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Executive Summary 
Principled decision making in emergency response management necessitates the use of 
statistical models that predict the spatial-temporal likelihood of incident occurrence. These 
statistical models are then used for proactive stationing which allocates first responders across 
the spatial area to reduce overall response time. Traditional methods that simply aggregate past 
incidents over space and time fail to make useful short-term predictions when the spatial region 
is large and focused on fine-grained spatial entities like interstate highway networks. This is 
partially due to the sparsity of incidents with respect to the area in consideration. Further, 
accidents are affected by several covariates, and collecting, cleaning, and managing multiple 
streams of data from various sources is challenging for large spatial areas.  

By leveraging the knowledge of our team in big data and machine learning, an approach was 
designed that collects, combines, and aggregates various datasets related to roadway geometry, 
weather, historical accidents, and traffic. Then, based on a combination of synthetic resampling, 
clustering, and data mining techniques, the proposed framework can efficiently forecast the 
spatial-temporal dynamics of accident occurrence, even under sparse conditions. The proposed 
method shows promising improvement to the current approaches followed by first responders 
using various metrics including real-time simulation. The model for forecasting the spatial-
temporal dynamics of accident occurrence alongside strategic allocation policies can optimize 
and significantly improve the safety of highways. 

Key Objectives 
The main objective of this study was to improve the current CRASH Predictive Analytics 
application for highway safety patrol vehicles deployment. In other words, the goal was to show 
how to predict the spatial-temporal likelihood of incident occurrence for state of Tennessee, with 
the total area of over 100,000 sq. km.  

Towards this goal, the objectives of this research are to (i) identify the best practices for data 
storage, integration, and maintenance infrastructure for predictive modeling, (ii) develop state-
of-the-art machine learning algorithms for predicting the risk of highway incidents, and (iii) 
collaborate with TDOT and THP to identify best practices for model integration with existing 
programs 

The objectives (and some key results) for the study are highlighted below: 

• Evaluate all accessible information from various resources and available infrastructure 
that can be used for predictive modeling, and design an efficient pipeline to collect, clean, 
and combine, and store them (in total combining data in order of Terabytes (TB) in about 
a couple of hours), which can be used in future to update the final generated dataset. 

• Design a pipeline using the state-of-the-art machine learning algorithms to forecast the 
spatial and temporal dynamics of accident occurrence, even under sparse conditions by 
combining assorted machine learning techniques, resulting in significant reduction of 
response time (up to about 4.5 minutes per incident on average). 

• Develop metrics to evaluate the performance of machine learning models in predicting 
accidents. Importantly, it was found that conventional metrics such as correlation and 
accuracy might be misleading in such a sparse condition. 
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• Evaluate the importance of features and their combinations in predicting accident 
occurrence. For example, it was observed that combination of congestion and heavy rain 
can increase the rate of incidents by a factor of seven while visibility and wind speed do 
not play a key role in prediction of the likelihood of incidents. 

• Provide the future path for the proposed method to enhance performance, improve 
robustness, and increase the reliability of the model. 

Key Findings 
A spatio-temporal machine learning pipeline was designed to address the problem. The pipeline 
used a combination of synthetic resampling, non-spatial clustering, and learning from data can 
efficiently forecast the spatial and temporal dynamics of accident occurrence, even under sparse 
conditions. To evaluate the design machine learning model, conventional performance 
metrics such as accuracy, precision, recall, F1 score, Spearman correlation and Pearson 
correlation were used. A simulation strategy was used to measure the response time of 
responders and the number of unattended accidents and used it to evaluate the accuracy 
of predictive models (accidents can be unattended when all resources, HELP trucks, are busy 
responding to other accidents). For this purpose, an allocation strategy was developed that 
modifies the well-known p-median problem to evaluate the performance of the models. The key 
findings are mentioned below: 

1. Conventional metrics such as correlation and accuracy might be misleading in such 
a sparse condition. F1-score that balances the precision and recall is a much better 
alternative and correlates with the response performance. 

2. It was observed that the proposed forecasting pipeline resulted in significant savings in 
response times. To consider the uncertainty, more than 2000 simulations were run. 

3. The simulation results showed up to 19% average improvement in response time when 
20 HELP trucks were available. When the number of HELP trucks was limited to 10, the 
model reduced the average travel distance by responder per accident by up to 4.5 km 
(approximately more than 4.5 minutes travel time).  

4. Using the prediction pipeline and proactive Emergency Response Management (ERM), 
responders can be placed closer to the accident-prone zones. By doing so, the travel time 
of the responders can be reduced, and consequently the time they are not available due 
to attending accidents can also be reduced.  

5. An important observation was that the allocation approach, which adds a “balancing” 
term to the classical p-median problem, improves resource allocation in general; 
indeed, this improvement was observed across the spectrum of forecasting models used 
and the number of available responders. 

These findings are particularly important for practitioners and first responders — while it is 
important to allocate resources in areas with (relatively) high historical rates of occurrence, 
assigning a small number of responders to cover large areas can be detrimental to the overall 
goal of reducing response times. Intuitively, the proposed approach penalizes additional burden 
on responders. However, it was also observed that a large penalty can result in increased 
response times. In summary, experimental results showed if our approach for forecasting road 
accidents is employed in proactive ERM, it can significantly reduce response times in the field in 
comparison with current approaches followed by first responders.  
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Further, a great amount of time was invested in collecting, cleaning, combining, and aggregating 
different datasets. For example, for weather data, datasets collected from Dark Sky1 and 
Weatherbit2, two well-known Application Programming Interfaces (APIs) for collecting historical 
weather data, were compared and Weatherbit was chosen. Challenges were also faced in 
querying elevation data from Google Cloud Elevation API. In another example, the format of the 
feature regarding the time of accident suddenly changed from 24-hour format to 12-hour format 
without keeping the am/pm label. These problems in datasets may happen, and it requires time, 
knowledge, and detailed investigation. Otherwise, they can compromise the performance of the 
model. During the last year, a lot of resources were allocated to verify the quality of the datasets. 
Since this process has already been investigated and conducted by our team, sharing the final 
combined dataset with other organizations and research teams can pave the way for other 
researchers and decision-makers leading to scientific and technological synergy to tackle this 
problem. Furthermore, collaboration with other organizations and firms can be very beneficial. 
For example, Google or INRIX can provide high resolution traffic data, which might not be 
available through any other sources. 

Feature Importance 
The proposed pipeline uses different features to predict the likelihood of accidents. These include 
congestion, precipitation, and time of the day, among others. Not all the features are equally 
important in their effect on the likelihood of incident occurrence. In other words, some features 
are more highly correlated with accident occurrence than others. The proposed approach, 
inspired by the concept of mutual information, evaluates the importance of each feature. 
Specifically, ratio of the total number of incidents given a specific feature to the frequency of that 
specific feature in our dataset was calculated. While results showed that visibility and wind speed 
are not crucial determinants of accident prediction, the combination of traffic congestion and 
heavy precipitation was shown to be highly correlated with accident occurrence. It was also 
noticed that low temperature had a slightly negative correlation to the rate of accidents. 
However, its combination with precipitation showed high correlation. 

Key Recommendations 
Even though the proposed approach showed promising results, the prediction can be improved 
by collecting more accident data. Having more data on incidents in a broader spatial area and 
longer time range allows for more advanced machine learning approaches to be applied such as 
model stacking techniques. On the other hand, if the available data is from another environment 
(for example historical accident data from another state such as California), transfer learning 
techniques can be used to reduce the detrimental influence of insufficient data. Moreover, 
incorporating spatial correlation by using graph theory will likely open the door for more accurate 
analysis. Additionally, this research was heavily focused on prediction while combining prediction 
with detection, by leveraging the crowd-sourced data platforms such as Waze3, can also improve 

 
1 https://darksky.net/ 
2 https://www.weatherbit.io/ 
3 https://www.waze.com/ 

https://darksky.net/
https://www.weatherbit.io/
https://www.waze.com/
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the results. The aforementioned items will be investigated in the next phase of the 
research.  Lastly, the importance of unprecedented but powerful external factors should not be 
neglected. For example, the inception of COVID-19 pandemic in mid-2020 drastically changed 
traffic patterns. Consequently, the accident rates and patterns have unusually changed over the 
last year and a half. 

The proposed method pushes the envelope for learning incident prediction models over 
large geographical areas. The results show the superiority of the performance of the proposed 
model compared to the current approaches followed by first responders. However, an 
efficient and accurate accident prediction model is one of the modules required for proactive 
ERM. The best prediction model without strategic allocation and optimized dispatching 
policies is fruitless. Therefore, other modules in EMR should be studied and improved in 
parallel so that the goal of TDOT, maximizing the safety of the highways, can be realized.  



    

 
viii 

Table of Contents 
DISCLAIMER .................................................................................................................................................. i 

Technical Report Documentation Page ................................................................................................... ii 

Acknowledgement ..................................................................................................................................... iii 

Published Articles .................................................................................................................................. iii 

Executive Summary ................................................................................................................................... iv 

Key Objectives ........................................................................................................................................ iv 

Key Findings ............................................................................................................................................ v 

Feature Importance............................................................................................................................... vi 

Key Recommendations ......................................................................................................................... vi 

List of Tables ............................................................................................................................................... x 

List of Figures ............................................................................................................................................. xi 

Chapter 1 Introduction......................................................................................................................... 1 

Chapter 2 Literature Review ................................................................................................................ 3 

2.1 Regression Models ........................................................................................................................... 3 

2.2 Random-Parameter Models ........................................................................................................... 4 

2.3 Bayesian Approaches ...................................................................................................................... 6 

2.4 Data Mining Approaches ................................................................................................................. 6 

Chapter 3 Methodology ....................................................................................................................... 8 

3.1 Problem Formulation ...................................................................................................................... 8 

3.2 Challenges ......................................................................................................................................... 8 

3.3 Data .................................................................................................................................................. 10 

3.4 Features ........................................................................................................................................... 12 

3.5 Approach ......................................................................................................................................... 13 

3.6 Allocation ......................................................................................................................................... 16 

Chapter 4 Results and Discussion .................................................................................................... 19 

4.1 Model Hyper-parameters.............................................................................................................. 19 

4.2 Forecasting ...................................................................................................................................... 20 

4.3 Feature Analysis ............................................................................................................................. 21 

4.4 Allocation and Dispatch................................................................................................................. 23 

4.5 Implementation .............................................................................................................................. 32 

4.6 Discussion ....................................................................................................................................... 35 

Chapter 5 Conclusion ......................................................................................................................... 37 



 

 
ix 

References ................................................................................................................................................. 38 

Appendices ................................................................................................................................................ 45 

1) Docker ............................................................................................................................................ 45 

2) Data Cleaning ................................................................................................................................ 46 

3) Feature Analysis ............................................................................................................................ 49 

 

  



    

 
x 

List of Tables 
Table I ......................................................................................................................................................... 11 
Table II ........................................................................................................................................................ 28 
Table III ....................................................................................................................................................... 29 
Table IV ...................................................................................................................................................... 30 
Table V........................................................................................................................................................ 31 
Table VI ...................................................................................................................................................... 34 
  



