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Chapter 1. Introduction 
Motor vehicle crashes are considered one of the significant causes of morbidity and mortality, 
and they cause more deaths than most human diseases every year. According to the National 
Highway Traffic Safety Administration (NHTSA), about 94 percent of crashes are directly 
related to driver behavior. Moreover, human error is estimated to be the primary factor in more 
than 85 percent of crashes (1). Human errors while driving could be exacerbated by adverse road 
weather conditions due to poor visibility, slippery roadways, and a significant reduction in driver 
speed perception. According to the Federal Highway Administration (FHWA), adverse weather 
is responsible for around 21 percent of vehicle crashes, 19 percent of injury crashes, and 16 
percent of fatal crashes each year in the United States (US) (2). A study by Andrey et al. 
concluded that weather-related factors could increase traffic fatalities and injuries by 25 percent 
and 45 percent, respectively (3). Another study reported that a one-unit reduction in visibility in 
snowy weather could increase the crash risk by 88 percent (4). A recent pile-up crash involving 
over 100 vehicles on Interstate-80, Wyoming, caused the death of three people and the closure of 
the interstate for two days (5). Although different studies quantified the impact of adverse 
weather on crashes differently, the overall trend from these studies indicates that the crash risk 
increases substantially during inclement weather. In addition, traffic speed, volume, and capacity 
can be reduced by 64 percent, 44 percent, and 27 percent, respectively, due to inclement weather 
(2).  
Drivers’ behavioral inconsistency in adverse weather can be predicted through driver behavior 
models, which requires high resolution and reliable driving data. However, safety researches are 
mostly based on aggregated traffic data from spot sensors, weather data from weather stations, 
historical crash data from police reports, and other similar sources (6, 7). Although these data 
have greatly contributed to the understanding of the contributing factors affecting crash 
occurrence and impacting roadway safety, one of the major limitations of using such data are that 
driver performance and behavior are considerably missing. In addition, the aggregate nature of 
such data is unable to provide insights at a trajectory level; i.e., what happened before, during, 
and after critical safety events. Currently, the most commonly used approaches for investigating 
driver behavior are simulator studies, instrumented car studies, self-report studies, and analysis 
of crash statistics. These methods have greatly contributed to the understanding of road user 
behavior and other crash-related factors. However, they have several limitations.  For instance, 
driver behavior in a simulator or in a controlled environment may not properly represent the 
actual behavior in normal driving conditions. More specifically, driver behavior and performance 
might be biased, and they may not behave naturally, as they do in real life. Exclusive trajectory-
level Naturalistic Driving Study (NDS) data collected by the second Strategic Highway Research 
Program (SHRP2) can overcome the above-mentioned limitations. This unique dataset provides 
an unprecedented opportunity for researchers to analyze driver performance and behavior 
through numerous amounts of representative natural driving data, by compiling a wide variety of 
traffic and environmental conditions. The SHRP2 NDS data make it possible to gather 
fundamental data on how people drive; how they avoid crashes, navigate, maintain speed; stay 
within their lane; control the vehicle; and how these vary according to age, experience, driver 
state, driver condition, and other roadway and environmental factors. The SHRP2 is the largest 
study on naturalistic driving behavior to date in the US. Between 2010 and 2013, the SHRP2 
program has monitored approximately 3,100 participant drivers and produced over 33,000,000 
travel miles from 3,800 vehicle-years of driving (8, 9). The SHRP2 collected a total of about t 
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petabytes of NDS data from six states around the US, including Florida, Indiana, New York, 
North Carolina, Pennsylvania, and Washington, as shown in Figure 1. In addition, a 
complementary database—Roadway Information Database (RID)—was constructed to provide 
context for NDS trips. The RID contains roadway, traffic operations, environmental, and other 
information corresponding to the most-travelled roadways traversed by the NDS participants 
(13). The creation of these SHRP2 databases presents researchers an unmatched opportunity to 
advance current understandings of driving behavior and performance.  

 
Figure 1 NDS Data Collection Sites (10) 

As part of the SHRP2 Implementation Assistance Program (IAP), the Wyoming Department of 
Transportation (WYDOT) established a project to investigate the impact of adverse weather 
conditions on driving behavior for the purpose of establishing practical countermeasures to 
improve the safety, efficiency, and reliability of the Wyoming transportation network during 
harsh winter seasons. This project is expected to produce an updated variable speed limit (VSL) 
algorithm for the existing weather-dependent VSL corridors in Wyoming. In addition, the 
increased understanding of driving behavior in adverse weather conditions is expected to 
improve the accuracy of weather-related microsimulation modeling.   
The SHRP2 IAP comprised three phases; this report presents the findings from the third project 
phase. The following section provides an overview of the Wyoming IAP objectives and research 
questions for Phase 3, summarizes previous findings from Phase 1 and Phase 2, and outlines the 
remainder of the report.  

Project Objectives  
The main objectives of the Wyoming SHRP2 IAP project are to utilize the SHRP2 NDS and 
RID databases to understand driver behavioral responses in adverse weather, and leverage the 
findings towards the development of Active Traffic Management (ATM) systems and feasible 
countermeasures that can be implemented by WYDOT to improve the reliability of the 
transportation network during adverse weather conditions. In order to achieve the 
aforementioned research objectives, the following research questions have been addressed in 
Phase 3: 
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• Can driver behavior (e.g., speed selection, car-following, lane keeping, lane change, and 
gap acceptance) during inclement weather conditions be characterized efficiently from 
the NDS data?  

• Can the SHRP2 NDS video data be effectively used to develop a cost-effective 
trajectory-level weather detection system in real-time? 

• What are the most appropriate surrogate measures for weather-related crashes that can be 
identified using the NDS data?  

• Can human factors be effectively integrated to update the existing weather-dependent 
VSL control algorithm used by WYDOT for their interstate VSL systems and to assist in 
conceptualization of a Connected Vehicle-based VSL (CV-VSL) system? 

• Can we improve guidance related to microsimulation modeling of adverse weather 
conditions, and generate a “base model” to represent driving behavior in adverse weather 
conditions for evaluating road weather connected vehicle applications to be used in the 
Wyoming Connected Vehicle (CV) Pilot project impact assessments?  

The first goal in transitioning from Phase 2 to Phase 3 was to investigate additional driving 
behavior from the identified NDS trips occurring during adverse weather. The first phase 
allowed the collection of trips in various levels of precipitation based on activation of drivers’ 
windshield wiper. In Phase 2, the research team introduced two additional data acquisition 
methods to collect significantly more trips. The developed data acquisition methodologies 
enabled the research team to develop more representative driver behavior models in Phase 3. 
Several driver behaviors, including speed selection, car-following, lane keeping, lane change, 
and gap acceptance, were thoroughly investigated and potential readily implementable 
countermeasures have been recommended. In addition, to gain further insights into driver lateral 
behavior this research also developed trajectory-level lane change detection and prediction 
models based on features from vehicle kinematics, machine vision, roadway characteristics, and 
driver demographics. 
One of the vital purposes of Phase 3 was to develop a cost-effective trajectory-level weather 
detection system in real-time using the SHRP2 NDS video data and to explore their potential 
safety applications in Wyoming. For the first time, extensive data reduction steps were taken to 
identify and classify the various levels of adverse weather conditions to form a unique ground-
truth dataset. Seven levels of weather conditions have been identified, including clear, light rain, 
heavy rain, light snow, heavy snow, distant fog, and near fog, and used to develop real-time 
weather detection system based on advanced machine learning and artificial intelligence 
techniques. Several recommendations have been provided to integrate the findings to the 
Wyoming roadways leveraging the existing roadside webcams. Real-time weather information 
could be shared with Traffic Management Centers (TMCs) utilizing crowdsourcing to aid in 
developing the next generation of traffic management and CV-VSL systems.  
This research was then concentrated on detecting near-crash events on freeways using 
continuous naturalistic data and provided recommendations to enhance traffic safety, especially 
in CV environments. The research leveraged the SHRP2 NDS data for an early investigation of 
Surrogate Measures of Safety (SMoS) on freeways which revealed that trajectory-level vehicle 
kinematics data could be utilized to identify the contributing factors increasing the likelihood of 
near-crash events, especially in adverse weather. The finding could be used to define the interest 
zone of vehicle kinematics as indicators of near-crash events. The significant time zone was 
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determined to be the 11-seconds preceding the event timestamp using a parametric model and 
23-seconds using non-parametric models. Therefore, the time zone of interest resulting from 
non-parametric models is more accurate in detecting near-crash events compared to the logistic 
regression model.  
The ultimate goal in completing the third phase is to transfer the research outcomes into tangible 
and effective countermeasures that will improve the safety, operation, and efficiency of interstate 
roads during inclement weather conditions. The research team worked on translating raw vehicle 
kinematics, video feeds, roadway characteristics, and driver information into strategies that can 
be used to support and evaluate Weather-Responsive Traffic Management (WRTM) alternatives. 
The WYDOT was an early adopter of rural VSLs, and since implementation, has been seeking to 
refine control logic to automatically set speed limits. This research updated the existing VSL 
logic based on insightful findings from SHRP2 NDS related to driver behavior. In addition, this 
research contributed to the state-of-practice of microsimulation modeling by applying a 
methodology to use the SHRP2 NDS data to calibrate car-following models as a function of 
specific weather events. In addition, this study also suggested that the default parameters of 
microsimulation software, such as VISSIM, should be weather-specific to accurately develop 
Analysis, Modeling, and Simulation (AMS) tools for road weather CV applications. It is worth 
mentioning that the findings and baseline models developed in Phase 3 have been effectively 
used to test and evaluate the effectiveness of each CV application of the WYDOT CV Pilot 
Program.  

Phase 1 Overview 
Phase 1 of the Wyoming IAP project consisted of a proof-of-concept of the SHRP2 NDS and 
RID data that was intended to evaluate the feasibility of answering the research questions. 
Therefore, a small sample of NDS trips was queried from the SHRP2 NDS database, aiming to 
identify trips related to adverse weather conditions and matching trips occurring in clear weather 
conditions. Phase 1 data acquisition focused on precipitation events and queried trips from only 
two of the six SHRP2 sites; Washington and Florida. Trips occurring in precipitation were 
identified by tracking the windshield wiper status of the vehicles and extracting trips with active 
windshield wipers. In addition, a matching protocol was established in this phase to identify 
additional trips taken by the same driver on the same route in clear conditions.   
Manual data reduction was performed in the first project phase to gain familiarity with the 
SHRP2 NDS data and suggest procedures for automating various elements of the process. The 
most time-consuming process involved manual video observation to classify weather conditions 
for each trip; therefore, the Wyoming research team began the development of the Wyoming 
NDS Visualization and Reduction software. This software provided an effective platform for 
viewing NDS data using a convenient graphical user interface and initialized efforts to detect 
visibility levels from the front video camera.   
The preliminary analysis of driver behavior focused on selected speeds, acceleration, headways, 
and lateral lane position. As part of this analysis, behavior distributions in different 
classifications of adverse weather and traffic flow conditions were shown to be different. For 
example, in free-flow conditions and heavy rainfall, driver speeds followed a Weibull 
distribution, while in free flow and clear weather conditions, driver speeds followed a normal 
distribution. Additional findings suggested that speed reductions were statistically significant in 
heavy precipitation, and an increase in the speed variability during precipitation events was 
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detected. Aggressive braking and acceleration events were evaluated and findings suggested that 
average deceleration was higher in clear weather conditions, when compared to matching 
adverse weather trips.  
Another avenue of research aimed to maintain the continuity of a single driver, on a single day, 
during various weather conditions. Detailed evaluations of specific trips were conducted to 
analyze the behavior changes of an individual driver on a trip that contained series of weather 
conditions (e.g., the trip’s weather condition was initially classified as light rain, in the middle 
changed to heavy rain, and at the end was classified as clear conditions). The findings from this 
analysis indicated the importance of segmenting each trip by weather condition to ensure 
accurate results.    
In addition to evaluating NDS, trips using summary statistics, preliminary modeling efforts were 
conducted to identify speed selection tendencies in different weather conditions. An ordered 
probit logit model was used to classify speed behavior as a function of traffic, speed limits, 
surface conditions, and weather. Results from this model indicated that weather, speed limits, 
and traffic conditions were significant, with weather and traffic conditions played the largest role 
in determining drivers’ speed selection.  
Finally, a small sample of weather-related crash and near-crash events were analyzed to identify 
crash surrogate measures. Two vehicle dynamics variables were used as indicators for 
identifying a potential crash; acceleration/deceleration and yaw rate. Thresholds for these 
variables were identified from a review of the available crash and near-crash events. More 
information about Phase 1 findings can be found in Phase 1 Final Report published in 2015, 
WY-16/08F, Driver Performance and Behavior in Adverse Weather Conditions: An 
Investigation Using the SHRP2 Naturalistic Driving Study Data-Phase 1 (11). 

Phase 2 Overview  
The objective of Phase 2 of the SHRP2 IAP was to conduct a thorough analysis using a larger set 
of NDS trips to extract behavioral trends specific to a wide variety of weather conditions on 
freeways. These weather conditions included rain, snow, and fog from a diverse driver 
population from the six SHRP2 data collection sites. Phase 2 addressed different gaps in the 
knowledge by presenting innovative methods to identify and analyze weather-related naturalistic 
driving data to better understand driver behavior and performance in adverse weather conditions. 
An innovative methodology to effectively identify weather-related trips in real-time using 
vehicle wiper status and other complementary methodologies helped to identify naturalistic 
driving weather-related trips using external weather data sources. In addition, a semi-automated 
data reduction procedure was developed to process raw trip data files into a format that further 
analyses and modeling techniques could be easily applied. 
In addition to the contributions in data extraction and reduction, preliminary analysis, as well as 
advanced modeling techniques, were utilized in this study. These analyses were used to explain 
the relationship between different levels of speed selection and lane keeping behaviors and a set 
of contributing factors including roadway characteristics, environmental and traffic conditions, 
and driver demographics on a trajectory level. These modeling techniques ranged from common 
parametric approaches such as binary logistic regression and ordinal logistic/probit regression 
models to more advanced non-parametric/data mining modeling techniques such as 
Classification and Regression Trees (CART) and Multivariate Adaptive Regression Splines 
(MARS).  

https://rosap.ntl.bts.gov/view/dot/35664
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The results from this phase suggest that both parametric and non-parametric modeling 
approaches are important to analyze driver behavior and performance. In fact, this phase 
attempted to maximize the benefits of the advantages of parametric models, such as the ability to 
interpret the marginal effects of various risk factors, as well as the advantages of using 
nonparametric models, including but not limited to the ability to provide high prediction 
accuracy, handling of missing values automatically, and their capability of handling large 
number of explanatory variables in a timely manner, which might be extremely beneficial 
specifically for assessing traffic operations and safety in real-time considering weather and 
traffic data to be directly fed into the model.  
The results of the developed speed selection models revealed that among various adverse 
weather conditions, drivers were more likely to reduce their speed in snowy weather conditions 
compared to other adverse weather conditions. Specifically, the odds of drivers reducing their 
speeds were 9.29 times higher in snowy weather conditions, followed by rain and fog with 1.55 
and 1.29 times compared to clear conditions, respectively. In addition, variable importance 
analysis using CART method revealed that weather conditions, traffic conditions, and posted 
speed limits are the three most important variables affecting driver speed selection behavior. 
Moreover, the results of the developed lane-keeping models revealed that drivers in heavy rain 
conditions were more likely to have worse lane-keeping performance compared to clear weather 
conditions. More information about Phase 2 findings can be found in Phase 2 Final Report 
published in 2018, WY-18/05F, Driver Performance and Behavior in Adverse Weather 
Conditions: An Investigation Using the SHRP2 Naturalistic Driving Study Data-Phase 2 (12). 

Report Organization 
The remainder of this report presents the findings from Phase 3 of the Wyoming IAP project. 
The report is organized as follows: 

• Chapter 2 - This chapter investigates driver behavior, including lane keeping, aggressive 
lane changing characteristics, gap acceptance, and speed selection, in clear and adverse 
weather conditions utilizing several statistical and data mining techniques.  

• Chapter 3 - This chapter describes the development of data processing algorithms for 
trajectory-level data from instrumented vehicles to continuously predict driving states and 
estimate state transition events using trips from the SHRP2 NDS data. 

• Chapter 4 - This chapter develops reliable and efficient lane change detection and 
prediction models considering features from available data sources through a data fusion 
approach. Several machine learning algorithms were trained, validated, tested, and 
comparatively analyzed based on different sets of features. 

• Chapter 5 - This chapter presents the detection of surrogate measures of safety in adverse 
weather conditions. 

• Chapter 6 - This chapter described the development of an in-vehicle weather detection 
system that can provide trajectory-level weather information in real-time. The system 
utilized the SHRP2 NDS video data and was based on advanced machine learning, deep 
learning, and image processing techniques. 

• Chapter 7 - This chapter describes the integration of SHRP2 NDS findings to develop 
weather-based microsimulation models and to assess the safety and operational 

https://rosap.ntl.bts.gov/view/dot/35664
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performance of the WYDOT CV Pilot Program and the existing weather-based VSL 
system. 

• Chapter 8 - This chapter provides summary and key findings, as well as 
recommendations for future research and practical applications.  
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Chapter 2. Driver Behavior Investigation  
Driver behavior, surface conditions, vehicle performance, and visibility are negatively affected 
by adverse weather conditions, such as fog, rain, snow, ground blizzards, slush, and strong winds 
(13–15). Inclement weather conditions are major issues regarding safety as they contribute 
greatly to reduce visibility, which is one of the leading causes of crashes. Almost every year 
adverse weather causes a significant amount of fatalities in the US (16, 17). According to 
NHTSA data, weather contributed to 22 percent of vehicle crashes, 19 percent of crash injuries, 
and 16 percent of crash fatalities, between 2005 and 2014 (18). A previous study concluded that 
total injuries and fatalities increased by 25 percent on snowy days in the UK (19). Another study 
revealed that traffic collisions increased by 75 percent and related injuries increased by 45 
percent due to precipitation compared to the normal conditions on Canadian roadways (3). 

Literature Review 
Lane Keeping Ability 
The impact of adverse weather on safety and operation have been investigated in previous 
studies. Compared to other adverse weather conditions, fog is considered one of the most 
dangerous because of its irregular nature that can surprise drivers (20). Driving in fog can be 
critical and risky for all drivers due to reduced visibility. Poor visibility in fog caused several 
crashes over different years (2, 21, 22). A study on roadways in the UK found that injury crashes 
in heavy fog increased by 16 percent (23). Besides, researchers concluded that fog related 
crashes resulted in more severe injuries compared to clear conditions (24, 25).  
Most of the previous studies on driver behavior in foggy weather conditions have been 
conducted using driving simulators. A study on longitudinal driver behavior concluded a 
significant decrease in acceleration and substantial increase in distance to the leading vehicle due 
to fog (26). The study of Kang et al. examined the effects of reduced visibility from fog and 
concluded that drivers tended to maintain a decent distance headway under the heavy fog 
conditions (27). Additionally, several previous simulated studies have investigated the effects of 
human factors on driving behavior in fog. A study investigated the effect of fog on distance 
perception and showed that people overestimated distance by 60 percent in foggy conditions 
(28). A study concentrated on the effects of driving experience on behavioral compensation due 
to fog found that experienced drivers drove at higher speeds in clear conditions, and showed a 
significant reduction in speed due to affected visibility compared to novice drivers (29). A 
previous study concluded that older drivers may have greater crash risk due to decreased ability 
to detect imminent collision events in fog (30). Another study examining car following 
performances suggested that during heavy fog, older drivers maintained a headway that was 21 
percent less than younger drivers (31). In addition, it was found that the reason behind shorter 
headways in fog was to maintain better visual contact with the leading car (32, 33).  
Reduced visibility due to fog affects safe driving behavior by obscuring the details of the 
environment and decreasing contrast (34). Due to the lower contrast, drivers are unable to 
perceive the necessary information from the roadway.  Failure of recognizing this information 
can affect lateral control of driver (33). One of the lateral driver behaviors that can be highly 
associated with the run-off-road crashes is lane-keeping ability. A recent study revealed that run-
off-road crashes contribute to an average of 57 percent of motor vehicle traffic fatalities occurred 
each year, where a major portion of these crashes occurred at nighttime and inclement weather 
conditions (35). Therefore, it is worth investigating driver lane-keeping performance in 
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inclement weather (foggy weather in this study) considering the contribution of poor lane 
keeping in run-off-road crashes.  
Lane-keeping performance has been studied in the literature from driver distraction or reduction 
of visibility standpoints. A study conducted by Engström et al. examined the effect of visual and 
cognitive demand on lane-keeping performance, and found that lane-keeping performance was 
decreased by visual demand (36). Another study investigated driver inattention on lane-keeping 
performance and concluded that driver inattention, eyes-off-road, significantly decreased lane-
keeping ability (37). Furthermore, the study of Barham et al. noted that reduced visibility was the 
main reason for the inconsistent and uncertain lateral position of drivers, which adversely 
affected lane-keeping performance (38). Using naturalistic driving study data, some recent 
studies found that adverse weather significantly decreased driver lane-keeping ability (39–41). 
While previous studies used traditional parametric model to examine driver behavior, including 
lane-keeping ability (37, 39, 40, 42, 43), numerous data mining techniques have been utilized in 
prior studies (e.g., Decision Tree (DT), Random Forest (RF), Atrificial Neural Network (ANN), 
Factor Analysis (FA), Cluster Analysis (CA), MARS, etc.) because of their advantages over 
parametric models in many aspects (41, 44–48). The association rules mining is one of the most 
popular and commonly used data mining techniques in transportation research; however, its use 
lied mainly in identifying contributing factors in crashes. Geurts et al. utilized association rule 
mining to identify accident patterns and characteristics in black spots (49). Pande and Abdel-Aty 
used an association rules algorithm to discover indirect association in crash data (50). Another 
study employed association rules in analyzing accident data of Iranian Railways to discover and 
explore hidden relationships and patterns among the data (51). A study focused on identifying 
crash contributory factors at urban roundabouts utilized association rules to explore the 
interdependences between these factors (52). A study conducted by Das and Sun applied 
association rules to investigate the pattern of traffic crashes under rainy weather conditions (53). 
In another study, association rules were utilized to discover patterns from vehicle-pedestrian 
crash database (54). Association rules technique has been attracted many attentions in recent 
years and in different fields including market basket analysis, medical record analysis, product 
recommendation and other fields to discover unknown patterns (55–57).  

Lane Changing Characteristics based on Aggressiveness  
Several studies have analyzed lane-changing behavior in different ways using different dataset. 
Data from instrumented vehicle were used in a study to identify the differences in lane-changing 
types during congested and uncongested traffic. The study categorized drivers into different 
groups (very conservative, somewhat conservative, somewhat aggressive, and very aggressive) 
based on their lane-changing characteristics (58). Another study of lane-changing behavior 
performed by Sun and Elefteriadou on urban streets also categorized drivers according to their 
lane-changing characteristics based on the personal background data, in-vehicle driver behavior 
and trajectory data (59). A study conducted by Wang et al. investigated the discretionary lane-
changing characteristics using Next-Generation Simulation trajectory dataset and found that 
lane-changing duration followed a lognormal distribution and decreased with the navigation 
speed. In addition, they found no significant difference in lane-changing durations between left-
to-right and right-to-left lane changes (60). A microscopic simulation study of four lane-
changing strategies (speed leading, speed leading with overtaking, lane leading, and traffic 
leading) on traffic flow characteristics concluded that different lane-changing strategies might 
have various impact on the distribution of lane flow and freeway capacity. The study concluded 
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that number of lane-changing events will be decreased during higher densities in all strategies 
(61). Even though these studies utilized different dataset in examining lane-changing behavior, 
very few studies observed this behavior in a naturalistic setting. Lee et al. conducted the first 
naturalistic lane-changing analysis regarding frequency, duration, urgency, and severity of lane-
changing with reference to maneuver type, direction, and other classification (62). Chen et al. 
used the 100-car NDS data in their study and found that frequency and time-to-collision (TTC) 
in naturalistic lane-changing events varied by vehicle speed (63). Another study conducted by 
Chen et al. predicted lane-changing maneuvers by developing an adaptive method from vehicle 
kinematics data based on the same dataset. The study concluded that drivers initiated steering 
maneuver for a lane-changing event within five seconds of lane crossing (64). 
Although many studies investigated lane-changing characteristics using different parameters, few 
studies have specifically used lane-changing durations. A comprehensive examination of 
naturalistic lane-changing observed 8,667 lane changes from 16 participants with a mean 
duration of 9.07 s (62). The study conducted by Hill et al. collected 726 completed lane changes 
that were performed by 46 participants in an instrumented vehicle, and found the lane-changing 
durations ranged from 2.30 s to 13.8 s in addition to a mean of 5.48 s (58). Similarly, another 
study collected 282 lane changes from 16 participants who drove an instrumented vehicle. The 
study found the range of lane-changing durations varied from 3.41 s to 13.62 s with a mean of 6 
s (65). Similar to the instrumented vehicle studies, Salvucci et al. identified average lane-
changing duration of 5.14 s where 11 participants used a driving simulator (66). In another study, 
based on the trajectory dataset, Toledo et al. found the lane-changing duration ranged from 1 to 
13 s with a mean of 4.6 s from the 1,790 identified lane changes (67). Overall, these studies 
suggested that range of lane-changing durations for cars varies widely from a minimum 1 s to a 
maximum 14 s. The probable reason for these variations might be the use of different datasets in 
different studies. For instance, trajectory-level data collected from driving simulator or 
instrumented vehicle studies are different from naturalistic driving. In addition, number of 
participants and definition of lane-changing event are also varied among various studies. These 
all contribute to the significant variations of lane-changing durations in several studies.    
Driver aggressiveness is a crucial factor in microsimulation modeling, which is not currently 
incorporated in most of the microsimulation lane-changing models. There is a lack of studies that 
investigated the impact of foggy weather conditions on driver behavioral inconsistency in lane-
changing decisions. Hence, it is essential to analyze driver behavioral aspects of lane-changing 
situations (e.g., aggressive lane changing) in order to calibrate realistic microsimulation lane-
changing models in foggy conditions.   

Gap Acceptance Behavior 
A driver has to consider several factors while changing a lane, including speed, position of the 
vehicle, vehicle(s) in the target lane, as well as different vehicular characteristics, geographical 
characteristics of the roadway, and other factors, including weather and traffic characteristics 
(68). In order to execute a lane-changing maneuver, drivers assess the adjacent gap in the target 
lane, i.e., they evaluate the lead and lag gaps. The lane-changing decision is determined based on 
the availability of a safe gap in the target lane. Driver’s inaccurate gap judgment and failure to 
accept a necessary safety gap after initiating a lane-changing maneuver might introduce high-risk 
driving maneuvers and could eventually result in a lane-changing crash (68). Therefore, gap 
acceptance is one of the critical elements of lane-changing analysis.  
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Different approaches for analyzing lane-changing gap acceptance can be found in the literature. 
Ahmed proposed a systematic approach for modeling lane-changing behavior using a discrete 
choice framework, where a gap acceptance model was utilized to characterize the execution of 
lane-changing maneuvers. Ahmed concluded that several important factors, including gap length, 
relative speed, distance remaining to the point at which lane change must be completed, etc., 
affect drivers’ gap acceptance behavior (69). Toledo et al. modeled lane-changing gap 
acceptance as a binary choice problem by comparing the available space gaps with the critical 
gaps (minimum acceptable gap). They assumed that an available gap (i.e., lead and lag gap) was 
acceptable, if it was greater than the critical gap (70). Hill and Elefteriadou analyzed the lane-
changing behavior on freeways by collecting data on drivers’ desire speed, lane-changing 
duration, and gap acceptance, and found that drivers were more likely to accept smaller lag gaps 
during congested traffic conditions (58). Lee et al. developed a probability model for 
discretionary lane-changing maneuver (i.e., a maneuver that is intended to improve the perceived 
driving condition) in highways and found that both relative velocity and relative lead gap are the 
main criteria for discretionary lane-changing maneuvers and have similar positive influences on 
the choice probability model (71). In another study, Wang et al. developed multilevel mixed-
effects linear models to examine the influencing factors of lane-changing gap acceptance and 
found that acceptance of lead and lag gaps were significantly affected by several factors, 
including environmental variable, vehicle type, and kinematic parameters (72).   
In recent years, the use of numerous nonparametric techniques has increased due to their 
advantages over the traditional parametric techniques in investigating driver behavior (41, 73, 
74).  MARS is becoming one of the most popular nonparametric approaches in transportation 
fields. However, researchers mostly used this technique to develop crash prediction models and 
to identify crash-contributing factors. Haleem et al. utilized MARS model to develop crash 
modification factors for urban freeway interchange influence areas (75). Park and Abdel-Aty 
assessed the safety effects of multiple roadside treatments by estimating CMF using the MARS 
model (76). In another study, the MARS model was utilized to predict rear-end crashes at 
unsignalized intersections (77). A study focused on the analysis of freeway accident applied the 
MARS model to explore the effects of non-behavioral factors, including roadway geometric 
characteristics, traffic factors, and environmental conditions on the frequency of freeway 
accidents (78). Another study conducted by Gaweesh et al. applied the MARS model to develop 
crash prediction models for a case study of Wyoming Interstate 80 (79). Apart from the crash 
analysis perspective, the MARS model has been recently utilized in other transportation fields 
(e.g., traffic flow prediction, vehicular emission prediction, fuel consumption estimation, etc.) to 
model complex relationships and interactions (80–82).  

Speed Selection Behavior 
The effects of adverse weather on driver speed behavior have been investigated in previous 
studies. FHWA reported 5 to 40 percent, 3 to 13 percent, and 3 to 16 percent reduction in 
average speed attributable to snow, light rain, and heavy rain, respectively (18). The Highway 
Capacity Manual (HCM) stated 5 to 64 percent and 1  to 7 percent reduction in speed in heavy 
snow and rain, respectively (4). Based on traffic and weather data on the Metro freeway in the 
Twin Cities (St Paul and Minneapolis Minnesota), the study of Agrawal et al. (83) concluded 
that during light rain, and heavy rain, the free-flow speeds were reduced by 2  to 4 percent, and 4 
to 7 percent, respectively. In another study, Rakha et al. (84) analyzed the impact of inclement 
weather on traffic stream behavior and reported free-flow speed reduction up to 19 percent and 9 
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percent due to snow and rain, respectively. In another study, Hogema et al. (85) observed the 
driving behavior of a 12 km long road segment on the A16 Motorway, in the Netherlands, for 
more than two years and found 8 to 10 kph speed reduction because of the poor visibility caused 
by fog. The study in Liang et al. (86) found similar results with a speed reduction of 8 kph due to 
the presence of fog on the roadways. Another study conducted by Perrin Jr. et al. (87) quantified 
the impact of wet pavement on free-flow speed. This study reported a 10 percent reduction in 
speeds due to wet surfaces, 13 percent due to wet and snowy surfaces, 25 percent due to wet and 
slushy surfaces, and 30 percent due to slushy surfaces.   

Data Reduction and Preparation 
Lane Keeping Ability  
Utilizing the developed method, as described in Chapter 2, the research team collected fog-
related NDS trips with their matched trips in clear conditions. Afterward, manual video 
verifications were conducted in order to filter out the trips that occurred in clear weather 
conditions. The next step of data reduction procedure was to reduce the dimensionality of the 
NDS data by selecting the most relevant time-series variables of interest. Subsequently, the 
received NDS trips were segmented into 1-minute time interval to preserve the consistent 
weather conditions within a single trip (12, 88, 89). This step also involved manual video 
observation and annotation of 1-minute environmental and traffic conditions. To maintain 
consistency and eliminate subjectivity in the manual video annotation process, video reviewers 
were trained comprehensively with several sample images and detailed written descriptions. 
Also, manual post verification was conducted by external reviewers. Figure 2, Figure 3, and 
Figure 4 exhibit sample images of heavy fog, distant fog, and clear weather that were provided 
during the manual annotation process.   
 

 
Figure 2 Heavy Fog.  



  
 

14 
 

 
Figure 3 Distant Fog.  

 
Figure 4 Clear Weather.  

In this study, 124 trips in foggy weather conditions with their corresponding 248 trips in matched 
clear weather (i.e., 2 clear trips:1 foggy weather trip) were randomly selected and reduced for 
analyzing the lane-keeping behavior. The selected NDS trips involved 62 drivers who drove the 
same vehicle and same routes in both fog and clear weather conditions on freeways. These 62 
driver ages ranged from 16 to 79 with a significant number of drivers in age group 30-34, and 
gender was mainly balanced among age groups. In total, 7,147 1-minute segments were reduced 
from the selected NDS trips. Once the non-freeway segments were removed, 5,584 1-minute 
segments that are equivalent to nearly 93 hours of driving time and around 8,196 traveled km in 
freeways were considered for the final analysis. Afterward, roadway characteristics provided in 
the RID database and driver demographics provided in the SHRP2 administrated survey 
questionnaires were linked with each 1-minute segment to create a final modeling dataset.  

Lane Changing Characteristics Based on Aggressiveness  
There were 214 trips in foggy weather conditions, with their corresponding 214 trips in matched 
clear weather, were reduced and randomly selected from the acquired NDS trips for analyzing 
the lane-changing behavior. The selected 214 trips involved 125 drivers (57 male and 68 female) 
who drove the same vehicle and same freeway routes in both fog and clear weather conditions, 
and aged between 16 to 89 years with a significant number of drivers in age group 20 to 24. The 
overall process from data reduction to analysis for investigating lane changing behavior is 
illustrated in Figure 5. Identifying lane-changing events in the reduced one-minute segmented 
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aggregate files was a challenging and a time-consuming task. To effectively identify lane-
changing events occurring in fog and clear weather conditions; an interactive data visualization 
and reduction tool was developed. This tool has the capability of synchronizing the forward and 
rear camera videos with the time-series variables of interest (11). Lane position offset variable 
from the time-series data was used to identify lane-changing events and compute the duration of 
each lane-changing event. The variable is estimated from the distance to the left or right of the 
center of the lane and center of the vehicle based on machine vision techniques (90). Using the 
data visualization and reduction tool, and lane position offset variable from time-series data, all 
lane-changing maneuvers were manually identified in each one-minute segment from the 
reduced aggregated files. 

 
Figure 5 Summary of Data Reduction and Analysis Process  

During the manual identification of lane-changing events, different maneuver types were 
identified based on a previous study by Lee et al. (62). Subsequently, the duration of each lane-
changing event was calculated from the plot of lane position offset with time, as shown in Figure 
6. In this figure, a lane-changing event is shown in a trip that traversed in foggy conditions on 
Interstate 5, in Washington.  
 



  
 

16 
 

 
 
Figure 6 Identification of Lane-Changing Maneuvers from NDS Data (Trip ID: 52637998, 

I-5, Washington) 
Gap Acceptance Behavior 
DAS-equipped NDS vehicles had only radar data from a front-mounted radar. Considering the 
fact that front-mounted radar cannot detect the presence of a lag vehicle (i.e., the vehicle behind 
the NDS vehicle’s lane), it is not possible to consider the NDS vehicle as a subject vehicle for 
gap acceptance analysis. Therefore, in order to investigate the lane-changing gap acceptance 
behavior, the vehicles adjacent to the NDS vehicle’s lane were considered as the LCV in this 
study; where NDS vehicle served as a FV and provided the opportunity to analyze gap 
acceptance behavior of the vehicle (i.e., LCV) in front of it, as shown in Figure 7. Figure 7 
demonstrates a lane-changing event in a trip performed by an LCV in clear weather conditions. 
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Figure 7 Typical Lane-changing Event 

It is worth mentioning that authors had only access to data of LCV recorded by the NDS 
vehicle’s front radar. In fact, gap acceptance analysis requires a lot of data processing for the 
front-mounted NDS radar data since these data are not readily available in the SHRP2 NDS data. 
Additionally, working with radar data is not straightforward because of its noisy nature and the 
limited distinction between detected object categories. Moreover, several NDS trips might exist 
with missing radar data or other erroneous values. Therefore, an effective algorithm was needed 
to be developed for processing radar data efficiently. This study developed an automatic 
algorithm to identify the lane-changing event and corresponding parameters for analyzing gap 
acceptance behavior. In order to develop the algorithm, the following steps were considered: 
1. Some received NDS trips had missing radar data. NDS trips with missing radar data were 

imputed using fillmissing function of MATLAB,  where missing data were imputed through 
linear interpolation of non-missing neighboring values (91). It is worth mentioning that no 
imputations were made if more than 10 percent  of data were missing and those data were 
discarded from the algorithm.  

2. Afterward, radar data were smoothed with smoothdata function of MATLAB using 
‘movemedian’ method. The method helped to reduce the periodic trends in the data due to 
some outliers (92). 

3. The presence of potential LCV on the nearest lane was determined considering the following 
criteria. The algorithm proceeded further only if the first criterion was met. 

