

Effectiveness of Geotextiles/ Geogrids in Roadway Construction; Determine a Granular Equivalent (GE) Factor -- Appendices

Vernon R. Schaefer, Principal Investigator Institute of Transportation Iowa State University

NOVEMBER 2021

Research Project Final Report 2021-26

APPENDIX A GEOGRID PROPERTIES

Product Specification - Biaxial Geogrid BX1100

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Integrally Formed Blaxial Geogrid Product Type: Polypropylene Polymer:

Load Transfer Mechanism: Positive Mechanical Interlock

Spectra System (Base Reinforcement, Subgrade Improvement) Primary Applications:

Product Properties

Index Properties	Units	MD Values ¹	XMD Values
Aperture Dimensions ²	mm (in)	25 (1.0)	33 (1.3)
Minimum Rib Thickness ²	mm (in)	0.76 (0.03)	0.76 (0.03)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	4.1 (280)	6.6 (450)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	8.5 (580)	13.4 (920)
Ultimate Tensile Strength ³	kN/m (lb/ft)	12.4 (850)	19.0 (1,300)
Structural Integrity	2,551,000,000,000,000	1100000000000	encontract
Junction Efficiency ⁴	%	93	
Flexural Stiffness ⁵	mg-cm	250,000	
Aperture Stability ⁶	m-N/deg	0.32	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95/93/90	
 Resistance to Long Term Degradation⁶ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 75.0 meters (246 feet) in length. A typical truckload quantity is 185 to 250 rolls.

Notes

- 1. Unless Indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2 Nominal dimensions
- 3. Determined in accordance with ASTM D6637-10 Method A.
- Load transfer capability determined in accordance with ASTM D7737-11.
 Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs out flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
- Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with
- ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.

 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 Immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05

remain restrictions corporated viscontrate that at the time of delivery the people furnished herewise shall conform to the specification stated herein. Any other warranty including merchantibility and fiftness for a perfousir purpose, are hereby excluded. If the people does not meet the specifications on this page and Terman is notified prior to installation, Tenser will replace the people at no cost to the customer.

This product specification supersedes all prior specifications for the product described above and is not applicable to any products shipped prior to February 1, 2013.

Figure A-1 Geogrid BX1100 Product Specification

Tensar International Corporation 2500 Northwinds Pkwy, Suite 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcom.com

Product Specification - Biaxial Geogrid BX1200

Tensar international Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Integrally Formed Blaxial Geogrid

Polymer: Load Transfer Mechanism:

Polypropylene Positive Mechanical Interlock

Primary Applications: Spectra System (Base Reinforcement, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values
Aperture Dimensions ²	mm (in)	25 (1.0)	33 (1.3)
Minimum Rib Thickness ²	mm (in)	1.27 (0.05)	1.27 (0.05)
 Tensile Strength @ 2% Strain³ 	kN/m (lb/ft)	6.0 (410)	9.0 (620)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	11.8 (810)	19.6 (1,340)
Ultimate Tensile Strength ³	kN/m (lb/ft)	19.2 (1,310)	28.8 (1,970)
Structural Integrity	gracy days to	G100 G100 G00	11-20000011000
 Junction Efficiency⁴ 	%	93	
Flexural Stiffness ⁶	mg-cm	750,000	
Aperture Stability ⁶	m-N/deg	0.65	
Durability			
Resistance to Installation Damage	%SC / %SW / %GP	95/93/90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

The blaxial geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) or 4.0 meters (13.1 feet) in width and 50.0 meters (164 feet) in length. A typical truckload quantity is 160 to 210 rolls.

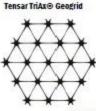
Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- Determined in accordance with ASTM D6637-10 Method A.
 Load transfer capability determined in accordance with ASTM D7737-11.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
 5. Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
 6. Resistance to In-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 Immersion testing.

 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in
- accordance with ASTM D4355-05.

roduct specification supersedes all prior specifications for the product described above and is not sbie to any products shipped prior to February 1, 2013.

Figure A-2 Geogrid BX1200 Product Specification


Product Specification - TriAx® TX130S Geogrid

Tensar international Corporation reserves the right to change its product specifications at any time. It is the responsibility of the person specifying the use of this product and of the purchaser to ensure that product specifications relied upon for design or procurement purposes are current and that the product is suitable for its intended use in each instance.

General

The geogrid is manufactured from a punched polypropylene sheet, which is then oriented in three substantially equilateral directions so that the resulting ribs shall have a high degree of molecular orientation, which continues at least in part through the mass of the integral node.

Index Properties	Longitudinal	Diagonal	General
Rib sitch ⁽²⁾ , mm (in) Rib shape Aperture shape	33 (1.30)	33 (1.30)	Rectangular Triangular
Structural Integrity			
Junction efficiency(3), % Isotropic Stiffness Ratio(5)			93 0.6
 Radial stiffness at low strain[®], kN/m ® 0.5% strain (b/ft ® 0.5% strain) 			200 (13,708)
Durability			
 Resistance to chemical degradation N 			100%
 Resistance to ultra-violet light and weathering⁽⁷⁾ 			70%

Dimensions and Delivery

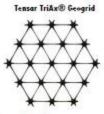
The TX geogrid shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 3.0 meters (9.8 feet) and/or 4.0 meters (13.1 feet) in width and 75 meters (246 feet) in length and 4.87 meters (16 feet) in width by 100 meters (328 feet) in length.

Notes

- Unless Indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759. Brief descriptions of test procedures are
 given in the following notes.
- z. Nominal dimensions.
- e. Load transfer capability determined in accordance with ASTM D6637 and ASTM D7737 and expressed as a percentage of ultimate tensile strength.
- 4. The ratio between the minimum and maximum observed values of radial stiffness at 0.5% strain, measured on rib and midway between rib directions.
- s. Radial stiffness is determined from tensile stiffness measured in any in-plane axis from testing in accordance with ASTM D6637.
- e. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immension testing.
- Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355.

Tensar International Corporation 2500 Northwinds Pkwy. Atlanta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcom.com his specification supervises any and all price specifications for the product designated above and in and applicable to any product abbpool prior to anamy 31, 2014. Format and Prikit are to demands or "Format Index Corporation or its affiliate in the US and many other countries. Table application and the same themset producted by 13, Ahard No. 2004. 12 A deather or partner applications also exhibit of the countries. The determination of the subshilly of the above-countries of information or product for the use contemporated, and the name of our are the usin responsibility of the user. Name or the action of Corporation decisions are set all septemes, implied or stated any secrenties, including intent instead to, any secrenties, the order of the user of

Figure A-3 Geogrid TX130s Product Specification


Product Specification - TriAx® TX7 Geogrid

Tensar/International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the person specifying the use of this product and of the purchaser to ensure that product specifications relied upon for design or procurement purposes are current and that the product is suitable for its intended use in each instance.

General

The geogrid is manufactured from a punched polypropylene sheet, which is then oriented in three substantially
equilateral directions so that the resulting ribs shall have a high degree of molecular orientation, which continues
at least in part through the mass of the integral node.

dex Properties ¹	Longitudinal/ Transverse	Diagonal	General
 Rib pitch⁽²⁾, mm (in) 	40 (1.60)	40 (1.60)	
 Mid-rib depth⁽²⁾, mm (in) 	1.6 (0.06)	2.0 (0.08)	
 Mid-rib width⁽²⁾, mm (in) 	1.3 (0.05)	1.0 (0.04)	
- Rib shape			Rectangular
Aperture shape			Triangular

Dimensions and Delivery

The TX geogrid shall be delivered to the jobsite in roll form with each roll individually identified. Rolls are shipped with nominal measurements: Equal to 4.0 meters (13.1feet) in width by 50 meters (164 feet) in length or 4.87 meters (16 feet) in width by 100 meters (328 feet) in length.

Notes

- Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures
 are given in the following notes.
- 2. Nominal dimensions.

Tensar International Corporation 2500 Northwinds Pkwy. Atlanta, Georgia 30009 Phone: 800-TENSAR-1 www.tensar-International.com This specification supermists any and all prior specifications for the product designated above and is not applicable to say product dispect prior to fabruary 1, 2012. Tensor and 1964 are the interest of Tensor Interest Corporates or the affiliates in the US and many other countries. This is google and the use thereof an protected by U.S. 7 shart No. 7,001, 112. Pulsate to explain a polication as a contribution of the substitution of the above-meditional interestion or product for the sea contemplated, and the seamor of use are the sois expossibility of the seamor for an are the sois expossibility of the seamor for an are the sois expossibility of the seamor for an are the sois expossibility of the seamor for an are the sois expossibility of the seamor for an are the sois expossibility of the seamor for an are the soil of the seamor for an are the soil of the seamor for the seamor for an are the soil of the seamor for the seamor for an are the soil of the seamor for the seamor for the seamor for an are the seamor for the s

Figure A-4 Geogrid TX7 Product Specification

APPENDIX B LABORATORY DCP TEST RESULTS

Date of Test	1/8/2020	Test ID	10" AB_Contr	ol	Operator	DW	ASTM	D6951
Latitude	NA	TCST ID	Longitude	<u>.</u>	NA		Elevation (ft)	
		theficial MAI	Station		NA NA		Lievation (it)	1100
Location	IMAS Test Box, Non Nominal 10 in. of ag	<u> </u>		compacted sub		sts conducted	around the pl	ate after cyclic PL
Comments	completed with 12	nch diamete	er loading plate).		•		
	DPI (mm/blow) Sta	ntistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)
Avera	age: Aggregate Base	[0 to 10.0 in	1.]	30.7	29.8	30.8	30.4	6.4
Avera	age: Subgrade Layer	[10 to 24.0 ir	n.]	91.7	115.1	111.0	104.9	1.6
Ratio of	f Average: Aggregate	Base/Subgi	rade	0.33	0.26	0.28	0.29	4.0
Std.	Dev.: Aggregate Bas	e [0 to 10 in	.]	46.9	21.6	20.5	28.0	2.5
Std. D	Dev.: Subgrade Layer	[10 to 24.0 i	in.]	58.3	28.2	5.7	24.6	0.4
ches) 12 18	#2	/G. #3					Compacted Subgrade, S A-7-6(2), Cl	Soft
Depth (inches)								
36	Dynamic Co	ne Penet	trometer (F	OCP) Test F	Results			
Project Name: Project ID: Location:	ISU_MNDOT_NS58 ISP_00007 Northfield, MN		ing	SIOS BEOTECHNICS				

Figure B-1 DCP test results of section GE0

Date of Test	1/30/2020	Test ID	10" AB_BX Li	ght	Operator	DW	ASTM	D6951	
Latitude	NA		Longitude		NA Elevation (ft) NA				
Location	IMAS Test Box, No	rthfield, MN	Station		NA				
Comments	Nominal 10 in. of a course interface. T								
	DPI (mm/blow) Sta	atistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)	
Avera	ge: Aggregate Base	e [0 to 10.0 in	1.]	31.4	34.7	33.1	33.0	5.8	
Avera	ge: Subgrade Layer	[10 to 24.0 ii	ո.]	93.1	83.7	91.3	89.2	1.9	
Ratio of	Average: Aggregate	Base/Subg	rade	0.34	0.41	0.36	0.37	3.0	
Std.	Dev.: Aggregate Bas	se [0 to 10 in	.]	5.3	14.6	13.1	9.8	1.5	
Std. D	ev.: Subgrade Layer	[10 to 24.0 i	in.]	31.2	8.5	36.0	16.8	0.4	
	Pen	etration l	ndex, PI (n	nm/blow)					
0		100		10		1			
	$\gamma_{dry} = 115.7 \text{ pc}$ w = 1.7%	rf .	#1 				Compacted 10 in. Class	5	
			#3				Aggregate I	sase	
6		AV(#2 I		(Light Duty		BX Light Geogrid	Duty	
12							Compacted Subgrade, S A-7-6(2), Cl	Soft	
Depth (inches) 81									
pth (
		4							
24									
		1							
30									
36									
	Dynamic Co	one Penet	trometer ([DCP) Test F	Results			-1 4 -	
Project Name:	ISU_MNDOT_NS5	55_Geogrid	Stabilization				Ing	gi⊕s	
Project ID: Location:	ISP_00007 Northfield, MN			GEOTECHNICS					

Figure B-2 DCP test results of section GE1

Date of Test	1/23/2020	Test ID	10" AB_BX He	eavy	Operator	DW	ASTM	D6951	
Latitude	NA		Longitude		NA			Elevation (ft) NA	
Location	IMAS Test Box, No	rthfield, MN	Station		NA				
Comments	Nominal 10 in. of a course interface. T								
	DPI (mm/blow) St	atistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)	
Ave	rage: Aggregate Base	e [0 to 10.0 ir	1.]	27.1	24.0	27.4	26.1	7.6	
Aver	age: Subgrade Layer	[10 to 24.0 ii	n.]	104.5	103.1	79.1	94.0	1.8	
Ratio o	of Average: Aggregate	Base/Subg	rade	0.26	0.23	0.35	0.28	4.2	
Std	. Dev.: Aggregate Bas	se [0 to 10 in	.]	14.8	12.8	11.5	12.3	2.5	
Std. I	Dev.: Subgrade Layer	[10 to 24.0	in.]	10.6	31.9	12.9	9.2	0.2	
0	γ _{dry} = 116.1 p	100	Index, PI (n	nm/blow) 10		1	Compacted		
	w = 1.7%						10 in. Class Aggregate I		
6									
			AVG.		BX Heavy I Geogrid	Outy	BX Heavy Geogrid	Duty	
12		#2					Compacted Subgrade, S	Soft	
							A-7-6(2), CI	-	
Depth (inches) 81		#3							
ju 18		H							
epth									
24									
			4						
30									
36									
30	, <u> </u>								
	Dynamic Co		•	DCP) Test F	Results		in	-ida	
Project Name: Project ID:	ISU_MNDOT_NS5 ISP_00007	55_Geogrid	Stabilization				1118	gios	
. 5,000 12.	.51 _00001			GEDTECHNICS					

Figure B-3 DCP test results of section GE2

Latitude NA Logitude NA Elevation (ft) NA Location MAS Test Box, Northfield, MN Station NA Normal 10 in of aggregate base course over compacted subgrade and heavy duty TX geograf placed at the sugnade-base course interface. Three tests conducted around the plate after cyclic PLT completed with 12 inch dismeter loading plate. DPI (mmblow) Statistics #1 #2 #3 AVG. DPI (mmblow) AVG. DPI (mmblow) Statistics #1 #2 #3 AVG. DPI (mmblow) AVG. DPI (mmblow) AVG. DPI (mmblow) Statistics #1 #2 #3 AVG. DPI (mmblow)							L		
Description NAS Test Box, Northfield, MN Station NA	Date of Test	2/7/2020	Test ID	10" AB_TX H	eavy	Operator	DW	ASTM	D6951
Nominal 10 in. of aggregate base course over compacted subgrade and heavy duty TX geogrid placed at the sugrade-base course interface. Three tests conducted around the plate after cyclic PLT completed with 12 inch diameter loading plate. DPI (mm/blow) Statistics	Latitude	NA		Longitude		NA	Elevation (ft)	NA	
Course interface. Three tests conducted around the plate after cyclic PLT completed with 12 inch diameter loading plate. DPI (mm/blow) Statistics	Location	IMAS Test Box, No	rthfield, MN	Station		NA			
Average: Aggregate Base [0 to 10.0 in.] Average: Subgrade Layer [10 to 24.0 in.] Ratio of Average: Aggregate Base [0 to 10 in.] Std. Dev.: Aggregate Base [0 to 10 in.] Std. Dev.: Aggregate Base [0 to 10 in.] 9.4 15.3 14.2 10.6 2.0 Std. Dev.: Subgrade Layer [10 to 24.0 in.] 18.9 10.8 14.6 10.1 0.3 Note: CBR = 202(DP)*1.12 Penetration Index, PI (mm/blow) 100 10 1 1	Comments								
Average: Subgrade Layer [10 to 24.0 in.] Average: Subgrade Layer [10 to 24.0 in.] Ratio of Average: Aggregate Base [0 to 10.0 in.] Ratio of Average: Aggregate Base [0 to 10 in.] Std. Dev.: Aggregate Base [0 to 10 in.] Penetration Index, PI (mm/blow) 100 10 10 12 TX Heavy Duty Geogrid 24 30 Dynamic Cone Penetrometer (DCP) Test Results Dynamic Cone Penetrometer (DCP) Test Results Dynamic Soft Segond Stabilization Project Name: ISU_MNDOT_NS555_Geogrid Stabilization ISP_00007		DPI (mm/blow) St	atistics		#1	#2	#3		AVG. CBR* (%)
Ratio of Average: Aggregate Base (9 to 10 in.) Std. Dev: Aggregate Base (9 to 10 in.) Std. Dev: Subgrade Layer (10 to 24.0 in.) Penetration Index, PI (mm/blow) 100 100 Tay = 118.1 pcf ## 19.9 ## 118.1 pcf ## 19.9 ##	Ave	erage: Aggregate Base	e [0 to 10.0 in	ı.]	24.4	35.3	29.6	,	6.7
Std. Dev.: Aggregate Base [0 to 10 in.] 9.4 15.3 14.2 10.6 2.0	Ave	rage: Subgrade Layer	[10 to 24.0 in	n.]	84.3	90.9	92.3	89.1	1.9
Std. Dev: Subgrade Layer [10 to 24.0 in.] 18.9 10.8 14.6 10.1 0.3	Ratio	of Average: Aggregate	Base/Subg	rade	0.29	0.39	0.32	0.33	3.5
Penetration Index, PI (mm/blow) 100 100 101 101 101 101 101 1	Sto	d. Dev.: Aggregate Bas	se [0 to 10 in	.]	9.4	15.3	14.2	10.6	2.0
Penetration Index, PI (mm/blow) 100 10 10 10 10 10 10 10 10	Std.	Dev.: Subgrade Layer	r [10 to 24.0 i	in.]	18.9	10.8	14.6	10.1	0.3
TX Heavy Duty Geogrid 12 12 13 Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	*Note: CBR = 292/	(DPI)^1.12			-	•	•	•	-
TX Heavy Duty Geogrid 12 12 13 Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007									
Compacted 10 in. Class 5 Aggregate Base 12 12 12 130 24 Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007		Per	etration l	ndex, PI (n	nm/blow)				
Dynamic Cone Penetrometer (DCP) Test Results Dynamic Numbor NSS55_Geogrid Stabilization ISP_00007 ISP_00007			100	-	10		1		
TX Heavy Duty Geogrid Compacted Subgrade, Soft A-7-6(2), CL Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	,	$\gamma_{\rm dry} = 118.1 \rm pc$	rf #2	L	#1			10 in. Class	5 5
TX Heavy Duty Geogrid Compacted Subgrade, Soft A-7-6(2), CL Syponic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007		W = 1.9%						Aggregate I	Base
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	(6			□ #3				
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS556_Geogrid Stabilization Project ID: ISP_00007				A\	/G.		Duty		Duty
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007						Geogriu			
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	12	2	ŢĪ						
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	જે		h						
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	e Che	В							
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	h (in								
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	Dept		 1						
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007		4							
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007									
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007									
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007	3(o							
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007				1 1					
Dynamic Cone Penetrometer (DCP) Test Results Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007									
Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007 ISP_00007	3(6							
Project Name: ISU_MNDOT_NS555_Geogrid Stabilization Project ID: ISP_00007 ISP_00007									
Project ID: ISP_00007 GEOTECHNICS				•	DCP) Test F	Results		in	Tido
	Project Name:			3111	3100				
	-								GEOTECHNICS

Figure B-4 DCP test results of section GE3

Date of Test		2/7/2020	Test ID	10" AB_TX He	eaw.	Operator	DW	ASTM	D6951	
Latitude		NA	Test ID	Longitude	Savy	NA Elevation (ft) NA				
			4L-5-1J NAN	-						
Location		IMAS Test Box, Nor Nominal 10 in. of ag		Station se course over	compacted sub	NA ograde and heav	y duty TX geo	grid placed at	the sugrade/base	
Comments		course interface. Ti	nree tests co	onducted arou	nd the plate afte	r cyclic PLT cor	npleted with 12	2 inch diamete	er loading plate.	
		DPI (mm/blow) Sta	tistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)	
ı	Avera	ge: Aggregate Base	[0 to 10.0 in	ı.]	24.4	35.3	29.6	29.1	6.7	
P	veraç	ge: Subgrade Layer	[10 to 24.0 ir	n.]	84.3	90.9	92.3	89.1	1.9	
Ra	tio of	Average: Aggregate	Base/Subgr	rade	0.29	0.39	0.32	0.33	3.5	
	Std. [Dev.: Aggregate Bas	e [0 to 10 in	.]	9.4	15.3	14.2	10.6	2.0	
S	td. De	ev.: Subgrade Layer	[10 to 24.0 i	in.]	18.9	10.8	14.6	10.1	0.3	
	0		100	ndex, PI (n	nm/blow) 10		1	Compositor		
		γ _{dry} = 118.1 pc w = 1.9%	f #2		#1			Compacted 10 in. Class Aggregate	5 5	
	6			A	⊐ #3 /G.	TX Heavy Geogrid	Duty	TX Heavy Geogrid	Duty	
	12							Compacted Subgrade, S A-7-6(2), C	Soft	
Depth (inches)	18									
Dept	24									
	30									
	36									
		Dynamic Co			DCP) Test R	Results		inc	zi.c	
Project Nam Project ID:	e:	ISU_MNDOT_NS58	55_Geogrid \$	Stabilization				1118	gi⊕s	
Location:		Northfield, MN							GEUTECHNICS	

