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Executive Summary 

This study of “Detecting Subsurface Voids in Roadways Using UAS with Infrared Thermal 
Imaging” was undertaken as part of the Massachusetts Department of Transportation 
(MassDOT) Research Program. This program is funded with Federal Highway Administration 
(FHWA) State Planning and Research (SPR) funds. Through this program, applied research is 
conducted on topics of importance to the Commonwealth of Massachusetts transportation 
agencies. 
 
The opening of soil voids underneath roadway pavement caused by the failure of underground 
structures such as culverts and drainage piping create a safety hazard to the traveling public. 
Water infiltration and soil erosion initiated by damaged or collapsed culverts may create 
sinkholes that result in costly repairs and traffic inconveniences. The cost of a culvert repair 
ranges from a few thousand dollars to $32,000, and costs can be even higher if the culvert 
failure causes the roadway to collapse. Knowledge about the location, severity, and depth of 
soil voids above underground structures can be used as an alert system and is crucial for 
roadways preservation projects, plan effective maintenance, and system repair. 
 
Because of the large number of culverts, many of which are located in remote areas or are 
subjected to high-volume traffic, routine inspections are hard to achieve. Currently, inspecting 
culverts and other underground structures requires expensive or time-consuming techniques 
such as laser scan inspection, drain cameras, or ground penetrating radar (GPR). While laser 
scanners and drain cameras require direct access to the culvert from the side of the road through 
streams or drainage channels, GPR uses electromagnetic pulses (EMPs) to image the culvert 
from the road’s surface using the reflected signals. However, results of GPR analyses are 
challenging to interpret by untrained personnel and are affected by dielectric conduction losses, 
uncertainty about the composition of the inspected material, and signal scattering due to 
material inhomogeneity. As a result, MassDOT personnel remarked on the lack of proper tools 
to identify the location of drainage pipelines and the quantity of filling material used to repair 
sinkholes. Thus, nondestructive approaches that are more accurate and cost-effective and 
capable of eliminating traffic congestion and risk for the inspectors are sought and motivated 
this research. 
 
Novel advancements in computer vision and image processing techniques have made infrared 
thermography (IRT) a powerful method to assess the conditions of large-scale systems and 
create heat maps of physical attributes. IRT has shown capabilities in detecting subsurface 
defects in various engineering structures and materials, especially when combined with 
unmanned aerial systems (UASs). In early 2020, MassDOT’s divisions of Highway and 
Aeronautics performed some pilot tests to study the feasibility of UAS-borne IRT inspection 
of roadways to identify drainage pipes and culverts from thermal images. However, results 
were inconclusive and inaccurate, and methodic characterization of the infrared (IR) imaging’s 
capability to be a more cost-effective method for rapid large-scale transportation infrastructure 
inspection and subsurface damage evaluation was still missing. For these reasons, laboratory 
and field tests were necessary to develop mission-critical information to mark IR imaging’s 
performance and solve issues that still characterize this technique. Mission-specific variables 
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such as the correlation between visible and IR spectrum images, IR images resolution and 
accuracy, UAS motion, shadow effects, thermal warming related to vehicle tire traffic, and 
weather conditions needed to be considered before field deployment. 
 
The research leveraged UASs to improve the efficiency and flexibility of IRT in detecting 
voids above damaged culverts and drainage pipes. More specifically, this research focuses on 
the experimental validation of rapid aerial infrared thermography (AIR_T) and UASs 
for (i) detecting soil voids and (ii) quantifying the dimension and severity of those defects 
before they fail in service of the affected infrastructure. The specific goals of this research 
included the following: 

• Develop post-processing algorithms for image de-noising and correction to 
improve the detection accuracy of IRT; 

• Determine the accuracy of IR systems as a function of depth and for field 
inspections to detect soil voids; and 

• Define operational problems associated with its field deployment and suggest 
operating procedures to optimize the use of IR imaging on UAS platforms. 

 
To validate the accuracy of the proposed UAS-AIR_T, laboratory and field tests were 
performed. The former was conducted on a lab-scale mock roadway based on MassDOT’s 
standards for highways, roadways, and pavements to validate the accuracy of IRT in a 
controlled environment. During those tests, the smallest defect size detectable with IRT was 
investigated and compared with GPR-based results. In addition, the accuracy of the IRT 
method as a function of (i) camera distance, (ii) camera tilt angle, (iii) defect 
depth, (iv) moisture content, and (v) temperature difference was investigated. Field tests were 
performed to validate the UAS-AIR_T tool and define new inspection processes and protocols. 
A UAS embedding a high-resolution IR camera was used to inspect damaged and undamaged 
portions of roadways on top of culverts, overlay IR with digital images, and locate positions 
of defects. The undamaged portion of a roadway was used as a baseline and compared with 
damaged cases to identify the thermal signatures of defects and fill materials. 
 
Because IRT suffers from poor signal-to-noise ratio (SNR), three different image post-
processing algorithms were refined to improve the accuracy of the technique and locate the 
subsurface voids caused by a failing culvert: (i) R2-based damage analysis, (ii) principal 
component thermography (PCT), and (iii) sparse-principal component thermography (S-PCT). 
The three approaches were quantified as a function of the image sampling rate used to collect 
data (i.e., the time interval between two subsequent IR photos) and the size of the defect. The 
tests proved that PCT and S-PCT were effective approaches to enhance the possibility of 
detecting subsurface voids. S-PCT can quantify the dimension of the subsurface voids with an 
error below 5% when proper sampling parameters are selected.  
 
To finish, this report contains a section in which best practices and lessons learned are 
described. The section includes the procedures for operating the UAS in a real-world 
environment (e.g., time of the inspection, working distance, specific IR methods) to minimize 
the risk of false positive and increase the damage detection accuracy. 
  



ix 
 

Table of Contents 

Technical Report Document Page ............................................................................................. i 
Acknowledgments......................................................................................................................v 
Disclaimer ..................................................................................................................................v 
Executive Summary ................................................................................................................ vii 
Table of Contents ..................................................................................................................... ix 
List of Tables ........................................................................................................................... xi 
List of Figures .......................................................................................................................... xi 
List of Acronyms ................................................................................................................... xiii 
1.0 Introduction ..........................................................................................................................1 

1.1 Currently Used Inspection Techniques for Culvert Assessment .................................................. 2 
1.2 Infrared Thermography for Condition Monitoring ...................................................................... 3 
1.3 Applications of Unmanned Aerial Systems for Civil Structures Health Monitoring................... 5 

2.0 Research Methodology ........................................................................................................7 
2.1 Preliminary Evaluation of Environmental Parameters ................................................................. 7 
2.2 Experimental Setup for Laboratory Tests .................................................................................. 10 
2.3 Outdoor Validation Tests ........................................................................................................... 13 
2.4 Advanced IR Images Post-Processing Techniques .................................................................... 16 

2.4.1 R2-Based Analysis .............................................................................................................. 16 
2.4.2 Principal Component Thermography and Sparse-Principal Component Thermography ... 17 

3.0 Results ................................................................................................................................21 
3.1 Analysis of the GPR Data .......................................................................................................... 21 
3.2 Analysis of IR Images Processed with Traditional Methods ..................................................... 22 
3.3 Analysis of IR Images Processed with Advanced Methods ....................................................... 23 

3.3.1 Time Sensitivity Analysis ................................................................................................... 28 
3.4 Analysis of the Outdoor Performance Tests .............................................................................. 30 

4.0 Best Practices and Conclusions .........................................................................................39 
5.0 References ..........................................................................................................................42 
6.0 Appendices .........................................................................................................................49 

6.1 Appendix A: Historical water and road temperature data .......................................................... 49 
6.2 Appendix B: Procedure used for laboratory tests ...................................................................... 51 
6.3 Appendix C: Procedure for outdoor validation tests .................................................................. 52 
6.4 Appendix D: Code for R2-based analysis ................................................................................... 53 
6.5 Appendix E: Code for PCT- and S-PCT-based analysis ............................................................ 56 

 



x 
 

 

This page was left blank intentionally



xi 
 

List of Tables 

Table 2.1: Bodies of water in this study ................................................................................................. 8 
Table 2.2: DJI Matrice 200 V2 technical specifications ...................................................................... 15 
Table 3.1: Accuracy of the three techniques ........................................................................................ 27 
Table 3.2: Accuracy as a function of sampling rate ............................................................................. 30 
Table 3.3: Flight details to determine IRT accuracy ............................................................................ 31 
Table 3.4: Accuracy with camera in nadiral position ........................................................................... 33 
Table 3.5: Accuracy with camera at 55 degrees ................................................................................... 33 
Table 3.6: Accuracy as a function of sampling rate ............................................................................. 34 
Table 3.7: Large-area mapping and orthomosaic generation ............................................................... 36 
Table A.1: Water temperature data sets................................................................................................ 50 
 

List of Figures 

Figure 1.1: Electromagnetic spectrum with infrared region ................................................................... 3 
Figure 1.2: Thermal radiation emitted from object ................................................................................ 4 
Figure 2.1: Locations of streams and rivers ........................................................................................... 8 
Figure 2.2: Average temperature in Hobbs Brook ................................................................................. 9 
Figure 2.3: RWIS station locations ........................................................................................................ 9 
Figure 2.4: Pavement and water temperature differential .................................................................... 10 
Figure 2.5: Laboratory test setup .......................................................................................................... 11 
Figure 2.6: Subsurface voids of the culvert .......................................................................................... 12 
Figure 2.7: FLIR Zenmuse XT2 IR camera ......................................................................................... 12 
Figure 2.8: Experimental setups ........................................................................................................... 13 
Figure 2.9: Culvert locations ................................................................................................................ 14 
Figure 2.10: Details of the three culverts ............................................................................................. 14 
Figure 2.11: Equipment operated by remote pilot ................................................................................ 15 
Figure 2.12: Preplanned flight path ...................................................................................................... 16 
Figure 2.13: Workflow of the R2-based analysis .................................................................................. 17 
Figure 2.14: PCT workflow .................................................................................................................. 18 
Figure 3.1: B-scans at 300 and 800 MHz ............................................................................................. 21 
Figure 3.2: Raw IR images ................................................................................................................... 22 
Figure 3.3: Derivatives 0–80 min after halogen lamp .......................................................................... 23 
Figure 3.4: Derivatives with heating pad and surface water ................................................................ 23 
Figure 3.5: R2-based results showing COD distributions ..................................................................... 24 
Figure 3.6: EOF2 from PCT analysis .................................................................................................... 26 
Figure 3.7: EOF2 from S-PCT analysis ................................................................................................ 27 
Figure 3.8: Uneven pavement–soil interface ........................................................................................ 28 
Figure 3.9: IR images comparing technique and time .......................................................................... 29 
Figure 3.10: IR images of the three culverts ........................................................................................ 30 
Figure 3.11: PCT and S-PCT for location 1 ......................................................................................... 31 
Figure 3.12: Effect of shadow and no damages.................................................................................... 32 
Figure 3.13: PCT and S-PCT at 0 degrees ........................................................................................... 32 
Figure 3.14: PCT and S-PCT at 55 degrees ......................................................................................... 33 
Figure 3.15: Time sensitivity analysis using PCT ................................................................................ 34 
Figure 3.16: Time sensitivity analysis using S-PCT ............................................................................ 35 