 

 
xi 

List of Figures 
Figure 3.1 ..................................................................................................................................................... 8 
Figure 3.2 ................................................................................................................................................... 10 
Figure 3.3 ............................................................................................... Error! Bookmark not defined. 
Figure 3.4 ................................................................................................................................................... 13 
Figure 3.5 ................................................................................................................................................... 14 
Figure 3.6 ................................................................................................................................................... 17 
Figure 4.1 ................................................................................................................................................... 19 
Figure 4.2 ................................................................................................................................................... 22 
Figure 4.3 ................................................................................................................................................... 23 
Figure 4.4 ................................................................................................................................................... 24 
Figure 4.5 ................................................................................................................................................... 25 
Figure 4.6 ................................................................................................................................................... 26 
Figure 4.7 ................................................................................................................................................... 27 
Figure 4.8 ................................................................................................................................................... 33 
Figure 4.9 ................................................................................................................................................... 34 
Figure 4.10 ................................................................................................................................................. 35 
Figure A.1 ................................................................................................................................................... 46 
Figure A.2 ................................................................................................................................................... 46 
Figure A.3 ................................................................................................................................................... 47 
Figure A.4 ................................................................................................................................................... 48 
Figure A.5 ................................................................................................................................................... 48 
Figure A.6 ................................................................................................................................................... 49 
Figure A.7 ................................................................................................................................................... 50 
Figure A.8 ................................................................................................................................................... 51 
Figure A.9 ................................................................................................................................................... 52 
Figure A.10 ................................................................................................................................................. 53 
Figure A.11 ................................................................................................................................................. 54 
Figure A.12 ................................................................................................................................................. 55 
Figure A.13 ................................................................................................................................................. 56 
Figure A.14 ................................................................................................................................................. 57 
Figure A.15 ................................................................................................................................................. 58 
Figure A.16 ................................................................................................................................................. 59 
Figure A.17 ................................................................................................................................................. 60 
  





 

 
1 

Chapter 1  Introduction  
A constant threat that plagues humans across the globe are incidents like traffic accidents, fires, 
and crimes. Such incidents result in loss of life, injuries, and damage to properties and are 
collectively labeled as emergencies, which are defined as incidents that threaten public safety, 
health, and welfare. Consider road accidents and calls for emergency medical services (EMS) as 
examples. Road accidents alone account for 1.25 million deaths globally and about 240 million 
EMS calls are made in the U.S. each year [1]. 
Many such incidents make it imperative that 
principled methods be designed to ensure fast 
and effective response to incidents. At the same 
time, it is crucial to design infrastructure that 
mitigates and prevents the occurrence of such 
incidents. Indeed, it is well-documented that 
one of the most important responsibilities of 
federal, state, and local governments is 
mitigating and dealing with such events [2]. As a 
result, governments strive to make systematic 
plans, allocate resources, and take preventive measures to alleviate threats that such incidents 
pose. 

Emergency response management (ERM) is defined as the set of procedures and tools that first 
responders use to deal with incidents such as road accidents. It includes specific mechanisms to 
forecast incidents, detect incidents, allocate resources like ambulances, dispatch resources, and 
finally mitigate the post-effects of incidents [1]. Arguably, the most important component of the 
pipeline is to understand the spatial and temporal dynamics of incident occurrence. Gaining such 
an understanding can aid resource allocation and dispatch, improve the understanding of factors 
that cause accidents, and improve the design of safety codes. While there are several ways to 
analyze spatio-temporal incidents, learning data-driven forecasting models are particularly 
important since the fundamental goal of understanding the dynamics of accident occurrence is 
to aid response and dispatch. As a result, generative models conditional on relevant covariates 
are particularly relevant to the overall ERM pipeline. For example, consider a forecasting model 
for accident occurrence as a function of roadway speed limits. Understanding how the speed 
limit affects accidents helps in accurately capturing first-order effects that impact accidents, and 
forecasting future incidents helps shape better policy decisions pertaining to resource allocation 
(ambulances, for example) and response. 

This report discusses a framework for predicting extremely sparse spatial temporal incidents. 
The project has focused on developing principled approaches to address emergency response 
for Tennessee, a state in the United States with a population of approximately 6.9 million and a 
total area of over 100,000 sq. km. While emergency response was extensively tackled by us in 
past collaborations with several government bodies restricted to cities [3]–[7], planning 
emergency response in extremely large geographical areas (an entire state, for example) is 
significantly more challenging. The problems are exacerbated when we limit the area of interest 
only to interstate highways across the state, which reduces the number of samples of positive 
incidents available across the road network, leading to extreme sparsity. This imbalance is 
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particularly evident while creating forecasting models in high temporal resolution. However, the 
collaboration with first responders revealed that such forecasting models can be extremely 
beneficial for resource allocation and dispatch. 

The contributions made in this research can be summarized as: 1) An efficient pipeline was 
designed to collect, clean, and combine, and store data. This part is the fundamental step in our 
pipeline since quality data with enough number of samples, spread over a long-time range, and 
across a large spatial region is the necessity of our machine learning engine. 2) A pipeline that 
can effectively forecast incidents that are sparsely scattered in space and time was developed, 
which can be used by ERM pipelines to reduce the average response time to accidents. It was 
shown that a combination of synthetic resampling and non-spatial clustering can result in the 
creation of accurate spatial temporal models for short-term forecasting of road accidents. 3) 
Unlike most forecasting models in literature, the forecasting pipeline was evaluated by 
measuring its effect on response times to accidents. To this end, a real-time simulation module 
was developed along with a novel allocation method. Through extensive simulations, it was 
shown how our forecasting pipeline and allocation algorithm can provide significant reduction in 
response times. 
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Chapter 2  Literature Review 
A variety of approaches have been used to understand the spatial and temporal dynamics of 
road accidents. One of the earliest methods, known as `crash frequency analysis', uses the 
frequency of incidents in a specific discretized spatial area as a measure of the inherent risk the 
area possesses [8]. This approach also forms the basis of hotspot analysis [8], which is widely 
used in practice as a tool to visualize historical accidents and make predictions. Statistical models 
have also been explored in this context. The most widely used approach, Poisson regression, 
models the expected value of the count of incidents in each time period as a linear combination 
of the features. While it does not perform well on data with dispersion (where mean is not equal 
to the variance of the data) and sparse data, hierarchical Poisson models [9]–[13] and zero-
inflated models can be used instead [14]–[17]. In recent years, data mining models such as neural 
networks [18]–[23] and support vector machines [24]–[26] have also been explored. The following 
subsections explain some of the methods more in detail. 

2.1 Regression Models 
One of the earliest regression models used to model incident occurrence involved 
multiple linear regression models with Gaussian errors [27]–[29]. However, modeling 
accident count by linear regression can be inaccurate, as the response variable is discrete 
and strictly positive. In addition, it has also been shown that linear regression models fail 
to model the sporadic nature of emergency incidents [30], [31]. Linear regression models 
with multiplicative effects have also been investigated but have shown to be inaccurate 
compared to other models [30]. The development of more advanced models has, 
therefore, made linear models almost obsolete, although occasionally it is still used due 
their simplicity [32]. The reason for its use is unclear. In fact, it is recommended that 
decision-makers carefully evaluate the shortcomings of such models before deploying 
them in the field. The inaccuracies of linear regression methods in the context of accident 
prediction is investigated in [30], [33]. While such an approach has shown performance 
on par with other regression models (Poisson regression, for example), it needs further 
validation before it is widely adopted. 

The inaccuracies of linear regression and the suitability of Poisson models for count data 
led to the widespread use of Poisson regression for modeling incident occurrence [29]. 
Each incident is considered a result of an independent Bernoulli trial. Given that all the 
trials are generated by the same stochastic process, the series of trials can be modeled 
by a binomial distribution. As the number of trials becomes large and the probability of 
success is very small, the probability distribution over the count of incidents takes the 
form of a Poisson distribution [17]. To accommodate the feature vector, Poisson 
regression assumes that the logarithm of the expected value of the distribution is a linear 
combination of features. This methodology has been used extensively for emergency 
incident analysis [30], [31], [34]–[36]. 

An issue with using Poisson regression is that the expected value of the response variable 
(count of incidents) equals its variance. This is typically not the case with crash data, which 
is over-dispersed, meaning that the variance of the data is greater than its mean [17]. 
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There are examples of incident data being under-dispersed as well [37]. Therefore, the 
broader argument against the use of Poisson regression is that it might not be able to 
model real-world crash data, which can be under-dispersed or over-dispersed. An 
approach to accommodate over-dispersion is to use Poisson-hierarchical models [9]. 
Poisson-hierarchical models (as well as Poisson models) fall under the broader category 
of generalized-linear models (GLM), which is a family of distributions used widely in 
statistics and machine learning. From this family, the Poisson-gamma (also called negative 
binomial) and Poisson-lognormal models are particularly relevant. The Poisson-gamma 
model is a Poisson distribution whose mean parameter follows a gamma distribution. It 
has been shown that the Poisson-gamma model fits crash data better than Poisson 
models, and it has been extensively used for crash prediction [10]–[12][13], [38], [39]. 
While the Poisson-gamma model solves the problem of over-dispersion, it performs 
poorly on under-dispersed data and is particularly problematic to use with small sample 
sizes and with data with low sample mean [40], [41]. The Poisson-lognormal model is 
conceptually the same as Poisson-gamma model, but it uses the lognormal distribution 
for the mean parameter rather than the gamma distribution [42]–[45]. The lognormal 
distribution is a heavy tail distribution and provides more flexibility for over-dispersion. 
Recently, the Poisson-inverse-gamma model has been used in crash modeling [46]. 
However, such models do not have closed-form maximum likelihood estimation (MLE) 
solutions unlike the Poisson-gamma models [47]. 

Despite the success of Poisson and Poisson-hierarchical models, a common shortcoming 
is that both models fail to adequately handle the prevalence of zero counts in crash data 
[17]. A remedy to this problem is to use zero-inflated models, and both zero-inflated 
Poisson and zero-inflated Poisson-gamma models have been used to model accident data 
[14]–[16]. Zero-inflated models can be described as having dual states, one of which is the 
normal state, and the other the zero state. The excess zeros that cannot be explained by 
standard count-based models can then be considered to have arisen due to the presence 
of a separate state. Zero-inflated models result in improved statistical fit to accident data. 
However, it was noted [17] most prior works justify the use of zero-inflated models by 
improved likelihood, and therefore automatically assume that crash data is generated by 
a dual-state process (except [30], which uses a zero-inflated model to justify misreporting 
of incidents). Through empirical data and simulations, they show that excess zeros could 
arise due to various other factors like low traffic exposure and the choice of spatial and 
temporal scales by the model designer. As a result, it is not clear if the statistical backing 
to using dual-state models is accurate or not.  

2.2 Random-Parameter Models 
Accounting for unobserved heterogeneity (i.e., factors affecting incident frequency but 
not captured in the data) has dominated recent statistical modeling development, with 
random-parameter (RP) models being among the most widely used approaches [48]. 
Unobserved heterogeneity introduces a variation in the effect of observed variables on 
the outcome. The outcome is typically the likelihood and severity of a crash. For example, 
a highway's design speed limit is a commonly used variable in the prediction of the 
likelihood of crashes. However, this may introduce unobserved heterogeneity if the 



 

 
5 

vehicle's actual speed is not considered which may be different than the design speed 
limit across different drivers. Environmental conditions are also commonly used to 
explain crash occurrence and severity such as time of the day and weather variables. 
However, the same amount of precipitation may lead to different outcomes in the 
likelihood and severity of accidents depending on the geographic area and the different 
ways drivers respond to adverse conditions.  