Figure B-5 DCP test results of section GE4

Date of Test	2/19/2020	Test ID	10" AB_BX Li	ght_5	Operator	DW	ASTM	D6951	
Latitude	NA		Longitude		NA		Elevation (ft)	Elevation (ft) NA	
Location	IMAS Test Box, No	rthfield, MN	Station		NA				
Comments	Nominal 10 in. of ag height of base). Three								
	DPI (mm/blow) Sta	atistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)	
Aver	rage: Aggregate Base	[0 to 10.0 in	ı.]	28.1	26.1	25.6	26.5	7.4	
Avera	age: Subgrade Layer	[10 to 24.0 ir	n.]	76.5	67.2	73.2	72.1	2.4	
Ratio o	of Average: Aggregate	Base/Subgi	rade	0.37	0.39	0.35	0.37	3.1	
Std.	Dev.: Aggregate Bas	se [0 to 10 in	.]	15.6	12.1	13.4	13.3	2.9	
Std. [Dev.: Subgrade Layer	[10 to 24.0 i	n.]	17.2	22.3	11.9	15.1	0.6	
0	γ _{dry} = 117.2 pc w = 1.4%	100 cf 4	#1 #2 AVG.		X Light Duty	1	Compacted 5 in. Class : Aggregate I	5	
6	w = 1.4%		AVG.					Base —	
12 (res)							Compacted Subgrade, \$ A-7-6(2), Cl	Soft	
Depth (inches)									
30									
36									
	Dynamic Co	ne Penet	rometer (D	DCP) Test F	Results			•	
Project Name:	ISU_MNDOT_NS5		ing	ŞI⊕S					
Project ID:	ISP_00007			GEOTECHNICS					

Figure B-6 DCP test results of section GE5

		1		ı			•		ı
Date of Test		2/20/2020	Test ID	10" AB_TX Li	ght_5	Operator	DW	ASTM	D6951
Latitude		NA		Longitude		NA		Elevation (ft)	NA
Location		IMAS Test Box, Nor	thfield, MN	Station		NA			
Comments		Nominal 10 in. of aggr height of base course							
		DPI (mm/blow) Sta	tistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)
A	\vera	ige: Aggregate Base	[0 to 10.0 in	1.]	33.3	30.7	19.2	26.2	7.5
А	vera	ge: Subgrade Layer	[10 to 24.0 ii	ո.]	89.8	80.0	77.3	82.0	2.1
Rat	tio of	Average: Aggregate	Base/Subg	rade	0.37	0.38	0.25	0.32	3.6
:	Std. [Dev.: Aggregate Bas	e [0 to 10 in	.]	9.7	11.4	4.6	7.3	2.1
S	td. D	ev.: Subgrade Layer	[10 to 24.0	in.]	17.4	11.9	14.6	10.4	0.3
*Note: CBR = 2	,\DI	, ···-							
	0		etration I	ndex, PI (n	nm/blow) 10		_1		
	·	γ _{dry} = 118.1 pc w = 1.6%	f #2	41		TX Light Du	ity	Compacted 10 in. Class Aggregate I	5 5
	6					Geogrid			,
				AVG.			TX Light Duty Geogrid		
	12							Compacted Subgrade, S A-7-6(2), C	Soft
Depth (inches)	18								
۵	24								
	30								
	36								
		Dynamic Co	ne Pene	trometer ([DCP) Test F	Results			
Project Name	e:	ISU_MNDOT_NS5	55_Geogrid	Stabilization				Ing	gi⊕s
Project ID: Location:		ISP_00007 Northfield, MN							GEOTECHNICS
Localoli.		raorumeid, IVIIA							

Figure B-7 DCP test results of section GE7

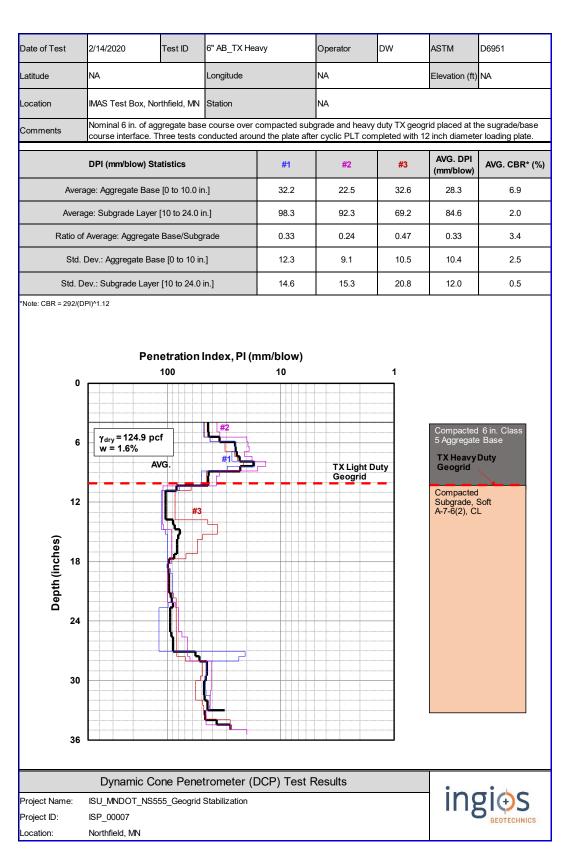


Figure B-8 DCP test results of section GE12

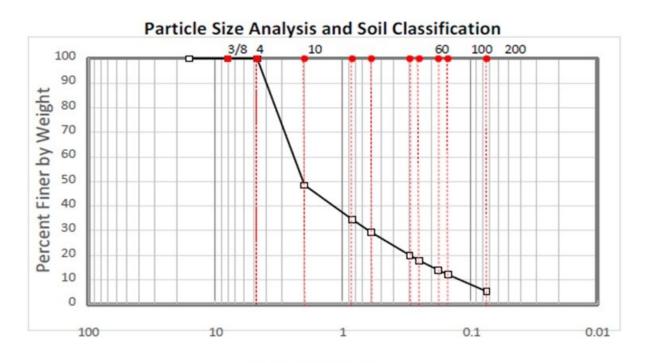

Date of Test		3/3/2020	Test ID	16" AB_TX Li	ght_8	Operator	DW	ASTM	D6951
Latitude		NA		Longitude		NA Elevation (ft) NA			NA
Location		IMAS Test Box, No	thfield, MN	Station		NA			
Comments		Nominal 16 in. of aggi height of base course							
		DPI (mm/blow) Sta	atistics		#1	#2	#3	AVG. DPI (mm/blow)	AVG. CBR* (%)
Av	/era	ge: Aggregate Base	[0 to 16.0 ir	n.]	17.7	23.6	19.6	20.0	10.2
Ave	erag	e: Subgrade Layer	[16 to 24.0 ii	n.]	83.7	86.7	84.9	85.1	2.0
Ratio	of A	Average: Aggregate	Base/Subg	rade	0.21	0.27	0.23	0.24	5.1
St	td. D	ev.: Aggregate Bas	e [0 to 16 in	.]	9.2	19.4	9.6	11.7	4.4
Std	. De	v.: Subgrade Layer	[16 to 24.0	in.]	19.9	20.0	18.2	13.6	0.4
*Note: CBR = 292	2/(DF	ו)^1.12			1				
			etration 100	ndex, PI (r	nm/blow) 10		1		
	0	γ _{dry} = 120.0 pc w = 2.2%	f #2	#1				Compacted 16 in. Class Aggregate I	5 5
	6			AVG.		TX Light Du Geogrid	uty		-
	12							TX Light D Geogrid	uty
Depth (inches)	18							Compacted Subgrade, S A-7-6(2), CL	Soft
_	24								
3	30								
3	86								
		Dynamic Co	ne Pene	trometer ([DCP) Test R	Results			
Project Name:		ISU_MNDOT_NS5	55_Geogrid	Stabilization				Ing	gi⊕s
Project ID: Location:		ISP_00007 Northfield, MN							GEOTECHNICS
Location.		rvoru ilielu, IVIIV							

Figure B-9 DCP test results of section GE15

Table B-1 Summary of laboratory DCP test results

Test No.	Test	Yd (pcf)	ω (%)	Base AVG. CBR* (%)	Subgrade AVG. CBR* (%)	Date
GE0	Control	117.1	1.7	6.4	1.6	1/8/2020
GE1	BX Light_10	115.7	1.7	5.8	1.9	1/30/2020
GE2	BX Heavy_10	116.1	1.7	7.6	1.8	1/23/2020
GE4	TX Heavy_10	118.1	1.9	6.7	1.9	2/7/2020
GE5	BX Light_5_5	117.2	1.4	7.4	2.4	2/19/2020
GE7	TX Light_5_5	118.1	1.6	7.5	2.1	2/20/2020
GE12	TX Heavy_6	124.9	1.6	6.9	2.0	2/14/2020
GE15	TX Light_8_8	120.0	2.2	10.2	2.0	3/3/2020
AVG		118.4	1.7	7.3	2.0	

APPENDIX C SOIL AND AGGREGATE TEST RESULTS

Grain Size in Millimeters

Materials Classification

ID: <u>Class 5 aggregates</u> AASHTO: <u>A-1a</u>

Sample Location: Faribault, MN USCS: SM

Graduation Summary

% Gravel	0
% Sand	95
% Slit /Clay	5
D10(mm)	0.13
D30(mm)	0.6
D50(mm)	2.1
D60(mm)	2.5
Cu	19
Cc	1.1
D max	40.7

Atterberg Limit:

LL: 17.5

PL: N.P.

PI: -

	Gradation and Soil Classification Test Results	
Project Name:	MnDOT NS555 Effectiveness of Geogrids	CTATE.
Project ID:	ISP-00007	5455
Location:	142 Lab, Iowa State Univeristy	

Figure C-1 Base aggregate specifications (Minnesota DOT specification range for Class 5 aggregate)

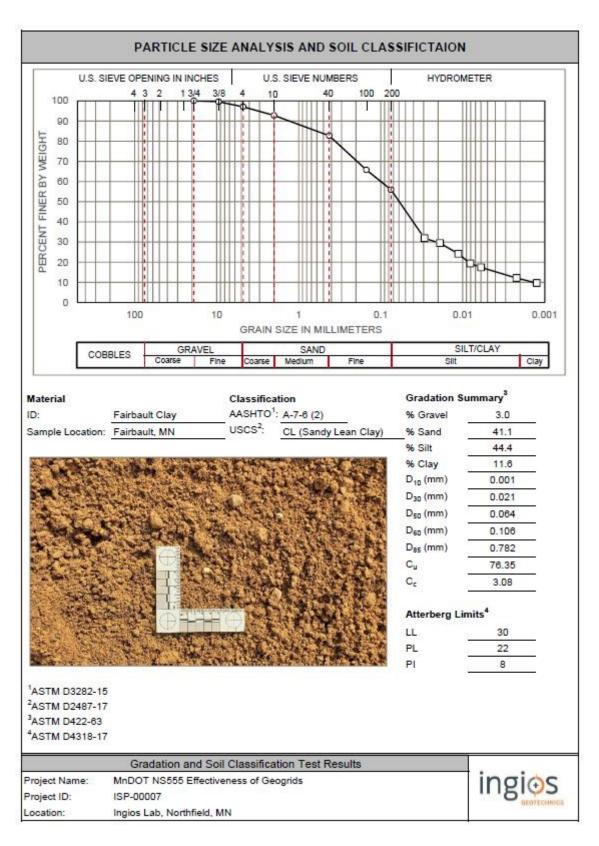


Figure C-2 Subgrade soil particle size analysis and classification

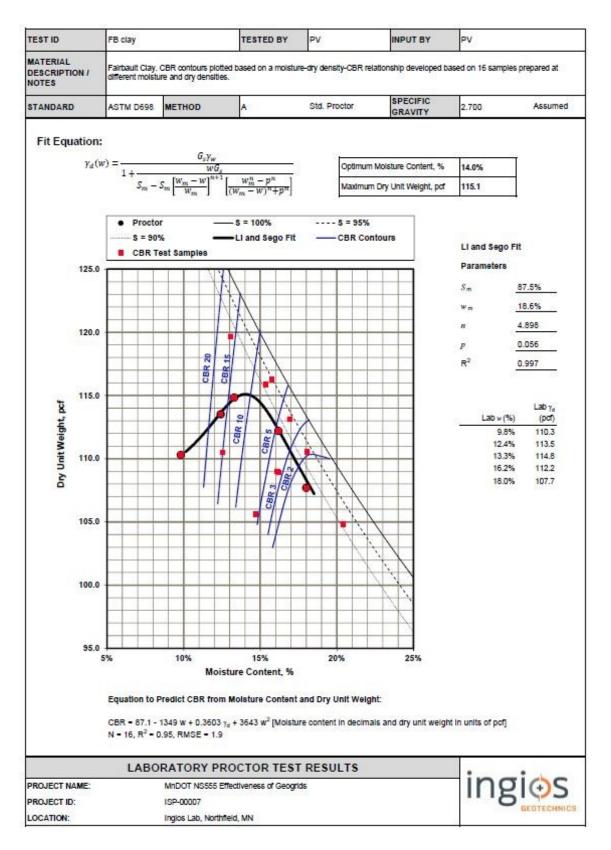


Figure C-3 Subgrade soil laboratory proctor test results

TESTID	FB Clay		TESTED BY	PV		STANDARD	ASTM D1883		
MATERIAL DESCRIPTION / NOTES	CBR (unsoaked) tests performed on samples compacted to different moisture contents and dry densities (see notes below).								
	Sample #	Moisture Content, w (%)	Dry Unit Weight, Y _d (pot)	CBR at 0.1	CBR at 0.2 In.	CBR Mold Dia. (In.)	Relative Compaction, RC (%)	W-W _{opt} (%)	Notes
	1	9.8%	110.3	30	30	4.0	95.7%	-4.2%	Samples
	2	12.4%	113.5	16	15	4.0	98.5%	-1.5%	compacted in standard 4 in.
	3	13.3%	114.8	10	-11	4.0	99.7%	-0.7%	diameter Proctor
	4	16.2%	112.2	4.0	4.2	4.0	97.4%	2.2%	mold using standard Proctor
									compaction effort.
	5	18.0%	107.7	2.1	2.3	4.0	93.5%	4.0%	d in discourse
	6	14.7%	105.6	3.7	3.7	4.0	91.7%	0.7%	4 in, diameter drive cylinder
	7	16.1%	109,0	5.3	5.8	4.0	94.6%	2.1%	samples collected from
	8	16.2%	108.9	6.5	6.6	4.0	94.5%	2.2%	compacted FB clay.
	9	16.9%	113.1	2.9	3.0	6.0	98.2%	2.9%	
	10	16.9%	113.1	3.3	3.1	6.0	98.2%	2.9%	Samples compacted to
	11	15.8%	116.3	6.2	5.9	6.0	100.9%	1.8%	different compaction
									energies (50% to
	12	15.4%	115.9	7.1	6.9	6.0	100.6%	1.4%	100% standard Proctor) at
	13	13.1%	119.7	19.2	19.9	6.0	103.9%	-0.9%	different moisture
	14	12.6%	110.5	15.4	14.6	6.0	95.9%	-1.4%	contents in 6 in. diameter
	15	20.4%	104.8	0.9	0.9	6.0	91.0%	5.4%	standard CBR
	16	18.1%	110,5	2.3	2.2	6.0	95.9%	4.1%	mold.
	Predicting (N Equation	8	SR (0.1 in) = 118.	A 200 CO		To red the Artist Color	er samples only)	unit weight in un	its of pof)
3	SE of fit (RMSE)	2.2							
	Predicting (CBR as a fu		ture and Dry	Unit Weight	(6 In. dlamete	er samples only)		
	Equation			1921 w + 0.55	72 ₇₄ + 5364 w	(Moisture con	tent in decimals and dr	y unit weight in	units of pcf]
8	R ² SE of fit (RMSE)	0.992							
		70	55						
	Predicting (CBR as a fu		ture and Dry	Unit Weight	(4 In. and 6 Ir	n. diameter samples	combined)	
	Equation			1349 w + 0.36	13 y _d + 3643 w ²	(Moisture cont	ent in decimals and dry	unit weight in	units of pcf)
	R	0.953							
39	SE of fit (RMSE)	1.9	1.0						
		SU	MMARY O	F CBR TE	EST RESU	JLTS			ingide
PROJECT NAME: PROJECT ID:		MnDOT NS59	55 Effectiveness	of Geogrids					IIIBIOS
LOCATION:		inglos Lab, N							GEOTECHN