xii 
 

Figure 3.17: SURF algorithm workflow for orthomosaic generation .................................................. 36 
Figure 3.18: Results for large-area mapping ........................................................................................ 37 



xiii 
 

List of Acronyms 

Acronym Expansion 
AIR_T Aerial Infrared_Thermography 
COD Coefficient of Determination 
DVS Downward Vision System 
EI Electromagnetic Induction 
EM Electromagnetic 
EOF Empirical Orthogonal Function 
FAA Federal Aviation Administration 
FOV Field of View 
GPR Ground Penetrating Radar 
GSD Ground Sampling Distance 
IR Infrared 
IRT Infrared Thermography 
MassDOT Massachusetts Department of Transportation 
MT Modulated Thermography 
NDE Nondestructive Evaluation 
PCA Principal Component Analysis 
PCT Principal Component Thermography 
PPT Pulse-phase Thermography 
PT Pulsed Thermography 
RPC Remote Pilot in Command 
RWIS Road Weather Information System 
SHM Structural Health Monitoring 
SNR Signal-to-Noise Ratio 
S-PCT Sparse-Principal Component Thermography 
SVD Singular Value Decomposition 
SURF Speeded Up Robust Feature 
UAS Unmanned Aerial System 

 
 



xiv 
 

This page was left blank intentionally.



1 
 

1.0 Introduction 

This study of “Detecting Subsurface Voids in Roadways Using UAS with Infrared Thermal 
Imaging” was undertaken as part of the Massachusetts Department of Transportation 
(MassDOT) Research Program. This program is funded with Federal Highway Administration 
(FHWA) State Planning and Research (SPR) funds. Through this program, applied research is 
conducted on topics of importance to the Commonwealth of Massachusetts transportation 
agencies. 

 
Culverts and drainage pipes are used as the drainage, sewer, or water channels that run under 
a road. Damages in a culvert facilitate soil erosion and material loss from the road subgrade, 
creating voids underneath the pavement (1). As erosion continues, the subsurface void size 
increases, resulting in sinkholes and the failure of the unsupported pavement if not repaired in 
time (2,3). Sinkholes caused by small underground cavities and subsurface voids that expand 
over time resulted in safety hazards, traffic inconveniences, and expensive repairs in the United 
States. For example, in 2008, a culvert on Interstate 25 in Denver, Colorado, collapsed and 
created a two-lane-wide sinkhole that caused road shutdown and delays. The final repair of the 
90-foot long culvert took several days and cost ~$1 million. The poor and mediocre conditions 
of 43% of North America’s roadways, combined with the increase in severe weather events, 
accelerate the degradation process of the infrastructure (4). Based on the severity of the 
damages, repair actions range from retrofitting to trenching a new pipeline. A cost analysis 
performed by the Minnesota DOT on 550 repaired culverts reported costs ranging from $1,000 
to $32,000 per rehabilitation project (5). Structural assessment and retrofitting before failures 
in service can help save a significant amount of money, labor, and inconvenience for the 
traveling public. For these reasons, cost-effective monitoring approaches must be developed 
to keep up with maintenance needs without interrupting the roadways’ everyday operations 
and affecting the economy. 
 
While it is crucial to determine damages early in their life cycles, detecting subsurface voids 
in roadways caused by failing underground structures is a complex problem that requires labor, 
time, and extensive capital. Culverts are located in remote areas or underneath roadways 
characterized by high-volume traffic, making routine inspections and maintenance challenging 
tasks. DOT personnel laments a lack of proper tools to assess the conditions of culverts because 
currently used methods are inaccurate and difficult to deploy in real-world scenarios. A precise, 
cost-effective, and quick method for large-scale inspection and subsurface damage evaluation 
is missing.  
 
In this study, the feasibility of using infrared (IR) imaging combined with UASs is investigated 
as nondestructive evaluation (NDE) techniques for culverts and drainage pipes. This research 
aims to determine the capability of IRT to detect roadway subsurface voids at an early stage 
while reducing traffic congestion and risks for the inspectors. In particular, the research focuses 
on the experimental validation of rapid aerial IRT (AIR_T) and UAS for (i) detecting soil voids 
and (ii) quantifying the dimension and severity of those defects before they result in failure-
in-service of the roadway. Because an accurate and methodic characterization of the IRT’s 
capability to be a more cost-effective method for inspection and subsurface damage evaluation 
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is missing, this study provides elements to improve the decision-making process of highway 
maintenance engineers and the possibility to access more accurate information about the 
location and severity of damages in roadways. MassDOT personnel is provided with a 
promising system to monitor in-service roadways to extend their operational life while 
reducing traffic congestion and risks for the inspection engineers. 
 
This report is organized as follows: the rest of the introduction summarizes currently used 
culvert inspection methods, the operational principles of IRT and its applications, and the use 
of UASs for civil engineering infrastructure monitoring. Section 2 (Research Methodology) 
describes the laboratory and field tests used to validate the proposed approach, followed by a 
discussion about the analytical framework developed to post-process the IR images and detect 
subsurface voids. The outcomes of the experiments performed on a lab-scale roadway and the 
findings of the outdoor tests carried out on three culverts using a UAS to mount an IR camera 
are presented in Section 3 (Results). Lessons learned and conclusions are drawn in Section 4 
(Best Practices and Conclusions). 

1.1 Currently Used Inspection Techniques 
for Culvert Assessment  

Multiple technologies have been developed for roadways monitoring and subsurface voids 
detection. These include alternating current (AC) resistivity, electromagnetic induction (EI), 
seismic reflection and refraction, and GPR, with each of them having advantages and 
disadvantages (6–12). GPR is the most widely used approach for roadway inspection (13). 
GPR is a nondestructive evaluation (NDE) technique in which an electromagnetic (EM) wave 
in the 10 MHz to 2.6 GHz range is transmitted through the soil, and its reflection is used to 
image any subsurface discontinuity. In the presence of a subsurface defect, the backscattered 
signal changes and that modification can be used for gathering information about the depth 
and severity of the damage (14,15). Several advancements are currently taking place in GPR 
technologies that focus on signal post-processing (16–18). However, GPR analyses are 
complicated to be interpreted by untrained personnel because of dielectric conduction losses, 
uncertainty about the composition of the inspected material, and signal scattering due to 
inhomogeneity. GPR tends not to be very accurate for practical applications due to different 
materials and layers of thickness of the roadways (19,20). Despite the significant effort to 
improve GPR systems in recent years, this method is still not robust and accurate enough to 
locate subsurface defects in roadways caused by failing culverts. In addition, GPR is a very 
time-consuming and expensive technique and very difficult to be used for large-scale 
inspections. For example, using GPR on high-traffic-volume roads is challenging, making this 
technology unsuitable in densely populated regions without blocking the roadways for long 
periods. 
 
In recent years, specialized robots embedding cameras have been designed for culvert 
assessment (21). Based on the specific inspection goals, different cameras or sensing 
techniques are used. For example, end-to-end pipe inspections are carried out by mounting a 
camera with flashlights to collect videos and images from the inside of the culvert to spot 
defects, holes, and signs of corrosion (22). Other approaches rely on using a laser scanner 
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mounted on the robot to recreate a three-dimensional point cloud of the inside of the structure 
and assess its conditions (23). An attempt to use IRT by using a robot installing an IR camera 
and halogen lights to heat the culvert has been proposed too. However, this approach proved 
feasible only for culverts with a diameter larger than 1.2 m (47.2 in.) (24). 

1.2 Infrared Thermography for Condition 
Monitoring 

Among many available techniques, IRT offers the possibility to examine and monitor aging 
structures efficiently. The basic principle behind IRT inspection is that subsurface defects 
modify the heat flow through the material. Voids or structural discontinuities in the object 
being inspected cause a variation in temperature of the material surface, which a thermal 
camera can capture. The thermal camera measures the heat transfer mechanism between the 
object being tested and the environment by detecting the IR radiation emitted by the object. 
Specifically, any surface with a temperature higher than the absolute zero (i.e., 0°K) emits 
energy in the form of electromagnetic (EM) radiation as a function of its temperature according 
to the Stefan–Boltzmann law. As shown in Figure 1.1, the emission of IR radiation occurs with 
EM waves having a wavelength in the 0.75–12 μm range. The radiation can be converted to 
temperature values through the material’s emissivity (i.e., effectiveness in emitting energy as 
thermal radiation). Since IR radiations are not visible to the human eye, tailored sensors called 
bolometers are needed to detect the emitted wavelengths (25).  
 

 

Figure 1.1: Electromagnetic spectrum with infrared region 
 
To generalize, abnormal temperature profiles in the IR images indicate potential defects. 
Damages in the structure can be highlighted by local variations in the uniformity of the surface 
temperature. Because the thermal conductivity of air is lower than that of soil and asphalt, a 
thermal gradient is caused by voids that can be recorded with an IR camera. The heat flow 
between the lower and upper layers of the pavement depends on the temperature difference. 
The heat flow changes as soon as an area characterized by cracks, voids, or water infiltration 
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is present in the material’s structure. This process is shown in Figure 1.2 for a concrete slab 
that absorbs heat during the day and releases it at night (26). During the day, when the sun and 
air temperature are heating the material, areas above a subsurface defect warmth faster than 
those where the concrete is intact. For this reason, during the day, voids and delamination 
defects can be detected as warmer spots compared to undamaged parts. On the contrary, the 
thermal behavior is inverted during the night. The temperature of the structure decreases and 
surfaces above a void cool down faster compared to undamaged areas. As a result, the defect 
appears as a cold spot. Generally, defects are detected by a qualitative assessment of IR images 
as areas in the image having a high thermal contrast (i.e., hot or cold spots) compared to 
undamaged areas (27–29). The intensity of the thermal contrast for a subsurface anomaly 
varies with its depth so that a void near the surface would create a more significant contrast 
than deeper defects. Figure 1.2 shows thermal radiation emitted from an object and how it is 
used to find subsurface defects (30). 