Additionally, unobserved heterogeneity can result from the spatial or temporal 
aggregation of accidents. Since these events are rare, they are often aggregated over time 
(e.g., number of accidents per 4 hours) or space (e.g., number of accidents per road 
segment) before they are modeled. The lack of consideration for unobserved 
heterogeneity will lead to biased estimates because the effect of an observed variable will 
be the same across all observations for a particular instance [48]. RP models address 
heterogeneity by allowing the estimated parameters to vary across observation according 
to a continuous distribution. A significant portion of RP models in the literature are based 
on the assumption that random parameters follow a distribution with a common mean 
and no mutual dependence [49], [50]. However, lack of consideration of cross-correlation 
and mutual dependence can lead to biases in the estimation of parameter variances [51]. 
A few recent studies have considered cross-correlated RP models and compared their 
performance to fixed-parameters and uncorrelated RP models. The correlated RP 
negative binomial model resulted in an improved log-likelihood compared to the fixed-
parameters model [52] and better statistical performance and predictive power 
compared to the uncorrelated model [53]. In another study, correlated RP Tobit model 
was shown to outperform both fixed-parameters and uncorrelated RP Tobit models [54]. 
However, these results are still not conclusive as other studies have found the relative 
statistical performance between uncorrelated and correlated RP count models to be 
comparable [55]. Therefore, additional research is needed to determine the advantages 
of correlated RP models.  

In addition to cross-correlations and improved statistical performance, another 
advantage of using correlated RP models is the ability to account for the heterogeneous 
effects of covariates across roadway segments as they apply to crash frequency analysis 
on multilane highways [55]. While the focus of this section is on RP models as they are 
the most adopted methods, it is worth noting that other approaches have been 
developed to address unobserved heterogeneity (see the work by [48] for an extensive 
review). For instance, latent-class (finite mixture) models seek to identify groups of 
observations having homogeneous variable effects [56]. These models do not require a 
parametric assumption for the distribution of estimated parameters like RP models; 
however, they still impose a parametric model structure and can be computationally 
intensive. To account for the variation at both the group and individual observation levels, 
RP models within each class have been used with mixture models [57]. Other approaches 
address specific heterogeneity issues such as Markov-switching models which have been 
used for time-dependent unobserved heterogeneity [58]. Such a form of heterogeneity 
can be caused by time-varying factors such as traffic and weather conditions or when the 
accidents are aggregated over a certain period. 



    

 
6 

2.3 Bayesian Approaches 
Bayesian methods [59], [60] are often used for parameter estimation. Such models result 
in a distribution over parameters rather than point estimates, which can result in greater 
robustness to outliers and small sample sizes [61]. The empirical Bayes method (also 
known as maximum marginal likelihood) has been used in traffic engineering [62]–[65]. 
Bayesian modelling techniques have also been used to assess potential risk factors of 
spatial regions [66], [67] and to estimate expected crash frequencies [68]. 

Hierarchical Bayesian estimation of safety performance models have also been explored 
over the last two decades [40], [43], [44], [69]–[71]. Recently, the Poisson-gamma and 
Poisson-lognormal models have also been estimated using Bayesian [10]–[13], [38], [39], 
[42], [45], [46], [72] methods. A caveat regarding Bayesian models is that the crucial choice 
of priors in the predictive models. The underlying information for designing priors might 
be available from previous models, engineering judgement, etc., and prior distributions 
can also be chosen to be non-informative or weakly informative. An important 
investigation in this context, specifically regarding crash prediction, has been done [73], 
who study the performance of various Bayesian multivariate spatial models with different 
prior distributions. It has also been shown that using non-informative priors may result 
in a high bias for the dispersion parameter in models, especially with small sample sizes 
[74]. 

2.4 Data Mining Approaches 
With improved sensor technology and easier storage, data-mining methods have 
successfully been used for crash prediction.  This has also resulted in the creation of richer 
feature sets, which aid the performance of such methods. These days, various ways of 
collecting data are employed to gather data about traffic, traffic incidents, and the 
features related to that. By doing so, big data sets are available, which is the requirement 
of data mining methods. Random forests [75], [76], support vector machines [24]–[26] 
and neural networks [18]–[21] have recently been used to model crashes. Bayesian neural 
networks have also been explored, which address over-fitting of neural-networks in crash 
modeling [77]. Deep learning techniques have also been used in various studies [22], [23]. 
One of the models that may be of interest to practitioners was developed using a spatio-
temporal convolution long short-term memory network (LSTM) to predict short-term 
crash risks, including propagation of traffic congestion [78]. While the network structure 
was a combination of various complex networks, the accuracy of hourly predictions was 
limited, which highlights the inherent difficulty of predicting crash frequency at low 
temporal and spatial resolutions. It also makes a case against the use of complex models 
in this domain because they are harder to generalize. 

Ensemble methods use multiple trained models to improve prediction compared to what 
can be obtained from any of the individual models. While the simplest approach is 
averaging the prediction of assorted models, a better approach is to intelligently 
aggregate the prediction of these models by employing another learning algorithm, which 
is called model stacking. Big data and surge in availability of computational resources 
have paved for more sophisticated approaches such as model stacking to be used in 
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incident prediction. Various stacking models with different numbers of layers and 
assorted types of models [79]–[85] have been used during recent years to predict and 
detect incidents. The main caveats of using ensemble models are overfitting and the size 
of the data required for testing and training. 
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Chapter 3 Methodology  
The problem setting (the Interstate Highway network of the state of Tennessee) used in this 
project is shown in Figure 3.1. The focus on some of the highways and not all, as driven by the 
availability of the historical incident data. In the next phase, the prediction would be extended to 
all highways in the state of Tennessee.  

 
Figure 3.1 Blue (and thin) lines represent TN’s roadway network. Yellow (and thick) lines represent 
interstate highway segments under the jurisdiction of TDOT and are the area of study for this study 

The following subsections describe the approach and the mathematical formulation of the 
problem.  

3.1 Problem Formulation 
Consider a spatial area of interest 𝑆𝑆, in which incidents (like accidents) occur in space and 
time. The decision-maker observes a set of samples (possibly noisy) drawn from an 
incident arrival distribution. These samples are denoted by 
(𝑠𝑠1, 𝑡𝑡1,𝑘𝑘1,𝜔𝜔1), (𝑠𝑠2, 𝑡𝑡2,𝑘𝑘2,𝜔𝜔2), … , (𝑠𝑠𝑛𝑛, 𝑡𝑡𝑛𝑛,𝑘𝑘𝑛𝑛,𝜔𝜔𝑛𝑛) where 𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖 and 𝑘𝑘𝑖𝑖 denote the location, time of 
occurrence, and reported severity of the  𝑖𝑖𝑡𝑡ℎ  incident, respectively, and 𝜔𝜔𝑖𝑖 ∈ ℝ𝑚𝑚 
represents a vector of features associated with the environment defined by the location 
and time of the incident. We refer to this tuple of vectors as 𝐷𝐷 which denotes the input 
data that the decision-maker has access to. The vector 𝜔𝜔 can contain spatial, temporal, or 
spatio-temporal features and it captures covariates that potentially affect incident 
occurrence. For example, 𝜔𝜔 typically includes features such as weather, traffic volume, 
and time of day (we describe all features in detail later in the text). The most general form 
of incident prediction can then be stated as learning the parameters 𝜃𝜃 of a function over 
a random variable 𝑋𝑋 conditioned on 𝜔𝜔. We denote this function by 𝑓𝑓(𝑋𝑋 |𝜔𝜔,  𝜃𝜃). The random 
variable 𝑋𝑋 represents a measure of incident occurrence such as a count or presence of 
incidents during a specific time-period. The goal of the incident prediction problem is to 
find the optimal parameters 𝜃𝜃∗ that best describe 𝐷𝐷. This can be formulated as a MLE 
problem or an equivalent empirical risk minimization (ERM) problem.  

3.2 Challenges 
The problem described in previous section is hard due to the following challenges. 

Irregular incident occurrence: It is well-established in literature that predicting road 
accidents is extremely difficult due to inherent randomness of accidents and spatially 
varying factors [1], [86]. While accidents are affected by various features, it is difficult to 
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take all determinants into account while designing forecasting models. For example, 
consider the condition of a specific road. It is difficult to observe such features in real-
time, thereby resulting in unobserved heterogeneity in the likelihood of incident 
occurrence across a large spatial region. Indeed, sophisticated models have 
underperformed in predicting accidents. For example, an approach particularly important 
to practitioners was developed by Bao et al. [23], who used a spatio-temporal convolution 
long short-term memory network (LSTM) to predict short-term crash risks. While the 
network structure was a combination of various complex sub-networks, the accuracy of 
hourly predictions was limited, highlighting the inherent difficulty of predicting crash 
frequency at low temporal and spatial resolutions.  

Sparsity: It is also crucial to consider the frequency of incident occurrence. While the 
frequency of road accidents is alarming, incidents are extremely sporadic when viewed 
from the perspective of total time and space in consideration. For example, there were a 
total of approximately 78,000 road accidents reported between 2017-2020 on interstate 
highways in Tennessee. Now, consider the goal of learning the dynamics of incident 
occurrence. While historical data can be studied using hotspots to improve policy, short-
term forecasting models are important for deploying ambulances, HELP trucks, and other 
emergency responders. Based on conversations with first responders, it was found that 
short-term deployment often occurs several times in a day, the most common frequency 
being once every four hours. Considering a total of about 5,000 road segments and time 
slots of four hours, the data shows >99% sparsity. This challenge is represented 
schematically in Figure 3.2 by randomly selecting 180 road segments for April 2019 and 
180 four-hour time slots. Each pixel in the matrix denotes the presence (white) or absence 
(black) of an accident in a segment (denoted by rows) in a span of four hours (denoted by 
columns). Most of the matrix consists of black pixels 99.8%, making such problems 
extremely difficult from the perspective of data-driven modeling. In comparison, 
previously studied statistical models can be used to predict incidents in small urban areas 
[3]–[5] (such situations typically exhibit <90% sparsity). 
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Figure 3.2 Schematic overview of the sparsity of accident occurrence across space and time. The 
figure shows randomly selected 180 road segments for four-hour time windows in April 2019 

Data Integration: Road accidents are affected by many determinants which can be spatial, 
temporal, or spatial temporal in nature. For example, the geometry of a specific road 
segment does not change over time and is an example of a spatial feature. Time of day, 
on the other hand, is an example of a temporal feature. Some features can be affected 
by both space and time; for example, traffic congestion in a specific area is determined 
by the spatial location of the area as well as time of day. For predicting accidents in large 
geographic areas, it is challenging to collect, clean, understand, and analyze data from 
different sources and integrate them into models for incident prediction. 

3.3 Data 
The covariates used and their sources are described in Table I. It is crucial to reiterate the 
importance of this stage in real-world machine learning pipelines; in fact, the availability 
of multiple streams of data has been noted as being particularly important for predicting 
accidents [1].  
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Table I  
Data Features, Size and Sources 

Dataset Range Size Rows Feature                              Source       Freq.   Type             Definition 

- - - - Time of day                               derived      -    
 
Temporal         

We divide each day into six 
4-hour time windows. 

- - - - Weekend                     derived      -    
 
Temporal         

A binary feature that 
denotes weekdays. 

Incident 
02/01/2017  
to  
05/01/2020 

21MB 80K 

Past Incidents in 
the last window        derived      -    

 Spatio-
temporal  

Number of incidents on the 
segment in the last time 
window of 4 hours 

Past Incidents in 
a day   derived      -    

 Spatio-
temporal  

Number of incidents on the 
segment in the last day 

Past Incidents in 
a week     derived      -    

 Spatio-
temporal  

Number of incidents on the 
segment in the last week 

Past Incidents in 
a month      derived  -    

 Spatio-
temporal  

Number of incidents on the 
segment in the last month 

Weather 
02/01/2017  
to  
06/01/2020 

300MB 1.4M 

Visibility                            Weatherbit   1 hour     
 Spatio-
temporal  

A measure of the distance 
at which an object or light 
can be clearly discerned. 