Figure C-4 Subgrade soil summary of CBR test results

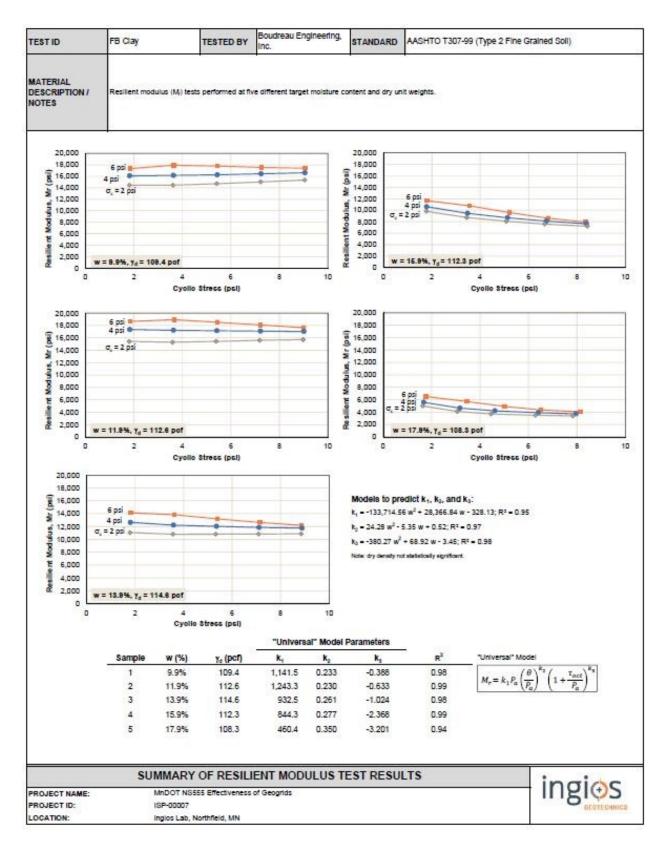


Figure C-5 Subgrade soil summary of resilient modulus test results

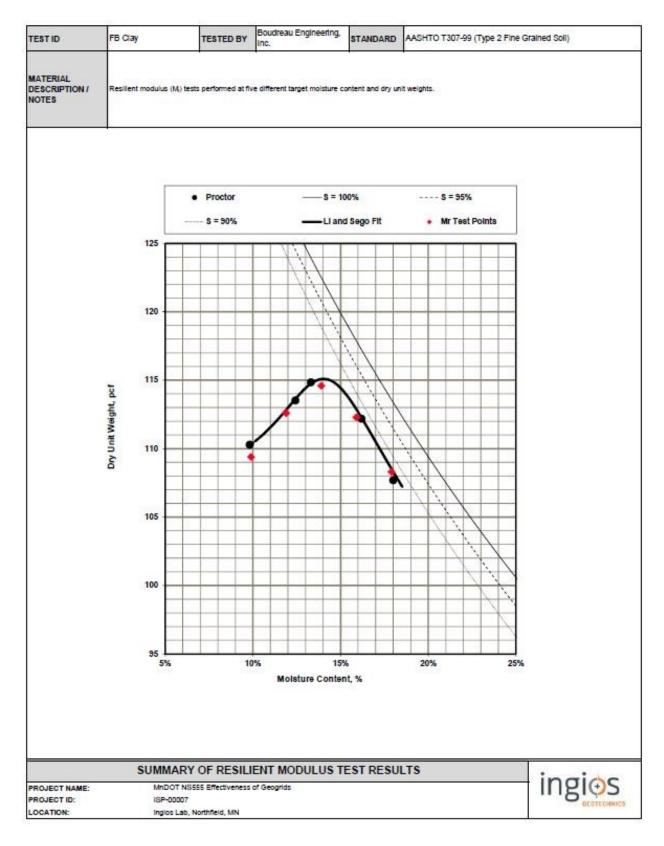


Figure C-6 Subgrade soil summary of resilient modulus test results

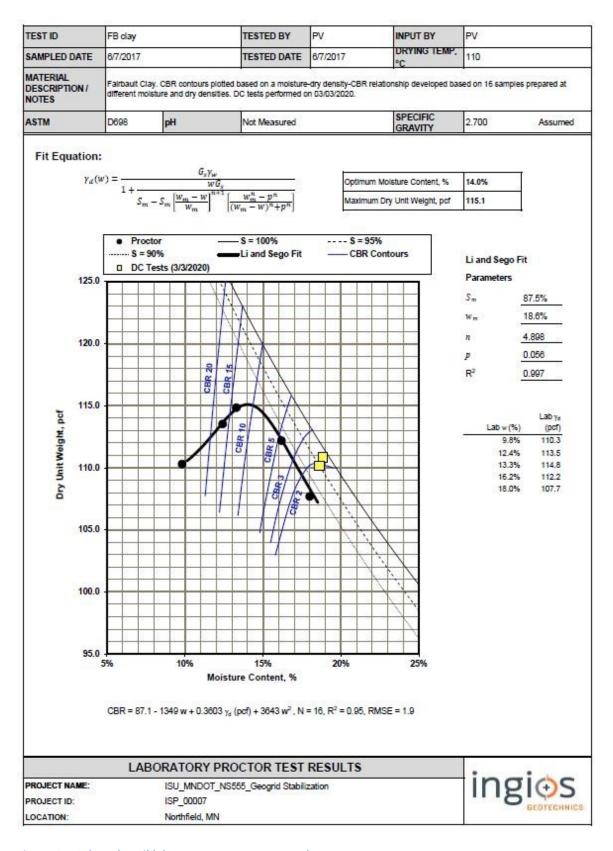


Figure C-7 Subgrade soil laboratory proctor test results

APPENDIX D LABORATORY SECTIONS PERFORMED PROCTOR TEST AND SAND CONE TEST RESULTS

Table D-1 Base aggregate Proctor test results

Test Water Soil Can Can Wet + Lean Weight Weight (gr) (gr)				
Water add (gr) Soil (gr) Weight (gr)	Dry Density (1b/ft3)	125.99	128.61	118.00
Water add (gr) (gr) Can (gr) (gr) Wet + (can (gr) (gr)) Dry (gr) (gr) Dry (gr) Water (gr) Moisture (gr) (gr) Yolume (gr) (gr) Weight (gr) (gr) Weight (gr) Weight (gr) Moisture (gr) Yolume (gr) Mass of soil in mold (gr) 100 2000 16 31 29.65 13.65 1.35 9.89% 944 6135 4228 1907 200 2000 33.5 89 83.41 49.91 5.59 11.20% 944 6175 4228 1947 300 2000 19 65 59.12 40.12 5.88 14.66% 944 6015 4228 1787	Dry Density (g/cm^3)	2.02	2.06	1.89
Water add (gr) Soil (gr) Wet + (gr) Dry (gr) Dry (gr) Dry (gr) Dry (gr) Dry (gr) Dry (gr) Weight (gr) Weight (gr) Moisture (gr) Yolume weight of (CM*3) Mass and mold (gr) 100 2000 16 31 29.65 13.65 1.35 9.89% 944 6135 4228 200 2000 33.5 89 83.41 49.91 5.59 11.20% 944 6175 4228 300 2000 19 65 59.12 40.12 5.88 14.66% 944 6015 4228	Total unit weight (gr)	2.02	2.06	1.89
Water add (gr) Soil (gr) Can (gr) Weight (gr) Dry (gr) Water (gr) Moisture (gr) Yolume weight (gr) Total Soil (gr) 100 2000 16 31 29.65 13.65 1.35 9.89% 944 6135 200 2000 33.5 89 83.41 49.91 5.59 11.20% 944 6135 300 2000 19 65 59.12 40.12 5.88 14.66% 944 6015		1907	1947	1787
Water add (gr) Can (gr) Wet + (can) (gr) Dry (gr) Dry (gr) Dry (gr) Dry (gr) Organism (gr) Water (gr) Water (gr) Water (gr) Woisture (gr) Volume (Gr) 100 2000 16 31 29.65 13.65 1.35 9.89% 944 200 2000 33.5 89 83.41 49.91 5.59 11.20% 944 300 2000 19 65 59.12 40.12 5.88 14.66% 944		4228	4228	4228
Water add (gr) (gr) Can (gr) (gr) Weight weight (gr) Dry (gr) (gr) Weight (gr) Weight (gr) Weight (gr) Weight (gr) Weight (gr) Moisture (gr) 100 2000 16 31 29.65 13.65 1.35 9.89% 200 2000 33.5 89 83.41 49.91 5.59 11.20% 300 2000 19 65 59.12 40.12 5.88 14.66%	Soil weight and mold (gr)	6135	6175	6015
Water add (gr) (gr) Soil (gr) (gr) Can (gr) (gr) Wet + can (gr) Dry (gr) Water (gr) 100 2000 16 31 29.65 13.65 1.35 200 2000 33.5 89 83.41 49.91 5.59 300 2000 19 65 59.12 40.12 5.88	Volume (CM^3)	944	944	944
Water add (gr) Soil (gr) Can (gr) Wet + can (gr) Dry (gr) Dry (gr) Cr) Opposite (gr) Dry (gr) Dry (gr) Dry (gr) Dry (gr) Opposite (gr)	Moisture %	%68.6	11.20%	14.66%
Water add (gr) (gr) Can (gr) (gr) Wet + can (gr) (gr) Wet + can + can + can (gr) 100 2000 16 31 29.65 200 2000 33.5 89 83.41 300 2000 19 65 59.12	Water weight (gr)	1.35	5.59	
Water add (gr) Soil (gr) Can (gr) Wet + can (gr) 100 2000 16 31 200 2000 33.5 89 300 2000 19 65		13.65		40.12
Water add (gr) (gr) Soil weight (gr) (gr) 100 2000 16 200 2000 33.5 300 2000 19	Dry + can (gr)	29.65	83.41	59.12
Water Soil add (gr) (gr) (gr) 2000 2000 300 2000	Wet + can weight (gr)	31	68	59
Water add (gr) 100 200 300	Can weight (gr)	16	33.5	19
	Soil (gr)	2000	2000	2000
Test No.	Water add (gr)	100	200	300
	Test No.	П	2	3

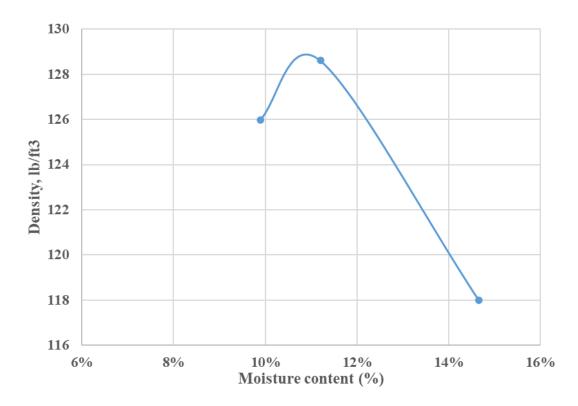
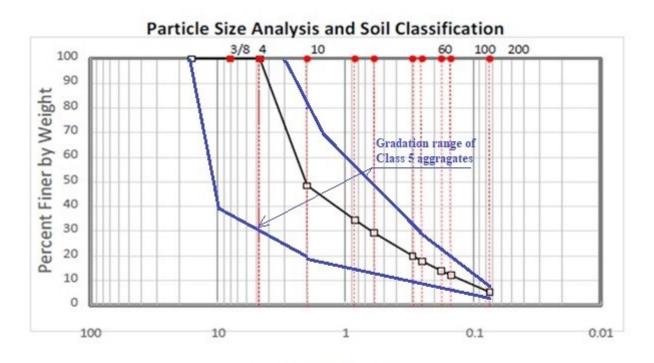



Figure D-1 Base aggregate Proctor test graph

Table D-2 Base aggregate sand cone test results

	1		1	1	1	1	1								
Section	Mass of sand in apparatus (before)	Mass of sand in apparatus (after)	Mass of sand in test hole + funnel + base plate (g)	Mass of sand in funnel + base plate from Calib. (g)	Bulk Density of Sand from Calib (pcf)	Vol. of Hole (ft³)	Moist mass of material from hole (g)		Moisture Content of	Material		Dry Mass of the Material (g)	Wet. Unit Weight of Material (pcf)	Dry Unit Weight of Material (pcf)	Relative compaction
	Mass o	Mass	M1	M2	ı	>	M3	T	T+W	T+D	(%) M	M4	ľwet	ľdry	
GE0	3732.6	1168.8	2563.8	1539.1	88.71	0.0255	1375.4	180.8	1556.2	1533.6	1.7%	1352.8	119.1	117.1	91.5
GE2	5664.1	2833.5	2830.6	1539.1	88.71	0.0321	1719.3	181.1	1900.4	1871.2	1.7%	1690.1	118.1	116.1	7.06
GE1	4609.4	827.2	3782.2	1539.1	88.71	0.0558	3182	274.5	3456.5	3404.5	1.7%	3130.0	125.8	123.8	7.96
GE1	6686.6	3961	2725.6	1539.1	88.71	0.0295	1574.1	180.4	1754.5	1728.2	1.7%	1547.8	117.7	115.7	90.4
GE4	6227.6	3216.2	3011.4	1539.1	88.71	0.0366	1996.1	277.4	2273.5	2237	1.9%	1959.6	120.3	118.1	92.2
GE12	6500.7	3242	3258.7	1539.1	88.71	0.0427	2461.2	278	2739.2	2699.3	1.6%	2421.3	127.0	124.9	9.76
GE5	6429.1	3133.2	3295.9	1539.1	88.71	0.0437	2354.1	277.9	2632	2598.7	1.4%	2320.8	118.9	117.2	91.6
GE7	5976.2	2611.9	3364.3	1539.1	88.71	0.0454	2468.5	277.5	2746	2707.7	1.6%	2430.2	120.0	118.1	92.3
GE15	6547.2	3420.7	3126.5	1539.1	88.71	0.0395	2194.4	277.4	2471.8	2424	2.2%	2146.6	122.6	120.0	93.7

APPENDIX E FIELD SECTIONS AGGREGATE TEST RESULTS

Grain Size in Millimeters

Materials Classification

ID: Class 5 aggregates AASHTO: A-1a

Sample Location: Mankato city, MN USCS: SM

Graduation Summary

% Gravel	0
% Sand	95
% Slit /Clay	5
D10(mm)	0.13
D30(mm)	0.6
D50(mm)	2.1
D60(mm)	2.5
Cu	19
Cc	1.1
D max	40.7

Atterberg Limit:

LL: 17.5

PL: N.P.

PI: -

	Gradation and Soil Classification Test Results	
Project Name:	MnDOT NS555 Effectiveness of Geogrids	CTATE.
Project ID:	ISP-00007	1977 5
Location:	142 Lab, Iowa State Univeristy	

Figure E-1 Base aggregate specifications (Minnesota DOT specification range for Class 5 aggregate)

Figure E-2 Base aggregate specifications (Minnesota DOT specification range for Class 5 aggregate)

Table E-1 Base aggregate sieve analysis test (Minnesota DOT specification range for Class 5 aggregate)

	Base						
Sieve No	Mass retained	Mass pass	Total Percent pass				
3	0	496.5	100%				
2	0	496.5	100%				
1.5	0	496.5	100%				
1	0	496.5	100%	25.4			
(3)/(4)	0	496.5	100%	19			
0.5	0	496.5	100%	12.7			
(3)/(8)	0	496.5	100%	9.51			
4	0	496.5	100%	4.76			
10	255.5	241	49%	2			
20	69.5	171.5	35%	0.841			
30	26	145.5	29%	0.595			
50	46	99.5	20%	0.297			
60	11	88.5	18%	0.25			
80	19	69.5	14%	0.177			
100	9	60.5	12%	0.149			
200	34	26.5	5%	0.074			
Pan	26.5	0	0%				
Total	496.5						

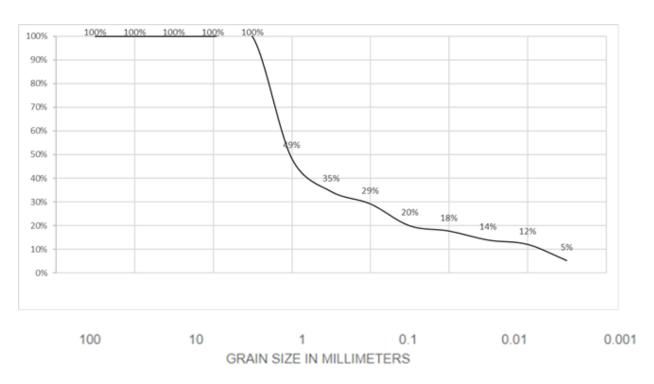


Figure E-3 Base aggregate specifications (Minnesota DOT specification range for Class 5 aggregate)

Table E-2 Liquid Limit test

Base	1	2
Mass of wet + can	36.9	62.88
Mass of dry +can	33.38	58.65
Mass of can	13.27	33.89
Dry soil	20.11	24.76
Mass of moisture	3.52	4.23
Water content	17.50%	17.08%
No. of Blows	22	30

Table E-3 Plastic Limit test (N.P.)

Base	1
Mass of wet + can	35.39
Mass of dry +can	33.82
Mass of can	25.05
Dry soil	8.77
Mass of moisture	1.57
Water content	17.90%

APPENDIX F FIELD TEST SECTIONS PERFORMED PROCTOR TEST, LFWD TEST, AND SAND CONE TEST RESULTS

Table F-1 Base aggregate Proctor test results

Dry Density (lb/ft3)	125.99	128.61	118.00
Dry Density (g/cm^3)	2.02	2.06	1.89
Total unit weight (g/cm^3)	2.02	2.06	1.89
Mass of soil in compaction mold (gr)	1907	1947	1787
Mass of mold (gr)	4228	4228	4228
Total Soil weight and mold (gr)	6135	6175	6015
Volume (CM^3)	944	944	944
ht Moisture V	%68.6	11.20%	14.66%
Water weight (gr)	1.35	5.59	5.88
Dry weight (gr)	13.65	49.91	40.12
Dry + can (gr)	29.65	83.41	59.12
Wet + can weight (gr)	31	68	99
Can weight (gr)	16	33.5	19
Soil (gr)	2000	2000	2000
Water add (gr)	100	200	300
Test No.	1	2	3

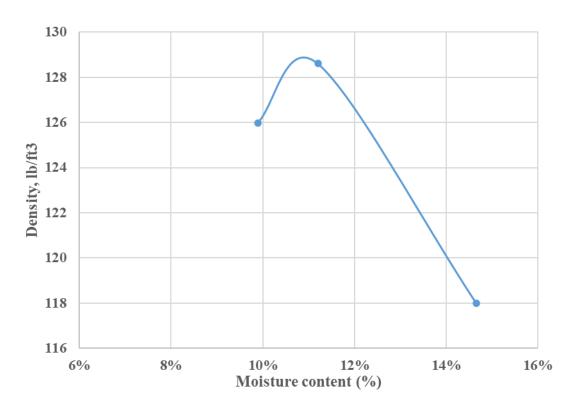


Figure F-1 Base aggregate Proctor test graph

Table F-2 LFWD test results and details

Subgrade Light F	alling Weight	Deflectomet	er test results	s, S Frontriver	Dr., Mankato	City, Mn																		
Test Section		Control (1)			T1			T2			T4			T5			T7			Control (2)			T12	
Section No	Left	Centre	Right	Left	Centre	Right	Left	Centre	Right	Left	Centre	Right	Left	Centre	Right	Left	Centre	Right	Left	Centre	Right	Left	Centre	Right
Distance (ft)	12.5	25	37.5	62.5	75	87.5	112.5	125	137.5	162.5	175	187.5	212.5	225	237.5	262.5	275	287.5	312.5	325	337.5	362.5	375	387.5
Average δ (mm)	0.397	0.451	0.423	0.521	0.551	0.259	0.281	0.35	0.352	0.793	0.703	0.482	0.42	1.426	2.115	0.501	0.393	0.481	0.511	0.484	0.469	0.43	0.437	0.456
Evd (Mn/m2)	56.7	49.9	53.2	43.2	40.8	86.9	80.1	64.3	63.9	28.4	32	46.7	53.6	15.8	10.6	44.9	57.3	46.8	44	46.5	48	52.3	51.5	49.3
Date of the test	7/29/2020	7/30/2020	7/31/2020	8/1/2020	8/2/2020	8/3/2020	8/4/2020	8/5/2020	8/6/2020	8/7/2020	8/8/2020	8/9/2020	8/10/2020	8/11/2020	8/12/2020	8/13/2020	8/14/2020	8/15/2020	8/16/2020	8/17/2020	8/18/2020	8/19/2020	8/20/2020	8/21/2020
Temp	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny	82 F. Sunny

Table F-3 LFWD test results

Test Section	East Lane	T5	Control (2)			
Section No	-	Centre	Centre			
Distance (ft)	-	225	325			
Average δ (mm)	3.028	3.935	0.49			
Evd (Mn/m2)	7.4	5.7	45.9			
Date of the test	7/29/2020	7/29/2020	7/29/2020			
Temp	82°F, Sunny	82°F, Sunny	82°F, Sunny			

Table F-4 LFWD test results

Test Section		T2			T5	
Section No	Left	Centre	Right	Left	Centre	Right
Distance (ft)	112.5	125	137.5	212.5	225	237.5
Average δ (mm)	0.269	0.399	0.242	0.568	5.041	3.223
Evd (Mn/m2)	83.6	56.4	93	39.6	4.5	7
Date of the test	7/30/2020	7/30/2020	7/30/2020	7/30/2020	7/30/2020	7/30/2020
Temp	74°F, Sunny	74°F, Sunny	74°F, Sunny	74°F, Sunny	74° F, Sunny	74°F, Sunny

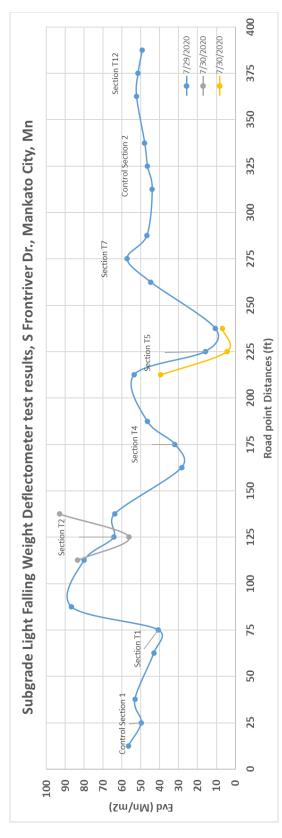


Figure F-2 LFWD test results graph

Table F-5 Sand cone test

Relative		83.9	
DryUnit Weight of Material from c Proctor test (pcf)	Pary	1500.36	kg/m3
Dry Density Yd= ((100°Tb)/(10 O+w))		1259.0	kg/m3
	Water content (W%)	8.55	
Water content	tass of water in Dry mass of soil Water content soil gr (W%)	1627.7	
	Mass of water in soil gr	139.1	
Bulk density of Bulk density Yb = sand Ys (Ww/Wb)*Ys		1366.55	kg/m3
Bulk density of sand Ys		1884	kg/m3
Weight of sand in the hole (Wb= W1-W4-W2) gr		2435.8	
Weight of sand in funel (W2) gr		565	
Weight of sand Meight of sand in the hole (Wb=funel (W2) gr W4-W2) gr		1829	
Weight of weight of sand from the (before puring ole (Ww)		4829.8	
Weight of wet soil from the hole (Ww)	gr	1766.8	
Section		П	
Date		8/1/2020	