 

 

Figure 1.2: Thermal radiation emitted from object 
 
Based on the excitation method used to warm the structure, IRT is classified as flash or pulsed 
thermography (PT), modulated thermography (MT), and pulse-phase thermography (PPT) 
(31). In PT, the specimen is warmed up with a heat flash/pulse before collecting the images 
(32). In MT, a sinusoidal temperature excitation is used before recording the data. The 
modulated frequency used for the thermal excitation is case-specific to improve results 
accuracy. In PPT, PT and MT are used simultaneously. First, the object is pulse heated; then it 
is exposed to a thermal excitation that is frequency modulated (33). IRT is also categorized as 
active or passive. The former is based on external excitation methods for creating a temperature 
difference. In contrast, external excitation is not required in passive thermography and the 
detection is based on the energy emitted by the object naturally (34). Although active 
thermography allows better defect detection by increasing the temperature difference between 
the test object and the environment, the possibility of having outliers in the results is higher 
than the passive method. In large-scale applications such as bridges and building inspections, 
warming up the structure before the test is not practical due to the size of the inspected areas 
(35). Therefore the thermal excitation of the sun is used, and the inspection is performed when 
external environmental conditions guarantee the most significant temperature difference. 
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Therefore, passive IRT is performed at dusk or at night after the structure has been heated by 
the sun during the day (30, 37). 
 
The use of IRT for structural health monitoring (SHM) and NDE has increased significantly 
in recent years, mainly because of cheaper IR cameras and advanced detection algorithms (38, 
39). Traditionally, IRT has been used primarily for energy audit (40–44), material 
characterization (45–48), and only recently for SHM of civil structures (49, 50). IRT has 
transitioned from being used as a laboratory technique to a tool to detect subsurface defects for 
large-scale systems and civil engineering infrastructure in real-world scenarios (51–53). IRT 
has been used for remote, rapid, and accurate imaging of concrete structures (54). Because of 
their strategic relevance, bridges have been among the main applications of IRT in the civil 
engineering domain (30, 35). For example, IRT has been used to detect air trapped in bridge 
decks representing voids in the concrete structure (55–57). Other studies developed automated 
procedures for detecting and classifying delamination in concrete bridge decks (58) and 
corrosion in steel bridges using deep learning (59). Even if in smaller numbers compared to 
the bridge-related applications, IRT has been used to inspect dams and evaluate defects in their 
structure (60), roadways (61), leaks in underground pipelines (62), and culverts (63). It is 
interesting noticing that the approach proposed in (63) resembles the one of this research. 
However, that study is based on a laboratory validation only and the roadway is a metallic slab 
that is not representative of real-world conditions.  

1.3 Applications of Unmanned Aerial 
Systems for Civil Structures Health 
Monitoring  

NDE techniques based on computer vision have gained popularity in recent years because of 
their non-contact nature that simplifies the inspection of large areas (64). In addition, when 
computer vision methods are paired with UASs, the image acquisition process is expedited and 
made more flexible. Combinations of photogrammetry and UAS have been used for the 
inspection of bridges (65, 66), dams (67), and SHM of aging structures (68). UASs were also 
used to measure truss members and reconstruct 3D models of the structure to detect damages 
(69) and track deformation and surface changes by analyzing the generated point clouds (70). 
 
The use of UASs can also help to inspect areas that are difficult to access or hazardous. In 
many cases, traditional inspections are not only dangerous but also impossible. In situations 
like these, the application of UASs for the inspection of large-scale systems has been a 
promising approach (71). Videos collected using UASs have been used to measure structural 
deformations in a building caused by earthquakes and assess structural reliability (72). Another 
application of UAS-based videography focused on determining the location and size of cracks 
in concrete beams, which can be expanded to inspect damages in civil infrastructure (73). As 
observed, UAS-based inspection technologies can be combined with image processing 
methods to detect small cracks by combining the benefits of remote inspections with high 
precision measurement for areas difficult to reach (74). 
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Applications of UAS for inspection have also gained popularity because of the possibility of 
performing SHM/NDE assessment and limiting interference with the targeted objects. 
Researchers proved that IRT inspections of bridges could be done using IR cameras installed 
on vehicles moving at driving speed (75) and on UASs (76) to reduce interference with traffic 
and limit lanes closure. Hence, it can be seen that recent advancements in drone-based 
technologies have made the SHM of civil infrastructure even more efficient. 
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2.0 Research Methodology 

In early 2020, the MassDOT Highway and Aeronautics Divisions performed pilot tests to study 
the feasibility of UAS-borne IR inspection of roadways to identify drainage pipes and culverts 
from thermal images. The results of the pilot tests suggested some ability to identify damages 
in those systems. However, the outcomes of the study were inconclusive with regard to the 
accuracy or performance of IRT. An accurate and methodic characterization of the IR 
imaging’s capability to be a more cost-effective method for rapid large-scale transportation 
infrastructure inspection and subsurface damage evaluation is still missing, which justifies the 
scope of this work. The research relies on an experimental validation for quantifying the 
efficiency of the proposed UAS-AIR_T system for (i) detecting soil voids and (ii) quantifying 
the dimension and severity of those defects before they cause failure-in-service of the affected 
infrastructure. This study aims to develop mission-critical information that can mark IR 
imaging’s performance and solve issues that still characterize this technique through laboratory 
experiments and field tests. The specific goals of this research include the following: 
• Determine the accuracy of IR systems as a function of defects depth and severity, 
• Develop post-processing algorithms for image de-noising and correction to improve the 

detection accuracy of IRT, and  
• Define operational problems associated with the field deployment of the technology and 

suggest operating procedures to optimize the use of IRT on UAS platforms. 
 

This section describes the laboratory and field tests for the validation of the proposed UAS-
AIR_T technique together with the mathematical framework developed to increase the SNR 
of IR images and improve the possibility of detecting subsurface voids. 

2.1 Preliminary Evaluation of 
Environmental Parameters  

Before performing the laboratory tests and narrowing down the environmental parameters 
replicated during the first part of the study, a review of the temperature of typical roadways 
and bodies of water was performed. Using the historical temperature data available, the 
monthly average temperature of 18 streams and rivers in Massachusetts has been evaluated for 
a period of one and a half years (i.e., from January 2019 to June 2020) (77). Figure 2.1 shows 
the location of the bodies of water used for this analysis, Table 2.1 lists the rivers and streams 
surveyed, and Figure 2.2 is an example of the temperature trend by month for Hobbs Brook 
(ID 5) below the Cambridge Reservoir in Weston, Massachusetts over the period considered. 
The average monthly temperature for all the 18 bodies of water is included in Figure 
A.1 in Appendix A, together with the average temperature trend (see Figure A.2) and the web 
links to the temperature data sets (see Table A.1). 
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Figure 2.1: Locations of streams and rivers  
 

Table 2.1: Bodies of water in this study 
Body of water ID Name Location 

1 Stony Brook at Route 20 Waltham, MA 
2 Cambridge Reservoir: Unnamed tributary #3 Lexington, MA 
3 Cambridge Reservoir: Unnamed tributary #1 Lexington, MA 
4 Stony Brook at Viles Street Weston, MA 
5 Hoobs Brook below Cambridge reservoir Weston, MA 
6 Stony Brook: Unnamed tributary #1 Waltham, MA 
7 Stony Brook: Unnamed tributary #1 Weston, MA 
8 Tauton River Bridgwater, MA 
9 Still Water River Sterling, MA 
10 Quinapoxet River at Canada Mills Holden, MA 
11 Gates Brook West Boylston, MA 
12 Nashua River at Water Street Bridge Clinton, MA 
13 Ware River at Intake Works Barre, MA 
14 Green River Colrain, MA 
15 Connecticut River Northfield, MA 
16 Mill River at Spring Street Tauton, MA 
17 Old River Florida, MA 
18 Popponesset Bay at Mashpee Neck Road Mashpee, MA 

 
Road temperatures measured at locations closer to the bodies of water listed in Table 2.1 were 
used to determine the pavement’s average monthly temperature over 2 years. Data from the 
Road Weather Information System (RWIS) stations highlighted in the map shown in Figure 
2.3 were used for this purpose (78). 
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Figure 2.2: Average temperature in Hobbs Brook  
 

 

Figure 2.3: RWIS station locations 
 
Analyzing the average temperatures for both bodies of water and roadways helps to identify 
the best season and time of the day characterized by a temperature differential between the 
roadway and the culvert that optimizes the thermal signature of the structure being tested and 
facilitates the detection of the damages. As observed in Figure 2.4, the average temperature of 
bodies of water is 9.69°C, with the minimum average being 1.80°C during February and the 
maximum average being 20.32°C in July. From Figure 2.4, it is also possible to observe that 
the minimum average temperature of the pavement is −0.75°C in December and the maximum 
average temperature is 32.50°C in July. The maximum temperature differential is then equal 
to 12.18°C, showing how better results can be obtained during the summer. 
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Figure 2.4: Pavement and water temperature differential 
 

The values summarized in Figure 2.4 were then combined to determine the temperature 
difference and the maximum temperature of the roadway simulated during the laboratory 
experiments described in Section 2.2. 

2.2 Experimental Setup for Laboratory Tests  

Laboratory tests were performed to characterize the AIR_T system’s capabilities to detect 
voids underneath a roadway in a controlled environment and with well-known boundary 
conditions. The objective of those tests was to investigate the smallest detectable defect size 
as a function of the IR camera’s distance and tilt angle. The tests aimed at characterizing the 
detection accuracy of IRT as a function of (i) damage depth, (ii) moisture 
content, (iii) temperature difference, and (iv) IR method used (i.e., passive, active, and flash). 
A back-to-back comparison of the IRT results with those obtained from GPR analyses was 
also performed to characterize the accuracy of the proposed technique against currently used 
technologies. The laboratory tests were based on a laboratory-scale roadway on top of a metal 
culvert embedding defects that facilitate soil loss and the formation of subsurface voids. As 
shown in Figure 2.5, a 48 × 42 in. (~1.21 × 1.12 m) mock roadway with the stratigraphy based 
on the MassDOT standards for highways, roadways, and pavements was built (Figure 2.5a) 
(79). An aluminized steel culvert having a nominal diameter of 30 in. (0.76 m) was installed 
in the structure ~20 in. (0.50 m) from the pavement surface (Figure 2.5b). An approximate 3 × 
3 in. (0.08 × 0.08 m) damage was created on the top part of the pipe to mimic real-life damage 
and allow soil erosion from underneath the pavement (Figure 2.5c). The culvert was covered 
with 3/4 in. stone base and 1-1/12 in. dense-graded base soil to replicate the cross-section 
composition shown in Figure 2.5a. The soil was poured into the wooden box in approximately 
3 in. (0.08 m) deep layers and compacted using a hand tamper and a jack compactor before 
adding the next layer. The pavement sample was installed on top of the last layer of soil to 
complete the experimental setup (Figure 2.5d). 
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Figure 2.5: Laboratory test setup 
 

In real-world scenarios, subsurface voids form as soil erodes from the subgrade and propagates 
through the gravel subbase and base course. The voids later reach the lower part of the road 
pavement, which becomes unsupported and then collapses with the whole structure. As shown 
in Figure 2.6a, the erosion process through the damage in the culvert phenomenon was 
recreated in the laboratory tests by removing a known quantity of soil. The soil was removed 
from the roadway’s subgrade and subbase for each damage iteration until the defect reached 
the lower end of the pavement’s base course. Voids with increasing volume representing more 
severe damage conditions Di were simulated in this study (Figure 2.6b). In particular, four 
damage conditions having volume equal to D1 = 1.92 × 10−3 m3, D2 = 2.56 × 10−3 m3, D3 = 
3.01 × 10−3 m3, and D4 = 3.33 × 10−3 m3 were considered. Each of those defects is shown in 
Figure 2.6c and had a surface (i.e., the planar projection of the damage in the roadway plane) 
equal to 0.19, 0.27, 0.32, and 0.41 m2, respectively. 
 
