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EXECUTIV E SUMMARY

OVERVIEW

Many studies that support an optimistic outlook on the traffic flow impacts of
autonomouwehicles(AVs) limit modeleddriving behavior modifications to the
cooperative actions of th&Vs. However, thesstudieshave not considered the impacts
on traffic performance of potential aggressive interactiomsifandriven vehicles

(HDVs) with AVsin a mixed environmen®Vs and HDVs). Considering th#tVs will

not retaliate when they are the target of an aggressiimait is not hard to postulate

that some human drivers may display aggressive behaviors t&Wardaking advantage
of theAVs oollision-avoidance features. Given these potential behaviors, the objective
of this effort is to develop and test models\W interaction with aggressive human

drivers.

To aid in understanding the potential impact of aggressive RNDV) interactions

with AVs, this effort has investigated a merging situation at amasffp. Three classes of
vehicles are simulatedVs, HDVs, and AHDVs. AHDVs represent humdriven

vehicles with aggressive merghbghavior characteristics. To perform this study, AHDV
behavior at a merge section of a freeway exit ramp, in a rtraéet environment, is
simulated using thepensourcetraffic simulation package SUMO (Simulation of Urban
Mobility). Two types of potential AHDV merging behavior when interacting with an AV
are modeled(1) aggressive merge with maximum advancenemd(2) aggressive

merge with zipper. The aggressive merge witkximam advancement represents the

highest level of aggressive behavior. The AHDVs with this behavior target the farthest



reachable AV on the deceleration lane to act as the follovahgle in the receiving
lane, i.e., the AHDV will lane change front of the AV, essentially without regard for
the available gap. In the second type, the aggressive merge with zipper, the AHDVs
continue to target downstreaVsin the exit lane, buaivoid the scenario where the

same AV is targeted by multiple AHDVSs.

The i mpacts of the AHDYVs Gtraligegvironrmmesntiev,e behavi o
AVs, HDVs, and AHDVSs) on different network traffic characteristics, such as travel time

and capacityis demonstrated. Four experiments are conducted to explore the impact of

the AHDV behavior on traffic operations. The first experiment observes the change in

speed of the target AV, as well as the following traffic, when a platoon of 10 AHDVs

merges in font of the AV near a freeway exit. The second and third experiments observe

the traveltimes of exiting AHDVs and other vehicles when AHDVs are randomly

distributed throughout the traffic stream with varying percentag@d/sfand AHDVS in

the traffic compsition. The fourth experiment considers the impact on capacity in a

similar merging situation where vehicle behavior is set as cooperative or noncooperative

utilizing SUMO driverbehavior parameters.

Experiments 1 through 3 showed that the presence chhumdr i ver sd aggr essi
behaviors had adverse effectsAvis and HDVs. The adverse effects were more

significant in high congestion, when there is a queue on the deceleration lane. The

i mpacts of AHDVsO6 aggressi vedwayehetwees wer e mut
vehicles in low congestion when there is no queue on the deceleration lane. Based on the
experiment2 andexperiment3 results, AHDVs had a higher traw@he gain with higher

level of aggressive behaviors, which in return had greater adeféesées on thé\Vsd



and the HDVétraveltimes. Throughout the experimenise systerwide travel time
tended to be relatively stabladicating that the AHDV traveime improvements came

at the expense &Vsband other vehiclégravel times.

Experiment 4 took a closer look at the impact of cooperative behiandced

aggressive merges on capacity. It was seen that when most vehicles are either fully
cooperative or noncooperatj\@milar capacities are obtained; however, where a higher
percentage ofooperative vehicles are positioned to be targeted by more aggressive
vehicles, this aggressime-nonaggressive interaction can significantly reduce capacity.
In addition, it was seen, similar to experiments 1 through 3, that AHDV gains were
achieved athe expense AAVs. Finally, even in those scenarios where the overall
capacity was not significantly changed in response to the variation in the percentage of
cooperative vehicles in the traffic, increased fluctuations in the flow may potentially

negatiwely impact operations as well as the safety conditions in the upstream traffic.

As a final component of this reseayain Excelbased Simplified Capacity Analysis Tool
(SCAT) is developed. This tool draws predicted saturation flow rates, at various
connecedandautonomousrehicle(CAV) marketpenetration rates, from the literature
and a simulation experiment. These saturation flow rates are utilized to determine
potential phase capacities at a signalized intersection. While the freeway SUMO
experiments focused on the impact of lane changiné\TS$xplores the impact of CAV
carfollowing and platooning behaviors. It is seen that a wide variation in capacity
predictions may be found throughout the literature, from slight reductions to significant
increases in capacity as AV market penetratioreg®es. Across the literature, when

considering the caollowing aspect of AV operations, it is clear that two ke sét



assumptions are driving the predictiotiee first is the headways selected by Ahésin a
mixed-traffic environment, and the secoisdhe characteristsof AV platoons, i.e.,

platooned vehicle spacing and maximum platoon length.

The findings of this study suggest that despite the general belief in the benefits of

autonomous vehicles, there may be adverse impacts on theggoessie vehicle travel

times in the presence of human dr-tralfier s6 aggr
environment, especially in congested conditions. Thus, when the potential benefits of the

AV are most needed, i.e., at or near capacity, it is pogkistdruman interaction may

negate many of the potential savings.

Report Organization

Chapter oresents efforts found in the literature on AV modelswgh as assumptions
made, frequently adjusted parameters, and commonaateastics oAVs. Chapter 3

presents a comparison between the PTV VISSIM and SUMO simulation modeling
platforms and discusses the selection of SUMO for the merge modeling éffoxtser 4
presents how the two aggressive merging models were devetspedll as the four

different experiments that investigate the impacts of the aggressive merging models in a
mixed traffic environmentChapter Shighlights the data collection conducted for the
headway utilized to calibrate the modekmapter 6 Finally, chapter Gresents the

Simplified Cagmcity AnalysisTool.

Recommendations

As seen in the report, the high state of uncertainty in AV dritsglgavior characteristics

and a similar level of uncertainty in the behavior of hudawven vehicles when



interacting withAV's, makes it extremely difficult to incorporafe/sinto current
planning and design processes with any sense of assuredness. However, based on this
project,Georgia Department of Transportatidb¥OT) can likely achieve an early sense

of the ultimate operainal impacts oAVs by tracking three primary leading indicators:

1. As AV tests contine, or low market penetration occurs, is a rise in aggressive
interactions witnesséd

2. What are the headways being adopted by AV manufastuaed what are the
potentialregulatory requiremerfs

3. Are platoons implmented inAVs, and if so, what are the spacing requirements
and maximum lengtrestrictions which are again potentially manufacture

and/or regulatonagency drivefd

As the direction of each of these indiaatbecomes clearg6DOT will be able to select
the more likely futures from the many potential predicted futures, with a higher level of
confidence. This would allow AV penetration to begin to influence policy decisions and
design decisions, such as quewgnagement at ramp junctions, A\WY/slaneusage
restrictions, optimizing signalized intersectda process AV platoons, etc., in a more

informed manner.



CHAPTER 1. INTRODUCTION

Many studies that support an optimistic outlook on the tréiffilw impacts of
autoromousvehicles(AVs) limit modeleddriving behavior modifications to the
cooperative actions of theVs, such as slowing down fonergingvehicles Similatdy,

lane changes to advance the AV position in the traffic stream relative to other vehicles

receivelow priority (Aria etal. 2016 Rahman and Abdelty 2018 Staneketal. 2017).

However, heseand similarstudies have not considered the impacts on traffic
performance of potential aggressive interactionsunfiandriven vehicles(HDVs) with
AVsin a mixed envirament {.e.,AVsand HDVs) athoughsuch behaviors are liketp
occur. For instance, mobility service companies have observed aggressive dinivean
behaviors directed at their AV test fleets, such as abrupt merging, tailgating, and hostile
verbal and hnd gestureRandazz®018 Hamilton2019. Even withoutAVsin the
fleet, aggressive behavior has been obseatederge locations with heavy queuirtepr
examplewithin the last few hundred feef a merge sectioan aggressive thier may
take advantage of the slower acceleration and larger headwagawf vehiclegToth
2014). By extensionconsidering thaAVs will not retaliate when they are the target of
an aggressive action, it is not hard to postulate that some huraarsdnay display
aggressive behaviors towadd/s, taking advantage of th&Vs 6éollision-avoidance
features. Even drivers that do not typigalisplay such behavior may be more
aggressiveor ignore common courtesi@svehicle interactionsvhen interacting with
AVs. Given these potential behaviptise objective of this effort is to develapd test
models of aggressive merging behaviors, targeted towdsby a subset of human

driven vehicles, in a mixed environment.



To this end, lie potatial impact ofmergingbehaviors on traffic performanceexplored

in a simulation environmenthree classes of vehicles aieulated AVs, HDVs, and
aggressivehumandriven vehicles(AHDVs). AHDVs represent humadiriven vehicles
with aggressive mergipbehavior characteristic¥o perform tls study, AHDV behavior
atamerge section of a freeway exit rapp amixed traffic environmenis simulated
using theopensourcetraffic simulation packag8UMO (Simulation of Urban Nbility)
(EclipseFoundatior2020. Two types ofpotential AHDV merging behaviowhen
interacting with an AVaremodeled (1) aggressive merg&ith maximumadvancement
and(2) aggressive merge with zippdtheaggressive mergsith maximum advancement
represerdthe highest level of aggressive behavitieAHDVs with this behaviotarget
the farthest reachable AV on the deceleration taret as the follaing vehicle inthe
receiving lanei.e., the AHDV will lane change ifnont of the AV, essentially without
regardfor the available gagn the second typehé aggressive merge with zipptre
AHDVs continueto targetdownstrearmAVs in the exit lane, luavoid the scenario where
the same AVis targeted by multiple AHDVdf an AV has already participated in a
targetedmerge with an AHDVthenthe nextAHDV will target thenext AV upstream of
that AV. Where an AV is not preserthe AHDV will select and rarge in front of an

HDV in anonaggressive manner, similar to HDVs.

Using simulation experiments, the impacts of the AHDAGgressivdehaviors im
mixed-traffic environmenti(e.,AVs, HDVs, and AHDVS) on different network traffic
characteristics, such as travel time, is demonstratege experiments are conducted to
explore the impact of th&HDV behavior on traffioperationsThe first experiment

observes the change in speed of the target AV, as well as the following tratic,av



platoon of 10 AHDVs merges in front of the AV near a freeway exit. The second and

third experiments observe tlraveltimesof exiting AHDVs and other vehicles when

AHDVs are ramdomly distributed throughout the traffic streanth varying percentage

of AVsand AHDVs in the traffic compositioThe results of the three experiments show

thatthe presence A HDVs 6 aggressive behatmeprs | ead to

indicating higher levels of interruption in the traffic floamwa congested condition

As a final component of thigsearchan ExcetbasedSimplified CapacityAnalysisTool
(SCAT)is developedThis tool draws predicted saturation flow rai@svarious
connectecaindautonomous vehicl@CAV) market penetration ratespm the literature
and a simulation experiment. These saturation flow rates are utilized to determine
potential phase capacities at a signalized intersection. While the freeway SUMO
experiment focused on the impact of lahanging SCAT explores the impact of CAV

carfollowing and platooning behaviors.

The remainder of this report is organized as follaWsapter Zorovides background
informationon AV driving behaviors, thiteraction between AV and humaniven
vehicles, and modeling of aggressés. Chapter Jresents the process for the
selection of the simulation modeling platfor@hapter 4reviews the development of the
selected simulatiorChapter Spresents the resultShapter Goresents the Simplified

Capacity Analysis Tool. Finallychapter summarzes the findings.



CHAPTER 2. BACKGROUND

UNCERTAINTY IN INTERACTIONS BETWEEN AUTONOMOUS VEHICLES
AND HUMAN ROAD USERS

Over the past decadihe rapidadvancemernin aubnomoudriving technology in

research and imdustryhas ledseveral autmobile manufacturerso developand deply

various levels ohutonomous vehicledlumerousstudies pesentoptimisticroadway
performanceutlooksgiventhe deploymentof autonomous vehicleslowever, bhere is a

gap intheunderstandingf the impactsoft he aut onomous vehiclesd ir
human driverswhich is crucial forreliably modeling the impacts & implementation

This is particularly relevanh the transition phase where roadways are expected to

consist ofa mixed fleet oAVs and HDVs Such amixed fleet mayresult in significant

changes to roadway safety, operational, environmental, and other performance metrics

A significant source of the currenhcertainty stems from the lack of standardization in
aut onomous vVvehi cl(Nagobal Highway TiraffigSafetg havi or s
Administration NHTSA] 2017, Zhaoetal. 2019. However, human drivegsctions
towardAVs arealsoa significant source of uncertainty. For instanbe,ttends in

p e o ppereepton and behavior towakd/s arecaptured irseverakecent studies.
Results of a survey conductedZfl6indicated thathe majority ofthe respondents

would feel uncomfortable driving alongsida AV (Tennantetal. 2016. It has been
suggestd that given such concerdsV/ and HDV interactio behaviors may contribute

to traffic disturbancg particularly under lovAV market penetration leve(dlishimura
etal. 2019. An intersectiorfield stuly by Rothenbucheetal. (2016 observedhanges

in pedestriads and bicycligis behaviorn the presence oAVs. The pedestriagand



bicyclists acted in a conservative manndmich is hypothesized to be duetheir

uncertainty in potentiahV behaviors Further, inafew studies, field experts have shared

concerns otthe possibility of human driverslisplayingaggressive behaviotsward

AVs, taking advantages @&f V scOnservative behaviofdller etal. 2016 Hedlund

201). These concerns on human drAvVsleves d aggr es
been observed on realbrld roadways. News articlégmvereported that mobility service
companies suchas UbendWay mo have been observing human
as aggressive merging, tailgating, and hostile verbal and hand geltecésd toward

their autonomous vehicl§Randazz@018 Hamilton2019.

PREVIOUS RESEARCH ON MODELING AUTONOMOUS VEHICLE
BEHAVIORS

As stated peviously, me of the key common challenges experienced in modeling AV
behavior is the lack of standardization in driving behavior param@ers§SA 2017,
General Motor2015 National Academies of Sciencdangineering, and Medicine
2017. While it is challenging to anticipate and model AV driving behavitite,ability

to utilize current human drivingpehavior modelsvith minimal modifications tanodel
AV driving behaviordias been explored by numerous researd&taseketal. 2017,
Wagner2016. Most studies model AV driving behaviors using traditionalfolowing
models and larehanging models with customized decisimaking processsand
modified parameter values that assigrtaiarcharacteristics to th&Vs. The following

list providesthe frequently assumed behaabmodifications from human driver

behavior models t&V/CAV models.
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Frequently assumed behawabmodificationsfor AV/CAV vehiclesinclude the

following:

1
il
1
T
T

Lower headways

Lower deviation or zero randomness in spedationfrom speed limit
Lower reaction time

Slows down for merging vehicles (cooperative lane change)

Higheracceleationrate

Tablel summarizes AV/CAV behavior assumptions and paranagleistmentgor a

sampleof roadway applicatiostudies drawn from the literatu&.more detaild

discussiorof several of these studies may be foundhapter 6
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Table 1. Summary of AV/CAV behavior assumptionsand parametersemployed.

AV/ Simulation . - . Adjusted Parameters
Author(s), Year CAV Software Scenario Roadway Anticipated AV/CAV Behaviors (Parameter Name)
Freeway
E t&vgzrrgﬁagvi\;la;/cszannin surroundings T Lowerheadway time (CC1)
Segment of an autobah 1 Lowers ge d deviation?‘rom the s ege d 1 Higher look ahead (and back) distance
Aria etal., 2016 AV VISSIM with weaving area, limit P P 1  Lower speed dependency of oscillation (CC6)
on-ramp, and oframp ) . . 1  Advanced merging
1 Earlier decision poirin lane change .
. 1  Cooperative lane change
1 Cooperative lane change
1 Lower headways 1 Lowerstandstil distance (CCO)
Staneketal., AV VISSIM 9 Two freeway segments| { Higher acceleration rate 1 Lower headway time (CC1),
2017 in California 1 Lower reaction time to green light 9 Higher threshold for entering following (CC3)
1 Cooperative lane change 1 Lower negative and positive following threshold (CC4, C
9 Earlier lane change for turns 1 Advarced merging
L . . 9 Notaccepting lower gap for merge 1 Disabled lower gap acceptance for merge
Mesgggsg tal, AV AIMSUN 20-mile fsrgs\s\tltgyos lane 1 Less likely to overtake other vehicles | 1  Lower probability in overtaking other vehicles
9 Lower reaction time 9 Lower reaction time
1 Lower headway 1 Lower standsiill distance (CCQ)
1 Lower headway 1 Lower tlme hea_dway (tau)
. L 1 Smaller simulation length
Richteretal Freeway segment with) - Lower reaction time 1  Removed randomness in speed (SpeedFactor)
N AV SUMO anonramp andan | Norandomness in speed - . )
2019 : ) . 1 Zero driver imperfection (sigma)
acceleration lane | Earlier lane change for merging : : - ;
1 Slow down for mergingehicle 1  Earier merging decision point
gny 1 Higher cooperation to merging vehicles
3-lane freeway segmen| 1 Lower time headways
Yu etal., 2019 AV AIMSUN with onrramp and g ::gxg: ggggl\graa)t/izn rate 1 Lower minimum gap
off-ramp 9 Loweracceleration rate
9 Lower standstill distance T Lower stanasiil d!stance (€Co)
1 Lower headway time (CC1)
9 Lower headways . - .
Highway section with | 1 Lower reaction time 1  Lower negative and positive following threshold (CC4, C
Sethetal., 2019 AV VISSIM L 1  No speed dependency of oscillation (CC6)
on-ramp and offramp | § Smaller oscillation in speed o .
I ! . 1 Lower oscillation acceleration (CC7)
9 Smaller oscillation duringcceleration Lo
. . : 1  LowerlanechargingminimumheadwayLC4)
9 Cooperative to merging vehicles .
1 Cooperative lane change
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Author(s), Year C':AX\// Sén(:fl:\lsgfen Scenario Roadway Anticipated AV/CAV Behaviors A(dliisr;ergefjrr?\ln;ﬁzgs
Liu, P. and Fan 1 Higher accelerat_ion rate 1 Higher acceleration rate
W. 2020 CAV VISSIM 4-lane freeway segmen|  Lower car following distance 1 Lower headway (even lower headway Htween two
1 Lower desired headway CAVs) (CC0,CC1)
papadoulietal 3-I_ane freeway segmen| { Lowertime gaps 1 Lower hggdway Fime (CQl) .
2019 N CAV VISSIM 7 | with two onramps and | Higher distance in observing surroundin 1 Lower minimumtime gap in lane changing (MG1)
two off-ramps vehicles 1 Higher look ahead (and back) distance
. 9 Lower timegap 1 Lowertime gap (tau)
Li and Wagner AV SUMO 3-Ia2§_rf;(;,;?r\;vsa;/nv;|t:nt\No 9 Lower driver imperfection 1 Zero driver imperfection (sigma)
2019 off-ramp 1 Higher compliance rate to speed limits | Lower deviation from speed limit (SpeedFactor)
9 Slows down for merging vehicles 9 Higher cooperative behavior (IcCoopie)
1 Lower standstill distance (CCO)
1 Lowerheadway time (CC1)
1 Lower threshold for entering following (CC3)
9 Lower headway M Lower negative and positive following thresho
Tomésetal., AV VISSIM 9 3-lane freeway segmen| 1 Higher acceleration rate (Cc4/ces)
2019 for 9km 9 Lower variation in acceleration 1 Lower oscillation acceleration (CC7)
9 Greater acceptable merging gap 1 Higher standstill acceleration (CC8)
9 Higher acceleration at 8®n/hr (CC9)
1 Higher lane changinginimum headway (LC4)
1 Lower safety distance reduction factor (LC5)
1 Lower standstill distance (CCO)
Sukenniketal., Urban roads and 1 Lower headway time (CC1)
2018 AV VISSIM 10 freeway T Lowerheadway 1 Lower following variation (CC2)
1 Lower threshold for entering following (CC3)
1 Higher speed stability and headway to
leading vehicle .
Martin-Gasulla CAV VISSIM 11 Straight singldane 1 Lower headway when following CAVs T h(_)v;/]er herz]adv(;/ay wh(e:r;\(;A?/lll‘ollqvwng anothet_r Cgv hi
etal., 2019 freeway 1 Higher headways when following T gher neadway olowing - conventional: Venig

conventional vehies (compared to

headways of human drivers)