APPENDIX G FIELD PERFORMED DCP TEST RESULTS

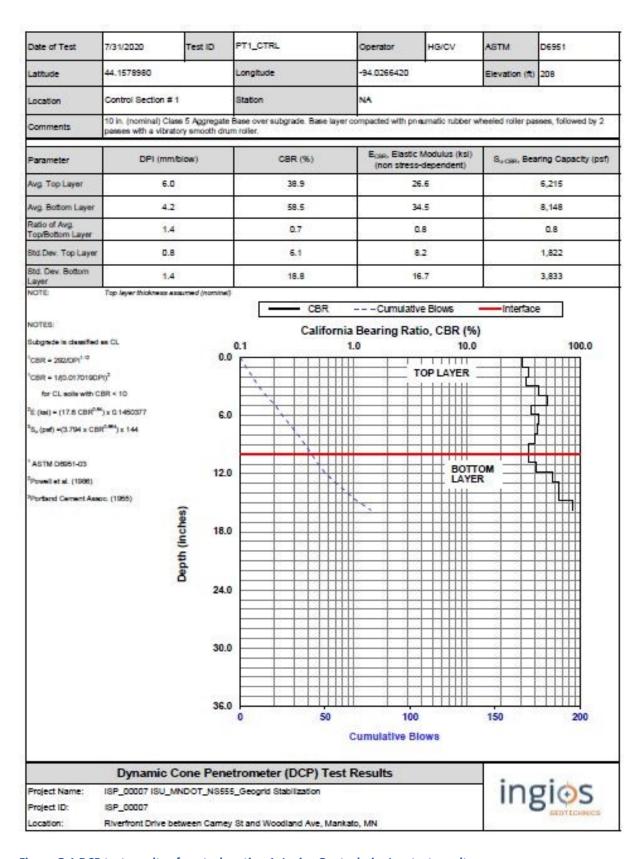


Figure G-1 DCP test results of control section 1, Ingios Geotechnics Inc. test results

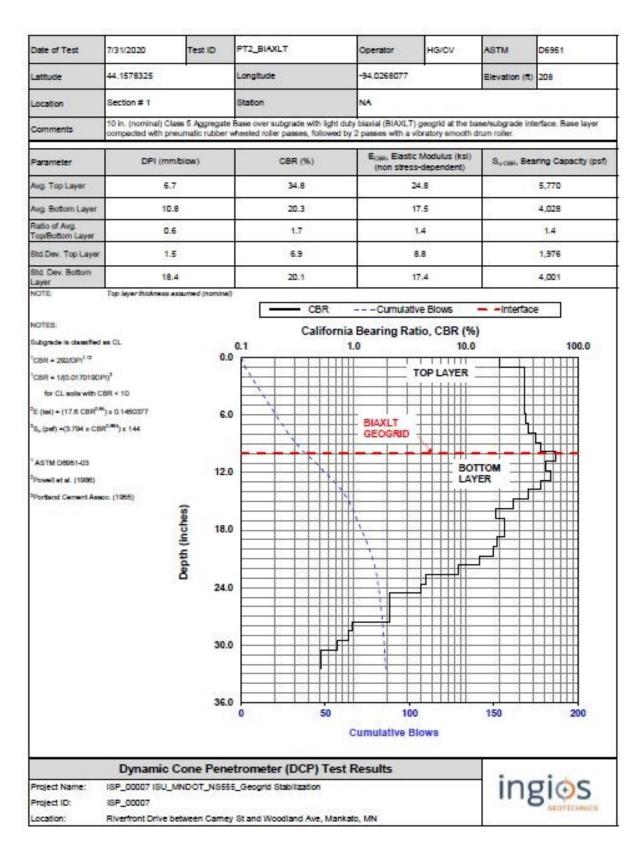


Figure G-2 DCP test results of control section 1, Ingios Geotechnics Inc. test results

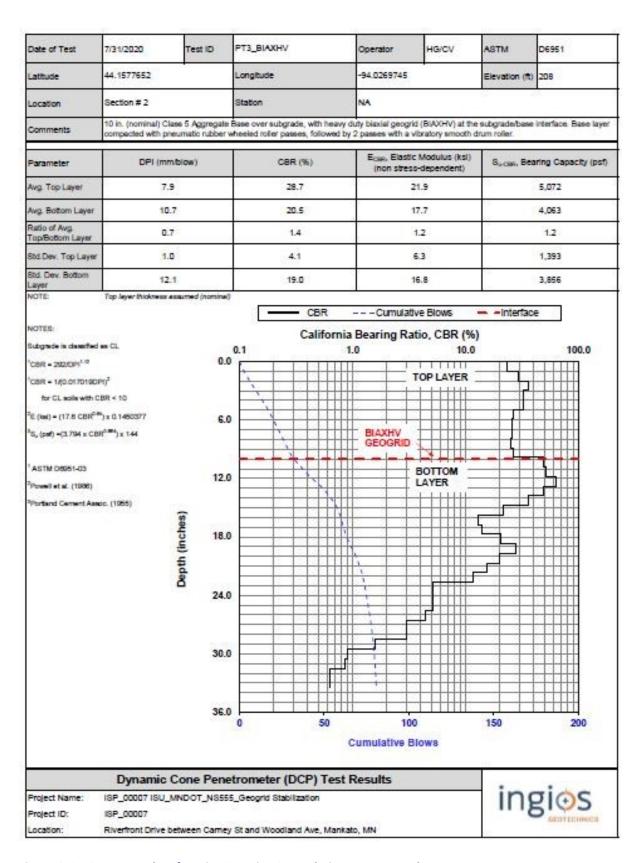


Figure G-3 DCP test results of section 2, Ingios Geotechnics Inc. test results

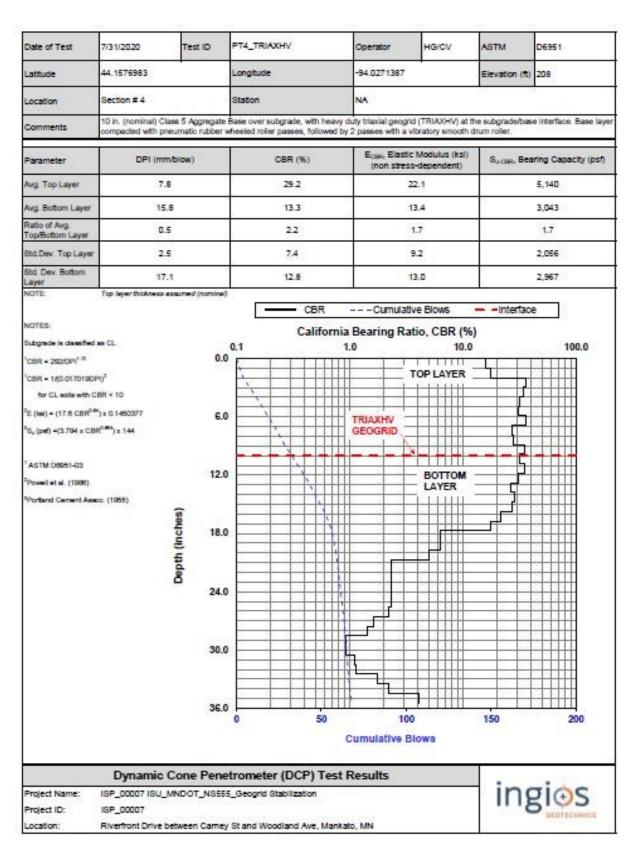


Figure G-4 DCP test results of section 4, Ingios Geotechnics Inc. test results

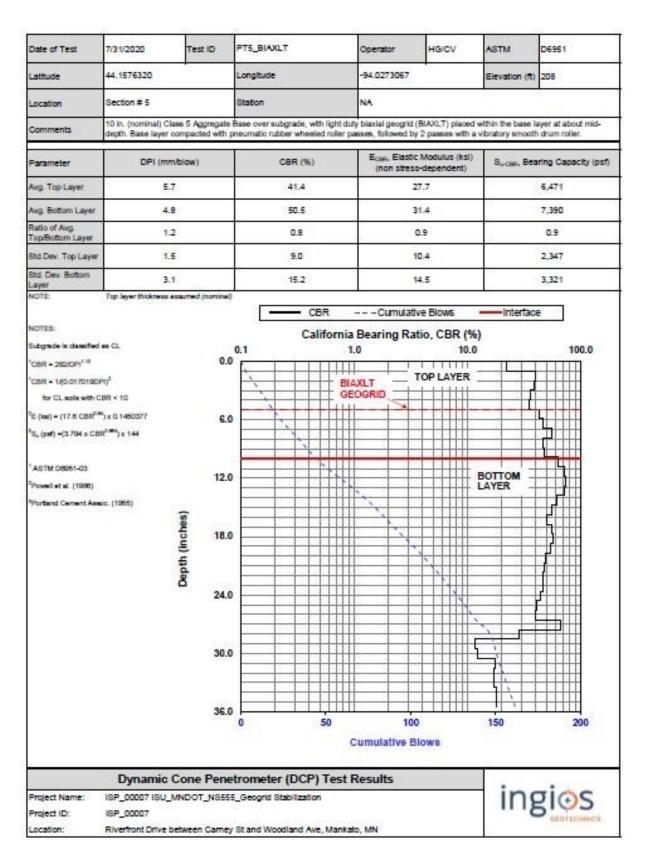


Figure G-5 DCP test results of section 5, Ingios Geotechnics Inc. test results

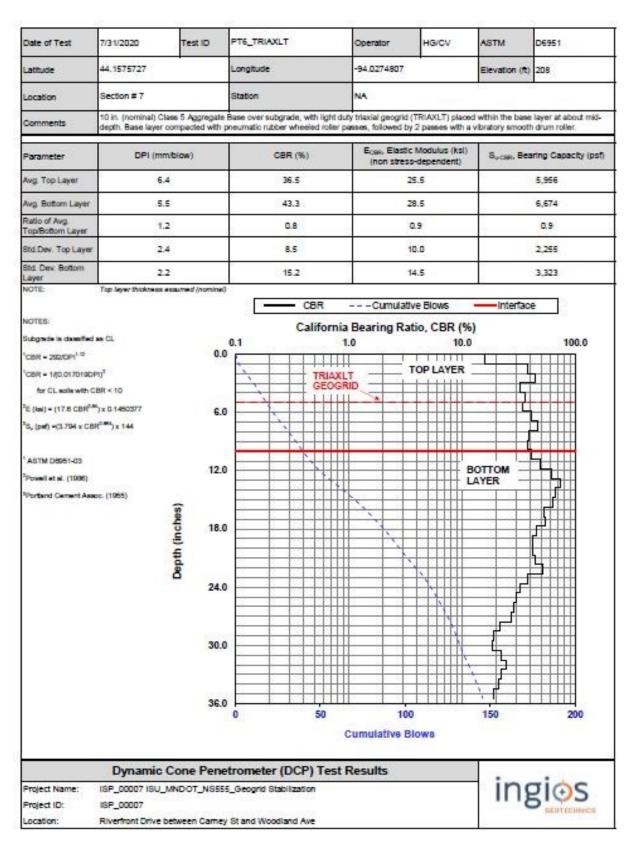


Figure G-6 DCP test results of section 7, Ingios Geotechnics Inc. test results

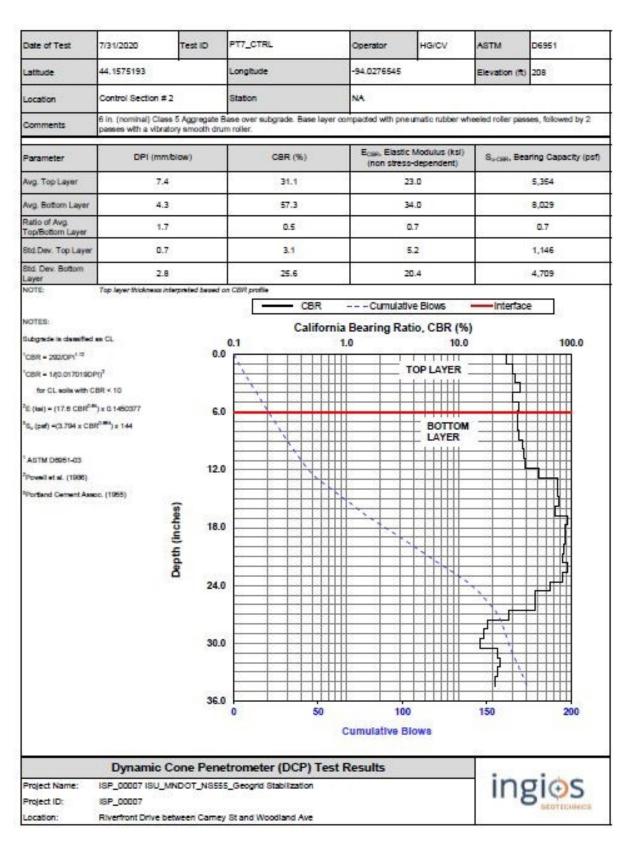


Figure G-7 DCP test results of control section 2, Ingios Geotechnics Inc. test results

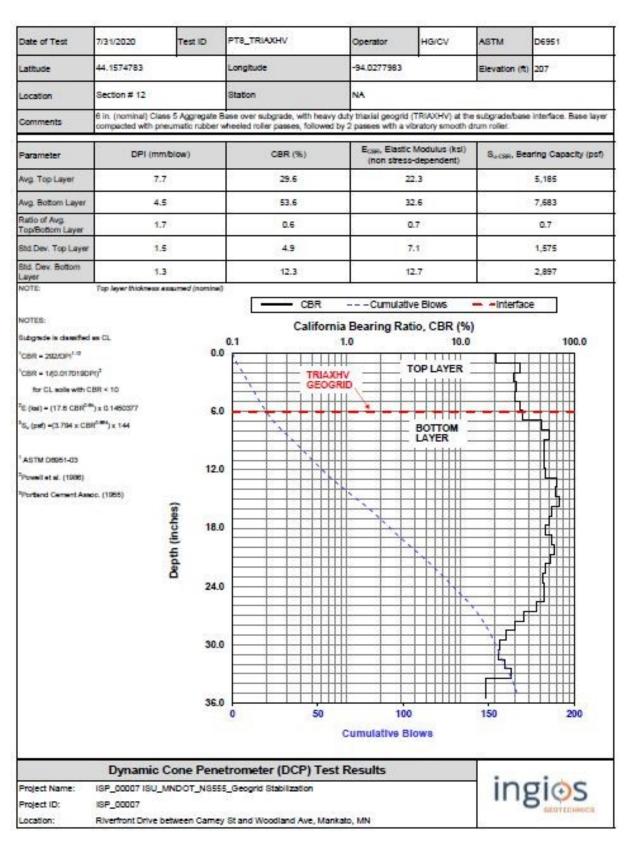


Figure G-8 DCP test results of section 12, Ingios Geotechnics Inc. test results

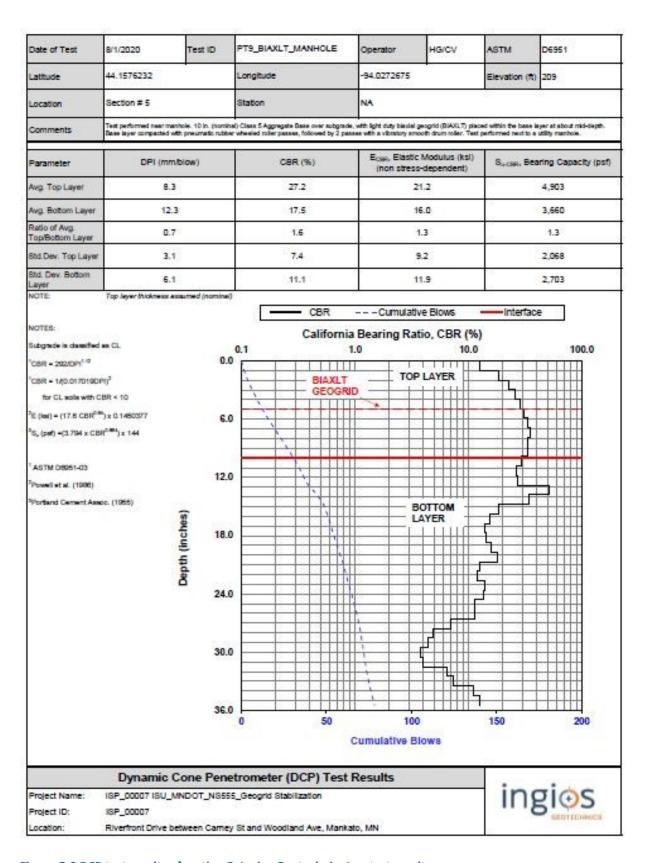


Figure G-9 DCP test results of section 5, Ingios Geotechnics Inc. test results

Date of Test		7/31/2020	Test ID	10" Control	1	Operator	V. S. & H. A.	ASTM	D6951
Latitude		NA Longitude				NA		Elevation (ft) NA	
Location		S Riverdrive, Manka	ato city, MN	Station		NA			
Comments		Nominal 10 in. of aç	gregate bas	se course Cla	ass 5 over comp	acted subgrade.	Three tests co	nducted in ea	ch test sections
		DPI (mm/blow) Sta	tistics		Left	Centre	Right	AVG. DPI (mm/blow)	AVG. CBR* (%)
,	Avera	ge: Aggregate Base	[0 to 10.0 in	n.]	7.0	5.9	6.3	6.4	36.8
P	veraç	ge: Subgrade Layer	[10 to 16.0 ir	n.]	3.5	5.3	3.5	3.8	64.9
Ra	tio of	Average: Aggregate	Base/Subgi	rade	1.99	1.11	1.78	1.66	0.6
	Std. [Dev.: Aggregate Bas	e [0 to 10 in	.]	6.7	1.1	7.1	4.6	11.6
S	td. De	ev.: Subgrade Layer	[10 to 16.0 i	in.]	2.2	1.0	1.4	1.5	22.5
	0		100 		mm/blow) 10	Center	1	Compacted 10 in. Class Aggregate I	5 5
Depth (inches)	12				AVG.	Right		Compacted Subgrade, S A-7-6(2), CI	Soft -
Project Nam Project ID: Location:	e:	Dynamic Co ISU_MNDOT_NS58 ISP_00007 Mankato city, MN			DCP) Test F	Results		5 7	ATE

Figure G-10 Average DCP test results of control section 1

ate of Test	8/1/2020	Test ID	6" Control 2		Operator	V. S. & H. A.	ASTM	D6951
atitude	NA Longitude				NA	-	Elevation (ft)	NA
ocation	S Riverdrive, Manka	ato city, MN	Station		NA			
Comments	Thin 6 in. of aggreg	ate base co	urse Class 5 c	over compacted	subgrade. Three	e tests conduc	ted in each te	st sections
	DPI (mm/blow) Sta	tistics		Left	Centre	Right	AVG. DPI (mm/blow)	AVG. CBR* (%
Aver	rage: Aggregate Base	e [0 to 6.0 in	.]	5.6	7.0	7.1	6.5	35.9
Avera	age: Subgrade Layer	[6 to 18.0 in	ı.]	3.9	4.0	3.9	4.1	59.7
Ratio of	f Average: Aggregate	Base/Subg	rade	1.41	1.74	1.82	1.57	0.6
Std.	Dev.: Aggregate Bas	e [0 to 10 in	.]	2.3	0.6	5.3	1.9	7.6
Std. D	ev.: Subgrade Layer	[10 to 16.0	in.]	1.1	1.7	1.6	1.2	20.1
0		etration I	index, PI (n	nm/blow)		1	Compacted	
	γ _{dry} = 78.6 pcf w = 8.5%						Aggregate I	Base
6				Center	AVG.			
ches)				Right	Left		Compacted Subgrade, S A-7-6(2), CI	Soft
Depth (inches)				Right	Left		Subgrade, S	Soft
				Right	Left		Subgrade, S	Soft
				Right	Left		Subgrade, S	Soft
				Right	Left		Subgrade, S	Soft
12	Dynamic Co						Subgrade, S	Soft