• 𝐼𝐼𝐼𝐼 |𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙| > |𝑌𝑌𝑙𝑙|, potential LCV is on the nearest lane with respect to the NDS vehicle  

• 𝐼𝐼𝐼𝐼 |𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙| < |𝑌𝑌𝑙𝑙|, potential LCV is on the NDS vehicle’s lane. 

Where, 𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙= left/right lateral distance between potential LCV and FV  

𝑌𝑌𝑙𝑙= distance from vehicle centerline to inside of left/right side lane marker based on a 
vehicle-based machine vision technique (90) 

4. In order to ensure FV (i.e., NDS vehicle) did not move in a lateral direction, i.e., changed a 
lane, corresponding events were eliminated. The lane-changing maneuver of FV was 
identified using lane position offset variable from the NDS data. A threshold of ±100 cm 
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lateral shift (i.e., left and right) in the position of a FV was considered as a lane-changing 
maneuver (41). Figure 8 shows a sample of lane-changing maneuver (left to right) with lane 
position offset value above 100 cm and the peaks in the figure represent the occurrence of 
lane-changing maneuver of the FV. As can be seen in Figure 8, the value of lane position 
offset started to increase indicating that FV started to move laterally from left to right of the 
lane center until the value reaches a maximum point. A jump was then occurred representing 
the FV reached the far right of the driver’s adjacent lane.  

 
 

Figure 8 Demonstration of Automated Identification Process of FV’s Lane-Changing 
Maneuver Using Lane Position Offset 

5. The presence of lead vehicle (LV) on the NDS vehicle’s lane was ensured considering the 
following criteria. 

•  𝐼𝐼𝐼𝐼 |𝑌𝑌𝑙𝑙𝑙𝑙| < |𝑌𝑌𝑙𝑙|, LV is on the NDS vehicle’s lane  

• 𝐼𝐼𝐼𝐼 |𝑌𝑌𝑙𝑙𝑙𝑙| > |𝑌𝑌𝑙𝑙|, LV is not on the NDS vehicle’s lane  

Where, 𝑌𝑌𝑙𝑙𝑙𝑙= left/right lateral distance between LV and FV  

These criteria were checked for all possible Y ranges. The velocity of LCV and FV (more 
than 1 meter/seconds  were checked in this step in order to ensure that the two vehicles are in 
motion (72). 

6. The local maximum (peak) of the Y range of potential LCV (i.e., identified in Step 3) was 
determined using findpeaks function of MATLAB. The peak is defined as the starting point 
of a lane-changing event.  

7. Every local peak of the Y range was checked up to a 20 s period. Based on the literature, the 
maximum duration of lane-changing maneuver can vary up to 15 seconds. Therefore, 20 
seconds was conservatively selected to capture all the lane-changing events. Additionally, a 
gradual reduction of Y range was considered to identify a lane-changing event. The end of 
the lane-changing event was determined when the Y range was close to zero. As an example, 
Figure 9 exhibits the Y range of a lane-changing scenario. The starting point of the lane-
changing event is shown in A in the figure. Once the lane-changing event was initiated, the 
LCV’s Y range started to decrease and approached to zero. When the LCV’s Y range 
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touched the first zero value, it was considered the completion of lane-changing event. This 
point is the end of lane-changing event and is denoted as B in Figure 9. The time required for 
the LCV to travel from A to B was defined as the lane-changing duration. 

 
Figure 9 Y Ranges of a Lane-Changing Event 

    
8. Once the lane-changing event was identified, lead and lag gaps were calculated. This study 

defined distance in terms of time rather than space, as time represents better driver behavior 
compared to space. The LCV is concerned with sufficient time for a safe lane-changing 
maneuver with corresponding travel speed. Therefore, time gaps provide better 
representation than distance gaps (93). The gaps were calculated when the LCV started its 
movement laterally from the current lane to the desired lane. Lead gap was denoted as the 
time taken to traverse the longitudinal distance between LV and LCV. On the contrary, lag 
gap represented the time taken to traverse the longitudinal distance between FV and LCV 
(72).  

9. The identification algorithm (Step 1 to 8) repeated for the entire received NDS trips 
automatically in the MATLAB environment. In addition, a database was developed after 
extracting the necessary parameters for gap acceptance. The overall methodology used for 
automatic identification of lane-changing events has been shown in Figure 10. 
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Figure 10 Automatic Algorithm for Identifying Lane-Changing Events Using Radar Data 

After developing the automatic algorithm, all identified lane-changing events were manually 
verified using the Wyoming NDS Visualization and Reduction Tool (12, 94). This step involved 
manual video observation and annotation of environmental conditions (i.e., weather, surface, and 
visibility), traffic states, and lane-changing maneuver types for each extracted lane-changing 
event within a single trip. In this study, 361 trips were randomly selected and considered for 
analyzing gap acceptance behavior. In total, 599 lane-changing events were verified and reduced 
from the selected NDS trips using the data visualization and reduction tool. Afterward, roadway 
characteristics provided in the RID database were linked with each lane-changing event to create 
a final modeling dataset.   

Speed Selection Behavior 
As mentioned earlier, the collected NDS trips had mainly three kinds of data: a) time-series data 
containing the information related to vehicle kinematics, b) survey questionnaires responses of 
the NDS drivers containing data related to driver demographics, and c) video data of the 
roadways. Expectedly, weather and traffic conditions were found to be inconsistent throughout 
the NDS trips. Therefore, first, the times series data were divided into 1-minute segments. 
Subsequently, the average vehicle kinematics were calculated over the 1-minute chunks, and 
driver demographics data were added to each 1-minute segment. Next, weather and traffic 
conditions were collected from manual video observation and added to the 1-minute segments. 
The traffic condition was grouped into two categories: free-flow considering Level of Service 
(LOS) A and B; and mixed-flow/congested-flow considering LOS C to F.  The weather was 
categorized into four categories: clear, rain, snow, and fog, based on the following criteria.  

• Clear: Excellent visibility; dry/wet/snowy road surface; road sign, marking, and 
surroundings are clearly visible. 

• Rain: Raindrops are visible; wet road surface; affected visibility. 
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• Snow: Snowflakes are visible; snowy road surface; affected visibility.  
• Fog: The horizon is undefinable; dry/wet/snowy road surface; affected visibility. 

Finally, the RID data were also merged into each 1-minute segment using the ArcGIS software. 
A total of 10,046, 2,023, 1,231, and 2,026 1-minute segments in clear, rain, snow, and fog, 
respectively, were identified following the data reduction process.  
The speed selection behavior was considered as the response variable in the models and grouped 
into four categories: 1) more than 5 mph above the speed limit, 2) between 0 to 5 mph above the 
speed limit, 3) between 0 to 5 below the speed limit, and 4) more than 5 mph below the speed 
limit. These intervals were selected based on the fact that for practical applications, such as VSL, 
speeds are usually incremented by 5 mph. Figure 11 shows the graphical representation of the 
response variable (95). 

 
Figure 11 Graphical Representation of the Response Variable of the Speed Selection 

Models 
The remaining variables are explanatory variables, including environmental variables, traffic 
conditions, driver demographics, and roadway factors. Table 1 shows a summary of the variables 
used in the speed selection models. Note that the same variables were used to calibrate both the 
association rules mining and the ordered logit model.  
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Table 1 Overview of the Selected Variables 

 



  
 

23 
 

Methodology 
As discussed earlier, the primary emphasis of this study was to investigate the impact of adverse 
weather on driver behavior by employing several statistical techniques, including parametric, 
non-parametric, clustering, and data mining approach. The details of the used methods are 
described in the following section.     

Ordinal Logit Regression 
An ordered logistic model can provide relationship between a response variable and explanatory 
variables. A logistic model has several advantages, such as it can handle non-linear effect and 
interaction terms (38-39). In addition, predictor variables in logistic model do not have to be 
normally distributed or have equal variance in each group (40). Moreover, the model result can 
be interpreted very easily by odds ratio (41-42). Logistic regression modeling has been utilized 
in previous traffic safety and operation studies (30) and (43). The ordinal logit model is a 
regression model for the ordinal dependent variable. This model uses cumulative probabilities up 
to a threshold, which makes the whole range of ordinal categories binary at that threshold (96). In 
this study, the driver behavior (i.e., speed selection and lane keeping ability) were considered as 
the response variable. The log of the probabilities of response variable can be expressed using 
the following equation.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗)] = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑌𝑌≤𝑗𝑗)
1−𝑃𝑃(𝑌𝑌≤𝑗𝑗) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋1+ ……. +𝜋𝜋𝑗𝑗

𝜋𝜋𝑗𝑗+1+ …….  +𝜋𝜋𝑐𝑐
=  𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖 ,            𝑗𝑗 = 1, … … , 𝑐𝑐 − 1  

            Equation 1 

Where,  𝑃𝑃(𝑌𝑌 ≤ 𝑗𝑗) =  𝜋𝜋1 +  … … .  +𝜋𝜋𝑗𝑗  is the cumulative probabilities of a response variable level 
less than or equals to 𝑗𝑗 associated with a vector of explanatory variables 𝑥𝑥𝑖𝑖 for NDS driver 𝑙𝑙 , 𝑐𝑐 is 
the number of possible outcomes (𝑐𝑐 = 4 in this study), 𝛼𝛼 is a vector of cutoff points for the 
model, and 𝛽𝛽 is a vector of the regression coefficient.  

Association Rules Mining 
Data mining technique focuses on identifying valuable information from large datasets. The 
process involves machine learning, statistical techniques, and database management systems to 
discover this valuable information in the form of associations, interesting patterns, and 
significant structures. Data mining techniques can be classified into two groups, descriptive and 
predictive. The descriptive data mining technique demonstrates the general properties of the data 
and illustrates the dataset in a compact way. On the contrary, the predictive approach attempts to 
anticipate the behavior of the new dataset (97). 
Association rule is a popular descriptive data mining approach and a commonly used rule-based 
machine-learning method for discovering interesting relations of variables in large databases. 
The technique is intended to uncover obscured patterns in an itemset (a set of environmental, 
traffic, roadway geometry, and driver demographic factors in this study) that occur together or 
alone in a given event (i.e., a measure of lane-keeping performance in this study) using several 
algorithms. Among different algorithms, Apriori algorithm, introduced by (98), is one of the 
most widely used algorithms to mine association rules. The Apriori algorithm applies level-wise 
search for mining frequent itemsets. The study utilized Apriori algorithm of association rules to 
explore key association factors in driver lane-keeping performance. 
Before explaining the method, a set of definitions needs to be provided, I = {i1, i2,...i3} be a set of 
items and D = {t1, t2,…,tn} be a set of database lane-keeping performance information called 
transaction. Each lane-keeping performance information in D contains a subset of the items in I. 
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An association rule can be defined as A → B, where, A, B ⊆ I and A ⋂ B = ∅ (99). Here, A is 
called the antecedent or left-hand-side (LHS), and  B is consequent or right-hand-side (RHS) 
(54). It is worth mentioning that the interference made by an association rule does not suggest 
direct causation. Rather it implies the strong association between the antecedent and consequent 
of the rule.     
Mining Interesting Rules 
Various measures of significance and interest are used to select interesting rules. Among them, 
support, confidence, and lift are the most commonly used. The support of an association rule is 
defined as the percentage of lane-keeping performance (i.e., percentage of transaction) in the 
entire dataset covered by the rule  (100). Equation 2 represents the support of association rule (A 
→ B) 

Support, s(A → B) = 𝜎𝜎 (𝐴𝐴∩𝐵𝐵)
𝑁𝑁

         Equation 2 

Where 𝜎𝜎 (𝐴𝐴 ∩ 𝐵𝐵) = Number of rules with particular lane-keeping performance (i.e., poor or good 
lane-keeping) where both A and B are present. N is the total number of lane-keeping 
performance.   
The confidence of an association rule, c(A → B) can be measured as the percentage of lane-
keeping performance (i.e., transaction) containing A that also contains B (101). The equation of 
confidence can be expressed as follows:   

Confidence, c(A → B) = 𝑠𝑠(𝐴𝐴→𝐵𝐵)
𝑠𝑠(𝐴𝐴)

       Equation 3 

However, an association rule A → B needs to satisfy the following constrains: 
Support, s(A → B) ≥ minsup         Equation 4 
Confidence, c(A → B) ≥ mincon f        Equation 5 
Where, minsup and mincon f are the minimum support and minimum confidence, respectively.  
Considering minimum support is important to find out a particular significant item in the dataset. 
A more popular and practical measure to rank the found rules is lift (102). The lift can be 
expressed as a measure of the deviation of the support of the whole rule from the support 
expected under independence given the support of antecedent and consequent (100). In other 
words, the lift of a rule is the ratio of the confidence of the rule and its expected value. The lift of 
an association rule, l(A → B) can be calculated as: 

Lift, l(A → B) = s(A → B) 
𝑠𝑠(𝐴𝐴)×𝑠𝑠(𝐵𝐵)

         Equation 6 

Where s(A) and s(B) denotes the support of an antecedent and a consequent. A lift value of 1 
indicates the independence of the antecedent and consequent. A lift value greater than 1 suggests 
the positive independence (i.e., antecedent and consequent appear more often together than 
expected) between antecedent and consequent, whereas a lift value less than 1 suggests the 
negative independence (i.e., antecedent and consequent appear less often together than expected)  
(103) (49).   

K-means Clustering 
A clustering technique was adopted to classify driver into different categories based on their 
number of discretionary lane-changing events per mile and speed differences (i.e., difference 
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between mean speed and posted speed limit) while driving on freeways. Cluster analysis is a 
data-mining tool for identifying several driver behaviors and has been used successfully in 
various transportation research (104–106). Previous studies used the K-means clustering 
approach to classify drivers into groups (59, 104, 107). In this study, K-means cluster method 
was utilized to identify driver aggressiveness in fog and clear weather conditions. Drivers were 
classified into different categories based on feature X; where X is defined as:  
X = [number of discretionary lane-changing events, and speed differences]  Equation 7 
K-means clustering is a type of unsupervised learning that is used to solve clustering problems. 
This method aims to classify a given dataset through a certain number of groups represented by 
the variable k (108). Using a predetermined number of clusters, the K-means clustering method 
partitions the observations into k clusters. In the k clusters, each observation is assigned to the 
cluster whose mean is closest to its value. The algorithm works through an iterative process to 
allocate each data point to one of the k groups according to the provided features (109). The 
required number of iterations may vary from a few to several thousand depending on the number 
of clusters and patterns, and the input data distribution (110). Euclidean metric is used in K-
means algorithm for computing distance between points and cluster centers (111). The main goal 
of K-means algorithm is to minimize within-cluster sum of squares that is shown in the 
following equation.  

arg𝑚𝑚𝑙𝑙𝑚𝑚𝑆𝑆 ∑ ∑ ||𝑋𝑋𝑗𝑗 −  𝜇𝜇𝑙𝑙||2𝑋𝑋𝑗𝑗∈𝑆𝑆𝑖𝑖
𝑘𝑘
𝑖𝑖=1        Equation 8 

Where Xj (j = 1, 2…, n) are the set of observed data which includes the number of discretionary 
lane-changing events and speed differences in the perspective of this study. Si (i = 1, 2…, n) are 
the set of clusters k and μi represents the mean of cluster Si.  
The determination of the number of clusters is very crucial. Although there is no perfect method 
for determining the exact value of k, a number of heuristics are available for choosing the 
optimal number of clusters (109, 112). In this study, different statistical measures (e.g., pseudo F 
statistics, Cubic Clustering Criterion (CCC), etc.) were considered to find out the optimal 
number of clusters for different groups in fog and clear weather conditions (113).  

Multivariate Adaptive Regression Splines (MARS) 
MARS is a nonparametric piecewise multivariate regression technique introduced by Friedman 
and can be used to model complex relationships among variables (114). In the MARS model, the 
space of independent variables is split into several regions separated by knots. Then it fits a 
spline function that consists of several polynomial basis functions (BF) between these knots 
smoothly. The general form of the MARS model is shown in the following equation (41, 76, 77, 
114).  

𝑦𝑦� = 𝑏𝑏0 + ∑ 𝑏𝑏𝑚𝑚 + 𝐵𝐵𝐵𝐵𝑚𝑚(𝑥𝑥)𝑀𝑀
𝑚𝑚=1         Equation 9 

Where, 𝑦𝑦� is the predicted response variable (i.e., lead and lag gap in this study), 𝑏𝑏0 is the 
coefficient of constant BF, 𝑏𝑏𝑚𝑚 is the coefficient of the basis function number (m),  𝐵𝐵𝐵𝐵𝑚𝑚(𝑥𝑥) is the 
basis function number (m) for the independent variable x, and M is the total number of BFs.  
There are two main phases to fit a MARS model. The first phase is the model generation that is 
composed of two stages, forward-stepwise regression selection technique, and the backward-
stepwise elimination process. The second phase is the model selection. In the forward-stepwise 
selection stage, an initial model starts with a constant only. BFs are developed using equation 1 
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and added to the model in several regions of the independent variables. Afterward, the model 
searches for significant variable-knot combination, and the model improvement is assessed. The 
interactions are also introduced in this stage to improve the model fit. The search process is 
repeated until the best variable-knot combination is identified (41, 75, 76, 115).  
In the backward-stepwise elimination stage, the model identifies a BF with the lowest 
contribution and eliminate based on the residual sum of squares (RSS) criteria, as provided in 
equation 2 (79). After refitting the model, the model again identifies a BF to eliminate using the 
same criteria. The elimination process is repeated until all the BFs have been removed. The final 
results of the elimination process is a different series of candidate models (115). 

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1            Equation 10 

The second and final phase to fit a MARS model is the model selection phase. The selection of 
the final model is based on the generalized-cross-validation (GCV) criterion or closeness 
between the training mean square error (MSE) and the test MSE. It is worth mentioning that a 
penalty for the model complexity is applied for the GCV criterion. The penalty is based on the 
degrees of freedom charged per each developed knot (77, 79).  

𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀) = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

(1−𝐶𝐶(𝑀𝑀)
𝑛𝑛 )2

         Equation 11 

𝐺𝐺(𝑀𝑀) = 𝑀𝑀 + 𝑑𝑑𝑀𝑀          Equation 12 

Where, n is the number of lane-changing events, 𝑦𝑦𝑖𝑖 is the lead/lag gaps for observation i, C (M) 
is the complexity penalty function, d is the defined cost for each BF optimization.    

Results and Discussions 
Lane Keeping Ability 
Descriptive Statistics 
After reducing the 372 NDS trips considered in this study, in total 7,147 one-minute segments 
(2,549 segments in fog, and 4,598 segments in matched clear weather) were reduced for further 
analysis. Once non-freeway segments were removed, 5,587 segments (1,912 segments in fog, 
and 3,675 segments in matched clear weather) were considered in developing the lane-keeping 
ordered logistic regression model. As mentioned earlier, weather conditions were not consistent 
within a single trip (34). Therefore, considering the entire clear trip as a matched to a fog 
weather trip would not provide accurate results. Therefore, it is necessary to identify the exact 
matching routes that traversed in fog and corresponding clear trips. A GIS-based procedure was 
developed and utilized to identify exact corresponding traversed routes in matched trips in clear 
weather conditions, as shown in . After matching trips spatially, in total 5,398 one-minute 
segments (1,867 segments in fog, and 3,531 segments in matched clear weather) were considered 
for preliminary analysis. Table 2 breaks the categorization of these 5,398 one-minute segments 
into two different traffic states (free-flow and non-free-flow). Free-flow conditions indicated 
those conditions, when NDS driver has a leading vehicle existing at least in one lane but not 
affected by other vehicles, or has no leading vehicle in any lanes. Non-free-flow conditions 
considered other conditions when NDS drivers were affected by ambient traffic (34). The 
summary statistics for the number of one-minute segments, total travel time, the length of routes 
along with their matching clear trips are provided in Table 2. A total of 5,398 one-minute 
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segments in clear and foggy weather conditions contained a total of 8,335 km of freeways and 
traveled over 89.97 hours in the six NDS states. 

Table 2 Summary Statistics of NDS Trips (One-Minute Segment)  

 
 
It is worth mentioning that precise matching between trips occurred in foggy conditions and their 
corresponding matched clear trips was required to account for confounding factors in the 
preliminary analysis, this is not the case for the ordered logistic regression. From 5,398 one-
minute segments, 2,964 one-minute segments in free-flow condition were considered for the 
preliminary analysis. As an example, a traversed route in fog on I-4, Florida, is shown in Figure 
12 along with two matching trips to illustrate the procedure of eliminating non-matching 
segments in GIS.  
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Figure 12 Identification of Matching Segments of Heavy Fog and Corresponding Clear 

Trips (I-4, Florida) 
Preliminary Analysis 
As mentioned earlier, in total 2,964 one-minute segments in free-flow conditions in heavy and 
distant fog with their matched clear trips were considered in the preliminary analysis. Table 3 
shows descriptive statistics and various statistical tests for the variables of interest for fog and 
their corresponding matched clear in free-flow condition. To understand the magnitude of the 
difference between fog and clear weather, Cohen’s d effect size was used. According to the 
Cohen’s d test, d=0.2 can be considered as “small” effect size, 0.5 indicates “medium” effect 
size, and 0.8 defines a “large” effect size (35).  



  
 

29 
 

The reported lane offset variable in the NDS was estimated based on machine vision. Lane offset 
can be considered as an indication of intended (lane change) or unintended deviation from the 
lane (36). As can be seen in Table 3, a t-test indicated that average lane offset to the left was 
significantly higher in clear weather conditions compared to heavy fog conditions, whereas 
average lane offset to the left in distant fog had no significant difference compared to their 
matched clear trips. However, no significant difference in average lane offset to the right 
between heavy and distant fog were found compared to their respective matched clear weather 
trips. Lane offset variability was significantly higher in clear weather trips compared to heavy 
fog but no significant difference in lane offset variability was found in distant fog and clear trips. 
The minimum and maximum value of lane offset indicated that drivers change multiple lanes 
during clear weather conditions compared to a single lane change in heavy fog conditions. . 
Preliminary analysis indicated that average speed in heavy fog under free-flow conditions was 
significantly lower (5.28 km/hr) than in clear weather. However, the average speed in distant fog 
under free-flow conditions was found to be 2.3 km/hr lower than in clear weather. This might be 
due to the fact that distant fog has a tangible effect on driver performance. It was also found that 
speeds had a higher variability during clear weather conditions compared to heavy fog under 
free-flow conditions. This could be explained by the fact that drivers tend to increase their speeds 
more in clear weather conditions, which results in higher speed variability. However, speeds had 
higher variability during distant fog compared to clear conditions under free-flow conditions.  
The acceleration/deceleration variable was tested, and ±0.3g acceleration/deceleration rates were 
set as a threshold to identify aggressive braking/acceleration events (37). However, all 
acceleration/deceleration were found to be within (-0.3g, +0.3g) range resulting in the 
recognition of zero aggressive braking events. The preliminary analysis demonstrated that no 
significant variability in average acceleration were recognized between heavy and distant fog 
compared to their respective matched trips in clear. Average acceleration in clear conditions was 
found to be significantly higher than heavy fog conditions. However, no significant difference 
was observed between average acceleration in distant fog and clear weather conditions.  
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Table 3 Preliminary Analysis for the NDS Instrumented Vehicle in Fog & Free-Flow 
Condition 

 
Modeling Lane-keeping Ability-Parametric Approach 
SDLP was considered as the categorical dependent variable for investigating lane-keeping ability 
in fog. SDLP is a widely used in assessing lane-keeping performance (34) and (44). A general 
value of SDLP for normal driving was found to be 20 cm in previous studies (45-46). Some 
studies used SDLP value of about 31 cm for driving on curved roads (47). Therefore, SDLP was 
considered in three levels including below 20 cm, between 20 and 30 cm (moderate-lane keeping 
ability) and greater than 30 cm (considered poor lane keeping).  
The explanatory variables used for the modeling consist of information extracted from the 
questionnaires, including driver characteristics (gender, education, marital status, driver mileage 
last year, driving experience, etc.), roadway characteristics (presence of curve, number of lanes, 
posted speed limit, etc.), environmental characteristics (weather, visibility, and surface 
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conditions), and traffic conditions. Table 4 shows the selected variables for developing the lane-
keeping model. 

Table 4 Variable Descriptions 

 
To confirm the suitability and fitness of the models, the log likelihood ratio and the pseudo R2 
were used. The multicollinearity issue was assessed by calculating the Variance Inflation Factor 
(VIF). VIF is a measure of the amount of multicollinearity in a set of multiple predictor 
variables. A VIF between 5 to 10 means the predictors are highly correlated. A VIF above 10 
indicates the highest correlation and the regression coefficients are considered as poorly 
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estimated (48). The VIF value of all the predictor variables used in the model fell below 3, 
excluding any multi-collinearity issue. Table 5 shows the results of the model. Only statistically 
significant variables were retained in the final model. 

Table 5 Ordered Logistic Regression Model for Lane-Keeping Ability in Different Weather 
Conditions 
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It can be seen from Table 5 that visibility has a significant effect on driver lane-keeping 
behavior. The positive estimates of visibility indicated that SDLP was more likely to be higher in 
affected visibility conditions. This means drivers had worse lane-keeping ability, when visibility 
is affected. More specifically, drivers in reduced visibility conditions showed about 1.37 times 
higher SDLP, in comparison with drivers who were driving in good visibility conditions. The 
findings are in conjunction with existing literature (28), (34), and (49). As expected, traffic 
conditions indicated a significant negative effect on SDLP. The negative sign depicts that drivers 
had less ability to change lane and better lane-keeping when traffic congestion increased. 
Specifically, the odds ratio of 0.875 depicted those drivers driving in free-flow conditions were 
1.14 times more likely to have higher SDLP than drivers who were driving in congested traffic 
conditions. 
As can be seen in Table 5, several driver demographics have a significant effect on lane-keeping 
behavior. Positive estimates of lane change described that SDLP was higher when the lane 
change occurred. Considering driver marital status, findings indicated that single drivers were 
1.98 times (OR=0.504) more likely to have higher SDLP than married drivers. This is supported 
by the literature that single drivers showed more riskier driving behavior compared to other 
martial statuses (50-51). Intuitively, lane-keeping ability on curves was found to be worse. 
Additionally, drivers with higher education showed better lane keeping compared to the 
relatively lower education categories. 
Several interaction terms were included in the model to understand the effect of those variables 
together. The interactions between weather, gender, surface conditions, driving experience, 
speed limit, and driver mileage last year were found to have a significant effect on the lane-
keeping ability. Considering the interaction between weather conditions and gender (OR=0.192), 
it was found that female drivers were 81 percent  more likely to have better lane keeping in 
foggy conditions. Interaction between surface conditions and driving experience revealed that 
experienced drivers were 68 percent  more likely to have better lane-keeping ability compared to 
inexperienced drivers when the surface condition was wet, exhibiting the cautious behavior of 
the experienced drivers (OR=0.323). Additionally, lane-keeping performance was found to be 
better for drivers who drove equal or greater than 12,000 miles last year compared to those 
drivers who drove less than 12,000 miles last year at speed limits between 55 mph to 70 mph. 

Modeling Lane-keeping Ability-Non-Parametric Approach 
Similar to the parametric approach, 5,584 1-minutes segments from 348 trips (i.e., 124 trips in fog 
and 248 trips in matching clear weather) were selected for modeling lane-keeping behavior 
utilizing association rules mining technique. These 5,584 1-minute segments contain various 
number of variables; however, thirteen categorical variables were selected based on prior studies 
(39–41), as shown in Table 6. In order to investigate factors that might have an impact on driver 
lane-keeping ability, the association rules mining was utilized in a supervised way. From these 
thirteen variables, SDLP was considered as the consequents of the supervised association rules 
mining in this study. This study utilized binary level of SDLP; less than or equal to 20 cm as good 
lane-keeping, and greater than 20cm means poor lane-keeping ability. The remaining 12 variables 
were considered as the antecedents. These antecedents can be interpreted as the potential 
confounding factors that contribute to the driver lane-keeping ability under different weather and 
traffic conditions. These variables include environmental, traffic, roadway geometry, and driver 
characteristics. Table 6 summarizes the descriptive statistics of the selected variables. 
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Table 6 Overview of Selected Variables  

 
To get meaningful and significant results, minimum support and confidence need to be defined. 
Although several optimization algorithms can be applied to identify the minimum support and 
confidence, this study utilized several trial and error processes to set the optimum values of 
support and confidence, as recommended by a previous study (54). Low minimum support can 
increase the number of uninteresting rules, which make it difficult to interpret. Conversely, 
setting minimum support too high will generate less number of rules, which will fail to find some 
interesting rules and the inherent relationship among different itemsets. Therefore, the process of 
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trial and error was challenging to set the minimum threshold for support, as well as confidence. 
In addition, the number of itemsets is another factor to interpret the results. A rule is defined as a 
two-item rule, if there is a single antecedent and a single consequent in the rule. A three-item 
rule indicates that there are two antecedents and one consequent, or one antecedent and two 
consequents in the rule. In this study, the maximum length of association rules was set to four 
(i.e., four-item rule) for easier interpretation of the results (53).  
The association rules were generated by using ‘arules’ package in R software (100)(116). As 
stated earlier, 13 different variables were selected, which corresponds to 29 items in total. The 
top ten frequent items in the dataset are Surface_Cond.=Dry, Visibility=Not Affected, 
Weather=Clear, Lane>2, Presence_of_Curve=Tangent, Driver_Mileage_Last_Year=>12,000, 
SDLP=Poor, Gender=Male, Age=middle, and Traffic_Condn.=Non-Free-flow. Figure 13 shows 
the item frequency plot graph.  

 
Figure 13 Item Frequency Plot of the Dataset 

To generate association rules among the different characteristics (e.g., environmental, traffic, 
roadway geometry, and driver) in the database, Apriori algorithm was performed by keeping two 
levels of SDLP as consequents (i.e., SDLP=Poor and SDLP=Good). A higher value of lift in the 
rule indicates a stronger association between antecedent and consequent. As stated earlier, lift 
values greater than 1 indicate positive independence between antecedent and consequent. 
Therefore, rules were sorted according to the decreasing value of the lift,  and minimum 
threshold of the lift was considered as 1. Table 7 shows the summary statistics of the extracted 
rules (after removing the redundant rules) where all the rules had lift value higher than 1. From 
Table 7, it can be seen that the range of lift value corresponding to the poor lane-keeping 
performance rules varied between 1.25 to 1.43, with a mean of 1.32. In contrast, the range of lift 
values from 1.24 to 1.73 was observed in the rules corresponding to good lane-keeping 
performance.     
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Table 7 Summary Statistics of Association Rules  

 
Rules for Poor Lane-Keeping Performance 
The association rules with poor lane-keeping performance as consequent were extracted from the 
generated rules. The minimum support and confidence were set at 1 percent  and 80 percent , 
respectively. The number of rules obtained in this case was 84, and all of the rules had a lift 
value greater than 1. After removing the redundant rules, 69 rules were found.  
The first 30 rules were listed in Table 8 by keeping the SDLP=Poor in consequent. The rules 
were ordered according to the decreasing values of the lift. From Table 8, it was observed that 
male drivers with driving experience less than or equal 10 years in non-free-flow traffic 
conditions (Rule 1: Driving_Experience<=10years, Gender=Male, Traffic_Condn.=Non-Free-
flow => SDLP=Poor) produced highest lift value and were highly associated with poor lane-
keeping performance (Support=6.93 percent , Confidence=91.27 percent , Lift=1.432). In 
addition, the effect of distant fog on driver poor lane-keeping performance was found in the 
second rule, indicating that the young drivers who were male and drove in distant fog conditions 
had higher propensity to have poor lane-keeping performance (Rule 2: Age=young, 
Gender=Male, Weather=Distant Fog => SDLP=Poor).  
According to Table 8, it was also perceived that affected visibility was associated with poor lane-
keeping performance in several rules (Rules 7-10, Rule 12, Rules 14-15, Rules 18-19, Rules 22-
25, Rule 29). This finding is in conjunction with existing literature (39–41, 117). For instance, 
the combined effect of higher speed limit, affected visibility, and distant fog on driver poor lane-
keeping performance was found in Rule 7. (Speed_Limit > 60mph, Visibility=Affected, 
Weather=Distant Fog => SDLP=Poor). The rule can be expressed as (a) 1.56 percent  of lane-
keeping performances in the dataset occurred by drivers in speed limit above 60 mph with 
affected visibility under distant fog conditions and produced poor lane-keeping, (b) out of all 
lane-keeping performances in the dataset that occurred by drivers in speed limit above 60 mph 
with affected visibility under distant fog conditions, 87 percent  were poor lane-keeping, (c) the 
proportion of poor lane-keeping performances that occurred by drivers in speed limit above 60 
mph with affected visibility under distant fog was 1.37 times the proportion of poor lane-keeping 
performances in the overall dataset.  
It is worth noting that male drivers were dominant in most of the rules for having poor lane-
keeping performance. For instance, a rule indicates that the proportion of poor lane-keeping 
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performances involving with male drivers and affected visibility under distant fog conditions is 
almost 1.36 times the proportion of poor lane-keeping performances in the overall dataset (Rule 
8: Gender=Male, Visibility=Affected, Weather=Distant Fog => SDLP=Poor). However, the 
generated rules indicated that male drivers had a worse lane-keeping ability than female drivers.  
Additionally, the proportion of poor lane-keeping performance was found to be higher for more 
than two lanes in some of the rules. For instance, a rule indicates that drivers drove on more than 
two lanes freeways with affected visibility under distant fog condition were associated with poor 
lane-keeping performance (Rule 24: Lane>2, Visibility=Affected, Weather=Distant Fog => 
SDLP=Poor). Intuitively, the presence of curve was found to be an important factor for having a 
higher proportion of poor lane-keeping performance. The finding is consistent with the existing 
literature (40, 41). 