(higher than convention
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Author(s), Year C':AX\// Sén(:fl:\lsgfen Scenario Roadway Anticipated AV/CAV Behaviors A(dliisr;ergefjrr?\ln;ﬁzgs
Roundabout
1 Lower standstill distance (CCO),
1  Lower headway time (CC1),
9 Lower headways 1  Lower following variation (CC2)
Tiblijagetal., AV VISSIM 11 Singlelane roundabout| § Lower reaction time 1  Lower negative and positive following threshold (CC4, C
2018 with 3 or 4 approaches { Lower speed instability 1  Lower speed dependency of oscillation (CC6)
9 Higher acceleration rates 1  Lower osdlation acceleration (CC7)
9 Higher standstill acceleration (CC8)
9 Higher acceleration 8 km/hr (CC9)
1  Lower standstiltistance (CCO)
1 Shorter gap 1  Lower headway time (CC1)
) 1 Norandomness in speed 1 Lower following variation (CC2)
Morazn(;jlose tal, AV VISSIM 9 S"Hﬁ'i”;p;?gggﬁggm 9 Higher acceleration rate 1  Lower negative and positive following threshold (CC4, C
9 Higher capability in observing vehicles | 1  Zero speed dependency of oscillation (CC6)
ahead 1 Higher acceleration rate
91 Higher lookahead distance
1  Lower standstill distance (CCO)
9 Lower headway 1  Lowerheadway time (CC1)
. 9 Lower variation in acceleration rate 1 Lower oscillation acceleration (CC7)
Atkins, 2016 CAV VISSIM 8 Roundabout 1 Lower safety distance 1  Lower safety distance, higher standstill acceleration (CC
1 Higher acceleration rate 1  Lower minimum time gap in lane changing (MGL1)
1 Lower minimum headway in lane changing (MG2)
1 Lower standstill distance (CCO)
1  Lower headway time (CC1)
Anagnosbpoulos E ;er;g::xgéiaﬁon T Zerofollowing variation (CC2)
- . 1 Zero negative and positive following threshold (CC4, CQ
and Kehagia CAV VISSIM 11 | Double lane roundaboul f Lower acceleration rates 1 Zero speed dependency of oscillation (CC6)
2019 T Higher look ahenhdls_tance . 9 Higher acceleration rat¢sC7, CC8CC9)
1 Slow down for merging vehicles 1 Higher look ahead distance
1 Cooperative lane change
Single Lane Roadway
Wang and Wang AV VISSIM 7 4 km singlelane 9 Lower reaction time, lower headways tgxg: Eg:;ﬂﬁ:iﬁn(?égco)

2017

roadway

1 No speeding

= =4 =9

Tighter bounds on speed distribution
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Author(s), Year C':AX\// Sén(:fl:\lsgfen Scenario Roadway Anticipated AV/CAV Behaviors A(dliisr;ergefjrr?\ln;ﬁzgs
1 Lower headways 1 Lower minimum gap when standing (minGap)
' ; : 1 Lower time headway (tau)
Lu etal.,, 2018 AV SUMO Single-lane roadway | 1 Higher acceleration rate ) .
9 Zero driver imperfection T Higher gccgleratlon rgte .
9 Zero driver imperfection (sigma)
1 Lower headway 1 Lower standstill d?stance (CCo)
Atkins, 2016 CAV VISSIM 8 Singlelane link 1 Lower variation in acceleration rate % ::gxg gggﬁ;\t’;ﬂgglg;g cc)
T Lower safety distance 9 Lower safety distance reduction factor (LC5)
Multilane Roadway
1 Lower offset to the leading vehicle when standing (minG
2-lane roadway in a grig 1 Lower headways 1 Higher acceleration rate
Lu etal, 2020 AV SUMO network 9 Higher acceleration rate 1  Lower time headwaftau)
9 Zero driver imperfection (sigma)
1 Lower headway T Lower standstil d?stance (CCo)
9 Lower variation in acceleration rate T Lower headway imCC1)
Atkins, 2016 CAV VISSIM 8 Multi-lane link 1 Lower safety distance 1 Lower oscillation acceleration (CC7)
1 Greater acceptable merging gap 1 Lower lane changing min. headway (LC4)
1 Lower safety distance reduction factor (LC5)
9 Lower standstill distance (CCO)
1 Lower headway 1 Lower hea_dw_ay time (CCl_)
. Multi-lane link with 9 Lower variation in acceleration rate T Lower oscilation acceleration (CC7)
Atkins, 2016 CAV VISSIM 8 merge 1 Lower safety distance 1 Higher standstilhcceleration (CC8)
1 Higher acceleration rate 1 Higher acceleration rate at &@v/hr (CC9)
1 Lower minimum time gap in lane changing (MG1)
1 Lower minimum headway in lane changing (MG2)
Signalized Intersection
. 9 Lower reaction time T Lower reactloq "“.‘e
Wang and Wang AV VISSIM 7 1 kr_n smglelane _ 1 Lower headways 1  Lower standsitill distance (CCO)
2017 signalized intersection 1 No speeding 1  Lower headway time (CC1)
1 Tighter bounds on speed distribution
Main arterial roadway | Loweracceleratipn rate 1 Lower acceleratipn rate
. ; . I Lower deceleration rate 9 Lower deceleration rate
Elvarsson2017 AV VISSIM 9 with two signalized ) N ) -
intersections 9 Tighter bound on speed distribution 9  Tighter bound on speed distribution
1 Lower headway 1 Lower standstill distance (CCO)
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Author(s), Year C':AX\// Sén(:fl:\lsgfen Scenario Roadway Anticipated AV/CAV Behaviors A(dél;f;ergeffrrin;fntgs
1 Lower headway 1 Lower standstill distance (CCO)
. . . . . 9 Lower variation in acceleration rate 1  Lower headway time (CC1)
Atkins, 2016 CAV VISSIM 8 Signalized junction 1 Lower safety distance 1 Lower oscillation acceleration (CC7)
9 Higher acceleration rate 9 Higher standstill acceleration (CC8)
1 Increasedange in distance and in numb:
of surrounding vehicles to observe 1 Higher look ahead (and back) distance
. 6-lane signalized surrounding conditions 9 Lower headway time (CC1),
Espinosa2015 AV VISSIM 8 intersgction 9 Lower headway 1 Cooperative Iar):e chaj(1ge :
9 Slow down for merging vehicle 1  Advanced merging
1 Earlier decision point for merge
1 Lower standstill distance (CCO)
1 Lower headways 1 Lower headv_vay tim_eC_(Cl)
Morandoetal 3-lane signalized 9 Zero speed oscillation T Lower foIIovvmg varlatlon .(CCZ) .
2017 N AV VISSIM 9 intersection 1 High lerati i 1 Lower negative and positive following threshold (CC4, C
gher acceleration rate s
1 Greater look ahead distance q Z(_ero speed depe_ndency of oscillation (CC6)
1 Higher acceleration rates (CC8, CC9)
1 Higher look ahead distance
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A common simulation platform utilized for modelidg/s is VISSIM. Table2

summarizes the list of frequently and infrequently usedified VISSIM parameters

Table 2. List of frequently and infrequently usedVISSIM parameters

Frequently Used VISSIM
Parameters

StudiesThat Used Parameter

Standstill Distance (CCO)

Staneketal. 2017, Mesionisetal. 202Q Seth
etal. 2019 Liu and Far202Q Tomés etal.
2019 Sukenniketal. 2018 Tiblijagetal. 2018
Morandoetal. 2018 Atkins 2016
Anagnostopoulos and Kehadil819 Wang and
Wang2017, Elvarssor2017, Morandoetal.
2017

Headway Time (CC1)

Aria etal. 2016 Staneketal. 2017 Sethetal.
2019 Liu and Far202Q Tomasetal. 2019
Sukenniketal. 2018 Tiblijagetal. 2018
Morandoetal. 2018 Atkins 2016
Anagnostopoulos and Kehadl@19 Wang and
Wang2017, Espinos&015 Morandoetal.
2017

Following Variation (CC2)

Staneketal. 2017, Sukenniketal. 2018
Tiblijagetal. 2018 Morandoetal. 2018
Anagnostopoulos and Kehadi@19 Morando
etal. 2017

Negative Following Threshold
(Cca)

Staneketal. 2017, Sethetal. 2019 Tomas etal.
2019 Tiblijagetal. 2018 Morandoetal. 2018
Anagnostopoulos and Kehadi819 Morando
etal. 2017

Positive Following Threshold
(CC5)

Sethetal. 2019 Tomés etal. 2019 Tiblijag
etal. 2018 Morandoetal. 2018
Anagnostopoulos and Kehadi@19 Morando
etal. 2017

Speed Dependency of
Oscillation (CC6)

Aria etal. 2016 Sethetal. 2019 Tiblijagetal.
2018 Morandoetal. 2018 Anagnostopoulos
and Kehagi2019 Morandoetal. 2017

Oscillation Acceleration (CC7)

Sethetal. 2019 Tomés etal. 2019 Tiblijag
etal. 2018 Atkins 2016 Anagnostopoulos and
Kehagia2019 Morandoetal. 2017

Standstill Acceleration (CC8)

Tomésetal. 2019 Tiblijagetal. 2018 Atkins
2016 Anagnostopoulos and Keha@@19,
Morandoetal. 2017

Acceleration at 80km/hr (CC9

Tomésetal. 2019 Tiblijagetal. 2018 Atkins
2016 Anagnostopoulos and Kehadla19
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Frequently Used VISSIM

StudiesThat Used Parameter

Parameters
Look Ahead (and Back) Aria etal. 2016 Morandoetal. 2018 Espinosa
Distance 2015 Morandoetal. 2017

Cooperative Lane Change

Aria etal. 2016 Sethetal. 2019 Morandoetal.
2018 Espinos&015

Infrequently Used VISSIM
Parameters

Studies Used Parameter

Threshold fofEntering
Following (CC3)

Staneketal. 2017 Tomés etal. 2019 Sukennik
etal. 2018

Advanced Merging

Aria etal. 2016 Mesionisetal. 202Q Espinosa
2015

Minimum Time Gap in Lane
Changing (MG1)

Mesionisetal. 202Q Atkins 2016

Lane Changing Minimum
Headway (LC4/MG2)

Tomésetal. 2019 Atkins 2016

Lower Safety Distance
Reduction Factor (LC5)

Tomés etal. 2019 Atkins 2016 Elvarssor?017

The tvo most common customizations to model AV driving behaviors are

(1) cooperative responses to other road yserd(2) conservative driving behavior

Examples of cooperative respossad conservative driving behaviors inclédés

slowing down to allow vehicles to merge in front of them AMs not changing lanes

for speed gain, respectively (Nishimwtaal. 2019 Liu etal. 2017, Huaetal. 2020.

AViHUMAN INTERACTION MODELING

Models of AV driving commonly assunoenservative éhaviorsvhereAVsinteract

with pedestrianssuch asAVsresponéhg to pedestriammuch earlierelativeto

human perceptio(Kapaniaet al.2019; or whenintera¢ing with HDVs, AVsreduce

speedr change larsto allowthe HDV to merge(Staneketal. 2017 Liu etal.

2018h. Additionally, in a few studiesAVsare modeled to adjust their driving

behaviors and decisiemaking process based on the observed or predicted behaviors

of human driver§Wei etal. 2013 Tianetal. 2018. Despite differencem
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approaches tmodelng AV driving behaviors, thee is acommon goal of determining
AV driving decisiongbased ortooperativebehaviorwith neighboring road users
(Schwartingetal. 2018. The customizations of AV characteristics are based on the
common view of conservative and cooperafhé driving behaviorgMller etal.
2016. Table3 presents a summary AV -andhumandriver interactiormodeling
approaches reviewed in the literature survey. Irtdbke, the discusseamar-following
models and the corresponding modifications are used to model véloagisudinal
movementas the cafollowing models govern the speed and headway controls.
Similarly, the discussed larhanging models and the cap®nding modifications
are used to model vehictidateral movemeniss the lanehangingmodels govern
the decisiommaking process in vehicle mergdse following abbreviations are used
in thetable CV i Connected Vehicle, CACC Cooperative Adaptive @ise Control,
and ACCi Adaptive Cruise Control. Thédditional Modificatiorbcolumn refers to
anyadditionalchange that was made by the authadq$he adopted caiollowing

model or lanechangingmodel.

Two keyobservationgrom the table below argl) VISSIM and SUMO are the
dominantsimulation platforms that were utilized among the reviewed stualies
(2) studies that utilized SUMO used SUNM@efault lanechanging model without
any additional modification. The absence of additional modificatiolanechanging

model suggests aggressive lane changing behaviors were not considered.
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Table 3. Summary of AV 1 Human interaction modeling approaches

Scenario Settings

Longitudinal Movement

Lateral Movement

Use of Existing

Author(s) Simulation Scenario Mixed AV-HDV Car-followin Additional Use of Existing Lane Additional
Tool Layout Traffic Interaction Model 9 Modification changing Model Modification
Rahmarand Yes (CV Platoon Wiedemann 99 /
AbdelAty VISSIM 3-lane Freeway and Human Yes 1 Gap Control VISSIM Default MergeControl
. IDM
2018 Vehicles)
4-lane Freeway Yes Multiple Sources Lateral Movement
Liu etal. Mainline & (ACC/CACC (IDM, Gipps, . CACC Operation
AIMSUM - Yes - Logics Developed by
2018b Singlelane Platoon and Newell, and Shladover Rules
On-ramp Human Vehicles) Shladover)
Nishimura . 3-lane Straight Yes (AV and . 2
etal. 2019 Scenargie Roadway Human Vehicles) Yes IDM Acceleration Control LMRS Merge Control
20 Freeway
Miles,
15Freeway
Staneketal. Interchanges, Yes (AV and ) Acceleration and Gap
2017 VISSIM 3 parallel Human Vehicles) Yes Wiedemann 74 Control VISSIM Default Merge Control
Arterial
Corridors,
32 Intersections
Tianetal. Singlelane Yes(L AV and Discretetime Game Theor_etlc Driver Type
- 1 Human Yes - Decisionmaking o
2018 Roundabout - Model Estimation
Vehicle) Model
Wagner2016 | SUMO City Network |, ves (AV and No Hellyo s Mo ( - SUMO Default -
uman Vehicles)
Zlane Freeway Lateral decision madg
Wei etal. Mainline and Yes (AV and Markov Decision :
- - . Yes Speed Control in the developed -
2013 Singlelane Human Vehicle) Process .
algorithm
On-ramp
Driving
Simulator
Zhaoetal. (Scenario Yes (AV and Default Car Default Lanechange
2019 Built with 3lane Roadway| /o Vehicles) Yes following Model Speed Conol Model i
MATLAB and
PreScah
Zhouetal. Yes AVs and 3
2017 - 3-lane Freeway Human Vehicles) Yes CIDM - CIDM Merge Control
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Scenario Settings

Longitudinal Movement

Lateral Movement

Use of Existing

Simulation Scenario Mixed AV-HDV 3 Additional Use of Existing Lane Additional
Auinen) Tool Layout Traffic Interaction Car'-\jltz)ltljoglvlng Modification changing Model Modification
Aria etal. 3-lane Freeway | Yes @AVs and . )
2016 VISSIM A-lane Freeway| Human Vehicles) Yes Wiedemann 99 Gap Control Wiedemann 99 Merge Control
Tiblijagetal. Various Sizes off Yes (AVs and . .
2018 VISSIM Roundabouts | Human Vehicles) Yes Wiedemann 74 Gap Control Wiedemann 74 -
Huaetal. Cellular 2-lane Freeway | Yes (CAVs and Gap and Speed .
2020 Automata 3-lane Freeway| Human Vehicles) Yes TS Modet Control TS Model Lane Selection
3-lane Freeway Enhanced .
Guoetal. Pythonbased : Yes (CAVs and : . . Enhanced Qearning
2020 Simulation with On-ramp Human Vehicles) Yes Q—Iea_rnlng Trajectory Planimg Algorithm Merge Control
and Offramp Algorithm
Liu etal. Cellular Yes AVs and Rules from NaSch ;
2017 Automata 3-lane Freeway Human Vehicles) Yes Model - STCA’ Model Merge Control

ntelligent driver model.
2Lanechange model withelaxation and synchronization.
3 Cooperative intelligent driver model.

4Takagi Sugeno fuzzy model.

5Quality or valuebased learning algorithm.

6Nagel Schreckenberg model.

”Symmetric twelane cellular automaton model.
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AGGRESSIVE BEHAVIOR MODELING APPROACH

To model different levalof aggressive behaviors betwegYs and HDVs Liu etal.
(2017 developedlifferent levels of aggressive laganging modes. Itheir effort,
HDVs are assignetb the higher aggressive laichanging modéLiu etal. 2017). In
another study, aggressive behavior in AV and HDV interaction is introduced by
allowing HDVs to force lane changthat caused the followingVs to slow down to
createa sufficient gap fothemerge(Liu etal. 2018&)). Studies that allowed HDVs to
behave aggressively towafd/s observed greater traffibow instability with
increased penetratidavels ofAVs (Liu etal. 2018) or a higher number of
incompletetrips with AVs traveling at extremely low or high spe@dishimuraetal.
2019. These results are drastically different from findings of impreaddtyand
reducedravel times in other AV studies that did not consider aggressive behaviors
(Rahman and Abdékty 2018 Aria etal. 2016. The possibility of such behaviors
targeedat a given vehicle type is not without precede@e.examplemobility
service companies such as Uber or Irgfiortedthat HDVs will exhibit ggressive

behaviors specifically towardlVs (Randazz®018 Hamilton2019.

Most current studies allow the HDVs to increase aggressiveness based on the

availability of gap distangeegardless of the type of the following vehicle type in the

target langNishimuraetal. 2019 Liu etal. 2018). In order tanvestigatehe
interaction impacts of HDVsAs thelewslssofi aggr es:
aggressive driving behaviors of the HDVs should vary based on the target vehicle
type.Modelng different aggressive driving behaviors based on vehiclerggéres

flexible simulation models that allow for retine adjustments of drivingehavior

characteristics and parameters based on vehicle types.
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CHAPTER 3. SELECTION OF SIMULATION MODEL APPROACH

INTRODUCTION

A key objective of this study is to modéle interaction betweesiggressive human
driven vehicleandAVs. Modeling AV and aggressive humalmiven vehicledriving
behaviorsand developingarious fleetpenetratiorscenarig, requiressimulation
softwarecapabilitiessuch adlexibility in driving models and redime interaction
with agents during simulation rtetime. This section presentle evaluationcriteria
utilized forsimulation software selection. Two softwg@ckages areonsidered
SUMO and VISSIM(Eclipse Foundatio@02Q PTV Group202]). Table4 lists the
key evaluationcriteriaidentified forAV modeling. The followingsectionsexplain the
reasoningor eachof the criteriaand thecapabilitiesof the twosoftwarepackage$

SUMO andVISSIM i corresponding teach evaluation criterion.

KEY EVA LUATION CRITERIA
General Information

Both softwarepackagesave interfacethatenablerun-time communication with
agentssuch as vehicles arsignal controbystemsSUMOG source codes publicly
availableand accessible as apensourceplatform whereas VISSIM offers source

codes on Addins

Availability of Driving Models

Different carfollowing models or lanehanging models may be more appropriate to
model the AV characteristics based onghenscenario. For example, an area with
higher interaction with other vehiclesuch as a roundabouhay requie a different

modeling complexity than signatcontrolled intersectiowith protecteegonly
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movementsSUMO offersa higher number of caiollowing and lanechanging

models compared to VISSIM. However, both softwasekage®ffer significant
flexibility by allowing users to modify existing modelsimport customized models
Critically, such capabilities allow users to assign variations in vehicle behaviors by

vehicle types.

Driver Behavior Model Parameters

Through thditerature survey it iseenthatdue to the lack of standards in AV driving
behavioramany AV modeling approaches rely on assumptionsexpeéctations of
AVsoanticipated behaviors. As a result, studiegsimulateAV s may share certain
characteristicsuch as conservative, cooperative, or caufibagevertheydiffer in

the drivingbehavior models and the parameter valudgzed. SUMO6 s d+ i vi ng
behavior models have an arguably higher level of flexibility given a higher number of
model parametersd theopersourcenature of the softwarélowever,as stated,

both softwargackagesllow the control oparametersluring rurtime. Such

capability is particularly critical in AV modeling as it allows the M6delto adapt

to different roadway conditions

Data Export

The outputs that record the states ofdimeulationagentssuch as vehicles, lanes, and
signal control systemsre used to measukey performancendicesto test thestudy
hypothesis. Both softwapackagesllow the user to extract various outputs that can
be used taneasurenodelperformanceCiritically, both models allow for the output

of vehicle trajectory data, from which numerous other measures may be derived.
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User Contribution

VISSIM has been widely @8l in the public and private sectaswell as academic
and research settiggvhile SUMO has beeprimarily used foacademiand
researclefforts A large usecommunitymay behelpfulin determiningexperimerl
designs and model developmeasprevious similar effortsmaybe used for reference.
Efficiency may also be gained through the adoptioprelviously developed models
or findings. For example, a previously developeding-behavior model can be

imported to SUMO or VISSIM for AV modeling.

SUMO has an online community in which users exchange knowledge and contribute
to improve SUMCfunctionality. SUMO& ACC and CACC caiollowing models are
developed by a research teflmopezetal. 2018. Such interactions among users and
between users and developkedp enableeferening and learning fronprevious

studies.

Signal Control System

Signal controbysems areoften used toimulate different traffic patterns and flow
rates.Complextraffic controlsystens can be established via the respective interface
in SUMO and VISSIMsuch aghevehicle preemption signal control system.
VISSIM offers more variations afignal control syiemsthat arereadily availablgo

users.