Wind Speed                      Weatherbit   1 hour     
 Spatio-
temporal  Speed of wind 

Precipitation                         Weatherbit   1 hour     
 Spatio-
temporal  Amount of precipitation. 

Temperature                           Weatherbit   1 hour     
 Spatio-
temporal  

It is the reported 
temperature. 

Traffic  
04/01/2017  
to  
12/01/2020 

1.2TB 30B 

Congestion                     derived     
 5 
minutes  

 Spatio-
temporal  

Congestion is the ratio of 
the difference between 
free flow speed and the 
current speed to free flow 
speed 

Free Flow Speed               INRIX       
 5 
minutes   spatial          

The speed at which drivers 
feel comfortable if there is 
no traffic and adverse 
weather condition. 

Traffic 
Confidence              INRIX       

 5 
minutes  

 Spatio-
temporal  

A confidence score 
regarding the accuracy of 
the traffic data (we collect 
this directly from INRIX). 

Roadways Static 81MB 80K 

Lanes                                INRIX        static      Spatial          
Number of lanes for a 
roadway segment. 

Miles                                derived      static      Spatial          
Length of a roadway 
segment. 

iSF                    derived      static      Spatial          

Inverse scale factor which 
represents the the 
curvature of a roadway 
segment. 

In the appendices section, some of the main challenges in the data collection are presented 
along with the approaches that were taken to address them.   
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3.4 Features 
This section describes the features we extract from the base data Table I and use as 
covariates in our pipeline.  

Roadway Information: To learn a predictive model for accidents over a graph of roadways, 
it is imperative to first define the edges and the vertices of the graph. Roadway 
information was collected from INRIX [87], a private entity that provides location-based 
data and analytics, such as traffic and parking, to automakers, cities, and road authorities 
worldwide. Information was retrieved for about 80,000 roadway segments in the state of 
Tennessee, out of which about 5,000 are interstate highway segments. Data about static 
features associated with each segment were also retrieved that are immutable (relatively) 
over time. For example, for each road segment, information was collected about the 
number of lanes, length, and coordinates. To evaluate how roadway shape affects 
accidents, a feature called the inverse stretch factor (iSF) was introduced, that represents 
the curvature of road segments. An example for calculating iSF is shown in Figure 3.3. For 
the segment in consideration (between points A and B), iSF can be calculated as the length 
the straight line 𝐴𝐴𝐴𝐴 divided by that of the curve      .     

 

Figure 3.3 A combination of the length of a curve (AB) ̂ and the shortest path between the two 
ends of the curve ¯AB can be used to denote its curvature 

Traffic: The correlation of traffic and road accidents is well-established [1]. We collected 
traffic data for each of the road segments through INRIX at a temporal resolution of 5-
minute intervals for about three years. Specifically, information was retrieved regarding 
the free flow speed of traffic, the estimated current speed of the vehicles, and the 
confidence scores of the estimates. Effective congestion can be calculated from data as 
the ratio of the difference between the free flow speed and the current speed to the free 
flow speed. 

Weather: Weather is inherently spatial temporal, and can play an important role in 
accident rates [1]. We collected hourly weather data (temperature, precipitation, visibility, 
and wind) from 40 different weather stations in and around the state of Tennessee. The 
locations of the stations are shown in Figure 3.4. To use weather data to forecast 



 

 
13 

accidents on a given road segment, the weather station that is the closest to that 
particular segment was used.  

 

Figure 3.4  Location of the weather stations 

Incidents: Every accident reported in Tennessee from January 2017 to May 2020 was 
considered. Incident data for this project is provided by the TDOT and consists of 
approximately 78,000 accidents. The accuracy of the incident data was verified with the 
Enhanced Tennessee Roadway Information Management System (E-TRIMS).  

In summary, the following features were used: time of day, weekend, past incidents in the 
last window, past incidents in a day, past incidents in a week, past incidents in a month, 
visibility, wind speed, precipitation, temperature, congestion, free flow speed, traffic 
confidence, lanes, miles, and inverse stretch factor (iSF). 

3.5 Approach 
The approach to predict roadway accidents in space and time is shown in Figure 3.5. To 
begin with, road segments that exhibit no accidents or extremely small number of 
accidents over the temporal period in consideration (about three years) were filtered out. 
The analysis is done on 77% of the observed accidents with a total sparsity of 98%. Recall 
the fundamental goal of the project is to learn a function 𝑓𝑓 that outputs the likelihood of 
incident occurrence on a road segment conditional on a set of features. A straightforward 
way to do so is to learn a separate model over each segment. However, such an approach 
results in overfitting; each segment contributes a relatively small amount of data which 
ignores structural similarities between patterns of incident occurrence across the entire 
spatial region in consideration. The other approach is to learn one model for the entire 
area. However, a universal model fails to capture any heterogeneity that is not explicitly 
modeled in the feature space. To balance these considerations, segments that observe 
similar patterns for incident occurrence were identified. While it is possible to identify 
distinct spatial regions (hotspots) and learn a separate model for each area, it is possible 
that there exists generalizable information in the entire area that is spatially invariant. To 
do so, common areas were identified irrespective of spatial contiguity by clustering all the 
available segments based on their frequency of incident occurrence. In this study, the 
well-known k-means algorithm [88] was used to group the segments into distinct clusters.  
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Figure 3.5 Overview of the proposed approach. Spatial temporal information extracted from a 
variety of data sources were combined and segments were clustered to focus on heterogeneity 
not explicitly modeled in the feature space. Then, synthetic sampling was used to address 
sparsity and finally, statistical and algorithmic models were learned on on incident occurrence 

Given clusters of roadway segments that share similar patterns of spatial-temporal 
incident occurrence, learning the patterns is still challenging due to the sparsity of the 
data. To address this concern, synthetic under-sampling and over-sampling were 
performed to balance the data. However, naive synthetic sampling performs poorly in this 
problem setting since the relative frequencies of incident occurrence are markedly 
different among the clusters. Therefore, it is impractical to ‘balance’ data in each cluster 
in the same manner. To alleviate this, the proposed approach starts with the cluster with 
the highest frequency of incident occurrence (cluster A, say) and performs synthetic 
sampling such that the number of positive data points (spatial segments in temporal 
windows that have accidents is the same as the number of negative data points (spatial 
segments in temporal windows that do not have accidents). Then, synthetic sampling is 
performed in the other clusters such that the ratio of accidents occurring for any given 
cluster (cluster B, say) to the frequency in A is the same as in the original dataset4. 
Clustering and synthetic sampling provide the foundation for learning spatial temporal 
forecasting models over accident occurrence. The following well-known models were 
used to this end. 

Logistic Regression (LR): There are two classes of approaches that can be used to forecast 
the chances of accidents on road segments. First, one can try to model the count of 
accidents as a binary variable and use well-known count-based regression models like 
Poisson regression, zero-inflated Poisson regression, and negative binomial regression. 
The other approach is to treat the occurrence of accidents as a dichotomous output and 
model the likelihood that any accidents occur. Logistic regression was used for this 
problem setting, which models the log-odds of the probability of incident occurrence as 
a linear combination of the features 𝜔𝜔. 

 
4 we also show results without synthetic sampling and clustering. 
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Zero-Inflated Poisson (ZIP): Count-based models were also used to model accident 
occurrence conditional on spatial temporal features. While Poisson regression has been 
widely used to model accident occurrence, hierarchical Poisson models and zero-inflated 
models have demonstrated significantly improved predictive power [15]. ZIP models can 
be described as having dual states, one of which is the normal state, and the other the 
zero state [89]. 

Random Forests (RF): RF classifiers are a decision tree ensemble method where each tree 
is constructed from independently bootstrapped samples [90]. They reduce model 
variance and are less likely to overfit compared to standard decision trees due to 
bootstrap aggregation and the use of a random selection of features to split nodes when 
constructing each tree (called ‘feature bagging’). In addition to synthetic sampling, random 
forests can address sparsity using the Balanced Random Forest method [91]. This works 
by assigning weights to each class inverse-proportionally to their frequency in the dataset, 
giving a heavier penalty to misclassifying the minority class. 

Neural Networks (NN): Finally, simple artificial neural networks were also used to learn a 
model over incident occurrence. Neural networks consist of a set of layers, each of which 
further consists of neurons or computing units. The output of each layer is fed as input 
to the next layer [92]. Each neuron uses a non-linear function (called the activation 
function) of the sum of its inputs and produces an output. The network can be trained by 
stochastic gradient descent. We use fully connected layers in this study. An important 
note to practitioners is the non-interpretability of neural networks can be a barrier when 
deploying systems in the real-world that affect government policies. 

It is natural to compare forecasting approaches through metrics like likelihood values on 
test data, error rates, precision, and recall. However, conversations with first responders 
revealed that it is particularly beneficial for them to understand if forecasting models can 
rank roadway segments based on risk. This is intuitive since accurately forecasting the 
risk at each segment relative to other segments is important for allocating resources. 
Therefore, besides standard statistical metrics (accuracy, precision, recall, F1-score), the 
correlation of each model’s marginal accident likelihood distribution over space with the 
real accident distribution is also reported. Specifically, both Pearson and Spearman 
correlation values are presented in this report. 
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3.6 Allocation 
The primary purpose of incident prediction models is to make informed resource 
allocation decisions. However, prior literature rarely evaluates ERM pipelines in their 
entirety. As a result, the project aimed to provide a simple and flexible allocation approach 
based on our incident prediction model to evaluate that. This approach is employed to 
distribute the responders. Therefore, the impact that incident models have on response 
time outcomes was evaluated. The evaluation process was guided by the following steps: 

1) Understanding existing policies: Through our collaboration with first responders, it 
was first understood how emergency resources are allocated and deployed in 
practice. This approach is described below and used as our baseline.  

2) Resource Allocation: In practice, discrete location models like the well-known p-
median formulation [93]–[96] are widely used to allocated emergency resources. A 
shortcoming of such approaches is that the service time of resources (for example, 
the time that ambulances are busy responding to accidents) is not taken directly into 
account in the allocation process. For this project, a novel modification to the p-
median problem was introduced that bridges this crucial gap. 

3) Evaluation: Using the proposed allocation model, the performance of existing 
prediction models and our pipeline was evaluated by creating a black-box simulator 
that imitates emergency response. 