Table 8 Association Rules for Poor Lane-keeping Performance (First 30 Rules) 
Rules Antecedent Consequent Support  

( percent) 
Confidence 
( percent) 

Lift 

1 {Driving_Experience<=10years, Gender=Male, 
Traffic_Condn.=Non-Free-flow} 

{SDLP=Poor} 6.93 91.27 1.432 

2 {Age=young, Gender=Male, Weather=Distant Fog} {SDLP=Poor} 1.38 90.59 1.422 

3 {Age=young, Gender=Male, Traffic_Condn.=Non-Free-
flow} 

{SDLP=Poor} 7.16 89.29 1.401 

4 {Driving_Experience<=10 years, Gender=Male, 
Weather=Distant Fog} 

{SDLP=Poor} 1.43 88.89 1.395 

5 {Education=Middle, Gender=Male, Weather=Distant Fog} {SDLP=Poor} 2.04 88.37 1.387 

6 {Education=Middle, Gender=Male, Traffic_Condn.=Non-
Free-flow} 

{SDLP=Poor} 10.71 87.55 1.374 

7 {Speed_Limit > 60mph, Visibility=Affected, 
Weather=Distant Fog} 

{SDLP=Poor} 1.56 87.00 1.365 

8 {Gender=Male, Visibility=Affected, Weather=Distant Fog} {SDLP=Poor} 1.43 86.96 1.365 

9 {Gender=Male, Traffic_Condn.=Non-Free flow, 
Visibility=Affected} 

{SDLP=Poor} 2.02 86.92 1.364 

10 {Driving_Experience>10 years, Lane>2, 
Visibility=Affected} 

{SDLP=Poor} 2.78 86.59 1.359 

11 {Driving_Experience<=10 years, Education=Middle, 
Gender=Male} 

{SDLP=Poor} 10.40 86.59 1.359 

12 {Driver_Mileage_Last_Year<12,000, 
Traffic_Condn.=Free-flow, Visibility=Affected} 

{SDLP=Poor} 1.15 86.49 1.357 

13 {Education=Middle, Gender=Male, Speed_Limit > 60 
mph} 

{SDLP=Poor} 10.66 86.48 1.357 

14 {Age=middle, Lane>2, Visibility=Affected} {SDLP=Poor} 3.21 86.47 1.357 

15 {Lane>2, Visibility=Affected, Weather=Clear} {SDLP=Poor} 2.70 86.29 1.354 

16 {Age=young, Education=Low, Weather=Clear} {SDLP=Poor} 1.00 86.15 1.352 

17 {Education=Middle, Gender=Male, 
Presence_of_Curve=Curve} 

{SDLP=Poor} 5.00 86.11 1.351 

18 {Lane>2, Speed_Limit > 60 mph, Visibility=Affected} {SDLP=Poor} 3.87 86.06 1.351 

19 {Driving_Experience>10 years, Traffic_Condn.=Non-Free-
flow, Visibility=Affected} 

{SDLP=Poor} 1.33 86.05 1.350 

20 {Gender=Male, Presence_of_Curve=Curve, 
Traffic_Condn.=Non-Free-flow} 

{SDLP=Poor} 7.65 85.92 1.348 

21 {Age=young, Education=Middle,Gender=Male} {SDLP=Poor} 10.80 85.90 1.348 

22 {Driving_Experience>10 years, Visibility=Affected, 
Weather=Distant Fog} 

{SDLP=Poor} 1.31 85.88 1.348 

23 {Gender=Male, Lane>2, Visibility=Affected} {SDLP=Poor} 3.56 85.78 1.346 

24 {Lane>2, Visibility=Affected, Weather=Distant Fog} {SDLP=Poor} 1.90 85.48 1.342 
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Rules Antecedent Consequent Support  
( percent) 

Confidence 
( percent) 

Lift 

25 {Education=Middle, Gender=Male, Visibility=Affected} {SDLP=Poor} 2.83 85.41 1.340 

26 {Age=young, Education=Low} {SDLP=Poor} 1.04 85.29 1.339 

27 {Driving_Experience<=10 years, Education=Low, 
Gender=Male} 

{SDLP=Poor} 1.04 85.29 1.339 

28 {Driver_Mileage_Last_Year=>12,000, Education=Low, 
Gender=Male} 

{SDLP=Poor} 1.04 85.29 1.339 

29 {Age=middle, Driver_Mileage_Last_Year<12,000, 
Visibility=Affected} 

{SDLP=Poor} 1.13 85.14 1.336 

30 {Driver_Mileage_Last_Year=>12,000, Education=Middle, 
Gender=Male} 

{SDLP=Poor} 12.30 85.02 1.334 

Rules for Good Lane-Keeping Performance 
The association rules with good lane-keeping performance as consequent were extracted from 
the generated rules. The minimum support and confidence were set at 3 percent  and 45 percent , 
respectively. The number of rules obtained in this case was 119, and all of the rules had lift value 
greater than 1. After excluding the redundant rules, 85 rules were found.  
Table 9 lists the first 30 rules by keeping the SDLP=Good in consequent, and the rules were 
ordered according to the decreasing values of the lift. As can be seen in Table 9, young female 
drivers who drove equal or more than 12,000 miles last year (Rule 1: Age=young, 
Driver_Mileage_Last_Year=>12,000, Gender=Female => SDLP=Good), produced highest lift 
value and were highly associated with good lane-keeping performance (Support=6.29 percent , 
Confidence=62.79 percent , Lift=1.731). The rule can be expressed as (a) 6.29 percent  of lane-
keeping performances in the dataset occurred by young female drivers who drove equal or more 
than 12,000 miles last year and produced good lane-keeping, (b) out of all lane-keeping 
performances in the dataset that occurred by young female drivers who drove equal or more than 
12,000 miles last year, 62.79 percent  were good lane-keeping, (c) the proportion of good lane-
keeping performances that occurred by young female drivers who drove equal or more than 
12,000 miles last year was 1,731 times the proportion of good lane-keeping performances in the 
complete dataset.      
In addition, female drivers were found to be dominant in the antecedent part of the good lane-
keeping performance. The findings are expected in comparison with the findings found in the 
rules for poor lane-keeping performance. However, the combined effect of female drivers who 
drove on a tangent was found to be dominant in some of the rules (Rule 8, Rule 12, Rule 15, and 
Rule 28). Among different age groups, younger drivers were found to be dominant in having 
good lane-keeping performance. The finding is consistent with a previous study  (41).  
Moreover, drivers who drove equal or more than 12,000 miles last year were found to be a 
significant factor for having a higher proportion of good lane-keeping performance compared to 
drivers who drove less than or equal 12,000 miles last year.    
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Table 9 Association Rules for Good Lane-keeping Performance (First 30 Rules) 
Rules Antecedent Consequent Support  

( percent) 
Confidence 
( percent) 

Lift 

1 {Age=young, Driver_Mileage_Last_Year=>12,000, 
Gender=Female} 

{SDLP=Good
} 

6.29 percent 62.79 percent 1.731 

2 {Age=young, Gender=Female, Speed_Limit <= 60 mph} {SDLP=Good
} 

9.06 percent 59.25 percent 1.633 

3 {Driver_Mileage_Last_Year=>12,000, 
Driving_Experience<=10 years, Gender=Female} 

{SDLP=Good
} 

8.74 percent 58.87 percent 1.622 

4 {Driver_Mileage_Last_Year=>12,000, Education=Middle, 
Gender=Female} 

{SDLP=Good
} 

6.84 percent 56.43 percent 1.555 

5 {Age=young, Gender=Female, Traffic_Condn.=Non-Free-
flow} 

{SDLP=Good
} 

6.81 percent 56.38 percent 1.554 

6 {Age=young, Speed_Limit <= 60 mph, 
Traffic_Condn.=Free-flow} 

{SDLP=Good
} 

5.14 percent 56.16 percent 1.548 

7 {Driving_Experience<=10 years, Gender=Female, 
Speed_Limit <= 60 mph} 

{SDLP=Good
} 

10.83 
percent 

55.76 percent 1.537 

8 {Age=young, Gender=Female, 
Presence_of_Curve=Tangent} 

{SDLP=Good
} 

9.51 percent 55.49 percent 1.529 

9 {Education=Middle, Gender=Female, Speed_Limit <= 60 
mph} 

{SDLP=Good
} 

10.44 
percent 

55.31 percent 1.525 

10 {Gender=Female, Speed_Limit <= 60 mph, 
Traffic_Condn.=Free-flow} 

{SDLP=Good
} 

5.18 percent 55.15 percent 1.520 

11 {Driver_Mileage_Last_Year=>12,000, 
Driving_Experience<=10 years, Speed_Limit <= 60 mph} 

{SDLP=Good
} 

8.09 percent 54.99 percent 1.516 

12 {Gender=Female, Presence_of_Curve=Tangent, 
Speed_Limit <= 60 mph} 

{SDLP=Good
} 

9.33 percent 54.84 percent 1.512 

13 {Age=young,Driver_ Mileage_Last_Year=>12,000, 
Speed_Limit <= 60 mph} 

{SDLP=Good
} 

6.93 percent 54.51 percent 1.502 

14 {Driver_Mileage_Last_Year=>12,000, Gender=Female, 
Speed_Limit <= 60 mph} 

{SDLP=Good
} 

8.04 percent 53.45 percent 1.473 

15 {Driving_Experience<=10 years, Gender=Female, 
Presence_of_Curve=Tangent} 

{SDLP=Good
} 

11.57 
percent 

53.43 percent 1.473 

16 {Driving_Experience<=10 years ,Gender=Female, 
Traffic_Condn.=Non-Free-flow} 

{SDLP=Good
} 

8.51 percent 53.37 percent 1.471 

17 {Age=young, Gender=Female, Lane>2} {SDLP=Good
} 

9.29 percent 53.34 percent 1.470 

18 {Education=Middle, Speed_Limit <= 60 mph, 
Traffic_Condn.=Free-flow} 

{SDLP=Good
} 

5.28 percent 52.87 percent 1.457 

19 {Driving_Experience<=10 years, Speed_Limit <= 60 mph, 
Traffic_Condn.=Free-flow} 

{SDLP=Good
} 

5.62 percent 52.86 percent 1.457 

20 {Presence_of_Curve=Tangent, Speed_Limit <= 60 mph, 
Traffic_Condn.=Free-flow} 

{SDLP=Good
} 

6.12 percent 52.62 percent 1.450 

21 {Age=young, Gender=Female, Surface_Cond.=Dry} {SDLP=Good
} 

12.41 
percent 

52.58 percent 1.449 

22 {Age=young, Education=Middle, Gender=Female} {SDLP=Good
} 

11.98 
percent 

52.31 percent 1.442 

23 {Driving_Experience<=10 years, Gender=Female, 
Lane>2} 

{SDLP=Good
} 

11.52 
percent 

52.11 percent 1.436 

24 {Age=young, Gender=Female} {SDLP=Good
} 

12.48 
percent 

52.09 percent 1.436 

25 {Driver_Mileage_Last_Year=>12,000,Gender=Female,Tr
affic_Condn.=Free-flow} 

{SDLP=Good
} 

5.68 percent 51.80 percent 1.428 

26 {Driver_Mileage_Last_Year=>12,000, Education=Middle, 
Speed_Limit <= 60 mph} 

{SDLP=Good
} 

6.64 percent 51.67 percent 1.424 

27 {Gender=Female, Speed_Limit <= 60 mph, 
Surface_Cond.=Dry} 

{SDLP=Good
} 

12.48 
percent 

51.59 percent 1.422 

28 {Education=Middle, Gender=Female, 
Presence_of_Curve=Tangent} 

{SDLP=Good
} 

11.21 
percent 

51.57 percent 1.421 

29 {Age=young, Presence_of_Curve=Tangent, Speed_Limit 
<= 60 mph} 

{SDLP=Good
} 

7.56 percent 51.34 percent 1.415 

30 {Gender=Female, Speed_Limit <= 60 mph} {SDLP=Good
} 

12.89 
percent 

51.21 percent 1.411 
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Visualization of Extracted Rules for Lane-Keeping Performance 
Examining all the rules generated for poor and good lane-keeping performances is not a feasible 
option. Therefore, a visible representation of the rules is needed. The results of the association 
rules can be visualized by using the ‘arulesViz’ package of R software. Grouped balloon plots 
are used to visualize the relationship between the representative group of antecedents and 
consequent of all the rules. The plot can be drawn by keeping antecedent groups as columns and 
consequents as rows. Figure 14 and Figure 15 illustrate grouped balloon plots of association 
rules generated for poor and good lane-keeping performance. The size of the balloon represents 
support values and the color indicates the lift values. The rules for poor and good lane-keeping 
performance can be easily identified based on high lift and high support groups in Figure 14 and 
Figure 15.   
 
 

 
Figure 14 Grouped Balloon Plot of the Generated Rules for Poor Lane-Keeping 

Performance 
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Figure 15 Grouped Balloon Plot of the Generated Rules for Good Lane-Keeping 

Performance 
 

In addition to the grouped balloon plots, scatter plots were generated to visualize the relationship 
among lift, support, and confidence in the rules generated from poor and good lane-keeping 
performance. Figure 16 shows the scatter plots of the rules for poor and good lane-keeping 
performance with support and confidence values on the x-axis and y-axis, respectively. One 
scatter point denotes an association rule. The color of scatter points represents the lift value of 
each rule. It can be seen from Figure 16 and Figure 17 that most of the rules for poor lane-
keeping performance are located close to the minimum support threshold. However, a number of 
rules are located in-between the support value of 0.05 to 0.1 for good lane-keeping performance. 
In general, Figure 16 and Figure 17 give an overview of the distribution of support and 
confidence in the extracted rules set for each of the lane-keeping performance.   
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Figure 16 Scatter Plot of the Generated Rules for Poor Lane-Keeping Performance 

 
Figure 17 Scatter Plot of the Generated Rules for Good Lane-Keeping Performance 
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Lane Changing Characteristics Based on Aggressiveness 
Descriptive Statistics 
As stated earlier, 214 trips in fog and their corresponding matched clear weather conditions were 
considered for this study to analyze lane-changing maneuvers and identify driver types. In total, 
537 lane changes in fog (92 in heavy fog and 445 in distant fog) and 1,163 lane changes in matched 
clear weather conditions (i.e., same driver, vehicle, and route) were identified from the considered 
trips. Based on the literature, six categories of lane-changing maneuvers were distinguished from 
video observations, where each maneuver was associated with the motivation for that particular 
maneuver (62). For instance, maneuver of slow lead vehicle indicated that driver changed their 
lane to pass or overtake a slower lead vehicle to maintain a constant speed. The description of each 
maneuver type is given in Table 10. 
 

Table 10 Lane-Changing Maneuver Types and Description 

Lane-changing 
Maneuver Type 

(Identified from the 
Video) 

Type of Lane-
changing Description 

Slow Lead Vehicle Discretionary Change lane to pass/overtake a slower lead vehicle so the 
NDS vehicle could maintain speed 

Return Discretionary Change lane to return to drivers preferred lane 
Enter Mandatory Change lane to enter the roadway 

Exit/Prepare to exit Mandatory Change lane to exit/prepare to exit 
Added Lane Discretionary Change lane due to the addition of a lane 

Other Reasons Discretionary Change lane for other reasons or no noticeable reason found 
 
It is worth mentioning that some of the reasons were identified in ‘Other Reasons’ maneuver 
type. Sometimes, driver changed lanes due to sudden change in visibility while going through 
tunnels or at night. In addition, lane changing occurred due to merging roadway, driving on 
curves, sun glare, or sudden merge of another vehicle in the NDS drivers’ lane. However, of 
these 537 lane changes in fog, 37 lane changes (4 in heavy fog and 33 in distant fog) were 
identified as mandatory ‘Enter’ and ‘Exit’ maneuver. Similarly, among 1,163 lane changes in 
clear weather conditions, 77 lane changes were distinguished as ‘Enter’ and ‘Exit’ maneuver. 
Therefore, the final dataset were prepared by excluding mandatory ‘Enter’ and ‘Exit’ lane 
changes to capture only driver discretionary lane-changing characteristics. After removing 
mandatory lane-changing events, in total, 88 lane changes in heavy fog, 412 lane changes in 
distant fog, and 1,086 lane changes in matched clear weather were considered for further 
analyses. Table 11 shows the summary statistics of the total number of lane-changing events 
with the total number of drivers traveled in different traffic conditions under fog and matched 
clear weather. In addition, Table 11 provides mean number of lane-changing events per mile, 
total number of one-minute segments, total traveled time, and total length of traversed routes of 
the NDS trips considered for the study.  
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Table 11 Summary Statistics of Lane Changes in NDS Trips Considered  

 
As can be seen from Table 11, number of lane-changing events in unstable flow conditions were 
quite low compared to the other two traffic conditions in both fog and clear weather. In heavy 
traffic conditions (e.g., LOS E&F), it is quite natural to perform minimal number of lane changes 
because of the limited number of gaps between vehicles. Therefore, inferring necessary 
characteristics for lane changing and exploring driver classification in this condition may not 
provide meaningful results. Considering this fact, data analysis were conducted based on free-
flow and mixed-flow conditions. 

Findings from Hypothesis Testing 
In order to have a better understanding of driver lane-changing behavior in fog and clear weather 
under different traffic conditions, several hypotheses were tested for different scenarios in terms 
of their number of lane-changing events per mile and lane-changing durations. The hypotheses 
tested in this study were based on a study by Hill et al., however, this study extended the analysis 
to foggy weather conditions (58). All the tests were conducted for the drivers who drove in both 
heavy fog and clear weather as well as distant fog and clear weather using paired t-test at a 95 
percent  confidence level. Table 12 shows the results of the hypothesis tests performed. 
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Table 12 Results of Hypotheses Testing for the Fog and Clear Weather in Different Traffic 
Conditions 

 
A paired t-test revealed that there was no significant difference in any of the group for hypothesis 
1, which indicated that weather, had no effect on lane-changing maneuvers in free-flow 
conditions. According to hypothesis 2, the mean number of lane-changing events per mile in 
heavy fog was significantly higher than clear weather in mixed flow conditions. During adverse 
weather and mixed flow, different drivers choose different speeds depending on their ability, 
confidence, and familiarity with the roadway. Under limited visibility, specific drivers (e.g., 
young drivers) when stuck behind a slower vehicle they are more likely to change their lanes. 
Therefore, higher variability of speeds may lead to take more lane-changing maneuvers in heavy 
fog compared to clear weather under mixed-flow conditions.  However, no significant difference 
in mean number of lane-changing events per mile between distant fog and clear weather were 
observed in mixed-flow conditions. The result of hypothesis 3 showed no significant differences 
in the mean lane-changing durations between fog and clear weather under free-flow conditions. 
The result was expected and suggested that during free-flow conditions, drivers in different 
weather conditions would take nearly the same durations for lane changing. The test result of 
hypothesis 4 showed that the mean lane-changing durations in heavy fog were significantly 
higher than clear weather in mixed-flow conditions. This might be due to the fact that drivers 
were more cautious while changing lanes in heavy fog than in clear weather in the presence of 
more ambient traffic (67). However, no significant differences were observed in mean lane-
changing durations between distant fog and clear weather in mixed-flow conditions. The results 
of hypothesis 5 and 6 for heavy fog seems reasonable and suggested that drivers took nearly the 
same duration to change lanes in each direction (i.e., left and right) regardless of weather 
conditions. This result was also supported by the literature (58). According to the results of 
hypothesis 7 and 8, there were no significant differences between the mean durations of mixed-
flow lane changes to the left and right in both fog and clear weather. This could be explained by 
the fact that drivers tried to be more cooperative because of potential frequent vehicle conflicts in 
mixed-flow conditions (118).   
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Lane-Changing Duration Distribution 
Examining the number of lane-changing events and the distributions of lane-changing durations 
is important to incorporate drivers’ naturalistic behavior on freeways in microscopic lane-
changing models calibration and validation. Current microsimulation models consider lane-
changing as an instantaneous event (58, 67, 119). For instance, CORSIM (CORridor 
SIMulation®) uses a default value of three second for lane-changing (120). However, this study 
found that lane changing was not an instantaneous event rather the durations of lane-changing 
were different in different weather and traffic conditions. Therefore, it is necessary to derive the 
actual distribution of lane-changing durations considering weather and traffic conditions to 
improve the existing microscopic model algorithms. Considering this, the study explored several 
distributions of lane-changing durations in fog and clear weather under free-flow and mixed-flow 
conditions. Different distributions of lane-changing durations were examined and fitted (e.g., 
Normal, Lognormal, Weibull, and Gamma) to identify common trends. Figure 18 exhibits the 
distributions of lane-changing durations in heavy fog, distant fog, and matched clear weather 
under free-flow and mixed-flow traffic conditions. From the NDS data used in this study, it was 
found that lane-changing durations follow a lognormal distribution in fog (heavy and distant) and 
matched clear weather under free-flow conditions. The similar trend was also found for the 
distribution of lane-changing durations in heavy fog and matched clear weather under mixed-
flow conditions. However, gamma distribution was found to fit better the lane-changing 
durations in distant fog under mixed-flow conditions.  As can be seen in Figure 18, the lane-
changing duration observed in this study ranges from 1.69 to 15.87 s with a mean of 4.86 to 5.47 
s, which is in line with the literature (58, 66, 67).  
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Figure 18 Fitted Distribution of Lane-Changing Duration in Fog and Clear Weather Under 

Free-Flow and Mixed-Flow Condition 
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Cluster Analysis for Identifying Driver Type 
Although drivers’ aggression is crucial for microsimulation modeling, most of the current 
microsimulation models do not have this parameter. Incorporating drivers’ aggression in 
microsimulation models can make the model more realistic and practical. The driver type 
identified from the analysis of this study could be useful for calibrating and validating existing 
microsimulation lane-changing models. In this study, driver type was defined based on their 
aggressiveness while driving in four different traffic and environmental conditions as shown in 
Table 13. The main criteria for evaluating the aggressiveness of driver were the number of 
discretionary lane-changing events and speed differences from the speed limits. Several 
literatures showed the importance of these two parameters in determining aggressive driving 
behavior (121–123). The K-means cluster method was applied to the drivers who traveled in 
both heavy and distant fog and their matched clear weather under free-flow and mixed-flow 
conditions. The number of clusters was determined based on different test statistics, ease of 
interpretation of the analysis results, and potential practical implementation. The cluster analysis 
results revealed that two clusters were the most appropriate for the drivers corresponding to 
weather and traffic conditions 1, and three clusters were necessary for the drivers corresponding 
to weather and traffic conditions 2, as shown in Table 13. On the other hand, seven clusters were 
suitable for the drivers corresponding to weather and traffic conditions 3, and eight clusters were 
appropriate for the drivers corresponding to weather and traffic conditions 4.  However, all the 
drivers were classified into two categories, conservative and aggressive, in order to compare 
their relationship in different foggy weather under various traffic conditions. In total, 13 and 17 
drivers were identified corresponding to weather and traffic conditions 1 and 2, respectively. On 
the contrary, 48 and 63 drivers were identified corresponding to weather and traffic conditions 3 
and 4, respectively.  
The characteristics of the driver type for each foggy weather condition, in addition to their 
corresponding mean lane changing per mile and mean speed differences, are summarized in 
Table 13. For instance, the range of mean number of lane changing per mile for conservative 
drivers in all weather and traffic conditions varied between 0.281 to 0.557; whereas the mean 
number of lane changing per mile of aggressive drivers in all weather and traffic conditions 
ranged between 0.334 to 0.674. Conservative drivers in heavy fog under free flow conditions had 
lower mean number of lane-changing per mile compared to the conservative drivers in clear 
weather under free-flow conditions corresponding to weather and traffic conditions 1. 
Considering mean speed differences the range varied between -17.81 to 3.249 mph for 
conservative drivers. Conversely, all the mean speed differences for aggressive drivers were 
found to be positive. This indicated that aggressive drivers in all weather and traffic conditions 
drove 0.893 to 10.258 mph above speed limits.  
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Table 13 Characteristics of Driver Aggressiveness Type 

 
The output of the cluster analysis is illustrated in Figure 19. As can be seen in Figure 19, 
aggressive drivers in all weather and traffic conditions had higher speed differences compared to 
conservative drivers. It was found that most of the drivers (i.e., aggressive and conservative) 
corresponding to weather and traffic conditions 1 and 3 drove above the speed limits. However, 
it was observed that all the conservative drivers corresponding to weather and traffic conditions 2 
and 4 drove below the speed limits, whereas most of the aggressive drivers of the same weather 
and traffic conditions drove above the speed limits. Considering number of lane-changing events 
per mile, most of the aggressive drivers had higher number of lane-changing events compared to 
conservative drivers. For instance, the highest number of lane-changing events for aggressive 
drivers corresponding to weather and traffic conditions 1 was found to be 1. On the contrary, the 
highest number of lane-changing events for conservative drivers of the same weather and traffic 
conditions was found to be 0.59. In general, the cluster analysis result concluded that there were 
significant differences in number of lane-changing events and speed differences between 
aggressive and conservative drivers. 
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Figure 19 Cluster Analysis Results 
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Comparison between SHRP2 Administrated Questionnaire Responses and Cluster 
Analysis 
A comparison was made for evaluating the consistency of drivers stated preference responses 
with their actual behavior in real life. The results of the comparison would be useful to make a 
decision regarding whether survey questionnaires could be utilized in assessing driver lane-
changing behavior in practice. The questions considered in this study, collected from the SHRP2 
NDS questionnaire database, are related to drivers’ risk-taking and risk perception behaviors. 
Based on the questionnaire responses, drivers were rated from 0 to 100 where 0 represents most 
conservative and 100 represents most aggressive with a cutoff value of 50. Drivers were defined 
as conservative if their scores ware equal to or less than 50, and aggressive if the scores were 
over 50. Four questions from the questionnaire corresponding to cluster parameters (i.e., lane 
changing and speed differences) were selected for the comparison. Each of the questions was 
given 25 points. For example, question 1 shown in Table 14 had seven response levels ranging 
from 1 to 7, where 1 is the lowest risk and 7 is the highest risk level. In between 1 to 7, the 
weights of other options were assigned based on their hierarchy. The same procedure was 
adopted for the other three questions. Table 14 shows the selected questions with their response 
levels. 

Table 14 SHRP2 Administrated Questionnaire and Response Levels 
Questions Response Levels 

1. “Drive at your normal speed during bad driving 
conditions, like road construction, rain, ice, or snow?” 

From 1 to 7: 
1-No Greater Risk 
4-Moderately Greater Risk 
7-Much Greater Risk 

2. “Drive 10-20 mph over speed limit?” 

From 1 to 7: 
1-No Greater Risk 
4-Moderately Greater Risk 
7-Much Greater Risk 

3. “Drive more than 20 mph over speed limit?” 

From 1 to 7: 
1-No Greater Risk 
4-Moderately Greater Risk 
7-Much Greater Risk 

4. “Become impatient with a slow driver in the fast lane 
and pass on the right?” 

From 1 to 6: 
1-Never 
2-Hardly Ever 
3-Occasionally 
4-Quite Often 
5-Frquently 
6-Nearly All the Time 

 
Table 15 provides a sample of the comparison of questionnaire responses with cluster analysis 
corresponding to drivers in weather and traffic conditions 1. In addition, summary statistics of all 
weather and traffic conditions are provided in Table 16. Although the same driver may behave 
differently in various fog and clear weather conditions, some significant findings could be 
concluded. According to Table 16, responses of drivers in weather and traffic conditions 1 
related to foggy weather reflected their actual driving while their responses to survey 
questionnaires did not match their real-life behaviors in clear conditions. In addition, during the 
free-flow conditions, drivers’ responses related to foggy weather were more consistent with 
survey questionnaires compared to their responses in clear weather. Moreover, during the mixed-
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flow conditions, majority of the drivers’ responses were consistent with the survey 
questionnaires. For instance, the questionnaire responses of about 71 percent of drivers in 
weather and traffic conditions 2 matched with their real-life behavior.    

Table 15 Sample of the Comparison of Questionnaire Responses and Cluster Analysis for 
Drivers in Weather and Traffic Conditions 1 

 
Table 16 Summary of the Comparison of Questionnaire Responses and Cluster Analysis 

for Drivers in Different Weather and Traffic Conditions 
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Lane-Changing Durations Based on Driver Type 
After classifying drivers into two categories using K-means (i.e., aggressive and conservative), 
this study compared two different driver types based on their mean lane-changing durations in 
fog and clear weather under free-flow and mixed-flow conditions, respectively. Figure 20 
displays the mean lane-changing durations by driver type in different fog and clear weather 
under various traffic conditions. It was observed that, lane-changing durations of all conservative 
drivers ranged from 4.77 to 5.85 s. In contrast, lane-changing durations of all aggressive drivers 
varied between 4.20 to 5.61 s. This concluded that aggressive drivers had wider range of lane-
changing durations compared to conservative drivers.  
Meanwhile, it was observed that most of the conservative drivers had longer lane-changing 
durations than aggressive drivers, whereas conservative and aggressive drivers in distant fog 
corresponding to weather and traffic conditions 4 had nearly the same duration. This indicated 
that sometimes mixed flow conditions in foggy weather may affect driver decision-making 
behavior in lane-changing maneuvers (124). In addition, conservative drivers in heavy fog 
conditions (weather and traffic conditions 1 and 2) had longer lane-changing durations than in 
clear weather. Similar trend was found for the aggressive drivers corresponding to those weather 
and traffic conditions. The findings concluded that reduced visibility caused by heavy fog 
conditions resulted in longer lane-changing durations for both driver types compared to clear 
weather.  

 
Figure 20 Mean Lane-Changing Durations by Driver Type 
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Gap Acceptance Behavior 
Gap Acceptance Characteristics 
This study investigated the characteristics of lead and lag gaps in freeways in order to determine 
different features and trends of gap acceptance behavior. Although the lead and lag gaps are 
assumed to follow a lognormal distribution in the literature, naturalistic behavior might change 
the assumption (125). Different distributions of gap acceptance including, lognormal, gamma, 
Weibull, exponential, etc. were examined. The distributions were compared using Akaike 
Information Criterion (AIC) for goodness of fit. From the considered lane-changing event 
dataset, it was revealed that gamma distribution fitted the best for lead gaps. On the contrary, lag 
gaps followed a lognormal distribution. Figure 21 demonstrates the distributions of lead and lag 
gaps.  

 
Figure 21 Fitted Distribution of Lead and Lag Gaps 

As can be seen in Figure 21, the range of the lead gaps varied between 0.11 to 6.84 sec, with a 
mean of 1.86 sec. In contrast, the range of lag gaps varied from 0.10 to 6.36 sec. It is worth 
noting that the corresponding statistics of lead gaps (i.e., mean and maximum) are relatively 
higher than those of lag gaps. This suggested that LCV drivers accepted shorter headways in 
front of FV, whereas, they maintained larger headway behind the LV. This might be due to the 
fact that drivers were more dependent on mirrors while determining lag gap. Therefore, their 
perception of lag gap might not be reliable in comparison with the lead gap (126).     

Modeling Gap Acceptance Behavior 
As mentioned earlier, 599 lane-changing events were considered for modeling gap acceptance 
behavior using MARS model. The dependent variables in the models are lead and lag gaps, 
which were extracted from the developed automatic lane-changing event identification 
algorithm. The explanatory variables are the potential contributing factors that might have 
impact on gap acceptance behavior including, traffic flow parameters, environmental 
characteristics, roadway and motivation characteristics. The variables were selected based on 
their importance on gap acceptance behavior and previous studies (70, 72). Table 17 summarizes 
different variables used to set for lead and lag gap models.    
 



  
 

55 
 

 

Table 17 Variables Descriptions for Gap Acceptance Models 
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This study utilized a nonparametric MARS model to investigate the factors affecting gap 
acceptance behavior. In order to better interpret the obtained model, the maximum number of 
interactions was set as two, as supported by previous studies (41, 79). Several numbers of BFs 
were examined to identify the optimum maximum number of BFs for both models. The optimum 
maximum number of BFs selected was 30 based on the lowest root mean square error (RMSE) 
value (79). Two types of BFs were obtained from the developed MARS model; 
simple/elementary BFs and complex BFs. Simple BFs include only single variable and no 
interaction, while complex BFs allow interaction between variables (115).  
MARS Model for Lead Gaps 
MARS model for lead gap acceptance was developed using the explanatory variables provided in 
Table 17. Table 18 presents developed MARS model for lead gaps. The results of MARS model 
for lead gaps showed that several variables were involved in simple and complex BFs. As can be 
seen in Table 18, the explanatory variables did not have a single direction of impact on the lead 
gaps. As mentioned previously, the developed knots split the explanatory variables into several 
regions meaning that variables might have a different impact on lead gaps. For instance, BF5 and 
BF6 represents two complex BFs for the (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿)), where a knot is developed at a value 
of 8. Additionally, the two BFs interact with a single BF (BF3), where the knot is developed at a 
value of 76. The coefficient of BF5 has a positive value and BF6 has a negative value. The 
estimated parameters of BFs in Table 18 were significant at a 95 percent confidence level.  

Table 18 MARS Model for Lead Gap Acceptance 

BFs Basis Function Estimate Standard 
Error P-value 

BF0 Constant 0.71332 0.24996 0.00452 
BF2 (0, 58.3361 – (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿))) Not Sig. Not Sig. Not Sig. 
BF3 (0, RH- 76.096) -2.53186 0.19669 0.00000 
BF4 (0, 76.096 - RH) Not Sig. Not Sig. Not Sig. 
BF5 (0, (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿)) - 8.1244) × BF3 0.05268 0.00290 0.00000 

BF6 (0, 8.1244 – (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿))) × BF3 -0.05042 0.00854 0.00000 
BF7 (0, RH- 75.872) × BF2 0.04916 0.00438 0.00000 
BF8 (0, 75.872 - RH) × BF2 0.00059 0.00017 0.00052 
BF9 (TC  in (1)) 7.00157 0.95816  
BF12 (0, 45.202 – LV Sp.) × BF4 0.00341 0.00068 0.00000 
BF15 (0, Lanes - 2) × BF9 -0.59407 0.12238 0.00000 
BF17 (0, LCV SP.- 4.4691) × BF9 -0.03607 0.00707 0.00000 

BF18 (0, (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐹𝐹𝐿𝐿)) - 29.0629) × BF4 -0.00323 0.00059 0.00000 

BF19 (0, 29.0629 - (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐹𝐹𝐿𝐿))) × BF4 -0.00092 0.00031 0.00288 

BF20 (0, LV SP.- 122.005) × BF9 -0.07589 0.02199 0.00061 

BF21 (0, 122.005 – LV Sp.) × BF9 -0.03741 0.00887 0.00003 

BF22 (0, (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿)) - 20.636) × BF9 -0.05338 0.02277 0.01948 
BF23 (0, 20.636 – (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿))) × BF9 -0.09273 0.01823 0.00000 
BF24 (0, (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿)) - 30.503) 0.17035 0.02964 0.00000 
BF25 (0, 30.503 – (RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐿𝐿𝐿𝐿))) Not Sig. Not Sig. Not Sig. 
BF26 (0, RH- 92.48) × BF25 0.00426 0.00175 0.01550 
BF29 (0, 83.0836 – LV Sp.) -0.03610 0.01224 0.00336 
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According to Table 18, several complex BFs (i.e., interaction) are present in the lead gaps model. 
Therefore, both the main effect variable and the interaction term in the BF should be considered 
to interpret the interaction term. For example, the BF15 for the interaction of traffic condition 
and number of freeway lanes, the equation can be written as: 
-0.59407 × (0, Lanes - 2) × (Traffic_Condition in (1))    Equation 13 
Considering the free-flow traffic conditions (i.e., BF9=1), the final estimate of the interaction 
would be -0.59407 representing that if the lane-changing event occurs in more than two lanes in 
freeway and free-flow traffic conditions, the lead gaps will be lower. The effects of other 
interactions could be explained in a similar approach.    
In MARS model, the effect of a given explanatory variable on the response variable could be 
easily identified by using the Rate of Impression Expression. It is worth mentioning that 
insignificant BFs needed to keep in the final model in order to calculate Rate of Impression 
Expression for an explanatory variable (41, 79). For instance, the effect of LV speed on the lead 
gaps can be identified considering several steps (115). First, all the BFs that involve with LV 
speed should be selected and combined. For example, the relevant BFs for the LV speed would 
be BF4, BF9, BF12, BF20, BF21, and BF29. Afterward, the knots of the LV speed (i.e., 45.202, 
76.096, 83.0836, and 122.005) and set of intervals/ranges considering the knots should be 
identified. Subsequently, for each interval, the BFs that are associated with that particular 
interval should be selected. Next, the Impact Expression for each specific interval could be 
obtained from the MARS equation by selecting the associated BFs for the given interval. The 
Rate of Impression Expression for the LV speed can be determined from the first derivative of 
the Impact Expression with respect to the LV speed. Based on the Rate of Impression 
Expression, the direction of impact could be positive, negative, or no impact. Table 19 shows the 
Rate of Impression Expression for the LV speed on the lead gaps for each identified interval.  

Table 19 Impact of LV Speed on Lead Gaps 
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As can be seen from Table 19, LV speed had a different rate of impact on lead gaps in four 
different intervals. It is also worth noting that the directions of impact of LV speed also depend 
on the minimum rear headway for the first interval (i.e., not more than 45 kph). For instance, the 
lead gaps would be increased for the minimum rear headway greater than or equal 76 m under 
free-flow traffic conditions considering the first interval. This is also true for any minimum rear 
headway value from 54.5 to 76 m. However, lead gaps would be decreased with any value of less 
than 54.5 m. According to Table 19, lead gaps would be increased with the value of LV speed 
ranging from more than 45 to 122 kph under free-flow conditions (i.e., second and third 
interval). Moreover, lead gaps would be decreased in free-flow conditions (fourth interval) for 
any LV speed of greater than 122 kph.  
MARS Model for Lag Gaps 
MARS model was developed for the given explanatory variables considering lag gaps as a 
response variable. The results of the developed MARS model for lag gaps are provided in Table 
20. Similar to the lead gaps model, the explanatory variables had no single direction of impact on 
the lag gaps and nonlinear performance was distinguished for all explanatory variables. The 
estimated parameters of BFs in Table 20 were significant at a 95 percent confidence level.     

Table 20 MARS Model for Lag Gap Acceptance 

BFs Basis Function Estimate Standard 
Error P-value 

BF0 Constant 1.68551 0.13865 0.00000 
BF1 (0, LCV Sp. - 4.46912) Not Sig. Not Sig. Not Sig. 
BF2 (0, RH - 72.16) × BF1 -0.00139 0.00019 0.00000 
BF3 (0, 72.16 - RH) × BF1 -0.00195 0.00017 0.00000 
BF4 (0, RH - 72.16) 0.08951 0.01286 0.00000 
BF5 (0, 72.16 - RH) 0.12498 0.01053 0.00000 
BF7 (0, LCV Sp. - 64.3712) × BF5 0.00185 0.00022 0.00000 

BF11 (0, R - 2127) -0.00005 0.00002 0.00321 
BF12 (0, 2127 - R) -0.00007 0.00003 0.02670 
BF13 (0, LCV Sp. - 102.268) × BF11 0.000006 0.00000 0.00156 
BF14 (0, 102.268 - LCV Sp.) × BF11 0.00001 0.00000 0.00000 
BF16 (0, 5 - Lanes) × BF5 -0.00875 0.00150 0.00000 
BF18 (0, 4 - Lanes) × BF1 0.00342 0.00064 0.00000 
BF19 (0, LCV Sp. - 84.3765) -0.01428 0.00457 0.00191 
BF20 (0, 84.3765 - LCV Sp.) Not Sig. Not Sig. Not Sig. 
BF21 (0, Lanes - 3) × BF20 -0.02436 0.00308 0.00000 
BF23 ( 0, LCV Acc. - 0.121325) -0.35226 0.08879 0.00009 
BF25 (0, RH - 69.76) × BF19 0.00173 0.00036 0.00000 
BF27 (0, FV Acc. + 0.0232) × BF1 -0.03813 0.01048 0.00031 
BF29 (0, RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐹𝐹𝐿𝐿)- 3.35113) × BF20 -0.00062 0.00006 0.00000 
BF30 ( 0, 3.35113 - RS(𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺𝐹𝐹𝐿𝐿)) × BF20 -0.01089 0.00321 0.00077 
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In addition, there are several complex BFs exist in the lag gap model. As discussed earlier, the 
effect of a particular explanatory variable on the lag gaps could be identified using the Rate of 
Impression Expression. For instance, the Rate of Impression Expression for the FV acceleration 
on the lag gaps is provided in the following equations. 
Impact Expression: -0.03813 × (FV Acc. + 0.0232) × (LCV Sp. - 4.46912)  Equation 14 
Rate of Impression Expression: -0.03813 × (LCV Sp. - 4.46912)   Equation 15 
Direction(s) of Impact: +ve if LCV Sp. > 4.46912, Zero if else    Equation 16 
According to equations 7-9, it is observed that the effect of FV acceleration on lag gaps depends 
on the LCV speed. For instance, FV acceleration had a positive effect on lag gaps for LCV speed 
greater than 4.7 kph, whereas, FV acceleration had no effect on lag gaps for LCV speed less than 
or equal 4.7 kph.  
Variables Importance for Lead and Lag Gap Models 
Table 21 provides the relative variable importance for lead and lag gap models, which is one of 
the most important MARS model outputs. As can be seen in Table 21, relative speed between 
LCV and LV turned out to be the most important variable affecting lead gap acceptance 
behavior. This indicates that relative speed between LCV and LV play a significant role in lead 
gap acceptance. The finding is consistent with previous studies exhibiting the effect of relative 
speed between LCV and LV on lead gap acceptance behavior (70, 72). In contrast, LCV speed 
was found to be the most important variable affecting lag gap acceptance behavior. Minimum 
rear headway was the second important variable influencing both gap acceptance behaviors. 
Additionally, traffic conditions were the third important variable that affects lead gap acceptance, 
which is also consistent with a previous study (72). Table 21 also reveals that LV and LCV 
speeds, relative speed between LCV and FV, and the freeway number of lanes are the additional 
contributing factors affecting lead gap acceptance behavior. However, relative speed between 
LCV and FV was the third important variable affecting lag gap acceptance followed by the 
freeway number of lanes, curve radius, LCV and FV accelerations. It is worth noting that the 
relative speed between LCV and FV was found to be one of the common important factors in 
both gap acceptance behavior, which is also supported by a previous study (72).  