For all the tests described in this section, the IR system used consists of the Zenmuse XT2 IR 
camera manufactured by FLIR with a noise equivalent temperature difference (NETD) < 
50mK and a thermal resolution of 640 × 512 pixels shown in Figure 2.7 (80). The camera was 
fitted with a 13 mm focal length lens and positioned to have a working distance of 1.10 m (~43 
in.) when in nadiral position (i.e., perpendicular to the road surface). The setup resulted in the 
camera’s field of view (FOV) equal to 0.85 × 0.67 m (~2.80 × 2.20 ft) and ground sampling 
distance (GSD) resolution of 1.6 × 10−3 m/pixel (6.3 × 10−2 in./pixel). These values can be 
scaled linearly with the working distance for larger FOVs. 
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Figure 2.6: Subsurface voids of the culvert 
  

 

Figure 2.7: FLIR Zenmuse XT2 IR camera 
 

For each damage condition Di, several tests were performed to characterize the IRT accuracy 
as a function of the 
• type of IRT technique (i.e., passive and flash), 
• IR camera’s angle with respect to the road surface (i.e., 0, 15, 30, 45, and 60 degrees), 
• effect of a tire’s thermal signature on the IR images, 
• effect of water on the road surface, and 
• comparison with GPR. 

 
The laboratory-scale roadway was lightened up for 1 s (flash) using a 1 kW halogen lamp 
before acquiring the IR images for the flash thermography test. For the passive IRT approach, 
the roadway was heated up for ~6 h to simulate sun heating and the images were taken as the 
surface was cooling down for 2 1/2 h. In both the flash and the passive IRT tests, the IR images 
were captured with the IR camera in five different orientations. In particular, tests with 0, 15, 
30, 45, and 60-degree angles were performed. The camera had a 1 m distance from the 
roadway’s surface when in nadiral position (i.e., 0 degrees). In addition, to simulate a tire’s 
thermal signature and the effects of water on the roadway’s surface, two other tests were 
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performed. To simulate the transit of a vehicle, a heating pad was used. The heating pad was 
left on the surface of the road for ~3 min before collecting the images with the IR camera tilted 
at 0, 15, and 30 degrees with respect to the surface of the roadway. Then, a known quantity of 
water was poured on the surface of the road before collecting three more images at 0, 15, and 
30 degrees. A commercially available system developed by Geophysical Survey Systems Inc. 
was used for the back-to-back comparison with GPR. The UtilityScan GPR embeds 300 MHz 
and 800 MHz antennas, and scans at three different locations were performed during the tests. 
Two scans in corresponding undamaged parts of the roadway and one scan of a damaged part 
were performed. In particular, GPR scans at 11, 22, and 32 in. from the left edge of the mock 
roadway shown in Figure 2.5a were collected using both antennas. Figure 2.8 shows the setups 
used for performing the flash and passive IRT tests and the GPR scans, while a step-by-step 
summary of the test procedure is attached in Appendix B. Figure 2.8a shows the test setup for 
flash thermography accuracy as a function of camera angle; Figure 2.8b depicts the passive 
IRT setup showing the lights used to simulate sun heating of the road surface; and Figure 2.8c 
shows the setup for back-to-back comparison with GPR scans. 
 

 

Figure 2.8: Experimental setups 
 

A fan was used to extract air from the pipe and facilitate the heat exchange process to simulate 
outdoor conditions where the water flow through the culvert generates a temperature gradient. 
In particular, for the tests performed in this research, three different ventilation conditions were 
simulated: (i) 1-h continuous ventilation, (ii) 3-h continuous ventilation, 
and (iii) discontinuous ventilation. For the first two case studies, a fan was turned on to extract 
air from the culvert for 1 h and 3 h once the heating process was completed. For the third case 
study, the fan was turned on and off randomly while the roadway was cooling down and IR 
images were recorded. 
 

2.3 Outdoor Validation Tests  

To quantify the accuracy of the proposed UAS-AIR_T system in real-world scenarios, outdoor 
validation tests were performed. A field test program that includes the investigation of 
damaged and undamaged culverts was developed. In particular, the three locations indicated 
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in Figure 2.9 on Massachusetts Route 119 between Pepperell and Townsend, Massachusetts, 
were used as real-world testbeds. The selected culverts shown in Figure 2.10 represent systems 
that are (i) highly damaged and previously repaired (location 1), (ii) undamaged (location 2), 
and (iii) with damages having different severity (location 3). Figure 2.10a shows location 1, 
presenting a culvert with a partially collapsed ceiling that was repaired using an asphalt patch.  
Figure 2.10b shows location 2, an undamaged culvert; and Figure 2.10c shows location 3, a 
culvert with defects having different severity. 

 

 

Figure 2.9: Culvert locations  
 

 

Figure 2.10: Details of the three culverts  
 
As shown in Figure 2.11, the outdoor tests were performed using a Federal Aviation 
Administration (FAA) registered DJI Matrice 200 V2 UAS  (Figure 2.11a) manufactured by 
DJI and equipped with the same Zenmuse XT2 IR camera used for the laboratory tests (81). 
The technical specifications of the UAS used in the tests are summarized in Table 2.2. During 
the tests, the UAS was remotely controlled by a certified pilot (Figure 2.11, b and c) and 
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operated according to the directives provided in the Small Unmanned Aircraft Regulations—
Part 107 (82). 

 

 

Figure 2.11: Equipment operated by remote pilot  
 

Table 2.2: DJI Matrice 200 V2 technical specifications 
Dimensions (mm)  883 × 886 × 398 Max flight time (min) 38 (no payload) 

Diagonal (mm)  643 Max range (m) 5,000 
Weight (kg) 4.69 Operating frequency 1 

(GHz) 
2.4000–2.4835  

Max payload (Kg) 1.45 Operating frequency 2 
(GHz) 

5.725–5.850 

Vertical accur. (m) ±0.1 (with DVS) Battery capacity (mAh) 7,660  
Horizontal accuracy (m) ±0.3 (with DVS) Battery Type (–) LiPo 6S 
Max ascent speed (m/s) 5 Battery recharge (min) ~120 
Max descent speed(m/s) 3 Battery weight (kg) 0.885 

Max speed (km/h) 81 (or 61.2) Battery swap time (s) <60 
Max wind (m/s) 12 Gimbal mounting (–) Downward 

 
The tests were performed at the beginning of October 2021 and divided over 3 days. On day 
1, data were collected from all three locations by flying the UAS at an altitude of 50, 60, and 
70 ft, respectively (15, 18, and 21 m, respectively). The goal was to determine the accuracy of 
IRT as a function of the GSD. During the first day, IR images were collected at 30-s intervals 
by hovering the UAS on the edge of the roadways for 8 min (total of 16 IR images). On day 2, 
two different image collection protocols were used. In the first approach, one IR scan was 
collected with the drone flying at an altitude of 15 m at location 1 before moving to location 3 
to acquire another image. Then the same procedure (i.e., photo at location 1 first and photo at 
location 3) was repeated for a total of six flights per location to have enough data to perform 
image processing. The goal was to allow for a longer time interval between subsequent images 
at the same location and simulate a possible data collection procedure for MassDOT personnel. 
The second approach involved six preplanned flights performed at location 3 at intervals of 
~15 min from each other. The UAS was flown between point A and point B (Figure 2.12) to 
collect IR images with 90% overlap to reconstruct the orthomosaic of the area. During this 
approach, a total of six orthomosaics were generated. The objective of this test was to obtain 
enough temporal data for implementing the image post-processing framework described in 
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Section 2.3. A 90% overlap is a required specification to increase the number of points 
common in two adjacent photos and facilitate the orthomosaic stitching process. 

 

 

Figure 2.12: Preplanned flight path  
 

On day 3, the flights were conducted at night at location 3 to avoid sun shadows and maximize 
the temperature gradient between the roadway and the water in the culvert. All flights 
performed during the third day were carried out with a preplanned flight mission with a 15-
min delay between subsequent flights, similar to Approach 2 used during the second day of 
tests. A detailed step-by-step summary of the outdoor test procedure is attached in Appendix 
C.  

2.4 Advanced IR Images Post-Processing 
Techniques  

Despite the growing use of IRT for civil infrastructure monitoring and subsurface damage 
detection, flaws and defects are not always captured in IR images when radiometric photos are 
inspected. Even after using traditional image processing techniques such as image derivatives, 
defects remain undetected frequently (83,84). For these reasons, different approaches based on 
advanced image post-processing techniques and reduced-order models are discussed in this 
research to increase the SNR of the images and facilitate the detection of subsurface voids. The 
techniques used in this study were (i) R2-based analysis, (ii) PCT, and (iii) sparse-principal 
component thermography (S-PCT). This section describes the mathematical framework on 
which each of those techniques is based. 

2.4.1 R2-Based Analysis 
According to Newton’s law of cooling, when a warmer object is kept in a colder environment, 
its temperature decreases until it reaches thermal equilibrium with the surroundings. If there is 
any difference in the cross-sectional area, such as a change in thickness or a structural 
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discontinuity, the cooling curve at that specific location is different. As a result, the temperature 
decay curve’s coefficient of determination (COD or R2 value) is higher at that location (85). 
For example, if a defect such as a void or a cavity is present in the object, that area should cool 
down at a higher rate than undamaged regions. That temperature difference causes an increase 
in the R2 value of the curve fitting the temperature profile of the area characterized by the 
damage. In this research, the temperature was collected from IR images while the roadway was 
cooling. Temporal series of thermal data were fitted with an exponential function. In particular, 
IR images of the roadways were collected over time (i.e., t1, t2, …, tn−1, tn) and the temperatures 
were extracted from each IR image using FLIR thermal studio software. To reduce the 
computational time and take into account small motions of the IR camera, the temperature of 
each pixel was calculated as the average of a 3 × 3 kernel around the pixel itself (Figure 2.13a). 
The same procedure was replicated for all the N images of the time series to generate the 
temperature decay of each pixel over time (Figure 2.13b). For every averaged pixel, the 
temperature profile was fitted using an exponential curve, and the R2 value of the pixel was 
determined. An R2 plot similar to the one shown in Figure 2.13c can be obtained by repeating 
the same procedure for each pixel. 