Figure G-11 Average DCP test results of control section 2

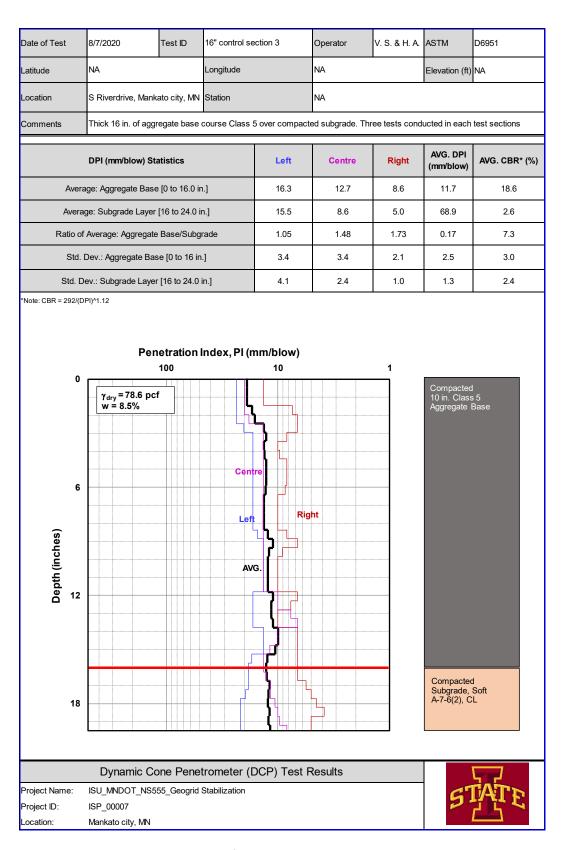


Figure G-12 Average DCP test results of control section 3

Date of Test		7/31/2020	Test ID	10" T1 (Light	Duty Biaxial)	Operator	V. S. & H. A.	ΔSTM	D6951
Latitude		NA Longitude			Duty Blaxial)	NA	V. O. & H. A.	Elevation (ft)	
								Elevation (II)	INA
Location		S Riverdrive, Mank				NA			
Comments		Nominal 10 in. of a્	ggregate bas	se course Clas	ss 5 over compa	cted subgrade.	Three tests co	nducted in ea	ch test sections
	ļ	DPI (mm/blow) Sta	atistics		Left	Centre	Right	AVG. DPI (mm/blow)	AVG. CBR* (%)
A	verag	e: Aggregate Base	[0 to 10.0 in	ı.]	5.2	6.4	6.8	6.0	38.9
Av	erage	e: Subgrade Layer	[10 to 16.0 ir	n.]	2.9	8.9	2.5	9.3	24.1
Ratio	o of A	verage: Aggregate	Base/Subgi	rade	1.79	0.72	2.67	0.65	1.6
S	td. D	ev.: Aggregate Bas	e [0 to 10 in	.]	1.6	0.9	0.9	0.8	5.1
Sto	d. De	v.: Subgrade Layer	[10 to 16.0 i	n.]	0.8	8.2	0.9	9.0	27.8
*Note: CBR = 29		Pen	etration I	ndex, PI (n	nm/blow) 10		1		
	0	γ _{dry} = 78.6 pct w = 8.5%						Compacted 10 in. Class Aggregate I	5 5
	112				AVG. Right Center	Left		Compacted Subgrade, 1 A-7-6(2), Cl	Soft
Project Name Project ID: Location:	I	Dynamic Co SU_MNDOT_NS58 SP_00007 Mankato city, MN			OCP) Test F	Results		5 7	ATE

Figure G-13 Average DCP test results of section 1

Date of Test		7/31/2020 Test ID 10" T2 (High D			Duty Biaxial)	Operator	V. S. & H. A.	ASTM	D6951
_atitude		NA		Longitude		NA Elevation (ft) NA			
_ocation		S Riverdrive, Mank	ato city, MN	Station		NA			
Comments		Nominal 10 in. of a	ggregate bas	se course Cla	ss 5 over compa	acted subgrade.	Three tests co	nducted in ea	ch test sections
		DPI (mm/blow) Sta	atistics		Left	Centre	Right	AVG. DPI (mm/blow)	AVG. CBR* (%
,	Avera	ge: Aggregate Base	[0 to 10.0 in	1.]	5.4	8.2	6.2	6.4	36.4
А	werag	je: Subgrade Layer	[10 to 16.0 ir	n.]	4.6	8.5	7.9	10.4	21.3
Rat	tio of a	Average: Aggregate	Base/Subgi	rade	1.18	0.96	0.78	0.62	1.7
	Std. D	Dev.: Aggregate Bas	e [0 to 10 in	.]	0.4	7.6	1.0	2.7	7.7
S	td. De	ev.: Subgrade Layer	[10 to 16.0 i	in.]	2.4	11.3	8.8	7.7	23.6
hes)				Right	Right	Left		Compacted	
Depth (inches)	18							Subgrade, \$ A-7-6(2), Ci	Soft
		Dynamic Co							

Figure G-14 Average DCP test results of section 2

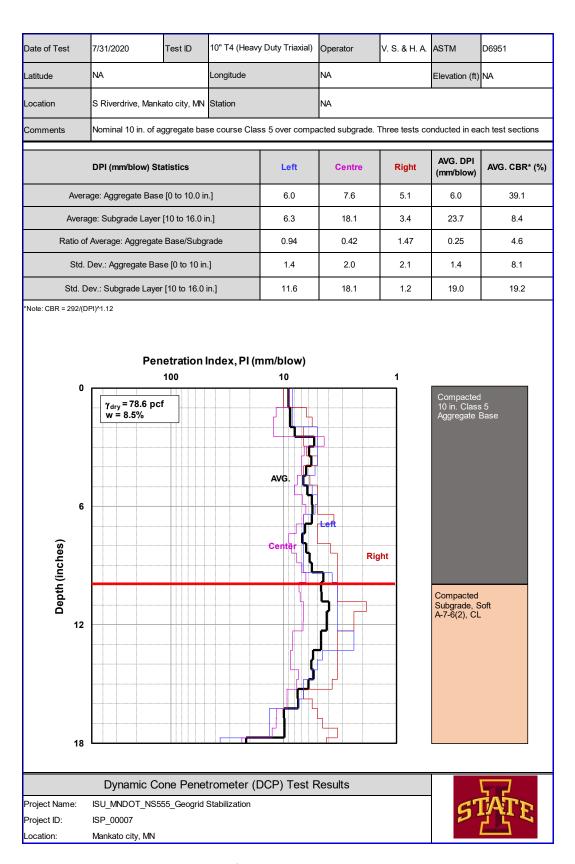


Figure G-15 Average DCP test results of section 4

ate of Test	7/31/2020	Test ID	10" T5 (Biaxi Center base		Operator	V. S. & H. A.	ASTM	D6951
atitude	NA Longitude				NA		Elevation (ft)	NA
ocation	S Riverdrive, Mank	ato city, MN	Station		NA			
comments	Nominal 10 in. of a	ggregate bas	se course Cla	ss 5 over compa	acted subgrade.	Three tests co	onducted in ea	ch test sections
	DPI (mm/blow) Sta	atistics		Left	Centre	Right	AVG. DPI (mm/blow)	AVG. CBR* (%
Aver	rage: Aggregate Base	e [0 to 10.0 ir	n.]	5.7	5.6	6.1	5.8	40.6
Avera	age: Subgrade Layer	[10 to 16.0 ii	n.]	3.2	4.9	7.2	4.9	49.5
Ratio o	of Average: Aggregate	Base/Subg	rade	1.79	1.14	0.84	1.19	0.8
Std.	Dev.: Aggregate Bas	se [0 to 10 in	.]	2.3	0.9	1.6	1.4	9.1
Std. [Dev.: Subgrade Layer	1.1	1.9	1.2	1.7	13.1		
	$\gamma_{dry} = 78.6 \text{ pc}$ w = 8.5%	F					Compacted 10 in. Class Aggregate	5 5
				Center	AVG.			
6				Left				
nches)								
Depth (inches)				Right			Compacted Subgrade, S A-7-6(2), CL	Soft
18								
	Dynamic Co			DCP) Test F	Results			<u> </u>
roject Name:	ISU_MNDOT_NS5	55_Geogrid	Stabilization				G	4114

Figure G-16 Average DCP test results of section 5

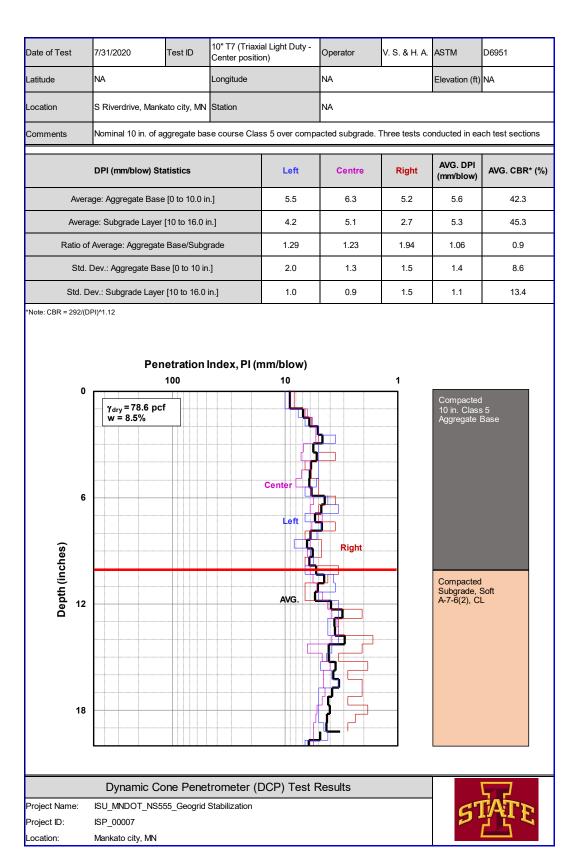


Figure G-17 Average DCP test results of section 7

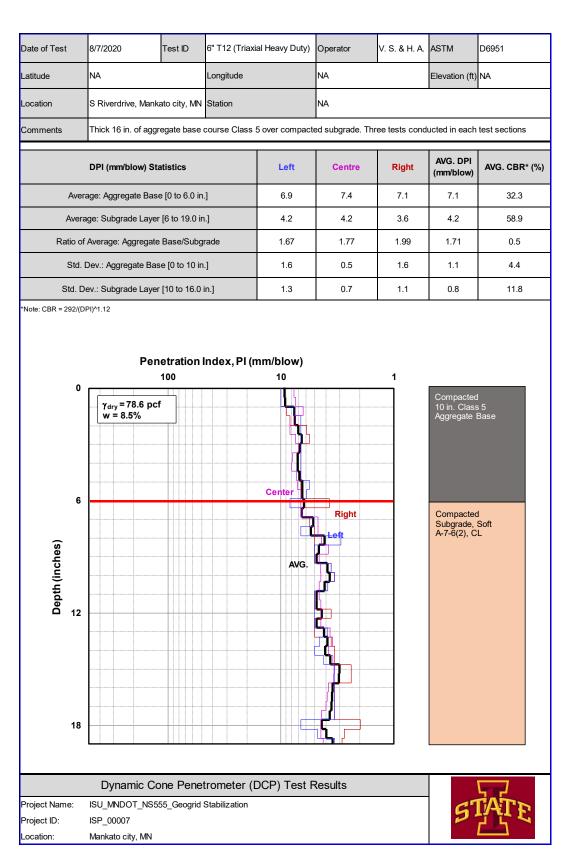


Figure G-18 Average DCP test results of section 12

Date of Test	8/7/2020	Test ID	16" T15		Operator	V. S. & H. A.	ASTM	D6951
Latitude	NA	Longitude			NA		Elevation (ft)	NA
Location	S Riverdrive, Manka	ato city, MN	Station		NA			
Comments	Thick 16 in. of aggr	egate base	Course Class	5 over compact	I ed subgrade. Th	ree tests cond	ucted in each	test sections
	DPI (mm/blow) Sta	tistics		Left	Centre	Right	AVG. DPI (mm/blow)	AVG. CBR* (%)
Avera	age: Aggregate Base	[0 to 16.0 ir	ı.]	8.3	9.1	8.0	8.5	26.7
Avera	ge: Subgrade Layer	16 to 20.0 ii	n.]	5.9	7.6	4.7	5.8	40.5
Ratio of	Average: Aggregate	Base/Subg	rade	1.41	1.20	1.71	1.45	0.7
Std. I	Dev.: Aggregate Bas	e [0 to 16 in	.]	3.0	1.8	1.4	1.8	6.2
Std. D	ev.: Subgrade Layer	0.9	1.8	1.9	1.1	7.8		
6			Cent		ht			
Depth (inches)			AV	6. 1				
							Compacted Subgrade, S A-7-6(2), Cl	Soft
18								
18 Project Name:	Dynamic Co			DCP) Test F	Results		45	

Figure G-19 Average DCP test results of section 15

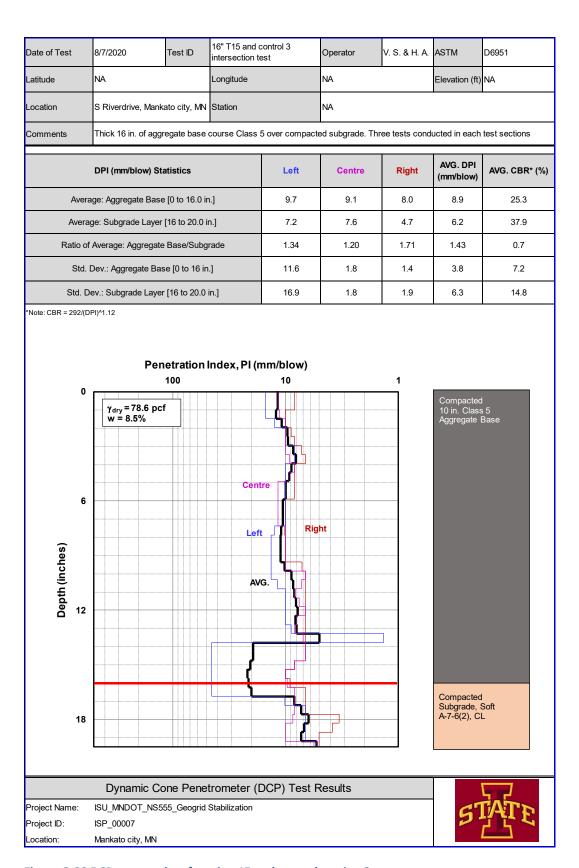


Figure G-20 DCP test results of section 15 and control section 3

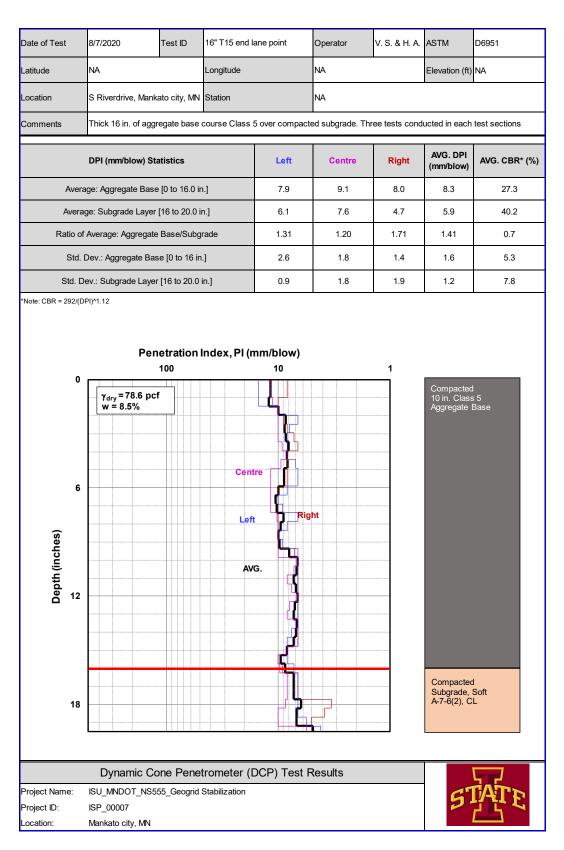


Figure G-21 DCP test results of the end of section 15

APPENDIX H FIELD TEST PICTURES AND LOCATION

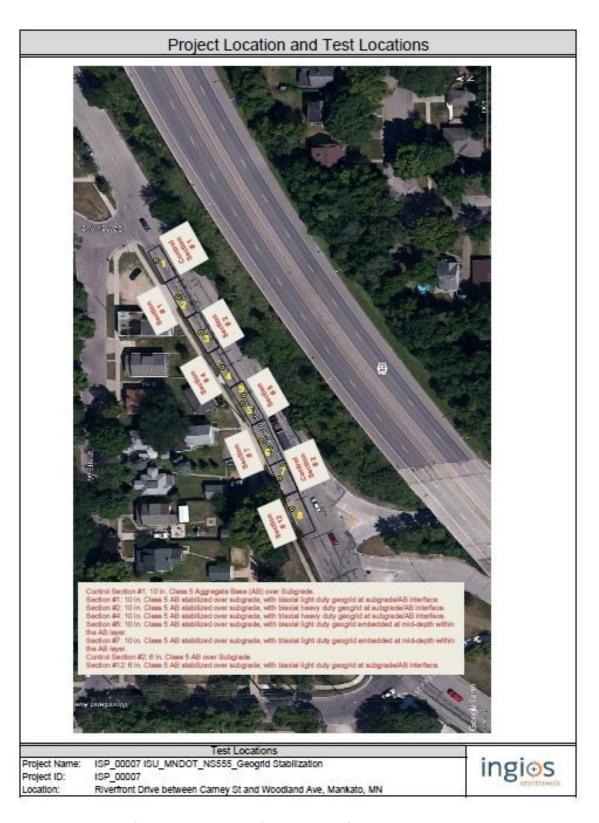


Figure H-1 condition of sites and procedure of construction of base and subgrade and setting the geogrids in the construction process

Figure H-2 condition of sites and procedure of construction of base and subgrade and setting the geogrids in the construction process

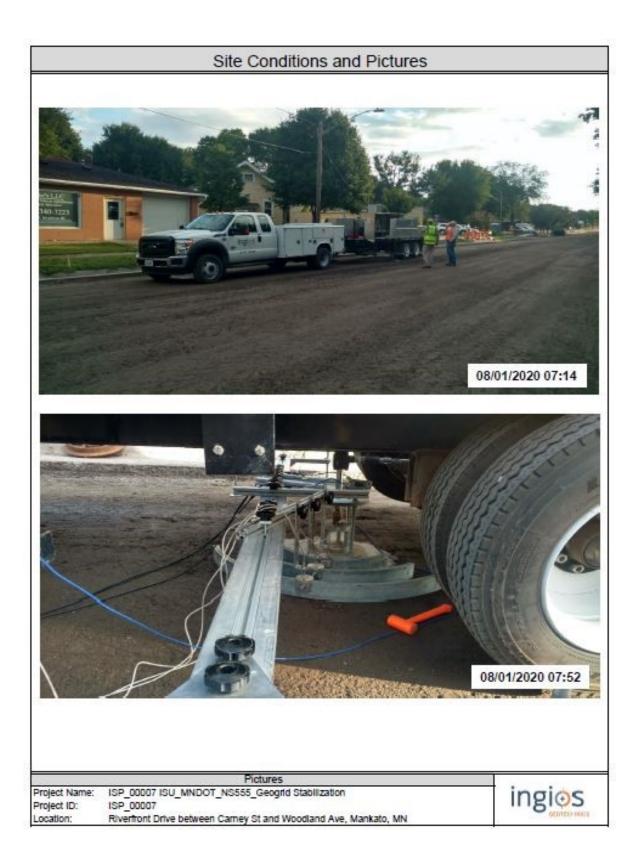


Figure H-3 condition of sites and procedure of construction of base and subgrade and setting the geogrids in the construction process

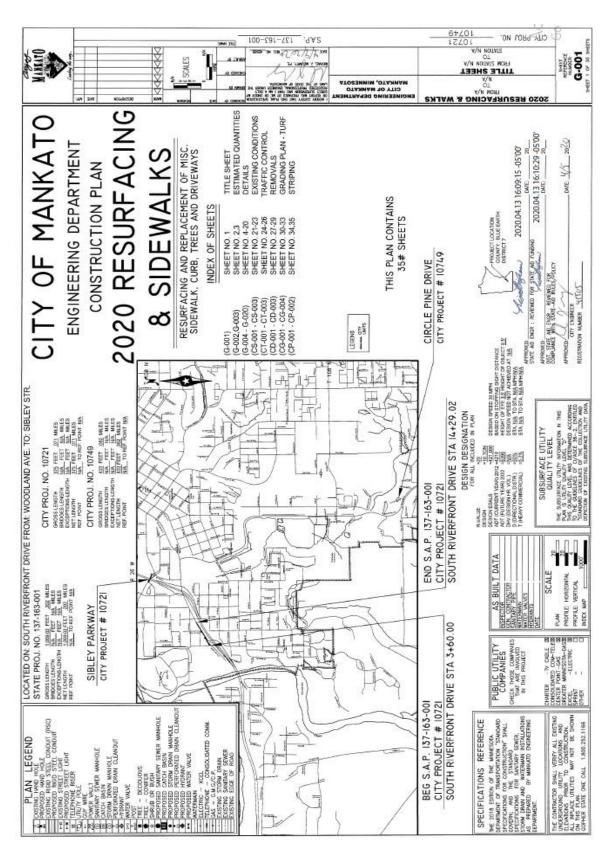


Figure H-4 Project location and the field location in the city of Mankato and test arrangements