Resource allocation is often based on identifying hotspots of incident occurrence. First, a 
map based on historical accidents is created. Then a group of experienced engineers 
determine the location of the responders; typically, responders are placed in areas with 
the highest historical accident rates. The allocation formulation we use is based on the p-
median problem, which is commonly applied to ambulance allocation. The objective of 
the standard p-median problem is to locate p facilities (i.e., responders) such that the 
average demand-weighted distance between edges and their nearest facility is 
minimized. One shortcoming of the p-median formulation is that it does not account for 
responders becoming unavailable when attending to incidents. To address this, the 
standard p-median was modified by adding a balancing term to the objective function. 
Intuitively, this balancing term penalizes responders that cover disproportionately large 
demand compared to other facilities, encouraging multiple responders to congregate 
near high demand areas. This effect is schematically demonstrated in Figure 3.6. In the 
figure, the values in the cells correspond to the chance of accident occurrence for the 
location and the green points show the allocated locations of responders (p=2 in this 
case). By considering 𝛼𝛼 = 0 (alternative a), the problem is equivalent to the simple p-
median formulation, which seeks to minimize the weighted distance between allocations 
and points of demand. However, by increasing 𝛼𝛼 (alternative b), the optimizer seeks to 
avoid assigning high risk cells to a single responder. Formally, the following optimization 
problem is solved: 
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where E is the set of demand nodes, i.e., roadway segments, L is the set of possible 
responder locations, p is the number of responders to be located, 𝑎𝑎𝑖𝑖 is the likelihood of 
accident occurrence on edge 𝑒𝑒𝑖𝑖 ∈ 𝐸𝐸 and 𝑑𝑑𝑖𝑖,𝑗𝑗 is the distance between edge 𝑒𝑒𝑖𝑖 ∈ 𝐸𝐸 and 
location 𝑙𝑙𝑗𝑗 ∈ 𝐿𝐿. 𝑌𝑌𝑖𝑖,𝑗𝑗 and 𝑋𝑋𝑗𝑗 are two sets of decision variables; 𝑋𝑋𝑗𝑗 = 1 if a responder is located 
at 𝑙𝑙𝑗𝑗 ∈ 𝐿𝐿. and 0 otherwise, and 𝑌𝑌𝑖𝑖,𝑗𝑗 = 1 if edge 𝑒𝑒𝑖𝑖 ∈ 𝐸𝐸 is covered by a responder located at 
𝑙𝑙𝑗𝑗 ∈ 𝐿𝐿 (i.e., the responder at 𝑙𝑙𝑗𝑗 is the nearest placed responder to 𝑒𝑒𝑖𝑖) and 0 otherwise. The 
balancing term we add is denoted by 𝑏𝑏𝑗𝑗=                  , and represents the proportion of total 
demand covered by a responder located at j. The influence of the balancing term is 
controlled by the hyper-parameter 𝛼𝛼; intuitively, as 𝛼𝛼 increases, responders are more 
`tightly packed' around high demand areas, and if 𝛼𝛼 = 0 our formulation reduces to the 
standard p-median formulation.  

 

Figure 3.6 Illustrating the impact of 𝜶𝜶 a) standard p-median (𝜶𝜶 =0). b) modified p-median with 𝜶𝜶 
>0. Notice as 𝜶𝜶 increases responders (green dots) are tightly packed around high demand areas 

The p-median problem is known to be NP-hard on general networks [97]. Therefore, 
heuristic methods are employed to find approximate solutions in practice. For this 
project, the Greedy-Add algorithm [98] was used to optimize the locations of responders. 
The algorithm is shown in Algorithm 1. First, the iteration counter k is initialized to 0 and 
the set of allocated responder locations 𝑋𝑋𝑘𝑘 to the empty set (step 1). Then, as long as there 
are responders awaiting allocation, the following loop is iterated through: (1) update 
counter k current iteration (step 3) (2) for each potential location not already in the 
allocation, compute the modified p-median score of the allocation which includes the 
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potential location (steps 5 - 8), and (3) find the location that minimizes the modified p-
median score (step 10) and add it to the set of allocated responder locations (step 11). 
While myopic, this algorithm is scalable to large allocation problems. 

 

Rather than restricting responders to the roadway segments E, they are allowed to be 
located anywhere across the state in the proposed setting. To accomplish this, the set of 
possible responder locations L was considered as a grid of spatial cells over Tennessee. 
Each grid cell is created of the size of 0.1 degrees latitude by 0.1 degrees longitude, which 
is approximately 9km x 11km in Tennessee. This results in 1445 possible locations across 
the state. The center of each cell is used when calculating the distance between it and 
each edge in E.   

Given an allocation of responders, response to real incidents was simulated to evaluate 
the efficacy of our model. Response to emergency incidents is typically greedy; the closest 
available responder to the scene of the incident is dispatched to attend to it. This is a 
direct consequence of the critical nature of the incidents that emergency responders 
address. A simulator that imitates greedy dispatch was used to evaluate the performance 
of different predictive models. 
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Chapter 4 Results and Discussion  
ERM necessitates the use of models capable of predicting the spatial-temporal likelihood of 
incident occurrence. These models are used for proactive stationing to reduce overall response 
time. Traditional methods simply aggregate past incidents over space and time; such approaches 
fail to make useful short-term predictions when the spatial region is large and focused on fine-
grained spatial entities like interstate highway networks. This is partially due to the sparsity of 
incidents with respect to space and time. Furthermore, accidents are affected by several 
covariates. Collecting, cleaning, and managing multiple streams of data from various sources is 
challenging for large spatial areas. In this section, results using our method for forecasting the 
spatio-temporal dynamics of accident occurrence are discussed based on various performance 
metrics as well as simulation. Recommendations and techniques, which aim to investigate and 
apply during the next phase of the project are also discussed. Also, the benefits to TDOT on the 
potential implementation are also mentioned.  

To evaluate our models, we use actual historical incident data, roadway geometry, traffic data, 
and weather data. Each model was trained based on a rolling temporal window as shown in 
Figure 4.1. 

 
Figure 4.1 Each row describes a test case. The months in yellow (also the text is bold) are the forecasting 
target. The months in red (also the text is italic) are used to train the models for prediction for the specific 
row 

4.1 Model Hyper-parameters 
Hyper-parameters for each model were tuned by cross-validation. For models based on 
random forests and neural networks, the architecture was kept fixed based on the largest 
training sample; classification thresholds were tuned for every training window based on 
a validation set. The model parameters are described below: 

RF: Each random forest consisted of 250 decision trees. Gini impurity was used to 
measure the quality of a node split, and considered        random features for each split, 
where 𝑤𝑤 is the total number of features. The following hyper-parameters were tuned for 
each model: the maximum depth of each tree, the minimum number of observations in 
a node required to split it, and the minimum number of samples required to be at a leaf 
node to split it's parent. 

NN: A sequential architecture was used with fully connected layers. We used a total of 
three hidden layers. The size of the first layer equals twice the number of input features 
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𝑤𝑤 (the number of neurons in the input layer). The second and third layers consisted of 
neurons equal to the size of the input layer. The output layer consisted of a single neuron. 
We used the ‘ReLU’ activation function [99] for all hidden layers and the sigmoid activation 
function for the output layer. The cross-entropy loss between true labels and predicted 
labels was minimized by using the Adam algorithm [100] for training the network. 

Clustering: The k-means algorithm [88] was used to group the segments into clusters (k=2 
was set for this analysis). A higher value for k rendered an extremely small number of 
segments in some of the clusters, thereby hampering overall performance. Naturally, it is  
recommended that practitioners tune all hyper-parameters based on the specific dataset 
in consideration. 

4.2 Forecasting 
The performance of the forecasting pipeline is presented below. The following 
abbreviations are used for brevity: LR (logistic regression), NN (neural networks), RF 
(random forests), ZIP (zero-inflated Poisson), RUS (random under sampling), ROS (random 
over sampling), NoC1 (No clustering) and KM2 (k-means clustering). The proposed 
baseline was based on the actual forecasting model that aids first responders in 
Tennessee. This baseline is referred as the naive model. The naive model essentially 
created an empirical distribution based on historical incident data. Then, given a segment, 
a specific point in time, and the set of covariates induced by them, a realization of incident 
occurrence was sampled from the empirical distribution conditional on the covariates. 
Results are presented for each of the approaches in Table II. To understand the role and 
efficacy of each component of the pipeline, results are presented with and without 
synthetic resampling and clustering. 

The major observations are as follows: neural networks and random forests outperform 
the naive model, logistic regression, and the zero-inflated Poisson regression model. Also, 
based on Table II, it can be seen that while the naive model was fairly accurate, its 
accuracy was based on under-predicting accidents, as shown by its poor F1-score. Also, 
clustering (even in isolation) generally improved the F1-score and accuracy of the 
forecasting models (for each method, compare the two rows that denote no resampling). 
It can also be observed a similar trend with synthetic sampling, which even in isolation 
usually resulted in an improvement in accuracy as well as F1-score (for each method, see 
the set of rows that denote no clustering and compare the rows that show resampling). 
The efficacy of the combination of clustering and oversampling was somewhat unclear 
though. Typically, the combination slightly under-performs in comparison to using one of 
the two approaches. Three major takeaways can be drawn from this observation: first, 
synthetic sampling and clustering enabled forecasting in sparse datasets significantly 
more than approaches that do not use them. However, it is recommend that practitioners 
carefully evaluate each component of the proposed incident prediction pipeline on 
unseen data (test set) before deployment. Second, count-based models (zero-inflated 
Poisson regression) did not perform as well as binary classification models on sparse 
data. Third, it is important to note that while the resulting F1-scores might seem low in 
comparison to approaches on other data-driven problems, the improvement is significant 
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in the context of extremely sparse and inherently random incidents like road accidents. 
The validity of this claim is shown later by simulating allocation and dispatch to accidents. 

4.3 Feature Analysis 
The proposed pipeline uses different features, such as congestion, precipitation, time of 
the day, etc. to predict the likelihood of accidents. However, not all the features are 
equally important. While some of the features may contribute more to the final predicted 
likelihood value, some of them may have less contribution or no contribution at all. While 
a comprehensive feature analysis requires a long-range of historical data, some of our 
fundamental analysis on features analysis is summarized below. 

The goal is to investigate which features play a more important role in increasing the 
accident rate. To do so, the number of the incidents given that feature is counted and 
normalized to the frequency of that feature. The covariate “temperature” is used to 
explain the process. Then, this approach is used on all features and the most important 
features alongside their combinations with other features are reported. 

Figure 4.2a shows the histogram of temperature values. The data is discretized into 4 bins 
(freezing, cold, mild, and hot) are shown using thin (and red) lines, Table II. Figure 4.2b 
shows the frequency of events for each category. Then, the number of accidents occurred 
during each one of the 4 temperature conditions is counted. In other words, the number 
of accidents given temperature condition is calculated, as shown in Figure 4.2c. It can be 
seen that most of the accidents occurred when the temperature was mild. However, this 
can be misleading since the frequency of mild temperature is also higher according to 
Figure 4.2b. Therefore, the parameter is normalized by dividing the frequency of each bin 
in Figure 4.2c by the frequency of the same bin in Figure 4.2d resulting in Figure 4.2d. It 
turns out accident rate on highways does not noticeably change based on temperature. 
However, the combination of temperature with other features might be important, which 
will be discussed later. In contrast, congestion has a sizeable impact on incidents. The 
other features are summarized in the Appendices section. 

Table II: Categories of Features 

# feature ranges Tags 
1 temperature [min, 0, 10, 25, max] ['Freezing', 'Cold', 'Mild', 'Hot'] 
2 visibility [min, 0.8, 3, max] ['Low', 'Fair', 'Clear'] 
3 precipitation [min, 0.01, 1, max] ['No_Rain', 'Mild', 'Heavy'] 
4 Wind speed [min, 3, 7, max] ['No_Wind', 'Mild', 'Windy'] 
5 congestion [min, 0.1, 0.5, max] ['Light', 'Medium', 'Congested'] 
The other features are categorized using values and ranges. For example, below you 
can see how speed it categorized.  
6 speed [0, 20, 40, 60, 

speed_max] 
['[0-20)','[20-40)', '[40-60)','[60-max]' 
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a 

 

b 

c 

d 

Figure 4.2 Feature analysis; estimation of importance of temperature in accident occurrence 

Among the features, visibility, month, year, and wind speed are detected as not influential, 
while historical features are among the most important ones. Four important features 
were chosen, namely, temperature, precipitation, congestion, and weekend, to study the 
influence of their combination. A similar analysis is conducted but this time on a 
combination of features, summarized in Figure 4.3. It is observed that heavy precipitation 
combined with heavy (not light) congestion is an important determinant of accident 
occurrence, with a probability of occurrence almost seven times higher than the mean 
rate. While just freezing temperature slightly reduces the rate, its combination with 
precipitation increases the rate by almost a factor of two. 
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Figure 4.3 Feature analysis; estimation of importance of combination features in accident occurrence; the 
order of labels are temperature, precipitation, congestion, and weekend 

4.4 Allocation and Dispatch 
The final goal for this project is to enable our community partners save crucial response 
time to accidents. The entire combination of forecasting and dispatch was evaluated on 
2190 temporal windows of 4 hours each. The hyper-parameter 𝛼𝛼 and the number of 
available responders p were also varied. Two metrics were used to evaluate performance; 
the average distance traveled by the responders and the number of incidents that cannot 
be attended due to unavailability of responders. We presented the results in Figure 4.4 to 
Figure 4.6 as well as Table III to Table V. 

