2 and 𝒂𝒂𝑡𝑡
𝐺𝐺2 = 𝕒𝕒𝕥𝕥

𝔾𝔾2 for roadway assets group 
t 𝐺𝐺2 = 𝔾𝔾2 in year 𝑡𝑡 = 𝕥𝕥; = 0 otherwise 

𝐼𝐼𝕤𝕤𝕥𝕥𝔾𝔾3 ,𝕒𝕒𝕥𝕥
𝔾𝔾3 ,𝔾𝔾3,𝕥𝕥(𝒔𝒔𝑡𝑡

𝐺𝐺3 ,𝒂𝒂𝑡𝑡
𝐺𝐺3 ,𝐺𝐺3, 𝑡𝑡) = 1 if 𝒔𝒔𝑡𝑡

𝐺𝐺3 = 𝕤𝕤𝕥𝕥
𝔾𝔾3 and 𝒂𝒂𝑡𝑡

𝐺𝐺3 = 𝕒𝕒𝕥𝕥
𝔾𝔾3 for roadway assets group 

𝐺𝐺3 = 𝔾𝔾3 in year 𝑡𝑡 = 𝕥𝕥; = 0 otherwise 
 

The first three classes of features were used to approximate 𝑄𝑄�(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡, 𝑡𝑡) via Eqn. (G.1). 
𝑄𝑄�(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡 , 𝑡𝑡) = �� � � 𝑰𝑰𝕤𝕤𝕥𝕥𝕜𝕜,𝕒𝕒𝕥𝕥𝕜𝕜,𝕜𝕜,𝕥𝕥(𝑠𝑠𝑡𝑡

𝑘𝑘,𝑎𝑎𝑡𝑡𝑘𝑘,𝑘𝑘, 𝑡𝑡) ∙ 𝑤𝑤𝕤𝕤𝕥𝕥𝕜𝕜,𝕒𝕒𝕥𝕥𝕜𝕜 
𝕜𝕜,𝕥𝕥

𝕒𝕒𝕥𝕥𝕜𝕜∈𝐴𝐴1𝕤𝕤𝕥𝕥𝕜𝕜∈𝑆𝑆𝑘𝑘𝕜𝕜∈𝐾𝐾𝕥𝕥∈𝑻𝑻

+ �� � � 𝑰𝑰𝕤𝕤𝕥𝕥𝕓𝕓,𝕒𝕒𝕥𝕥𝕓𝕓,𝕜𝕜,𝕥𝕥(𝑠𝑠𝑡𝑡
𝑏𝑏,𝑎𝑎𝑡𝑡𝑏𝑏 , 𝑏𝑏, 𝑡𝑡) ∙ 𝑤𝑤𝕤𝕤𝕥𝕥𝕓𝕓,𝕒𝕒𝕥𝕥𝕓𝕓 

𝕓𝕓,𝕥𝕥

𝕒𝕒𝕥𝕥𝕓𝕓∈𝐴𝐴2𝕤𝕤𝕥𝕥𝕓𝕓∈𝑆𝑆𝑏𝑏𝕓𝕓∈𝐵𝐵𝕥𝕥∈𝑻𝑻

+ �𝑰𝑰𝕥𝕥(𝑡𝑡) ∙ 𝑤𝑤𝑡𝑡
𝕥𝕥∈𝑻𝑻

,     ∀𝑡𝑡 ∈ 𝑻𝑻 

(G.54) 

The weights, w, in Eqn. (G.1) are updated following Eqn. (4.18) and Eqn. (4.19) with 
learning rate 𝑙𝑙𝑙𝑙 = 0.001. Learning rates ranging from 0.000001 to 0.1 were tested. A rate of 
0.001 led to the best results, and thus, was used in the experiments. To improve the results upon 
convergence, the last three feature functions were added, as 𝔾𝔾1:{pavement 1, pavement 2 and 
pavement 3}; 𝔾𝔾2:{pavement 7 and bridge 1}; and 𝔾𝔾3:{pavement 9 and bridge2}.  

The Q-value approximation 𝑄𝑄�(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡 , 𝑡𝑡) is obtained through Eqn. (G.2). 



 127 r3utc.psu.edu 
 

𝑄𝑄�(𝒔𝒔𝑡𝑡,𝒂𝒂𝑡𝑡, 𝑡𝑡) = �� � � 𝑰𝑰𝕤𝕤𝕥𝕥𝕜𝕜,𝕒𝕒𝕥𝕥𝕜𝕜,𝕜𝕜,𝕥𝕥�𝑠𝑠𝑡𝑡
𝑘𝑘,𝑎𝑎𝑡𝑡𝑘𝑘,𝑘𝑘, 𝑡𝑡� ∙ 𝑤𝑤𝕤𝕤𝕥𝕥𝕜𝕜,𝕒𝕒𝕥𝕥𝕜𝕜 