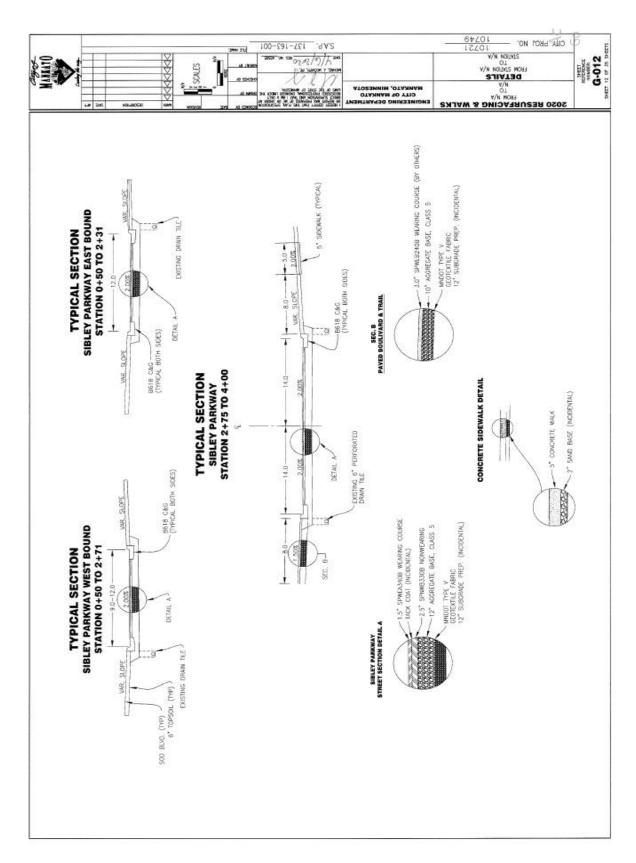


Figure H-5 Project location and the field location in the city of Mankato and test arrangements

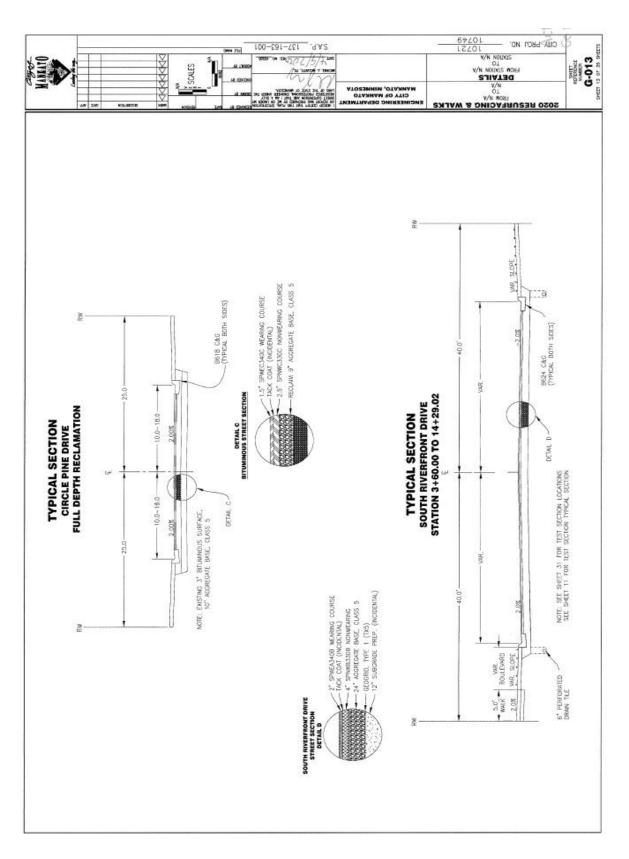


Figure H-6 Project location and the field location in the city of Mankato and test arrangements

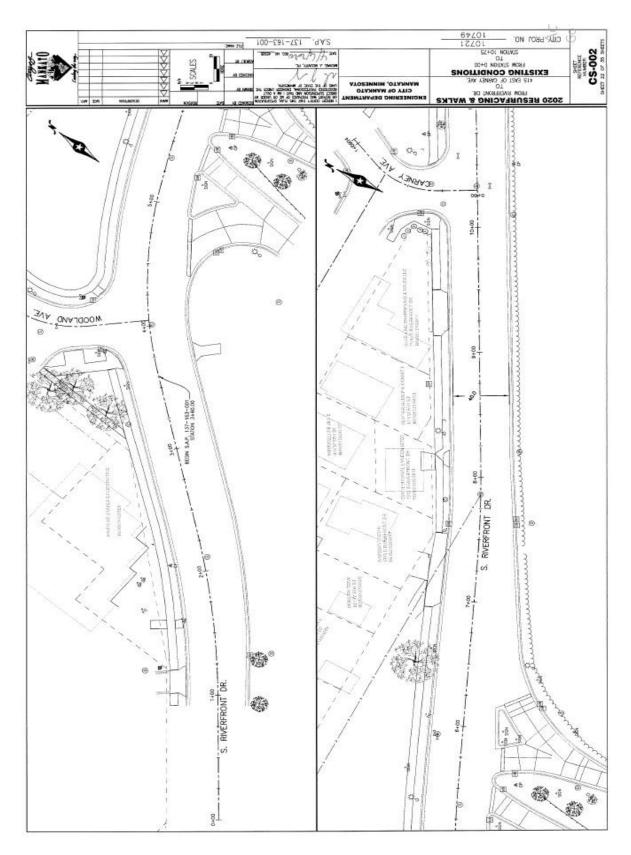


Figure H-7 Project location and the field location in the city of Mankato and test arrangements

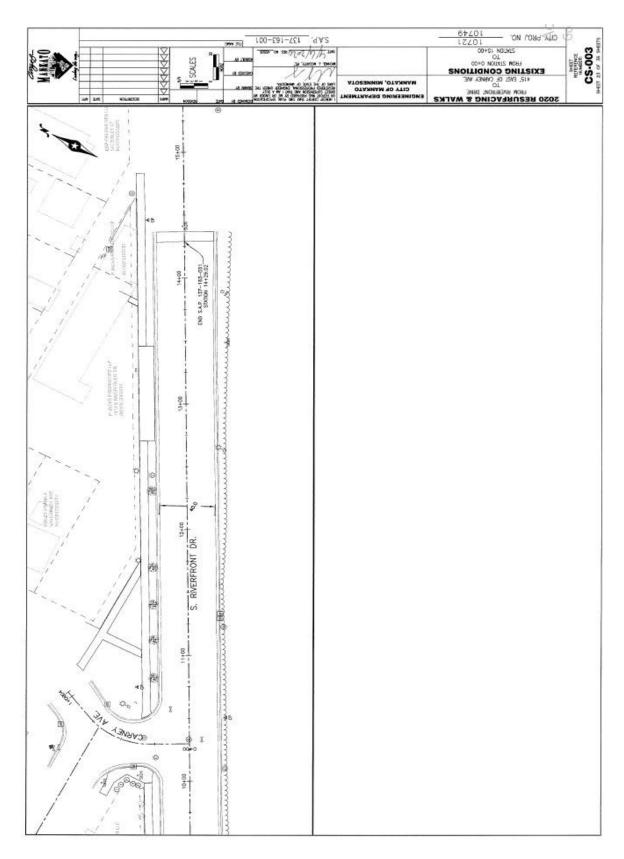


Figure H-8 Project location and the field location in the city of Mankato and test arrangements

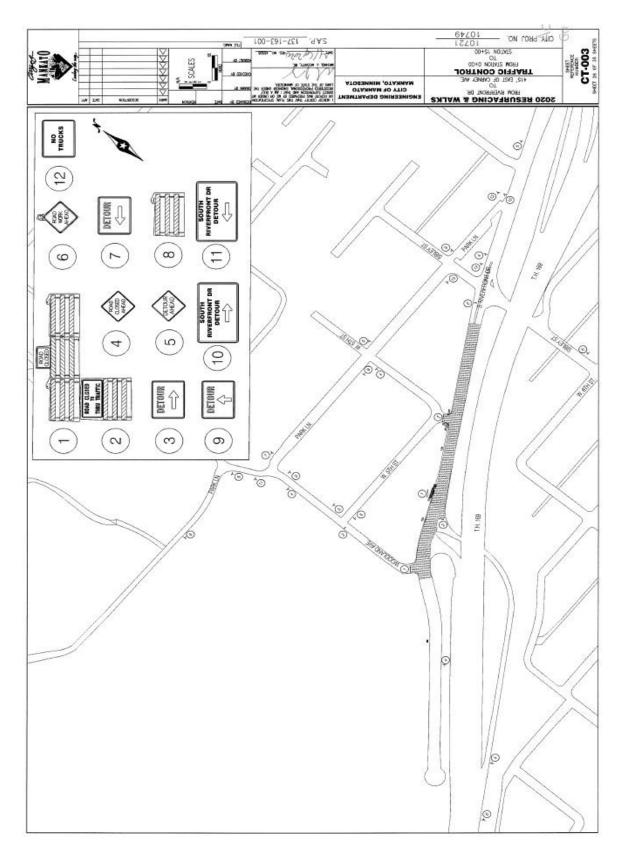


Figure H-9 Project location and the field location in the city of Mankato and test arrangements

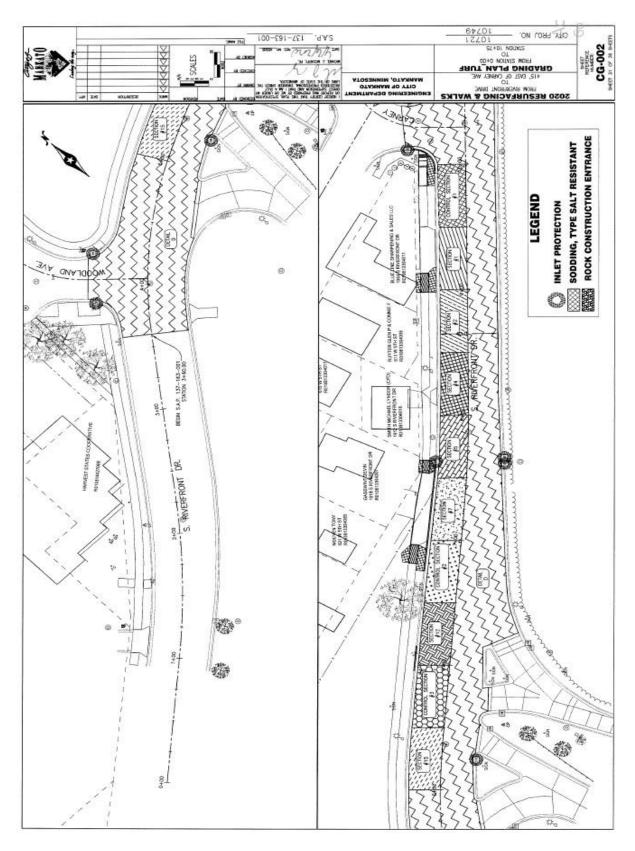


Figure H-10 Project location and the field location in the city of Mankato and test arrangements

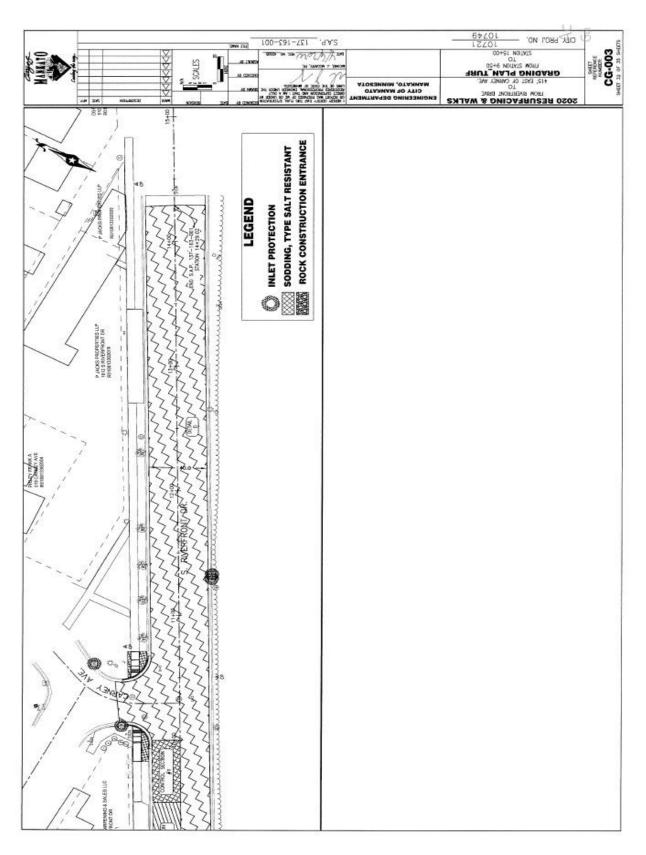


Figure H-11 Project location and the field location in the city of Mankato and test arrangements

APPENDIX I TENSAR SOFTWARE SIMULATIONS INPUT PARAMETERS AND STEPS

Input information for the roads in the spectra software was as below: For unreinforced section and section 1:

Figure I-1 Input information for the roads in the spectra software

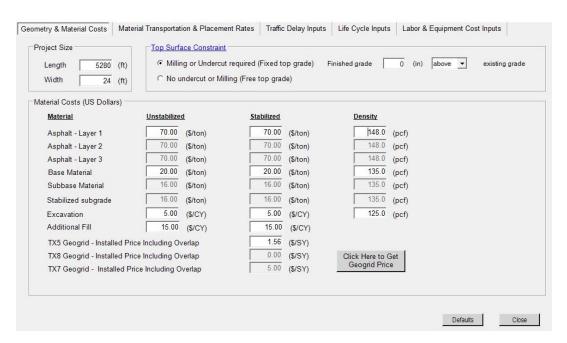


Figure I-2 Input information for the roads in the spectra software

ometry & Material Costs Material Transportation & Placement F	Rates Tra	affic Delay Inputs Life Cycle Inputs Labor & Equipment Cost Inputs
Capacity of a Dump Truck	12.0	(CY)
Dump Truck operation rate (base, subbase, additional fill)	4.0	(Dump truck/hr)
Dump Truck operation rate (excavation)	2.0	(Dump truck/hr)
Working hours per day	8.0	(hr)
Fluff factor for AC	1.20	
Fluff factor for aggregates	1.25	
Fluff factor for excavated soil	1.30	
Water required for aggregates	25.0	(Gal/CY)
Asphalt concrete (HMA) installation	125	(Ton/Hr)
Average fuel consumption by a Dump Truck	3.20	(Gal/Hr)

Figure I-3 Input information for the roads in the spectra software

Personal travel	93.7 (%)	
All travel (2009)	1.67 (People)	
Intercity (1990)	2.30 (People)	
Local	0.5 (Determined from median annual incom	e for all us households divided by 2,08
Intercity	0.7 (Determined from median annual incom	e for all us households divided by 2,08
Median household income	9,445 (\$/year)	
Total daily traffic	5,000 (Vehicles)	
Personal travel percentage	92.00 (%)	
Average vehicle occupancy (AVO) of passenger cars (business)	1.24 (%)	
Trucks travel percentage	8.00	
Hour monetary value of travel time for a person on business travel	29.75 (\$/hr)	
Average vehicle occupancy (AVO) of trucks	1.025	
Average wages and benefits for truck drivers	22.50 (\$/hr)	
/ariables		
Average daily Traffic	5,000 (Cars/hr)	
Stopping Section Length (s)	0.88 (Miles)	
Freeway Speed (vf)	70.0 (MPH)	
Construction Zone Speed (vz)	40.0 (MPH)	
Construction Zone Lentgh (L)	2.00 (Miles)	
Average Acceleration After Work Zone (a)	0.55 (Miles/Hour/Second)	
Traffic Flow Rate of arrival vehicles (Fa)	500.0 (Cars/hr)	
Service Rate of the system (Fc)	600.0 (Cars/hr)	
Vehicle Queue-discharge rate (Fd)	400.0 (Cars/hr)	
otal vehicle queue at the end of hour I (Qi)	50.0 (Cars/hr)	
Uncongested no. Hours	10.0 (Hours)	

Figure I-4 Input information for the roads in the spectra software

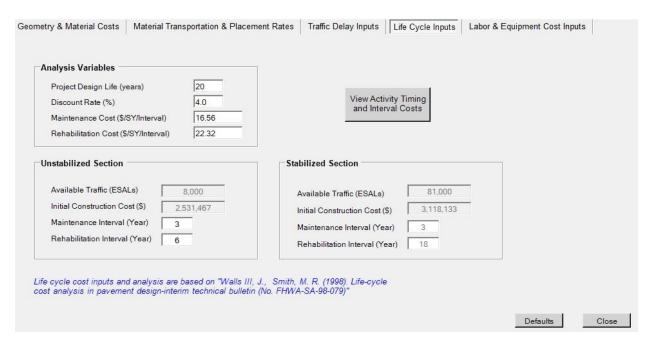


Figure I-5 Input information for the roads in the spectra software

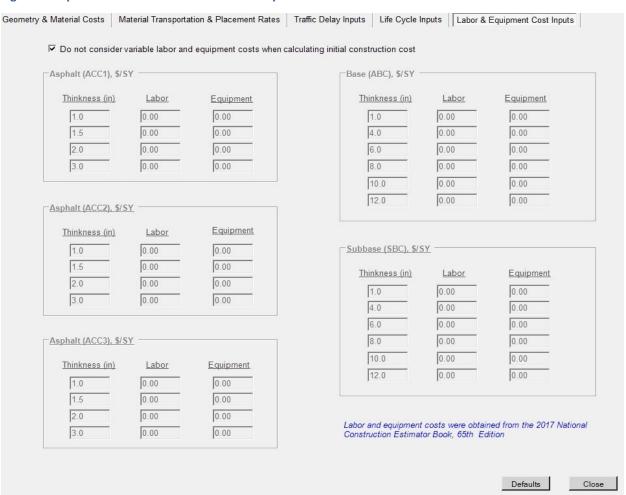


Figure I-6 Input information for the roads in the spectra software

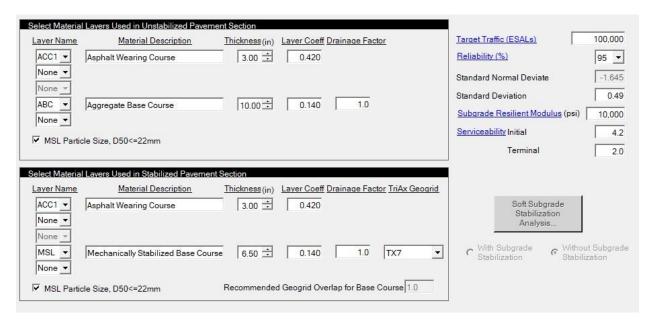


Figure I-7 Input information for the roads in the spectra software

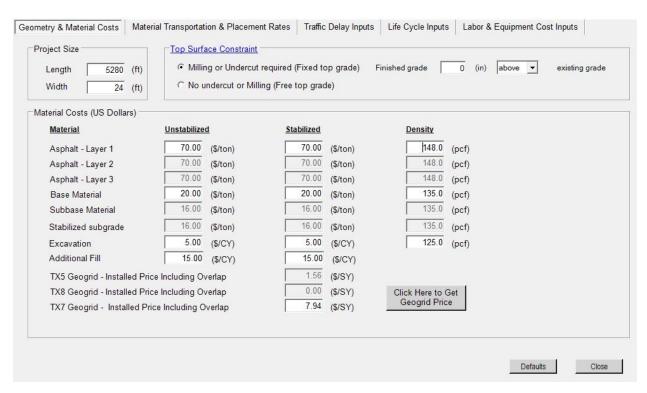


Figure I-8 Input information for the roads in the spectra software

dit Project Information						
Geometry & Material Costs	Material Transportation & Placement Rates	Traf	fic Delay Inputs	Life Cycle Inputs	Labor & Equipment Cos	t Inputs
Capacity of a Dump Tru Dump Truck operation of Dump Truck operation of Working hours per day	rate (base, subbase, additional fill) rate (excavation)	12.0 4.0 2.0 8.0 1.20	(CY) (Dump truck/hr) (Dump truck/hr) (hr)			
Fluff factor for aggregation Fluff factor for excavate		1.25				
Water required for aggr	regates	25.0	(Gal/CY)			
Asphalt concrete (HMA) Average fuel consumpt		3.20	(Ton/Hr) (Gal/Hr)			
					Defaults	Close