Table 21 Relative Importance of Variables for Lead and Lag Gap Models 
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Speed Selection Behavior 
Preliminary Analysis 
Several possible distributions, including Weibull, normal, and lognormal, were investigated for 
each weather condition. Note that speed distribution is required for proper calibration of 
microsimulation models and characterization of traffic state in different weather conditions (95). 
To select the appropriate distribution, Akaike Information Criterion (AIC) was used as a measure 
of fitness. The AIC of the Weibull, normal, and lognormal distribution were found to be 12,916, 
13,002, and 13,324, respectively, for rainy weather conditions. Therefore, it can be concluded 
that Weibull distribution fits the speeds the best in rainy weather under free-flow traffic amongst 
other distributions. Speeds in snow and fog were also found to have a Weibull distribution based 
on AIC as can be seen in Figure 22. Interestingly, speeds in clear weather conditions were found 
to have a normal distribution under free-flow traffic, which is in line with the literature (95, 127). 
Speed distributions in congestion/mixed traffic under various weather conditions were also 
investigated; however, no specific distribution was found in mixed traffic.  

 
Figure 22 Distribution of Speeds in Rain, Snow, Fog, and Clear Under Free-Flow 

Condition 
 In addition, driver speeds in different weather conditions were also compared using Welch’s t-
test, as shown in Table 22. Only the trips in free-flow conditions were considered for this 
comparison since in congested flow; drivers are forced to reduce their speeds irrespective of 
weather conditions. Moreover, trips in adverse weather were matched with two trips in clear 
weather using ArcGIS software for the same driver, vehicle, and route. This was done to 
eliminate any potential bias due to different drivers’ demographics and behaviors, vehicle 
characteristics, and roadway geometry. According to Table 22, speeds in rainy weather 
conditions were significantly lower than the speeds in clear weather conditions under free-flow 
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traffic. In addition, on average, driver speeds in rainy weather were 3.76 mph (5.95  percent 
reduction) less compared to their speed in matching clear weather trips. The speeds in snowy 
weather were also found to be significantly lower compared to speeds in matching clear trips. 
However, the negative effect of snow on driver speed was more significant than other adverse 
weather (e.g., rain and fog), since drivers reduced their speed by 10.49 mph (15.89 percent 
reduction) in snowy weather compared to their speeds in matching clear trips. Similarly, it was 
observed that drivers reduced their speeds by 2.64 mph (3.91 percent reduction) due to the 
presence of fog. 

Table 22 Comparison of Speeds in Different Weather Under Free-flow Traffic 

 
Association Rules Mining 
Speed selection behavior, which had four levels, was considered as antecedent; and other 
variables related to traffic, environmental, roadway geometry, and driver demographics are 
considered as consequent. Association rules were generated for the levels of speed selection with 
other characteristics using ‘arules’ package in R software. Since there were four levels of speed 
selection, 4 different sets of rules were generated for each of the levels. To get the optimum 
values of support and confidence, the trial and error process was utilized, as suggested by a 
previous study (128). In addition, the number of itemsets is another factor to be considered for 
proper interpretation of the results. A 2-item rule indicates that there are a single antecedent and 
a single consequent in the rule. Similarly, a 3-item rule indicates that there are two antecedents 
and one consequent or one antecedent, and two consequents in the rule (74). For this study, up to 
4 rules were considered for appropriate and easily understandable interpretation of the results.  
Rules for Speed Selection Level – 1 (More than 5 mph Above the Speed Limit) 
The association rules considering speed selection level-1 as consequent were extracted and 
organized according to the decreasing lift value. After several iterations, the minimum support 
and confidence were set at 5 percent and 45 percent, respectively. Using these threshold values, 
the number of rules with a lift value greater than 1 was found to be 102. The top 25 rules for 
speed selection level-1 are listed in TABLE 3. It was found that novice drivers with experience 
of less than 10 years are highly associated with speeding in clear weather under free-flow traffic 
(support = 7.31 percent, confidence = 58.79 percent, lift = 1.891). The first rule with the highest 
lift value can be explained as follows: a) 7.31  percent of the speeds in the dataset occurred by 
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drivers with less than 10 years of driving experience in clear weather under free-flow traffic and 
produced speed selection level-1; b) out of all the speed selection levels in the dataset occurred 
by drivers with less than 10 years of driving in clear weather under free-flow traffic, 58.79 
percent were speed selection level-1; and c) the proportion of speed selection level-1 by drivers 
with experience less than 10 years in clear weather under free-flow traffic was 1.891 times the 
proportion of speed selection level-1 in the complete dataset. According to Table 23, young 
drivers are associated with speed selection level-1, speeding more than 5mph above the speed 
limit, in several rules (Rule 9, Rule 12, Rule 23, and Rule 25). In addition, drivers with single 
marital status, and not affected visibility were also found to have an association with speed 
selection level-1 in several rules.  

Table 23 First 25 Association Rules for Speed Selection Level-1  

Rules Antecedent 
Support 

( 
percent) 

Confidence 
( percent) Lift 

1 Driving Experience<10 years, Traffic=Free Flow, Weather=Clear   7.31 58.79 1.891 

2 Driving Experience<10 years, Mileage Last Year= 10,000 to 20,000 miles, 
Traffic=Free Flow   5.77 57.21 1.840 

3 Driving Experience<10 years, Traffic=Free Flow, Visibility=Not Affected   8.14 57.14 1.838 

4 Marital Status=Single, Mileage Last Year= 10,000 to 20,000 miles, 
Traffic=Free Flow   5.94 57.02 1.834 

5 Driving Experience<10 years, Surface=Dry, Traffic=Free Flow   8.57 56.96 1.832 
6 Age=Young, Mileage Last Year= 10,000 to 20,000 miles, Traffic=Free Flow   5.93 55.36 1.781 
7 Driving Experience<10 years, Gender=Female, Traffic=Free Flow   7.25 55.14 1.773 
8 Driving Experience<10 years, Speed Limit<=60 mph, Traffic=Free Flow   6.37 55.11 1.773 
9 Age=Young, Mileage Last Year= 10,000 to 20,000 miles, Weather=Clear   7.28 53.50 1.721 
10 Driving Experience<10 years, Marital Status=Single, Traffic=Free Flow   8.35 53.49 1.720 

11 Marital Status=Single, Mileage Last Year= 10,000 to 20,000 miles, 
Weather=Clear   7.31 53.49 1.720 

12 Age=Young, Traffic=Free Flow, Weather=Clear   7.89 53.31 1.715 
13 Curve=No, Driving Experience<10 years, Traffic=Free Flow   6.45 53.26 1.713 

14 Driving Experience<10 years, Mileage Last Year= 10,000 to 20,000 miles, 
Weather=Clear   6.75 52.92 1.702 

15 Marital Status=Single, Traffic=Free Flow, Weather=Clear   7.54 52.69 1.695 
16 Driving Experience<10 years, Gender=Female, Weather=Clear   8.12 52.67 1.694 

17 Marital Status=Single, Mileage Last Year= 10,000 to 20,000 miles, 
Visibility=Not Affected   7.67 52.06 1.674 

18 Driving Experience<10 years, Mileage Last Year= 10,000 to 20,000 miles, 
Visibility=Not Affected   7.34 52.04 1.674 

19 Driving Experience<10 years, Traffic=Free Flow   9.66 51.95 1.671 
20 Gender=Female, Marital Status=Single, Traffic=Free Flow   7.18 51.45 1.655 
21 Marital Status=Single, Traffic=Free Flow, Visibility=Not Affected   8.18 51.31 1.650 
22 Marital Status=Single, Surface=Dry, Traffic=Free Flow   8.71 50.93 1.638 
23 Age=Young, Surface=Dry, Traffic=Free Flow   9.15 50.83 1.635 
24 Speed Limit<=60 mph, Traffic=Free Flow, Weather=Clear   11.06 50.81 1.634 
25 Age=Young, Traffic=Free Flow, Visibility=Not Affected   8.61 50.79 1.634 

Rules for Speed Selection Level – 2 (Between 0 to 5 mph Above the Speed Limit) 
The association rules considering speed selection level-2 as a consequent were generated. After 
several trials, the minimum support and confidence were set at 3 percent  and 33 percent , 
respectively.  Once all the redundant rules with lift value less than 1 were eliminated, a total of 
110 rules were found. The top 25 rules for this speed selection level according to the decreasing 
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order of lift value are listed in Table 24. It was found that male drivers in dry surface with 
mileage last year less than 10,000 miles were highly associated with speed selection level-2 
(support = 7.31 percent, confidence = 58.79 percent, lift = 1.891) in dry road surface conditions.  
In addition, the effect of clear weather on selecting speed level-2 was found in several rules, 
including Rule 16, Rule 19, and Rule 20. Other antecedents that were found in several rules were 
young driver, single driver, and passenger car.   

Table 24 First 25 Association Rules for Speed Selection Level-2  
Rules Antecedent Support 

( percent) 
Confidence 
( percent) Lift 

1 Gender=Male, Mileage Last Year<=10,000 miles, Surface=Dry 3.11 44.65 1.734 
2 Gender=Male, Mileage Last Year<=10,000 miles, Visibility=Not Affected 3.09 43.76 1.699 

3 Gender=Male, Mileage Last Year<=10,000 miles, Vehicle Class=Passenger 
Car/SUV 3.01 42.57 1.653 

4 Age=Young, Gender=Male, Traffic=Free Flow 3.03 40.56 1.575 
5 Age=Young, Mileage Last Year<=10,000 miles, Traffic=Free Flow 3.35 40.55 1.575 
6 Marital Status=Married, Speed Limit>60 mph, Traffic=Free Flow 4.59 40.11 1.558 
7 Lane<=2, Marital Status=Married, Speed Limit>60 mph 4.08 39.96 1.552 
8 Age=Middle, Marital Status=Married, Speed Limit>60 mph 4.54 39.84 1.547 

9 Marital Status=Single, Mileage Last Year<=10,000 miles, Vehicle 
Class=Passenger Car/SUV 3.51 39.56 1.536 

10 Marital Status=Single, Mileage Last Year<=10,000 miles, Traffic=Free 
Flow 3.26 39.45 1.532 

11 Gender=Male, Mileage Last Year<=10,000 miles 3.64 39.35 1.528 

12 Age=Young, Mileage Last Year<=10,000 miles, Vehicle Class=Passenger 
Car/SUV 3.61 39.22 1.523 

13 Mileage Last Year<=10,000 miles, Traffic=Free Flow, Visibility=Not 
Affected 4.31 39.03 1.516 

14 Mileage Last Year<=10,000 miles, Surface=Dry, Traffic=Free Flow 4.31 39.03 1.516 
15 Marital Status=Married, Speed Limit>60 mph, Surface=Dry 4.98 38.65 1.501 
16 Marital Status=Married, Speed Limit>60 mph, Weather=Clear 3.55 38.55 1.497 
17 Driving Experience=>10 years, Vehicle Class=Minivan/Pick-up 3.28 38.50 1.495 

18 Marital Status=Married, Mileage Last Year= 10,000 to 20,000 miles, Speed 
Limit>60 mph 3.97 38.48 1.495 

19 Mileage Last Year<=10,000 miles, Traffic=Free Flow, Weather=Clear 3.69 38.14 1.481 

20 Mileage Last Year<=10,000 miles, Vehicle Class=Passenger Car/SUV, 
Weather=Clear 3.89 37.89 1.472 

21 Mileage Last Year<=10,000 miles, Traffic=Free Flow, Vehicle 
Class=Passenger Car/SUV 4.14 37.72 1.465 

22 Age=Middle, Speed Limit>60 mph, Traffic=Free Flow 4.58 37.70 1.464 
23 Lane>2, Mileage Last Year<=10,000 miles, Surface=Dry 3.05 37.59 1.460 

24 Mileage Last Year<=10,000 miles, Vehicle Class=Passenger Car/SUV, 
Visibility=Not Affected 4.59 37.55 1.459 

25 Driving Experience=>10 years, Mileage Last Year<=10,000 miles, 
Surface=Dry 3.30 37.35 1.451 

Rules for Speed Selection Level – 3 (Between 0 to 5 mph Below the Speed Limit) 
The association rules with speed selection level-3 as consequent were extracted from the 
generated rules. The minimum support and confidence were set at 0.5 percent and 23 percent, 
respectively, which resulted in a total of 110 rules with lift values greater than 1. Table 25 listed 
the top 25 rules for the speed selection level-3 based on descending order of lift values. The 
highest lift value was found to be 2.425, representing the combined effect of old drivers, affected 
visibility, and roadways with a speed limit less than 60 mph on speed selection level-3. More 
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specifically, the proportion of selecting speed level-3 by old drivers on roadways with a speed 
limit less than 60 mph in affected visibility was 2.425 times the proportion of speed selection 
level-3 in the overall dataset. The old drivers were dominant in most of the rules for speed 
selection level-3. In addition, rainy weather was also found to have a significant association with 
speed selection level-3 in several rules including, Rule 3, Rule 6, Rule 8, Rule 9, Rule 11, Rule 
12, Rule 14, Rule 15, and Rule 18. Additionally, affected visibility, wet road surface, female 
drivers were also found to have an association with speed selection level-3 in several rules as can 
be seen in Table 25.    

Table 25 First 25 Association Rules for Speed Selection Level-3  
Rules Antecedent Support 

( percent) 
Confidence 
( percent) Lift 

1 Age=Old, Speed Limit<=60 mph, Visibility=Affected  0.70 32.92 2.425 
2 Age=Old, Speed Limit<=60 mph, Surface=Wet  0.74 31.75 2.339 
3 Age=Old, Speed Limit<=60 mph, Weather=Rain  0.68 31.23 2.300 
4 Age=Old, Gender=Female, Mileage Last Year<=10,000 miles  0.70 31.21 2.299 
5 Age=Old, Gender=Male, Mileage Last Year= 10,000 to 20,000 miles  0.76 30.05 2.213 
6 Mileage Last Year<=10,000 miles, Speed Limit<=60 mph, Weather=Rain  0.88 29.35 2.161 
7 Age=Old, Gender=Female, Speed Limit<=60 mph  0.72 29.21 2.151 

8 Driving Experience=>10 years, Mileage Last Year<=10,000 miles, 
Weather=Rain  0.79 28.81 2.122 

9 Gender=Female, Mileage Last Year<=10,000 miles, Weather=Rain  0.71 28.76 2.118 
10 Age=Old, Lane<=2, Mileage Last Year= 10,000 to 20,000 miles  0.57 28.71 2.115 
11 Lane<=2, Mileage Last Year<=10,000 miles, Weather=Rain  0.77 28.57 2.104 
12 Mileage Last Year<=10,000 miles, Traffic=Free Flow, Weather=Rain  0.78 28.54 2.102 
13 Age=Old, Surface=Wet, Visibility=Affected  0.71 28.39 2.091 
14 Age=Old, Visibility=Affected, Weather=Rain  0.67 28.10 2.069 
15 Marital Status=Married, Mileage Last Year<=10,000 miles, Weather=Rain  0.54 28.08 2.068 

16 Driving Experience=>10 years, Gender=Female, Mileage Last 
Year<=10,000 miles  1.68 27.97 2.060 

17 Age=Old, Gender=Female, Lane<=2  0.93 27.95 2.059 
18 Mileage Last Year<=10,000 miles, Visibility=Affected, Weather=Rain  0.93 27.73 2.043 
19 Age=Old, Lane<=2, Speed Limit<=60 mph  1.23 27.57 2.030 
20 Age=Old, Mileage Last Year= 10,000 to 20,000 miles, Traffic=Free Flow  0.88 27.44 2.021 
21 Age=Old, Marital Status=Married, Visibility=Affected  0.70 27.44 2.021 
22 Age=Old, Mileage Last Year<=10,000 miles, Speed Limit<=60 mph  0.91 27.42 2.019 
23 Marital Status=Others, Mileage Last Year<=10,000 miles  0.56 27.30 2.011 
24 Age=Old, Lane<=2, Visibility=Affected  0.66 27.30 2.010 

25 Driving Experience=>10 years, Mileage Last Year<=10,000 miles, Vehicle 
Class=Minivan/Pick-up  0.55 26.98 1.987 

 
Rules for Speed Selection Level – 4 (More than 5 mph Below the Speed Limit) 
The association rules with speed selection level-4 as consequent were generated using a 
minimum support and confidence level of 5 percent and 42 percent, respectively. A total of 105 
rules with a lift value of more than 1 were found after removing all the redundant values. 
However, only the top 25 rules are reported in Table 26. As mentioned earlier, the speed 
selection level-4 represents a reduction in speed more than 5 mph below the speed limit. As 
expected, adverse weather condition, especially snowy weather, was found to have an 
association with speed selection level-4 in several rules. The highest association (support = 5.02 
percent, confidence = 74.11 percent, lift = 2.505) was found for Rule 1 representing the 
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combined effect of snow weather and snowy road surface on driver speed selection level-4. This 
rule can be expressed as a) 5.02 percent of the speeds in the dataset occurred in snowy weather 
with the snowy road surface and produced speed selection level-3; b) out of all the speed 
selection levels in the dataset that occurred in snowy weather with the snowy road surface, 74.11 
percent were speed selection level-4; and c) the proportion of speed selection level-4 in snowy 
weather with snowy road surface was 2.505 times the proportion of speed selection level-4 in the 
complete dataset.   

Table 26 First 25 Association Rules for Speed Selection Level-4  
Rules Antecedent Support 

( percent) 
Confidence 
( percent) Lift 

1 Surface=Snowy, Weather=Snow 5.02 74.11 2.505 
2 Surface=Snowy 5.10 71.00 2.400 
3 Weather=Snow 5.68 70.67 2.389 
4 Speed Limit<=60 mph, Traffic=Mixed Flow, Visibility=Affected 5.45 69.87 2.362 
5 Traffic=Mixed Flow, Vehicle Class=Passenger Car/SUV, Visibility=Affected 5.08 67.07 2.267 

6 Marital Status=Married, Mileage Last Year= 10,000 to 20,000 miles, 
Traffic=Mixed Flow 10.95 65.57 2.217 

7 Age=Middle, Speed Limit<=60 mph, Traffic=Mixed Flow 11.77 65.10 2.201 
8 Traffic=Mixed Flow, Visibility=Affected 6.02 64.64 2.185 
9 Age=Middle, Marital Status=Married, Traffic=Mixed Flow 11.54 64.27 2.172 
10 Gender=Male, Marital Status=Married, Traffic=Mixed Flow 9.60 63.89 2.160 

11 Age=Middle, Mileage Last Year= 10,000 to 20,000 miles, Traffic=Mixed 
Flow 10.62 63.80 2.157 

12 Age=Middle, Gender=Male, Traffic=Mixed Flow 9.43 63.03 2.131 
13 Marital Status=Married, Speed Limit<=60 mph, Traffic=Mixed Flow 11.43 62.83 2.124 
14 Age=Middle, Lane>2, Traffic=Mixed Flow 11.53 62.15 2.101 
15 Lane>2, Marital Status=Married, Traffic=Mixed Flow 10.77 61.84 2.090 

16 Driving Experience=>10 years, Mileage Last Year= 10,000 to 20,000 miles, 
Traffic=Mixed Flow 11.69 61.77 2.088 

17 Driving Experience=>10 years, Speed Limit<=60 mph, Traffic=Mixed Flow 13.22 61.62 2.083 
18 Age=Middle, Traffic=Mixed Flow, Vehicle Class=Passenger Car/SUV 13.13 61.33 2.073 
19 Driving Experience=>10 years, Marital Status=Married, Traffic=Mixed Flow 12.71 61.20 2.069 
20 Age=Middle, Curve=No, Traffic=Mixed Flow 9.57 61.03 2.063 

21 Marital Status=Married, Traffic=Mixed Flow, Vehicle Class=Passenger 
Car/SUV 12.37 60.91 2.059 

22 Gender=Male, Speed Limit<=60 mph, Traffic=Mixed Flow 10.28 60.53 2.046 
23 Curve=No, Marital Status=Married, Traffic=Mixed Flow 8.93 60.37 2.041 
24 Age=Middle, Driving Experience=>10 years, Traffic=Mixed Flow 13.77 60.11 2.032 
25 Age=Middle, Traffic=Mixed Flow 13.87 59.91 2.025 

 
Visualization of Extracted Rules for Speed Selection Behavior 
The results were visualized using grouped balloon plot and scatter plot of the association rules. 
The grouped balloon plot can illustrate the relationship between the antecedent groups and the 
consequent of all the rules. The antecedent groups, also known as LHS, are arranged in rows and 
the consequent, also known as RHS, are arranged in the column as depicted in Figure 23 to 
Figure 26. The aggregated support and lift values are represented by the size and color of the 
balloons, respectively. The darker the shades of red, the higher the aggregated lift value, as well 
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as the larger the size of the balloon, the greater the aggregated support value. The rows are 
arranged based on the decreasing values of lift. Figure 23 illustrates that the most important 
group for speed selection level-1 consists of 1 rule which contains clear weather, drivers with 
less than 10 years of experience as well as one other item in the antecedent. Similarly, Figure 26 
illustrates that the most important group for speed selection level-4 consist of snowy weather as 
well as snowy road surface condition.  

 
Figure 23 Balloon Plot of the Generated Association Rules (Speed Selection Level 1)  
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Figure 24 Balloon Plot of the Generated Association Rules (Speed Selection Level 2)  

 
Figure 25 Balloon Plot of the Generated Association Rules (Speed Selection Level 3)  
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Figure 26 Balloon Plot of the Generated Association Rules (Speed Selection Level 4)  

In addition, scatter plots were also created in order to illustrate the relationship among 
confidence, support, and lift in the associated rules for each of the speed selection levels. Note 
that important rules are generally clustered near the support/confidence border (129). Therefore, 
according to Figure 27 to Figure 30, the distribution of the generated rules can be considered as 
acceptable to achieve the study objective, since the majority of the points are located close to the 
support/confidence border. Most of the rules for the speed selection level-1 are clustered between 
the support value of 0.05 to 0.13 and up to 58 percent confidence with a maximum lift value of 
1.9. On the other hand, most of the rules for speed selection level-4 are distributed between the 
support value of 0.05 to 0.02 and up to 74 percent confidence with a maximum lift value of 2.5.  
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Figure 27 Scatter Plot of the Generated Association Rules (Speed Selection Level 1) 

 
Figure 28 Scatter Plot of the Generated Association Rules (Speed Selection Level 2) 

 
Figure 29 Scatter Plot of the Generated Association Rules (Speed Selection Level 3) 
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Figure 30 Scatter Plot of the Generated Association Rules (Speed Selection Level 4) 

 
Ordered Logit Regression 
In addition to the association rules mining approach, an order logistic regression model was also 
calibrated to investigate the effect of adverse weather on driver speed selection behavior. A total 
of 15,326 1-minute segments in different weather and traffic conditions were used in order to 
develop the model. Table 1 shows a summary of the variables used in the ordered logit model. 
Similar to the previous approach, the response variable was speed selection with four categories. 
Other variables related to driver demographics, roadway geometry, and environmental factor 
were considered as explanatory variables. The log-likelihood ratio was utilized to evaluate the 
fitness of the model. It was found that the overall explanatory variables had a statistically 
significant effect on the response at a 95 percent confidence level with a p-value less than 0.05 as 
can be seen in Table 27. To check any potential correlation, the variance inflation factor (VIF) 
was checked among all the explanatory variables, which revealed that all the variables had a VIF 
value less than 3. Note that, a VIF  less than 10 indicates that there is no multicollinearity 
problem (130). Thirteen variables, as well as three interaction terms, were found to have a 
significant effect on the speed selection as can be seen in Table 27.  
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Table 27 Estimation of Ordered Logit Model for Speed Selection 

 
As expected, all the adverse weather conditions had a significant effect on speed selection 
behavior. It was found that drivers were more likely to choose lower speeds in adverse weather 
conditions. More specifically, the odds of drivers reducing their speeds were 1.45, 4.56, and 1.77 
times higher in rain, snow, and fog, respectively, compared to their counterparts’ speeds in clear 
weather. Note that, driving over the speed limit in adverse weather could be hazardous due to a 
significant reduction of available stopping sight distance. This study indicates that drivers 
reduced their speed to compensate for the negative effect of adverse weather. Other 
environmental factors, such as visibility and surface conditions, were also found to affect speed 
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selection significantly. Findings related to surface conditions revealed that the odds of drivers 
reducing their speeds in wet and snowy surfaces were 1.53 and 2.95 times higher compared to 
dry surfaces, respectively.  
The traffic conditions were found to have a positive impact on speed reduction. Controlling all 
other factors, drivers are 5.2 times more likely to reduce their speeds in mixed traffic conditions 
compare to free-flow conditions. In addition, it was found that older drivers with age more than 
65 years old were 1.54 times more likely to reduce their speed compared to the speeds of 
younger drives with age less than 25 years of age.  
Considering the interaction terms, it was found that experienced drivers with more than 10 years 
of driving history were 17 percent less likely to reduce their speed on curves compared to drivers 
with an experience of fewer than 10 years and driving in straight segments. This result indicates 
that the experienced drivers are usually more confident to drive at higher speeds on curves 
compared to less experienced drivers (127).  
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Chapter 3. Radar-Vision Algorithms to Process Trajectory-Level 
Driving Data  

Background 
The investigation of driver behavior has been at the forefront of transportation research for 
decades. Research in this field examines trajectory-level driving data (e.g., speed, acceleration, 
and position) to characterize drivers’ sophisticated and unique actions while operating a vehicle. 
It is critical that industry decision-makers understand the role of driver behavior on the safety, 
operations, and reliability of their transportation networks. While recognized as an important 
field of study, driver behavior is rarely considered by practitioners. This underrepresentation in 
practice is primarily due to limited consensus of the quantitative impacts that drivers’ 
heterogeneous behaviors have on accurately forecasting traffic operations. Studies aiming to 
capture these quantitative effects have been limited by a deficit in high resolution trajectory-level 
driving data containing a substantial number of drivers in natural driving environments (131–
134). Without a sufficient quantity of appropriate data, findings are ungeneralizable and 
outcomes cannot be included in practical decision support systems.  
In recent decades, noteworthy advancements in the collection of trajectory-level data have been 
made. Among these data collection methods are aerial video footage, driving simulators, 
instrumented research vehicles (IRV), and naturalistic driving studies (NDS). Each data 
collection procedure has advantages and disadvantages associated with collection cost, 
background knowledge of driver characteristics, the quantity of driving data for particular 
roadways or driving environments, and the capacity to elicit and record natural driver responses. 
Among these, NDS enable the collection of large quantities of naturalistic trajectory-level data 
on a variety of roadways from a diverse set of drivers; this presents an unprecedented 
opportunity for the advancement of driver behavior research. 
While a surplus of benefits is evident for using NDS data to examine driver behavior, one major 
impediment standing between data acquisition and data analytics is the substantial data 
processing required to transform the raw data into a usable format (135). In an effort to propel 
driver behavior research from its current plateau, this paper uses a sample of the second Strategic 
Highway Research Program (SHRP2) NDS data acquired from the Wyoming Department of 
Transportation’s Implementation Assistance Program (IAP) project (89) to develop two 
algorithms that extract information about NDS trips using the collected radar data. The 
contributed algorithms automatically detect the driving state—defined by the presence of a 
downstream lead vehicle—and the transition events—the action that causes a change between 
two different driving states—from trajectory-level data. This effort serves as a foundation for the 
evaluation of driver heterogeneity among different driving populations and between different 
driving environments. The processed data can be used for driver behavior analytics, including 
the development, calibration, and validation of driver behavior models used in traffic simulation. 

Literature Review 
The SHRP2 NDS data have been available for six years. Previously, the Virginia Tech 100-Car 
NDS was conducted using a similar DAS (136). From the resulting database, multiple studies 
evaluated driving behavior for the purpose of developing and calibrating behavioral models. 
Sangster et al. applied eight drivers’ data from the 100-Car NDS to calibrate four common car-
following models (137). In processing these data, the authors identified multiple errors in the 
reported radar data that rendered systematic identification of car-following states (i.e., driving 
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states in which the subject vehicle is consistently following a lead vehicle) unreliable. The 
findings from their study provided guidance for the calibration of car-following models using 
naturalistic driving data and highlighted limitations in existing methods to process the data for 
widespread analyses (137).   
Another study conducted by Higgs and Abbas evaluated the feasibility of automated 
segmentation and clustering of car-following behavior for the purpose of categorizing driving 
patterns (138). Using the data from twenty 100-Car NDS drivers, car-following states were 
automatically extracted using the following guidelines: (i) lead vehicle in same travel lane, (ii) 
following distance less than 120 meters, (iii) limited roadway curvature, (iv) speeds above 
20km/hr, and (v) 30 seconds or more of continuous following behavior. From their study, Higgs 
and Abbas identified significant heterogeneity between drivers’ behavior and discussed the need 
for a statistically significant sample size (i.e., number of drivers and amount of data per driver) to 
achieve meaningful results. They concluded that consideration of more drivers could result in the 
detection of more unique driving patterns (138).  
Experience collecting and processing the 100-Car NDS were used to inform the development of 
the SHRP2 NDS. For instance, a data processing methodology was established to improve the 
usability of the SHRP2 NDS radar data. These procedures are reported in Reference (139) and 
summarized below for brevity.  

• Reorganized data into an intuitive format. 
• Corrected the time lag between data collection units. 
• Merged objects to create continuous targets. 
• Smoothed longitudinal range and range rate variables using a cubic spline. 
• Computed lateral range and range rate variables. 
• Identified and removed ghost targets. 
• Estimated targets’ direction-of-travel. 
• Estimated targets’ lane classification (relative to the subject vehicle) 

Ultimately, each vehicle target was given a unique target identifier and the relative position of 
each target at each timestamp was updated. The position data were separated into (i) X distance, 
(ii) Y distance, (iii) rate of change in the X direction, and (iv) rate of change in the Y direction. 
The physical interpretation of the distance measurements is shown in Figure 31. Using these 
measurements, VTTI classified each target based on predicted travel direction and lane 
classification relative to the subject vehicle. This procedure resulted in a binary output for each 
target at each timestamp indicating whether or not the target is the current lead vehicle. 

 
Figure 31 Processed Distance Measurements from Radar 
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Figure 32 Iterative Smoothing Algorithm: Concept Diagram 

While significantly better than the raw radar data, automatic identification of car-following using 
the processed radar data is restricted by inaccuracies in the classification of a target’s lane. Use 
of the existing lane classification results produces a substantial number of false-negatives—that 
is, situations in which a target was denoted as not being a lead vehicle but actual conditions (as 
verified by the positional radar data and the front video) indicated that the target was the lead 
vehicle—and unreasonably short driving states caused by frequent shifts in target lane 
classifications. Therefore, the authors strived to build upon this effort by applying the processed 
radar measurements in a newly developed algorithm designed to reliably and continuously detect 
the presence of a lead vehicle throughout an NDS trip. 

Driving State Detection & Event Classification 
A fundamental component to analyzing driver behavior is identifying the driving environment. 
In this context, the driving environment is defined by external objects (e.g., other road users) and 
conditions (e.g., roadway configuration and weather conditions) that could impact driver 
behavior or vehicle performance. Advanced video processing techniques are currently being 
explored to infer some of these environmental conditions using SHRP2 NDS (89); however, 
these efforts are still ongoing and current progress has been limited by both the analytic 
complexity and the variability in video data quality. The research efforts discussed previously, as 
well as many other projects using NDS or other IRV data, developed algorithms to detect the 
immediate driving environment—the presence of a lead vehicle—from radar data (137, 138). 
These algorithms are defined by thresholds (i.e., following distance, lateral offset, and speed) 
that are intended to ensure the following vehicle is continuously influenced by a single lead 
vehicle. Even with these defined thresholds, many previous studies are limited to a small sample 
of drivers with a small sample of trips because of the large processing effort needed to attain 
reliable outputs. The relevance of findings from even the most innovative analytic efforts are 
dependent on the size and diversity of their input data, which underscores the importance of 
generating systematic, reliable, and efficient algorithms to define the driving environment.    
To address this need, the following algorithms were built to extract information about the driving 
environment from the internal and external sensor data, primarily from the forward-facing radar. 
Within the spectrum of “radar vision”, the primary goal is to identify driving states in which the 
subject vehicle’s radar detects (i) a downstream vehicle in the same travel lane (i.e., constrained 
driving scenario) or (ii) no vehicles in the downstream travel lane (i.e., unconstrained driving 
scenario). A new driving state is activated whenever the subject vehicle transitions between a 
constrained and an unconstrained driving state or when the target identified in a constrained state 
changes (i.e., a new lead vehicle is identified). Then, the procedure adds value to understanding 
these driving states by estimating the driving events that caused a transfer in driving state (e.g., 
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lane change). The following definitions are provided to supplement the discussion in the 
subsequent sections. 

• Lead Vehicle: a target is identified as a “lead vehicle” when it is traveling downstream of the 
subject vehicle in the travel lane—in this definition, no assumption is made regarding if or when 
the subject vehicle reacts to the presence of this lead vehicle. 

• Driving State: current driving environment defined by the existence of a lead vehicle. The 
driving state can be either unconstrained with no lead vehicle or constrained with a lead vehicle. 
Each constrained driving state is distinguished by a unique target identifier. 

• Driving Segment: collection of consecutive data points in which the driving state remains 
unchanged. For example, a driving segment could represent a continuous time period where no 
lead vehicle exists or where Target “A” exists.  

• Events: describe the actions of the following or lead drivers that resulted in a change in driving 
state. These actions could include lane changes, approaching a lead vehicle, or separating from 
a lead vehicle. 

 
Figure 33 Iterative Smoothing Algorithm: Process Diagram 

 Iterative Smoothing Algorithm to Detect Driving State 
The first algorithm was developed to determine the driving state at each time step and identify 
continuous segments of homogeneous driving states (e.g., 30 seconds following target A, 20 
seconds with no lead target, 50 seconds following target B, etc.). An improvement to prior data 
processing efforts is achieved by estimating the driving state from windows of past and future 
radar data. This methodology involves greater computation power and larger memory storage; 
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however, it overcomes the limitations of instantaneous driving state predictions that are 
influenced by inherently noisy radar data. The general concept of the developed algorithm is 
shown in Figure 33. If the long rectangle is considered the flattened “video roll” of a particular 
trip, the algorithm generates a window of historic and future data surrounding each time step. 
Moving time step by time step through the trip (with a data recording frequency of 10 Hz), the 
algorithm estimates the driving state at each point. The driving state estimates are smoothed by 
repeating this process until termination conditions are reached.  

The next sections discuss each step in the iterative smoothing algorithm, as shown in the 
process diagram illustrated in Figure 33. The following definitions are provided for reference in 
the discussion of the iterative smoothing algorithm. 

Score: probabilistic value between [0, 1] assigned to each possible driving state at each 
time step indicating the probability of that specific driving state at that time step. For example, if 
the score for Target A is 0.9 and the score for No Lead Vehicle is 0.1, then there is an 90 percent  
chance that Target A is the lead vehicle and a 10 percent  chance that No Lead Vehicle exists. 