Overall Comments

Each software package hadvantages and disadvantages that can be weighted
differently based on the studpjective Based on the identified criteria for modeling
AV driving behavior, SUM@ keyadvantages includde source codavailability

andthenumber of drivingbehavior models and parametefhese enable the
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identificationof key parameter®d modelAV characteristics angdrovide significant
flexibility for modelingAV behavior VISSIM& key advantages includdarger user
base and greateariety ofsignal control systenmthatcanaid inmore efficient

implementations ofomplex traffic control systems

The research team selected SUMO for this shebaus&SUMOGs key advantages

were critical in modelingiggressive human driving behavior and the subseduént
responseAdditionally, being able to accetise driverbehaviormodel ancpharameters
viathesouce code helped the team to identify key parameters to control to model the

aggressive merging behaviors as well as the AV response.
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Table 4. Evaluation criteria summary on smulation tools

Evaluation Criteria

[ SUMO (Lopezetal. 2018 | VISSIM (PTV Group 202

1. General Information

Compatibility with
Operating Systems

Windows, Linux, macOS

Windows, Linux

Source Code

Written in C++

Written in C++

Source Code Availability

Yes;online source code
library publicly accessible

AddIn source codes availab

Interface TraCl COM & EDM
Programming Language| Compatible withPython Compatible withPython
Compatible with Interface C++, MATLAB, Java C++, MATLAB, Java
OpenSource

Accessibility

(publicly accessible)

Commercial

2. Availability of Driver Model

Carfollowing Models

14 carfollowing models

2 carfollowing models

imported imported
. 3 lanechanging models 2 lanechanging models
Lanechanging Models imported imported
Importcustomized Modelg Yes Yes
Modification on EXxisting Yes Yes
Models
3. Driver Behavior Model Parameters
Vehicle Attribute 38 parameters 10 parameters
Parameters
Lanechanging Model
Parameters 23 parameters 14 parameters
Parameterédjustable in
. d Yes Yes
Simulation?

4. Data Export

Export File Format

xml

Various Types

Output Data Type

Vehicle-based, detecter

based, simulatichased,

traffic light-based, lane
based

Vehicle-based, pedestrian
based, traffic lighbased,
lane-based, detectdrased

5. User Contribution

User Base

Academic/Research Secto

Academic/Research Secto
Private Sector, Public Sectq

Allows External

Yes; online discussion
forum, imported a user

Contribution? developed cafollowing No
model

6. Traffic Light System
Fixed Time Method Yes Yes
Coordinated Method Yes Yes
Actuation Method Yes Yes
Ring-Barrier Sequence No Yes
Optimization No Yes
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CHAPTER 4. SIMULATION MODELING OF DRIVER BEHAVIOR

AGGRESSIVE MERGE BEHAVIOR MODEL DEVELOPMENT
Simulation Tool

For this study, SUMO (version 1.6.0) is used to simulate the merging behavior
scenariosTheS U M OTraffic Control InterfacéTraCl) is utilized for modeling
vehicle interaction behaviarTraClprovides access to the values of siraulaton
objects during rutime, enabling customization of vehicle behavigslipse
Foundatior2020. In the current applicationptmodel aggressiv&HDV merge
behaviors;TraCl isused to retrieve the retime speed of targethicles, control the
AHDVs 0 s quertakdg thfe A\, and forcethemerge in front of the target AV
by accepting low front and rear gaps. In this study, Py(Rgthor) is used for

developing the TraCl scripts.

Network Layout

FigurelFigurel. Diagram Roadwaylayouton mergingzone highlightedin yellow.

shows thenodelednetwork layoutlt consists of two through lanes witlf680ft
deceleration lane to an exit ramp. The aggressive merge behavior occurs in the area
nearthefreeway exit ramp, i.e., th@ergingzone. The twedane freeway extends for

1 mile upstream of the beginning of threerge zongallowing for sufficient space for
vehicles to queue during congestion without spilling out of the network. The outflow
from the ramp is controlled by a simple tpbasepretimed traffic signalwith the

splits andcycle lengthset dependentothe modeled scenario; thage specified in

each experimenf he ramgunction withthe cross street isS300 ft downstream from

the ramp gorekigure2. Diagram.Speed byane
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shows thesimulatedspeed for each lane and the lane labels used in the study.

Figure 1. Diagram. Roadwaylayout on merging zone, highlighted in yellow.

_ Lane A 0: 70mph (29.05mfsy Lane B_0: 70mph (29.05m/s)
Lane A 1: 60mph (29.05m7s¥ Lane B 1: 60mph (29.05m/s)

Figure 2. Diagram. Speed bylane

Vehicle Classification and Characteristics

To study the interactions between thierentvehicle types, three vehicle classes

definedbased on driving behaviqras follows

1. AVs Exhibit cooperative driving behaviorse., AVs slow to extend the
leading gap, allowing merging vehicles to more easily enter their lane. When
AVs exit thefreeway,they will change lanes at tls¢éartof the deceleration
lane. AV behavior is fully controlled by SUMO.

2. AHDVs: Travelon a highspeed lanéLane B_1 figure 2) until they merge
into the deceleration lane. These vehicles exhibit aggressive merge behavior
towardAVsby accepting smar gapgminimum halfvehicle in length to
begin a merge front of the AV compared to a merge in front of dDV.
AHDVs will always seek to merge in front of the farthest reachable
downstream AV in the deceleration lane. When making an aggressive

merge the AHDV behavior is controlled through Tra@hen an AV is not
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reachablethe AHDV merge behavior will be nesggressive and controlled
by SUMO.
3. HDVs: Exhibit the same cooperative driving behaviors as that\t$ but

are not targeted by AHDVs. HDV behawis fully controlled by SUMO.

AggressiveBehavior Model

The objective of the aggressive merging behavior petéorm an aggressive lane

change in front of a target vehickHDVsbaggressivenergebehaviors consist of
customizingtiwo key behaviors of AHDV# target selectiobehaviorand merging

behavior. The objective of the target selection behavior is to identify the optimal

target vehicleWhen queueing occurs on the deceleration ldretargeting behavior
allowsAHDV s to travel on théigherspeed lanéLane B_1)until merging in front of

target vehiclesn Lane B_2 thus allowing AHDVs to makgqueuejumps. After a

target is selected, the AHDVs adjust their speed, within the constraints of the presence
of other vehicles in front of time on the same lane, and seek to merge in front of the

target vehicle.

As mentioned irchapter 1two merge typesire casidered in the study based the
levels ofaggressiveness in th&rgeting behavior(1l) aggressivenergewith

maximum advancement, representing the highest le\aggressivenerge and

(2) aggressivamerge withfizippeld  a crepresenting moderate level of aggressive
merge The merging behavior process is similartfoese two merge typesowever
theydiffer from each other in their target behavior proc&be nextsection describes

the target behavior process forghéwo types of aggressive merges.
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Aggressive Merge Behavior Model: Target Selection Process

Aggressive Merge witRlaximumAdvancement

The objective of the target selection behauwithe ggressivemergewith maximum
advancemenis to identify the optimalarget vehicle, which in this study is consiefér
the AV farthestdownstream in the deceleration lane. When queueing occurs on the
deceleration lanfLane B_2) this targeting behavior allows AHDVs to travel on the
higherspeed adjacent lane (Lane B_1) until merging in front of target vehidles in
deceleration lane, thus allowing AHDVsdaeuejump. To implement this behavior
anAHDV G initial target is the dsest AV on the target lane. After a target is selected,
the AHDV adjussits speed to overtakéé AV, within the constraints of ttepeed of
theleading vehicle in the same laieone is present)r the lane spee@nce the

AHDYV is in the vicinity (to be definel subsequentlydf the target vehiclehe AHDV
checlsif the next downstream AV is reachable prior to the end of the deceleration
lane. By repeating this procesise AHDV mergsin front of the farthest reachable
downstream AVAs every AHDV tagets the farthest AMhis behavior often results

in multiple AHDVs merging in front of the same AVs shown irfigure 3Figure3.

Diagram Aggressivanergebehaviorof AHDVs towardAVs..

Figure 3. Diagram. Aggressivemerge behavior of AHDVs toward AVSs.
(AHDV T deep blue vehiclesAV i light blue vehicles, and HDVi white vehicles)

If an AHDV 6 target AVbecomeso longer reachable deea speed change or
interferencdrom other vehiclesn the AHDV 6 ERneg thenthe AHDV seelsto merge

in front of an HDV. However, tle mergein front of the HDVno longeruses
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aggressive gap selectiarather, itis fully controlled by SUMOIf SUMO s unable to
successfully complete the merge and®/ from upstream on the deceleratiane
begirsto overtake thAHDV (which may occur when congestion results in a lower
speed on the mainline latiean that on theateleration lane), th&HDV returrsto its

aggressive behavior and mesge front of the approaching AV

Aggressive Merge with Zipper

In the aygressivanerge with zipper cast target a vehicle for mergdHDVs first
check whether there imaAHDV mergeoccurring downstreantf there is &
aggressivenergedownstreamthe AHDVs do not target the same AV affected by the
previous merge but rath&argetanyfollowing AV behindthe last mergés targetAV,

as shown ifigure 4. This selection o&new target vehicle, different frothelast
mergé target vehicle, makdhis aggressive merge with zipper céess aggressive
compared tahe aggressive merge with maximum advancement dasgeting the
following vehicle of the last merge results in shorter gtjaoging distance than the
gueuejumping distance in the aggressive merge with maximum advancensenifca
there is naelevantmergedownstreanor AHDVs cannot reach the optimal target
vehicle, AHDVs target the farthest reachable AV by going through the same target
selection process as thggressive mergeith maximum advancemenase The
aggressive mrge with zippecaserepresentssmoderate level of aggressive behaviors

in AHDVSs.

32



Figure 4. Diagram. Aggressivemergewith zipper.
(AHDV 1 deepblue vehicles, AVi light blue vehicles and HDV 1 white vehicleg

There arghree essential computations used to mtuetargetingbehaviod position
check cancatch andmerge position checH hese three functiorsse executed every
time step to pdate the target vehicle basedtbe position and speed changes in

AHDVs and thai target vehicles.

Position Check

To merge into the deceleration latiee AHDV must decrease to the speed of the
vehicle in front of the target AV, as the target AV and its leading vehicle represent the
lagging and leading vehicles, respectively, forgap that will be entered by the

AHDV. The objective oposition checks to determine if the AHDV has reached the
position where it must decide whether to target the next downstream AV or keep the
current target and start braking to prepare for the mergere5Figure5. Diagram

| 'l ustr at ideasionpdint AHDV 6 s

(AHDV i deepblue vehicles, AV light bluevehicles and HDVi white vehicleg

shows an illustration of this decision point position check proddmsbraking
distance is the distance the AHDV will travel to reduce its speed to the spEge
by the time it is one vehicle length downstream of the Advel while Braking
(TwB), is the distance that the target vehicle travels while the AliBNX&ls the

brakingdistance Whenthe braking distance is equal to or less than the sum of TwB
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andvehicle lengththe position checkfunction returnstruedand the target vehicle ID
is sent to thean catchfunction to determine whether thext potentiatarget vehicle

is reachable. If thpositioncheckfunction returnsfalsej it indicates that the AHDV

has not yet reached the decision point position #d continues to travel at its

current speed.

Vehicle
Length

Figure 5.Diagram.l | | ust r at i decisiompointAHDV 6 s
(AHDV T deepblue vehicles, AVi light blue vehicles and HDV i white vehicleg

Can Catch

The objective of thean catchfunction is to determine if the AHDV can reach the

front of the target vehicle, to allow for a merge, before the deceleratioetahe

point. This is determined by evaluating the current position and speed conditions, and
comparing the travaime of theAHDV and target vehicles to the end of the laBan
catchis applied at every timstep to confirm that the current target vehicle may still

be reached, allowing for potential changing conditions due to congestion. In addition,
can catchs utilized wherthe AHDV evaluates if it will switch from its current target

to the next downstream AV.

The traveltime comparison between AHDV and the target vehicle is based on the
current position and speed daa shown itheequationdelow. TheAHDV must be
able b reach the lane endpoint before the potential target vehicle. The travel time of
the target vehicle can be calculated by dividing the remaining distance until the lane

end by the current speed.
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Lane Length—Target Vehicle Position

Target Vehicle Travel Time =
8 Target Vehicle Speed

(1)

Calculating the travelme ofan AHDV depends on its current position. As shown in

figure 6, the remaining distance is divided into two regions.

Figure 6. Diagram. AHDV travel-time calculation.
(AHDV 1 deepblue vehicles, AVi light blue vehicles and HDV 1 white vehicleg

The distance in red indicates the braking distance @A HDV 6 s current spee
thetargetspeedequation?), with the merge occurring at the end of the deceleration

lane The distance in green indicates the distathatthe AHDV needs to travedt its

current speedntil it starts brakingequation3). Thus,the A H D V tbaseltime

(equatiord) is the sum of thé&raveltime over the fixel-speed distance (indicated in

greenin figure 5) and thetraveltime over thebrakingdistance (indicated iredin

figure5). If theAHDV 6 s tineg imlesethathetarget vehiclé savel timethe

can catchfunction returnsirued

Target Speedz— AHDV Current .S'p.s’.ea!2
2 = Deceleration Rate

Braking Distance =

(2)

Distance to Start Braking = Lane Length — AHDV's Current Position — Braking Dist.

3)

(Target Speed — AHDV Current Speed)
Deceleration Rate

Braking Time =

(4)
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Distance to Start of Braking
AHDV's Current Speed

AHDV Travel Time = + Braking Time

()

As statedgcan catchis executed every time step for the current target AV. Itdre
catchfunction returnsfalsé if indicates the AHDV is no longer able to catbke

current target AV vehicle. When this occurs, gescontrol is released to SUMO,

which will execute a nofaggressive merge maneuver into the deceleration lane as
soon as possible. However, while SUMO is seeking a merge oppostaeikHDV
continues to search fon&V within 20 ft downstreamor approahing from the
upstream if the deceleration lane is moving faster than the mainline lane. If an AV is

identified the TraCl logic will be reinitiated.

Merge Position

This function checks whether an AHDV is within the position to initiataggressive
merge. Once the AHDV is in positiptihhe merge process initiates. As shown in
figure 7, an AHDV executes the merge process if its front bumper islzane

between the center of the target vehicle and the head of the leading vehicle to the

target vehicle (red region figure 7).

Figure 7. Diagram. lllustration of mergeposition.
(AHDV 1 deepblue vehicles, AVi light blue vehicles
and HDV i white vehicleg
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Target AV Selection Process in Aggressive Marigie Maximum Advancement Case

The flowchart otheAHDV 0 s AV aetegi@entprocess shown infigure 8 and
figure 9. The target selection process is undertaken every time step. The following

steps are the general procedure

1. VehiclelD list is updated to contain the IDs for all AHDVs currently in the
mergingzone. Vehicles entering tmeergingzone are added and vehicles
that have merged into the deceleration lane are removed.

2. When an AHDV first arrives at the upstream start of the merging zone, the
deceleration lane condition is reviewed. If the decelerddioa is empty, the
AHDV changes lane without any further consideration.

3. If the deceleration lane is not empty, the AHDV checks for the presence of
any AV.

4. If there is no AV the AHDV continues to search for any AV upstreand
downstream of & current lgation while allowing SUMO to executamerge
whenever it is possible. This process continues until either SUMO executes
the merge othe AHDV finds an AV in the traffic.

5. If there is more than one AW the deceleration lanthe AHDV initially
identifiesthe neareslownstreanAV .

6. Next, wsing thecan catchfunction, the merge feasibility dhe AHDV with
the nearest AV is checked.tfe AHDV cannot merge in front of the nearest
AV, it indicates that there is no AV thdite AHDV can catchThe process
retuns tostep4.

7. If theAHDV can catch the nearest AV, the positiortltd AHDV is checked

(usingthe positioncheckfunction) to determine whethére AHDYV is ready
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to search for the next AV downstreamtHé AHDV is not in such position,
it continues to travalntil being checked again the next time step

8. If theAHDV is in such position, the next AV downstream is identified and
checked for merge feasibilitysing thecan catchfunction

9. If theAHDV can cath the next AV in downstream, the target AV is
updated. If not, the current target AV is maintained.

10.In every time step, thean catchfunction is used to determinetife AHDV
can still catch the current target AV.

11.1f the AHDV can no longer catch the aent target AVthe AHDV first
searches to check whether the nearest reachable AV is downstream. If there
is one the AHDV updates its target.

12.1f there is no reachable downstream ANe AHDV searches for the nearest
reachable AV that is upstream. If thés®ne the AHDV updates its target.
If there is no such AV, the process returnstap4.

13.The process continues until all AHDVs have been chedked the

simulation time advances.

TargetSelection Process Aggressive Merge with Zipper Case

The flowchart othetarget selection processtime aggressive merge with zipper case
is shown in

figure 10 andfigure 11. The first four steps in the target selection proeesthe
same as thmaximum advancementse.The following steps ara divergence from

themaximum advancementase at step:5

5. If there is more than one A¥he AHDV searches for any previous merge.

If there is ngorevious mergehe AHDV finds the nearest AV and follows
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the same steps in the aggressive merge with maxiatwancement case
(step8).

. If there is a previous mergie AHDV searches for the follower AV of the
previous merge. If there is no follower vehicle, it indicates that the lane
behind the merge is empty. Thtise aAHDV allows SUMO to executa
lane chage whenever possible.

. If the AHDV finds a follower AV to the previous merge, the merge
feasibility is checked with thé&an catcbfunction. Ifthe AHDV can catch
the follower AV, the follower AV is selected as the target vehicle.

. If the AHDV cannot catch the follower A\the AHDV searches for the
nearest AV and the same steps are followad Hge aggressive merge with
maximum advancement case. Howeveth&AHDV is ahead of @HDV,

the AHDV allows SUMO to mergd in front of theHDV.
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Aggressive Merge Behavior Model: Lane Changing

After the targeting process is complete and the AHDV is positioned next to the target

AV, the lane change process is initiatdd.stown infigure 12, AHDVs merge in front

ofthet ar get AV as soon as the AHDVO6s rear bump
forcing the AV to decelerate to meet its desired spa€iagthis agressive mergehe
TraClmoveTacommands utilized ThemoveTacommand in SUMO manually moves

the positim of a vehicle by the specified coordinate shift| critically, it does not

require the vehicle to satisfy any gap requirements

Figure 12. Diagram. Example ofaggressivemerge
(AHDV T deepblue vehicles, AVi light blue vehicleg

Merging Process in SUM@ontrolled Merge

In order to assign the cooperative characteristdMisa nd HDVs, SUMOOG s
0l ¢ Co o p er parametes iS geteteeld Setting this parameter to 1 allows the
neighboring vehies to slow down cooperatively for merging vehicles. When the
algorithmrequestshat SUMO control theAHDV merging process, the neighboring
vehicle(an HDV, as an aggressive merge would be undertaken for arstavts slowing
down cooperatively toreatea sufficient gap for AHDVs to mergélowever, when

TraCl is utilized to implement an aggressimerge the AVs do not exhibit a cooperative
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behavior, as they are unaware the AHDV will merge until it begins to encroach into the

AV lane. Only upon this encaehment will the AV begin to slow.

Thus,a SUMO-controlled merge requiressufficient gap before a lane change is
performedwhereas the aggressive merges (usingrtbeeTccommand) are not affected
by the gap availabilityThis results in th&€UMO-contrdled merge oftemequiring a
longer time period for the mergegssible requiring slowing of the merging vehicle to
find a suitable gap to complete. An exampléhaf spacing between the lagging vehicle
and the merging vehicle in&fJMO-controlled mergewhich requiredonger gaps to

merge,is shown infigure 13.

Figure 13. Diagram. Example of SUMO-controlled merge
(AHDV T deepblue vehicles, AVi light blue vehicleg

EXPERIMENTS

Fourexperiments were conductedsindythe developed aggressive merging msdel

The firstexperimensimulates a platoon of 10 AHDVs performing the aggressive
merges, for two levels of congestion on the deceleration lane. The secuaittird
experiments simlate AHDVs spread out in the mixed traffic flow performing the
aggressive mergefor two levels of trafficdemands. The distinction between the second
and third experiments thelevel of congestiornn the deceleration lane, resulting from

changing thesignal timing at the ramp end intersectidhe fourth experimentaluaes
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the mpact ofaggressivamnerging oncapacity For allfour experimentsa base case was

also created withut any aggressivweehiclebehaviors.

Experiment 1. Aggressive Merging withPlatooned Arrivals

Objectives

The objectives of thmitial scenaricareto: (1) demonstrate the aggressive merging
behavior models under two differamaffic condition® uncongested deceleratitame
andcongested deceleratideme;and (3 visualize the difference in the impacts on the

deceleratioane traffic between aggrase meging andSUMO-controlledmergng.