 

 

Figure 2.13: Workflow of the R2-based analysis  
 

The R2 value distribution plot similar to the one shown in Figure 2.13c can be used to 
determine the presence of a defect in the object. Every increase in the R2 values compared to 
the adjacent pixels is representative of a change in the local thermal properties of the object 
and indicate the location of a defect. The R2-based algorithm has been developed in Python, 
and the code used for analysis is attached in Appendix D. 

2.4.2 Principal Component Thermography and Sparse-Principal Component 
Thermography  
The principal component analysis (PCA) is a statistical method that allows identifying variance 
present in a data set (86). Characteristic features such as similarities or differences in the 
patterns can be separated through the statistical modes using singular value decomposition 
(SVD) (87). Among different applications in the dynamics domain, PCA has been used as a 
post-processing algorithm to extract statistical modes from IR images. It has been referred to 
as PCT (88). The extracted statistical modes represent variation and changes in temperatures 
around the defects over time (89). To perform PCT, a time series of IR images captured at 
times tn = t1, t2, …, tn−1, tn and similar to the ones shown in Figure 2.14a is needed. Each image 
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has i columns (x-direction) and j rows (y-direction) so that the number of pixels goes from i = 
1 to nx in the x-direction and from j = 1 to ny in the y-direction. Before performing PCT, each 
IR image is rearranged to create a time-vector Tn with kx× ky elements as shown in Equation 
(1): 

 
Tn = (T1, T2, T3, ..., Tkxky)n     (1) 

 
where the elements T1, T2, T3, …, Tkxky represent the temperature values of the pixels at time n. 
All the IR images’ vector Tn are then arranged in a (kx× ky) × n matrix A similar to the one 
shown in Figure 2.14b. 

 

 

Figure 2.14: PCT workflow  
 
The covariance (COV) of the normalize data is calculated with Equation (2): 

 
𝐂𝐂𝐂𝐂𝐂𝐂 =  1

𝑡𝑡𝑛𝑛
𝑨𝑨𝑨𝑨𝑇𝑇      (2) 

 
where A is the (kx× ky) x tn matrix after normalization of A. Eigenvalues and eigenvectors of 
the matrix A can be calculated using Equation (3): 

 
𝐂𝐂𝐂𝐂𝐂𝐂𝐷𝐷 =  𝑷𝑷−1 𝐂𝐂𝐂𝐂𝐂𝐂 𝑷𝑷     (3) 

 
with COVD being the diagonal matrix of the eigenvalues of the normalized matrix A and P is 
a matrix with eigenvectors as column elements. All the orthogonal modes U (are also referred 
to as empirical orthogonal functions [EOFs]) that are representative of defects can be computed 
using Equation (4): 
 

𝑼𝑼 = 𝑨𝑨(𝑷𝑷𝑇𝑇)−1(𝐂𝐂𝐂𝐂𝐂𝐂𝐷𝐷)−1      (4) 
 

PCT is a linear decomposition method and is sensitive toward outliers and signal noise. This 
problem is common to all the different types of PCT (90, 91). A modified version of PCT, 
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known as sparse-principal component thermography (S-PCT), has been developed to address 
nonlinearity and latent variables (92–94). PCT and S-PCT techniques are well established to 
identify defects in different applications (95–97). However, it was shown that the S-PCT 
performs better when the system is nonlinear and critical information resides in sparse 
variables. The preprocessing step of S-PCT is similar to the PCT one, which is given in 
Equation (1). The main difference is that the principal components of S-PCT are extracted 
using an optimization problem based on the total number of non-zero elements in the 
temperature vector (L0) and the sum of all absolute values in a vector (L1). By considering non-
zero elements and the sparsity characteristics of the thermal distribution, the method is more 
robust. The PCT and S-PCT algorithms have been developed in Python, and the codes used 
for analysis are attached in Appendix E. 
 
An implementation of S-PCT was performed on composite structure and demonstrated better 
damage detection capabilities than PCT (98). Because both PCT and S-PCT provide results as 
a function of the time interval used to sample the images, this study also evaluated the 
sensitivity of these two techniques for different time capturing intervals. In particular, images 
were recorded at intervals of (i) 2 min, (ii) 5 min, (iii) 10 min, (iv) 15 min, and (v) mixed (i.e., 
a combination of the previous four). The mixed interval is proposed based on practical 
considerations to collect more meaningful data for real-world applications. As the roadway 
begins to cool down, the temperature decay rate is faster at the beginning and reduces over 
time. If the image-capturing interval is kept constant, the thermal information during the initial 
cooling stages (i.e., the steepest part of the exponential cooling curve) might get lost. Also, it 
might be challenging to collect the data at specific time intervals in real-world culvert 
inspection. To overcome the drawbacks mentioned above, the mixed time interval is proposed 
and its accuracy is evaluated and compared to the other fixed-time measurements. With the 
mixed time interval, IR images are initially collected at a faster rate (e.g., every 30 s for the 
first 5 min). Then, the image collection rate decreases while the object’s temperature 
approaches the thermal equilibrium with the surrounding environment. 
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3.0 Results 

In this section, the outcomes of the tests described in Sections 2.2 and 2.3 are analyzed. In 
particular, the accuracy of the UAS-AIR_T method is validated using the traditional first and 
second derivative approaches, compared to GPR, and using the three advanced post-processing 
techniques described in Section 2.4. 

3.1 Analysis of the GPR Data  

The GPR testing was conducted by performing six GPR B-scans at three different locations 
corresponding to two undamaged parts of the roadway and one damaged part. The data 
collected with the GPR system at the frequencies of 300 and 800 MHz were processed, and an 
example of the results obtained is shown in Figure 3.1. In the GPR B-scan images, the x-axis 
is the length of the inspected portion of the road (i.e., ~10 in.) with backscattered signal 
recorded by the GPR in the direction of the scan, whereas the y-axis represents the depth of the 
structure.  
 

 

Figure 3.1: B-scans at 300 and 800 MHz  
Detectability of defects with GPR is highly sensitive to the dielectric contrast between two 
materials. As the subsurface layered structure in the experimental setup is not uniform (Figure 
2.5a), the dielectric constant varies from one layer to another, affecting the quality of the 
collected GPR B-scan images. With the current GPR system, only a single dielectric constant 
value can be assumed in each GPR scan, inducing a ranging error in the reconstructed images. 
From the analysis of the GPR B-scan images, it is possible to observe that 300 MHz provides 
the best results in locating the top wall of the culvert (Figures 3.1a–c). In contrast, the 800 
MHz antenna can provide qualitative information about the location of the subsurface void 
(Figures 3.1d–f). However, the detection of damages from the scans shown in Figure 3.1 is not 
univocal. It leaves room for contrasting opinions based mainly on the experience and expertise 
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of the inspector analyzing the images. For this reason, no conclusive results can be drawn from 
the GPR analysis. 

3.2 Analysis of IR Images Processed with 
Traditional Methods 

Data collected with the FLIR Zenmuse XT2 IR camera during the laboratory tests were first 
processed using traditional image processing techniques such as image first and second 
derivatives. In these methods, the first and second derivatives of the intensity value across the 
image are calculated to find points where the derivative values are maximum and represent 
edges. The derivative operator allows determining the gradient of the image that is a vector 
whose components measure how rapid pixel values (i.e., the temperature in the specific case 
study) change with distance in the x- and y-directions. Thus, IR images collected while the 
roadway was cooling down were processed to calculate temperature gradients representing 
defects. The data were collected with the camera in the nadiral position (i.e., 0 degrees) with 
• no obstructions on the surface of the roadway (Figure 3.2a), 
• a heating pad to mimic the thermal signature of a tire (Figure 3.2b), and 
• with water on the surface of the roadway (Figure 3.2c). 

 
An example of the raw IR images collected for those three scenarios is shown in Figure 3.2.  
 

 

Figure 3.2: Raw IR images  
 
When the raw IR images were processed and the first and second derivatives calculated, the 
results shown in Figures 3.3 and 3.4 are obtained. For the case shown in Figure 3.3, three IR 
images were collected once the heating process was completed (Figure 3.3a), after 40 min 
(Figure 3.3b), and after 80 min (Figure 3.3c). The goal was to prove that results were not a 
function of the time images were taken. From the analysis of Figure 3.3, it is possible to 
observe that the thermal shadow of the halogen lamps used for warming up the surface that 
creates an uneven thermal distribution was the only feature visible in the derivatives even after 
80 min. No subsurface defects were visible when images’ first and second derivatives are 
analyzed. Similar conclusions can be drawn for the other two case studies (i.e., thermal 
signature of tires and water on the pavement) shown in Figure 3.4.  
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Figure 3.3: Derivatives 0–80 min after halogen lamp  
 

 

Figure 3.4: Derivatives with heating pad and surface water 
 
It was observed how in the cases of the tire thermal signature and water on the surface of the 
roadway, the higher temperature of the heating pad or the change of emissivity caused by the 
water reduced the quality of the processed images significantly and masked any subsurface 
defect. When the gradient of the IR photos was calculated, the SNR of the images dropped 
significantly, making the detection of subsurface defects difficult. For those reasons, advanced 
image processing techniques were used to improve the accuracy of the UAS-AIR_T method. 

3.3 Analysis of IR Images Processed with 
Advanced Methods 
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The IR images of the four damages D1, D2, D3, and D4 and the three ventilation conditions 
were processed with the R2-based analysis by implementing the Python code attached 
in Appendix D. The average temperature value of each 3×3 pixel kernel in the IR images was 
calculated and used to generate the cooling curve of each kernel. The obtained data were then 
fitted with an exponential curve to determine the R2 value. The R2 value maps obtained for the 
considered damages and ventilation conditions are shown in Figure 3.5.  