An important observation is that our allocation approach, which adds a balancing term to 
the classical p-median problem, improved resource allocation in general; indeed, this was 
observed in general across the spectrum of forecasting model used and the number of 
available responders. The maximum improvement which was observed was a reduction 
of 3 km traveled by responders per incident (on average). This observation is particularly 
important for practitioners and first responders; while it is important to allocate 
resources in areas with (relatively) high historical rates of occurrence, assigning a small 
number of responders to cover large areas can be detrimental to the overall goal of 
reducing response times. Intuitively, the proposed approach penalizes additional burden 
on responders. However, it should also be noted that a large penalty (value of 𝛼𝛼) can result 
in increased response times. This is expected; as 𝛼𝛼 grows, it discourages the geographic 
spread of responders. Figure 4.7 shows the influence of 𝛼𝛼 on the performance of different 
models with a varying number of responders. The empirical results showed that 0.5 < 𝛼𝛼 <
1 resulted in the optimal allocation of responders. 
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Figure 4.4 Total travel distance of responders per accident for 10; each model is evaluated for four different alpha values – from left to right 0, 
0.5, 1, 2 (and also color coded) 
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Figure 4.5 Total travel distance of responders per accident for 15; each model is evaluated for four different alpha values – from left to right 0, 
0.5, 1, 2 (and also color coded) 
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Figure 4.6 Total travel distance of responders per accident for 20; each model is evaluated for four different alpha values – from left to right 0, 
0.5, 1, 2 (and also color coded) 
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Figure 4.7  Effect the of the hyper parameterαin allocation model on the performance of different 
models (the grey lines denote each learned model) 

It was also observed that the forecasting pipeline resulted in a noticeable improvement 
to response times (up to 19% for 20 available HELP trucks and up to 8% on average for 
multiple different numbers of available help trucks as it can be see in Figure 4.4 to Figure 
4.6 and Table III) and reduced the total number of unattended accidents to (up to 75% 
and 50% for mean number and maximum number of unattended accidents during a 4-
hour time window, respectively. Please see Table IV and Table V).  In general, NN models 
provide the best results (and RF taking a close second).  It is important to understand the 
importance of this 
reduction. Prior work 
reported that a saving of 
only ten minutes of 
response time can reduce 
deaths due to road 
accidents by 33% [101]. The 
major takeaways can be 
summarized based on the allocation and dispatch experiments. First, forecasting models 
that provide the highest accuracy might not be the best candidates for allocation. This 
observation shows the importance of using a metric that focuses on false negatives and 
false positives (like the F1-score) for sparse emergency incidents. Second, while traditional 
allocation models based on long-term (temporal) hotspots are widely used, accurate 
short-term forecasting models can result in significant reduction in response times to 
accidents. Finally, leveraging the structure of the problem to improve classical resource 
allocation formulations can aid emergency response in the field. 
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Table III 

Summary of performance evaluation metrics for each model in percentage (the performance in each 
column is color coded; green is the best and red is the worst) 

Model Clustering Resampling Name Accuracy Precision Recall F1 Pearson Spearman 
Naive Naïve 95.5 3.8 4.2 4.0 82.1 60.8 

LR 

No cluster 
No resampling LR+NoR+NoC1 94.0 13.8 27.4 18.2 70.4 55.2 
RUS LR+RUS+NoC1 93.0 12.8 32.3 18.3 63.1 54.7 
ROS LR+ROS+NoC1 93.0 12.8 32.3 18.3 63.2 54.7 

clustering 
No sample LR+NoR+KM2 93.0 12.5 30.9 17.7 76.6 58.4 
RUS LR+RUS+KM2 92.3 12.1 34.4 17.8 74.2 58.1 
ROS LR+ROS+KM2 92.4 12.2 34.2 17.9 74.2 58.1 

NN 

No cluster 
No resampling NN+NoR+NoC1 94.9 19.2 32.8 24.0 71.7 58.5 
RUS NN+RUS+NoC1 95.0 19.2 32.6 24.1 73.2 59.3 
ROS NN+ROS+NoC1 94.9 19.1 32.8 23.9 69.3 54.7 

clustering 
No sample NN+NoR+KM2 95.0 19.0 31.6 23.7 75.6 58.9 
RUS NN+RUS+KM2 94.7 18.4 32.7 23.3 73.1 54.6 
ROS NN+ROS+KM2 94.7 18.3 33.1 23.3 74.5 55.4 

Tree 

No cluster 

No resampling RF+NoR+NoC1 95.0 19.0 31.8 23.6 78.7 63.4 
RUS RF+RUS+NoC1 95.2 19.3 30.5 23.5 67.4 56.9 
ROS RF+ROS+NoC1 95.3 18.6 27.6 22.1 79.2 64.6 
Class weights RF+CW+NoC1 95.4 20.6 30.4 24.4 77.1 62.5 

clustering 

No resampling RF+NoR+KM2 95.1 18.9 30.5 23.2 79.8 62.3 
RUS RF+RUS+KM2 95.0 19.4 32.5 24.2 73.8 57.6 
ROS RF+ROS+KM2 95.1 18.3 28.7 22.2 80.1 63.6 
Class weights RF+CW+NoC1 95.4 20.6 30.4 24.4 77.1 62.5 

ZIP 

No cluster 
No resampling ZIP+NoR+NoC1 94.4 14.6 26.8 18.9 74.0 58.0 
RUS ZIP+RUS+NoC1 94.2 13.9 26.1 18.1 61.1 50.6 
ROS ZIP+ROS+NoC1 94.2 13.9 26.7 18.2 61.2 50.6 

clustering 
No resampling ZIP+NoR+KM2 93.1 13.1 31.9 18.5 77.6 61.8 
RUS ZIP+RUS+KM2 93.0 12.7 30.8 17.8 74.2 57.1 
ROS ZIP+ROS+KM2 93.0 12.8 30.9 18.0 74.3 57.0 
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Table IV 

Total travel distance of responders per accident in each4-h window 

    p=10 p=15 p=20 
Model clustering Resampling Name α=0 α=0.5 α=1 α=0 α=0.5 α=1 α=0 α=0.5 α=1 α=0 α=0.5 α=1 
Naive     Naïve 42.81 42.14 45.82 47.54 25.61 25.49 27.80 27.71 19.31 19.62 21.41 23.84 

LR 

No cluster 
No resampling LR+NoR+NoC1 43.06 42.67 42.08 46.83 25.11 24.57 25.83 27.57 18.59 17.30 17.52 21.21 
RUS LR+RUS+NoC1 45.73 44.78 42.81 45.66 25.62 25.12 25.99 27.52 19.27 18.07 17.39 20.75 
ROS LR+ROS+NoC1 45.69 44.72 42.67 45.65 25.64 25.10 25.93 27.55 19.28 18.03 17.35 20.74 

clustering 
No sample LR+NoR+KM2 42.76 42.56 43.35 47.27 24.31 24.65 26.02 28.38 18.54 18.73 19.01 21.90 
RUS LR+RUS+KM2 44.62 42.96 43.06 46.76 24.75 24.62 25.76 27.97 18.68 18.72 17.72 20.84 
ROS LR+ROS+KM2 44.72 42.89 43.04 46.70 24.75 24.56 25.88 27.90 18.70 18.72 17.74 20.75 

NN 

No cluster 
No resampling NN+NoR+NoC1 40.31 40.42 41.36 46.11 22.72 23.36 24.91 27.68 16.41 16.75 18.05 21.07 
RUS NN+RUS+NoC1 40.05 40.45 41.30 46.58 22.47 23.42 24.86 28.43 16.18 16.86 18.18 21.53 
ROS NN+ROS+NoC1 40.73 40.74 41.63 46.23 22.77 23.49 25.05 28.26 16.24 16.94 18.19 21.73 

clustering 
No sample NN+NoR+KM2 40.39 40.92 42.75 47.49 22.68 23.95 25.67 29.16 16.71 17.29 18.80 22.33 
RUS NN+RUS+KM2 40.65 40.65 42.24 46.70 22.71 23.99 25.32 28.44 16.69 17.21 18.63 21.82 
ROS NN+ROS+KM2 40.81 40.78 41.98 46.94 22.80 23.74 25.52 28.66 16.71 17.21 18.72 21.71 

Tree 

No cluster 

No resampling RF+NoR+NoC1 43.14 40.58 41.80 46.22 23.42 23.52 24.95 27.61 17.28 16.81 17.78 21.02 
RUS RF+RUS+NoC1 41.77 40.29 42.43 47.10 23.26 23.63 25.54 28.83 16.71 17.38 18.70 21.46 
ROS RF+ROS+NoC1 44.36 42.20 41.95 46.31 24.62 24.60 25.44 27.74 18.57 17.31 17.42 21.00 
Class weights RF+CW+NoC1 42.34 41.13 42.35 47.09 23.33 23.94 25.49 28.82 16.72 17.35 18.44 21.76 

clustering 

No resampling RF+NoR+KM2 43.60 41.37 41.86 46.23 23.71 23.77 25.05 27.57 17.56 16.99 17.84 20.90 
RUS RF+RUS+KM2 42.00 41.18 42.77 48.10 23.29 24.12 25.79 29.03 16.79 17.56 18.85 21.89 
ROS RF+ROS+KM2 43.20 41.13 42.08 46.25 23.86 23.89 25.24 27.53 17.55 16.98 17.95 21.03 
Class weights RF+CW+NoC1 42.54 40.95 42.27 47.59 23.65 24.29 25.56 28.79 17.04 17.49 18.81 21.55 

ZIP 

No cluster 
No resampling ZIP+NoR+NoC1 42.37 42.06 41.53 46.10 24.29 24.17 25.12 27.76 18.00 17.07 17.54 21.21 
RUS ZIP+RUS+NoC1 47.17 46.73 43.20 46.01 26.45 25.74 26.46 27.57 19.59 19.13 17.78 20.52 
ROS ZIP+ROS+NoC1 47.21 46.74 43.14 46.10 26.43 25.74 26.54 27.61 19.55 19.12 17.79 20.59 

clustering 
No resampling ZIP+NoR+KM2 42.22 42.14 42.56 46.52 23.88 24.35 25.89 28.14 17.92 18.21 18.68 21.93 
RUS ZIP+RUS+KM2 45.95 43.50 43.97 46.66 25.37 25.20 26.41 28.31 19.22 19.44 17.76 21.20 
ROS ZIP+ROS+KM2 46.02 43.47 44.00 46.81 25.39 25.22 26.38 28.34 19.20 19.51 17.71 21.19 
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Table V 