Experiment 1Design

A platoonof 10 AHDVsis introduced into the traffic streaom lane A_Qthe leftemost
freeway laneThe phtoon vehicleghange their lant® thelane adjacent to the
deceleration lanas soon as they enter the merging zdine AHDVSs then seek to merge
into the deceleration lane, utilizing the targeting and-l@renging behavior as discussed
previously. Anentry volume of 1,350 vehicles/hour was used on lane A_0 with a

50 percentAV ratio. All vehicles on lane A_0 were exit vehicles. Tureongested
deceleratiodaneexperiment was conducted before the queue started forming on the
deceleration lane. Theongested deceleratidaneexperiment wasonductedaftera
gueueformed on the ramp and extendedhe deceleration lan&or comparison, the
base casmtroduces an equivalent platoonldf AHDVs, although functioning adDVs,

seeking to exit with thenergebehaviorcontrolled by SUMO.
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Results

Figurel4i figure 19 show the timéspace diagram@ SDs) for the merge zone, with the
AHDV platoon trajectories indicated in reahd theAV and HDV trajectories in blue

AV and HDV travel occur on the deceleration lane, while AHDV travel may occur on the
deceleration lane or adjacent mainline lane. Each graph starts at the beginning of the
merge zone, at approximately5200 ftThe ramp gore is &900 ft and the intersection

with the cross street is approximately7&00 ft

Discussion

The impacts otheAHDVs 6 aggressive merging behaviors
(1)theAHDV s 6 rravdltimesadd(2) the speed changes in the traffic on the

target(i.e., deceleration | ane. The AHDMesareshavd byche timet r av e |
steps inwhich each red line ends. In each congestion scenario the AHDV platoon enters

the merge zone at approximately the same time, i.e., at approximately t = 100 seconds for

the uncongested scenaose., basdfigure 14), aggressive merg&ith maximum
advancemen(figure 15), and aggressive merge with zipggure 16)0 and t = 960 for

the congested scenarise., basdfigure 17), aggressive merg&ith maximum

advancemen(ffigure 18), andaggressive merge with zippgigure 19). However, in each
aggressive merggenario, the platoon of AHDVs departs frime intersection at the end

of theramp (top of the TSD) earlier than in the base case with thaggmressive BV

platoon. This is accomplished by the AHDVs quguaping (as seen by the crossing of

the red and blue trajectories) by driving further downstream on the mainline, then

performing aggressive mergesar the ramp gore. The impact on the speed of the

vehides behind the merged AHDVs is witnessed by a flattening of the slopes on the
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vehicle trajectories. In the vicinity of the merge activity (highlighted in yellow) the
speeds of the following vehicles are reduced by approximafatyph in the
uncongested gnariq and in the congested scenario following vehicles are forced by the

AHDVs to briefly come to a complete stop to avoid collidwith the merging vehicles

Thetravel time and speathpacts are more cleargeenn thecongested deceleration
lanescenariocompared to thancongested scenaribhis is due to the spacing between
vehicles. Since vehicles were more spread out intisengestedcenario, the impacts of
aggressive merges were muted byl#rger headways between the vehicliaghe
congesedscenaripthe impacts of aggressive merges were directly passed along to the

following vehicles.

The next two experiments investigate the impacts of the aggressive merging behaviors

with AHDVs spreadhroughoutthe traffic flow.
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Figure 16. Plot. Aggressivemergewith zipper timei spacediagram
in uncongesteddecelerationlane scenario.
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Figure 18. Plot. Aggressivemergewith maximum advancementtimei spacediagram
in congesteddecelerationlane scenario.
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Figure 19. Plot. Aggressivemergewith zipper timei spacediagram
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Experiment 2: Aggressive Merging with Random Arrivals

Objective
While the initial experiment investigated the impact of AHDVs piatoon, he objective
of this experiment is tmvestigatehe impact okggressive merging behaviander

conditions where the AHDVaredistributed throughout the traffic stream.

ExperimentDesign

The roadway layout for this experimasthe same as éprevious experimentraffic
volume is balanced in the mainline lanes entering the merge zone. All exiting vehicles
enter the merge zone already positioned in lane Aedfiure 2). Thus, all vehicles in
the leftmost lane A_0 are through vehicles only, whighicles on lane A_1 consist of
both through and exit vehicles. In this experim8btpercent of the traffic is assumed to
exit; thus 70 percentof the lane A_1 vehicles were assigned as exit vehictassisting

of AVs, HDVs, and AHDVs (percentages described subsequeAllygxit vehicles
except for the AHDVs shift over tihe deceleration lar®_2 when they reach the
merging zongat the start of #ndeceleration landhe AHDVs continue to travel on lane
B_1 and make a lane changeBo2 by either aggressive merge or SUMGNtrolled

merge as defined previously

Two levels oftraffic demandwvere considered in this experimérhigh traffic demand
(1,200 venhicles/hour/lane) and ldvaffic demand 600 vehicles/houlane).For each
traffic-demandevel, five different AV ratiogpercentage of the total traffic that is AV)
andfive different AHDV/HDV ratios (including the base case with no AHDVS) of

exiting traffic not assigned as AV were considered, as shovabiab.
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The distinction betweeexperiment2 andexperiment3 (presented in the next sectias)

in the signal timing at the ramgnd intersectionin this experiment, 50 seconds of green
time and 70 seconds of red time are used for th&tower traffic-demandand higher
traffic-demandconditions.This results in no queue spillback to the deceleration lane in
the lowtraffic-demandcase, but there wagieueingon the deceleration lane in the high
traffic-demandcase. Tie base casmnsists of only AV and HDMEach scenaribas10

replicate runs

Figure207i figure 23 show the averageeaveltime of exit vehicles by vehicle type in
each scenaridJote that the yaxis scales are different in the twets offigures to

accommodate the wider range of trateles inhigh trafficcdemand conditions

Table6 andtable7 show the pairedtest results on thigaveltimesof AHDVs canpared
to thetraveltimesof AVsand HDVs. The oO0Di fferenced col umn
difference is statistically significant (marked as TRUE if significantly different and

FALSE otherwise).
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Table 5. Vehicle assignmentfor experiments 2 and 3
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Results
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Figure 20. Bar plots. Experiment 2: Averagetravel time in aggressivemergewith maximum
advancementscenariosby vehicletypein low traffic -demand condition.
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Figure 21. Bar plots. Experiment 2: Averagetravel time in aggressivemergewith zipper scenarios
by vehicletypein low traffic -demand condition.
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Figure 22. Bar plots. Experiment 2: Averagetravel time in aggressivemergewith maximum
advancementscenariosby vehicletypein high traffic -demand condition.
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Table 6. Experiment 2: Paired t-teston travel time in aggressivemerge
with maximum advancementscenarios

Vol ume = 600 veh/ Vol ume = 600 veh/
ARHa[?{\’ AHDYV s . A AHDV vVvs. AHDV vs. AHDV vs.
P-vVal | Di f fe|PVal Di f fe|PVal (Diffe| PVal (Diffe
25 0.30Q FALSH 0.42 FALSH 0.48 FALSEHE 0.06] FALSH
50 0.07% FALSH 0.95 FALSE 0.84 FALSE 0. 74 FALSH
75 0.08 FALSH 0.0 FALSH O0.34 FALSE 0.04 TRUE
100 0.1 FALSH - 0.23 FALSH -
Vol ume = 6003@eh/ Vol ume = 6004@eh/
ARHaDt\' AHDV v s. AHDV vs. AHDV vs. AHDV v s.
P-val | Di f fe|PVal {Di ffe|PVal (Diffe|PVal (Di ffe
25 0.01 TRUE| 0.00 TRUE 0.04 TRUE 0. 06/ FALSH
50 0.1 FALSH O0.41 FALSH 0.28 FALSEHE 0. 46] FALSH
75 0.80 FALSH 0.07 FALSE 0.45 FALSE 0. 13 FALSH
100/ 0.08 FALSH - 0. 15 FALSH -
Vol ume = 6005®eh/ Vol umMe2 00 veh/ hr /|
ARHa[iV AHDV vs. AHDV vs. AHDV vs. AHDV HDB3V
P-vVal | Di f fe|PVal Di f fe|PVal (Diffe| PVal (Diffe
25 0.47 FALSH 0.40 FALSE3. 209 TRUE|5. 45 TRUE
50 0.040q TRUE| 0.01 TRUE|1. 4B TRUE|6. 3Bd TRUE
75 0.7 FALSH 0.38 FALSE1. 608 TRUE|2. 569 TRUE
100 0.64 FALSH - 1. 30’43 TRUE -
Vol umMe 00 veh/ hr /| Vol umMde 00 veh/ hr/ |
ARHaDt\' AHDV v s. AHDV vs. AHDV vs. AHDV v s.
PVal (Diffel PVal UDifferd PVal (Di ffe|PVal [Diffe
25 1. 15% TRUE| 5. 30 TRUE|9. 463 TRUE|4. 583 TRUE
50 4. 9114 TRUE| 1. 56F TRUE|6. 3BB4 TRUE|2. 023 TRUE
75 |5. 59 TRUE| 8. 51 TRUE|1. 41% TRUE|2. 1B TRUE
100[1.5nd TRUE - 2. 901 TRUE -
Vol umMe2 00 veh/ hr /| Vol umMe 00 Y eh/ hAV5
ARHaDtV AHDV vs. AHDV vs. AHDV vs. AHDV vs.
P-Val ( Di ffeiy P-Val ybDiffenq PVal (Di ffel| PVal (Di ff e
25 |4. 544 TRUE| 2. 8T7H TRUE|2. 354 TRUE|3. 4T7F TRUE
50 1. 181 TRUE| 9. 95FH TRUE|2. 42 TRUE|1. 67 TRUE
75 6. 70 TRUE| 5. 941 TRUE|1. 4:]4]H TRUE| 3. -8 TRUE
100/1. 000 TRUE - 1.309 TRUE -
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Table 7. Experiment 2: Paired t-teston travel time in aggressivemerge
with zipper scenarios

Vol ume = 600 veh/ Vol ume = 600 veh/
'A&g?\: AHDV vs. AHDV vVvs. AHDV vs. AHDV vs.
P-vVal | Di f fe|PVal Di f fe|PVal (Diffe| PVal (Diffe
25 0.30Q FALSH 0.92 FALSE 0.48 FALSE 0. 06/ FALSH
50 0.07% FALSH 0.®5 FALSE 0.84 FALSE 0. 74 FALSH
75 0.0 FALSEHE 0.4 FALSH 0. 35 FALSH 0.04 TRUE
100/ 0.1 FALSH 0.25 FALSH
Vol ume = 60030veh/ Vol ume = 60040veh/
ARF;?\; AHDV v s. AHDV vs. AHDV vs. AHDV v s.
P-val | Di f fe|PVal {Di ffe|PVal (Diffe|PVal (Di ffe
25 0.01 TRUE| 0.00 TRUE 0.04 TRUE 0. 06/ FALSH
50 0.1 FALSH O0.41 FALSH 0.28 FALSEHE 0. 46] FALSH
75 0.81 FALSH 0.07 FALSE 0.45 FALSHE 0. 13 FALSH
100/ 0.08 FALSH 0.12 FALSH
Vol ume = 60050veh/ Vol umMe2 0= veh/ ®Or /| n
ARF;?\: AHDV vs. AHDV vs. AHDV vs. AHDV vs.
P-vVal | Di f fe|PVal Di f fe|PVal (Diffe| PVal (Diffe
25 0.4797 FALSH 0.40 FALSE1. 06 TRUE|3.5B8 TRUE
50 0.040q TRUE| 0.01 TRUE|3. 4% TRUE|6. 2668 TRUE
75 0.64 FALSH 0.41 FALSHS8. 60639 TRUE|6. 8% TRUE
100/ 0.61 FALSH 1. 0B84 TRUE
Vol unme@ 0= veh/ BOr / | n Vol umMed 0= veh/ 8r / | n
ARF;?\; AHDV AMNs . AHDV vs. AHDV vs. AHDV v s.
PVal (Diffel PVal JDiffed PVal (Di ffe| PVal (Diffe
25 8. 66 TRUE| 7. 8®% TRUE|8. 0] TRUE|1. 34@ TRUE
50 2.1®% TRUE| 3. 16 TRUE| 0.DO TRUE 0.DO TRUE
75 |9. 284 TRUE| 7. 500 TRUE|1. 504 TRUE|2. 0®2d TRUE
100/3. 8Mda TRUE 1.5 TRUE
Vol unmeQ 0= veh/ #r / | n Vol umMed 0= veh/ 8Br / | n
AI‘;;?\: AHDV vs. AHDV vs. AHDV vs. AHDV vs.
PVal (Diffel PVal JDiffed PVal (Di ffe|PVal (Diffe
25 |9. 9B TRUE| 1. 9%F TRUE|5. 053 TRUE|1. 28F TRUE
50 1. 909 TRUE| 1. 1®H TRUE|1. A% TRUE|6. 408 TRUE
75 7. 77r0’/d TRUE| 1. 300H TRUE|1. 90% TRUE|3. 9®%H TRUE
100/{1. 1®9 TRUE 2. 5888 TRUE
Discussion

Thetraveltimesof exit vehicles in lowraffic-demandscenariosas shown irigure 20

andfigure 21, were not significantly impacted by the aggressive mergigls no clear
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trendsbeingapparentThe travel times between vehicle types or AV penetration rates
never differ by more than a feesndsNo queue formed on the deceleration lane in
low traffic demangdsomost AHDVs performed lane chargge the deceleration lane
immediately since the deceleration lane was empty. In a few cases where AHDVs
performed aggressive merges, the impacth@bggressive merges may have been
muted because of the existence of large headways between the vehicles. As a result, the
paired ttest in lowtraffic-demandconditions showed that AHDVs had no significant
difference intraveltime compared t&AVsand HDVs in mostscenariosThese results are
in concurrence with thiendings inexperimentl. In figure 15 andfigure 16 (uncongested
deceleration lane}he impact to the neAHDV is clearly more mutethan the impact
seen irfigure 18 andfigure 19 (congested merge landheimpacts of the aggressive

merges were not passed down to the following vehicles inrkffic demand

In hightraffic-demandconditionsthe A H D V tsadel timesare significantly lower than
thetraveltimesof AVsand HDVs in all scenarios with the aggressive mem@gshown

in table6 andtable7. However, the overall average exit times remained relatively
constant, implying thaas the AHDVs were able to improve their travel tithe AVs

and HDV suffered increased travel tinffdle HDVs tavel time did not increase to the
same extentas tieV s 60 ;  htleewdidvseertravel time increases, even though they
wer e neve bythe 8HDY.JleHBWincrease results from HDVs in the

decelerationanefollowing AVs that are targeted.

In aggressive merge with maximum advancement cdse®lso seen thatbhé¢ AHDV
traveltimes show(figure 22) an increasing trendt the lower A/ ratios (10and

20 percen}. However, the trendeversesvhen the AV ratios were high (BB0 percen}.
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The reason for this behavior is that whibareis a smaller number ofAVsto target, more
AHDVs merged via SUM&ontrol(i.e., noraggressive mergeyhich requires donger
time to complete. As the availabilibf targetAVs increasd with higher AV ratios, more

AHDVs successfully completed aggressive nestyy targetingAVs.

It was also observed during the simulation run thaltiple AHDVSs targeted the same
AV on the deceleration lanfgrcing the target AV as well as the following traffi¢o
come to a complete stpogimilar tothe observations fdhe experiment congested

conditions.

However, the AHDV travel times in the aggressive merge with zipper cases in high
congestion showed an increasing trend with higher AHDV ratios in all scenarios. It
should be noted that therenie direct relationshipetweerthe AV ratios and AHDV
ratios since the target selection is affected by both AV ratios and the positien of
AHDVs. If an AHDV needs to target a following AV to tpheeviousmerge and the
AHDV is closer to a HDV compareda the target AV, the AHDV will merge to the
HDV via SUMO-controlled merge. Therefore, more AHDVs merged via SUMO
controlled merge as the AHDV ratios incregselich resulted in the increasing trend in

travel time in all scenarios.

The bar charts suggestttit the aggressive merge with maximadvancemerntad

greater impact on the AV and HDV travel times thanatgressivenerge with zipper in

high flow rate conditions. In aggressive merge with maximum advancement cases,
multiple AHDVs targeted the sameé/fon the deceleration lane, leading the target AV as
well as the following traffic to come to a complete stop. Such behavior was also shown in

the preliminary experiment. The blue slopes after the merfigure 18 became flat
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indicatinga complete stop due to the merge. However, in the aggressive merge with

zipper cases, the target vehicle moved forward after a single AsliDerge.

The net | mp ac gressive mergingllizNasiars oa gl exit vehicles (AHDV,

AV, and HDV) are shown ithed Al | Exit Vehicl einflgure2de | Ti meod
figure 23. In low traffic-demandconditions, the net impact was insignificant sinuest

AHDVs changed their lanes to the deceleration lane immediately afterngdbhi

merging zone anthefew cases of aggressive merges left little impact the targeAVs

and the following traffic. In higlraffic-demandconditions, the net impact was

insignificant due tahe discussettadeoff effecs. T h e Advétine Gecreases

were achieved at the expense ofttia@ettime increasesf theAVsand HDVs

Experiment 3: Comparison of Impact of Demand versus Congestion on Travel
Times

Objective

The objective of thigxperiment is to differentiate between the impacttduacreasd
demand or congestion. Thus, in this experiment the ramp intersection signal times were
adjusted such that the leseemand volume resulted in queuing on the deceleration lane

and the higkdemand volume had no queuing.

Results

Similar toexperimat 2, figure 2471 figure 27 show the averageavel timeby exit

vehicle type in each scenarM/hile the absolute travel times change due to the signal
timing updates, tradeffs are again seen between the AHDVs and¥ie/HDVs.

Except, the tradeff between the AHDVs andVs/HDVs now occurs at thiewer

volume case, with no obvious trends in the highume case. Also similar to
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experiment, the difference in the scenarios with queuing on the deceleration lane (i.e.,
the lowrvolume demand in this experiment) are predominately statistically sigmifi
while the scenarios without queueing on the deceleration lane (i.evdiighe

scenarios) are not statistically significaaet shown inable8 andtable9.

In aggressive merge with maximum advancement cdsesply significant difference in
trends was seen in the AHDV delay across AV ratios, which was increasing throughout
the low volume irexperiment3. Based on observations of the simulatibwas seen that

the change in signal timing resulted in a slowmving queue, increasing the time

required for an AHDV to merge into the deceleration lane, even with aggressive merges.
This resultedn more AHDV stacking in the adjacent lane, waiting to merge, and a higher

sensitivity to the number of AHDVS.