 

Figure 3.5: R2-based results showing COD distributions  
As observed from the analysis of the plots shown in Figure 3.5, the R2-based analysis was able 
to locate the approximate location of the larger defect (i.e., D4) only without providing accurate 
information about the size of the defect that seems to be overestimated if compared to the 
actual size of the void. In addition, successful recognition of the defect was possible only for 
the 1-h and the discontinuous ventilation conditions. For the smaller defects (i.e., D1, D2, and 
D3), the R2-based analysis did not detect any variation in the thermal transmissivity of the 
roadways. This approach did not prove to be sensitive enough to identify defects that do not 
significantly affect the thermal property of the system, resulting in more significant variation 
from the ideal cooling curve. 
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When the IR images were processed with PCT and S-PCT analyses using the steps described 
in Section 2.4.2 and the Python code attached in Appendix E, the second empirical orthogonal 
functions (EOFs2) shown in Figures 3.6 and 3.7 were obtained. The results presented 
demonstrate that PCT can identify the subsurface voids shown in Figure 3.6 by the red 
contours. Although the detection accuracy increased compared to the R2-based analysis, results 
obtained with the PCT were not always consistent. In particular, damage D1 was visible for all 
three ventilation conditions, but damage detection for scenarios D2 and D3 was not always 
possible. Figure 3.6 shows that the thermal shadow of the void for damages D2 and D3 was 
partially visible but not as evident as for damage D1. Moreover, PCT-based analysis was not 
able to locate the damage in any ventilation conditions for damage D4. For this last scenario, a 
more prominent spot in correspondence of the subsurface void can be observed. However, its 
boundaries are not well defined and the transition between areas with different thermal 
properties (i.e., damaged vs. undamaged) is not as sharp as expected. Figure 3.7 presents the 
EOF2 obtained when the IR images are processed using S-PCT. Unlike PCT, S-PCT was able 
to identify defects in all the damage size and ventilation conditions. In all the scenarios 
analyzed, S-PCT has proven to be the most robust post-processing method to identify voids 
underneath the roadway. As observed in Figure 3.7, damages can be identified by a red spot in 
the thermogram. 
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Figure 3.6: EOF2 from PCT analysis  
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Figure 3.7: EOF2 from S-PCT analysis  
 
The accuracy of the three methods was assessed by measuring the size of the defects as 
represented in the images.  
 

Table 3.1: Accuracy of the three techniques  
  1-h continuous 3-h continuous discontinuous 
  R2 PCT S-

PCT 
R2 PCT S-

PCT 
R2 PCT S-

PCT 
Defect Surf. (m2) εr (%) εr (%) εr (%) εr (%) εr (%) εr (%) εr (%) εr (%) εr (%) 

D1 0.19 — 21.05 15.78 — 15.78 5.26 — 5.26 31.57 
D2 0.27 14.00 — 22.23 85.1 71.42 11.12 88.89 — 14.81 
D3 0.32 67.74 52.94 14.7 77.41 94.11 55.87 — 82.35 8.82 
D4 0.41 51.21 — 31.7 78.04 — 9.75 58.58 — 21.95 
Average (%) 44.32 37.00 21.10 80.18 60.44 20.50 73.74 43.81 19.29 
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The areas of the defects in the images are compared to the actual surface of the defects obtained 
by projecting the contour of the void in the image plane. Table 3.1 summarizes the relative 
error, εr obtained as a function of defect size and ventilation conditions using R2-based 
analysis, PCT, and S-PCT. As observed from the data summarized in Table 3.1, the percent 
errors for S-PCT for all defect sizes and ventilation conditions is significantly smaller when 
compared to the results obtained with R2 and PCT. It proves that S-PCT can detect defects 
independently of their size and provide more accurate quantification about the size of the void. 
The R2-based analysis works better for more significant defects, whereas PCT is more effective 
when smaller defects need to be observed. Errors in the order of ~20% can be caused by a 
nonperfect overlap between the pavement base course and the gravel subbase that results in 
smaller voids that affect the heat transmission but are not quantified and taken into account 
when the physical surface of the void is measured (Figure 3.8). 
 

 

Figure 3.8: Uneven pavement–soil interface  

3.3.1 Time Sensitivity Analysis 
SVD techniques are sensitive to the time intervals used to acquire data. Because the sampling 
rate of IR images may vary due to traffic conditions, the sensitivity of PCT and S-PCT as a 
function of the time in between subsequent images is assessed. Five different time intervals 
were used: (i) 2 min, (ii) 5 min, (iii) 10 min, (iv) 15 min, and (v) mixed (i.e., a combination of 
the previous four). The results of this analysis are shown in Figure 3.9. It is observed that the 
R2-based analysis does not allow identifying any defect. In the case of PCT, the patch 
indicating the defect was most clearly visible when a faster sampling rate was used (i.e., 2 
min). As the sampling rate decreases, the clarity of the patches representing the thermal 
signature of subsurface void decreases and the possibility to identify the defects is reduced. 
PCT was found to be highly sensitive toward the time capturing interval. In the case of S-PCT, 
the defect was easy to identify for every time interval under consideration.  
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Figure 3.9: IR images comparing technique and time
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However, because collecting images every 2 or 5 min throughout the cooling process may not 
be feasible, a mixed sampling rate can also be used to locate the defect with enough accuracy. 
The accuracy of the three techniques is summarized in Table 3.2, where the relative error εr as 
a function of the sampling rate is shown. 
  

Table 3.2: Accuracy as a function of sampling rate 
 Sampling rate (minutes) 
 2  5  10  15  mixed Average 

Technique εr (%) εr (%) εr (%) εr (%) εr (%) (%) 
R2-based 64.97 85.10 70.37 — — 73.48 

PCT 33.32 55.50 62.96 77.78 44.40 54.79 
S-PCT 3.70 7.40 14.81 18.51 11.10 11.10 

 

3.4 Analysis of the Outdoor Performance 
Tests 

As suggested from the results of the laboratory tests, PCT and S-PCT provide better results for 
detection of subsurface voids. Hence for all the outdoor tests, the data were analyzed with PCT 
and S-PCT only. An example of the IR images collected during the outdoor tests for the three 
locations inspected is shown in Figure 3.10: a sinkhole fully opened and repaired at location 1 
(Figure 3.10a); an undamaged culvert at location 2 (Figure 3.10b); and sinkholes forming at 
location 3 (Figure 3.10c). 
 

 

Figure 3.10: IR images of the three culverts  
 
During the first set of outdoor tests performed, the IR images were taken by hovering the UAS 
at different altitudes for determining the detection capabilities of the UAS-AIR_T systems as 
a function of the GSD. The UAS hovered at location 1 at altitudes of 15, 18, and 21 m (50, 60, 
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and 70 ft) while IR images were collected every 30 s with flight details summarized in Table 
3.3. The results of PCT and S-PCT analyses for location 1 with defect on the roadway 
highlighted and on IR images collected at 15 m (50 ft) altitude (Figure 3.11a); 18 m (60 ft) 
altitude (Figure 3.11b); and 21 m (70 ft) altitude (Figure 3.11c). As observed from the thermal 
maps, the defect is visible in the images processed with both techniques. As the flight altitude 
and GSD increase, the size of the damage reduces, but it is still clearly visible in the images. 
For defects that are visible on the roadway’s surface, both PCT and S-PCT can identify the 
location of the damage. The only difference is that the defect’s edges are more pronounced 
when S-PCT is used. 

Table 3.3: Flight details to determine IRT accuracy  
Flight details (per altitude) 

No. of flights Duration  Sampling rate  Time  Air temp. Water temp. 
(-) (min) (s) (hh:mm) (°C) (°C) 
3 8.0 30.0 1:00 p.m. 20.0 10 

 
 

 

Figure 3.11: PCT and S-PCT for location 1  
 
For tests performed during the second day at location 1, the shadow of a tree was cast on the 
road surface due to direct sunlight. Because of the shadow, uneven pavement heating occurred 
in the IR images collected (see Figure 3.12a and Figure 3.12b). Because of the shadow, data 
cannot be used for identifying subsurface voids because the PCT and S-PCT are sensitive to 
change in the environment and data produce false-positive results. 



 

32 
 

 

Figure 3.12: Effect of shadow and no damages  
 
At location 2, no defects were highlighted even when IR images are processed with PCT and 
S-PCT (see Figure 3.12c and Figure 3.12d). This is a validation of the excellent quality of the 
maintenance operations performed on the culvert. The only visible discontinuities highlighted 
by the thermal analysis that are observed in both PCT and S-PCT data are the new layers of 
asphalt that have been deployed on the roadway.  
 
For the inspection at location 3, the UAV was flown at an altitude of 15 m (50 ft) to optimize 
the GSD and with cameras in two different orientations, nadiral (i.e., 0 degrees) and 55 degrees. 
With the IR camera set in nadiral position, the drone must fly over the roadway, which may 
create a hazard to the traveling traffic. When the IR camera is tilted at an angle, the UAS can 
hover on the side of the road while collecting images. The goal of this test was to confirm that 
results are still accurate even when the camera is not perpendicular to the object being tested. 
The IR images collected every 30 s by hovering the UAS at location 3 on December 1 were 
processed using PCT (Figure 3.13a) and S-PCT (Figure 3.13b), and the flight details are 
summarized in Table 3.4. 
 
 

 

Figure 3.13: PCT and S-PCT at 0 degrees  
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Table 3.4: Accuracy with camera in nadiral position 
Flight details  

No. of flights Duration  Sampling rate  Time  Air temp. Water temp. 
(-) (min) (s) (hh:mm) (°C) (°C) 
1 8.0 30.0 3:00 p.m. 10.0 5 

 

Table 3.5: Accuracy with camera at 55 degrees 
Flight details  

No. of flights Duration  Sampling rate  Time  Air temp. Water temp. 
(-) (min) (s) (hh:mm) (°C) (°C) 
1 8.0 30.0 3:15 p.m. 10.0 5 

 
 

 

Figure 3.14: PCT and S-PCT at 55 degrees  
 
As observed from Figure 3.13, both PCT and S-PCT can identify the defects on the roadway’s 
surface represented by the potholes visible in Figure 3.10c and highlighted by circles in Figure 
3.13a. When S-PCT is used, additional defects that are not visible in the visible spectrum 
images and the PCT data can be identified. Those defects are highlighted with arrows in Figure 
3.13b. However, for those defects, confirmation from in situ inspections from MassDOT 
personnel should be required. The same analysis was performed with images collected with 
the UAS hovering on the side of the road and collecting images with the camera tilted at 55 
degrees. The results are shown in Figure 3.14, and the flight details are summarized in Table 
3.5. As it is observed from Figure 3.14, no significant differences are highlighted with the 
images shown in Figure 3.13. It confirms that the camera angle does not affect the detection 
capability of the system. 
 
Due to features of the UAS such as battery charge and restrictions caused by the road traffic, 
a time sensitivity analysis is performed to determine the effect of this parameter on the 
detection accuracy of PCT and S-PCT. The results of the time sensitivity analyses performed 
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when images are processed using PCT and S-PCT are presented in Figure 3.15 and Figure 
3.16, and the flight details are summarized in Table 3.6.  
 