Average number accidents in each 4-hwindow that responders are not able to immediately respond because all responders are busy (the 
performance in each column is color coded; green is the best and red is the worst) 

p=10 p=15 p=20 
Model clustering Resampling Name α=0 α=0.5 α=1 α=2 α=0 α=0.5 α=1 α=2 α=0 α=0.5 α=1 α=2 
Naive Naïve 0.59 0.55 0.51 0.53 0.06 0.05 0.05 0.05 0.01 0.01 0.01 0.01 

LR 

No cluster 
No resampling LR+NoR+NoC1 0.57 0.49 0.49 0.49 0.06 0.05 0.04 0.04 0.00 0.00 0.00 0.00 
RUS LR+RUS+NoC1 0.61 0.54 0.52 0.51 0.06 0.05 0.05 0.04 0.01 0.00 0.00 0.00 
ROS LR+ROS+NoC1 0.62 0.54 0.52 0.51 0.06 0.05 0.05 0.04 0.01 0.00 0.00 0.00 

clustering 
No sample LR+NoR+KM2 0.56 0.49 0.48 0.51 0.06 0.05 0.05 0.05 0.00 0.00 0.00 0.00 
RUS LR+RUS+KM2 0.60 0.52 0.49 0.52 0.06 0.05 0.05 0.05 0.00 0.00 0.00 0.00 
ROS LR+ROS+KM2 0.60 0.51 0.50 0.52 0.06 0.05 0.05 0.05 0.00 0.00 0.00 0.00 

NN 

No cluster 
No resampling NN+NoR+NoC1 0.51 0.47 0.48 0.50 0.04 0.04 0.04 0.05 0.00 0.00 0.00 0.00 
RUS NN+RUS+NoC1 0.49 0.46 0.46 0.50 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 
ROS NN+ROS+NoC1 0.51 0.47 0.48 0.49 0.05 0.04 0.05 0.04 0.00 0.00 0.00 0.00 

clustering 
No sample NN+NoR+KM2 0.50 0.47 0.48 0.51 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 
RUS NN+RUS+KM2 0.51 0.47 0.47 0.50 0.05 0.05 0.04 0.05 0.00 0.00 0.00 0.00 
ROS NN+ROS+KM2 0.51 0.47 0.47 0.50 0.05 0.04 0.05 0.04 0.00 0.00 0.00 0.00 

Tree 

No cluster 

No resampling RF+NoR+NoC1 0.57 0.48 0.49 0.50 0.05 0.04 0.04 0.04 0.00 0.00 0.00 0.00 
RUS RF+RUS+NoC1 0.53 0.47 0.47 0.50 0.05 0.05 0.04 0.04 0.00 0.00 0.00 0.00 
ROS RF+ROS+NoC1 0.61 0.52 0.50 0.50 0.06 0.05 0.05 0.04 0.01 0.00 0.00 0.01 
Class weights RF+CW+NoC1 0.54 0.48 0.46 0.48 0.05 0.04 0.04 0.04 0.00 0.00 0.00 0.00 

clustering 

No resampling RF+NoR+KM2 0.58 0.50 0.48 0.51 0.05 0.04 0.05 0.04 0.01 0.00 0.00 0.00 
RUS RF+RUS+KM2 0.53 0.47 0.47 0.50 0.05 0.05 0.04 0.04 0.00 0.00 0.00 0.00 
ROS RF+ROS+KM2 0.58 0.50 0.48 0.50 0.05 0.05 0.05 0.04 0.00 0.00 0.00 0.00 
Class weights RF+CW+NoC1 0.55 0.48 0.47 0.49 0.05 0.05 0.04 0.04 0.00 0.00 0.00 0.00 

ZIP 

No cluster 
No resampling ZIP+NoR+NoC1 0.54 0.49 0.46 0.48 0.06 0.04 0.04 0.04 0.00 0.00 0.00 0.00 
RUS ZIP+RUS+NoC1 0.64 0.56 0.54 0.52 0.06 0.06 0.05 0.05 0.01 0.00 0.00 0.00 
ROS ZIP+ROS+NoC1 0.64 0.56 0.54 0.52 0.06 0.06 0.05 0.05 0.01 0.00 0.00 0.00 

clustering 
No resampling ZIP+NoR+KM2 0.54 0.49 0.47 0.49 0.06 0.04 0.05 0.05 0.00 0.00 0.00 0.00 
RUS ZIP+RUS+KM2 0.62 0.53 0.51 0.51 0.05 0.05 0.05 0.05 0.01 0.00 0.00 0.00 
ROS ZIP+ROS+KM2 0.63 0.53 0.52 0.51 0.05 0.05 0.05 0.05 0.01 0.00 0.00 0.00 
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Table VI 

Maximum number accidents in each 4-hwindow that responders are not able to immediately respond because all responders are busy (the 
performance in each column is color coded; green is the best and red is the worst) 

p=10 p=15 p=20 
Model clustering Resampling Name α=0 α=0.5 α=1 α=2 α=0 α=0.5 α=1 α=2 α=0 α=0.5 α=1 α=2 
Naive Naïve 31.00 34.00 33.00 34.00 22.00 22.00 22.00 17.00 9.00 10.00 10.00 6.00 

LR 

No cluster 
No resampling LR+NoR+NoC1 32.00 31.00 30.00 31.00 21.00 21.00 15.00 16.00 6.00 5.00 4.00 3.00 
RUS LR+RUS+NoC1 31.00 31.00 33.00 32.00 19.00 18.00 21.00 14.00 8.00 6.00 6.00 5.00 
ROS LR+ROS+NoC1 31.00 31.00 33.00 32.00 19.00 18.00 21.00 14.00 8.00 6.00 6.00 5.00 

clustering 
No sample LR+NoR+KM2 33.00 31.00 34.00 31.00 22.00 21.00 19.00 20.00 7.00 8.00 6.00 4.00 
RUS LR+RUS+KM2 31.00 32.00 32.00 33.00 23.00 21.00 19.00 16.00 7.00 5.00 8.00 5.00 
ROS LR+ROS+KM2 31.00 31.00 32.00 32.00 23.00 23.00 19.00 15.00 7.00 6.00 8.00 6.00 

NN 

No cluster 
No resampling NN+NoR+NoC1 31.00 32.00 35.00 34.00 19.00 16.00 18.00 18.00 6.00 4.00 7.00 5.00 
RUS NN+RUS+NoC1 31.00 31.00 34.00 34.00 19.00 20.00 17.00 16.00 5.00 6.00 6.00 4.00 
ROS NN+ROS+NoC1 31.00 34.00 34.00 34.00 21.00 19.00 19.00 17.00 6.00 6.00 6.00 4.00 

clustering 
No sample NN+NoR+KM2 30.00 35.00 34.00 34.00 20.00 19.00 19.00 15.00 7.00 6.00 6.00 4.00 
RUS NN+RUS+KM2 30.00 32.00 35.00 34.00 20.00 19.00 18.00 20.00 8.00 6.00 6.00 7.00 
ROS NN+ROS+KM2 32.00 32.00 32.00 34.00 19.00 17.00 18.00 15.00 7.00 6.00 7.00 5.00 

Tree 

No cluster 

No resampling RF+NoR+NoC1 33.00 31.00 32.00 34.00 20.00 20.00 18.00 16.00 7.00 5.00 5.00 7.00 
RUS RF+RUS+NoC1 31.00 32.00 34.00 35.00 21.00 21.00 19.00 17.00 6.00 6.00 5.00 6.00 
ROS RF+ROS+NoC1 33.00 31.00 32.00 32.00 22.00 19.00 23.00 19.00 8.00 6.00 8.00 9.00 
Class weights RF+CW+NoC1 31.00 31.00 31.00 33.00 22.00 18.00 17.00 15.00 8.00 9.00 6.00 5.00 

clustering 

No resampling RF+NoR+KM2 33.00 30.00 31.00 34.00 22.00 20.00 19.00 14.00 9.00 4.00 5.00 5.00 
RUS RF+RUS+KM2 32.00 31.00 34.00 35.00 21.00 21.00 13.00 18.00 5.00 6.00 5.00 7.00 
ROS RF+ROS+KM2 31.00 31.00 31.00 32.00 19.00 20.00 18.00 15.00 6.00 5.00 7.00 6.00 
Class weights RF+CW+NoC1 32.00 31.00 33.00 35.00 22.00 21.00 21.00 17.00 5.00 6.00 8.00 8.00 

ZIP 

No cluster 
No resampling ZIP+NoR+NoC1 32.00 33.00 31.00 33.00 21.00 19.00 20.00 16.00 6.00 5.00 7.00 3.00 
RUS ZIP+RUS+NoC1 31.00 32.00 33.00 32.00 19.00 21.00 21.00 18.00 8.00 7.00 6.00 7.00 
ROS ZIP+ROS+NoC1 31.00 32.00 33.00 34.00 19.00 21.00 21.00 20.00 8.00 7.00 6.00 7.00 

clustering 
No resampling ZIP+NoR+KM2 33.00 32.00 33.00 34.00 21.00 20.00 18.00 17.00 7.00 5.00 6.00 3.00 
RUS ZIP+RUS+KM2 31.00 32.00 34.00 34.00 23.00 21.00 19.00 17.00 8.00 7.00 6.00 7.00 
ROS ZIP+ROS+KM2 31.00 32.00 32.00 34.00 23.00 18.00 20.00 17.00 8.00 7.00 6.00 7.00 
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4.5 Implementation 
The implementation is open-source and can be used by other organizations that seek to 
optimize emergency response. The modularized designed pipeline is shown in Figure 4.8. 
The whole pipeline is dockerized5 and will be provided to TDOT for operation. It has four 
main modules as follows: 

Data Collection and Merging Datasets: This module collects data from various resources 
including Inrix for traffic, Inrix and Google Cloud Elevation API and Inrix for roadway 
segments, TDOT for historical accident data, and Weatherbit for weather information. 
Then, it combines and aggregates them for the intended time and spatial resolution. Most 
of this pipeline uses cloud resources.  

Data Preparation: This module prepares the datasets required for our machine learning 
engine. Based on the type of clustering, number of clusters, resampling scenario, and 
resampling ratio, this module creates 3 datasets (train, validation, test). 

Training Models: This module is the heart of the proposed prediction engine. It uses 
various machine learning model to predict the spatial temporal likelihood of incidents. It 
uses performance metrics (accuracy, precision, recall, F1score, Pearson and Spearman 
correlation, correctness, etc.) to evaluate the trained models.  

Prediction Module: After training various models, the best one is selected to spatially and 
temporarily predict the likelihood of incidents. An initial best trained model has been 
provided in the toolchain, but the model can be updated using the training workflow also 
included in the toolchain. To help with prediction, a submodule is included to collect the 
required information for the future. For example, Weatherbit API is used, which facilitates 
the collection weather data up to 5 days in the future. 

Simulation Module: Based on the predicted likelihood of incidents, Simulation module uses 
the modified P-median approach to distribute limited resources (number of ambulances 
defined by user) strategically on the map. Then it uses the incident time and locations to 
run a real-time scenario to evaluate the performance of the prediction by calculating the 
response time. 

Each of the modules can be deployed using Docker, the provided docker image, 
defined config file, location of input files, and the location of output files. The docker 
commands are summerized in Table VI. For futher details, please refer to Docker 
section in the Appendices.  