In theaggressivenerge with zipper cases, showrfigure 25, the AHDV travel times are
similar in the higher AHDV ratio scenarios due to saenereason discussed above.
Since each AHDV can merge in front of a single AV or a single HDV, the AHDV line
becomes longer in lower AV ratios, regardless efAlilDV ratios. However, in higher
AV ratio scenarios, more AHDVs can perform aggressive mewgesh requires less
gap compared to SUM@ontrolledmerges. As a result, the AHDV travéime becomes

lower in the lower AHDV ratio with higher AV ratio scenasi

From this experiment, in context with the previous experiments, it is seen that the
presence of queuing (or near overcapacity conditions) is a critical factor in the impact
of the AHDVSs, as this presents significant opportuniteestie aggressive behavior. The

absolute volume has a lesser impact.
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Table 8. Experiment 3: Paired t-teston travel time in aggressivemerge
with maximum advancementscenarios

Vol ume = 600 veh/ Vol ume = 600 veh/
'A&g?\: AHDV vs. AHDV vVvs. AHDV vs. AHDV vs.
P-vVal ( Di ffeiy PVal ybDiffenq PVal (Di ffel| PVal (Di ff e
25 |3.52P3 TRUE| 8. 61F TRUE|5. 87434 TRUE|1.8B® TRUE
50 |1. 0 TRUE| 6. 0®FH TRUE|7. 204 TRUE|1. 7884 TRUE
75 |1.300 TRUE| 2. 3B& TRUE| 0. 00 TRUE 0.00 TRUE
100 0.D0 TRUE - 0. 08 FALSH -
Vol ume = 60030veh/ Vol ume = 60040veh/
ARF;?\; AHDV v s. AHDV vs. AHDV vs. AHDV v s.
PVal (Diffel PVal JDifferd P-Val (Di ffe|PVal (Diffe
25 |1.8BY TRUE| 4. 0BE TRUE|4. 1®9d TRUE|6. 200@ TRUE
50 3.22P TRUE| 2. 80 TRUE|1. 003 TRUE|3. 9 TRUE
75 |1.300d TRUE| 1. 0®2H TRUE|9. 48% TRUE|5. 8®®% TRUE
100|2. 13 TRUE - 1. 1389 TRUE -
Vol ume = 60050veh/ Vol umMe2 0= veh/ ®Or /| n
ARF;?\: AHDV vs. AHDV vs. AHDV vs. AHDV vs.
PVal (Diffel PVal JDifferd P-Val (Di ffe|PVal (Diffe
25 2.7—]1]H TRUE| 3. 241 TRUE| 0. 15 FALSH O. 44 FALSH
50 |2. 60 TRUE| 8. 97X TRUE| 0. 24 FALSE O0.55 FALSE
75 4. 71/Y TRUE| 4. 3®& TRUE| 0. 04 TRUE 0. 85 FALSH
100/1. 20td TRUE - 0. 07 FALSH -
Vol unmMe@ 0= veh/ BOr / | n Vol umMed 0= veh/ 8r / | n
ARF;?\; AHDV v s. AHDV vs. AHDV vs. AHDV v s.
P-val ( Di ffeiy PVal ybiffer PVal (Di ffel| PVal (Di ff e
25 0.87 FALSHKE 0. 31| FALS 0.41 FALSH 0. 27 FALSH
50 0.11 FALSE 0. 25 FALS 0. 06 FALSH 0. 86 FALSH
75 0.96 FALSHEF 0.22 FALS 0.68 FALSEHE 0. 11 FALSH
100/ 0.03 TRUE - 0.10 FALSH -
Vol unmMeQ 0= veh/ #r / | n Vol umMed 0= veh/ 8Br / | n
AI‘;;?\: AHDV vs. AHDV vs. AHDV vs. AHDV vs.
P-vVal | Di f fe|PVal Di f fe|PVal (Diffe| PVal (Diffe
25 0.8 FALSH 0.61 FALSE 0.31 FALSHE O0.60 FALSH
50 0.48 FALSH 0.29 FALSH 0.41 FALSH 0. 43 FALSH
75 0.77 FALSH 0.10d FALSH 0.17 FALSH O0.93 FALSH
100/ 0.5 FALSH - 0. 96 FALSH -
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Table 9. Experiment 3: Paired t-teston travel time in
aggressivemergewith zipper scenarios

Vol ume = 600 veh/ Vol ume = 600 veh/
'A&g?\: AHDV vs. AHDV vVvs. AHDV vs. AHDV vs.
P-vVal ( Di ffeiy PVal ybDiffenq PVal (Di ffel| PVal (Di ff e
25 |4. 9 TRUE| 4. 50 TRUE| 0.D0 TRUE 0.00 TRUE
50 0.07 FALSE 0.DO0O] TRUE| 0. 00 TRUE 0.02 TRUE
75 0.04 TRUE 0.D0O] TRUE| 0.00 TRUE 0.02 TRUE
100/ 0. 00 TRUE 0.00 TRUE
Vol ume = 60030veh/ Vol ume = 60040veh/
ARZ?\; AHDV v s. AHDV vs. AHDV vs. AHDV v s.
P-Val ( Di ffei1 PVal yDiffernq PVal (Di ffel| PVal (Di ff e
25 |3.909 TRUE| 2. 6H TRUE|5. 384 TRUE|4. 5% TRUE
50 0.02 TRUE 0.DO0O] TRUE| 0. 00 TRUE 0.D0 TRUE
75 0.04 TRUE 0.02 TRUE| 0.22 FALSHE O0.32 FALSH
100 0. 05 FALSIH 0.28 FALSHE
Vol ume = 60050veh/ Vol umMe2 0= veh/ ®Or /| n
ARF;?\: AHDV vs. AHDV vs. AHDV vs. AHDV vs.
P-vVal ( Di ffey PVal UDiffenq PVal (Di ffel| PVal (Di ff e
25 1. 304 TRUE| 8. 0#&E TRUE| 0. 15 FALSH 0. 44 FALSH
50 |1. 904 TRUE| 4. 808 TRUE| 0. 28 FALSH 0.63 FALSH
75 0.00 TRUE 0. 35 FALS 0.04 TRUE 0.79 FALSHE
100 0. 22 FALSIH 0.25 FALSH
Vol unmMe@ 0= veh/ BOr / | n Vol umMed 0= veh/ 8r / | n
ARF;?\: AHDV v s. AHDV vs. AHDV vs. AHDV v s.
P-val ( Di ffeiy PVal ybiffer PVal (Di ffel| PVal (Di ff e
25 0.87 FALSHKE 0. 31| FALS 0.41 FALSH 0. 27 FALSH
50 0.20 FALSH 0.11 FALS 0. 06 FALSH 0. 83 FALSH
75 0.87 FALSHEF 0.16| FALS 0.70 FALSEHE O0.15 FALSH
100 0. 160 FALSIH 0.55 FALSH
Vol unmMeQ 0= veh/ #r / | n Vol umMed 0= veh/ 8Br / | n
AI‘;;?\: AHDV vs. AHDV vs. AHDV vs. AHDV vs.
P-vVal | Di f fe|PVal Di f fe|PVal (Diffe| PVal (Diffe
25 0.8 FALSH 0.61 FALSE 0.36 FALSHE O0.65 FALSH
50 0.52 FALSEHE 0.30 FALSE 0. 38 FALSH 0.57 FALSH
75 0.98 FALSH 0.18 FALSH 0. 11 FALSH O0.94 FALSH
100 0. 09 FALSH 0.55 FALSH
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Experiment 4: Evaluation of Impact of Aggressive Merging on Capacity

ExperimentDesign

Experiment4 examine the impacts of aggressive characteristics in vehicles near a
freeway exiton the capacity of the exit lanéehicles with twdevels ofcooperative
characteristics wenased. The two levels wemmplemented with the lowest value and the
highest value ofhe SUMO builtin parametercCooperativeSpeearying levels of
cooperative behavior were emulated by changing the ratio of noncooperative
(IcCooperativeSpeed 0) and cooperativegCooperativeSpeed 1) vehicles from 0 to 1.
Whenavehicle with coopeitave behavior is available in the traffic, SUMO tries to
perform the lanehanging for a vehicle in front of tliarthestdownstream cooperative
vehicle that is reachable. Thaperationis very similar to the aggressive merging logic
developed for AHDV irthe previous experiments, albeit with a slightly less degree of
controlavailable to the model@n which vehiclebehave as aggressive vehidlean

thatachieved irexperimentd to 3 with the explicit modeling of AHDVSs.

The experimenis conducted in &awvo-lane freeway stretched out 2miles. A 2000t
deceleration lane is added at the end oRthale freeway segmenivhich is then

followed by an exit rampas shownn figure 1. All vehicles are seeking to exit the
freeway using the ramp@s shown irfigure 2, theleft-lane (A _0) traffic travels with

higher speed than the riglatne (A 1) traffic creatingthe opportunity for thdeft-lane

traffic to queugump. Both A_1 and A_0 traffic haal mix ofvehicles with
IcCooperativeSpeeaf 1 and 0, indicating thieighest level of cooperative characteristic
and the lowest level of cooperative characteristic, respectively. The A 1 traffic volume

was maintained the same throughout the simulavbereas the A_0 traffic volumes
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were increased every 900 seconds. Detail the vehicle assignment are provided in the

following section.

The A_0 trafficds route was changed from tr a
exit ramp when they arrive at theerging zone indicated figure 1. Once the route

change assignmenteéemplete the A_0 vehicles begin their langhanging proces3 he

lane-changing iontrolled by SUMOSome vehiclesmmediately change their lanes to

lane B_1while others continue to travel on lane Blépendingon theavailability of

gapson lane B_1For the right langall A_1 traffic shifs uninterruptedo lane B_2.

It should be noted that this study assumes#mee headways for all vehicle types
regardless of the level of cooperative characteristics.eMastuallypecomes a critical
factor in explaining how the flow rate was not affected by the aggressive
characteristio$ but rather, there was a trad#é between the vehicle types that exited on

the ramp.

Vehicle Classification
Two types of vehicles were considered in the experimbateandrivenvehicles with a
SUMO IcCooperativeSpeedhlue of O (eferredto as HVO hereafteyandhumandriven

vehicles with IcCooperativeSpeedhlue of 1 (referretb as HV1 hereafter).

The value of 1 in thecCooperativeSpegolarametefor a particular vehiclallowsthe
vehicles speedo beadjugedduring the merge procesEhis is especially relevant for
receivinglane vehiclesThe vehicle in the receiving lane adjusts it speed and cooperates
with the merging vehicleenablingthe merging vehicle tperform thdanechange. On

the other hand, the value of O in the paranegsults in no speed adjustmeand
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consequentlyio cooperationto make the merge or to allow the mergke merge in this
case is completely dependentapreexisting sufficienigap in front of the vehicle in the

receiving lane.

Vehicle Assignment

The traffic on lane A_hadaflow rate of 1400 vehicles/houthroughout the simulation.
Two scenarios were tested with different types of base vehicles in lan@ e lane
A_1 traffic comprisedall HVO in the first scenariogxperimenta), while that lane had
all HV1 inthe second scenarieXperimentb). The trafficin lane A_0 was a mixture of
HVO and HV1. The ratios of HV0O and H\Wtere varied across runs atie volumes
wereincreasedkveryl5 minutes (900 secondsyithin each runThe vehicleassignment
matrix isshown intable10. Each of the two experiments hiiee different subscenarios

with five levels of the HVO/HV1 ratios, generating 10 rismgle trial per scenario).

Table 10. Vehicle assignmenton lane A_0 for experiment 4a and experiment 4b.

Total
. Vet 0% 25% 50% 75% 100%
Time Step | onA O . . . . X
(Seconds) | (vehicle / (veh_lcle/ (veh_lcle/ (veh_lcle/ (veh_lcle/ (vehlcle/
15 15-minute) 15-minute) 15-minute) 15-minute) 15-minute)
minute)

HVO | HV1 | HVO | HV1 | HVO | HV1 | HVO | HV1 | HVO | HV1

0 0 0 0 0 0 0 0 0 0 0 0
900 100 100 0 75 25 50 50 25 75 0 100
1800 150 150 0 113 38 75 75 38 113 0 150
2700 200 200 0 150 50 100 | 100 | 50 150 0 200
3600 250 250 0 188 63 125 | 125 | 63 1838 0 250
4500 300 300 0 225 75 150 | 150 | 75 225 0 300
5400 350 350 0 263 88 175 | 175 | 88 263 0 350
6300 400 400 0 300 | 100 | 200 | 200 | 100 | 300 0 400
7200 450 450 0 338 | 113 | 225 | 225 | 113 | 338 0 450
8100 500 500 0 375 | 125 | 250 | 250 | 125 | 375 0 500
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ResultsVisualization

The impacts ohggressivenerging were investigatda studying the flow and speed
metrics.Speed vstlow plots,time vs. averagespeedplots,andtime vs. flow plotswere
used to visualize the changes in response to the increase in demand over time (in 15
minute increments)rhedata forthree locationd 500 ft before the start of the
deceleration lane on lane A 1, the start of the deceleration lane (d Rnendthe

start of the ram wereplotted Time vs.averagespeedplots andime vs. flow plots

were combined into dualxis plots(seeappendixB).

The 15minute vehiclecounts(table11i table14) were measured at the start of the
simulation where the vehicles ergdthe simulation and at the start of the ramp. The
vehicle counts are also divided into the vehicle typegne(A_0 HVO, A_OHV1, A_1

HVO0, and A_1 HV1) to measure the tragl effects on each vehicle type.

Discussion

In experimentda, figure 627 figure 67 in appendixB show the speed vs. flow plots at
variouslocations across all HvVtb HVO ratio casesThe Iminute aggregate count
observations wermultiplied by 60 togenerateéhe correspondinggstimated hourly flow
rates. As shown on the plots, the changédV1 to HVO ratioson lane A_0 did not lead

to significant changes in capacity when all A_1 traffic consisted of (fwOcondition of
experimen#a). The same headways wesgecifiedfor cooperative vehicles (HV1) and
noncooperative vehicles (HV) the simulationThe headways also remained the same
before and after performing the merge. Even though the floar@B_2 (and thus lane

A_1) wasinterruptedby the mergectivity, theoverallcapacityof the exit lanevas not
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affectedsignificantly since the merging vehicles had the same headwaytharadway

distribution on the exit lane remained the same

While theaveragecapacitywas not affectedhe change in HVio HVO ratiosdid affect
thevariability and level of fluctuation ithe flow, ascan be seen by comparing the plots
acrosghefive different leveldn figure 29 andfigure 31. In theO percentHV1 case,

since A_Q0 traffic only consisted of HVO, most @®vehicles weraotable to change their
lane to the deceleration lane but started building a queue at the end of lais@®vi in
figure 28). Lanechanges amurred only when there were gaps between the platoons on

lane B_2caused by stochastic variation in the vehicle insertion

Figure 28. Diagram. Queuebuilding at the end of laneB_1.

In 25/ 100 percentcasesagreater instability in flowwasobservedseefigure 29 and

figure 30). These instabilities occur when HV1 on lane B_Xtypically near the backf
thequeue)hange to lane B_2using a gap caused by stochastic variation in the traffic
Once in lane B_2, the merged HV1 vehicle waaildw vehicles waitingn the queue on
lane B_1 to merge in fromf it due to itscooperative characteristiosssentially clearing

a portion of the B_1 queuklowever, these instabilities did not last long nor occur
frequently since they only occurred when there was a suffigegmbetween the vehicle
platoonson lane B_2o allow the initial HV1 to mergelhe total ramp volumes were

unaffected by the HV1 ratipascan be seem figure 31 andtable12.
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Unlike experimentda, experiment4b (i.e., all vehicles in lane A are HV1)did
experience a changa capacity figure 657 figure 66 in appendixB). At the lower HV1
percentages from lane A, & lower ramp capacity (i.e., the number of vehicles that were
able to successfully merge and gwmls observed. At the lower H\penetration rates
the pbts infigure 3271 figure 33 show that the flow on lane A_1 and B_2 was more
frequentlyinterruptedcompared t@xperimentda (figure 29 andfigure 30) since all A_1
traffic was HV1 and merges occurrigdely andwithout building a long queuen lanes
B-1 or B_Q The ability of taffic originatingfrom A_1 to successfullgxit the freeway
was reduced over timasseenn table13, due to the merging vehicle originating from
lane A_0 consuming a largportionof the availablecapacity and the merge maneuvers
resulting in longer headwayghis is reflective of the refis in experiments 1, 2, and 3
where theAVs were seen to yield to the more aggressive vehibigsrestingly, as the
percentage of HWHincreasedthe ramp capacity increasedaching a level equivalent to
experimen#a. That is, when most vehicles aither fully cooperative or
noncooperativesimilar capacities are obtaindibwever, where a higher percentage of
cooperative vehicles are positioned to be targeted by more aggressive vehicles, this

aggressivdo-non-aggressive interaction can significlgmeducecapacity

Additionally, the served vehicles in the aggressgoraonaggressive interaction tend to

be the aggressive vehicle. This is seen through the increasing queue length on lane A_1
as the percentage of noncooperative merging vehiclesaseaie These findings are
congruent with théindings ofexperiments2 and 3where AHDVs benefited in reduced

travel time by targetind\Vs, whiletheAVsand t he f ol l owing trafficbo
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increasedThe AHDVs 6 gains wer e A¥sahdtlhevwvteed a't

following traffic.

Such tradeoff trends in aggressive vehicles taking advantage of cooperative velreles
a potentiakignificantissuein freeway controlFor instance, éavy trucks are often
viewed as a merge target in congested camditn a scenario whereaV heavy truck
on an exit lane is targeted by multiple aggressive drivers, the exit lanesflixely to be
interruptedas seen iexperiment4b. On the other hand, in a scenario wher&¥ heavy
truck is unable to merge intbe exit lane due to the uncooperative behawgrthe exit
lane vehicles, the adjacent lane flaill be disruptedasdemonstrateth experimentda.
Theaggressivenessxperienced byVs will potentially not be limited to AV trucks but
may be experienddy any AV. Even wherehe overall capacity may nbesignificantly
changedthe increased fluctuations in the flow will potentiatiggatively impact the

operations as well dee safety conditions in thepstream traffic.
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Figure 29. Plot. Time vs.averagespeed& flow plots at 500 ft beforethe start of the decelerationlane
in experiment 4a: (a) 0%, (b) 25%, (c) 50%, (d) 75%, and (e)100%.
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in experiment 4a: (a) 0%, (b) 25%, (c) 50%, (d) 75%, and (e)100%.

2500
I 2500
30 1 - = =] =] = = = =
=} F R R M 7
2000
2000 . 51
— 0 —
= | =
= En ~ F1s00 £
1500 £ = =
[ D 15 [
2 o 2
o L
| 1000 = S 1000
2 o o
= = 5] =
w00 < 500
04 l'; |/
= / Lo
T T T T T T T
4000 6000 800D 0 2000 4000 B000 8OO0
time(s) time(s)
(a) (b)
2500 2500
301 =] = = L 30 4 L = l: = =] =)
= =1 % =] - L ]
F 2000 i [ (% L2000 2B A 7 M W
— 57 ri3
w w
= ] T E wf
F1s00 £ __E, 2 1500 £ §_ 2
£ = ~ £ 3 /\J
[7] w
R ER
F o
1000 g & 1000 z %
— [=1] — o
= > g5 = = g
| 500 < 500 <
0 o4
_5 1 T T T _0 -5 T T T T
4000 6000 8000 2000 4000 6000 8000
time(s) time(s)

(e)

£3uu

[ 2000

&
E]
flow (veh/hr)

=]
=



Avg.Speed (m/s)

25

20 4

N

25

Avg.Speed (m/s)

-5

20 1

E
£

500

T
2000

4000
time(s)

(@)

100

W

>

1000

2500

2000

&
2
flow (veh/hr)

g
(=]

20‘00

4000
time(s)

()

SOIDD

Figure 31. Plot. Time vs.averagespeed& flow plots at thestart of theramp

MIDD

Y\

2500

e B
2000 5
uw
-z
Wi [ 5 o)
= ]
W s 3
g
101}[!g @
2 2
| c00 T 5
N
/OO0 8000 1] 2000
30 § I: =3
_ = i l
u
0
£ 20
3 VLT U‘
[+F]
o
wv
[=1]
g: 5
1]
-5

20‘00

4000
time(s)

(d)

SOIDD

BIJIDD

4000
time(s)

(b)

£auu

30
2000 =
- 0
s E®
=
o
g @
2 g
1000 g a
=2 =)
L so0 <<
o
0 -5

T T
6000 8000

r 1000

o 20‘00

in experiment 4a: (a) 0%, (b) 25%, (c) 50%, (d) 75%, and (e)100%.

83

4000
time(s)

(e)

60‘00

BIJIDD

500

[ 2000

=
F1s00 <

flow (veh

- 500



Table 11. Vehicle count by vehicletype at entry point in experiment 4a

(vehicles / 15 minutes)

Time Step
0 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100
0%

A 0 HVO 0 100 | 150 [ 200 | 250 | 300 [ 350 | 326 | 166 | 180
E[AO0HV 0 0 0 0 0 0 0 0 0 0
£ [AOoTotal| © 100 | 150 [ 200 | 250 | 300 | 350 | 326 | 166 | 180
2| A1HVO | 350 | 350 | 351 | 349 | 350 | 351 | 350 | 350 | 350 | 350
5 [ A_1HV1 0 0 0 0 0 0 0 0 0 0

A 1Total | 350 | 350 | 351 | 349 | 350 | 351 | 350 | 350 | 350 | 350

25%

A 0 HVO 0 75 113 [ 150 | 188 [ 225 | 263 [ 300 26 184
E[AO0HV 0 100 | 151 50 63 75 88 100 9 61
£ [AOoTotal| O 175 | 264 | 200 | 251 | 300 [ 351 | 400 35 245
2| A1HVO | 350 | 350 | 351 | 351 | 351 | 350 | 351 | 351 | 351 | 305
5 [ A_1HV1 0 0 0 0 0 0 0 0 0 0

A 1Total | 350 | 350 | 351 | 351 | 351 | 350 | 351 | 351 | 351 | 305

50%

A_0HVO 0 50 75 100 | 125 | 150 | 175 | 126 [ 113 81
‘g A 0 HV1 0 100 | 150 | 100 | 125 | 150 | 175 | 127 | 112 82
@ |[AOTotal| O 150 | 225 | 200 | 250 | 300 | 350 | 253 | 225 [ 163
2| A1HVO | 350 | 350 | 351 | 349 | 350 | 351 | 350 | 350 | 350 | 350
5 [ A_1HV1 0 0 0 0 0 0 0 0 0 0

A 1Total | 350 | 350 | 351 | 349 | 350 | 351 | 350 | 350 | 350 | 350

75%

A 0 HVO 0 25 38 50 63 75 88 75 60 17
E[AO0HV 0 100 | 151 | 150 | 188 | 225 | 263 | 225 | 178 48
£ [AOoTotal| © 125 | 189 | 200 | 251 | 300 | 351 | 300 | 238 65
2| A1HVO | 350 | 350 | 351 | 351 | 351 | 350 | 351 | 351 | 350 | 350
5 [ A_1HV1 0 0 0 0 0 0 0 0 0 0

A 1Total | 350 | 350 | 351 | 351 | 351 | 350 | 351 | 351 | 350 | 350

100%

A 0 HVO 0 0 0 0 0 0 0 0 0 0
E [ AO0HV 0 100 | 150 [ 200 | 250 | 300 [ 350 | 321 | 158 | 223
g [AOTotal [ © 100 | 150 | 200 | 250 | 300 [ 350 | 321 | 158 | 223
2| A1HVO | 350 | 350 | 351 | 349 | 350 | 351 | 350 | 350 | 350 | 350
5 [ A_1HV1 0 0 0 0 0 0 0 0 0 0

A 1Total | 350 | 350 | 351 | 349 | 350 | 351 | 350 | 350 | 350 | 350
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Table 12. Vehiclecount by vehicle typeat ramp in experiment4a (vehicles / 15 minutes)