Initial Score: instantaneous score calculated using the radar data from a single time step.  
Smoothed Score: score calculated from historic and future data windows for each target 

at each time step. 
Updated Score: score calculated from a weighted average of the previous updated score 

in first iteration, this is the initial score—and the smoothed score for each target at each time 
step.  

Score Matrix: matrix containing the probable driving state at each timestamp. The 
matrix is generated after the initial scores are calculated and is updated after each iteration of the 
smoothing algorithm. 

Calculate Initial Scores  
The first step in the iterative smoothing algorithm is to make an initial assessment of the 
probable driving state at each timestamp. The SHRP2 NDS radar unit is able to track up to eight 
targets at any given time (139); therefore, in this first step, the algorithm examines the data at 
each time step to calculate an initial score for each target at each timestamp. The probable 
driving state at each timestamp is then attributed to the driving state with the highest initial score; 
this information is stored in the score matrix. 
The initial score is calculated using fuzzy set logic, which transforms explicit numeric inputs into 
the fuzzy domain, applies rules based on the derived fuzzy values, and transforms the results 
back into an explicit output. Fuzzy logic is appropriate when input noise or system uncertainty is 
easier to manage in a “fuzzy” domain than the “explicit” domain. When inferring driving state 
from radar measurements, both uncertainty and input noise are evident, making the detection of 
driving state an ideal candidate for a fuzzy logic solution. Figure 34 illustrates the developed 
methodology. 
For every target at every timestamp, the relative position of the subject vehicle with respect to 
the target vehicle is input to the algorithm. Next, the fuzzification process transforms the explicit 
input values into fuzzy sets. The x-distance is converted into following distance with three fuzzy 
sets: close, moderate, and far distances. The y-distance is converted to represent the lateral lane 
offset with two fuzzy sets: in lane and not in lane. For each fuzzy set, membership functions 
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were developed to compute a degree of membership between [0, 1] that indicate how closely the 
input data match the described fuzzy set. Rather than using classical logic that requires crisp 
thresholds to classify data, fuzzy logic introduces flexibility and allows overlapping membership 
functions. In this way, a single input value can belong to one or more fuzzy sets at varying 
degrees of membership.  

 
Figure 34 Initial Score Calculation 

Once membership values are computed for each of the five fuzzy sets—close distance, moderate 
distance, far distance, in travel lane, and not in travel lane—the inference process begins. 
Inference processing, or rule evaluation, is central to knowledge-based decision-making. In the 
fuzzy domain, rules are developed linguistically expressed in an IF…THEN… format to describe 
dependencies between system inputs and system outputs. Six rules were developed that describe 
the driving state with each combination of lateral offset and following distance fuzzy sets; for 
example, IF following distance is close AND lateral offset returns in lane THEN the target is 
100 percent  likely the lead vehicle. The rules were formed considering the increasing level of 
uncertainty that arises with increased following distance, which is why greater confidence that a 
target is the lead vehicle is given to a target at a far distance that is not in the travel lane, 
compared with a target at a moderate distance that is also not in the travel lane. This increase in 
uncertainty at greater following distances stems from known radar precision limitations that 
amplify as objects’ relative distance increases. Moreover, as the following distance decreases, 
greater certainty is available to determine whether a target is or is not the lead vehicle. This 
further explains why the likelihood that a target is the lead vehicle at a close distance is 100 
percent  when the target is in the travel lane and 0 percent  when the target is not in the travel 
lane.  
Finally, strength indicators are computed by multiplying membership values of corresponding 
fuzzy sets, as described in each linguistic rule. Using the rule definitions and strength values, the 
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defuzzification process computes the probability that the input target is the lead vehicle. This 
initial score is calculated as the sum of the product between each rule and corresponding strength 
value. Once initial scores are calculated for each target in a single timestamp, the initial score for 
“no lead vehicle” is calculated by subtracting the maximum initial score of all targets in that 
timestamp from one. For example, if at Time = 1, the score of Target A = 0.4, the score of Target 
B = 0.3, and the score of Target C = 0.6, the score for the “no lead vehicle” driving state = 1.0 – 
0.6 = 0.4. 

Calculate Smoothed & Updated Scores 
After computing the initial scores, the iterative smoothing procedure begins with the calculation 
of smoothed and updated scores. Pseudocode, a graphic, and equations describing this procedure 
are given in Figure 35. Walking through the pseudocode, the first level of the algorithm iterates 
through each timestamp. Within each timestamp, the probable driving state is identified from the 
score matrix. Next, the probable driving states from windows of historic and future data 
immediately before and after the current timestamp are collected. Then, the algorithm loops 
through each possible driving state at that timestamp to calculate the smoothed and updated 
scores.  
The smoothed score of a possible driving state is derived from the occurrence frequency and 
relative order of that driving state in the historic and future windows of probable driving states. 
To illustrate this concept, if the historic window of probable driving states at Time 10 = 
{no_lead, no_lead, no_lead, no_lead, target_a}, with the beginning of the list representing Time 
5 and the end representing Time 9, and the current possible driving state is no_lead, then the 
historic frequency (fH) and relative order (oH) would be fH = 4/5 (i.e., 4 occurrences of no_lead in 
window) and oH = 4/5 (i.e., position of most recent no_lead in window is 4), respectively. These 
values are divided by the length of the historic list (length = 5) to normalize the output between 
[0, 1]. The final smoothed score is calculated with the frequency and order values from the 
historic and future windows, placing greater emphasis on frequency than order.  

 
Figure 35 Smoothed & Updated Score Calculation 
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The updated score is computed as a weighted average between the smoothed score and the past 
updated score. In the first iteration, the past updated score is the initial score; however, after the 
first pass of the algorithm, the previously computed updated score is used. Once updated scores 
are computed for each possible driving state in the timestamp, the probable driving state—the 
state with the highest updated score—is identified and the score matrix is updated. The algorithm 
then repeats the procedures with the next time step until the trip is complete. For each pass of the 
algorithm, the window size is increased to facilitate controlled smoothing of the driving state 
prediction. In addition, the confidence weight given to the smoothed score is gradually decreased 
to reduce the risk of over-smoothing. The window size and confidence weights for each possible 
algorithm iteration are shown in Table 28. 

Table 28 Algorithm Parameters 
Algorithm Iteration Window Size [sec] Confidence Weight 
1 3 12/18 
2 4 11/18 
3 5 10/18 
4 6 9/18 
5 7 8/18 

 

Define Continuous Driving Segments 
Once all updated scores are calculated and the score matrix is revised, the trip is segmented into 
homogeneous driving segments that reflect continuous time periods where a single driving state 
is detected. This concept is depicted in Figure 36. When picturing a trip as a storyboard or video 
feed, each block of time represents a continuous segment of free flow driving (i.e., no lead 
vehicle) or constrained driving (i.e., specific lead vehicle detected). 

 
Figure 36 Example of Homogeneous Driving Segments 

Evaluate Termination Conditions 
After reviewing the homogeneous driving segments, termination conditions are evaluated to 
determine if another iteration of the algorithm is warranted and permissible. As previously 
described, the aim of this procedure is to smooth the transitions between continuous driving 
segments representing a single driving state to ensure that each segment accurately reflects the 
drivers’ perceived environment. Therefore, the first termination condition verifies that each 
driving segment is longer than 1.1 seconds. This minimum threshold is regulated by the 85th 
percentile perception time defined in Reference (140). The second termination condition 
prevents over-smoothing by limiting the number of allowable algorithm passes. Algorithm 
testing indicated that smoothing beyond five iterations delayed the algorithm’s response in 
transitioning between driving states. 
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Figure 37 Decision Tree Algorithm 

Decision Tree Algorithm to Estimate Events 
To provide context for the transition between driving segments, a second algorithm was 
developed to estimate transition events. Each event is classified into five categories: (i) subject 
vehicle lane change, (ii) new vehicle cut-in (i.e., merged into travel lane), (iii) lead vehicle left 
travel lane (i.e., changed out of the lane ahead of subject vehicle), (iv) subject vehicle 
approached a slower moving vehicle, or (v) subject vehicle fell behind or separated from a faster 
moving vehicle. This is accomplished using decision tree logic shown in Figure 37.  
Algorithm inputs include a window of radar data (i.e., position of the lead vehicle) and subject 
vehicle driving data (i.e., vehicle data collected from the CAN-Bus) describing the beginning and 
end of each driving segment. Each state transition, or decision point, is evaluated using a three 
second window of pertinent data from the end of the first segment and the beginning of the 
second segment. For example, a subject vehicle is determined to have made a lane change if the 
turn signal is active just before and after the transition. Following the decision tree logic 
illustrated in Figure 37, when a subject vehicle lane change is unlikely, the algorithm identifies 
the type of driving state transition (i.e., lead vehicle to lead vehicle, lead vehicle to no lead 
vehicle, or no lead vehicle to lead vehicle), as this distinction reduces the number of possible 
events. Depending on the type of transition, input data are used to evaluate specific questions 
related to the possible events. For example, if the transition had occurred between two lead 
vehicles, the algorithm uses the windows of radar data to determine if a new lead vehicle cut into 
the lane between the subject vehicle and the former lead vehicle or if the previous lead vehicle 
changed out of the lane and the subject vehicle picked up a new lead vehicle. 

Final Output 
Once the driving states are predicted by the iterative smoothing algorithm and each state 
transition event for the trip is estimated using the decision tree classification algorithm, a 
summary file is generated for the trip. As part of this summary, each driving segment is defined 
by its starting event, start and stop timestamps, duration, distance traveled, and summary 
statistics describing the subject vehicle and a lead vehicle (e.g., average speed, maximum 
deceleration, etc.), when applicable. A condensed sample of this output is shown in Table 29. 
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Table 29 Sample Output 
Segment 
Number 

Starting Event Driving State Segment Duration [sec] 

1 start_recording No Lead 3.8 
2 sub_veh_LC Target 1 26.8 
3 sub_veh_LC Target 2 11.8 
4 lead_veh_LC_out No Lead 17.5 
5 sub_veh_approached Target 3 14.6 
6 lead_veh_LC_out No Lead 38.5 
7 sub_veh_approached Target 4 14.2 
8 lead_veh_LC_out No Lead 16.7 
9 sub_veh_approached Target 5 7.8 
10 sub_veh_separated No Lead 123.9 

 

Verification 
As previously mentioned, the algorithm was constructed and verified using a sample of NDS 
data from the Wyoming SHRP2 NDS dataset. Verification and prediction accuracy was assessed 
from 74 NDS trips not used in algorithm generation that represents a variety of driving 
conditions, including daylight and night conditions, freeways and arterials, multiple lane 
configurations, and occasional work zones. Combined, these trips represent over 32 hours of 
driving. Manual video confirmation of algorithm results showed 96 percent accuracy in 
predicting driving states and 78 percent accuracy in estimating events in which correct driving 
states were predicted. Inaccuracies in driving state prediction resulted from missing or erroneous 
radar data, substantial roadway curvature, or confusing driving scenarios (e.g., collision on side 
of road). Alternatively, most event misclassifications occurred when a lead vehicle changed lanes 
at a far distance downstream. 

To evaluate this algorithm’s ability to achieve the original goal—which is to provide a 
continuous and reliable estimation of driving state to supplement existing data processing 
procedures implemented on the SHRP2 NDS—a comparison of homogeneous driving segments 
detected before and after algorithm deployment was conducted. One trip covering 28 km of 
freeway over 69 minutes was selected for the comparison; individual verification of driving state 
accuracy for this trip is 94 percent. The results in Table 30 produce evidence that the algorithm 
improved the continuity of the resulting driving segments by reducing the number of distinct 
driving segments by 79.5 percent and increasing the average duration of driving segments by 
79.2 percent.  

Table 30 Comparison of Driving State Detection  
Comparison Factors Raw & Post-Processed 

Radar Data 
Developed Algorithm 
Post-Processing 

Number of distinct driving segments 239 103 

Average length of driving segments [sec] 17.3 40.0 

Discussion 
This study describes the development of data processing algorithms for trajectory-level data from 
instrumented vehicles to continuously predict driving states and estimate state transition events 
using trips from the SHRP2 NDS. The motivation for this work is to develop a systematic 
procedure that can characterize the driving environment to enable advancement in driver 
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behavior research by increasing the practicality of using a larger sample of trajectory-level data. 
The definition of a driving state was intentionally kept simple—either unconstrained with no 
detected vehicle downstream or constrained with a detected downstream vehicle assigned a 
certain target identifier. This vague definition allows researchers to mold more sophisticated 
definitions based on their specific project needs (e.g., distance and speed thresholds). For 
example, different types of car-following states or different components of car-following states 
(i.e., approach, continuous following, and separation) may be of interest and could be derived 
from the algorithm output. Another use case might focus on a driver’s decision to make a 
discretionary lane change. Rather than requiring days of manual video observations to detect 
when a subject vehicle changed lanes after approaching a slower moving vehicle, the algorithm 
output could be structured to meet the specific research need and the data could be processed 
systematically to more efficiently analyze a larger sample size. 
Planned algorithm enhancements include multiple layers of detection for identifying a subject 
vehicle lane change, such as the consideration of a vehicle’s lane position—a variable 
determined by the SHRP2 NDS DAS to indicate the distance from lane center—that would 
improve estimation accuracy in situations in which drivers do not use their turn signals. Through 
the enhancement of this procedure, lane changes that don’t result in a change in driving state 
could be detected (e.g., subject vehicle is traveling in the left lane with no lead vehicle and 
changes to the right lane—again with no lead vehicle ahead—which doesn’t change the driving 
state). In addition, consideration of the subject vehicle’s lateral acceleration will be applied in the 
computation of initial scores in the iterative smoothing algorithm for predicting driving state to 
account for roadway curvature and provide a better estimate of whether the lead vehicle is 
actually in the target lane. Lastly, a third algorithm will be introduced to estimate localized 
traffic congestion. Congestion levels will be assessed by the prevalence of additional radar 
targets (other vehicles) detected within a driving segment. 
Many projects using the SHRP2 NDS data are currently in progress. One unique characteristic of 
the SHRP2 NDS is that a complementary geodatabase called the Roadway Information Database 
(RID) is available to provide context for the roadways traversed by NDS participants (141). The 
RID can be used to filter NDS trips based on roadway type, roadway configuration, or traffic 
control type. Additional information related to signage, speed limits, work zones, annual traffic 
counts, and weather events are also available.  
In addition, as previously discussed, substantial value can be found in conducting detailed video 
processing; however, inconsistent video resolution, unpredictable visibility conditions, and 
intensive computational requirements have stinted the widespread use of these powerful 
algorithms. While the work presented in this paper focuses on the use of radar data to identify 
driving state, the authors are aware of the limitations caused by inherent radar noise and limited 
distinction between types of detected objects. Huge value could be realized through the fusion of 
“radar vision” and “video vision” to describe the driving environment of a SHRP2 NDS trip. 
When used in parallel, a much clearer picture of the driving environment would be produced at a 
higher confidence level than either process separately. Video vision could detect unique driving 
environments (e.g., work zones or adverse weather conditions) and confirm the existence of a 
lead vehicle, while radar data could provide accurate measurements and reliable detection when 
sunlight or precipitation inhibits video resolution. 
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Chapter 4. Detection and Prediction of Lane Change Maneuvers 
Lane changes are one of the most frequent and complicated driving maneuvers occurring on 
roadways. According to the National Highway Traffic Safety Administration (NHTSA), lane 
change maneuvers were responsible for 543,000 motor vehicle crashes in the United States in 
2018 (142). Fitch et al. reported that at least 60,000 people are injured annually due to lane 
change related crashes (143). Other studies concluded that 12.6 percent of all traffic accidents 
and 9.8 percent of crash fatalities are caused by lane change maneuvers (144). Therefore, driver 
lane change maneuvers need to be studied thoroughly considering its significance to roadway 
safety.     
A lane change maneuver is one of the most commonly performed maneuvers, which takes place 
when a driver is in the process of moving the vehicle laterally from one lane to another. Lane 
change has been defined in different studies based on three criteria including explicit initiation 
and completion point, utilized data source, and required parameters (145). According to Toledo 
and Zohar, lane change event is defined as passing from one lane to immediate next lane. They 
defined the initiation point as a particular time instance when subject vehicle begins lateral 
movement, and the completion point is the time when the subject vehicle ends its lateral 
movement (67). The study of Tijerina et al. defined lane change maneuver as a separate decision 
and execution phase (146). In another study, Fitch et al. defined lane change as a driving 
maneuver that moves from one lane to another lane where both lanes have the same direction of 
travel (143). 

Literature Review 
Lane Change Detection  
Different methods of lane change identification can be found in the literature. For instance, a 
study conducted by Bogard and Francher identified lane change using GPS data and used mainly 
path-curvature data to identify lane changes, where the process consisted of six steps (147). 
Miller and Srinivasan proposed a method to determine lane change maneuvers of heavy trucks 
using yaw rate. The study hypothesized that a lane change would produce a noisy-sine-wave-like 
yaw rate signal (148). Using the Next Generation Simulation (NGSIM) trajectory data, 
Thiemann proposed a smoothing algorithm and studied lane change dynamics. The study 
identified lane change using lane index that the vehicle is currently occupying, vehicle 
dimension, and vehicle position (149). In another study, Knoop et al. examined the number of 
lane changes as a function of the operational characteristics of the origin and target lane. They 
identified lane change using vehicle passing time, lane index, vehicle speed, and length from 
loop detector data (150). Koziol et al. suggested a lane change identification method using 
degree of curvature data. Several parameters were utilized to specify a lane change maneuver 
including the variation of the degree of curvature, the maximum and minimum values of the 
degree of curvature, the duration between the maximum and minimum degree of curvature, and 
the duration of the entire lane change (151). Another study utilized yaw rate and velocity to 
detect lane changes, turns, and curves on different road types (152). The lane change 
identification method proposed by Xuan and Coifman used vehicle lateral position acquired from 
the Differential Global Positioning System (DGPS) (153). A study conducted by 
Papathanasopoulou and Antoniou proposed a methodology based on temporary virtual lines to 
identify lane change maneuvers on mixed traffic trajectory data (154). Moreover, several 
subjective methods have also been used to identify lane change maneuver.  In a study, lane 
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change maneuver was identified when the initiation and completion points of simulated multi-
lane highway seemed apparent from experimenter’s judgment (66). Another study conducted by 
Hanowski et al. used driver’s pushbutton activation to identify lane changes while studying their 
fatigue (155). In general, it has been observed that most of the lane change identification 
methods are based on either data processing algorithms or subjective measures.  
In addition, several studies utilized Machine Learning approach to detect lane change maneuvers. 
Yang et al. adopted Random Forest (RF) model for detecting lane changing decision and found 
the prediction accuracy of 85 percent, 91.3 percent, and 88 percent for no lane change, left 
change and right lane change, respectively, using the NGSIM data (156). A study focused on 
detecting imminent lane change maneuvers in connected vehicle environments and found 80 
percent lane change detection accuracy using Artificial Neural Network (ANN) (157). Another 
study used Support Vector Machine (SVM) for detecting lane change intentions using 
instrumented vehicle and achieved accuracy close to 98 percent  (158). A study conducted by 
Kumar et al. proposed SVM and Bayesian filtering algorithm for predicting lane change 
intention and concluded that the proposed algorithm was able to predict lane change on an 
average of 1.3 seconds before it occurs (159). A study concentrated on predicting driver’s lane 
change decisions using a neural network model and found the accuracy of 94.58 percent and 
73.33 percent for left and right lane changes, respectively (160).   

Lane Change Prediction 
Prediction of lane change maneuvers have been extensively studied in the literature utilizing 
different approaches and datasets. For instance, Schmidt et al. proposed a mathematical model 
for predicting lane changes using steering wheel angle in a driving simulator and found that the 
pre-steering action of the steering wheel angle is a good indicator to predict a lane change (161). 
Using vehicle sensor readings, Morris et al. developed a real-time on-road prediction system to 
provide the early notifications required for Advanced Driver Assistance Systems (ADAS), which 
is capable of predicting a driver’s intention to change lanes up to 3s before the maneuver occurs 
(162). A study conducted by Toledo-Moreo and Zamora-Izquierdo combined position data from 
a set of low-cost GPS sensors with velocity measurement using an interactive multiple model 
and concluded that the model can predict lane changes in straight and curve road segments with a 
very short time (163). In addition, Naturalistic Driving Study (NDS) data have been utilized in 
previous studies to predict lane change maneuvers. Using 100-Car NDS data, Chen et al. 
developed an adaptive method from vehicle kinematics to predict lane-changing maneuvers and 
concluded that drivers started steering maneuvers for a lane change within 5s of the vehicle 
crossing the lane line (164). A study conducted by Leonhardt and Wanielik evaluated features 
for lane change prediction based on driving situation and driver behavior using naturalistic data 
and suggested that features associated with NDS vehicle’s controls and movement are 
appropriate to predict the lane change maneuver (165).  
With regard to methodological approaches, Machine Learning techniques have gained popularity 
because of their efficiency in solving several nonlinear and complex problems (166–169). 
Considering the promising performance of Machine Learning approaches, researchers have 
utilized these techniques to predict lane change maneuvers. Gao et al. adopted decision tree 
approach to predict lane change intention of an autonomous vehicle and found the highest 
prediction accuracy of 62.9 percent for 9s prediction horizon (170). Benterk et al. developed an 
approach based on Support Vector Machine (SVM) to predict lane change maneuvers of 
surrounding vehicles on highways and concluded that their proposed algorithm was able to 
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predict lane change on an average of 1.95s before the maneuver occurs with an accuracy of 
around 97 percent  (171). Another study considered Random Forest (RF) method for predicting 
discretionary lane change decision behavior on freeway and obtained the prediction accuracy of 
88 percent and 91 percent of right and left lane changes, respectively (156). A study conducted 
by Hou et al. combined Bayes classifier and decision tree to predict driver decisions on 
mandatory lane change and found the prediction accuracy close to 79 percent  (172).  

Data Acquisition and Processing 
The SHRP2 NDS study focuses on understanding of drivers’ interaction with and adaptation to 
the vehicle, traffic, roadway characteristics, and other environmental features (173). The NDS 
collected an unprecedented amount of data from more than 3,400 drivers in six US states 
including Florida, Indiana, New York, North Carolina, Pennsylvania, and Washington between 
2010 and 2013 (174). These data include vehicle kinematics data (e.g., speed, acceleration, etc.); 
machine vision-based data (e.g., lane position offset); radar data (e.g., longitudinal and lateral 
position of the surrounding vehicles); and front and rear roadway views from four video cameras 
(173). The RID dataset was developed by the Center for Transportation Research and Education 
(CTRE) of the Iowa State University. The RID dataset include detailed roadway data, e.g., 
horizontal curvature, grade, cross-slope, shoulder type, lane information, and so on, of the six 
NDS states (174, 175). A subset of the large SHRP2 NDS data were acquired from Virginia Tech 
Transportation Institute (VTTI) and utilized in this study. The SHRP2 NDS and RID datasets 
were linked in this study to detect lane change maneuver under different geographical and 
environmental conditions.  
NDS trips that occurred in different weather conditions (i.e., clear, snow, rain, and fog) were 
collected using the two unique methodologies. The methodologies were developed by the 
research team and based on weather data from the National Climatic Data Center (NCDC) and 
weather-related crash locations. Both of the methods utilize a radius of five nautical miles to 
isolate all the extracted NDS trips occurred in different weather conditions (12, 74, 167, 176). By 
using these processes, a large number of NDS trips in different weather conditions were 
received. 

Lane Change Detection 
From the received NDS trips, 400 trips (100 trips in each weather condition) were randomly 
selected and considered for detecting lane change maneuvers. The next step of the data 
processing was to aggregate time-series data based on lane change duration. Previous studies 
suggested that lane change durations vary from a minimum of 1 sec to a maximum 14 sec with a 
mean of 5 sec or 6 sec (58). To have an overall idea about the mean lane change duration of the 
dataset, 500 lane changes were identified from the NDS video data. The mean duration of the 
lane changes was found to be 6 sec, which is in line with the literature. Therefore, a moving 
window of 6 sec was selected for aggregating time-series data. Subsequently, roadway 
characteristics provided in the RID database and driver demographics provided in the SHRP2 
administrated survey questionnaires were linked to create the final dataset. The dataset was then 
manually annotated using the Wyoming NDS Visualization and Reduction tool and categorized 
into two groups: lane change and no lane change (11, 12). It is worth mentioning that accurate 
lane change annotation is essential for the appropriate training of Machine Learning models. A 
sample of 1,200 lane changes (300 lane changes from each weather condition) and 1,200 no lane 
changes were randomly selected for this study, which corresponded to 110 drivers with age 
ranged between 16 to 89 years of age with a significant number of drivers in age group 20 to 24 
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years. It is worth mentioning that the sampled data resampled the original distribution of the 
original SHRP2 NDS data. 

Lane Change Prediction 
A total of 377 trips in different weather conditions including clear, snow, rain, and fog were 
randomly selected and considered for predicting lane change maneuvers. The subsequent step 
was to develop a comprehensive dataset representing segments before lane changes and no lane 
changes. To effectively identify lane change events from the selected SHRP2 NDS trips and the 
corresponding time-series parameters during the event, the authors developed an automatic lane 
change identification algorithm using lane position offset parameters. Details about the 
development of the identification algorithm can be found in Das et al. (166). Once lane change 
events were identified, mean, standard deviation, minimum, and maximum of associated 
parameters (i.e., speed, longitudinal acceleration, lateral acceleration, yaw rate, and lane position 
offset) for each lane change event were extracted. Subsequently, all the lane changes were 
annotated manually utilizing the Wyoming NDS Visualization and Visibility Identification Tool 
(12). This study considered a random selection of 300 lane changes annotated from each weather 
condition (i.e., clear, snow, rain, and fog) which summed up to 1,200 lane changes in total.  
Once the sample of 1,200 lane changes has been selected, the next step was to extract necessary 
data before the initiation of the event. In order to do that, a reasonable prediction horizon length 
(i.e., the time length at which the prediction is being made) should be defined, which allows for 
capturing continuous changes in vehicle kinematics along with other data from machine vision 
and roadway characteristics. Note that shorter prediction horizon length can capture substantial 
fluctuations in the parameters and therefore, can improve the prediction accuracy. In contrast, 
relatively longer prediction horizon length could be practical for human-driven vehicles, 
nonetheless, the prediction accuracy could be compromised. However, there is no specific 
threshold that defines the optimal prediction horizon length for predicting lane change 
maneuvers. This study considered a prediction horizon length of 5s based on the findings from 
previous studies (164, 166). Consequently, a sample of 1,200 segments corresponding to “lane 
change within 5s” were extracted.  
It is worth mentioning that non matched samples should be higher to some extent than the 
matched sample in developing ML models. Therefore, a sample of 2,400 segments representing 
“no lane change within 5s” were selected and combined with “lane change within 5s”  segments 
(166). The combined dataset contained 141 drivers aged between 16–84 years, where a major 
proportion of drivers were young (i.e., between 20–24 years). As mentioned earlier, roadway 
geometric characteristics have been extracted from the RID and driver characteristics have been 
collected from the SHRP2 survey questionnaire responses. These two datasets were then merged 
to NDS data that makes a comprehensive final dataset. 
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Methodology 
Machine Learning techniques were utilized to detect and predict lane change maneuvers 
considering four different categories of features from vehicle kinematics, machine vision, 
roadway characteristics, and driver demographics. First, relevant features were selected and then 
trained and validated using three different Machine Learning classifiers. Then, the accuracy of 
the trained models was tested using a new dataset. It is worth mentioning that 80 percent of data 
were utilized for training and validation, and the remaining 20 percent data were used for testing 
(177, 178). 

Feature Description for Lane Change Detection 
Four time-series parameters including vehicle speed, longitudinal acceleration, lateral 
acceleration, and yaw rate were extracted and utilized as measures of vehicle kinematics to 
detect lane changes. The mean value of the vehicle kinematics may depend on several factors 
(i.e., speed limit, presence of curve, aggressiveness of driver, etc.) and might not be a good 
indicator of lane change maneuver. During the lane change process, the value of the vehicle 
kinematics varies significantly, irrespective of the mean value of the parameters. Therefore, to 
capture the variation of the kinematics during lane change maneuverer, standard deviation was 
utilized instead of mean value (157).  
In addition to vehicle kinematics, standard deviation of lane position offset, which is based on 
machine vision, was also utilized. Lane position offset is estimated from the distance to the left 
or right of the center of the lane and center of the vehicle based on machine vision techniques 
(179). The variable is a good indicator of lane change maneuver. As recommended by a previous 
study, a threshold of ±100 cm lateral shift (i.e., left and right) in the position of a vehicle can be 
considered as a lane change maneuver (41). As an example, Figure 38 and Figure 39 represent 
sample of two-lane change maneuvers with lane position offset values above and below 100 cm. 
As can be seen in Figure 38, lane position offset value started to increase indicating that the 
vehicle started to move from left to right of the lane center. When the value reaches a maximum 
point, a jump occurred indicating that the vehicle reached the far right of the driver’s adjacent 
lane. The same process occurred when driver changed lane from right to the adjacent left lane 
(Figure 39). 
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Figure 38 Illustration of Lane Change Maneuver Using Lane Position Offset (Lane Change 

to Right) 

 
Figure 39 Illustration of Lane Change Maneuver Using Lane Position Offset (Lane Change 

to the Left) 
Moreover, additional parameters from roadway characteristics and driver demographics were 
considered, as these features can influence lane change maneuver. The number of lanes and 
presence of curve/tangent from the RID as well as drivers’ gender and age from the SHRP2 
administrated survey questionnaires were selected as the detection parameters for training and 
validating Machine Learning models. The descriptive statistics of the selected features is shown 
in Table 31. 
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Table 31 Descriptive Statistics of the Selected Features  

 
The lane change detection analysis was performed in three steps. The first step included 
combined features based on vehicle kinematics, machine vision (i.e., lane position offset), 
roadway characteristics, and driver demographics (Category 1). This step investigated the 
performance of lane change detection models when all the data are available. Although lane 
position offset illustrates a significant pattern during the lane change process, it might not be 
available or might provide erroneous value during harsh weather conditions where lane markings 
are not visible. It is worth noting that during the data reduction process, extreme harsh weather 
was excluded from the Category 1 dataset, which contained machine vision-based data.  
The subsequent step considered all the features except lane position offset, which was collected 
using machine vision algorithms (Category 2). Note that, this step considered all the weather 
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conditions, including extreme harsh weather. One of the major limitations of machine vision 
algorithm is that it might not work properly during extreme adverse weather including heavy 
snow. In addition, lane position offset parameter might not be readily available. Therefore, the 
second step investigated the performance of the models in the absence of machine vision-based 
feature.  
The final step considered only vehicle kinematics-based features, which are readily available 
(Category 3). Similar to the second step, extreme harsh weather was considered in Category 3 
features. It is worth mentioning that myriad of similar data to NDS will become available with 
the advent of Connected and Automated vehicle deployment. Hence, the main purpose of using 
only vehicle kinematics-based features was to check whether the trained models could detect the 
lane change maneuver with acceptable accuracy when other data are not available including 
roadway characteristics, driver demographics, and machine vision. This splitting of the data into 
three different steps will provide guidance to transportation researchers on what data should be 
collected for lane change detection models.   
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Relevant Feature Extraction for Lane Change Prediction 
Table 32 summarizes the selected parameters/features associated with different data sources used 
for lane change prediction.  

Table 32 Overview of the Selected Features  
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After the selection of features from different data sources, six sets of features were introduced from 
the final dataset as shown in Figure 40. Transportation researchers and practitioners always thrive 
on new data sources for real-life applications. Therefore, developing lane change prediction 
models through six feature sets will provide appropriate guidance to researchers on what optimum 
approach should be selected based on available datasets. This could also guide future NDS DAS 
design on which data would be required. 

 
Figure 40 Illustration of Six Feature Sets 

Relevant feature extraction is one of the initial steps of building ML models. If noisy/irrelevant 
features in the datasets are used directly into the model, the performance of the model could be 
degraded. Hence, the extraction of relevant features is necessary to improve the accuracy and 
reduce the computational complexity of the model. In order to extract relevant features for each 
feature set, Boruta feature selection algorithm was utilized in R® through a package called 
“Boruta”. The algorithm works as a wrapper-based process around RF classification model. At 
the initial step, shadow features (i.e., a copy for each feature) are created and shuffled in order to 
reduce correlations and biases among the features. With the underlying RF model, the algorithm 
calculates maximum Z-score among shadow features (MZSF) and compares that with all the 
original features during each iteration. The features that have lower importance than MZSF are 
marked as unimportant and removed accordingly. Conversely, all the features that have higher 
importance than MZSF are marked as important. When the algorithm reaches its pre-specified 
RF runs or when all the features are tagged as important and unimportant, the algorithm stops 
(180). Figure 41 to Figure 46 show the final important features (i.e., inside grey box), 
unimportant features (i.e., inside purple box) along with the maximum, mean, and minimum Z-
scores of a shadow feature (i.e., features outside the boxes) obtained from Boruta feature 
selection algorithm for each feature set.  
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Figure 41 Box Plots of the Z-Scores Obtained from Boruta Feature Selection Algorithm 

(Feature Set 1) 
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Figure 42 Box Plots of the Z-Scores Obtained from Boruta Feature Selection Algorithm 

(Feature Set 2) 
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Figure 43 Box Plots of the Z-Scores Obtained from Boruta Feature Selection Algorithm 

(Feature Set 3) 
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Figure 44 Box Plots of the Z-Scores Obtained from Boruta Feature Selection Algorithm 

(Feature Set 4) 
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Figure 45 Box Plots of the Z-Scores Obtained from Boruta Feature Selection Algorithm 

(Feature Set 5) 
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Figure 46 Box Plots of the Z-Scores Obtained from Boruta Feature Selection Algorithm 

(Feature Set 6) 
 

Classification Algorithm 
Several widely used Machine Learning classifiers were used to develop the lane change 
detection and prediction models. This section briefly describes the different Machine Learnig 
Algorithms. 
CART is a type of supervised learning algorithm where a dataset is continuously split based on a 
certain parameter. There are two main components of CART- root node and leaf or terminal 
node. Root node contains all the data and locates at the top of the tree. Leaf node is the terminal 
node and refers to a classification or decision. The in-between nodes are called internal nodes. 
Splitting criterion is one of the vital components of a CART. The splitting decision is made 
based on some criteria (e.g., Gini index, information gain, etc.). The results provided by the 
CART are easy to explain. In fact, a complex CART model can be interpreted by simple 
visualization (181). 
RF is a supervised ensemble learning algorithm that usually trained with a bagging technique. 
The algorithm comprises of multiple randomly selected decision trees. In RF, individual tree is 
built from a randomly selected subset of original training data and prediction results from each 
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tree are collected. Instead of using all features at each node, the RF considers a random subset of 
features to generate the best split. Such randomness enhances variety in the model, which 
improves the overall model accuracy. One of the main advantages of RF is its capability of 
preventing the overfitting problem (182).  
XGBoost is one of the effective implementations of Gradient Boosting (GB) ensemble learning 
technique. GB produces a prediction model by combining weak learners (e.g., decision trees) 
into strong leaners, where weights are adjusted sequentially based on the information (i.e., 
errors) from the previous iteration. At every iteration, the arbitrary loss function (a measure of 
prediction ability) is minimized using gradient descent method to improve the model accuracy.  
XGBoost, on the other hand, considers a more precise estimation than the GB. Unlike the GB, 
XGBoost computes second-order gradient of the loss function, which provides supplementary 
information about obtaining minimum loss function and gradient direction. Moreover, XGBoost 
implements an additional regularized approach that can impose additional control over the model 
complexity and reduce the risk of overfitting. Hence, more accurate and better model 
performance is obtained (166, 183).  
AdaBoost is a popular boosting algorithm developed for binary classification problems. The 
classifier combines weak classifier algorithms to form a strong classifier. The process starts with 
predicting original training dataset and providing equal weight to each observation. If the 
prediction is wrong in the first learning, it provides higher weight to observations, which have 
been predicted incorrectly. The learning process continues iteratively until a reasonable accuracy 
of the model is reached (184). 
SVM is a supervised ML classifier that is based on the concept of separable optimum hyperplane 
and provides an approach to discrimination in which the hyperplane separates the data points into 
two classes in a high-dimensional space. In SVM, several kernel functions are used to convert 
data, which then can be utilized to build the hyperplane. The points that are relatively nearer to 
the hyperplane are known as support vector. The support vectors are used to maximize the 
possible margin (i.e., distance from the hyperplane to the closest data point) of the classifier and 
the most difficult points to classify (166, 185).  
KNN is one of the most commonly used ML algorithms that classifies a new data point based on 
a similarity measure, which is called distance function. The classification is conducted by a 
majority vote to its neighbor. The accuracy of the KNN model might increase with the increase 
of k value (i.e., the number of nearest neighbors). However, the choice of k is very crucial in the 
KNN model and considered one of the most influential factors of prediction quality. The 
optimum k value should be selected in such a way that provides the appropriate balances 
between the bias and variance of the model (186, 187). 
Naïve Bayes (NB) is a classification algorithm that can be used to train models for both binary 
and multi-class classification problems. The algorithm is based on a probabilistic model with 
conditional probabilities (i.e., Bayes Theorem). In NB, a probability can be computed based on 
the training data for every feature and every class. To classify a new feature, the probability of 
every feature corresponding to the different classes is computed initially and then the new feature 
is assigned to the class which has the maximum likelihood estimate. In addition, the probability 
distribution can be estimated for every feature and every class when continuous features are used 
and sufficient training data are not available to identify all feature probabilities accurately. 