Table 3.6: Accuracy as a function of sampling rate 
Flight details  

No. of flights Duration  Sampling rate  Time  Air temp. Water temp. 
(-) (min) (s) (hh:mm) (°C) (°C) 
1 30.0 30.0 3:30 p.m. 10.0 5 

 
 

 

Figure 3.15: Time sensitivity analysis using PCT 
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Figure 3.16: Time sensitivity analysis using S-PCT 
 
During the flight, the UAS was kept hovering next to the roadway with the camera in nadiral 
position for 30 min acquiring IR images every 30 s. A total of 60 IR images was collected for 
the tests. Data were then decimated to study the effect of the time interval on the accuracy of 
PCT and S-PCT. For example, 30 images were used for the 1 min scenario, 15 images for the 
2 min sampling rate images, and so on for the 3 and 5 min sampling rate considered. 
 
The PCT was found to be sensitive toward the time capturing interval, with increases in the 
time capturing interval corresponding to reduced performance of the technique. In Figure 3.15, 
it is observed that as the time capturing interval increases, the quality of the images decreases 
and the defects start to fade. When a 1 min sampling rate is used, PCT can identify the defects. 
Because PCT performs linear decomposition, the SNR increases with higher time capturing 
interval (compare Figure 3.15a to Figure 3.15b). When the same analysis is performed using 
S-PCT, it is observed that faster sampling rates (i.e., 1 min time capturing interval) allow higher 
performance. However, results are not very dissimilar when slower sampling rates are 
considered (see Figure 3.16a–c). As observed in Figure 3.16d, a significant loss of information 
occurred when the time capturing interval was 5 min. Results suggest that S-PCT is also 
sensitive toward time capturing interval, but the effect of sampling rate on the accuracy of the 
results is less pronounced than PCT. 
 
An attempt to perform large-area mapping was made by stitching multiple images to generate 
an orthomosaic covering an extended portion of the roadway. In this research, a proof of 
concept was performed using two adjacent IR images. The same principle can be applied to 
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more images to generate an even larger orthomosaic. During the tests performed, six flights 
were performed to collect enough temporal data to perform PCT and S-PCT analyses (Table 
3.7). The UAS was programmed to collect two IR images with 90% side overlap during each 
flight. Then each pair of IR images was stitched together using a Speeded Up Robust Feature 
(SURF) algorithm before performing PCT and S-PCT. An example of the SURF workflow 
showing the features extraction and matching between two adjacent IR images is shown 
in Figure 3.17. As observed, two adjacent IR images are considered (Figure 3.17a and Figure 
3.17b) and used to determine keypoints (Figure 3.17c). Once the keypoints are matched 
between the two images, a single larger image composed of the two original ones is obtained 
(Figure 3.17d and Figure 3.17e). The two original images are indicated by a dashed line and a 
dashed/dotted line. The process was repeated for all the IR images collected during the six 
flights, and six stitched images were generated and processed with PCT and S-PCT, obtaining 
the results shown in Figure 3.18. 

Table 3.7: Large-area mapping and orthomosaic generation 
Flight details  

No. of flights Duration  Sampling rate  Time  Air temp. Water temp. 
(-) (min) (s) (hh:mm) (°C) (°C) 
6 1.0 — 4:30 p.m. 10.0 5 

 
 

 

Figure 3.17: SURF algorithm workflow for orthomosaic generation  
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Figure 3.18: Results for large-area mapping 
 

As shown in Figure 3.18, both PCT (Figure 3.18b) and S-PCT (Figure 3.18c) were able to 
identify the subsurface defects once stitched images (Figure 3.18a) were processed. It can be 
observed that PCT suffers from some information loss compared to S-PCT. In addition, even 
if some information loss occurs for the larger area mapping compared to small area mapping 
(see Figure 3.15a and Figure 3.16a), results are still promising and the defects can be identified 
clearly. The orthomosaic mapping approach allows mapping a bigger area in a shorter time as 
a preliminary assessment, and then a more focused analysis can be performed over a smaller 
area if the defect is seen in the orthomosaic map.  
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4.0 Best Practices and Conclusions 

This study aims to characterize the accuracy of IRT combined with UASs to be used as a 
technique for detecting voids underneath roadways that can represent failing culverts and 
underground structures. Subsurface voids caused by erosion of materials through cracks in 
culverts or drainage pipes are the first signs of damaged infrastructure. If not detected in time, 
subsurface voids can propagate underneath the pavement surface and cause sinkholes and the 
collapse of the roadway. For this reason, novel NDE approaches that can simplify the inspection 
process and provide information about the location and severity of the defects are sought. The 
work performed in this feasibility study focuses on the experimental validation UAS-AIR_T for  
detecting soil voids and assessing the conditions of underground structures. Extensive laboratory 
and field tests have been performed to determine the system’s accuracy as a function of different 
working conditions such as the type of IRT method used, IR camera angle, and image post-
processing technique used. Laboratory tests were performed on a mock roadway that replicated 
the structure of highway pavement in Massachusetts. The mock roadway was damaged by 
extracting a known volume of soil from its subbase to create voids having increasing size. The 
outdoor validations were performed on three in-service culverts with different levels of damage. 
  
The laboratory tests showed that when traditional IR processing methods such as first and second 
derivatives were used, IRT could not detect subsurface voids. For this reason, more advanced 
image processing techniques such as R2-based analysis, PCT, and S-PCT were used. In particular, 
the R2-based analysis was able to detect the larger defects but results were inconsistent. PCT and 
S-PCT demonstrated superior performances even if PCT was only able to locate the smaller 
defects. S-PCT was able to locate the defects in all the analyzed scenarios with an average 
accuracy of ~80% when the dimension of the damage in the IR images is compared to the surface 
of the actual defect. The detection accuracy of the three methods was also checked as a function 
of the sampling rate used to capture the IR images. The results demonstrated that the PCT was 
sensitive toward the image-capturing interval and that a slower sampling rate decreases the 
method’s accuracy. To overcome this issue, a mixed time interval was proposed and the detection 
accuracy of PCT increased by ~13%. S-PCT was a more robust method and accuracy error was 
below 5% for IR images captured every 2 min as the road surface was cooling down. On average, 
S-PCT has shown an error of 11% depending on the sampling interval used. 
  
PCT and S-PCT methods were used for outdoor testing due to their better performance in the 
indoor setting. The IR images were collected with a UAS hovering at different altitudes to 
show how defect size is a function of the GSD. During the field tests, PCT and S-PCT were 
able to detect defects in the soil that have progressed and reached the roadway’s surface 
forming potholes. S-PCT also seems capable of detecting voids underneath the road’s surface 
that are not yet causing damage to the pavement. However, further investigations must be 
performed to confirm the location and severity of those damages. Overall, field tests confirmed 
the results of the laboratory experiments and provided some insight into best practices that 
should be implemented during future real-world operations, as summarized by the following: 
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• The accuracy of IRT can be enhanced by using S-PCT as an image post-processing 
technique. An image’s first and second derivatives do not provide information about 
subsurface defects. 
 

• The presence of water on the road’s surface (e.g., after heavy rain) makes it challenging 
to detect subsurface voids. A different thermal emissivity characterizes the water 
compared to the pavement, resulting in spots in the IR image that can be confused as 
defects. Therefore, the IR inspection should be performed when pavements are dry and 
have not received rain for a few days. 
 

• Shadows and direct sunlight cause the IRT to be ineffective. Inspections should be 
performed at night or during overcast days to reduce the effects of direct sun irradiation. 
The presence of shadow increases the possibility of a false positive. 
 

• Inspection should be performed when the roadway starts to emit thermal energy after 
being heated for an extended time by the sun to maximize the thermal gradient with the 
environment. For this reason, dusk or night inspections should be preferred. 
 

• A water–road surface temperature differential above 10°C (from the historical data) 
should theoretically provide more accurate results and identify subsurface defects. 
However, because inspections were performed between November and December 
only, no conclusions can be made about the optimal time of the year when the 
inspection should be performed. 
 

• Flying the UAS at a lower altitude allows for a better GSD and pixel resolution. 
Because of the size of subsurface voids in real-world applications, not much difference 
is observed when flying at 15 m (50 ft) altitude compared to 21 m (70 ft) altitude. 
However, operating the UAS at a lower altitude should be preferred when possible. 
 

• The approach in which the UAS hovers above the inspected culvert and collects data 
every 30 s for 8 min allows identifying subsurface defects and provides enough data 
that can be decimated if needed. A more extended image collection period (i.e., 30 min) 
can also be used, but the improved accuracy does not justify the extended time spent 
flying the UAS in a single position. 
 

• IR images should be collected with a sampling rate that depends on the roadway’s 
cooling rate. During the steepest part of the cooling curve, IR images can be collected 
at a faster sampling rate, then the acquisition time may be decreased once the road 
surface reaches thermal equilibrium with the surrounding environment. 
 

• For IR orthomosaics of larger areas, images must be collected with a 90% side overlap 
to allow enough keypoints in subsequent images to be recognized. With lower side 
overlaps, the SURF algorithm may not recognize enough features in adjacent views of 
the targeted portion of the road, making it impossible to stitch images. 
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• Flying the UAS nadiral to the road surface (i.e., camera at a 0-degree angle) or on the 
side (i.e., camera at a 55-degree angle) provides similar results. The possibility of 
collecting nadiral or oblique flights should be decided based on the type of road, 
characteristics of the surroundings (e.g., trees or power lines), and drone specifications 
that allow or do not allow the UAS to fly above live traffic. 
 

• Flying the UAS back-and-forth between locations to be inspected can be done only if 
the time between two subsequent flights at the same location is below 10 min. Because 
the accuracy of PCT and S-PCT is a function of the sampling rate, damage detection 
capabilities decrease significantly for a sampling rate slower than 10 min. 

 
Finally, future research directions are provided to advance the use of UAS-AIR_T and allow 
the field deployment of this technology. Particular attention should be given to the following: 
 

• Understanding the effect of a temperature differential between the road surface and the 
water. Studies that consider a year-long period should be performed to validate the 
accuracy of PCT and S-PCT for different temperatures and to identify the optimal 
time(s) of the year for the inspection. 
 

• Assessing the possibility to use machine learning methods such as convolutional neural 
networks and image segmentation algorithms for autonomous damage identification 
and narrowing down the portion of the roadway that presents subsurface voids. 
 