5 https://www.docker.com/ 

https://www.docker.com/
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Figure 4.8 Overview of the designed modular pipeline 
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Table VII 
 Summary of the docker commands 

 

Furthermore, a user interface (dashboard) has been designed to improve the user 
experience of the pipeline. Two separate dashboards were also designed; one for 
visualizing the features and historical accidents and another one for visualizing the 
prediction of likelihood of incident occurrence, location of responders relative to 
incidents, and the performance of the prediction based on assorted metrics. Figure 4.9 
and Figure 4.10 are the drafts of the view of the dashboard of historical mode and 
prediction and evaluation mode, respectively. The dashboards are available using 
https://mystic-impulse-228617.ue.r.appspot.com/. 

 
Figure 4.9 Dashboard in historical mode 

Serial Modeule Function Defined 
flags 

Mounting 
folders 

Final Command 

1 Data 
Preparation 

run_dataprep 
.py 

-c /app/etc/config.conf  
-i /app/data  
-o /app/output1 

-v "%
cd%

/etc":/app/etc  
-v "%

cd%
/data":/app/data  

-v "%
cd%

/output1":/app/output1 

docker run -it -v "%cd%/data":/app/data -v 
"%cd%/etc":/app/etc -v "%cd%/output1":/app/output1 
prediction_engine_1 run_dataprep.py -i /app/data -c 
/app/etc/config.conf -o /app/output1 

2    Training Model run_training 
.py 

docker run -it -v "%cd%/data":/app/data -v 
"%cd%/etc":/app/etc -v "%cd%/output1":/app/output1 
prediction_engine_1 run_prediction.py -i /app/data -c 
/app/etc/config.conf -o /app/output1 

3 Prediction run_prediciton 
.py 

docker run -it -v "%cd%/data":/app/data -v 
"%cd%/etc":/app/etc -v "%cd%/output1":/app/output1 
prediction_engine_1 run_prediction.py -i /app/data -c 
/app/etc/config.conf -o /app/output1 

4 Simulation run_simulation 
.py 

docker run -it -v "%cd%/data":/app/data -v 
"%cd%/etc":/app/etc -v "%cd%/output1":/app/output1 
prediction_engine_1 run_simulation.py -i /app/data -c 
/app/etc/config.conf -o /app/output1 

https://mystic-impulse-228617.ue.r.appspot.com/
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Figure 4.10 Dashboard in prediction and evaluation mode 

4.6 Discussion 
Emergency response to incidents like road accidents is a major concern for first 
responders. Standard approaches to predict road accidents rarely scale to large 
geographic areas due to extremely high sparsity in data and difficulties in gathering data. 
In collaboration with TDOT, a framework is presented for forecasting extremely sparse 
spatial and temporal incidents like road accidents. We show how our approach for 
forecasting, based on a combination of non-spatial clustering, synthetic resampling, and 
learning from multiple data sources, outperforms forecasting methods used in the field. 
A novel modification is also presented to a classical formulation for resource allocation. 
Through extensive simulations, it is shown how our pipeline results in significant 
reduction in response times to emergency incidents and unattended number of incidents 
due to unavailablity of the resources.   

The modularized designed of the pipeline enables the replacement of each module or in 
the future. Even though the proposed approach showed promising results, the 
geographic spread of the model can be improved by collecting more accident data. With 
the availability of more incidents in a broader spatial area and longer time range, more 
advanced machine learning approaches such as model stacking technique can also be 
employed. However, if the available data is from another environment (for example 
historical accident data from another state such as California), transfer learning 
techniques can be used to reduce the detrimental influence of insufficient data. It is worth 
investigating the role more advanced clustering methods. Moreover, incorporating spatial 
correlation by using graph theory and modeling segments as nodes of a graph and 
connecting the neighboring segments (nodes). While this research was heavily focused 
on prediction, combining prediction with detection, in particular by leveraging the crowd-
sourced data platforms such as Waze, can improve the results. The aforementioned items 
will be investigated in the next phase of the research.  Currently, our model is trained for 
drastic changes in the traffic flow by external factors such as COVID-19 pandemic. By the 
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availability of the new incident dataset containing the incidents after April/2020, the 
influence COVID-19 pandemic in accident patterns can also be investigated. 
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Chapter 5 Conclusion 
Emergency response to incidents like road accidents is a major concern for first responders. 
Standard approaches to predict road accidents rarely scale to large geographic areas due to 
extremely high sparsity in data and difficulties in gathering data. In collaboration with TDOT, a 
framework for forecasting extremely sparse spatio-temporal incidents like road accidents is 
presented. We show how the proposed approach for forecasting, based on a combination of 
non-spatial clustering, synthetic resampling, and learning from multiple data sources, 
outperforms forecasting methods used in the field. A novel modification to a classical formulation 
for resource allocation is also presented. Through extensive simulations, we show how our 
pipeline results in a significant improvement. This open-source implementation can be used by 
other organizations looking for emergency response optimization.  

First all the accessible information was evaluated from various resources that can be useful in 
incident prediction and designed an efficient pipeline to collect, clean, and combine them, which 
can be used in future for any other similar research. The pipeline facilitates the process of 
keeping the final data updated. A pipeline was also designed to forecast the spatial and temporal 
dynamics of accident occurrence, even under sparse conditions by combining assorted machine 
learning techniques. Using a battery of metrics, it was shown that our model outperforms the 
current conventional approach in the field. Due to modularity of the code, it is easy to replace 
each module in the code with a more advanced or more efficient methods in the future. The 
proposed incident prediction pipeline can be used for strategic allocation of the resources (HELP 
trucks) leading to faster response time, increasing the safety of the highways, and reducing direct 
and indirect costs for the state.  
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Appendices  
1) Docker 
Docker is a platform for OS-level virtualization to deliver our pipeline. The pipeline and all 
required libraries are provided in an image file. Then docker uses that image to create a container 
(a virtual OS-level environment) and run the intended commands. In this subsection we briefly 
review how to run a docker and what each component in the commands provided before means.  

First, we use the following command in the terminal to create an image called 
prediction_engine_1.  

Docker build -t prediction_engine_1. 

Then there are four functions available inside of the image 

run_dataprep.py: it runs the Data Preparation module. 

run_training.py: it runs the Training Models module. 

run_prediciton.py: it runs the Prediction module. 

run_simulation.py: it runs the Simulation module. 

For each command, three items should be defined, i.e., config file using the flag c or config, the 
location of input files using the flag i or input, and the location of the output files (the location 
you want the module to save the results or outputs,) using the flag o or output. The locations are 
the location of the files inside of the container. For example, they can be defined as follows: 

-c /app/etc/config.conf  

-i /app/data  

-o /app/output1 

Basically, the config file and input files should be fed to the model. Therefore, the image file does 
not include them. In general, they are provided in separate files and mounted (link the folders 
between your local machine and the docker container) by the user. For mounting, two 
parameters should be defined. The location of the file in the location machine and the location 
of the file in container. By doing so, we link these folders and any changes in one of them is 
reflected in the other one as well. The same process should be done for the output folder to 
extract the output files and results created by the container. Consequently, the three sample 
examples for each are as follows: 

-v "%cd%/etc":/app/etc  

-v "%cd%/data":/app/data  

-v "%cd%/output1":/app/output1 

Figure A.1 summarizes the aforementioned commands. 
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Figure A.1 Summary of the docker codes 

2) Data Cleaning 
This section is dedicated to briefly mention some of the details of the challenges we have faced 
regarding collecting, cleaning, combining and aggregating different datasets required for incident 
prediction.  

The first step is understanding and cleaning the incident dataset available through TDOT. Here, 
two issues regarding incident dataset are reviewed. While, the quality of the data has improved 
during the time, some of the main sources of erroneous sample data are worth to be mentioned. 
Figure A.2 shows the spatial distribution of incidents in the raw dataset according to the latitude 
and longitude of the samples. There are plenty of sample outside of the boundary of Tennessee 
while the samples are supposed to be limited to traffic incidents occurred in the state Tennessee. 
The temporal information of the samples is also erroneous. While the original format of the 
feature regarding the time of accident is 24-hour, it suddenly changes to 12-hour format without 
keeping the am/pm label. This error reduces the rate of accidents for any time frame after 12:59 
pm to zero.  

 
Figure A.2 Spatial distribution of incidents in the raw dataset 
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Then, we should choose a geographical framework for the highway segmentation. This defines 
the location and geometry of each roadway segment in our problem. There are two main 
alternatives: ETRIMS (Enhanced Tennessee Roadway Information Management System) and 
INRIX. Incident dataset includes a feature that defines the relevant highway segment based on 
ETRIMS to each segment. This obviates the need for mapping incidents to segments. While 
ETRIMS can be useful for low spatial resolution incident prediction, it has a noticeable drawback, 
highlighted by Figure A.3. ETRIMS represents two opposite direction of a highway as well as all of 
the ramps and connectors between them by one segment. Obviously, this approach can be 
problem when accidents should be studied in high spatial resolution. Furthermore, this drawback 
limits us in using traffic flow information since ETRIMS combines all segments in one. Therefore, 
we choose INRIX for the highway segmentation framework. INRIX can also provide the traffic 
data.  

One of the features required to be investigated is elevation and the change in the elevation of 
the roadway segments. Google Cloud Elevation API6 and United States Geological Survey (USGS) 
Elevation API7 are the two main available APIs for extracting the altitute/elevation of the a point 
using its latitute and longitute. However, they work as a one to one mapping function, which 
means for each pair and of latitute and longitute they return one value for the elevation. 
However, in the case of a brige, a point on the deck of the bridge and a point on the road passing 
under the bridge have two different elevation while they have the same coodinates, as shown in 
Figure A.4. We address this problem by limiting the maximum allowable slope to 5%. The points 
violating this limit are detected as an anomoloy and replaced by interploated values. 

We choose Weatherbit over Darsky due to lower percentage of missing values. However, the 
collected weather dataset still includes some missing values, in particular in some imporant 
weather features such as temperatures. It can happen due to various reasons. 

Figure A.3 ETRIMS (thick green) and INRIX (thin red) highway segments and location of accidents 

 
  

 

 

 
6 https://developers.google.com/maps/documentation/elevation/start 
7 https://nationalmap.gov/epqs/ 

https://developers.google.com/maps/documentation/elevation/start
https://nationalmap.gov/epqs/
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Figure A.4 Caveat of using Google Maps Elevation API for extracting the elevation a) 3D perspective of an 
unleveled intersection b) 3D overview of the same intersection using the elevation extracted from Google 
Maps Elevation API 

 
Figure A.5 Distribution of station-wise imputation MSEs for temperature plotted on the county-level 
map of Tennessee using the geographic location of each station (using Bayesianridge with 40 features 
and 5% NA values) 
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3) Feature Analysis 
 This section summarizes figures generated by the method discussed in Feature Analysis 
section.  

 
Figure A.6 Feature analysis; estimation of importance of temperature in accident occurrence 
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Figure A.7 Feature analysis; estimation of importance of wind in accident occurrence 
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Figure A.8 Feature analysis; estimation of importance of visibility in accident occurrence 
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Figure A.9 Feature analysis; estimation of importance of precipitation in accident occurrence 
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Figure A.10 Feature analysis; estimation of importance of congestion in accident occurrence 
  



  

 
54 

 
Figure A.11 Feature analysis; estimation of importance of C-value in accident occurrence 
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Figure A.12 Feature analysis; estimation of importance of confidence score in accident occurrence 
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Figure A.13 Feature analysis; estimation of importance of time of the day (window) in accident occurrence 
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Figure A.14 Feature analysis; estimation of importance of weekend in accident occurrence 
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Figure A.15 Feature analysis; estimation of importance of year in accident occurrence 
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Figure A.16 Feature analysis; estimation of importance of month in accident occurrence 
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Figure A.17 Feature analysis; estimation of importance of historical incidents in accident occurrence 
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