  
 

102 
 

Because of the assumption of feature independence and the probability distribution estimation, 
the NB algorithm is computationally effective (188).    
Artificial Neural Network (ANN) is information-processing system based on the neural structure 
of the brain. The system consists of a large number of interconnected neurons that arrange in 
layers (i.e., input, hidden, and output layers) and works in a unit to solve a particular problem. 
The ANN processes any given information one time and learn by matching their classification of 
the information with the actual known information classification. One of the main advantages of 
the ANN is that it does not need any assumption or prior knowledge of problem-solving. ANN is 
currently being used in a variety of fields for pattern recognition, machine transition, and image 
recognition (160, 189). 

Results and Discussions 
Performance of the Lane Change Detection Models 
The lane change detection models were developed using the “caret” package in R®. After 
splitting of data in three steps, Machine Learning algorithms were applied to train and validate 
the lane change detection models at every step. A 5-fold cross-validation technique was utilized 
to train and validate RF, SVM, and ANN models. Subsequently, a new test dataset was also 
utilized to test and evaluate the performance of the lane change detection models. It is worth 
noting that the testing dataset had never been used during training and validation of the Machine 
Learning models. The parameters of all the models were tuned in order to achieve the best 
performance. For the RF model, two parameters, i.e., the number of trees to grow (ntree) and the 
number of variables randomly sampled at each tree node (mtry) were tuned. For instance, it was 
found that ntree equals to 500 and mtry equals to 2 provided the best performance for the RF 
model used in Category 1. Similarly, the best SVM model after parameter tuning in Category 1 
was based on radial kernel function, a cost and sigma value of 1 and 0.12, respectively. In 
addition, the feed-forward neural network with a single hidden layer was utilized to train and 
validate the ANN model. Based on parameter tuning, five hidden units and a weight decay value 
of 0.0004 were used for the ANN model in Category 1. 
 

Category 1 – Fusing Vehicle Kinematics, Machine Vision, Roadway Characteristics, and 
Driver Demographics  
The detection summary of the RF, SVM, and ANN models using features based on vehicle 
kinematics, machine vision, roadway characteristics, and driver demographics is shown in Figure 
47 to Figure 49 in the form of a confusion matrix. The confusion matrix represents the 
percentages of the correctly and incorrectly classified lane change events. The highest overall 
detection accuracy of 91.5 percent and 88.9 percent was found for the RF model during 
validation and testing, respectively. As can be seen in the figures, the true positive rate of the RF 
model was about 93 percent during validation meaning that 93 percent of lane changes have been 
detected correctly. In fact, the RF model provided the highest true positive rate during validation. 
On the contrary, SVM model had the lowest true positive rate (86.7 percent ) during validation. 
However, it was found that SVM model had the lowest true negative rate (91.2 percent ) and the 
highest false positive rate (8.8 percent ) during testing, which indicated that about 9 percent of no 
lane changes have been detected as lane changes. Similar to the validation, the highest true 
positive rate and the lowest false negative rate were found for the RF model for the test dataset.  
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To measure the classification performance of the Machine Learning models, the Receiver 
Operating Characteristic (ROC) curve was utilized. More specifically, Area Under the Curve 
(AUC) of a ROC plot can be used to evaluate the performance. An AUC value over 0.9 indicates 
high accuracy, in between 0.7 to 0.9 represents moderate accuracy, and values between 0.5 to 0.7 
denote poor accuracy (190). Figure 47 to Figure 49 show the ROC curves of the RF, SVM, and 
ANN models for Category 1 features during validation. All the models had AUC value greater 
than 0.9, which indicates all the models detected lane change maneuver with high accuracy. 
However, the highest AUC value (0.959) was observed in the RF model. Considering the highest 
overall accuracy and the AUC value, RF model is the recommended model to be used for the 
Category 1 features.   

 
Figure 47 Detection Summary of the RF Model Using All Features  

 
Figure 48 Detection Summary of the SVM Model Using All Features  
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Figure 49 Detection Summary of the ANN Model Using All Features  

Category 2 – Fusing Vehicle Kinematics, Roadway Characteristics, and Driver 
Demographics  
The overall detection accuracy of the RF, SVM, and ANN models was found to be 
comparatively lower but still impressive using features based on vehicle kinematics from CAN-
bus and external sensors, roadway characteristics, and driver demographics. Figure 50 to Figure 
52 show the detection summary of the three models using confusion matrix. It was found that the 
RF classifier outperformed all other classifiers with a detection accuracy of 81.8 percent and 79.9 
percent during validation and testing, respectively. In contrast, the lowest detection accuracy was 
found for the SVM model (80.5 percent during validation and 78.1 percent during testing). The 
highest true positive rate (84.5 percent ) and the lowest false negative rate (15.5 percent ) were 
found in the RF model during validation, which indicates that the model has accurately detected 
around 85 percent of lane changes. However, the lowest true positive rate (74.4 percent ) and 
highest false negative (25.6 percent ) was found in the ANN model during testing suggesting that 
around 26 percent of lane changes have been misclassified by the model. In addition, it was 
observed that RF and SVM had similar true positive rates during testing. According to the 
figures, the values of AUC of the trained models were found to be greater than 0.8, which 
indicates moderate accuracy. The finding pointed out that excluding the machine vision-based 
feature (i.e., lane position offset) did not significantly reduce the detection accuracy. Based on 
the evaluation results, the study suggested that the RF model would provide better lane change 
detection in presence of vehicle kinematics, roadway characteristics, and driver demographics. 
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Figure 50 Detection Summary of the RF Model Using Category 2 Features  

 
Figure 51 Detection Summary of the SVM Model Using Category 2 Features  

 
Figure 52 Detection Summary of the ANN Model Using Category 2 Features  
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Category 3 – Features Based on Vehicle Kinematics Only 
Category 3 consists of features related to only vehicle kinematics (i.e., standard deviation of 
speed, standard deviation of longitudinal acceleration, standard deviation of lateral acceleration, 
and standard deviation of yaw rate). The detection summary of the Machine Learning models is 
shown in Figure 53 to Figure 55.  

 
Figure 53 Detection Summary of the RF Model Using Vehicle Kinematics Features  

 
Figure 54 Detection Summary of the SVM Model Using Vehicle Kinematics Features  

 
Figure 55 Detection Summary of the ANN Model Using Vehicle Kinematics Features  
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While the highest overall detection accuracy was observed in the ANN model (80.1 percent 
during validation and 77.1 percent during testing), the lowest detection accuracy was found for 
the SVM model (79 percent during validation and 75.7 percent during testing). The highest true 
positive rate (83 percent ) and the lowest false negative rate (17 percent ) was found in ANN 
model during validation indicating that 83 percent of lane change maneuvers have been detected 
correctly by the classifier. In addition, the ANN model had the lowest false positive rate (22.9 
percent ) and the highest true negative rate (77.1 percent ) during validation. The result suggested 
that around 23 percent of no lane changes have been detected as lane changes. It is worth noting 
that ANN had similar results during testing. The overall AUC values corresponding to three 
models were found to be greater than 0.8. The finding indicated that the use of only vehicle 
kinematics based features could also produce moderate accuracy without including other features 
such as roadway characteristics or driver demographics. Considering the overall performance of 
all the Machine Learning models, the study suggested that the ANN model would provide better 
lane change detection when only vehicle kinematics are available. 

Performance of the Lane Change Prediction Models 
The ML based lane change prediction models were also developed using the “caret” package in 
R®. Once the dataset was split into six feature sets, ML classifiers were employed to train and 
validate the prediction models. The prediction models were trained and validated using five-fold 
cross-validation approach and then test dataset were utilized to comparatively evaluate the 
performance of the models. It is worth mentioning that parameters of all the models were tuned 
using the grid-search method to obtain the best performance (191). For the CART model, 
maximum depth of any node of the final tree (maxdepth) can be tuned. As an example, a value of 
6 provided the best performance for the CART model used in Feature Set 6 (i.e., vehicle 
kinematics features). Considering the RF model, two parameters can be tuned-the number of 
variables randomly sampled at each tree node (mtry) and the number of trees to grow (ntree). It 
was found that the best combination for the “mtry” and “ntree” was found to be 20 and 200, 
respectively for the RF model in Feature Set 6. However, number of trees (nIter) parameter was 
tuned for AdaBoost model and found to be 50 for Feature Set 6. Similarly, a number of 
parameters including number of boosting iterations (nrounds), maximum tree depth (max_depth), 
shrinkage (eta), minimum loss reduction (gamma), and subsample ratio of columns 
(colsample_bytree) can be tuned for the XGBoost model. The best prediction performance was 
obtained for nrounds equals 150, max_depth equals 2, eta equals 0.4, gamma equals 0, and 
colsample_bytree equals 0.8 considering the Feature Set 6. In addition, two parameters, cost and 
sigma were tuned during the training of SVM model. A cost and sigma value of 1 and 0.13, 
respectively, were used for SVM model in Feature Set 6. Moreover, the best KNN model after 
parameter tuning in Feature Set 6 was based on maximum number of neighbors (kmax) value of 
7 and Minkowski distance (distance) value of 2. Finally, two parameters, laplace correction 
(laplace) and bandwidth adjustment (adjust) were tuned during the training of the NB model and 
found to be 0 and 1, respectively, using the Feature Set 6.  
Since the ML models were developed to predict lane change maneuvers, which is critical from 
safety and operation perspectives, the prediction accuracy cannot be the only measure to evaluate 
the performance of the models. The study utilized several performance measures to assess the 
performances of the classification algorithms including accuracy, recall/sensitivity, precision, 
and F1-score. Recall measures the capability of the model to find all “lane change within 5s” in 
the dataset, whereas, precision specifies the ability of the model to classify only “lane change 
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within 5s” as “lane change within 5s” with no false prediction. It is worth noting that a model 
might have high precision and low recall value or vice-versa. However, when the model has 
balanced with high recall and precision values, the best performance is obtained. This can be 
measured by the F1-score, which is the harmonic mean of precision and recall. A high F1-score 
indicates the model is balanced with high recall and precision values, therefore, the best 
prediction performance is attained (168). The accuracy, recall, precision, and F1-score were 
calculated using the following equations. 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑦𝑦 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁
𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝐹𝐹𝑃𝑃 

         Equation 17 

𝑅𝑅𝑅𝑅𝑐𝑐𝐴𝐴𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁 

          Equation 18  

𝑃𝑃𝐴𝐴𝑅𝑅𝑐𝑐𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑚𝑚 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃 

          Equation 19 
      
𝐵𝐵1 − 𝑃𝑃𝑐𝑐𝑙𝑙𝐴𝐴𝑅𝑅 = 2 × 𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑙𝑙𝑙𝑙×𝑃𝑃𝑃𝑃𝑅𝑅𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛

𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑙𝑙𝑙𝑙+𝑃𝑃𝑃𝑃𝑅𝑅𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛
        Equation 20 

Where 𝑇𝑇𝑃𝑃 is the no. of correctly classified “lane change within 5s”, 𝑇𝑇𝑇𝑇 is the no. of correctly 
classified “no lane change within 5s”, 𝐵𝐵𝑇𝑇 is the no. of misclassified “lane change within 5s” as 
“no lane change within 5s”, 𝐵𝐵𝑃𝑃 is the no. of misclassified “no lane change within 5s” as “lane 
change within 5s”.  
Table 33 shows the prediction summary of all ML models in terms of overall accuracy for six 
feature sets. As shown in Table 33, the overall prediction accuracy of lane change maneuvers 
ranged from 69.4 percent to 97.0 percent using Feature Set 1 (i.e., all features together) during 
validation. Considering only vehicle kinematics-based features (i.e., Feature Set 6), the 
prediction accuracy ranged from 65.7 percent to 97.3 percent. The findings indicated that only 
vehicle kinematics based features can predict lane change maneuvers with considerably high 
accuracy in comparison with other feature sets. However, it has been observed that the XGBoost 
model outperformed all other models in predicting lane change maneuvers with an outstanding 
accuracy of above 96 percent for all six feature sets. This is followed by the AdaBoost method, 
which produced overall accuracy ranging from 94 percent to 95.6 percent. Moreover, it was 
found that some models such as SVM, KNN, and NB did not achieve acceptable accuracy 
indicating the inability of those models to predict such maneuvers.   

Table 33 Overall Accuracy Results of the Machine Learning Models for Six Feature Sets 

 
 



  
 

109 
 

The recall values of all ML models for all feature sets are provided in Table 34. According to 
Table 34, XGBoost model resulted in the highest recall values compared to other models across 
six feature sets. This is consistent with the overall accuracy results obtained for the XGBoost 
model. In addition, the similar recall values of the XGBoost model exhibited the stable 
performance of the model considering all six feature sets in comparison with other models. 
However, the recall values of AdaBoost models were found to be comparatively lower than the 
XGBoost model but higher than other models for all six feature sets, which are followed by the 
RF and CART models. On the contrary, the SVM, KNN, and NB models showed a fluctuating 
performance with very poor recall values during validation and testing in six feature sets. Hence, 
the performance of these models makes them potentially unreliable to predict lane change 
maneuvers.  

Table 34 Recall Results of the Machine Learning Models for Six Feature Sets 

 
 
The precision results listed in Table 35 are consistent with the recall results for the XGBoost, 
AdaBoost, and RF models. Note that the highest precision values were achieved by the CART 
model for all six feature sets during validation and testing. The findings are different from the 
corresponding recall values of the model. While the CART model had the highest precision values, 
it had relatively lower recall values, as shown in Table 34.  It indicated that the CART model 
missed a substantially higher percentage of “lane change within 5s” compared to other models 
such as XGBoost, AdaBoost, and RF models. As mentioned earlier, a model might have a high 
precision with a low recall. Therefore, F1-score is needed to make a decision regarding the overall 
prediction performance of the model. The precision values of the XGBoost model were found to 
be comparatively lower than the CART model; however, the values are higher than all other 
models. As can be seen in Table 35, the precision values of the XGBoost model ranged from 96.4 
percent to 97.7 percent and 95.3 percent to 98.7 percent during validation and testing, respectively, 
across the six feature sets indicating that the model had the more balanced performance compared 
to other models. Similar to the accuracy and recall results, the precision values of the SVM, KNN, 
and NB models were relatively lower than the other models.    
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Table 35 Precision Results of the Machine Learning Models for Six Feature Sets 

 
 
Table 36 demonstrates the F1-score results of the ML models for six feature sets. As expected, 
the XGBoost model achieved higher F1-scores compared to the other models with impressive 
F1-score values ranging from 95.5 percent to 95.9 percent for validation dataset and 93.9 percent 
to 95.3 percent for test dataset across the six feature sets. The results confirmed that the XGBoost 
model had a more balanced prediction performance followed by the AdaBoost, RF, and CART 
models.  

Table 36 F1-score Results of the Machine Learning Models for Six Feature Sets 

 
 
After evaluating all performance measures, it can be concluded that XGBoost model obtained the 
best and balanced performance in terms of accuracy, recall, precision, and F1-score for all six 
feature sets. A previous study also suggested that XGBoost provides better prediction 
performance because of its accuracy, execution speed, and scalability (183). Considering the 
overall prediction performance of the XGBoost model, the study recommended to use the model 
for predicting lane change maneuvers irrespective of feature set. However, the comparative 
evaluation indicated that the SVM, KNN, and NB models failed to capture the minimal changes 
of features in each feature set, which ultimately performed very poorly. In addition, it has been 
observed that the tree-based models performed better compared to SVM, KNN, and NB models, 
in general.  
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The detailed performance of the XGBoost model for six feature sets are presented in Figure 56 in 
the form of confusion matrix, which confirmed the aforementioned discussion. For instance, the 
true positive rate and false negative rate of the XGBoost model were found to be 94.2 percent 
and 5.8 percent, respectively, during validation considering the Feature Set 6 indicating that 
around 94 percent of “lane change within 5s” have been correctly classified by the model, while 
only 6 percent of “lane change within 5s” have been misclassified. The false positive rate of the 
model based on Feature Set 6 was found to be only 1.1 percent during validation, as shown in 
Figure 56. It is worth mentioning that the higher the false negative and false positive rates, the 
greater the associated risk since in such scenarios, AVs might not maneuver in an appropriate 
way, which might potentially increase the crash probability. However, similar performance of 
the XGBoost model for other feature sets was observed in both validation and testing. The Area 
Under the Curve (AUC) values associated with each feature set were found to be greater than 0.9 
representing the high accuracy of the XGBoost model in predicting lane change maneuvers.  

 
Figure 56 Confusion Matrices of XGBoost Model for Six Feature Sets 
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Chapter 5. Detection of Surrogate Measures of Safety in Adverse 
Weather Conditions 

Literature Review 
The use of traffic conflict techniques is one of the forms of non-crash data that can overcome the 
lack of crash data (192), (193), (194). Traffic conflict technique is based on observing SCEs on 
roadways based on the evasive maneuver, sudden braking, or sudden lane departure or 
occupancy that a driver does to avoid a crash (194), (195). Although this technique is not a new 
approach, it still has a number of issues in measuring traffic conflicts and in applying this 
technique to traffic safety analysis (192). Three main concerns associated with this technique are 
“the consistency in conflict definition,” “the validity of the conflict technique,” and “the 
reliability of conflict measurement” (192).  
Numerous studies have tried to identify and apply Surrogate Measures of Safety to overcome the 
lack of adequate crash data. Some have identified traffic conflicts (194), (196), (192), critical 
events such as aggressive lane merging, speeding and running on red (197)). Other studies 
considered acceleration noise (198), time-integrated time-to-collision (199). Other surrogate 
measures include gap time, deceleration rate, encroachment time, initially attempted post-
encroachment time, and proportion of stopping distance (200).  
A leading new approach in the transportation field is to develop a technology that allows 
vehicles to be in continuous contact with each other, with infrastructure, and with handheld 
devices, named as CV. The CV is a new technology that is developed to help in improving traffic 
operation and enhance traffic safety. CV technology has the potential to address a majority of 
multi-vehicle crashes. The USDOT introduced the concept of road weather connected vehicle 
applications and services that aim to estimate the weather impacts on roadway, vehicles, and 
drivers (201). In addition, CV can provide assistance to transportation agencies in enhancing 
mobility, capacity, and transportation management (202), (203).  The communication ability of 
CV can help in exchanging information related to the vehicle speed, position of CVs, and the 
relative position of surrounding vehicles that can help in estimating the traffic congestion level 
and to avoid crashes (204).  
The relationship between the SMoS and CV can be illustrated through using the SHRP2-NDS 
data. This relationship would help in developing a connected vehicle-controlled algorithm. 
Another emerging question this study is trying to solve is what data should be collected from CV 
in the future so that SMoS analysis could be conducted. For instance, this could include using 
yaw rate for lane departure warning system and deceleration rate in a forward collision warning.  
The SHRP2 has collected new and comprehensive data that will aid in understanding what 
happened before, during, and after crashes and near-crash events. This new data will enhance 
understandings of driver behavior, and factors contributing to traffic crashes. The SHRP2 data is 
classified into two massive databases; the Naturalistic Driving Study (NDS) database and the 
Roadway Information Database (RID) (205). The data include front and rear video records of the 
traveled roadways. Moreover, the NDS data contain vehicle speed, brake pedal activation, 
acceleration, yaw rate, etc. Information is also available from radar installed in the front of the 
NDS vehicle, the presence of alcohol, and seatbelt use among other factors. The importance of 
NDS data is illustrated by having unique real-time recordings for vehicle kinematics, radar data, 
GPS and network speed, brake pedal activation, along with front and rear video records. Real-
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time data for driver behavior and performance can be estimated using the NDS datasets in 
different weather conditions (clear and adverse weather).  
In 2010, a study collected new NDS dataset using six different equipped vehicles models to 
investigate driver behavior and vehicle performance, the relation between the instrumented 100-
Car NDS vehicle and other vehicles, and the effect of driver demographics on traffic safety 
(206). Due to the limitations of the number of crashes collected and reported in the NDS data, 
the study used near-crash events as a surrogate measure for crash events. The study showed that 
the frequencies of contributing factors for crashes and near-crashes were related. Moreover, it 
concluded that due to the few numbers of crash events, utilizing near-crash events provided an 
appropriate number of samples to be used in a sound statistical analysis. 
Therefore, this chapter intended to utilize the NDS data for an early investigation of SMoS on 
freeways that could be collected from CV in the future. Moreover, this chapter illustrated the 
effect of weather conditions on traffic safety by comparing vehicle kinematics of all near-crash 
events in the rain vs. clear condition. In addition, this chapter evaluated the SHRP2 NDS 
weather-related vehicle kinematics that will help in extending this work in the future by 
supporting the development of real-time CV applications requiring weather and roadway 
conditions input data. 

Study Data  
To help detecting near-crash events, the numbers of total events used in this study and reported 
in Dataset 1 were: 

• 30 near-crash events in rainy weather and 58 matched normal driving trips; 2 near-
crashes had only 1 normal driving matched event. 

• 60 near-crash events in clear weather and 120 matched normal driving trips. 
The time series NDS data were aggregated over 5-second, 10-second, 15-second, and 60-second 
time windows prior to the event timestamp (zero was used for the event timestamp). The 
aggregating of Dataset 1 over a fixed time period was important to store the data in a particular 
order with a reference point, which helped in comparing events with non-events. This also 
enabled the calculation of average, standard deviation, and coefficient of variation of vehicle 
kinematics. In this research, the time chunking was assumed and tested to determine which time 
aggregation would be more suitable to capture any changes in vehicle kinematics of the reduced 
data. The time chunking technique would be evaluated in the analysis and modeling step to 
choose the most appropriate time slice length. 

Research Methodology 
The research methodology was divided into the following parts:  

• Identify essential indicators of near-crashes and the zone of interest for SMoS. This 
identification was carried out by considering each near-crash event as a unique scenario 
and comparing indicator values with their defined thresholds in previous studies. In this 
step, vehicle kinematics trajectories were utilized as input. This step aimed to show that 
the combinations of different vehicle kinematics were underlying factors for an event. 

• Illustrate the effect of a change in weather conditions on near-crashes by comparing the 
results of all events in rainy weather conditions to events in clear weather conditions. 
Values of SMoS and the zone of interest of each indicator in rainy weather conditions 
were compared to the corresponding values in clear weather conditions. In addition, 
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this step would enhance the understanding of vehicle kinematics signatures and how 
rain could affect these signatures. 

• Model the relation between SMoS and video reduced data using parametric statistical 
model (Binary Logistic Regression) and non-parametric statistical models (Decision 
Tree, k-Nearest Neighbor, and Deep Learning Artificial Neural Network) to detect 
near-crash on freeways. This step would help in understanding the important SMoS 
and environmental related factors that might increase near-crashes on freeways. 

Statistical Models 
Parametric and non-parametric statistical models were developed to detect near-crashes on 
freeways using the extracted data from video records and the NDS time series dataset. A Binary 
Logistic Regression model was used as a parametric detection model, non-parametric detection 
models such as Decision Tree Classification, k-Nearest Neighbors (k-NN) Classification, and 
Deep Learning Artificial Neural Network Classification, all were developed using the 
RapidMiner® software (207), (208). 

Logistic Regression 
Previous studies used logistic regression models to estimate crash severity and crash risk 
(209)(210); (211). In 2004, a study utilized stepwise logistic regression analysis to study the 
effects of environmental, district, human, vehicle, safety, and site factors on injury severity in 
vehicle crashes (210). Therefore, a binary logistic linear regression model was used to estimate 
the probability of having a near-crash event on a freeway. For the input data, different 
aggregation levels were attempted. The response variable (Y) had the value 1 if it was a near-
crash event or a value of 0 for normal driving. Suppose Y has a Bernoulli distribution with 
probability of success (Y=1) given by π = 𝜋𝜋(x,β). The following equation shows the general 
form of the logistic regression model with logit link where x is the vector of the predictor 
variables and β is the vector of regression coefficients (212). 

Logit(π) = log � π
1−π

� = x′ β        Equation 21 

A Stepwise selection was used to select a subset of the predictors that were important for 
detecting near-crash events. The selection method was based upon the p-value of the residual 
Chi-square score statistic using a significance level of 0.15 to enter and a significance level of 
0.10 to stay (213). 

Non-Parametric Models 
Non-Parametric models have advantages over traditional statistical modeling. As non-parametric 
models do not need any certain assumptions between dependent and independent variables which 
are required in traditional statistical modeling. Also, non-parametric models are proficient of 
handling large data while traditional statistical techniques might have some limitations (214); 
(215); (216) (217). Therefore, non-parametric models have been employed in engineering and 
non-engineering fields. This study selected three supervised machine learning algorithms to 
achieve its objective. This section is explaining these three algorithms (218), (214), (219), (208), 
(220), (221). 
Decision Tree (DT) is a supervised machine learning algorithm used to classify input data in a 
tree structure to detect a specific response (220). According to the response type, categorical or 
continuous, the DT works as a classification or regression algorithm. In this study, the DT was 
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used as a classification algorithm. This algorithm works by splitting predictors into nodes. Each 
node represents a splitting rule of one attribute. DTs contain root, splitting, and leaf nodes. The 
root node is the first node that the tree starts with, while the leaf node is the end node where the 
optimal split ends. Between the root node and the leaf node, the splitting process is done to 
divide nodes into two or more sub-nodes. The splitting process aims to create the highest 
homogeneity of nodes and sub-nodes before reaching the leaf node (220). The splitting of 
decision tree is based on a selected criterion. In general, there are five main splitting criteria each 
can be used in optimizing the split value. These five criteria are: 
Information Gain: “The entropies of all the attributes are calculated and the one with the least 
entropy is selected for the split. This method has a bias towards selecting attributes with a large 
number of values.”  
Gain Ratio: “A variant of information gain that adjusts the information gain for each attribute to 
allow the breadth and uniformity of the attribute values.”  
Gini Index: “A measure of inequality between the distributions of label characteristics. Splitting 
on a chosen attribute results in a reduction in the average gini index of the resulting subsets.” 
Accuracy: “An attribute is selected for splitting, which maximizes the accuracy of the whole 
tree.” 
Least Square: “An attribute is selected for splitting, that minimizes the squared distance between 
the average of values in the node with regards to the true value.” 
k-NN is a type of supervised machine learning algorithm where new data points get classified in 
a particular class based on a distance to its neighbor. There are two main disadvantages while 
using the k-NN classification. First, the k-NN is a lazy learner because it does not learn much 
from the training data (222). Second, its dependency on the selection of a “good value” for “k” 
(222). In k-NN classification, the k is representing the number of nearest neighbor data points 
that have the smallest distance from an example point. To select the value of k, it should not be a 
too small value, as the classification may be prone to overfitting because of noise in the training 
data. On the other hand, k value should not be a too large value, as the classification may miss-
classify the test instance by including data points that are located far away from its neighbor. The 
selection of k value can be done through a trial and error method to achieve the highest model 
performance (222). 
An Artificial Neural Network (ANN) is a supervised machine learning algorithm with a structure 
that was inspired by the human brain. ANN algorithms are used to uncover patterns in the dataset 
or to model a relationship between inputs and outputs (223). The structure of a neural network 
consists of a number of layers; each layer contains processing units called “neurons.” A neuron is 
used to receive and pass information before and after the data are manipulated using a “transfer 
function.” All neurons are connected to the neurons in the layers located immediately before and 
after to transfer data. At each neuron, each connection is associated with a specific weight used 
to compute a value for that neuron (214). To train a neural network, forward propagation and 
backward propagation are repeatedly used to adjust the value of the weights between each 
neuron. To start the training process, a set of randomly selected weights are assigned, and 
forward propagation is used to calculate resulting model proficiency. Then, based on the margin 
error of the output, the backward propagation adjusts the weights to decrease the error (214). 
One of the types of ANN is the Deep Learning ANN (224); (221). The terminology “Deep 
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Learning” is used to describe the presence of many hidden layers which are specified to analyze 
a complex problem (225). The Deep Learning ANN algorithm is selected to improve 
classification detection accuracy. 

Non-parametric Models Structure 
In this chapter, non-parametric models were developed according to the model structure and 
process as shown in Figure 57. The model structure was divided into four main steps: importing 
input data, selecting the target variable, operating a cross-validation operator, and finally the 
creation of output and results. The Cross-Validation operator was used to evaluate the accuracy 
of the developed model and how the model would perform using a subset of input data. The 
cross-validation operator is divided into two sub-processes: training and testing sub-process, and 
the input data was split into two sets. The training sub-process use one set of data to train the 
model. Then the testing sub-process use the other set of data to evaluate the model performance. 
The input data used in these models were based on 1-second and 5-second time slices, where 
each time slice would represent a separate trial.   
For Decision Tree, the model was built based on targeting higher accuracy, as an attribute is 
selected for splitting the tree to maximize the accuracy of the whole tree. The maximal depth was 
selected as 20 after many trials to achieve the highest performance. While for k-NN, the k value 
was selected to be 10. This selection was based on running the algorithm many times with 
different k values and then choosing the k value with the best performance. The distance method 
used was Euclidean to calculate the distance between the unknown data point and the training 
data. However, for Deep Learning ANN, the number and size of hidden layers used in this model 
were 3 hidden layers, each with 50 neurons. The times the dataset should be iterated were set to 
be 10. Also, the “adaptive learning rate algorithm (ADADELTA)” was used in modeling steps, 
as it combines the benefits of “learning rate annealing” and “momentum training” to avoid “slow 
convergence.” 
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Figure 57 Non-Parametric Models Structures and Processes for All Time Slice Input Data 

Data Analysis 
Various SMoS for near-crash and matched events were plotted against the time as shown in 
Figure 58 to Figure 63. The data used in this step were aggregated using a 0.1-second 
aggregation level. The Figures show all the events and trips, in addition to the average, minimum 
and maximum trends. The reason for presenting the extremums of vehicle kinematics was to help 
in estimating the zone of interest of this vehicle kinematics that led to a near-crash occurrence 
(time window length and vehicle kinematic values). In these figures, the zero time represents the 
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timestamp of an event or a matched normal driving to an event. As the timeline has negative 
values representing the timeline before the event, and positive values representing the timeline 
after the event. Negative values of acceleration and deceleration rate represent deceleration rates, 
while positive values represent acceleration rates. A negative yaw rate means that the NDS 
vehicle was turning left, while a positive value indicates turning right. 
Figure 58 to Figure 60 show a comparison between speed, acceleration and deceleration rate, and 
yaw rate for near-crash events in rainy weather conditions and events in clear weather 
conditions. Figure 58 shows that average speeds in clear weather conditions are higher than in 
the rain. However, clear weather events had a higher standard deviation of speed than in the rain. 
Figure 59 represents the difference between acceleration and deceleration rates in the rainy and 
clear weather. It was clear that the zone of interest in rainy weather conditions started 10 seconds 
before the events while the zone of interest in clear weather started within 5 seconds before the 
events. The maximum values of deceleration rate in clear weather condition were slightly higher 
than in rainy weather. Figure 60 shows the difference between the yaw rate in the rain and clear 
weather. The values of yaw rate were higher in clear weather than in rain weather around time 
zero (during the event). Thus, drivers in clear weather chose to change lanes more frequently 
than in the rain. The zone of interest for yaw rate in both weather conditions was too short during 
the event. Extreme yaw rates before and after an event due to a lane change or driving on a curve 
were eliminated from the data presented in the Figures. 
In addition, and Figure 61 to Figure 63 summarize normal trips matched events in clear and rainy 
weather conditions. The reasons for using this visual comparison were to show: 

• The vehicle kinematics signatures in normal trips regardless of driver behavior and freeway 
geometry.  

• The wider range of acceleration and deceleration rate during events compared to normal 
matched trips. 

• The extremes in yaw rate for normal trips matched to rain events were still higher than those 
trips matched to clear weather condition. This indicated that the reason behind the increase 
in yaw rate in rain events and their matched trips was due to the change in road geometry. 

• The speed selection range is still not affected by having an event or not, but it is affected by 
weather conditions, traffic conditions, and road geometry. 

• Figure 58 to Figure 63 show that the zone of interest for each indicator is not constant, but 
it might be defined using a statistical model through having significant variables within 
specific time slices before near-crash events timestamp. 

• The last step in the data analysis was to show the difference in the average of speed, 
acceleration and deceleration rate, yaw rate between near-crash events and the normal 
matched trips. Figure 64 to Figure 66 show this comparison in the rain and clear weather. 
These figures show that during events, regardless of the weather condition, many vehicle 
kinematics changed and so can show an early surrogate measure of near-crashes. Moreover, 
the figures show the impact of weather condition on vehicle kinematics signature. These 
charts could be a guidance step towards an automation process of extracting different 
driving patterns.    
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Figure 58 Speed Trajectories for Near-Crash Events in Rain and Matched Clear Weather  

 
Figure 59 Acceleration and Deceleration Rate Trajectories for Near-Crash Events in Rain and Matched Clear Weather  

 
Figure 60 Yaw Rate Trajectories for Near-Crash Events in Rain and Matched Clear Weather  
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Figure 61 Speed Trajectories for Normal Trips Matched to Events in Rain and Clear Weather  

 
Figure 62 Acceleration and Deceleration Rate Trajectories for Normal Trips Matched to Events in Rain and Clear Weather  

 
Figure 63 Yaw Rate Trajectories for Normal Trips Matched to Events in Rain and Clear Weather  
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Figure 64 Comparison between Average Speed for Events in Different Weather Conditions with Normal Driving Trips 

 
Figure 65 Comparison between Average Acceleration and Deceleration Rate for Events in Different Weather Conditions with 

Normal Driving Trips 

 
Figure 66 Comparison between Average Yaw Rate for Events in Different Weather Conditions with Normal Driving Trips
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Table 37 provides statistical analyses for near-crash events in the rainy and clear weather 
conditions and their match normal trips. The aggregation level for the data used in the statistical 
analyses was a one second fixed moving time window. Two sample statistical comparisons were 
conducted of the indicators for near-crashes in the rain compared to clear weather conditions and 
for near-crashes compared to matched trips. One-sided t-tests, t(df), were used to test whether a 
population mean was lower than the other population mean assuming the population variances 
were unequal (226). One-sided F-tests, F(df1, df2), were used to test whether a population 
variance was lower than the other population variance (226). While a significance level of 0.05 
was used in the comparisons, the sample sizes were large enough for small differences to be 
declared significant. Table 37 shows that the mean speed, mean acceleration and deceleration 
rate, and mean yaw rate were lower in rain events than clear events. The variation for 
acceleration and deceleration rate and yaw rate were higher in rainy weather than in clear 
weather. However, the variation for speed was lower in rainy weather than in clear weather. 
These results led to the conclusion that weather condition affected the crash indicators. 
Moreover, Table 37 explains the difference between events in different weather conditions and 
the normal matched trips. The variation of each indicator for different weather conditions was 
higher for the event trips. For rain weather conditions, the mean speed and the mean yaw rate 
were lower for the event trips. For clear weather conditions, the mean speed and mean 
acceleration and deceleration rates were lower for event trips. 
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Table 37 Statistical Analysis for the Near-crash Events and Matched Normal Trips  

 
Modeling and Results 
Parametric and non-parametric statistical models were developed to detect near-crashes on 
freeways using the extracted data from video records and NDS time series dataset. Where a 
Binary Logistic Regression model was used as a parametric detection model, non-parametric 
detection models were developed using RapidMiner® software (207), (208).  

Modeling Steps 
The modeling steps were:  

1. Preparing time series dataset: 
The NDS data used in the statistical model had 3 percent missing values. The reasons for 
having missing values could be due to reporting issues for driver demographics while the 
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missing values for vehicle kinematics could be due to issues with the Data Acquisition 
System (DAS). The missing values were imputed using a Decision Tree imputation 
method in SAS® Enterprise Miner™ (227). The standard deviation and coefficient of 
variance for vehicle kinematics, with a fixed moving time window, were used as an input 
dataset for all models, with different aggregation levels of 1, 5, 10, 15, and 60-seconds. 
The standard deviation would help in capturing any change in vehicle kinematics over 
time.  