Time Step
0 | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100
0%
A _0 HVO 0 82 130 | 166 | 179 | 183 | 190 | 157 | 159 | 209
o LA OHV1 0 0 0 0 0 0 0 0 0 0
£ |AOTotal|[ © 82 130 | 166 | 179 | 183 | 190 | 157 | 159 | 209
$ A 1HVO | 286 | 350 | 349 | 343 | 345 | 341 | 339 | 366 | 365 | 321
A 1HV1 0 0 0 0 0 0 0 0 0 0
A 1Total | 286 | 350 | 349 [ 343 | 345 | 341 | 339 | 366 | 365 | 321
25%
A_0 HVO 0 59 110 | 136 | 164 | 107 [ 237 0 179 | 282
o [A0HVI 0 79 143 67 45 41 56 0 64 109
€ |[AOTotal| O 138 | 253 | 203 | 209 | 148 [ 293 0 243 | 391
S [A1HVO | 286 | 341 | 341 | 326 | 294 | 361 | 197 | 516 | 243 83
A 1HV1 0 0 0 0 0 0 0 0 0 0
A 1Total | 286 | 341 | 341 | 326 | 294 | 361 | 197 | 516 | 243 83
50%
A 0 HVO 0 39 72 80 83 128 50 105 | 107 33
o [A0HVI 0 78 144 87 88 102 52 126 81 59
€ |AOTotal| © 117 | 216 | 167 | 171 | 230 | 102 [ 231 | 188 92
S [A1HVO | 286 | 341 | 351 | 349 | 344 | 279 | 403 | 277 | 316 | 424
A 1HV1 0 0 0 0 0 0 0 0 0 0
A l1Total | 286 | 341 | 351 | 349 | 344 | 279 | 403 | 277 | 316 | 424
75%
A 0 HVO 0 20 37 47 41 44 48 64 18 50
o [AO0HVI 0 79 146 | 146 | 114 | 130 | 143 | 188 46 150
€ |AOTotal| © 99 183 | 193 | 155 | 174 | 191 | 252 64 200
S [A1HVO | 286 | 341 | 345 | 333 | 358 | 333 | 327 | 259 [ 458 | 323
A 1HV1 0 0 0 0 0 0 0 0 0 0
A l1Total | 286 | 341 | 345 [ 333 | 358 | 333 | 327 | 259 | 458 | 323
100%
A_0 HVO 0 0 0 0 0 0 0 0 0 0
L [A0HVI 0 80 141 | 197 | 192 | 257 | 115 | 132 | 254 | 195
£ |AOTotal| © 80 141 | 197 | 192 | 257 | 115 | 132 | 254 | 195
$ [A1HVO | 286 | 350 | 347 | 323 | 335 | 271 | 408 | 389 | 272 | 334
A 1HV1 0 0 0 0 0 0 0 0 0 0
A 1Total | 286 | 350 | 347 | 323 | 335 | 271 | 408 | 389 | 272 | 334
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Figure 32 Plot. Time vs.averagespeedyvs.flow plots at 500 ft before thestart of the decelerationlane

(d)

in experiment 4b: (a) 0%, (b) 25%, (c) 50%, (d) 75%, and (e)100%.
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Figure 33. Plot. Time vs.averagespeedvs.flow plots at the start of thedecelerationlane
in experiment 4b: (a) 0%, (b) 25%, (c) 50%, (d) 75%, (e) 100%.

87



Avg.Speed (m/s)

251

20

Avg.Speed (m/s)

-5 1

50
0T
E=TU

SUL

450

—
T T T ,
2000 4000 5000 8000

time(s)
(a)
£2uu
0
I 2000 x
— £
=
I 1500 i_ E®
g 3
2z I}
I 1000 z %
= o
= g .
L 500 <
o
Fo

20‘00 40‘00

time(s)

()

mbo

L0

2000

o]
2
flow {veh/hr)

5]
=]

3
=]

Avg.Speed (m/s)

25 1

20 1

E$

£3uU

2000

1500 =

=]
2
flow (veh/hr)

=]
=5

T
2000

T
2000

T
4000

time(s)

(d)

T
G000

T
BOOD

2300

2000

= &
2 3
flow {veh/hr)

g
(=]

T
(=]

4000
time(s)

(b)

Avg.Speed (my/s)

T
6000

o

5

r1looo

2000

4000
time(s)

(e)

60‘00

Figure 34. Plot. Time vs.averagespeedvs. flow plots at the start of ramp in experiment 4b:
(@) 0%, (b) 25%, (c) 50%, (d) 75%, and (e)100%.

88

MIDD

2300

2000

&
2
flow (veh/hr)

2
=



Table 13. Vehicle count by vehicletype at entry point in experiment 4b
(vehicles / 15 minutes)

Time Step
| | 0 [900] 1800] 2700] 3600 4500 5400] 6300 7200] 8100
0%

AOHVO | 0 [100] 150 | 200 [ 250 | 300 [ 350 | 401 [ 450 [ 394
ElAoHvi[ 0] 0] 0 0 0 0 0 0 0 0
& [AOTotal| 0 [100] 150 | 200 | 250 | 300 | 350 | 401 | 450 | 394
2[A1HVO [ 0| 0] O 0 0 0 0 0 0 0
5 | A_1HV1 [350|350] 351 | 349 | 350 | 242 | 95 | 87 | 93 | 87

A 1Total [350]350] 351 | 349 [ 350 | 242 [ 95 | 87 | 93 | 87

25%

AOHVO | 0 [ 75 [ 113 150 [ 188 | 225 [ 263 | 300 [ 338 | 322
E[AOHvV1I] 0 [100] 151 50 | 63 | 75 | 88 | 100 | 113 | 108
& [AOTotal| 0 [175] 264 | 200 | 251 | 300 | 351 | 400 | 451 | 430
2[A1HVO|[ 0 [ 0] O 0 0 0 0 0 0 0
5 | A_1HV1 [350|350] 351 | 351 | 351 [ 350 | 201 | 71 | 39 | 76

A 1Total [350]350] 351 | 351 [ 351 | 350 [ 201 | 71 | 39 | 76

50%

0 HVO 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 219

0 HV1 100| 150 | 100 | 125 | 150 | 175 | 200 | 225 | 219

0 Total 150| 225 | 200 | 250 | 300 | 350 | 400 | 450 | 438

[ellelle}e]

1 HVO 0 0 0 0 0 0 0 0 0

1HV1 | 350|350 351 | 349 | 350 | 351 | 349 | 150 | 131 | 97

Entry Point
> >3 1> 1> >

1 Total | 350 350 | 351 | 349 | 350 | 351 | 349 | 150 | 131 | 97

75%

0 HVO 25 | 38 50 63 75 88 | 100 | 113 | 125

0 HV1 100| 151 | 150 | 188 | 225 | 263 | 300 | 338 | 374

0 Total 125| 189 | 200 | 251 | 300 | 351 | 400 | 451 | 499

[ellelele]

1 HVO 0 0 0 0 0 0 0 0 0

1HV1 | 350|350 351 | 351 | 351 | 350 | 351 | 205 | 155 | 138

Entry Point
> > > >

1 Total | 350 350 | 351 | 351 | 351 | 350 | 351 | 205 | 155 | 138

100%

0 HVO 0 0 0 0 0 0 0 0 0

0 HV1 100| 150 | 200 | 250 | 300 | 350 | 401 | 450 | 499

0 Total 100| 150 | 200 | 250 | 300 | 350 | 401 | 450 | 499

[ellelele]

1 HVO 0 0 0 0 0 0 0 0 0

1HV1 | 350|350| 351 | 349 | 350 | 351 | 350 | 226 | 137 | 146

Entry Point
> > |> 1> > (>

1 Total | 350 350 | 351 | 349 | 350 | 351 | 350 | 226 | 137 | 146
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Table 14. Vehicle count by vehicletype at ramp in experiment 4b
(vehicles / 15 minutes)

Time Step

| | 0 [900] 1800] 2700] 3600 4500 5400 6300 7200 8100
0%

AOHVO | O | 86| 143 | 189 | 232 | 281 | 309 | 312 | 312 | 309

L AOHVI| 0 | 0 0 0 0 0 0 0 0 0

£ |AOTotal | O | 86 | 143 | 189 | 232 | 281 | 309 | 312 | 312 | 309

SlA1HVO| 0 | O 0 0 0 0 0 0 0 0

A 1HV1 | 286[345| 343 | 264 | 119 | 95 | 86 | 92 | 86 | 90

A 1Total | 286 345] 343 | 264 | 119 | 95 | 86 | 92 | 86 | 90
25%

AOHVO | 0 | 65| 106 | 146 | 180 | 216 | 242 | 262 | 248 | 270

o AOHV1I | 0 [ 86| 142 67 | 59 | 70 | 72 | 73 | 95 | 87

£ |AOTotal | 0 |151| 248 | 213 [ 239 | 286 | 314 | 335 | 343 | 357

ElA1IHVO [ 0[O0 ] O 0 0 0 0 0 0 0

A 1HV1 [ 286|336 357 | 328 | 240 | 122 | 84 | 55 | 69 | 61

A 1Total [ 286|336 357 | 328 | 240 | 122 | 84 | 55 | 69 | 61
50%

AOHVO | 0 [ 43| 71 | 95 | 122 | 145 | 164 | 171 | 184 | 194

o LAOHV1 | 0 | 86| 141 | 109 | 119 | 144 | 160 | 169 | 165 | 171

£ |AOTotal | 0 [129] 212 | 204 | 241 | 289 | 324 | 340 | 349 | 365

SIlA1HVO| 0 | O 0 0 0 0 0 0 0 0

A 1HV1 | 286|335| 358 | 333 | 287 | 220 | 157 | 139 | 107 | 77

A 1Total | 286 | 335| 358 | 333 | 287 | 220 | 157 | 139 | 107 | 77
75%

AOHVO| 0 | 22| 35 | 49 | 60 | 73 | 84 | 90 | 100 | 98

o [AOHVL | 0 | 86| 142 | 149 | 181 | 222 | 246 | 265 | 292 | 296

£ |AOTotal | 0 |108[ 177 [ 198 | 241 | 295 | 330 | 355 | 392 | 394

EIlA1IHVO | 0[O0 ] O 0 0 0 0 0 0 0

A 1HV1 [ 286|336 359 | 333 | 293 | 238 | 187 | 177 | 142 | 125

A 1Total [ 286 | 336| 359 | 333 | 293 | 238 | 187 | 177 | 142 | 125
100%

AOHVO[ 0 | O 0 0 0 0 0 0 0 0

o AOHVL | 0 | 85| 144 | 101 | 240 | 287 | 335 | 366 | 407 | 410

£ |AOTotal | O | 85| 144 | 191 | 240 | 287 | 335 | 366 | 407 | 410

glA1HVWO | 0 | 0] O 0 0 0 0 0 0 0

A 1HV1 [ 286|346 349 | 329 | 296 | 247 | 194 | 168 | 130 | 123

A 1Total [ 286 | 346| 349 | 329 | 296 | 247 | 194 | 168 | 130 | 123

Summary

This chapterodels aggressive merging behasiorhuman driversowardAVs in a
mixed traffic environment. The existing literature review suggests that the general

outlook on autonomous vehiclesoptimistic in that most studies anticipate enhanced
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roadway performance and safetyaimixed traffic environment. However, these studies
had a common assumptidrautonomous vehicles and human roadway users will have
cooperative interactions. Thesudya s ks t he question of O6what ha

are not al ways cooperative between autonomou

Experimens 1through3s howed t hat the presence of human
behaviors had adverse effectsvis and HDVs. The adverse effects had more
significance in high congestipwhen there is a queue the deceleration lan&he

i mpact s afgregsideDnérgas waraitedby thelarger headways between
vehicles in low congestion when there is no queube deceleration lan8ased on the
experiment2 andexperiment3 results, AHDVdada higher travetime gain with higher
level of aggressivbehaviorswhich in return hadireateradverse effects on theVso

and the HDVétraveltimes However, AHDVs had greateitravettime reductionwith

higher AV ratios when the traffion the deceleration lane was moving relatively quicker.
When the traffic on the deceleration lane was not moving quidkilpVs ended up

blocking the other AHDVs from performing the aggressive merges regardless of the AV

ratios.

Experiment 4 took a closé&ok at the impact of cooperatibehavior induced
aggressive merges) capacitylt was seen that when most vehicles are either fully
cooperative or noncooperative similar capacities are obtanogeever, where a higher
percentage of cooperative vehiglgre positioned to be targeted by more aggressive
vehicles, this aggressite-nonaggressive interaction can significantly reduce travel
time. In additionjt was seen, similar to experiments 1 through 3, A#DV gains were

achieved at the expenseA¥s. Finally, even in those scenarios whérne overall
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capacitywasnot significantlychange in response to the variation of the percentage of
cooperative vehicles in the traffincreased fluctuations in the flonvay potentially

negatively impact operains as well aghe safety conditions in thepstream traffic.

The findings of this study suggest that despite the general beliefs in the benefits of

autonomous vehicles, there may be adverse impacts on theggoessive vehicleavel
timesinthepreseme of human dri ver sd aagnyxedarafici ve mer ¢
environmentespecialf in congestedonditions. Thus, when the potential benefits of the

AV are most needed, i.e., at or near capacity, it is possible that human interaction may

negate many of the potential savings.

While there are certainly limitations to the studge of the most noteworthiynitations

may be a lack of validation. As the interaction betw&¥s and humasdriven vehicles

is rar® andsome may argue neexistento at | e a ®dtitissnipossidle toi n o v e |
validate the behavioral assumptions made. However, this same limitation exists for all
mixed-fleet studies. It is the goal of this effort to provide a meaningful data point to the

range of potential behaviorand subsequently operational, outcomes.
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CHAPTER 5. DATA COLLECTION FOR DRIVER BEHAVIOR

DATA COLLECTION PLAN

The initial objective of the data collection task was to obtain trajectory data for drivers
performing aggressive merges and use these data to fineturggthesiave merge model.
However several physical sitepecific limitations prevented the collectiontbésedata.
TheGeorgia Department of Transportatio@GDOT) permanent cameras on roadside
poles did not provide a view that could be used for trajgctata extraction. These views
suffered from excessive occlusion of thehicles in the lanes away from the camera.
Drone data collection was contemplatecgaslternativeHowever, such efforts were
thwarted by the restrictions on the airspace due tdogiearports and helipads and also

the lack of cooperation from nearby business owners.

The data collection therefore was focusedopplementing the effort studying the
impactof headways (which are affected by the aggressive behasioell as other
automated vehicle behavj@uch as platooning) on capagityhich will be presented in
chapter 6 The data collection effort measdthe sturation headways at two typical

intersections in Georgiduring the PM peak period on weekdays

DATA COLLECTION METHOD
Site Selectiorfor Drone Video Data Collection

For collecting datawo sites were chosen on mainline Peachtree IndustrideBand
(PIB). The sites were chosen in a way that the drone can be docked within the GDOT

right of way and away fromanyno-fly zones (figure 35). At the two intersections shown
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in figure 35, the objective was tobtaintrajectories of the vehicleteparting from a
standingqueue when thsignalindicationchanged to greeo ensuresufficient demand
to achieve these conditiartee data collection was performed during the-pdak hours

between 3 PMind6 PMonweekdays.

The datawverecollected at an elevation opproximately350' 400 ft above the ground.

Hence no interactions with the overhead wires were expected. However, special
considerations had to be made to maneuver around the wires while taking off and landing
the equipment. In the event of a breeze, the equipment would get offset from the data
cdlection spot to balance the effect of the wind and hence the equipment had to be
readjusted accordingly from time to time in reaction to the automatiamid

adjustments. The equipment was not operated on a day with any heavy rain or

thunderstorm forecas

Drone Video Data ProcessingUsing the DataFromSky Viewer

The field-collected drone video dateereprocessed to extract vehicle trajectories using

the services of an external vendor, DataFrom@lataFromSky20213 via their online

service portalThe platform useartificial intelligence Al) and computer vision to detect

vehicle movements and produce annotated vehicle trajectories. The processed data
returned from the platform in the form of a
file extension, f.tlrigxaddmedsare othertraffievct vehi cl e
characteristics, tracking logs are further processed in the DataFromSky Viewer software
(DataFromSky2021h. Figure36 shows a sample dhe annotated vehicle trajectories for

one of the intersections, loaded from a tracking log in DataFromSky Viewer.
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Figure 35. Maps. Sites chosen fodata collection: (a) at the intersection of PIB@
North Berkeley Lake Road (b) at the intersection of PIB@ Medlock Bridge Road
(red lines= GDOT right -of-way boundaries X = docking station for drone)
Source: Googlé Maps
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Figure 36. Map. Annotated vehicletrajectories in DataFromSky Viewer.
Source: GoogleMaps

After loading a tracking log in DataFromSky ViewtTe postprocessing of the data is

performed using the followintiree steps

1. Manualgeoreferencing.
2. Manualannotatiorconfiguration

3. Exportinganalysis data.

Manual Georeferencing

Georeferencing ensures that the video footage is properly mapped, oriente@d|@shtosc
allow accurate calculation of trajectory datecluding position, speed, and acceleration.

A minimum of three points in the footage scene are assigned coordinates extracted from
Googlé® Maps If acceptable positioning accuracy is achieved, thetpaire shown in

green with precision indication the DataFromSky Vieweras illustratedn figure 37,

otherwise, the points are flagged in red.

96



Q

Point 4 N
dev: 0.0497445m ..~

Figure 37. Map. Manual georeferencingin DataFromSky Viewer.
Source: Google Maps

Manual Annotation Configuration

This stepinvolves inserting data collection poinEor this studydata collection points
were gates positioned stop lines for headway measuremehRigure38 shows two
gates labeled as EB_Ln1 and EB_Ln2 for the two thraugliement lanes. When a
vehicle crosses a gate, datacollected including the vehicle type, time of exand

speed.
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Figure 38. Map. Inserting gatesat stop line Source: Google Maps

Exporting AnalysisData

The last stefnvolvesexporting the analysis data te@ammaseparated values (CS¥ile
for further analysis using other methtidslsas needed by the research stuly shown
in figure 39, the options include exporting entire trajectories and exportingogassing

events.
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* (*Unnamed Annotation Configuration* 2) - DataFromSky Viewer (AERIAL mode)

Tracking Log  Analysis Trajectory Video Settings View Help
&% Export Trajectories to CSV File...
. B ’ @b Export Trajectories to TR File...
Export Trajectories to DXF File...

Export Trajectories Movement Dynamics to CSV File...
Export Stationary Spells to CSV File...

Export Action Regions Alert Events to CSV File...
Export Gates Crossing Events to CSV File...

Export Traffic Regions Crossing Events to CSV File...
Export Traffic Analysis to Excel File...
Export Gap-Time/Time-to-Follow Data...

P55606006

Estimate Camera Pose

Show Origin-Destination Statistics...

Show Origin-Destination Flow Graphs...

Calculate Headway Statistics...

Safety Analysis \

Figure 39. Screenshot Exporting analysis data from DataFromSky Viewer

OBSERVATIONS/RESULTS

The output of the pogirocessing analysis of the trajectories was the individual vehicle
headways. A deconvolution analysis was performed in Python usi@atissiaMixture
functionin the scikitlearn modul€INRIA 2021) to separate out the headways of

vehicles that relate to the saturation flow from the other headWhgsaverage

saturation headways for the through movements were found to be in the range of 1.84 to
2.28 in the different lanest the different intersection approaches. The average saturation
headways for the protected left turns were in the range of 1.89 torh&8etailed lane

by-laneresults are presentedappendixA.
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CHAPTER 6. SIMPLIFIED CAPACITY ANALYSIS TOOL

INTRODUCTION

This chapter presents a Simplified Capacity Analysis Tool for exploring the potential
impact of various levels of CAV market penetration on signalized intersection capacity.
SCAT is anExcelbased tool that provides through and-tefin movement capacity
estimates for useselected phase timings. While numerous CAV development efforts are
underway with varying degrees of success, there is no accepted representative CAV
technology nor is there a generally accepted (or governmentally required) set of CAV
behavioral characteristics for vehicles that may ultimately be deployed on the public
roadways. As such, it is not possible to develop a single, authoritative estimate of the
impact of CAVs on capacity. Thus, SCAT draws on findings from the literature,llas we
as a projeebased simulation, presentid@ different potential CAV impact scenarios.

The analyst mautilize SCAT to explore a range of potential futures and understand the
sensitivity of current intersection, as well as future designs, to potedtidloerating

characteristics.

CAV SATURATION FLOW OVERVIEW

The following section discusses the CAV saturation flow estimates included in SCAT.
While the saturation flow modeling approaches in the literature differ withelye are
several overarching vetie behavioral components covered by each. The key
components of most models (generally microscopic) are their approachfatdaaing,

platooning, and lane changing.
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Car following refers to the behavior of a following vehicle behind a lead vehicleinaath

lane. The outputofacdérol | owi ng model is the foll owing
should the following vehicle accelerate, decelerate, or maintain its current speed. There

are enumerable approaches to developindatenwing models but conmonly they

consist of some function of a desired or minimum time gap, the spacing between

vehicles, speed, and desired or maximum accelerations and decelekxiwaser other

parameters or trafficondition characteristics may also be part of afathowing

algorithm.