• The possibility of advancing UAS-AIR_T for inspecting other infrastructure systems 
(e.g., bridges) in addition to roadways and identifying subsurface voids that can 
eventually result in structural failures. 
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6.0 Appendices 

6.1 Appendix A: Historical water and road temperature data 

 
Figure A.1: Water temperature by month  

 
 

 
Figure A.2: Average water temperature by month  
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Table A.1: Water temperature data sets 
ID Link 
1 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104460&PARAmeter_cd=00065,

00060 
2 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104420&PARAmeter_cd=00065,

00060 
3 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104410&PARAmeter_cd=00065,

00060 
4 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104370&PARAmeter_cd=00065,

00060 
5 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104430&PARAmeter_cd=00065,

00060 
6 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104455&PARAmeter_cd=00065,

00060 
7 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104475&PARAmeter_cd=00065,

00060 
8 https://nwis.waterdata.usgs.gov/usa/nwis/uv/?cb_00010=on&format=gif_default&site

_no=01095503&period=&begin_date=2020-07-01&end_date=2020-07-31 
9 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01095220&PARAmeter_cd=00065,

00060 
10 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01095375&PARAmeter_cd=00065,

00060 
11 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01095434&PARAmeter_cd=00065,

00060 
12 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01095503&PARAmeter_cd=00065,

00060 
13 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01173000&PARAmeter_cd=00065,

00060 
14 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01170100&PARAmeter_cd=00065,

00060 
15 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01161280&PARAmeter_cd=00065,

00060 
16 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01104425&PARAmeter_cd=00062,

72020,72022,62614 
17 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=01168250&PARAmeter_cd=00065,

00060 
18 https://waterdata.usgs.gov/ma/nwis/uv/?site_no=413601070275800&PARAmeter_cd

=00065,00060 
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6.2 Appendix B: Procedure used for laboratory tests 

1. GPR test.  
 
2. Flash thermography with camera at 0, 15, and 30 degrees. 

a. Flash light to the roadway for <1 s and collect IR images with camera at 0 degrees 
b. Repeat procedure for other angles (making sure that the camera is always pointing at 

the same location on the roadway) 
 
3. Passive thermography for 0, 15, and 30 degree settings. 

a. Uniform heating of road surface using two 1.5 kW lamps for ~6 h 
b. Thermography while surface cools down every 10 min 
c. Collect IR image with camera set at 0 degrees, then move to 15 degrees, and 30 

degrees (making sure that the camera is pointing at the same location on the roadway)  
c. Wait 10 min from the time the first photo was taken and repeat the IR image 

acquisition for the three angles selected as described in 3c  
d. Repeat point 3b at 10-minute intervals for 1 h (a total of six data sets is recorded)  
   

4. Effects of tires thermal signature. 
a. Warm up a heat pad in the microwave for 3 min at the maximum power 
b. Place the heat pad on the roadway always in the same position for 3 min 
c. Remove the heat pad from the road and record an IR image with camera set at 0 

degrees, then move to 15 degrees, and 30 degrees  
 
5. Effects of water on the data. 

a. Uniform heating of road surface using two 1.5 kW lamps for ~6 h 
b. Pour a known quantity of water on the surface of the roadway 
c. Thermography while surface cools down every 10 min 
d. Collect IR image with camera set at 0 degrees, then move to 15 degrees, and 30 

degrees (making sure that the camera is pointing at the same location on the roadway)  
e. Wait 10 min from the time the first photo was taken and repeat the IR images 

acquisition for the three angles selected as described in 5d  
f. Collect IR image with camera set at 0 degrees, then move to 15 degrees, and 30 

degrees 
 
6. Remove a known volume of soil to increase the size of the defect. 

a. Measure the volume of soil removed 
 
7. Repeat steps 1–6. 
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6.3 Appendix C: Procedure for outdoor validation tests 

Day 1 
1. Fly UAS on the edge of the road at location 1 at an altitude of 50 ft (15 m) and collect 

one IR image every 30 s for 8 min. 
 

2. Fly UAS on the edge of the road at location 1 at an altitude of 60 ft (18 m) and collect 
one IR image every 30 s for 8 min. 

 
3. Fly UAS on the edge of the road at location 1 at an altitude of 70 ft (21 m) and collect 

one IR image every 30 s for 8 min. 
 
4. Move to location 2 and repeat steps 1–3. 
 
5. Move to location 3 and repeat steps 1–3. 
 
 
Day 2 
Approach 1  
6. Fly UAS on the edge of the road at location 1 at an altitude of 60 ft (18 m) and collect 

one IR image with camera in nadiral position. 
 

7. Move to location 3. 
 

8. Fly UAS on the edge of the road at location 3 at an altitude of 60 ft (18 m) and collect 
one IR image with camera in nadiral position. 
 

9. Repeat steps 6 and 8 six times to collect IR images to perform PCT and S-PCT. 
 
Approach 2  
10. Fly UAS at location 3 at 60 ft (18 m) altitude by running preplanned flight to collect IR 

images and generate an orthomosaic (i.e., fly on the road from point A to point B). 
 

11. Repeat step 10 six times with a 15-min time interval between subsequent flights. 
 
Day 3 
12. Fly UAS at night at location 3 at 60 ft (18 m) altitude by running preplanned flight to 

collect IR images and generate an orthomosaic (i.e., fly on the road from point A to point 
B). 
 

13. Repeat step 12 six times with a 15-min time interval between subsequent flights. 
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6.4 Appendix D: Code for R2-based analysis 

import pandas as pd 
 
T0 = pd.read_csv(r’C:\Users\Nitin_Kulkarni\Desktop\MASSDOT 
TEST\D7_2\Temp\T01.csv’) 
T1 = pd.read_csv(r’C:\Users\Nitin_Kulkarni\Desktop\MASSDOT 
TEST\D7_2\Temp\T11.csv’) 
 
NT0 = T0.to_numpy() 
NT1 = T1.to_numpy() 
 
def sum(x, chunk_size, axis=-1): 
    shape = x.shape 
    if axis < 0: 
        axis += x.ndim 
    shape = shape[:axis] + (-1, chunk_size) + shape[axis+1:] 
    x = x.reshape(shape) 
    return x.sum(axis=axis+1) 
 
import numpy as np 
 
NN0=sum(NT0,4) 
N0T=np.transpose(NN0) 
N0=sum(N0T,4) 
N0=N0/16 
N0=N0.flatten() 
 
NN1=sum(NT1,4) 
N1T=np.transpose(NN1) 
N1=sum(N1T,4) 
N1=N1/16 
N1=N1.flatten() 
 
Temp_decay= np.vstack((N0,N1)) 
 
import matplotlib.pyplot as plt 
x=np.array([0,1,2,3,4,5,6,7,8,9,10,11]) 
for i in range(10): 
    plt.plot( x , Temp_decay[ i , : ] ) 
 
plt.xlabel("Number of thermograms") 
plt.ylabel("Temprature") 
plt.savefig("temp decay.jpg", dpi=150) 
plt.show() 
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z = np.std(Temp_decay,axis=1) 
index=np.arange(20480) 
z1=np.vstack((z,index)).T 
sort = z1[np.argsort(z1[:, 0])] 
 
xs = np.arange(12) + 7 
ys=Temp_decay[ 5000 , : ] 
plt.plot(xs, Temp_decay[ 4025 , : ] , ‘.’) 
plt.title("Original Data") 
 
def monoExp(x, m, t, b): 
    return m * np.exp(-t * x) + b 
 
import scipy.optimize 
 
p0 = (2000, .1, 50) # start with values near those we expect 
params, cv = scipy.optimize.curve_fit(monoExp, xs, ys, p0) 
m, t, b = params 
sampleRate = 20_000 # Hz 
tauSec = (1 / t) / sampleRate 
 
# determine quality of the fit 
squaredDiffs = np.square(ys - monoExp(xs, m, t, b)) 
squaredDiffsFromMean = np.square(ys - np.mean(ys)) 
rSquared = 1 - np.sum(squaredDiffs) / np.sum(squaredDiffsFromMean) 
print(f"R² = {rSquared}") 
 
# plot the results 
plt.plot(xs, ys, ‘.’, label="data") 
plt.plot(xs, monoExp(xs, m, t, b), ‘--’, label="fitted") 
plt.xlabel("Time") 
plt.ylabel("Temprature") 
plt.savefig("Defect fit.jpg", dpi=150) 
plt.show() 
# inspect the parameters 
print(f"Y = {m} * e^(-{t} * x) + {b}") 
 
length = len(Temp_decay) 
a = np.zeros((length),dtype=float) 
for i in range(length): 
    xs = np.arange(12) + 7 
    ys=Temp_decay[ i , : ] 
    params, cv = scipy.optimize.curve_fit(monoExp, xs, ys, p0) 
    m, t, b = params 
    squaredDiffs = np.square(ys - monoExp(xs, m, t, b)) 
    squaredDiffsFromMean = np.square(ys - np.mean(ys)) 
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    a[i] = 1 - np.sum(squaredDiffs) / np.sum(squaredDiffsFromMean) 
 
R2 = np.reshape(a, (160,128)) 
R2=np.transpose(R2) 
 
color_map=plt.imshow(R2) 
color_map.set_cmap(‘gist_rainbow’) 
plt.colorbar() 
 
plt.xlabel("Pixels") 
plt.ylabel("Pixel") 
plt.savefig("Defect.jpg", dpi=150) 
plt.show() 
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6.5 Appendix E: Code for PCT- and S-PCT-based analysis 

import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import seaborn as sns 
 
T0 = pd.read_csv(r’C:\Users\Nitin_Kulkarni\Desktop\MassDOT Outdoor test\Location 
3\Excelq\T01.csv’) 
T1 = pd.read_csv(r’C:\Users\Nitin_Kulkarni\Desktop\MassDOT Outdoor test\Location 
3\Excelq\T11.csv’) 
 
N0 = T0.to_numpy() 
N1 = T1.to_numpy() 
 
import numpy as np 
 
N0=N0.flatten() 
N1=N1.flatten() 
 
N= np.vstack((N0,N1)).T 
 
from sklearn import preprocessing 
standard = preprocessing.scale(N) 
print(standard) 
projection_matrix = (eigen_vectors.T[:1]).T 
print(projection_matrix) 
 
np.fill_diagonal(T,eigen_values) 
V = eigen_vectors 
V=np.transpose(V) 
 
V1=np.linalg.inv(V) 
T1=np.linalg.inv(T) 
 
U=N.dot(V1).dot(T1) 
 
U1=np.transpose(U) 
 
 
EOF1 = np.reshape(U1[0,:], (512,640)) 
EOF2 = np.reshape(U1[1,:], (512,640)) 
 
 
color_map=plt.imshow(EOF2) 
color_map.set_cmap("gist_rainbow") 
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plt.colorbar() 
 
plt.xlabel("Pixels") 
plt.ylabel("Pixel") 
plt.savefig("Defect.jpg", dpi=150) 
plt.show() 
 
from sklearn.decomposition import SparsePCA  
from numpy import reshape 
import seaborn as sns 
import pandas as pd 
 
spca = SparsePCA(n_components=2, random_state=123) 
z=spca.fit_transform(N) 
 
z=np.transpose(z) 
EOF11 = np.reshape(z[0,:], (512,640)) 
EOF22 = np.reshape(z[1,:], (512,640)) 
 
z=np.transpose(z) 
EOF11 = np.reshape(z[0,:], (512,640)) 
EOF22 = np.reshape(z[1,:], (512,640)) 
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