2. Selecting effective time slice:  
The time length from the trip start-time till the near-crash timestamp was not constant 
over the whole events and their matched trips. In this study, time length should be 
identical to help to define the zone of interest for the SMoS. In addition, only time slices 
occurred on freeways and in daytime were considered in this study. Based on these 
limitations, the minimum time length that could fulfill the study limitations was found to 
be two minutes. After that, the data reduction step was performed as mentioned earlier. 
Finally, a verification step was performed by testing the performance of the logistic 
regression model and decision tree models using different time lengths as trial and error 
alternatives. The trial and error method used 120, 105, 90, 75, 60, 45, 30, and 15 seconds 
before the near-crash event timestamp. As five time slice lengths were assumed 1, 5, 10, 
15, and 60-seconds, a binary logistic model was used to validate the time slice lengths 
using a trial and error technique.  
Results indicated that using time slices of length 1-second and 5-second could produce 
more reliable results, while other time slice lengths did not provide any important 
predictors. In addition, the results obtained from these trials indicated that important 
predictors were in the last 30 second before the near-crash timestamp. Therefore, the 
input data for all models would be classified into two main trials: the first trial would use 
a 1-second time slice, while the second trial would use 5-second time slice spanning only 
30 seconds before the event timestamp. 

3. Additional Input data: 
Response Characteristics (Event or Trip (EorT)), Driver Characteristics, Environmental 
Factors, and Traffic Flow Characteristics, all were added to the input data. These data 
were described in Table 38. 

4. Developing parametric and non-parametric models. 
• Vehicle kinematics time slices (T) were numbered as follows: 
• The data were used from 30 seconds before the event (time slice number 90) till the 

event time slice T120. 
• For 1-second time slice length: T91, T92, T93, …, T118, T119, T120. 
• For 5-second time slice length: T95, T100, T105, …, T110, T115, T120 

 
 
 
 
 



  
 

126 
 

Table 38 Data Description 

 
Results of the Binary Logistic Regression Model 
Table 39 shows the parametric model results from the variable selection procedure. The results 
indicated that the significant predictors, for a 1-second time slice, were the standard deviation of 
acceleration and deceleration rate six seconds before the event and one second before the event. 
In addition, results indicated the importance of the coefficient of variance for acceleration and 
deceleration rate eleven seconds before the event, and the coefficient of variance for yaw rate 
two seconds before the event. However, model results for a 5-second time slice were weather 
condition (WC), dynamic traffic status (DTS), visibility level (VL), and coefficient of variance 
of yaw rate before the event. The goodness of fit was assessed by the Hosmer and Lemeshow 
Goodness-of-Fit Test (212); (213). The p-value was equal to 0.49 and 0.77 for the 1-second and 
5-second time slice length, respectively. These p-values provide indicates no evidence against a 
poor fit. The Area under the Receiver Operator Curve (ROC) provided a measure of the ability 
of the model to discriminate between trips resulting in a near crash and those trips that did not 
result in a near crash (228). The fitted models had an Area under the ROC equal to 0.98 and 0.71 
for the 1-second and 5-second time slices, respectively.  However, results of the binary logistic 
regression model using a 1-second time slice show enurmous values of standard errors for the 
standard deviation of acceleration and deceleration rate at time slice 106 and 120 seconds. The 
standard error is inversely proportional to the root square of sample size, so one of the reasons 
for having big values of the standard error is the small sample size. Another reason that might 
increase the standard error is the presence of high multicollinearity among the explanatory 
variables (229). However, results of the binary logistic model using a 5-second time slice show 
standard error associated with explanatory variables less than 1 and the sample size in case of the 
5-second time slice is less than that in case of 1-second time slice. Therefore, having big standard 
errors and high odds ratios could be due to the high multicollinearity between the explanatory 
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variables. One of the suggested solutions is to use interactions between explanatory variables in 
addition to the main effects to avoid the multicollinearity (230). Accordingly, more trials were 
done using interactions between variables to achieve low standard errors in the binary logistic 
model. However, there was no significant change in the results. Based on these discussions on 
the model results, the utilization of 5-second time slice length could provide significant results 
with low standard error compared to the 1-second time slice. 
Moreover, the model results indicated that the input data over different time slice durations 
would affect the accuracy of detecting near-crash events on freeways. As for the 5-second time 
slice, results demonstrated the contribution of weather conditions, visibility level, traffic flow 
characteristics, and the coefficient of variance of yaw rate in the last 5-second to a near-crash 
estimate on freeways. However, for the time slice length of 1-second, results showed that vehicle 
kinematics in the last 11 seconds before the near crash could help in detecting near-crash events 
on freeways. Based on the logistic regression model results, the 1-second time slice could detect 
near-crashes on the freeway using vehicle kinematics data only without considering any 
environmental factors and traffic conditions. This result can be used in CV applications to 
enhance traffic safety. 

Table 39 Logistic Regression Estimates for Modeling Near-Crash Occurrence on Freeways 

 
Results of Non-Parametric Models 
Figure 67 shows the results of decision tree classification in a tree structure format to detect the 
occurrence of a near-crash event on a freeway. As “Std” refers to the standard deviation, “CV” is 
the coefficient of variance, “S” is the average speed, “A” is the acceleration and deceleration 
rate, and “Y” is the yaw rate at a certain time slice “T.” For example, “StdAT120” refers to the 
standard deviation of the acceleration and deceleration rate at time slice number 120, which is 
the timestamp of the event. Tree results using 1-second time slice indicate that the contribution 
of vehicle kinematics to near-crash detection was within the last 23 seconds prior to the event. 
The standard deviation of acceleration and declaration rate 1 second before the event was the 
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root node with a split value of 0.04g. While for a 5-second time slice of length, the weather 
condition, gender, and vehicle kinematics were the contributing factors to near-crash events 
within the last 20 seconds. In addition, weather condition was the root node and the splitting rule 
was based on the weather category (rain=1, clear=0). This indicates that the accumulation of the 
change in vehicle kinematics started 23 or 20 seconds before the event timestamp. In addition, 
using the decision tree algorithm in detecting near-crash events could provide early warnings to 
drivers starting from 23 or 20 seconds before the event. The application of this finding should 
balance between and imminent and normal situation, too many warnings might be annoying or 
distracting to drivers. The accumulation of another SMoS from vehicle kinematics at different 
time slices would help in defining an imminent situation. Finally, the thresholds for different 
vehicle kinematics, human factors, and environmental factors presented in the decision tree 
models could be used in updating CV applications. 
Non-parametric models were compared based on the accuracy of the developed model to detect 
near-crash events. It is worth mentioning that all these models were trained using the cross-
validation operator as mention previously in the model structure section. Table 40 shows models 
accuracy, specificity, and sensitivity associated with 1-second and 5-second aggregation levels. 
Results show a significant difference in accuracy based on the aggregation level. For example, 
the results of 1-second show that the Decision Tree model had the highest accuracy of 96 
percent, followed by Deep Learning ANN with an accuracy equal 84 percent, and k-NN 
provided an accuracy equal to 81 percent. However, for 5-second, Deep Learning ANN had the 
highest accuracy of 85 percent, followed by Decision Tree model with an accuracy equal to 69 
percent, then the k-NN model with an accuracy equal to 63 percent. The reason of having the 
lowest model accuracy using the k-NN algorithm is that the k-NN algorithm is a lazy algorithm 
as it has no real training phase, but it memorizes the training dataset instead (231). However, 
Decision Tree and Deep Learning ANN showed high accuracy in detecting near-crash on 
freeways using 1-second and 5-second time slices, respectively. Moreover, Deep Learning ANN 
showed almost the same results for different time slices. The Deep Learning ANN is superior 
model to detect a near-crash event on a freeway due to the presence of more hidden layers and 
the implementation of an adaptive learning rate algorithm that can improve the model accuracy. 
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Figure 67 Results of the Decision Tree Classification Model 

Table 40 Results of Non-Parametric Models for Detecting Near-Crashes 
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Chapter 6. Weather Detection 
Adverse weather events, such as snow, rain, fog, can directly impact roadway safety, by reducing 
the visibility and roadway surface friction, negatively affecting vehicle as well as drivers’ 
performance, and potentially increasing required stopping sight distance. The Federal Highway 
Administration (FHWA) revealed that adverse weather is responsible for around 16 percent of 
fatal crashes, 19 percent of injury crashes, and 21 percent of Property Damage Only (PDO) 
crashes each year in the U.S. (18). Previous studies concluded that weather-related factors could 
increase traffic fatalities and injuries by 25 percent and 45 percent, respectively (3, 19). Adverse 
weather conditions were also found to increase the risk of lane change (232) and secondary 
crashes (233).  In addition, many studies have also concluded that driver behavior, including 
speeding, lane-keeping, and lane-changing behavior can also be negatively impacted by adverse 
weather conditions (73, 74, 127, 234, 235). However, the adverse effect of weather on roadway 
safety and operation can be effectively mitigated through the implementation of various safety 
systems, such as Variable Speed Limit (VSL) and Advanced Driving Assistance System (ADAS) 
(236). It is worth mentioning that all these systems require precise detection of weather 
conditions at the road surface level in real-time to operate appropriately. 

Literature Review 
Different approaches to image-based weather detection can be found in the literature. Previous 
studies have developed weather detection models based on different data sources and relying on 
various image processing techniques, computer vision algorithms, advanced modeling 
techniques, including machine learning and deep learning.  The related works have been 
described in the following sections under three broad categories based on the source of data. 

Weather Detection Using Fixed Sources 
Many studies have used fixed data sources, such as Road Weather Information System (RWIS), 
Closed-Circuit Television (CCTV), to detect road weather and surface conditions.  The study of 
Jonsson proposed a weather detection system based on the sensor data from RWIS combined 
with camera images. This study used Principal Component Analysis (PCA) to separate six road 
conditions, including dry, wet, snow, icy, and snowy with wheel tracks (237). Another study by 
the same author using the same data sources developed a weather detection algorithm capable of 
identifying dry, wet, snowy, and icy road conditions with an impressive detection accuracy 
ranging from 91 percent to 100 percent  The study of Carrillo et al. also used similar data sources 
to develop a surface condition detection system utilizing several pre-trained deep learning 
models to detect bare, partial snow-covered, and full snow-covered pavement (238). Based on 
RWIS camera images, the study of Pan et al. leveraged several pre-trained Convolutional Neural 
Network (CNN) to detect four road conditions: bare, partially snow-covered, fully snow-covered, 
and not recognizable. This study achieved an accuracy of more than 97 percent using the 
ResNet50 architecture (239). Another study proposed a framework based on CCTV images to 
detect different situations, such as raining and non-raining scenes, daylight and night-time 
scenes, crowded and non-crowded traffic, and wet and dry roads. This study applied pre-trained 
neural network models via transfer learning and found an exact match ratio of 0.84. The study of 
Lee et al. analyzed the colors and edge patterns of the CCTV video to detect sunny, rainy, and 
cloudy conditions and achieved an overall accuracy of about 86 percent  (240). Another study by 
the same research group developed an algorithm to estimate the amount of rainfall based on 
clustering techniques and found an accuracy of 80 percent  (241). A study by Babari et al. 
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proposed a visibility estimation method based on gradient magnitude using roadside highway 
CCTV images and estimated the visibility with 30 percent error (242). Another study utilized 
CCTV images to develop road surface detection models with three categories, including clear, 
rain-wet, and snow. This study utilized a pre-trained CNN architecture, named VGG16, and 
achieved an overall detection accuracy of 77 percent  (243). A recent study also used webcam 
images to develop weather and surface condition systems (244). 

Weather Detection Using Open-Source Internet Images 
The use of open-source internet images from various platforms, including Google, Flickr, 
Pixabay, and Yahoo, to develop weather detection models has also been explored in the 
literature.  Ibrahim et al. proposed a new weather detection model, named WeatherNet, using 
Google images. The proposed WeatherNet was based on ResNet50 architecture and can detect 
clear, rain, and snowy weather condition with an overall accuracy of around 93 percent  (245). 
Another study prepared a comprehensive image dataset, named Img2Weather, consisting of 
more than 180,000 images in an attempt to develop a weather detection system capable of 
classifying five weather types: sunny, cloudy, snowy, rainy, and foggy. This study achieved an 
accuracy of 70 percent using the Random Forest model (246).  The study of Guerra et al. also 
created a dataset by extracting images from various platforms, including Creative Commons, 
Flickr, Pixabay, and Wikimedia Commons. This study proposed a novel algorithm based on 
CNN architecture and concluded that the proposed model can detect rain, fog, and snow with an 
accuracy of 80 percent  (247).  

Weather Detection Using Moving Sources 
One of the major limitations of weather detection models based on fixed cameras and/or open-
source images from the internet is that they cannot provide trajectory-level weather information 
at the road surface level. Therefore, many studies have used in-vehicle vision systems to detect 
weather conditions at road surface level. For instance, Pomerleau developed a weather detection 
system by estimating the reduction of contrast between consistent road features, such as lane 
markings, shoulder boundaries, and marks left by leading vehicles. The effectiveness of the 
weather detection system was tested using simulated fog images, as well as real-time images 
from in-vehicle cameras, which concluded that the system could identify reduced visibility 
caused by adverse weather conditions (248). Another study developed a weather detection 
system based on an in-vehicle vision system and AdaBoost classifier and found that the proposed 
system can classify sunny, cloudy, and rainy weather conditions with an accuracy of 96 percent, 
89 percent, and 90 percent, respectively (249). Khan et al. extracted Local Binary Pattern (LBP) 
based features from snowy images and used three different classification algorithms to detect 
snow from an in-vehicle video camera (167). Another study by the same authors utilized the 
SHRP2 Naturalistic Driving Study (NDS) video data to develop a fog detection model based on 
various neural network architectures and found an overall detection accuracy of 97 percent in 
detecting two levels of fog (250).  Qian et al. proposed a weather detection system based on 
dashcams and found 80 percent accuracy for clear and snow/ice-covered images and 68 percent 
for clear/dry, wet, and snow/ice-covered images (251). Another study used an inexpensive car-
mounted video camera to capture images of the road surface at night-time, which was 
subsequently used to develop a detection model. They achieved an accuracy of 96 percent, 89 
percent, and 96 percent in recognizing dry, wet, and snowy road conditions, respectively (252). 
Bronte et al. proposed a real-time fog detection system using an onboard low-cost black and 
white camera. Their system is based on two clues: estimation of the visibility distance, which is 
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calculated from the camera projection equations, and the blurring due to the fog (253). It is worth 
mentioning that most of the studies based on in-vehicle cameras or sensors require the presence 
of a consistent object in front of the vehicle. For instance, a weather detection method described 
in (248), requires road making, shoulder boundaries, tracks left by other vehicles. The fog 
detection system proposed in (254) requires a distinct object in the image. Some studies also 
used the horizon (255), and the road edge lines (253) to develop a weather detection system.  

Data Acquisition and Preparation  
The SHRP2 NDS video data were used in this study and were acquired from the Virginia Tech 
Transportation Institute (VTTI). To date, the SHRP2 is the largest study on naturalistic driving 
behavior in the US. Between 2010 and 2013. The SHRP2 collected a total of about 2 petabytes 
of NDS data from six states around the US, including Florida, Indiana, New York, North 
Carolina, Pennsylvania, and Washington. Participant vehicles were instrumented with a DAS. 
The DAS includes forward radar; four video cameras, including one forward-facing color wide-
angle camera; accelerometers; vehicle network information; Geographic Positioning System 
(GPS); onboard computer vision lane tracking, plus other computer vision algorithms; and data 
storage capability (173, 256). For this study, only the video data of forward-facing color cameras 
were used.  
Acquisition of the NDS video data and preparation of image dataset from the video data was a 
challenging and time-consuming task. To effectively extract video data of trips occurring in 
snowy weather conditions from the massive SHRP2 NDS dataset, two unique methods were 
developed. The first method used weather data from the National Climate Data Center (NCDC). 
To identify the potential location of trips occurring in snowy weather conditions, a buffer zone of 
5 nautical miles (n.m.) around each weather station was defined as a zone of influence. This 
method was used in a previous study where snow-related crashes were predicted with an 
accuracy of about 60 percent  (257). NDS trips were requested based on the daily weather 
information to identify all trips impacted by snowy weather. The second method utilized 
weather-related crashes to identify potential locations of trips occurring in snowy weather. This 
method considered each weather-related crash location as a center of the influence zone and 
similar to the previous method, a buffer zone of 5 nautical miles (n.m.) was used to identify trips 
occurred in snowy weather. More details about these methods can be found in (12). By using 
these processes, video data were received for trips occurred in adverse weather and their 
corresponding video data of trips in clear weather.  

Snow Detection 
After the acquisition of video data of adverse and clear weather from the VTTI, all the videos 
were observed manually to filter out the videos that did not occur in snowy weather. A new 
dataset of still images was created from the video data by extracting images from the videos at 
12 frames per minute sampling rate. While higher sampling rates at 600 frames per minute seem 
reasonable for feature extraction of signs, signals, work zones, and other features, it might be too 
much and less efficient for weather conditions. For training models, the number of accurately 
annotated frames in various weather conditions is more important than a higher sampling rate. In 
addition, the videos used in this study represent trajectory-level data, meaning that all the videos 
were captured from a moving vehicle. Also, all the trips occurred at different locations. Hence, 
all the images are unique and none of the images are correlated.       
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Once the extraction of the images from the video data was completed, all the images were 
cropped at the bottom to remove the dashboard and to maintain consistency among the images, 
which results in an image pixel size of 350 widths and 250 heights.  
The image dataset was then annotated manually and grouped into three categories: clear, light 
snow, and heavy snow. The snow was categorized based on the amount of visible snowflakes, 
surface conditions, and visibility.  The selection for these two levels of snow has been inspired 
and is consistent with the levels provided in the Highway Capacity Manual (HCM), the Highway 
Safety Manual (HSM), and a wide body of literature in safety and operations. It is 
worth mentioning that most of the existing literature categorized levels of snowy weather based 
on quantitative measures. For instance, Agarwal et al. (258) categorized snow into four levels, 
including trace snow (≤ 0.05 in/hr.), light snow (0.06-0.1 in/hr.), moderate snow (0.11-0.5 in/hr.), 
and heavy snow (>0.5 in/hr.), based on the intensity of snowfall. Similarly, Weng et al. (259) 
grouped snow into three categories:  heavy (>5 mm/hr.), medium (> 3mm/hr.), and light (> 
0.7mm/hr.). However, categorizing levels of snow based on quantitative measures is not possible 
from the SHRP2 NDS video data. Hence, qualitative-based measures have been adopted and 
several criteria have been selected to define the levels of snowy weather as shown in Table 41 
and sample images of weather conditions are shown in Figure 68. It is mentionable that the 
visibility was reported as clear if the video observers can clearly see and recognize road signs, 
markings, and roadside surroundings. On the other hand, visibility was categorized as affected if 
roadside surroundings (delineators, guardrail, etc.), road markings, and the horizon could not be 
seen clearly and the information on road signs is not readable. In order to maintain consistency in 
reducing video data, video observers were provided with comprehensive training.  
Once the manual image annotation has been completed, the images were grouped into two 
datasets: training dataset and testing dataset. The training dataset consists of 8,000 images in 
each category which resulted in 24,000 images and is equivalent to 2,000 minutes of video data, 
whereas the testing dataset consists of 2,000 images in each category which resulted in 6,000 
images and is equivalent to 500 minutes of video data. It is mentionable that the testing dataset 
has never been used during the training process.    

Table 41 Classification of Weather from SHRP2 NDS Video Data 
Weather Criteria 

Clear • Clear visibility 
• Road signs, markings, and surroundings are clearly visible 

Light 
Snow 

• Snowflakes are visible 
• Little/No snow on the road surface 
• Clear/Affected visibility 
• Road markings and information on road signs and vehicles ahead could be 

recognized 
Heavy 

Snow 
• Snowflakes are clearly visible 
• Surface covered with snow 
• Affected visibility 
• Road markings and information on road signs and vehicles ahead could not be 

clearly recognized 
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Figure 68 Sample Images of Weather Condition from SHRP2 NDS Video Data 

Fog Detection 
In order to develop the fog detection system, the extracted images were grouped into three 
categories: clear and near fog and distant fog. It is worth mentioning that the classification of fog 
is not consistent in the literature. The National Oceanic and Atmospheric Administration 
(NOAA) classified fog into two categories back in 1949 (260). They classified fog as near if the 
visibility distance falls below 0.25 miles and light if the visibility distance is between 0.3 miles 
to 6 miles. In 1992, the South Carolina Department of Transportation (SCDOT) developed a low 
visibility warning system, where they defined fog as dense if the visibility falls below 300 feet 
and light if the visibility ranges between 300 feet to 900 feet (261). However, for this study, fog 
was classified into three categories including clear, near fog, and distant fog, using qualitative-
based measures extracted from the NDS videos. The fog was classified based on the visibility of 
road markings, readability of road signs, roadside surroundings (delineators, guardrail, New 
Jersey barriers, etc.), and the horizon. The fog was reported as near fog during manual image 
annotation if the following conditions were observed:    

• Few road markings in front of the NDS vehicle could be observed. 
• Information on the road signs could not be read. 
• Roadside surroundings and traffic ahead could not be clearly recognized.  
• The horizon is undefinable.  

On the other hand, the fog was classified as a distant fog if:  

• Road markings and information on road signs could be easily recognized. 
• Roadside surroundings and traffic ahead are visible. 
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• The horizon is undefinable. 
Sample images of near fog and distant fog are shown in Figure 69.   

 
Figure 69 Sample Images of Weather Condition from SHRP2 NDS Video Data 

Once the manual image annotation has been completed, the images were grouped into two 
datasets: training dataset and testing dataset. The training dataset consists of 8,000 clear weather 
images, 6,800 distant fog images, and 1,200 near fog images which resulted in 16,000 images 
and is equivalent to around 1333 minutes of video data. In addition, the testing dataset consists of 
2,000 clear weather images, 1,700 distant fog images, and 300 near fog images which resulted in 
4,000 images and is equivalent to around 333 minutes of video data. As near fog is a relatively 
rare environment condition, the number of near fog images are respectively less compared to 
other categories. The summary statistics of the data used in this study are shown in Table 42. 

Table 42 Summary Statistics of Image Datasets 
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Adverse Weather Detection 
Utilizing the above-mentioned methods, video data were collected considering the trips that 
occurred in adverse weather and their respective matched trips in clear weather. To confirm 
particular weather conditions (i.e., heavy snow, light snow), all the collected videos were 
manually observed and verified. In total, 217 trips in clear, 172 trips in snow, 204 trips in rain, 
and 168 trips in foggy weather were selected and considered for further analysis. Consequently, 
images were extracted at a sampling rate of 12 frames per minute from the videos of the selected 
NDS trips to create a database of images consisting of more than 20,000 images. Afterward, all 
the images were cropped at the bottom to discard the dashboard resulting in an image size of 250 
× 200 pixels.  
Once the extraction of images from the videos was completed, all the images were manually 
annotated and grouped into seven weather categories including clear, light rain, heavy rain, light 
snow, heavy snow, distant fog, and near fog. It is worth pointing out that manual annotation of 
images was a critical and time-intensive task. However, numerous criteria were fixed based on 
quantitative measures to define the weather categories in order to obtain precise annotation. In 
addition, the research team was provided with comprehensive training to remove any potential 
bias in the manual annotation process. Table 43 lists the criteria used during the annotation 
process and Figure 70 to Figure 73 illustrate the sample images of weather conditions (234). 
After the image annotation, a balanced number of images of 2,500 per category were randomly 
selected for the development of the weather detection model.  

Table 43 Criteria for Image Annotation  
Weather Criteria 

Clear • Clear visibility 
• Road signs, markings, and surroundings are visible 

Light Rain • Raindrops are visible 
• Dry/ slightly wet road surface 
• Clear/Moderate visibility 
• Wiper at a low setting 
• Road markings and information on road signs and vehicles ahead could be recognized 

Heavy Rain • Raindrops are visible 
• Wet road surface 
• Affected visibility   
• Wiper at a high setting 
• Road markings and information on road signs and vehicles ahead could not be recognized 

Light Snow • Snowflakes are visible 
• Little/No snow on the road surface 
• Clear/Moderate visibility 
• Road markings and information on road signs and vehicles ahead could be recognized 

Heavy 
Snow 

• Snowflakes are visible 
• Surface covered with snow 
• Affected visibility 
• Road markings and information on road signs and vehicles ahead could not be recognized 

Distant Fog • Road markings and information on road signs could be easily recognized  
• Roadside surroundings and traffic ahead are visible 
• The horizon is undefinable 

Near  
Fog 

• Only a few road markings in front of the NDS vehicle could be observed  
• Information on the road signs could not be read 
• Roadside surroundings and traffic ahead could not be properly recognized 
• The horizon is undefinable 

 



  
 

138 
 

 
Figure 70 Sample Images of Clear Weather Conditions  

 
Figure 71 Sample Images of Rainy Weather Conditions  

 
Figure 72 Sample Images of Snowy Weather Conditions  

 
Figure 73 Sample Images of Foggy Weather Conditions  

Methodology 
To determine snowy weather from the video data, machine learning techniques were used, which 
includes the extraction of features from the image datasets followed by the training of the 
extracted feature using different classifiers and finally testing the accuracy of the trained models 
using a new test dataset. It is worth mentioning that machine learning techniques have been 
extensively used in various fields of engineering for image classification, pattern recognition, 
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and text categorization (262–264). In addition, various deep learning techniques were also 
investigated to develop weather detection systems. 

Feature Extraction 
Two texture-based features including Grey Level Co-occurrence Matrix (GLCM) and Local 
Binary Pattern (LBP) was used as classification parameters. 

Grey Level Co-Occurrence Matrix (GLCM) 
GLCM is one of the most commonly used approaches of extracting texture features of an image 
and was developed by Haralick et al. in 1973 (265). The GLCM demonstrates how often a pixel 
value, p (i, j) in an image occurs with a specific relationship with its neighbor pixels. So, each 
element (i, j) of the matrix is the number of occurrences of the pair of pixels with values i and j.  

 
Figure 74 Example of Gray Level Co-Occurrence Matrix 

The input image in Figure 74 consists of 20 pixels since the dimension of the image is 5 pixels × 
4 pixels. Pixel is the smallest unit of an image. The input image has a total of 8 gray tones/levels 
ranging from 1 to 8. It is mentionable that the higher the gray levels the lighter the pixel. The 
dimension of GLCM depends on the number of grey levels. Since the input image has 8 gray 
levels, the GLCM matrix has 8 rows and 8 columns. In the GLCM matrix, element (1, 1) 
contains value one because the input image has only one instance where two pixels with value 
one occurred horizontally. Similarly, the element (1, 2) holds the value two because there are two 
instances where horizontally adjacent pixels have values one and two. It is mentionable that the 
grey images used in this study had 256 grey levels ranging from 0 to 255, where 0 represents 
black, 255 represents white, and any number in between represents different shades of gray. 
For each image, a GLCM was constructed and from the GLCM four texture features, including 
contrast, correlation, energy, and homogeneity were extracted. All the computations were 
performed in a MATLAB environment. 
Contrast measures the local grey level variation in the GLCM and can be defined using the 
following equation. The lowest possible value of the contrast is 0 which represents a constant 
image (265, 266).  

Contrast = ∑ ∑ (𝑙𝑙 − 𝑗𝑗)2.𝑝𝑝(𝑙𝑙, 𝑗𝑗)𝑗𝑗𝑖𝑖        Equation 22  
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Here, i and j are the horizontal and vertical cell coordinates, and p (i, j) is the grey level of the 
pixel located at coordinate (i, j) in the GLCM.  
Correlation is a measure of gray pixel linear dependency with relative pixels in an image. The 
correlation ranges between 1 to -1, where 1 indicates maximum correlation and -1 indicates 
minimum correlations (265, 266). 

Correlation =   
∑ ∑  (𝑖𝑖×𝑗𝑗)𝑝𝑝(𝑖𝑖,𝑗𝑗)𝑗𝑗 − 𝜇𝜇𝑥𝑥×𝜇𝜇𝑦𝑦𝑖𝑖

𝜎𝜎𝑥𝑥×𝜎𝜎𝑦𝑦
         Equation 23 

Here, i and j are the horizontal and vertical cell coordinates; p (i, j) is the gray level of the pixel 
located at coordinate (i, j) in the GLCM; μx and μy are the means relative to the horizontal and 
vertical component, respectively; and σx and σy are the standard deviations of the horizontal and 
vertical GLCM, respectively. μx, μy, σx, and σy can be described using the following equations. 

𝜇𝜇𝑥𝑥 =  ∑ ∑ 𝑙𝑙 × 𝑝𝑝(𝑙𝑙, 𝑗𝑗)𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0          Equation 24 

𝜇𝜇𝑦𝑦 =  ∑ ∑ 𝑗𝑗 × 𝑝𝑝(𝑙𝑙, 𝑗𝑗)𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0          Equation 25 

𝜎𝜎𝑥𝑥2 =  ∑ ∑ 𝑝𝑝(𝑙𝑙, 𝑗𝑗)(𝑙𝑙 − 𝜇𝜇𝑥𝑥)2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0        Equation 26 

𝜎𝜎𝑦𝑦2 =  ∑ ∑ 𝑝𝑝(𝑙𝑙, 𝑗𝑗)(𝑙𝑙 − 𝜇𝜇𝑦𝑦)2𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁−1
𝑖𝑖=0                                                         Equation 27 

Here, N is the number of gray levels in the image. It is mentionable that for each image, there 
was one unique GLCM. Therefore, a total of 8000 GLCM was constructed since the training 
dataset consisted of 8000 images and subsequently features were extracted from each GLCM 
separately.  
Energy represents the sum of squared elements in the GLCM and is a measure of local 
uniformity of the texture and can be described using Equation 7. The value of energy ranges 
from 0 to 1, where 1 is for a consistent image (265, 266). 

Energy =    ∑ ∑  𝑝𝑝(𝑙𝑙, 𝑗𝑗)2𝑗𝑗𝑖𝑖         Equation 28 

The homogeneity represents the adjacency of the distribution of the elements in the GLCM. The 
value of the homogeneity ranges from 0 to 1, where 1 is for a diagonal matrix. The homogeneity 
can be described using equation 8 (265, 266). 

 Homogeneity =   ∑ ∑ 1
1 + (𝑖𝑖−𝑗𝑗)2  𝑝𝑝(𝑙𝑙, 𝑗𝑗)𝑗𝑗  𝑖𝑖       Equation 29 

Before the training of the GLCM based models, boxplots were made to investigate the overall 
patterns of the GLCM features extracted from the image dataset as shown in Figure 75 to Figure 
78, which indicates that the overall patterns and shapes of each category were different from one 
another.  
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Figure 75 Boxplots of Contrast of Images 

 
Figure 76 Boxplots of Correlation of Images 

 
Figure 77 Boxplots of Energy of Images 
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Figure 78 Boxplots of Homogeneity of Images 

The range of contrast values of the clear image group varies between 0.02 to 0.22 with a mean 
value of 0.09. Conversely, the light snow image group has a much narrower range starting from 
0.01 to 0.13 with a mean value of 0.05. Similarly, the contrast value of the heavy snow image 
group ranges between 0.004 to 0.06 with a mean value of 0.03. Considering correlation value, 
the clear image group has a wider range and lower mean compared to snow image groups. The 
range of correlation values of the clear image group varied between 0.96 to 1 with a mean value 
of 0.97 whereas the correlation value of the light snow image group ranges between 0.94 to 1 
with a mean value of 0.98. The box plots of the other two GLCM texture features (e.g., 
Homogeneity and Energy) also exhibit similar kinds of variations in shapes and patterns as can 
be seen in Figure 75 to Figure 78. Overall, from the boxplots of the image dataset, it can be 
concluded that the GLCM features (i.e., contrast, correlation, energy, and homogeneity) can be 
used as significant classification parameters for training the machine learning models. 

Local Binary Pattern (LBP) 
Local Binary Pattern (LBP) is a powerful means of texture description and was developed by 
Ojala et al. (267, 268). The LBP operator computes a local representation of texture by 
comparing each pixel with its surrounding neighborhood of pixels. The original LBP algorithm 
operates on a fixed 3×3 neighborhood of pixels and assigns a level to each pixel of an image. 
Subsequently, the histogram of the levels can be used as a texture descriptor. Figure 79 illustrates 
the original LBP operator. 

 
Figure 79 Demonstration of the Original Local Binary Pattern (LBP) Operator 

Although the original LBP implementation can capture extremely fine-grained details using a 
fixed 3×3 neighborhood in an image, it cannot capture the details at varying scales. To overcome 
this problem, an extension of the original LBP was utilized in this study.  To account for variable 
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neighborhood sizes, two parameters were introduced: the number of points P in a circularly 
symmetric neighborhood and the radius of the circle R. The LBP feature was then defined as: 

LBPP, R = � s(gP −  gC)2pP = P−1
P=0        Equation 30 

s(x) = �1, 𝑥𝑥 ≥ 0
0, 𝑥𝑥 < 0 

Here, P is the number of points around the center pixels, R is the radius of the circle, gc is the 
gray-scale value of the center pixel, and gp is the grayscale value of a neighborhood pixel. Figure 
80 shows an illustration of LBP8,1 used in this study, in which 8 neighbor pixels are located on a 
circle of radius 1 around the center pixel. The numbers on the circle represent the grey levels of 
the 8 neighborhood pixels around the center pixel.   

 
Figure 80 Demonstration of LBP Feature in a Local Neighborhood of an Image 

Once the LBP was determined for each pixel of an image, it was grouped into two categories: 
uniform and non-uniform. An LBP is considered to be uniform if it has at most two 0-1 or 1-
0 transitions. For example, the pattern 00001000 (2 transitions) and 10000000 (1 transition) are 
both considered to be uniform patterns since they contain at most two 0-1 and 1-0 transitions. 
Pattern 11001001 (4 transitions) and 01010010 (6 transitions) is not considered a uniform pattern 
since it has more than two 0-1 or 1-0 transitions. Subsequently, all the uniform patterns were 
assigned with separate labels and all the non-uniform patterns were assigned with a single label. 
Since (8,1) neighborhood was used in this study, there were a total of 256 patterns, 58 of which 
were uniform, which yielded 59 different labels (269, 270).  
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Figure 81 Sample LBP Feature Vectors for Clear, Light Snow, and Heavy Snow Images 

As mentioned earlier, 59 LBP8,1 feature vectors have been extracted from each image and were 
used as training parameters for classification algorithms. Figure 81 shows sample LBP feature 
vectors for three different image groups, which indicates that the values of the feature vectors 
vary significantly among the groups. For instance, most of the feature vectors of the heavy snow 
image have much lower values compared to the clear and light snow image. Overall, the figure 
indicates that the LBP features can be used as significant classification parameters to train the 
machine learning models. 

Classification Algorithms 
Three different classification methods including Support Vector Machine (SVM), K-Nearest 
Neighbor (K-NN), and Random Forest (RF) have been used in this study to classify the image 
groups based on the GLCM and LBP features.  
An SVM is a discriminate classifier capable of constructing an optimal hyperplane, which can be 
used to categorize new samples. SVM classifies data by finding the best hyperplane that 
separates data points of one class from those of the other class. The best hyperplane for an SVM 
means the one with the largest margin between the two classes. Margin means the maximal 
width of the slab parallel to the hyperplane that has no interior data points. The support vectors 
are the data points on the boundary of the slab that is closest to the separating hyperplane (185, 
271). Figure 82 illustrates the concept of SVM classifier. 
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Figure 82 Support Vector Machine (SVM) Classification 

K-NN classifier is a memory-based model that stores all available cases and classifies new cases 
based on their distance to points in a training dataset. k in KNN algorithm is the number of 
neighbors considered. The concept of KNN classifier has been illustrated in Figure 83. A large 
value of k increases the number of neighbors and in turn, increases model bias. Bias measures 
how far off the model predictions are from the correct value. Conversely, a small value of k will 
result in a large variance in predictions. The goal of any supervised machine learning algorithm 
including K-NN is to achieve low bias and low variance. However, the relationship between bias 
and variance is inversely related, meaning decreasing the bias will increase the variance. 
Therefore, k should be selected in such a way so that the model achieves the right balance 
between the variance and bias of the model (185).  
 

 
Figure 83 K-Nearest Neighbor (K-NN) Classification 

RF algorithm is a supervised classification algorithm that builds multiple decision trees from a 
randomly selected subset of the training set and merges them to get more accurate and stable 
predictions. The RF algorithm creates a forest with a number of trees. In general, the higher the 
number of trees in the forest, the higher the prediction accuracy. The basic parameters of the RF 
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classifier are the total number of trees to be generated and decision tree-related parameters like 
minimum split, split criteria, etc. There are several advantages of RF over the decision tree. For 
instance, RF prevents overfitting by creating random subsets of the features and building smaller 
trees using these subsets. Another great advantage of the RF algorithm is that it can be used to 
measure the relative importance of each feature on the prediction (272).  