Platooningis arguably a special case of da@ltowing. However, platooning vehicles tend

to travel in lockstep that is, the reaction time between vehicles is practically (if not
actually) reduced to zero. In addition, headways may be significantly lower than the
minimum found in most cafiollowing models. To implement platooning, it is assumed
that the followingvehicle is either connected (i.e., in communication) with the lead
vehicle or has sufficient sensors to allow for a reaction time ne@gegonds. Many

CAV models will impose limits on the length of platoons. This may be either due to
assumed technolodynits or as a safety constraint where breaks in platoons are deemed
necessary to allow for interaction with hurrdmven vehicles in a mixetleet

environment.

Lane changingwhile influenced by cdollowing and platooning, is the process by
which a vehtle decides whether and if to implement a lane change. Comptemdy
changing is considered as discretionary (e.g., a vehicle changes lanes to advance its
position in the traffic stream) or mandatory (eaglane change is required to enter a

freeway fran an orramp). Lane change models may also incorporate behavioral
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changes, such as cooperative breakuyghevehicle in the destination lane. Lane
changing models are critical in multilane facilities and often a determining factor in the

capacity ofbottlenecks, weaving areas, merges, diverges, etc.

Within the literaturefreewaybased CAV models are significantly more commomtha
arterial modelsGiven the current lack of arterial models, the majority of the models
included in SCAT are developed aralibrated for freeway scenarios. However, SCAT is
focused on the capacity of vehicles departing from an approach, ignoring the effects of
lane changing. Thus, the freeway models utilized were for developed basic freeway
segment saturation flows rather thaeaving areas, limiting the influence of the maslel
CAV lanechanging behaviors. The model impacts are focused on the changes in car
following and platooning related to the market penetration of CAVs. While asterial
specific models would be preferretietreferenced models should give a sense of the
variation in capacity that may be witnessed for departing vehicles at a signalized

intersection.

However, a direct application of any one of these models to a specific intersection would
likely provide findirgs with minimum reliability given the significant uncertainty in the
characteristics and deployment timeline of CAV technology. Rather, a more productive
use of SCAT (or direct reference of the literature) is to explore the sensitivity of projected
traffic demands and designs across the range of future predictions. These models provide
a sense of the various assumed CAV headways, platooning, and other characteristics.
Designers and policy makers can also consider the impacts of various timelines for

increagng market penetration rates. Ultimately, testing a design against multiple potential
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CAV futures aids in understanding its robustness in the face of significant uncertainty

and the potentiprloafnad deositgnsw. Afutur e

SCAT SATURATION FLOW MODELS

Prior to describing the use of SCAhe models included are briefly discussed. While the
term CAV is utilized as a broad descriptor in this chajitevill be seen that the selection
of models includea range of vehicle tygeconnected vehicleqQV), AV, CAV, and
cooperativeadaptivecruisecontrol (CACC). It will alsobe seen that adaptive cruise
control (ACC) or CACC models are often utilized for the-imdllowing behavior in a

CAV model. The discussion provided for each model will utilize the tesm the given

reference.

Capacity Adjustment Factors for Connected and Automated Vehicles irHiggway
Capacity Manuaj Draft Phase 1 Report, Pooled Fund Stud{Schroederet al. 2021)

This project sought to develop CAV capacity adjustment factors for use kigheay
Capacity ManualHCM). The effort utilized an agetiased simulation modeling
approach implemented in VISSIM, developing capacitystdjent factors for freeway
segmentsife., basic, merge, diverge, and weaving), signalized intersectienghrough
movements and protected and permittedtlait movements), twavay stopcontrolled
intersections, and roundabouite ( yield control entry). The CAVs modeled were

assumed to be SAE evel4 or 5, that is, for the facilities being modeled the vehicle was

1Society of Automotive Engineers Levels of Driving Au
Level 0 (no driving automation) to Level 5 (full driving automation).
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assumed to operate with no human intervention. Capacity adjustment factors were

developed over CAV penetration rates from Q@0 percent

As with all CAV modeling effortslimited field dataareavailable and CAV technology is

in a continual state of flux. In Schroedgal. (2021), it is highlighted that a key

objective was the development of a minimum achievable gap. Developing such a gap
required a number of assumpt idoversvehiclegar di ng 0
capability, Platooning behavior, Letfirn behavior, Iter-platoon gaps, Intra Platoon

gaps, Maximum platoon size, System reliability, and Traffic Stream Compaogition

Assumptions were based on a review of the literature and best judgment. The number of

required assumptions should not be taken as a critidishasceffort it is simply a

reflection of the current state of uncertainty in the ultimate characteristics of CAVs and a

source of the differences seen in the capacity impact estimates throughout the literature.

A signalized intersection of a folaine padway (40mph speed limit) with a twane
roadway (3@mph speed limit), with all approaches having ateft bay, was utilized as

the base model. A 1e€econd cycle was utilized with volume demands set to
approximate a 0.7 volurAe-capacity ratio. Thumandriven vehicles were modeled

using Wiedemann 74 driving behavior, with parameters adjusted to match the base
saturation flow provided by the HCM. The CAV daflowing model is based on a
Cooperative Adaptive Cruise Control algorithm developetMidgnes and Shladover

(2014. The VISSIMapplication programming interfac@Rl) is used to implement
CAV-based platoon and larmhanging behavior. Ideal conditions are assumed, such as,
Ano | nt er a-motorizedroad userh, nonadverse weather impacts, and a facility

without driveways or access points impacting
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found no significantmpact to startup and clearance lost times based on the CAV
penetration rate. As one of the few studies to directly consider lost time, the assumption

of no-impact is applied to all models included in SCAT.

Included within SCAT are the Schroed#al. developed capacity adjustment factors for
the through movement and protected and permitted left turns. The Schetaldé021)
document also includedevelopment of saturation flow rate adjustments for permitted
left turns. However, these are not included within SCAT as the adjustment factors are
specific to the intersection signal timing and-keftn movement opposing volume, and
thus not generallgpplicable. However, for a given volume set and signal timing, if
desired, a SCAT user may update the saturation flows on the SCAT Saturation Flow
Adjustment Worksheet, using the factors from Schroeti&lr and a base saturation flow

(i.e., OpercentAVs) calculated using the HCM for the given conditions.

fiModeling Impacts of Cooperative Adaptive Cruise Control on Mixed Traffic Flow
in Multi -lane Freeway Facilitie® (Liu etal. 20180

The effort by Liuetal. (20180 models CACC vehicles on freeway facilities. This effort
focuseon t he fidi sengagement of CACC stringso;
platoons of CACC vehicles in a mixed (hurm@niven and CACC) vehicle environment.

Liu etal. considers managédne scenarios as well as the implementatiorebfcle
awarenesslevices(VAD s), whichenable a manually driven vehicle to be a CACC

platoon leader. The values utilized in SCAT are based on the homogenous freeway

segment results found in Letal. as this provides the closest approximation for the

departure from a signal (i.e., not incorgiing significant lane changing or weaving).
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However, while not incorporated into SCAT, Latal. (20181 also include significant

effort related to bottleneck bawior at ramp junctions.

Similar to Schroedegtal. (2021), the CACC caifollowing is based oMilanesand

Shladover (2014 . I n addition, the ANGSI M oversatur a
Yeo etal. (2008 is utilized. Liuetal. implement a logic allowing a CACC vehicle to join

a platoon of existing CACC vehicles, utilizing a reduced headway and thus higher flow

rates. Where a platoon is aetmaximumallowed platoon lengthithe next CACC vehicle

will initiate a new platoon, becoming a platoon leader. As part of the effort, a managed

lane limited to CACC is considered. Finally, several updates are proposed to the lane

changing rules. Lastlyhe 0 percent CACC model is calibrated to field conditions while

CACC behavior is based on the literature and best judgment.

AAutonomous and Connected Cars: HCM Estimates for Freeways with Various
Market Penetration Rates (Shiand Prevedouros2016

This effort considers the impact of driverless vehicletewrlof service(LOS) as
measured in thelighway Capacity Manualwith a concentration on freeway conditions.
To determine the impact on LOS, @imd Prevedouro2016 focus on the driverless
vehicle caffollowing headway and penetration rate. For the traffic streamai@hi
Prevedourositilize a weighted average of the dalowing headways for humadriven

and driverless vehicles. A driverless vehicle headway of 0.5 second is assumed.
Critically, platoon size isat limited, which is a constraint in many other efforts intended
to aid the ability of humadriven vehicles to successfully operate iiaa@li ty with a high
percentage of driverless vehicles. Thus, as the penetration rate approaghexafO

the satuation flow rate approaches 7,200 vehicles per hour per lane. The assumptions of
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Shiand Prevedoura®sult in significantly higher capacities than any of the other

literature included in this effort.

AEnhanced Intelligent Driver Model to Access the Impacbf Driving Strategies on
Traffic Capacity 0 (Kesting etal. 2010

Theintelligentdriver modelis a commonly implemented and enhanced model for ACC

as well as the cdbllowing component of CAV models. ThremhancedDM utilized in

SCAT provides an advancement over the original IDM mod&dstingetal. (2010.

The | DM seeks to provide Acontroll able stabi
bet ween acceleration and decel eration behavi
free acceleration, daed time gap, jam distance, maximum acceleration, and desired

deceleration. The IDM provides a continuous function that combinesdagkdriving

and a deceleration model to maintain a desiredysgég. The enhanced IDM improves

upon the original moddy addressing instability that could be introduced by certain

lanechanging behavior. A constant acceleration heuristic is introduced to address

overreaction in breakintipat may occur in the original IDM. While a number of

scenarios are consideredtiwn the enhanced IDM paper, SCAT integrates the results for

a freeway segment outflow from a traffic jam, as this is most analogous to an intersection
approach departure. A critical caveat to these results is that Kestihgrovides

capacities onlydr ACC penetration rates of O to pércent Thus, the results in SCAT

should not be applied for penetrations greater thgoebfent Additionally, results in

SCAT are given for a default set of traffic conditiongpédcen} trucksand driving

behaviors (safety time gap, maximum acceleration, and comfortable acceleration). While

not dramatically different, estimated capacities gigdigfering driving behavior



assumptions were seen in Kestetgl. (2010 to vary by up to several hundred vehicles

per hour as the penetration rate incredseskd on the selected parameter values.

AA Mixed Traffic Capacity Analysis and Lane Management Model for Connected
and Automated Vehicles: A Markov Chain Methodd (Ghiasi etal. 2017

Ghiasiaetal. (2017 provide an analytical approach for determining the capacity of a
highway segment at various CAV markenetratiorevels. Utilizing a Markowhain
approachi(e., a stochastic modelingpproach where the likelihood of the next event is
dependent on the previous evefhiasiaetal. model the spatial headway distributions

of the traffic stream. A key element of the model is reflecting the various idalitarer
pairings (i.e., CAVCAYV, CAVi Human DriveqHV], HVi CAV, and HM HV) in their
stochastic model. However, as with all other efforts reported, this effort relies on a set of
assumed distributions for these leddielifower headway pairings, particularly with

CAVs. This effort also incldes platooning intensity, a measure of the likelihood of
vehicles platooning. Platooning intensity allows the méalatcount for differing

platooning strategies, for instance, CAVs seeking other CAVs to create platoons versus
platooning opportunities kad on a random ordering of vehicles in the traffic stream.

(All other models discugslassume platooning opportunities based on random ordering
of vehicles.) Ghiasetal. (2017 is one of the limited number of efforts that demonstrates
that increasing capacity with increasing CAV penetration is not guaranteed and that for a

given set of Aconservative CAV technology sc

VISSIM Simulation

The final model included in the analysis is based on a VISSIM simuletiopleted as

part of the current studyrhe model utilizes results from tl®EXist project (CoEXist
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2021h. TheCoEXistpr oj ect was a European effort t
urban road authorities for the planning and integration of connected and automated
vehicl es on (CorXistz202lan AstpartofrtheCoEXEt project PTV
Groupdeveloped for VISSIMa series of new features and parameters set for the

modeling of CAVYSukennik2018 Sukennik and Kautzs@018.

PTV Groupdeveloped three AV models: ARautious AV Normal, and AV Aggressive.

For each of these modetsset of Wiedemann 99 CCO through CC9 parameters were
calibrated for CAVsCCO through CC9 are drivingehavior parameters of the

Weidemann 99 caollowing mode] interested readers are directedhefinal report of

GDOT Research @ject18-33, VISSIM11 Simulation Guidangeor a detailed

discussion of each parameter and parameter calibi@tionter2027). In addition,

parameters were developed for Wedemann74 model which is generally utilized for
arterial operations; however, robust calibration was not undertaken for these parameters
andthey are not yet recommended for use. In addition, recommendations for the
necessary and free lashange CAV parameter sets were generated, including
characteristics such as maximum and accepted deceleration, inclusion of advanced
merging and cooperativane change, and safety distance factor, minimum headway, and
maximum cooperation for braking. Updates to driver behaviors at signals were also
defined (i.e., behavior at amber, behavior at red, reaction time distribution, reduced safety
distance factomeduced safety start upstream of the stop line, and reduced safety end
upstream of stop lineBTV Grouphas introduced the ability for vehiaiass$ specific

platooning, enabling the modeling of CAVs at close spacings. Importantly, maximum
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platoon lengthsnay be set, with platoon splitting where the number of €f\a row

exceeds the platoon limit.

For theVISSIM simulatiorbased saturation flows given in SCAdsinglelane

approach of an intersection was modeled. A-46&€ond cycle was utilized with a

30-second phase on the subject approach. Demand was set to ensure a constant standing
gueue. Saturation flow was calculated by measuring the departure headwafpoftthe
throughtwelfth vehicle on the approach, each cycle. For the saturation flowsedport
SCAT, the Weidemann 99 AV normal settings were utilized with a maximum platoon
length of seven vehicles. AV market penetration rates were modeled from O to
100percentin 10percentncrements. Ten replications veecompleted for each

penetration re. Finally, to better represent Georgia conditjoing base modeD(percent

AVs) headways were calibrated utilizing the data collection at Peachtree Industrial Blvd
and Medlock Bridge Rd, as discussed in the data collechiapterof the reportWhile

not provided in SCAT, model runs were also completed using the AV Aggressive setting.
However, the saturation values were only slightly higher than théléwhal This is

likely due to the singkdane approach eliminating any impact of aggressieeging and

utilizing the same platoon length.

INSTRUCTIONS FOR SIMPLIFIED CAPACITY ANALYSIS TOOL

The use of SCAT is intended to be straightforward. SCAT is set to provide the capacity
of each phase at a signalized intersection basdd diferent CAV mogkls, at
penetration rates from 0 to 1@@rcent A simple eightphase duating control scheme is

assumed, with protecteahly lefts. The analyst provides the phase length and number of
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lanes per movement, and yellow, red clear, and lost time. Curreatiyjddel does not
incorporate permitted lefts, shared through plustieft lanes, or righturn-on-red. For

each analysis all lanes are assigned the sardarmpesaturation flow. To explore

different saturation values, it is necessary to run the anéystaich CAV model
assumption separately. Finally, mtline analysis assumes a linear increase in capacity,
with no degradation in service due to lane changes, unbalanced lane flows, etc. That is,
the capacity for two lanes is taken to be double thaheflane, the capacity for three

lanes is triple one lane, etc.

The capacity calculation utilized shown inequation 6

Pi—1t
)

c; = n;5( -

Where:
ci = Capacity of phase 7
n; = number of lanes for phase (or movement) 7
s; = saturation flow for phase (or movement) i
@i = Length phase
It = Lost time
C = Cycle length
(6)

The saturation flow is based on the literature or simulation reaultisthe phase lengths,

lost time, and number of lanes per movement are provided by the analyst.
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SCAT has three analysis sections:

1. Individual Scenario Analysisallows an analyst to explore the impact on phase
capacity of different AV, CAV, or CACC models

2. Scenario Comparative Analysisallows the analyst to compare the capacities
for two saturation flow models, for all phases.

3. Phase Comparative Analysigllows for the comparison of all capacity

scenarios across a single phase.

In addition, SCAT allows fothe adjustment of all models to the same base saturation
flow, that is, the saturation flow withfercentCAVs is set to the same value for all

models. When drawn from the literatueach saturation flow model has its own assumed
base saturation flowanging from approximately,200 veh/hr/In to 2000 veh/hr/In. To

help explore the relative difference with increasing or decreasing CAV penetratign rates
SCAT enables the normalization of base saturation flows. However, caution should be
exercised in thanterpretation of these values. The applied normalization is a simple

linear adjustment to all saturation values for a given model. That is, if the reported base
value in the source literature islR0 veh/hr/In for a given model, and the analyst wishes

to consider all models at a base saturation flow,00@ veh/hr/In, then 100 veh/hr/In will

be subtracted from the saturation flow value at all penetration levels. This adjustment is
intended to provide convenience for comparing madelative rates of dnge.

However, the models have not been executed with the new base saturation flow as in the
original literature source. It some models it is likely that the linear adjustment assumption
is an oversimplification of the impact of changing the base satoriidw. For instance,

another reasonable assumption could be to reduce the base rate for the given model to the
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same value (i.e., set tBgercent penetration rate t@AO veh/hr/In) and make
proportionally smaller changes to the saturation flow asehetpation rate increases. At
100percentCAV, the saturation flow would be unchanged from the original source
literature, as the base saturation flow (i.e., all human drivers) has little influence on the

100percentCAV market penetration saturation flow.

Individual Scenario Analysis

To complete the Individual Scenario Analy®ster the following informatiom the

Data Input Sectioffigure 40):

1. Enter the desireBhaselengthg(in seconds)

2. Entervalues for ¢llow, RedClear, andLostTime under Other Signal Data

3. Entervalues forthe Numberof Lanesfor each Phase

4. Select the saturation flodnalysisOptionto be analyzed.

5. Selectthe checkbox under Base Saturation Fiball models are to be set to the

same base saturation flow.
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Data Input Section
Phase Lengths Other Signal Data MNumber of Lanes Analysis Option
Phase length Signal Length Phase Number of AV scenarios
(sec) Data (sec) Lanes
1 18 Yellow: 3 1 1 1] <2 No Impact
2 32 Red Clear: 2 2 2 2| <3{HCM1 - Through - CAV
3 15 Lost Time: 5 3 1 3| (2|HCML - Left - CAV
4 25 4 1 4| |Enchanced IDM
5 10 5 1 5| C3|HCM2 - Freeway - CAV
6 40 6 2 6| O Homogenous Freeway - CACC
7 13 7 | 1 | 7| ®|Markov - Default
8 27 8 1 8] OMarkov - 1.6
o] O|markov - 1.8,2.0
Base Saturation Flow 10| | vissim AV normal
Check to set all model to the same base saturation flow (i.e., sat flow at 0% AVs). O
Set base saturation flow 1500

Figure 40. ScreenshotSCAT 1 Individual Scenario Analysisi
example Data Input Section

The analystanconfirm that the signal control has been correctly input by reviewing the
Data Phase Layousection(figure 41). Separate checks are provided to confirm that the
rings have the same cycle length and that the phase pairs on each side of the barrier have

the same sum. The analyst should confirm
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Data Phase Layout

o 18 q—az“'l 15 l 25
= 0| == ag L13 I 27

2
1 l l 5
6 =)
Cucle Length = an I
RingLenath check, F1=FZ  OK 3 8 |
Barier Check W2=5+5 DK |
Earrier Check 3+4 = 7+5 Ok

Figure 41. ScreenshotSCAT 1 Individual Scenario Analysisi
example Data Phase Layoutsection.

The calculated capacity values for the selected analysis option will be@ shéwalysis

I Table Outpu(figure 42) and graphically in Analysis Graphical Outputfigure 43).
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Analysis - Table Output

Capacity - veh per phase per penetration rate

AV Penetration Rate
Phase 1] 10 20 30 40 50 60 70 80 90 100
1 482 499 515 532 553 579 612 654 706 770 848
2 1712 1773 1830 1892 1966 2058 2176 2325 2511 2739 3014
3 401 416 429 443 461 432 510 545 589 642 707
4 6a9 693 715 738 768 204 850 908 981 1070 1178
5 268 277 286 236 307 322 340 363 392 428 471
6 2140 2216 2288 2365 2457 2573 2720 2907 3139 3424 3768
7 348 360 372 384 399 4183 442 472 510 556 612
8 722 748 772 798 829 268 918 981 1059 1156 1272

Equation Parameters
Option 7

c4 -3E-06

c3 0.002

c2 -0.081

cl 9133

b 2407.9

Figure 42. ScreenshotSCAT i Individual Scenario Analysisit

example Analysisi Table Output section

Analfsis - Graphical Output
"

Capacity vs AV Percentage for All Phases

AV penetration

4 —@—5 —8—5 —f—=7 —8—38

120

Figure 43. ScreenshotSCAT 1 Individual Scenario Analysisit

example Analysisi Graphical Output section
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Scenario ComparativeAnalysis

To complete the Scenario Comparative Analysnger the following informatiom the

Data Inputsection(figure 44):

1. Select the checkboxésr two scenarios for comparisoimder Scenario

Selection and Select

2. Enterthe AV penetration rates as Range Low and Range HighsaahaerAV

PenetratiorRange(default is 0 to 100).