Figure I-9 Input information for the roads in the spectra software

ometry & Material Costs Material Transportation & Placement Rates	Traffic Delay Inputs Life Cycle Inputs Labor & Equipment Cost Inputs
Personal travel	93.7 (%)
All travel (2009)	1.67 (People)
Intercity (1990)	2.30 (People)
Local	0.5 (Determined from median annual income for all us households divided by 2,0
Intercity	0.7 (Determined from median annual income for all us households divided by 2,0
Median household income	49,445 (\$/year)
Total daily traffic	15,000 (Vehicles)
Personal travel percentage	92.00 (%)
Average vehicle occupancy (AVO) of passenger cars (business)	1.24 (%)
Trucks travel percentage	8.00
Hour monetary value of travel time for a person on business travel	29.75 (\$/hr)
Average vehicle occupancy (AVO) of trucks	1.025
Average wages and benefits for truck drivers	22.50 (\$/hr)
<u>Variables</u>	
Average daily Traffic	15,000 (Cars/hr)
Stopping Section Length (s)	0.88 (Miles)
Freeway Speed (vf)	70.0 (MPH)
Construction Zone Speed (vz)	40.0 (MPH)
Construction Zone Lentgh (L)	2.00 (Miles)
Average Acceleration After Work Zone (a)	0.55 (Miles/Hour/Second)
Traffic Flow Rate of arrival vehicles (Fa)	1500.0 (Cars/hr)
Service Rate of the system (Fc)	1600.0 (Cars/hr)
Vehicle Queue-discharge rate (Fd)	1400.0 (Cars/hr)
Total vehicle queue at the end of hour I (Qi)	50.0 (Cars/hr)
Uncongested no. Hours	10.0 (Hours)
Traffic Delay inputs and calculations are based on "Jiang, Y. (2001). Estin work zones. Transportation Research Board, Washington, DC." Mallela, J., Sadavisam, S. (2011). Work Zone Road User Costs: Concept Transportation, Federal Highway Administration.	The second secon

Figure I-10 Input information for the roads in the spectra software

Figure I-11 Input information for the roads in the spectra software

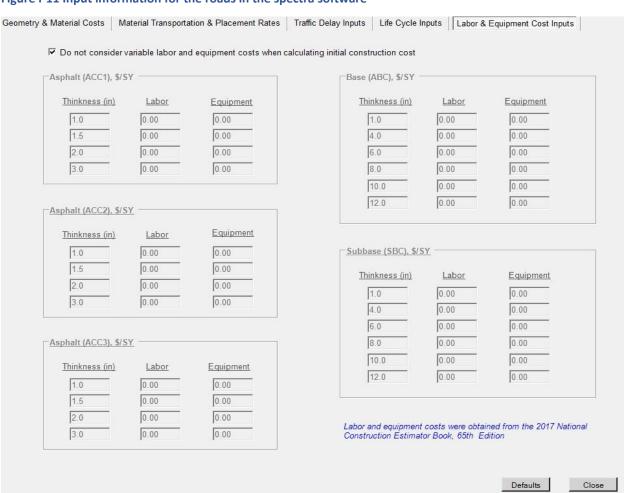


Figure I-12 Input information for the roads in the spectra software

APPENDIX J MNPAVE USER'S GUIDE

Introduction

MnPAVE is a computer program that combines known empirical relationships with a representation of the physics and mechanics behind flexible pavement behavior. The mechanistic portions of the program rely on finding the tensile strain at the bottom of the asphalt layer, the compressive strain at the top of the subgrade, and the maximum principal stress in the middle of the aggregate base layer.

MnPAVE consists of three input modules: Climate, Traffic, and Structure; and three design levels: Basic, Intermediate, and Advanced. The level is selected based on the amount and quality of information known about the material properties and traffic data. In the basic mode, only a general knowledge of the materials and traffic data are required. The intermediate level corresponds to the amount of data currently required for Mn/DOT projects. The advanced level requires the determination of modulus values for all materials over the expected operating range of moisture and temperature.

MnPAVE simulates traffic loads on a pavement using a Layered Elastic Analysis (LEA) called WESLEA. It is a five-layer isotropic system program written in 1987 by Frans Van Cauwelaert at the Catholic Superior Industrial Institute Department of Civil Engineering in Belgium and modified in 1989 by Don R. Alexander at the U.S. Army Engineer Waterways Experiment Station in Vicksburg, Mississippi. All layers are assumed to be isotropic in all directions and infinite in the horizontal direction. The fifth layer is assumed to be semi-infinite in the vertical direction. Material inputs include layer thickness, modulus, Poisson's ratio, and an index indicating the degree of slip between layers. MnPAVE assumes zero slip at all layer interfaces. Other inputs include load and evaluation locations. Loads are characterized by pressure and radius. The LEA program calculates normal and shear stress, normal strain, and displacement at specified locations.

MnPAVE output includes the expected life of the pavement, which is calculated using a damage factor based on Miner's Hypothesis. Reliability is estimated using Monte Carlo simulation. There is also a batch section for testing a range of layer thicknesses. In Research Mode (accessible from the "View" menu in the main MnPAVE window), output includes various pavement responses for each season.

Units

The default system of engineering units is English, however the system of units can be changed in any of the main modules. System International (SI) or English units may be selected.

English SI

Length

1 in = 25.4 mm 1 ft = 0.3048 m 1 mi = 1.609344 km

Weight

1 lb = 4.448222 N 1 kip = 1000 lbs 1 kip = 4.448222 kN

Pressure (Modulus)

1 psi = 6.894757 kPa

(pounds per square inch)

1 ksi = 1000 psi = 6.894757 Mpa

Starting MnPAVE

The program can be started by double-clicking on the MnPAVE icon **a** on the desktop or selecting MnPAVE from the Windows menu under the folder name specified in Step 6 of **Installing MnPAVE**.

At this point, the Main Control Panel is visibile:

Figure J-1 MnPAVE Software

A new MnPAVE file can be opened by clicking on the icon or by selecting "New" from the "File" menu.

An existing MnPAVE file can be opened by clicking on the icon or by selecting "Open" from the file menu. A recently saved file can also be selected from the list at the bottom of the "File" menu.

Changes to the current file can by saved by clicking on the or by selecting "Save" from the "File" menu. Changes can be saved as a new file name by selecting "Save As" from the "File" menu.

Project Information

Project information is a form for entering information necessary to identify a MnPAVE project. Mn/DOT District, county, city, highway, construction type, design engineer and project notes are entered in this module.

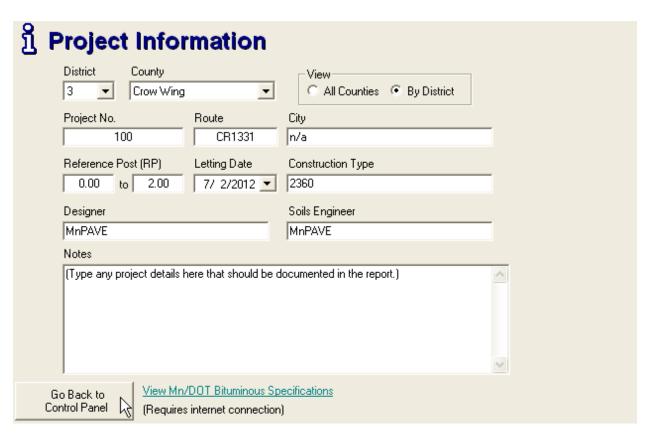


Figure J-2 project information input part in MnPAVE software

Climate

Climate contains a map of Minnesota where more specific location data can be entered. MnPAVE calculates season lengths and temperatures for each location using data from surrounding weather stations.

MnPAVE has five default seasons based on material properties measured at the Mn/ROAD research site throughout the year. Spring is divided into two seasons because of the drastic changes in aggregate base and subgrade soil properties during the Spring thaw period.

MnPAVE calculates the average pavement temperature for each season based on data from surrounding weather stations. Details of this calculation can be viewed in the Details window

The county and district can be selected from menus in the Project Information window. Clicking on the map will also select them. The season lengths and average seasonal temperatures are shown in the left portion of the Climate window.

As the pointer moves over the map, the current district, county, and coordinates under the pointer are displayed to the left under Pointer Location. Click the left mouse button to select this location. The district and county can also be selected in Project Information.

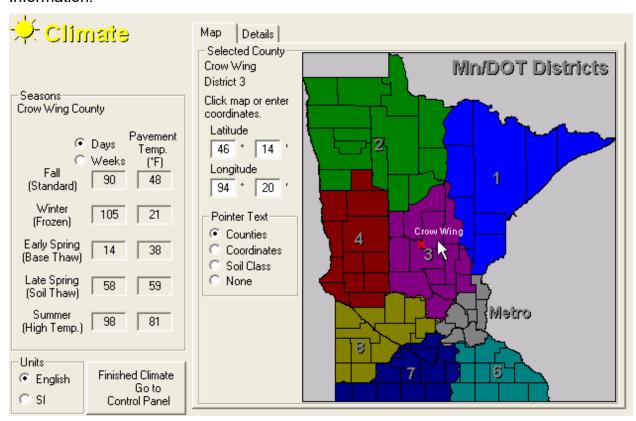
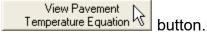



Figure J-3 climate district zones map in MnPAVE software

Climate Details

Seasonal air and pavement temperatures can be viewed in this window.

The air temperature at the selected location is based on a weighted average of data from weather stations in a 75 mile (120 km) radius. Each seasonal air temperature value represents the average daily temperature for that season. The equation used to convert air temperature to pavement temperature can be seen by clicking the

Early Spring Thaw Depth is the assumed depth of the thawed/frozen interface during Early Spring. The thawed portion of the base and/or soil is assumed to have a high moisture content and low modulus. Seasonal modulus multipliers for the selected pavement materials can be viewed in Advanced Structure. If the thaw depth extends into a soil layer, then the Late Spring multiplier is used for the thawed portion of the soil.

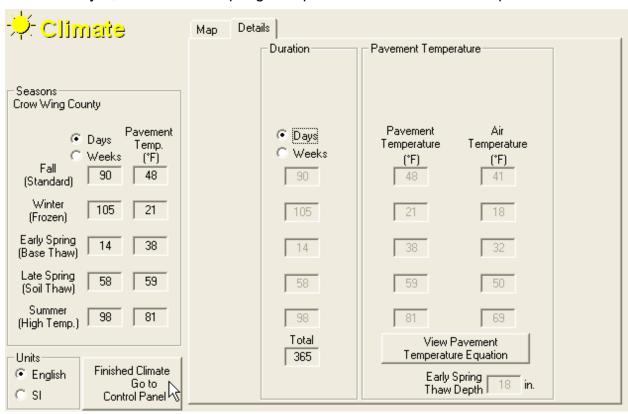


Figure j-4 climate district zone details tab in MnPAVE software

Traffic

ESAL (Equivalent Single Axle Load) is a simplified measure of traffic for pavement design. An ESAL is defined as an 18 kip (80 kN) dual tire axle with a tire pressure of 80 psi (552 kPa). Other axle loads and configurations can be converted to ESALs by using Load Equivalency Factors (LEF) as defined in Appendix D of the 1993 AASHTO Guide for Design of Pavement Structures.

Lifetime ESALs are the number of ESALs expected during the number of years specified in Design Period Length.

The First-Year value is calculated based on the Design Period Length and Growth Rate. If only First Year ESALs are known, it can be entered here and Lifetime ESALs will be calculated based on the Design Period Length and Growth Rate. The Design Period Length is typically 20 years. The Annual Growth Rate determines the amount that traffic increases during each year of the Design Period. Traffic analysis conducted by Mn/DOT has indicated that a simple growth model is appropriate for most Minnesota routes (traffic increases by a fixed amount each year).

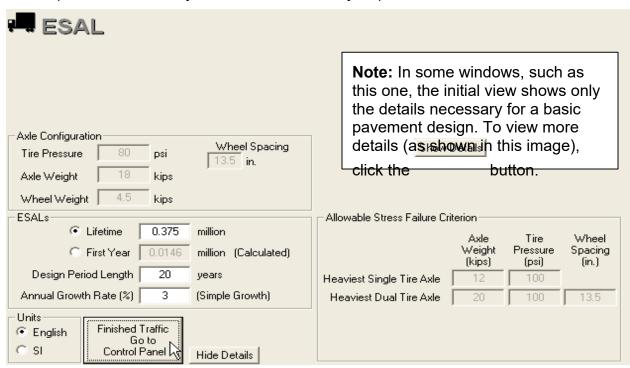


Figure J-5 ESAL input section in MnPave software

Allowable Stress is used to protect against failure in the aggregate base layer due to a single heavy load event. For this reason, the axle weights in this window represent the heaviest axles expected. The default values for low-volume roads (less than 1,000,000 ESALs) are legal axle weights in Minnesota. Values used for higher traffic volumes are consistent with data from around the state.

Structure

When Structure is opened for the first time in a project, the **HMA Mix Properties** Window opens to make sure all mix design information is entered correctly. Mix design information such as asphalt binder content and gradation are required to estimate the HMA dynamic modulus. Currently, the selection of a binder grade serves only to document the binders used in the design. Only PG 58-28 data was available for the current MnPAVE calibration, so all HMA layers will have PG 58-28 properties regardless of the binder type selected.

Up to three HMA types can be defined for layer 1. Since the LEA procedure only allows five layers, multiple HMA layers are combined into a single layer using the equivalent thickness method.

Click on the colored bar to select a default gradation based on a Mn/DOT specification. A custom gradation can be defined by entering numbers in the "Percent Passing" edit boxes.

To view more details about how HMA modulus is calculated, click on the "Show Details" button and then the Advanced button next to each lift.

The Structural Number (SN) is calculated using the method described in Section 2.3.5 of the 1993 AASHTO Guide for Design of Pavement Structures.

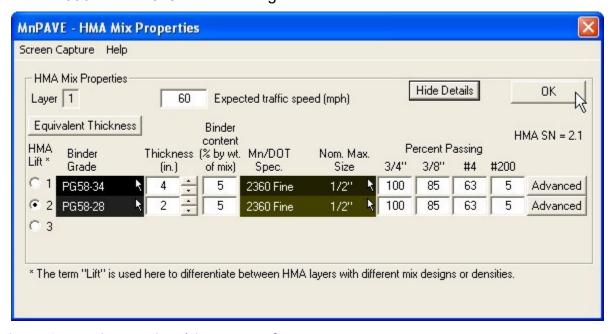


Figure J-6 HMA mix properties tab in MnPAVE software

Basic Structure

Basic Structure is intended for low-volume roads or designs that don't require a high degree of reliability. MnPAVE uses default design modulus values. These modulus values are adjusted for seasonal variations in moisture and temperature.

Click on a layer button to select the number of layers in the pavement structure. The bottom layer is always semi-infinite. A MnPAVE pavement structure must have between two and five layers. Due to limitations in the LEA procedure, layer 5 cannot be analyzed for rutting. Therefore layers 2 through 4 must contain at least one engineered soil¹ or undisturbed soil² layer.

The **Default Structures** area provides shortcuts for several common pavement structures. Select the desired pavement structure, then adjust the layer thicknesses and material subtypes.

Material Types for each layer are selected on the left side of the Structure window under **Edit Structure**. Layers with a white pointer arrow \(\bar{\chi} \) can be clicked to select a different subtype. R-Value Design can be clicked to view the traditional MNDOT design results for this structure.

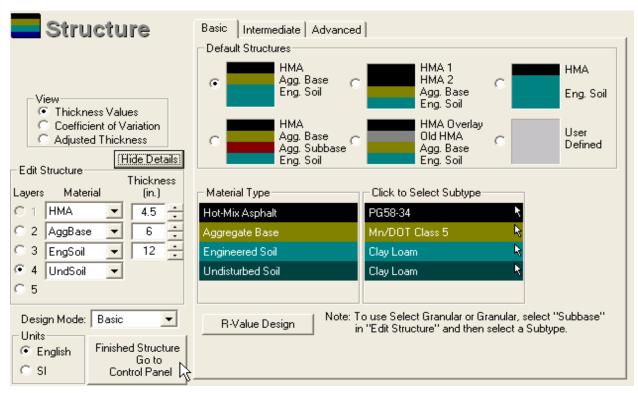


Figure J-7 Basic structure sublayers information in MnPAVE software

¹ Soil that has been blended and compacted prior to construction.

² Existing soil that has not been reworked. Because of uncertainty in the quality and uniformity of the material, the default undisturbed soil modulus is equal to half of the corresponding engineered soil modulus.

Confidence Level

This value is used to adjust layer thickness and modulus values to assure that a proportion of the pavement area meets or exceeds the desired values, based on the coefficient of variation (COV). The higher the confidence level and COV the more the value is reduced. A confidence level of 50% results in no reduction (the mean value is used in the simulation). The Confidence Level differs from the reliability value calculated in the Output Monte Carlo simulation. The Confidence Level reduces the values for all layers and acts as a factor of safety to account for variability and uncertainty. A Monte Carlo simulation should be run on the final design to determine reliability. In Design Mode, the Confidence Level is set at a default value of 70%. It is adjustable in Research Mode.

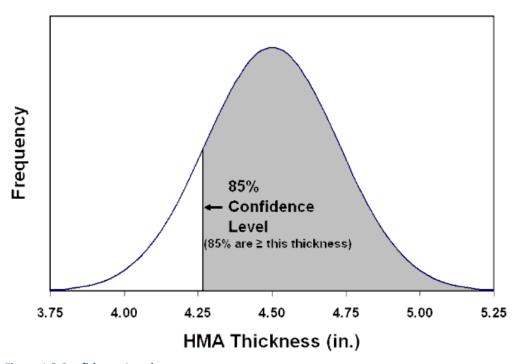


Figure J-8 Confidence Level cure concept

Thickness Views

Thickness Values Displays the design thickness. These values are adjusted based on the Thickness Coefficient of Variation (COV) for the simulation.

Thickness Coefficient of Variation indicates the variability of the thickness value of each layer.

$$COV (\%) = \frac{Standard Deviation}{Mean} \times 100$$

Adjusted Thickness Displays the reduced thickness used in the pavement simulation.

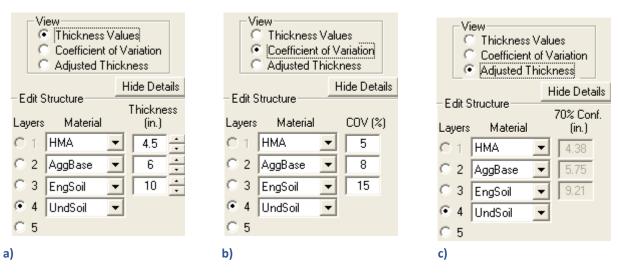


Figure J-9 thickness values in MnPave including a) thickness value tab, b) Coefficient of Variation (COV), c) adjusted thickness tab

Intermediate Structure

Intermediate Structure has a form for entering test data for aggregate base and subgrade soils. These values are converted to design modulus and adjusted for seasonal variations. If no test has been performed on a given material, it's box can be left unchecked to use default Basic material properties. Basic HMA data is used in this mode. A material subtype need not be selected if test data is entered. If the material subtype is known, it can be selected by clicking on the pointer arrow to the right of the edit box. If the material subtype is not known, select Unknown from the list. To view the calculated moduli, click on the Advanced tab.

If **Other** is selected in the **Edit Structure** area, material properties are edited in **Intermediate** or **Advanced Structure**.

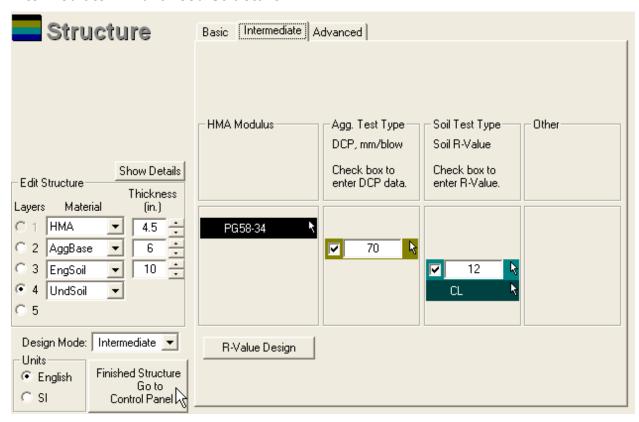


Figure J-10 Intermediate structure input tab in MnPave software

Advanced Structure

Advanced Structure requires the input of design modulus values for every layer and every layer.