𝕜𝕜,𝕥𝕥

𝕒𝕒𝕥𝕥𝕜𝕜∈𝐴𝐴1𝕤𝕤𝕥𝕥𝕜𝕜∈𝑆𝑆𝑘𝑘𝕜𝕜∈𝐾𝐾𝕥𝕥∈𝑻𝑻

+ �� � � 𝑰𝑰𝕤𝕤𝕥𝕥𝕓𝕓,𝕒𝕒𝕥𝕥𝕓𝕓,𝕜𝕜,𝕥𝕥�𝑠𝑠𝑡𝑡
𝑏𝑏 ,𝑎𝑎𝑡𝑡𝑏𝑏 , 𝑏𝑏, 𝑡𝑡�𝑤𝑤𝕤𝕤𝕥𝕥𝕓𝕓,𝕒𝕒𝕥𝕥𝕓𝕓 

𝕓𝕓,𝕥𝕥

𝕒𝕒𝕥𝕥𝕓𝕓∈𝐴𝐴2𝕤𝕤𝕥𝕥𝕓𝕓∈𝑆𝑆𝑏𝑏𝕓𝕓∈𝐵𝐵𝕥𝕥∈𝑻𝑻

+ � � � 𝑰𝑰𝕤𝕤𝕥𝕥𝔾𝔾1 ,𝕒𝕒𝕥𝕥
𝔾𝔾1 ,𝔾𝔾1,𝕥𝕥(𝒔𝒔𝑡𝑡

𝐺𝐺1 ,𝒂𝒂𝑡𝑡
𝐺𝐺1 ,𝐺𝐺1, 𝑡𝑡) ∙ 𝑤𝑤

𝕤𝕤𝕥𝕥
𝔾𝔾1 ,𝕒𝕒𝕥𝕥

𝔾𝔾1  
𝔾𝔾1,𝕥𝕥

𝕒𝕒𝕥𝕥
𝔾𝔾1∈𝐴𝐴1×𝐴𝐴1×𝐴𝐴1𝕤𝕤𝕥𝕥

𝔾𝔾1∈𝑆𝑆𝑘𝑘×𝑆𝑆𝑘𝑘×𝑆𝑆𝑘𝑘𝕥𝕥∈𝑻𝑻

+ � � � 𝑰𝑰𝕤𝕤𝕥𝕥𝔾𝔾2 ,𝕒𝕒𝕥𝕥
𝔾𝔾2 ,𝔾𝔾2,𝕥𝕥(𝒔𝒔𝑡𝑡

𝐺𝐺2 ,𝒂𝒂𝑡𝑡
𝐺𝐺2 ,𝐺𝐺2, 𝑡𝑡) ∙ 𝑤𝑤

𝕤𝕤𝕥𝕥
𝔾𝔾2 ,𝕒𝕒𝕥𝕥

𝔾𝔾2  
𝔾𝔾2,𝕥𝕥

𝕒𝕒𝕥𝕥
𝔾𝔾2∈𝐴𝐴1×𝐴𝐴2𝕤𝕤𝕥𝕥

𝔾𝔾2∈𝑆𝑆𝑘𝑘×𝑆𝑆𝑏𝑏𝕥𝕥∈𝑻𝑻

+ � � � 𝑰𝑰𝕤𝕤𝕥𝕥𝔾𝔾3 ,𝕒𝕒𝕥𝕥
𝔾𝔾3 ,𝔾𝔾3,𝕥𝕥(𝒔𝒔𝑡𝑡

𝐺𝐺3 ,𝒂𝒂𝑡𝑡
𝐺𝐺3 ,𝐺𝐺3, 𝑡𝑡) ∙ 𝑤𝑤

𝕤𝕤𝕥𝕥
𝔾𝔾3 ,𝕒𝕒𝕥𝕥

𝔾𝔾3  
𝔾𝔾3,𝕥𝕥

𝕒𝕒𝕥𝕥
𝔾𝔾3∈𝐴𝐴1×𝐴𝐴2𝕤𝕤𝕥𝕥

𝔾𝔾3∈𝑆𝑆𝑘𝑘×𝑆𝑆𝑏𝑏𝕥𝕥∈𝑻𝑻

+ �𝟏𝟏𝕥𝕥(𝑡𝑡)𝑤𝑤𝑡𝑡
𝕥𝕥∈𝑻𝑻

,                                                                                  ∀𝑡𝑡 ∈ 𝑻𝑻 

(G. 2) 

 
where 𝒔𝒔𝑡𝑡

𝐺𝐺1 represents the state of pavements 1, 2 and 3 in year 𝑡𝑡, 𝒔𝒔𝑡𝑡
𝐺𝐺2 represents the state of 

pavement 7 and bridge 1 in year 𝑡𝑡, and 𝒔𝒔𝑡𝑡
𝐺𝐺3 represents the state of pavement 9 and bridge 2 in 

year 𝑡𝑡. 𝒂𝒂𝑡𝑡
𝐺𝐺1represents the actions implemented on pavements 1, 2, and 3, 𝒂𝒂𝑡𝑡

𝐺𝐺2 represents the 
actions implemented on pavement 7 and bridge 1, and 𝒂𝒂𝑡𝑡

𝐺𝐺3 represents the actions implemented on 
pavement 9 and bridge 2. 

DCMAC PARAMETERS 
In implementing the DCMAC method, the actor network is constructed with 2 hidden layers, 
each with 100 neurons per layer and using a ‘Relu’ activation function for each layer. 11 output 
layers are connected to the last hidden layer. 9 output layers have 3 neurons representing 
pavements improvement action categories and 2 output layers have 9 neurons representing 
combinations of actions appropriate for pavements and bridges. All the output layers use a 
‘Softmax’ action function. Categorical cross entropy loss function is used for the actor network 
and the learning rate is set to 0.0001. The critic network has 2 hidden layers, each hidden layers 
has 300 neurons and uses ‘Relu’ activation function. The output layer has one node and uses a 
‘Linear’ activation function. Mean squared error loss function is used for the critic network and 
the learning rate is set to 0.01. 
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