3. Confirm there are no errors therange selection, i.e., Error Checks ré@Kao.

All other dataaredrawn fromthe Individual Scenario Analysis.



Data Input

Scenario Selection

. . Selected Regression Values
sEenario scenario Mame Select ifrom Base Sat Flow shest]
1 Mo Impact (] FALSE
z HEM1 - Thraugh - CAY [ TRLUE 4 HCM1 - Through - CAY
3 HEM1 - Left - CaY O FALSE od  2.53E-0%
4 Ernchanced IOM O FALSE o3 -0.0043
=] HEMZ - Freeway - CAV [] TRUE o2 030003
E Homogerous Freeway - CACC O FALSE ol -181d4
T Markaow - Default O FALSE b 177006
a Markow - 16 O FALSE
ha Markow-158.2.0 O FALSE 5 HCMZ - Freeway -CaY
10 Wiszim &Y normal O FALSE cd ZE-05
=3 00005
o2 0.10034
Check 0K 1 16.0532
b 24001

AY Penetration Range

RangeLow 40 Error Checks: FRange Low < Range High Ok
Rargs High 100 0 +=Range Lew < 100 Ok

0+ Range High <= 100 Ok
Data Point 0 1 2 3 q 5 B 7 B k) 0
A Bate 40 45 52 55 Eid it} T 52 [ 34 | 100

Figure 44. ScreenshotSCAT 1 Scenario Comparative Analysis

Next, the capacity values for each phase, for each or the two selected models will be
provided in the Capacity Tablesction(figure 45) and the graphical results will be
provided in the Capacity Graphkection(figure 46). It is critical to note that the Capacity

Tables and Capacity GrapWwill reflect the Base Saturation Flow adjustment selection in

example Data Input section

the Individual Scenario Analysis, Data Inf@gction
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Capacity Tables

HCM1 - Thraugh - CaY

&Y Penetration Bate

Phase 40 46 o s Gid Kt = G2 [ads) 34 100
Phase1 385 380 383 396 397 397 396 395 394 33d 396
Phase 2 1367 1385 1358 @07 140 910 €07 903 "o0 0 oo -ov
Phaze 3 320 325 328 330 331 331 330 323 3280 3E8 330
Phase 4 53d 541 BdE G543 551 551 550 S48 547 547 543
Phase 5 214 296 213 220 220 220 2200 213 213 214 220
Phase & 703 1731 TrdE 178 1763 1FE3 1753 1754 1750 1750 1758
Phase 7 278 281 284 286 287 286 286 285 284 284 286
Phase 8 57T S84 590 533 535 555 534 592 590 551 593

CAUTION - Enchanced I0M Model Walid far 8 Penetration 0 ta G0,

HCMZ - Freaway - CAY

&Y Penetration Bate
Phase 40 46 52 Sa Gid 7o TE a2 aa 34 100
Phase1 B53 31 V35 786 844 3N 383 0TI NME3 13030 1440
Phase 2 2322 2458 2614 2734 3001 3241 3518 3838 4207 46320 5120
Phase 3 Sed 5Y6  EB13  BS55 TO3 O TEOD 824 893 486 1086 1200
Phased oy B0 W21 1031 172 1266 13Vd 19383 1843 18030 2000
Phase 5 363 384 403 437 483 S0 550 BOOD BSY 0 Tad 200
Phase 6 2302 3073 3268 3dA3 3751 4051 4337 4737 5253 STA0 6400
Phase 7 472 433 531 GSEE8 EBI0 653 TIE VA0 855 941 1040
Phase 8 973 1037 103 N73 1266 1367 1484 1613 1775 18954 2160

HEM1 - Through - CAV - HCME - Freew ay - CAY
AW Penstration Rate
Phase 40 45 52 55 Fid it} 75 &2 55 34 100
Phasel -Z2653  -302 -342 -390 -447 -515 -534 -635 -v3I0 -303 0 1044
Phase 2 -954  -1073 -1216 -1357 -1991 -1550 -210 -2435 -2507 -3232 -5V
Phase 3 -224 =252 -285 -325 -373 -423 -435 -5V -B55 -vS5§ -870
Phased4 -373 413 475 -5d2 -B21 -T15 ) -624 -351 1097 1263 -1431
Phase5 -5 -85 -190  -217 -243  -286 -330 -380 -439 -505 0 -550
Phase& | -133 -1342 -1520 -1734 -1355 -2255 -2635 -3043 -3503 -4040 -d642
Phase T =134 218 -247 ) -282 -323 ) -372 -423 -435 -5V0 -6V -T4
Phase 5 -403  -453 -513 -5585 -6V -YV¥2 -530 1027 -1184 1564 1567

CALTION - Enchanced I0M Maodel YWalid for &A%Y Penetration 0w B0,

Figure 45. ScreenshotSCAT i Scenario Comparative Analysisi
example Capacity Tablessection.




Capacity Graphs

HCM1 - Through - CAY
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200 =t ¢ & v v =
a
o 20 40 =] BO 100 120
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—#— Phasel —8—Phasel Phase 3 Phase & —8—Phase 5 —8—FPhase 6 —#— Phase 7 —8— Fhase 8
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O
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.
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»
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Figure 46. ScreenshotSCAT 1 Scenario Comparative Analysisi
example Capacity Graphssection.
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PhaseComparative Analysis

To complete th&haseComparative Analysiscomplete the following steps in the Data

Input section(figure 47):

1. Enter the Pase to be compared across medelder Selected Phase
2. Enterthe AV penetration rates as Range Low and Range High values under
DesiredAV Raes(default 0 to 100).

3. Confirm thereareno errorsin therange selection, i.e., Error Checks ré@Kao.

All other dataaredrawn from Individual Scenario Analysis.

Data Input

Selected Phase

FPhaze Length 32
Phase Z Lazt Time 5
[umber of Lares 2
Desired AY Rares
Range Low ] Error Checks: Range Low < Bange High Ok
Range High 100 0<=Range Low <100 (04
0 < Bange High <= 100 Ok
Imterval Number 1] 1 2 3 4 5 5] T i 3 10
A4\ Bate 1} 10 20 30 40 S0 J=0] il =] 90 ] 100
AV Saturation Flow Equations
Mum. 1 2 3 4 5 B T g 3 10
scenal Mo lmpact - Through M1- Left - Gohanced [ - Freew aw ous Freewarkow - DefzMarkoy - 1.8rkow - 1.8.255im &Y nomy
oz 0.0000 00000 00001 00000 00000 00000 G.0000 0 00000 0.0000 0.0000
=1 00000 Qo022 -00101 -00043 Q0002 Q0058 00020 0 -00062 Q0023 -0.0100
b Q.00 -0.13 0.54 0.30 0.1a -0.25 -0.05 0.28 -0.12 0.62
0.00 T.63 -E.20 -1.81 16.05 2.00 9.4 133 -E.02 -39
1900.00 155702 1833.70  1vv0.06 240010 215225 240731 241430 240122 204535

Figure 47. ScreenshotSCAT i PhaseComparative Analysisi
example Data Input section

Next, the capacity values for the given phase, for each model will be provided in the

Capacity Per AV Scenariable(figure 48) and the graphical results will be provided in
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the Capacity Graphection(figure 49). As before it is critical to note that the Capacity
Tables and Capacity Graph will reflect the Base Saturation Flow adjustment selection in

the Individual Scenario Analysis, Data Inf@gcton.

Phase 2 Capacity per AV scenario

&Y Peneration Rate

Sat Flow Model 0 0 20 30 40 50 [=10] 7o a0 a0 100

Mo Impact 40 140 140 140 10 o 11400 1400 190 11400 1140
HCM1 - Through - CAY 38 M7e 1209 1233 1272 13 13680 136 1521 .23 1742
HEMI1 - Left - CAY 40 129 1152 1186 1218 1243 1267 1304 1373 1522 1774
Enchanced DM 062 Wes 1031 123 M54 N76 1188 1130 1185 1181 a7
HCMZ - Freewau - CAY 1440 1543 1653 1736 1353 2160 2413 2734 3144 3664 4320
Homogerous Freewaw - CAC] 1273 1316 1340 1369 15 1487 1550 1728 1300 2100 2324
Markow - Default 1445 €36 1544 1537 1653 P37 18360 1962 21190 2311 2543
Markow - 1.6 1449 €73 1511 1546 1568 1570 1549 1507 452 1335 1350
Markow-18.2.0 dd1 1333 1350 1300 1253 1211 1177 199 1125 102 10vd
Vizsim &Y normal 1228 1236 1287 1355 1421 73 1504 1517 15130 1525 155T

CAUTION - Enchanced IDM Maodel Walid far &Y Penetration 0 to 60

Figure 48. ScreenshotSCAT i Phase Comparative Analysi$
example Capacity Per AV Scenario section
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Capacity Graph

Phase 2 Capacity per AV scenario

lllll

Figure 49. ScreenshotSCAT 1 PhaseComparative Analysisi
example Capacity Graph section.

SUMMARY

This chapter presented a Simplified Capacity Analysis Tool for exploring the potential
impact of various levels of CAV market penetration on signalized intersection capacity.

As seenSCAT is an Excebased tool that provides capacityimsites for useselected

phase timings. To reflect the lack of a single accepted representative CAV technology
mode| SCATS drawing on the literature and a simulation modeling edfancorporates

results from a selection of saturation flow models across @¥xket penetration rates

from O to 10Qpercent The analyst may utilize SCAT to explore a range of potential

futures and understand the sensitivity of current intersections, as well as future designs, to

potential CAV operating characteristics.
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To allow for a broader application, next steps in the development of SCAT should
incorporate lefturni permitted movements and shared lanes. Additionally, an ability for
analysts to enter a given intersection volume set to be compared directly against model
capacities should be added, automating the creation of vetioHcegacity ratios for the

various models. Finally, as the development of CAV technology and traffic models is in
constant fluxa frequent review and update of the selected models should b¢akede

As new models are developed based on additional field data, recent technology advances,
changes in legislation related to required AV characteristicstrtcaddition of these to

the SCAT saturation flow estimates will allow for an increasimghust analysis.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Many studies support an optimistic outlook on the tréffbev impacts ofautonomous
vehiclesbased on models that assume bots andhumandriven vehiclesexpress
cooperative behaviors. However, thegg®es have not considered the impacts on traffic
performance of potential aggressive interactions of HDVs Aitls in a mixed
environmentite., AVsand HDVs). Concerns of such interactions occurring are not
unwarranted as mobility service companies habv&erved aggressive humdnver
behaviors directed at their AV test fleets, as well as the already existing aggressive

behavior that may be observed at merge locations with heavy queuing.

To aid in understanding the potential impacagfressive HDV with AV interactions

this effort has investigated a merging situation at amasffp. Three classes of vehicles

are simulatedAVs, HDVs, andaggressivehumandriven vehicles AHDVs represent
humandriven vehicles with aggressive mergibehavior characteristics. To perform this
study, AHDV behavior at a merge section of a freeway exit ramp, in a mixed traffic
environment, is simulated using thpensourcetraffic simulation package SUMO

(Eclipse Foundatio020. Two types of potential AHDV merging behavior when
interacting with an AV are modele(l) aggressive merge with maximum advancement
and(2) aggressive merge with zipper. The aggressive merge with maximum advancement
represents the highest level of aggressive behavior. The AHDVs with this behavior target
the farthest reachable AV on the deceleration lane to act as the follestiide in the
receiving lane, i.e., the AHDV will lane changefiant of the AV, essentially without

regard for the available gap. In the second type, the aggressive merge with zipper, the
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AHDVs continue to target downstreakVsin the exit lane, but avoid the scemmawhere

the same AV is targeted by multiple AHDVSs.

The i mpacts of the AHDYVs Gtratligegvironrmestiev,e behavi o
AVs, HDVs, and AHDVs) on different network traffic characteristics, such as travel time

and capacity, is demonstratéehur experiments are conducted to explore the impact of

the AHDV behavior on traffic operations. THiest experiment observes the change in

speed of the target AV, as well as the following traffic, when a platoon of 10 AHDVs

merges in front of the AV nearfreeway exit. The second and third experiments observe

the traveltimes of exiting AHDVs and other vehicles when AHDVs are randomly

distributed throughout the traffic stream with varying percentagéd/sfand AHDVs in

the traffic composition. The fotlrexperiment considers the impact on capacity in a

similar merging situatiowherevehicle behavior is set as cooperative or noncooperative

utilizing SUMO driverbehavior parameters.

Experiments 1 through 3 showed sivdnetging he pr es
behaviors had adverse effectsAvis and HDVs. The adverse effeetgre more

significantin high congestion, when there is a queue on the deceleration lane. The

i mpacts of AHDVsO6 aggressive merges were mut
vehicles in low congestion when there is no queue on the deceleration lane. Based on the
experiment2 andexperiment3 results, AHDVs had a higher travel time gain with higher

level of aggressive behaviors, which in return had greater adverse effects®dfsthe

and the HDVétraveltimes. Throughout the experimestise systerrwide travel time

tended to beelatively stableindicating that the AHDV traveime improvements came

at the expense &Vsband other vehiclédravel time.
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Experiment 4 took a closer look at the impact of cooperagbavior induced

aggressive merges on capacity. It was seen thahwnost vehicles are either fully
cooperative or noncooperatj\@milar capacities are obtained; however, where a higher
percentage of cooperative vehicles are positioned to be targeted by more aggressive
vehicles, this aggressise-nonaggressive intaction can significantly reduce capacity.
In addition, it was seen that, similarégperimentd through 3, AHDV gains were
achieved at the expenseA¥s. Finally, even in those scenarios where the overall
capacity was not significantly changed in resgmto the variation in the percentage of
cooperative vehicles in the traffic, increased fluctuations in the flow may potentially

negatively impact operations as well as the safety conditions in the upstream traffic.

As a final component of this reseayeh Excetbased Simplified Capacity Analysis Tool

is developed. This tool draws predicted saturation flow rates, at vaoonsctecand
autonomouwehiclemarket penetration rates, from the literature and a simulation
experiment. These saturation flow atee utilized to determine potential phase

capacities at a signalized intersection. While the freeway SUMO experiments focused on
the impact of lane changin§CAT explores the impact of CAV cévllowing and

platooning behaviors. It is seen that a wideiation in capacity predictions may be found
throughout the literature, from slight reductions to significant increases in capacity as AV
market penetration increases. Across the literature, when considering-fokogéng

aspect of AV operations, i$ iclear that two key sebf assumptions are driving the
predictionsthe first is the headways selected by A\ésin a mixed traffic environment,

and the second is the characteristic of AV platoons, i.e., platooned vehicle spacing and

maximum platoon legth.



The findings of this study suggest that despite the general beliefs in the benefits of

autonomous vehicles, there may be adverse impacts on theggoessive vehicle travel

times in the presence of human dedtrafier sé aggr
environment, especially in congested conditions. Thus, when the potential benefits of the

AV are most needed, i.e., at or near capacity, it is possible that human interaction may

negate many of the potential savings.

RECOMMENDATIONS

Given thehigh state of uncertainty in AV drivingehavior characteristics and a similar
level of uncertainty in the behavior of hurdrven vehicles when interacting wik's,
it is extremely difficult to incorporatAVsinto current planning and design processes
with any sense of assuredness. In the-texan this uncertainty will likely only increase
with the development of more AV models, countless future predictions, trial AV
deployment successand failures, etc. However, based on this prof@EtOT can likey
achieve an early sense of the ultimate operational impaét¥ ®by tracking three

primary leading indicators:

1. As AV tests continues, or low market penetration occurs, is a rise in aggressive
interactions witnesséd

2. What are the headways being adofigddV manufactures, and what are the
potential regulatory requiremefits

3. Are platoons implemented &Vs, and if so, what are the spacing requirements
and maximum length restrictions, which are again potentially manufacture

and/orregulatory agencyriven?
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As the direction of each of these indicators becomes c|&€3DED T will be able to select
the more likely futures from the many potential predicted futures, allowing AV

penetration tdeginto influence design and policy decisions in a more informeuhera

For example, if it is seen that humdnven vehicle begin to express aggressive
interaction withAVs, then GDOT may need to revisit signal control at ramp junctions,
where eliminating queueing on the freewas isriority to minimize targeting

oppatunities. Additionally, design changes such as increasing use of delineator posts
immediately upstream of the gore area may be required. Similarly, as platooning
parameters clarify, signal control may be revisited, optimizing detection and control
strateges to incorporate processing of maximum platoon lengths, that is, optimal control

will minimize splitting platoons.

Lastly, this study did not address potential safety impacts that could arise from aggressive
humandriven vehiclg AV interaction. Futurefforts need to investigate potential safety
impacts and begin to develop recommendations for design, operations, or policy

mitigations.



PIB AT BERKELEY LAKE (33.9853407 84.171123)

APPENDIX A: OBSERVED HEADWAYS

Through Movement Headways

A ""- “» >~ _.; :
Figure 50. Map. Through movementsi PIB at Berkeley Lake.
Source: Google Maps

Table 15. Through movementheadwaydistribution i PIB at Berkeley Lake.

Movement | Lane Gaussian Dist 1 Gaussian Dist 2
mul | SD1 | Weighting1 | mu2 | SD2 | Weighting 2
NB Lanel 1.976| 0.576 0.811 3.469| 1.525 0.189
Lane 2 1.839| 0.522 0.719 3.117| 1.186 0.281
SB Lanel 2.088| 0.675 0.832 4.781| 1.858 0.168
Lane2 2.107| 0.710 0.814 5.369| 2.152 0.186
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Figure 51. Plot. PIB at Berkeley Lakethrough movementheadwaydata
visualization (top left T NB Lane 1, top right 1 NB Lane 2,
bottom left T SB Lane 1, bottom right i SB Lane?2).
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Figure 52. Plot. PIB at Berkeley Lakethrough movementheadwaydistribution
(top lefti NB Lane 1,topright i NB Lane 2, bottom lefti SBLane 1,
bottom right T SB Lane 2).
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Left-turn Movement Headways

Source: Google Maps

Table 16. Left-turn movementheadwaydistribution i PIB at Berkeley Lake.

Movement | Lane Gaussian Dist 1 Gaussian Dist 2
mul | SD1 | Weightingl |mu2 | SD2 | Weighting 2
EBL Lanel | 2.326| 0.628 0.786 4.764| 1.893 0.214
WBL Lanel | 2.248| 0.490 0.757 4.746| 1.920 0.243
SBL Lane 1 | 1.889| 0.296 0.613 3.175| 0.673 0.387
Lane 2 | 1.907| 0.394 0.607 2.838| 0.554 0.393
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Figure 54. Plot. PIB at Berkeley Lakeleft-turn movementheadwayvisualization
(top lefti Eastbound Lane top right i Westbound Lane
bottom left i SBLane 1, bottom right i SB Lane?2).
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Figure 55. Plot. PIB at Berkeley Lake left-turn movementheadwaydistribution
(top left i Eastbound Lane top right i Westbound Lane
bottom left T SBLane 1, bottom right i SB Lane?2).
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PIB AT MEDLOCK BRIDGE ROAD (33.9610477] 84.208518)

Through Movement Headways

A
(& W\

Figure 56. Map. Through movementi PIB at Medlock Bridge Road

Source: Google Mafable 17. Through movementheadwaydistribution 7 PIB at

Medlock Bridge Road

Movement | Lane Gaussian Dist 1 Gaussian Dist 2
mul | SD1 | Weighting1 | mu2 | SD2 | Weighting 2
WB Lanel 2.281| 0.758 0.712 5.087| 1.873 0.288
Lane2 2.207| 0.729 0.799 5.157| 1.764 0.201
EB Lanel 2.205| 0.672 0.754 4.746| 1.811 0.246
Lane2 1.939| 0.613 0.774 4.011| 1.652 0.226
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Figure 57. Plot. PIB at Medlock Bridge Roadthrough movementheadwaydata
visualization (top left i WB Lane 1,topright i WB Lane 2,
bottom lefti EB Lane 1, bottom right i EB Lane 2).



Figure 58. Plot. PIB at Medlock Bridge Roadthrough movementheadway
distribution (toplefti WB Lane 1,topright T WB Lane 2,
Bottom Left i EB Lane 1, bottom right i EB Lane 2).
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Left-turn Movement Headways

Figure 59. Map. Left-turn movementi PIB at Medlock Bridge Road
Source: Google Maps

Table 18. Left-turn movementheadwaydistribution 7 PIB at Medlock Bridge Road

Movement | Lane Gaussian Dist 1 Gaussian Dist 2
mul | SD1 | Weightingl | mu2 | SD2 | Weighting 2

EBL Lanel | 2.120| 0.426 0.647 3.251| 0.755 0.353

WBL Lanel | 2.250 | 0.491 0.759 4,759 | 1.919 0.241
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Figure 60. Plot. PIB at Medlock Bridge Roadleft-turn movement
headwaydata visualization.

Figure 61. Plot. PIB at Medlock Bridge Roadleft-turn movementheadway
distribution (lefti EB lane right i WB lane).

14C



















