Design Mode: Click on Basic, Intermediate, or Advanced to view the corresponding material properties below. Selecting Basic or Intermediate displays values calculated based on data from those modules. In Advanced mode, all material properties must be entered manually.

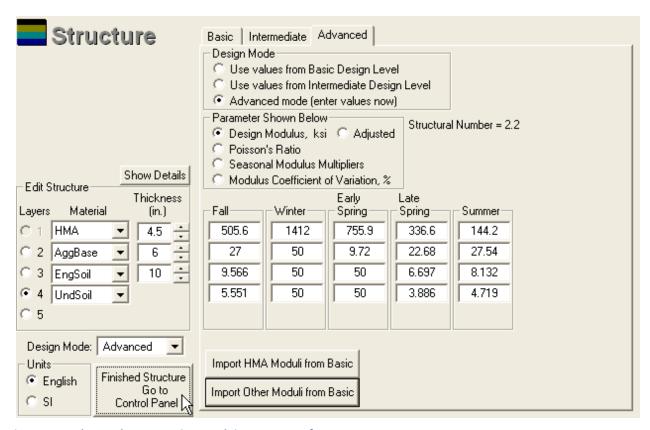


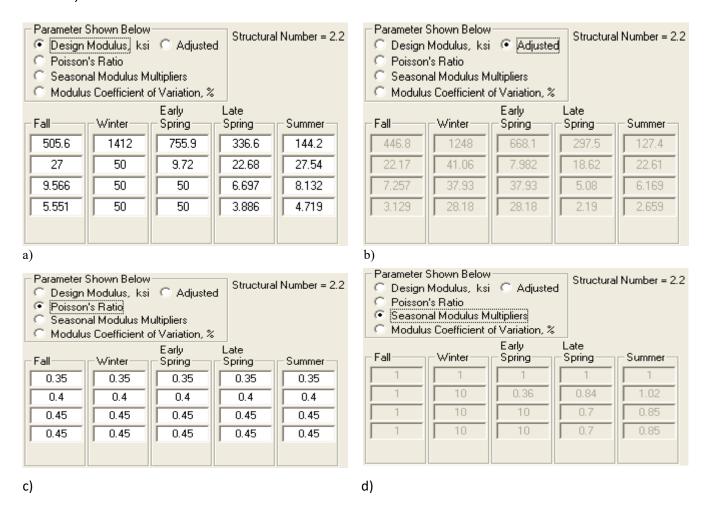
Figure J-11 advanced structure input tab in MnPave software

The design mode is displayed above the "Finished" button to confirm that the correct mode is selected. Any editing that is done in the Basic, Intermediate, or Advanced windows will change the mode. If any editing causes the wrong mode to be selected, this can be corrected prior to clicking on the "Finished" button.

Import Moduli

These buttons appear in the **Advanced Structure** window when **Advanced Mode** is selected. Basic default modulus values can be imported into Advanced Mode when custom values are not available for all layers and seasons.

Structure Views


Structure views for all design levels can be viewed by clicking the **Advanced** tab.

Design Modulus displays design modulus values. For pavement simulations these values are adjusted according to the Confidence Level.

Adjusted Modulus indicates how values used in the pavement simulation are adjusted according to the Confidence Level.

Poisson's Ratio is a measure of a material's tendency to expand in the horizontal direction when it is compressed in the vertical direction. Poisson's Ratio is used in Layered Elastic Analysis (LEA) simulations.

Seasonal Modulus Multipliers displays seasonal multipliers for each aggregate base, subbase, and soil material (HMA moduli are calculated for each season). Multipliers indicate moisture susceptibility and the state of the material (frozen or thawed).

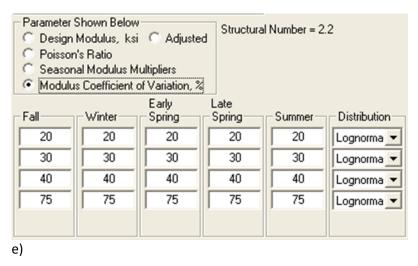


Figure J-12 Structure views in the Advanced tab in MnPave software including a) Design Modulus, b) Adjusted Modulus, c) Poisson's Ratio, d) Seasonal Modulus Multipliers, e) Modulus Coefficient of Variation

Modulus Coefficient of Variation (COV) shows the expected variability in modulus for each layer along with the assumed distribution shape. This data is used to determine the adjusted modulus values used in the simulation and the data set used for the Monte Carlo simulation in Output.

The default modulus data used in MnPAVE fits a lognormal distribution (log-transformed data fits a normal distribution). The COV of this data is calculated as follows:

$$COV = \sqrt{e^{\sigma} - 1 \times 100}$$

Overlay Design

While a complete Mechanistic-Empirical overlay design method has not yet been developed for MnPAVE, overlays can be designed using the conventional fatigue and rutting criteria to check for structural capacity. In addition, FWD³ deflections and the TONN method can be used to determine the necessary overlay thickness to avoid the need for Spring load restrictions.

Basic Overlay Design Procedure

While MnPAVE can check for fatigue, rutting, and shear failure in the aggregate base, these are often not the primary factors in determining overlay thickness. When designing overlays in Basic mode, the designer must also rely on other overlay design methods and guidelines. Do Project Information and Climate, and then go to Structure.

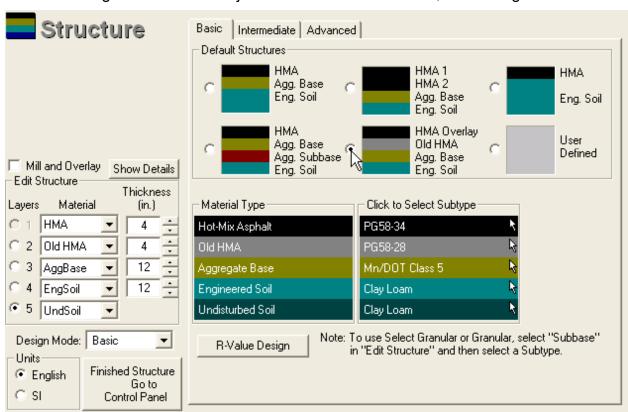


Figure J-13 Basic overlay structure sublayers information in MnPAVE software

Select the default overlay structure. If the old HMA properties for this layer have not yet been defined, the HMA Mix Properties window will open up.

³ Falling-Weight Deflectometer: A device that measures deflections that result from a weight dropped onto the pavement. These deflections can be used to determine the modulus of the pavement layers.

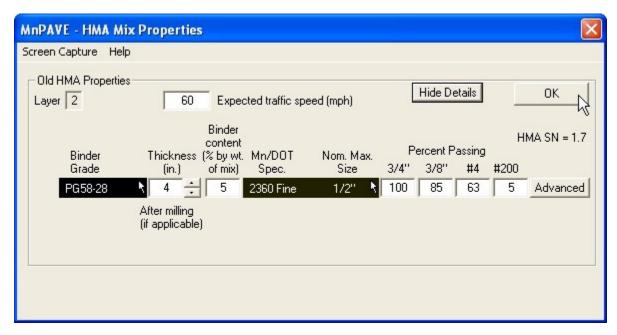


Figure J-14 HMA mix properties tab in MnPAVE software

If the HMA Mix Properties window did not open, click on the gray Old HMA subtype bar. Select the binder grade of the old HMA and any other mix properties that are known and click OK.

Check the Mill and Overlay checkbox if applicable (the old HMA thickness should be the thickness after milling).

Define the HMA properties for the new (overlay) HMA.

Define the other pavement layers to the extent that their material types and thicknesses are known.

Continue to Traffic and Output.

If this is a Mill and Overlay project, HMA fatigue and subgrade rutting results will be displayed. If it is not a Mill and Overlay project and rutting has been observed in the old HMA, check the Rutting is present in old HMA box. If rutting is not present in the existing HMA, it is not necessary to check for subgrade rutting.

Intermediate Overlay Design Procedure

Select material types and subtypes for the layers, with HMA overlay in layer 1 and Old HMA in layer 2.

Click on the Intermediate tab and select FWD Deflections.

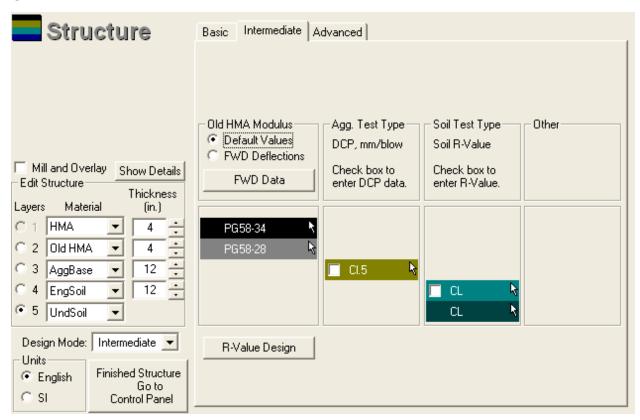


Figure J-15 Intermediate overly structure input tab in MnPave software

The FWD Data window will open. FWD loads and deflections must be entered in the spreadsheet. Data entry is greatly simplified by opening the FWD deflection file in a spreadsheet such as Excel, cutting and pasting to put the data in the appropriate columns, and then pasting the data into MnPAVE.

Figure J-16 FWD input data tab in MnPave software

Pavement temperature can be entered by two methods. If the pavement temperature is known, uncheck the Calculate BELLS3 Temperature checkbox and enter the known pavement temperature values in column 2. If the pavement temperature is not known, it can be estimated using the BELLS 3 method. Enter the previous day's high and low air temperatures in the appropriate boxes and the infrared surface temperatures in column

If Mill and Overlay was checked, the Old HMA thickness at the time of the FWD testing and after milling.

Annual Average Daily Traffic (AADT) must also be entered. If this value is not known, it can be estimated from the design ESALs and the road type by clicking on the button.

Select the soil plasticity at the bottom by clicking on the Soil is Plastic button. Clicking on the button toggles through three levels: Plastic, Semi-Plastic, and Non-Plastic. If this property is unknown, assume the soil is plastic.

The Reduction Rate 0.11 value is used in the TONN procedure. This value is typically 0.11 and ordinarily does not need to be changed.

Once all data has been entered, click on the Calculate button.

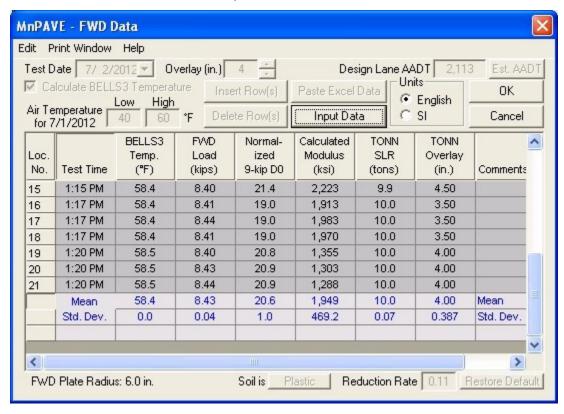


Figure J-17 FWD input data tab in MnPave software

If BELLS3 was used, column 2 displays the estimated pavement temperatures at 1/3 of the pavement depth. Column 3 displays the fwd load, and column 4 displays the center deflection normalized to a 9 kip (40 kN) load (all deflections are normalized for the calculations). Column 5 displays the calculated HMA modulus and column 6 displays the Spring Load Restriction recommended by the TONN procedure for the selected overlay thickness. Column 7 displays the overlay thickness recommended by the TONN procedure. The mean and standard deviation for these values is displayed at the bottom of the table.

Output

Output displays the expected life based on fatigue and rutting damage. Optimum layer thickness can be determined automatically in ESAL mode.

Fatigue and Rutting Models

The expected life of a pavement is calculated by simulating the strains due to traffic loads and using an empirical transfer function to determine the Allowed Repetitions⁴ for each load. If the applied load repetitions exceeds the allowed repetitions, the pavement is assumed to have failed.

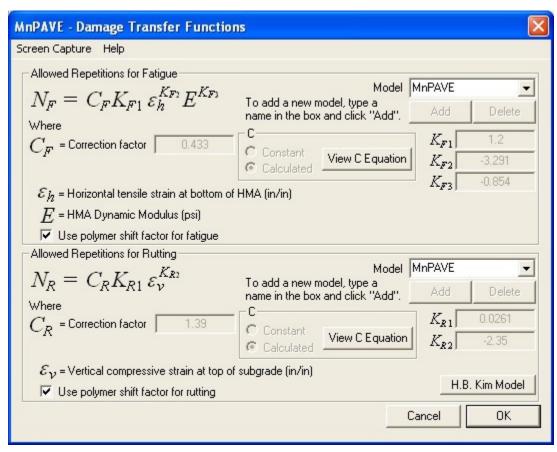


Figure J-18 Fatigue damage function and details tab in MnPave software

⁴ The number of repetitions of a given axle load that are assumed to cause pavement failure by fatigue cracking or rutting

Initial Output

Basic Output displays the expected years of pavement life based on calculated fatigue and rutting damage. The pavement damage is also expressed as a percent contribution by each season.

If fatigue or rutting values are too low or too high, Material subtypes and layer thicknesses can be adjusted. After each change "Recalculate" must be clicked to view the new results. For Basic designs, HMA and aggregate subtypes can be adjusted in Output. For Intermediate designs, only HMA can be adjusted in Output (other materials must be changed in Structure). In Advanced mode, all material types must be changed in Structure.

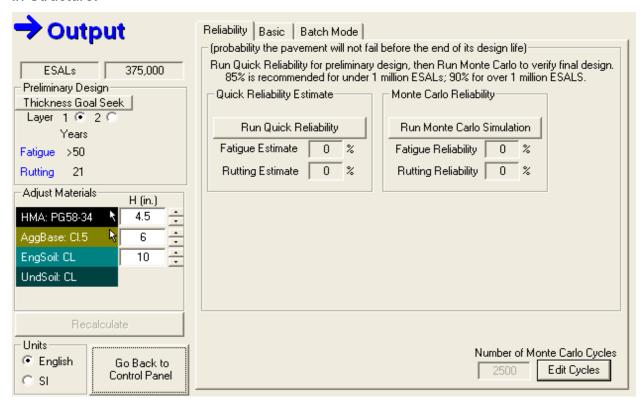


Figure J-19 Reliability input tab in MnPave software

Thickness Goal Seek is a tool for determining design layer thicknesses in ESAL mode. To adjust the HMA layer only, select "Layer 1" and click on Thickness Goal Seek. A number of cycles will be executed until the pavement fails in neither fatigue nor rutting.

When Thickness Goal Seek is done for non-HMA layers, the HMA layer will be adjusted for fatigue first (if necessary), and then the selected layer will be adjusted. This is because adjusting underlying layers has a relatively small effect on fatigue life and may result in a large number of cycles and very thick layers.

After running Thickness Goal Seek, layer thicknesses can be adjusted manually to obtain the desired structure.

Reliability

Output reliability considers the variability of the thickness and modulus values for each layer to determine a reliability value for the pavement design.

The reliability will not necessarily agree with the confidence level selected in Structure because the confidence level selects the "worst case" thickness and modulus value for each layer while the reliability analysis considers a random combination of thickness and modulus values.

The number of Monte Carlo cycles can be adjusted by clicking the Edit Cycles button. A sensitivity analysis was conducted to determine the optimum value of 2500 cycles.

uses equations derived from running a range of full Monte Carlo simulations to estimate the Monte Carlo reliability for a given structure. This is a time-saving feature that allows quick adjustments in the structure. Once the desired quick reliability value is reached a full Monte Carlo reliability should be run for verification.

The Run Monte Carlo Simulation button runs the selected number of Monte Carlo cycles. The time for this process ranges from less than one minute to a few minutes for an ESAL design (depending on the computer's processor speed) and up to several hours for a load spectrum design.

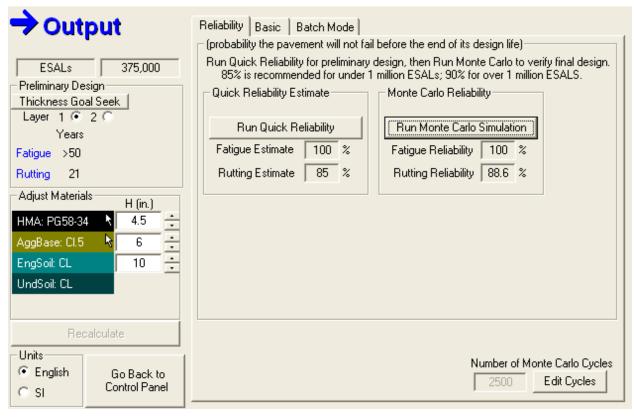


Figure J-20 Reliability input tab in MnPave software

Reports

A summary report can be saved as PDF file by clicking on the PDF icon en by selecting "PDF Design Summary" from the "File" menu

A screen shot of the output window can be printed by clicking on the camera icon most other windows have a camera icon that can be clicked to print a screen shot.

Basic Output

Basic Output displays the expected years of pavement life based on calculated fatigue and rutting damage. The pavement damage is also expressed as a percent contribution by each season.

The relative damage effect from each season is displayed on the right side of the window. These values are affected by both the magnitude of strain that occurs during each season as well as the season length.

Results can be exported to a text file (comma or tab delimited) or to an "Excel" file. The Excel file is actually a tab delimited text file with an "xls" file extension. Double-clicking on this file opens it in Excel, but it must be "Saved As" Excel to convert it to true Excel format.

The Design Summary contains expected life and damage, project information, and limited structural and traffic information.

Damage Details includes more seasonal and traffic information.

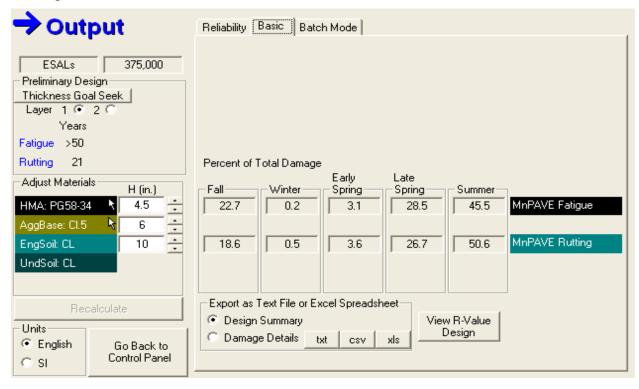


Figure J-21 Basic Fatigue and rutting damage input tab in MnPave software

Batch Mode

The batch mode allows the user to specify a range of layer thickness values and have all results tabulated in a text file or spreadsheet.

Check the box for each layer for which the thickness will be varied. Type the thinnest value in the "Begin" box, the thickest value in the "End" box, and the amount to increase the thickness in the "Incr." box. Damage Limits are used to exclude extremely over- or under-designed structures from the output file. When Set Frost-Free Depth is selected, each simulated structure will be adjusted so that the specified thickness of granular or better material is placed above the subgrade soil.

Selecting one of the output format buttons will prompt the user for a file name and then run the batch process.

Save As Text or Excel

The value under **Batch Cycles** is the number of structures that will be simulated. If **Set Damage Limits** is checked, the number of lines in the output file may be fewer than this value.

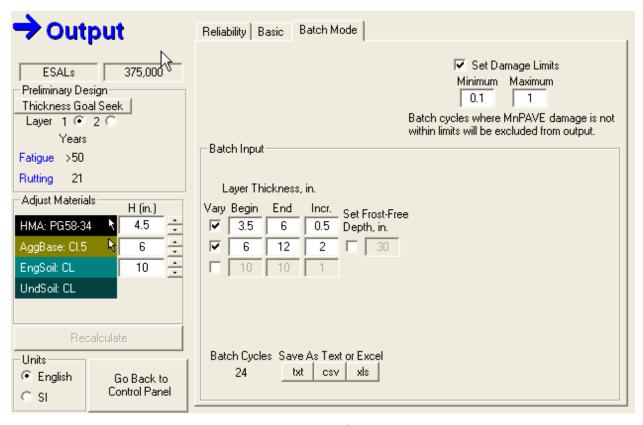


Figure J-22 Batch mode input damage limits tab in MnPave software

Research Mode

The standard design mode in MnPAVE provides the features necessary to complete a pavement design. Research Mode can be selected from the Main Control Panel from the View menu.

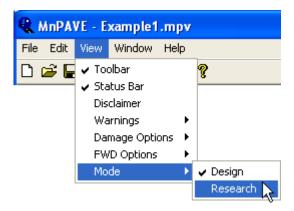


Figure J-23 Research mode selection in MnPave software

In Research Mode there are more features and more flexibility in entering data. However, since data entered in Research Mode may fall outside the range of date used to calibrate MnPAVE, Research Mode is not recommended for pavement design