Deep Learning 
To develop weather detection systems, in addition to machine learning, the research team also 
experimented with several neural networks (NN) based deep learning methods. . The NN is a 
machine learning approach that has been extensively used in various fields of engineering for 
image classification, pattern recognition, and text categorization (262, 263, 273, 274). Different 
variations of the traditional NN have been recently developed to serve specific purposes, e.g., 
RNN for time-series data analysis and CNN for image classification. This study explored the 
potential of the traditional NN as well as the RNN and CNN for real-time fog identification. The 
NN models can be developed using various machine learning libraries under different 
programming platforms, such as Python, Java, and C++. However, for this study, Python 
programming on the TensorFlow machine learning library has been used for image 
classification.   
TensorFlow is a fast, flexible, and scalable open-source machine learning library that can be used 
to implement a wide variety of Machine Learning algorithms. TensorFlow was developed for 
conducting Machine Learning and Deep Learning research by the researchers and engineers 
working on Google’s Machine Intelligence research organization. The official definition of 
TensorFlow is: “TensorFlow is an open-source software library for numerical computation 
using data flow graphs. Nodes in the graph represent mathematical operations, while the graph 
edges represent the multidimensional data arrays (tensors) communicated between them. The 
flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a 
desktop, server, or mobile device with a single API”(275). The primary building block of any 
TensorFlow network is tensor, which is defined as a multi-dimensional array. The node inside a 
TensorFlow network can only accept data in a tensor form. Therefore, all the input data need to 
be converted into tensors before feeding them into the network.  
 As mentioned earlier, initially a traditional NN has been used to develop the fog detection 
model. A NN is a computational model inspired by the function and structure of the human 
brain. Like the human nervous system, a NN has the ability to receive, process, and transmit 
information in terms of computer science. A NN uses backpropagation to learn and train 
available weights and biases. In other words, a NN can improve the prediction accuracy of the 
model by using feedback from the previous iterations.  
The basic unit of a NN is neuron, also called node, which receives input from some other 
neurons, or an external source and computes an output. Each input has an associated weight (W), 
which is assigned based on its relative importance to the other inputs. The node applies a 
function (a), called activation function, to the weighted sum of its inputs. The activation function 
takes a single number and performs a specific mathematical operation on it. The activation 
function, either returns one (neuron triggered) or zero (neuron not triggered) depending on the 
computations performed over the weights and biases. The neuron shown in Figure 84 has two 
numeric inputs X1 and X2 with weights W1 and W2, respectively. Additionally, there is another 
input 1 with weight B (called the bias) associated with it. Inside the neuron, the weighted sum 
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(S) of all the inputs has been calculated before passing it through an activation function (a) to 
generate the output for the next node.    

 
Figure 84 A Single Neuron  

Another important parameter of a NN is cost, which captures the difference between the 
predicted and true class. The cost, also known as loss, is an overall measure of the performance 
of the trained model and is represented by a single value. The cost is a function of weights (W), 
biases (B), inputs of the training sample (IT), and the desired output of the training sample (OT) 
(276). The general form of a cost function is shown in the following equation.   
Cost, C = f (W, B, IT, OT)         Equation 31 
A cost function must satisfy two properties: first, it must represent the average deviation of the 
predicted class from the true class; second, it should be independent of any activation value of 
the NN except the output values. Although, various cost functions including, Quadratic, Cross-
entropy, Exponential, Hellinger distance, Kullback-Leibler divergence, and Itakura-Satio are 
currently being used to determine the deviation of the predicted class from the true class, the 
most commonly used cost function for a NN model is Cross-entropy. The NN models proposed 
in this study also utilized the Cross-entropy as a cost function. The cost using cross-entropy can 
be defined by the following equation. 

Cost, C = −  ∑  [𝑦𝑦𝑖𝑖 ln𝐴𝐴𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖)ln (1 − 𝐴𝐴𝑖𝑖  )]𝑖𝑖      Equation 32 
Here, yi is the predicted probability value for class i and ai is the true probability for that class 
(277). 
In a NN model, the cost is minimized at every step using an optimizer, which alters the weights 
and biases at every iteration and feeds the value to the next iteration. The two most commonly 
used optimizers in a NN model are Gradient Descent Optimizer and Adam Optimizer. In this 
study, both optimizers have been used.  The Gradient Descent minimizes the objective function, 
i.e., cost function by changing the model parameters, i.e., weight(W) and bias(B) in the opposite 
direction of the gradient of the objective function with respect to the parameters. The Gradient 
Descent can be described by the following equation. 
 

Pi = Pi-1 - γ∇f (Pi-1)        Equation 33 
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Here, Pi represents the value of the parameters (W and B) for the next step, Pi-1 represents the 
current value of the parameters, γ is a weighting factor, and the gradient term ∇f (Pi-1) is the 
direction of the steepest descent (278). In order for the Gradient Descent to reach the optimum 
values of the parameter, an appropriate learning rate need to be selected. A large learning rate 
may not provide optimum value because it will bounce back and forth between the convex 
function of the Gradient Descent. Conversely, a small learning rate will significantly increase the 
training time. Therefore, the learning rate should be selected in such a way that the parameters 
achieve optimum values within the least possible time. While Gradient Descent maintains a 
constant learning rate for all the parameter updates, the Adam Optimizer, which was first 
proposed by Kingma et al., computes individual adaptive learning rates for different 
parameters. The Adam Optimizer combines the advantages of two optimizers including Adaptive 
Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp) (279). 
Architecturally, a NN graph consists of three layers: the input layer that receives inputs such as 
images and vectorizes them to a mathematical representation that the neuron can interpret; one or 
multiple hidden layers that perform necessary numerical computations on the input data from the 
previous layer; and finally the output layer which is responsible for transferring 
information from the network to the outside world. A NN with more than one hidden layer is 
often called Deep Neural Network (DNN). In a NN model, the order of computation needs to be 
determined. Although the value of the nodes can be calculated separately, the common practice 
of calculating node values is to arrange the nodes into layers. This technique is called 
feedforward. A feedforward network takes the inputs in the lowest layer (input layer). 
Subsequently, the higher layer, i.e., hidden layers are calculated until the output is generated at 
the topmost layer. Figure 85 provides a graphical representation of a multilayer feedforward NN 
consisting of three inputs, three hidden layers, and one output layer. 

 
Figure 85 Fully Connected Multilayer Neural Network 

The multilayer NN used in this study consists of one input layer, three hidden layers with five 
hundred nodes in each layer, and one output layer. The training of the NN model started with 
feeding the training data into the network. As mentioned earlier, the training dataset consists of 
16,000 annotated images in three different weather conditions including clear, distant fog, and 
near fog. During the training process, the epoch, also called step, has been set to fifty to train the 
entire data in fifty iterations. Fifty epochs have been selected because the accuracy of the model 
became almost constant and no significant improvement was found after fifty steps. The sigmoid 
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function has been used as the activation function. For calculating the cost, Cross-entropy has 
been used. Two optimizers including Adam and Gradient Descent have been used to optimize 
the cost function. From the analysis result, it was found that the Adam optimizer performed 
marginally better than the Gradient Descent optimizer as can be seen in Figure 86.  

  
Figure 86 The Variation of Accuracy and Cost of the NN Models 

Figure 86 illustrates the variation in accuracy and cost over the training steps. While the accuracy 
of the NN model using Adam optimizer gradually increased from 0.52 at the first step to 0.89 at 
the final step, the accuracy of the NN model using Gradient Descent optimizer increased from 
0.50 to 0.87. It is worth mentioning that to determine the accuracy during the training process 20 
percent of the training data have been used. Considering the cost, the NN using the Gradient 
Descent optimizer provided a continuous decrease until it reached a minimum value. On the 
other hand, the cost of the NN using Adam optimizer increased during the initial steps but 
eventually reached a minimum value at the final step.        
One of the significant limitations of the traditional NN is that it does not consider the sequence 
of data, which is essential for time series and video data. Therefore, to leverage the sequential 
information, a modification of the NN, known as Recurrent Neural Network (RNN), has also 
been used in this study. The RNN treated data as a sequence using cyclic connections. The RNN 
stores information from the previous timestamp and uses the information as inputs to the network 
to compute the predictions at the current time step. At time t, hidden nodes with recurrent 
connection, collect inputs from the current data point xt, and from the hidden node values ht-1 of 
the previous step. The output yt at time t is then calculated using the following equations. 

yt = σ (Wyh.  ht +  by)          Equation 34  

ht =  σ (Whx.  xt +  Whh.  ht−1 +  bh )      Equation 35 
Here, σ is the activation function, ht is the hidden node value at time t, Whx is the conventional 
weight matrix based on the current input, Whh is the recurrent weight matrix based on the 
previous hidden states, Why is the weight matrix based on hidden state and output, and bh and by 
are the bias parameters (280). Figure 87 provides a simple representation of a RNN with three 
inputs, one hidden layer with recurrent nodes, and one output layer.  
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Figure 87 A Simple Representation of a Recurrent Neural Network (RNN)  

To improve the traditional RNN, several modifications of the RNN including Bidirectional RNN, 
Long Short-Term Memory (LSTM) RNN, Independently RNN, Hopfield RNN have been 
developed. However, for this study, the LSTM RNN was used. The building block of an LSTM 
RNN is the LSTM which consists of a cell, an input gate, an output gate and a forget gate. The 
cell stores values over arbitrary time intervals, whereas the gates act as a neuron as well as a 
regulator of the flow of values that goes through the connections of the LSTM (281, 282).  
Like the traditional NN, the cross-entropy was used as a cost function, and both the Adam and 
Gradient Descent were used as optimizers during the training of the RNN models in every 
training step. Although the RNN model using the Adam optimizer provided excellent accuracy 
of 0.93 at the final step of the training, the RNN model using Gradient Descent performed worse 
than the Adam optimizer with a final accuracy of 0.77. The cost was also found to be much 
lower at every step of the training process for the RNN model trained with Adam optimizer 
compared to the RNN model trained with Gradient Descent as can be seen from Figure 88.  

  

 
Figure 88 The Variation of Accuracy and Cost of the RNN Models 

Another improvement of the traditional NN is the Convolutional Neural Network (CNN), which 
is developed primarily for image classification. Like other neural networks, a CNN consists of an 
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input layer, an output layer, and many layers in between. The in-between layers can be 
categorized into two types of layers: feature detection layers and classification layers.  
The feature detection layer can perform three types of operation in the data including 
convolution, Rectified Linear Unit (ReLU), and pooling.  Convolution operation can activate 
certain features from the images by passing them through a set of convolutional filters. The 
number of convolutional layers usually improves the performance of the model especially if the 
number of output categories of the training dataset is relatively high. However, the performance 
improvement is insignificant for the training dataset with a lower number of output categories 
(283). In this study, five convolutional layers were used during the training process. The first 
convolutional layer took the images as input and applied 32 filters,  each with a height and width 
of 5 pixels. The second and the third convolutional layer applied 32 and 64 filters of the same 
size, respectively. For the next two convolutional layers, the same number of filters with the 
same filter size was applied.  After each convolution layer, a ReLU layer was used to perform a 
threshold operation on each element of the input. ReLU layer maps negative values to zero to 
ensure faster and more accurate training. After each ReLU layer, a max-pooling layer was 
applied with pooling regions of 3×3 pixels. Pooling simplifies the output by performing 
nonlinear down-sampling which reduces the number of parameters that the network needs to 
learn.  
After feature extraction, the architecture of a CNN moved to classification. The next layer was a 
Fully Connected (FC) layer that provided a vector of three dimensions, where three was the 
number of classes. Finally, the image dataset was passed into a softmax layer which is the final 
layer of the CNN model. The architecture of CNN has been shown in Figure 89.  

 
Figure 89 A Simple Representation of a Convolutional Neural Network (CNN) 

Similar to the previous NN models, the cost was calculated using the cross-entropy, and the 
optimization of the cost function was performed by Adam and Gradient Descent optimizers. The 
Adam optimizer performed marginally better compared to the Gradient descent optimizer as can 
be seen from FIGURE 8. The prediction accuracy of the CNN model using Adam optimizer was 
about 0.78 at the first step which increased gradually and reached an accuracy of 0.97 at the last 
step. The CNN model using the Gradient Descent also produced similar results with an accuracy 
of 0.96 at the final step. The cost of the CNN model using Adam optimizer decreased gradually 
until it reached a minimum value. A similar trend was also found for the CNN model using 
Gradient Descent optimizer as can be seen from Figure 90.      
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Figure 90 The Variation of Accuracy and Cost of the CNN Models 

The prediction accuracy of the CNN models at the final training step was found to be much 
higher compared to the accuracies of the traditional NN and the RNN models.  Previous image 
classification studies using CNN also indicated that CNN is capable of providing far better 
results than the other types of NN. For instance, Krizhevsky et al. used a subset of the ImageNet 
database to classify 1000 different classes. ImageNet is one of the largest image datasets 
designed for object recognition research and consists of over 15 million labeled high-resolution 
images belonging to roughly 22,000 categories. This study used five convolutional layers, 
followed by max-pooling layers, and three fully-connected layers. The results of this study 
showed that CNN is capable of achieving record-breaking results on a highly challenging dataset 
(284). Several other studies also adopted the CNN structure developed by Krizhevsky et al. with 
slight modification to classify the ImageNet dataset and found satisfactory results (285, 286).  

Development of the RoadweatherNet 
Similar to other deep learning models, the architecture of a CNN can be broadly categorized into 
three types of layers, including an input layer, hidden layers, and an output layer. The primary 
purpose of the input layer is to receive the annotated input images and passes them to the 
subsequent hidden layers. The input layer of the RoadweatherNet was designed to receive seven 
weather categories with square image sizes. It is worth mentioning that with the increase in 
image size, the accuracy usually improves; however, it requires more computational power 
which results in a longer training time. Therefore, in order to select the optimum image size, a 
sensitivity analysis was performed, where the accuracy of the models was tested using different 
image sizes with 20 × 20 pixels increment at every iteration, as can be seen in Table 44 and 
Figure 91. In order to compare the performance of the models, all the parameters were kept 
constant and the default training options were used. The testing accuracy of the model with 20 × 
20 pixels input image was around 83 percent, which improved gradually with the increase in 
image size and saturated at an accuracy of 92 percent for the model trained with 100 × 100 
pixels. After that, no significant improvement in accuracy was observed. Although the 
computational time increased by 4.1 times for this model compared to the base model, the use of 
this image size was justified considering its significantly superior performance over the other 
models trained with smaller image sizes.      
After taking the input images, the RoadweatherNet then passed the images to the subsequent 
hidden layers, where the majority of the computations occurred. Hidden layers can be grouped 
into three types of layers, including convolutional, Rectified Linear Unit (ReLU), and pooling 
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layer. The convolutional layer is the main building block of a CNN and consists of several filters. 
These filters are moved across the input image in such a way that all the pixels are covered at 
least once and the dot product between the filter and the input is generated at every special 
position of the image. The resulting outputs from all the filters are then piled along the depth 
dimension in order to get the output of the convolutional layer. The main purpose of the 
convolutional layer is to extract features from the input image. While the initial convolutional 
layers extract more generic features, as the network gets deep, the subsequent convolutional 
layers extract more refined features (287).  
A higher number of convolutional layers usually improves the performance of a CNN model; 
however, it makes the network complex and deeper, which increases the training time. In 
addition, very deep neural networks are often subjected to overfitting (288). Therefore, to select 
the optimum number of convolutional layers, a sensitivity analysis was performed using 100 × 
100 pixels input image and keeping all the parameters constant. The results are listed in Table 44 
and are illustrated in Figure 92. It was found that the CNN model with only one convolutional 
layer could not learn at all and produced a very poor testing accuracy of only 14 percent. Adding 
an extra convolutional layer significantly improved the performance of the model with an overall 
testing accuracy of 84 percent. The performance of the models reached saturation after four 
convolutional layers, as can be seen in Figure 92. Therefore, four convolutional layers were 
selected for the development of the RoadweatherNet. The first convolutional layer took the 
images as input and applied 16 filters with a size of 3 × 3 pixels. The next three convolutional 
layers applied 32, 64, and 128 filters of the same size, respectively. The number of filters of the 
convolutional layers was chosen as powers of two in order to maximize the usage of the 
Graphics Processing Unit (GPU). It is worth mentioning that the size of the filter was also 
selected based on sensitivity analysis.  

Table 44 Model Performance Under Different Input Image Size and Number of the 
Convolutional Layer 
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Figure 91 Selection of Input Image Size  

 
Figure 92 Selection of Number of Convolutional Layer 

 
After each convolutional layer, a ReLU layer was applied to perform a threshold operation on 
each element of the inputs to ensure fast and consistent training of the RoadweatherNet. The 
ReLU layer applies a simple function that converts only the negative values to zero and keeps the 
positive value unchanged (289, 290). Except for the last ReLU layer, all ReLU layers were 
followed by a pooling layer.  This layer was applied to decrease the amount of information 
generated from the preceding convolutional layer to ensure the passing of only the most essential 
information to the next layers (250). The last ReLU layer was then linked to a fully connected 
layer to produce an output vector with seven dimensions based on the number of weather 
categories. The next layer of the RoadweatherNet was a softmax layer that assigns decimal 
probabilities to each of the output classes. Finally, the last layer of the RoadweatherNet was a 
classification layer, which provided the final weather condition based on the probabilities (250). 
The architecture of the RoadweatherNet is shown in Figure 93 and the description of each layer 
along with learnable parameters are listed in Table 45.  It is worth mentioning that any parameter 
that needs to be optimized at each iteration during training is considered a learnable parameter. 
For CNN models, weights and biases at each layer of the network are the learnable parameters. 
(291). Using transfer learning, other researchers could use and test the capability of the proposed 
RoadweatherNet in detecting weather conditions using their image dataset. 



  
 

155 
 

 
Figure 93 Architecture of the RoadweatherNet 
Table 45 Parameters of the RoadweatherNet 

Name Description Activations Learnable 
Parameters 

Total Learnable 
Parameters 

Input 100×100×3 images with ‘zero-centered’ 
normalization 100×100×3 - 0 

Conv-1 16 3×3×3 convolutions with stride [1 1] 
and padding [1 1 1 1] 100×100×16 W = 3×3×3×16  

B = 1×1×32 448 

ReLU-1 ReLU 100×100×16 - 0 

Pooling-1 2×2 max pooling with stride [1 1] and 
padding [1 1 1 1] 50×50×16 - 0 

Conv-2 32 3×3×16 convolutions with stride [1 1] 
and padding [1 1 1 1] 50×50×32 W = 3×3×3×32  

B = 1×1×16 4640 

ReLU-2 ReLU 50×50×32 - 0 

Pooling-2 2×2 max pooling with stride [1 1] and 
padding [1 1 1 1] 25×25×32 - 0 

Conv-3 64 3×3×32 convolutions with stride [1 1] 
and padding [1 1 1 1] 25×25×64 W = 3×3×32×64  

B = 1×1×64 18496 

ReLU-3 ReLU 25×25×64 - 0 

Pooling-3 2×2 max pooling with stride [1 1] and 
padding [1 1 1 1] 12×12×64  0 

Conv-4 128 3×3×32 convolutions with stride [1 
1] and padding [1 1 1 1] 12×12×128 W = 3×3×64×128  

B = 1×1×128 73856 

ReLU-4 ReLU 12×12×128  0 
Fully 
Connected 7 fully connected layers  1×1×7 W = 7×18432  

B = 7×1  129031 

Softmax Softmax layer 11×1×7 - 0 
Output Classification Output  - - 0 
*W = Weights, B = Bias  
After the crafting of the RoadweatherNet architecture, the default parameters and training 
options were carefully updated by observing the training progress and validation accuracy. It is 
worth mentioning that 80 percent of the images were used for training and validation, and the 
remaining 20 percent were used to test the accuracy of the developed model. During validation, 
the cost of the RoadweatherNet was minimized using two optimizers: Stochastic Gradient 
Descent with Momentum (SGDM) and Root Mean Square Propagation (RMSProp); however, 
SGDM produced the best optimization. It is worth mentioning that cost is an overall measure of 
performance of a CNN model and is measured by calculating the difference between predicted 
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class and true class. The best performance of a CNN model is achieved only when the cost is 
properly optimized (250).  
The hyperparameters and training options of the proposed model were carefully tuned utilizing 
one of the most commonly used methods named grid search. Grid search is an approach of 
tuning hyperparameters that searches and evaluates a model through a manually specified subset 
of hyperparameters (166, 292). The subset used for grid search in this study was created by 
carefully observing the training progress and accuracy of the proposed model. It is worth 
mentioning that based on the initial observation, some of the parameters did not have a 
significant influence on the model performance, and therefore, were not included in the grid 
search to reduce the tuning time and computation resources. Table 46 listed the updated 
parameters for the developed weather detection model. 

Table 46 Tuning of Hyperparameters of RoadweatherNet 

Parameters Initial/Default value Final value after 
parameter tuning  

Optimizer SGDM SGDM 
Number of convolutional layers 4 4 
Initial learning rate  0.01 0.0001 
Learning rate drop period 10 5 
Max epochs 30 15 
Batch size 128 50 
Factor for L2 regularization 0.0001 0.004 

*SGDM = Stochastic Gradient Descent with Momentum 

Figure 4 illustrated the increase in accuracy and decrease in loss over the training iteration during 
validation using the best set of parameters, which shows that the overall validation accuracy of 
the RoadweatherNet was around 10 percent at the initial iteration which improved gradually until 
it reached a final overall validation accuracy of around 92.5 percent at the final iteration after 15 
epochs of training. Similarly, the loss was also decreased until it reached a final value of around 
0.1, as can be seen in Figure 94. The training and validation took about 41 minutes to complete 
using a computer with an Intel Core i7-7500U 2.70Ghz processor, 12 GB of RAM, and an 
NVIDIA GeForce 940MX GPU. 
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 Figure 94 Training Progress of the RoadweatherNet 

Results and Discussions 
Performance of the Snow Detection Models 
The prediction summary of the trained Machine Learning models (e.g. SVM, K-NN, and RF) 
using the GLCM based features has been shown in Table 47. Overall prediction accuracy of the 
trained SVM model was found to be 86.2 percent. Although various types of kernel functions 
including linear, quadratic, cubic, fine Gaussian, and coarse gaussian were used for the SVM-
based classification, the fine Gaussian SVM produced the best result. It is worth mentioning that 
SVM performs very badly with datasets that are not linearly separable. For example, if two 
features of a classification problem are plotted in a two-dimensional space (e.g., x and y-axis), 
most of the time it will not be possible to separate the data points using a single straight line. 
Kernel function can overcome this problem by distributing the data points into three-dimensional 
space (e.g., x, y, and z-axis) by using different distributions (such as polynomial, quadratic, 
cubic, gaussian, etc.). Once the data points are distributed in the three-dimensional space, they 
can be separated using a two-dimensional plane. (293). It was found that the clear image group 
had the highest true positive rate (89 percent ) and the lowest false negative rate (11 percent ), 
which indicates that only 11 percent of the images have been misclassified by the trained SVM 
model. On the other hand, the heavy snow image group had the lowest prediction accuracy (83 
percent ) where 7 percent and 10 percent of the images were misclassified as clear and light 
snow images, respectively. In addition, the false positive rate of the clear, heavy snow, and light 
snow image group was found to be 12 percent, 17 percent, and 12 percent, respectively. It is 
worth noting that the high false positive rate of snowy weather will create frequent false alarms 
which may lead to disrespecting the warnings and may create compliance issues. However, from 
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a safety perspective, the false negative rate is more hazardous because it may lead drivers to get 
into snowy weather conditions without providing them any prior warnings. The Area Under 
Curve (AUC) is a measure of the overall quality of a classifier. AUC values of 0.5 to 0.7 
represent poor accuracy, values between 0.7 to 0.9 represent moderate accuracy, whereas values 
over 0.9 indicate high accuracy (190). All the categories of the trained SVM models had AUC 
values greater than 0.9 which indicates high prediction accuracy. The overall prediction accuracy 
of the trained K-NN model using the GLCM based feature was found to be 85.6 percent as can 
be seen from Table 47. More specifically, about 89 percent, 83 percent, and 85 percent of the 
clear, heavy snow, and light snow images have been correctly classified. The highest false 
negative rate (17 percent ) was found for the heavy snow image group, where 7 percent and 10 
percent of the heavy snow images have been incorrectly identified as clear and light snow 
conditions, respectively. On the other hand, the false negative rate of the clear image group was 
found to be the lowest, where the trained K-NN model misclassified 4 percent and 7 percent of 
the clear images as heavy snow and light snow image, respectively. The highest false positive 
rate was found for the heavy snow image group where 17 percent of other images were classified 
as heavy snow. The false positive rate for both clear and light snow image groups was found to 
be 12 percent. It was found that the clear image group had the highest AUC (0.97), whereas the 
heavy snow image group had the lowest AUC (0.94). However, the AUC of all the image groups 
was found to be greater than 0.9, which indicates a high prediction accuracy of the trained K-NN 
model. The overall prediction accuracy of the RF model using the GLCM based feature was 
found to be 84.4 percent. Similar to the other two models, the highest true positive rate was 
found for the clear image group where 89 percent of the images were correctly classified. On the 
contrary, the heavy snow image group had the lowest true positive rate (82 percent ) and the 
highest false negative rate (18 percent ), which indicated that the trained RF model misclassified 
18 percent of the heavy snow images as can be seen from Table 47. In addition, the AUC of all 
the image groups was found to be greater than 0.9.   

Table 47 Prediction Summary of the Trained Models Using GLCM Based Features 

 
The prediction accuracies of the trained machine learning models using LBP-based features were 
found to be much higher compared to the accuracies of the trained models using GLCM features 
as can be seen from Table 48. The SVM model based on LBP features produced an outstanding 
overall accuracy of 95.9 percent. More specifically, 99 percent, 93 percent, and 95 percent of the 
clear, heavy snow, and light snow images, respectively, have been classified correctly. The false 
negative rate of the clear image group was only 1 percent. The heavy snow and light snow image 
groups also had a small false negative rate of 7 percent and 5 percent, respectively. In addition, 



  
 

159 
 

the AUC values of the trained SVM model were also found to be exceptionally high (close to 1) 
which indicates high prediction accuracy of the trained SVM model. The trained K-NN model 
based on the LBP feature produced marginally lower, but still impressive overall prediction 
accuracy of 93.1 percent. The lowest false negative rate was found for the clear image group 
where only 3 percent of the images have been misclassified. However, the highest false negative 
rate was found for the heavy snow image group where 12 percent of the images were incorrectly 
classified. The AUC values of the trained K-NN model were also found to be very high. The 
overall prediction accuracy of the RF model was found to be 94 percent. More clearly, 98 
percent, 91 percent, and 93 percent of the clear, heavy snow, and light snow images, 
respectively, have been classified correctly. It is mentionable that the texture of a clear image is 
more prominent, making it easier to identify. On the contrary, the texture of a foggy image is 
more uniform which makes it difficult to differentiate between near fog and distant fog images. 
Because of the above-mentioned reason, the lowest false negative rate (2 percent ) was found for 
the clear image group whereas the highest false negative rate (9 percent ) was found for the 
heavy snow image group. 

Table 48 Prediction Summary of the Trained Models Using LBP Based Features 

 
Performance of the Fog Detection Models 
Once training of the different NN models was completed, the performance of the models was 
evaluated using a test dataset, which consisted of 4,000 images in different weather conditions. 
The overall detection accuracy of the trained DNN, RNN, and CNN models was found to be 85.1 
percent, 77.4 percent, and 97.3 percent, respectively using Gradient Descent optimizer, as shown 
in TABLE 2. The highest true positive (TP) rate was found for the clear image group, where 95.1 
percent of the images were correctly classified.  On the other hand, the lowest TP rate was found 
for the distant fog image group was 73.7 percent of the images were correctly classified. 
Considering the RNN model, the highest TP and the lowest false negative (FN) rate were found 
for the clear image group, where 9.5 percent of the clear images were wrongly classified to other 
images. Similarly, the TP rate of the distant fog image group was found to be 73.2 percent, 
meaning 73.2 percent of the distant fog images were correctly classified. Interestingly, the CNN 
model provided significantly better results compared to the other models, the overall detection 
accuracy was found to be 98.4 percent, 98 percent, and 86.5 percent for clear, distant fog, and 
near fog image groups, respectively. The lowest FN rate was found for the clear image group, 
where only 1.6 percent of the images were misclassified as can be seen in Table 49.       
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Table 49 Detection Summary of the Trained Neural Network Models using Gradient 
Descent Optimizer 

 
 
The performance of the neural network models using the Adam optimizer is provided in Table 
50, which shows that the models using this optimizer performed better than the models using 
Gradient Descent optimizer. The overall detection accuracy of the DNN, RNN, and CNN models 
was found to be 88.4 percent, 93 percent, 98.1 percent, respectively. The highest TP rate and the 
lowest FN rate were found for the clear image group with only 6 percent misclassification. More 
specifically, 4 percent and 2 percent of the clear images were misclassified as distant fog and 
near fog images, respectively. Similarly, the TP rate of the distant fog and near fog image groups 
were found to be 86.7 percent and 61.1 percent, respectively. Considering the RNN model, the 
highest TP rate was found for the distant fog image group where 95.2 percent of the distant fog 
images were correctly classified. As expected, the detection accuracy of the trained CNN models 
was found to be much higher compared to the other neural network models. The trained CNN 
model provided an outstanding prediction accuracy of 99.8 percent, 97.6 percent, and 89.1 
percent for clear, distant fog, and near fog image groups, respectively, as can be seen in TABLE 
3. The false positive (FP) rate of the clear image group using the trained CNN model was found 
to be only 1.4 percent, meaning that 1.4 percent of the other images were classified as clear 
images. It is worth noting that a high FP rate of clear weather is more hazardous since in such 
conditions drivers will be exposed to adverse weather without any warnings. On the other hand, 
a high FN rate of clear weather will provide frequent adverse weather warnings in clear roadway 
conditions, which might affect the compliance rate. The FN rate of the trained CNN model for 
the clear image group was found to be only 0.2 percent, meaning only 0.2 percent of the clear 
images were misclassified as other images.   
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Table 50 Detection Summary of the Trained Neural Network Models using Adam 
Optimizer 

 
Overall, the prediction accuracy of the CNN models was found to be significantly higher 

compared to the accuracy of the DNN and the RNN models.  This finding is in line with previous 
studies. Previous image classification studies using CNN also indicated that CNN is capable of 
providing far better results than the other types of NN. For instance, Krizhevsky et al. used a 
subset of the ImageNet database to classify 1000 different classes. ImageNet is one of the largest 
image datasets designed for object recognition research and consists of over 15 million annotated 
images belonging to approximately 22,000 categories. The results of this study showed that CNN 
is capable of achieving record-breaking results in a highly challenging dataset (284). Several 
other studies also adopted the CNN structure developed by Krizhevsky et al. with a slight 
modification to classify the ImageNet dataset and found satisfactory results (285, 286).  

Performance of the RoadweatherNet 
After training and validation, the performance of the RoadweatherNet was evaluated using a test 
dataset, consisted of 20 percent of the original images. Performance indices were calculated for 
each class, as listed in Table 51, and visualized using a confusion matrix, as illustrated in Figure 
95. The RoadweatherNet provided an impressive overall detection accuracy of 92.5 percent, 
which is in accordance with the accuracy (91.9 percent ) found during validation. The highest 
recall value was found for the heavy rain image group were, where out of 500 test images, 95.4 
percent of the images were correctly classified. The heavy snow and near fog image group also 
had a high degree of recall with values of 95.2 percent and 94.8 percent, respectively. The 
highest precision value of 96 percent was also found for the heavy snow image group, which 
indicated that out of 496 predicted snowy images, 96 percent were actually snow. One of the 
interesting observations is that the precision, as well as recall values, were found to be superior 
for extreme adverse weather conditions, such as heavy rain, heavy snow, and near fog. Driver 
behavior and vehicle performance, as well as visibility and road surface frictions, are impacted 
more in such extreme weather conditions; therefore, a high degree of recall and precision under 
such conditions is crucial for developing reliable safety countermeasures. The lowest 
performance in terms of recall was found for the light rain image group with a value of 86.8 
percent, where out of 500 test light rain images, 53 were wrongly classified as other images, as 
can be seen from Figure 95.  
The lowest FPR was found for the clear image group with a value of only 0.7 percent. 
Considering the safety-related practical applications, a high degree of FPR of the clear image 
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group is particularly hazardous because it would increase the risk by exposing drivers to adverse 
weather without warnings. The RoadweatherNet produced a negligible amount of such 
hazardous misclassification, especially for extreme adverse weather. More specifically, only one 
heavy rain image was classified as clear weather and other extreme adverse weather (e.g., heavy 
snow and near fog) did not have any such hazardous classification, as can be seen from Figure 5. 
Considering the FNR, the lowest value (4.8 percent) was found for heavy snow, and the highest 
value (13.2  percent) was found for light rain. The FNR of the clear image group was also 
reasonably low with a value of 6.8 percent. It is worth mentioning that a high FNR of clear 
weather will provide frequent false warnings, which might lead to disrespect for the warning 
systems and might decrease the compliance rate.  

Table 51 Performance Measure of the Trained RoadweatherNet 

 
 

 
Figure 95 Confusion Matrix of the Trained RoadweatherNet 
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One of the major objectives of this study was to develop a weather detection model that is easy 
to implement and requires less computational power with a high degree of detection accuracy. In 
order to effectively implement trajectory-level weather detection models in an emerging CV 
environment, it is extremely important to reduce the computational requirements considering the 
fact that such weather detection will be applied mainly on a smartphone/tablet platform. Keeping 
this research need in mind, this study devised a simple CNN architecture (RoadweatherNet) 
capable of training and running on a computer with relatively less computational power such as a 
smartphone. The performance of the proposed RoadweatherNet was compared with some 
existing pre-trained CNN models, including AlexNet, ResNet18, Resnet50, GoogLeNet, 
ShuffleNet, and SqueezeNet, which revealed that the proposed RoadweatherNet required 
significantly less time to train compared to the existing pre-trained CNN models, as shown in 
Table 52. It is worth mentioning that most of the pre-trained networks have lots of layers with 
complex structures and require a relatively large input image size (284, 294–297), whereas the 
proposed RoadweatherNet has only 15 layers with an input image size of 100 × 100 pixels. 
Although the pre-trained models provided marginally better performance, the simple structure of 
the RoadweatherNet significantly reduced the training time. Relative training time was also 
determined by dividing the training time of the pre-trained models with the training time of the 
RoadweatherNet, which revealed that the training times of AlexNet, ResNet18, ResNet50, 
GoogLeNet, ShuffleNet, and SqueezeNet were about 1.5, 4.9, 15.4, 6.8, 4.1, and 2.1 times higher 
than the RoadweatherNet, respectively.  It is worth mentioning that after the training, the 
proposed RoadweatherNet can detect weather conditions instantaneously. Keeping the practical 
aspects in mind, such as applications in a CV environment, this study suggests the use of 
RoadweatherNet when the weather detection model needs to train and run on a smartphone 
platform. However, for other cases, when the weather detection model could be trained and 
applied off-road, such as in the Traffic Management Center (TMC), ResNet50 is suggested due 
to its relatively higher detection performance compared to the other models.  

Table 52 Comparison of the RoadweatherNet with Other Pre-Trained CNN Models 

Name Number of 
layers 

Input 
Image Size 
(Pixels) 

Validation 
Accuracy  
( percent) 

Testing 
Accuracy 
( percent) 

Training 
Time 
(mins) 

Relative 
Training 
Time 

RoadweatherNet 
(Proposed CNN 
Architecture) 

15 100-by-100 91.9 92.5 41.2 1 

AlexNet 25 227-by-227 92.7 93.1 61.7 1.5 
ResNet18 71 224-by-224 93.1 94.1 201.3 4.9 
ResNet50 50 224-by-224 94.3 94.6 632.5 15.3 
GoogLeNet 144 224-by-224 93.2 93.9 278.4 6.8 
ShuffleNet 172 224-by-224 92.4 93.1 168.9 4.1 
SqueezeNet 68 227-by-227 92.5 92.8 85.5 2.1 

The performance of the RoadweatherNet was evaluated against other existing methods of 
weather detection, as shown in Table 53. The proposed RoadweatherNet achieved an overall 
detection accuracy of about 93 percent, which is higher than most of the previous weather 
detection models. However, previous research from the same author group achieved marginally 
higher detection performance. For instance, a snow detection system based on texture-based 
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image features combined with machine learning techniques was proposed by the research team, 
which achieved 96 percent accuracy in detecting two levels of snow (167). Another study of the 
research team leveraged various neural network methods to develop a fog detection system and 
achieved an impressive overall accuracy of 98 percent  (250). The reason for getting a high 
degree of accuracy of these two studies is that it considered only two categories of adverse 
weather, whereas the proposed RoadweatherNet is capable of detecting seven levels of weather 
conditions. 

Table 53 Evaluation of RoadweatherNet Against Weather Detection Methods 

Study Data Source Method Weather Categories 
Overall 

Accuracy 
( percent) 

Mori et al., 2007 (298) In-vehicle camera, 
radar 

Extinction 
coefficient 

Light fog, moderate fog, and 
dense fog 84 

Roser and Moosmann, 
2008 (299) In-vehicle camera SVM Clear, light rain, heavy rain 85 

Yan et al., 2009 (249) In-vehicle vision 
system AdaBoost Sunny, cloudy, rainy 85 

Chu et. al., 2016 (246) 
Image2weather dataset, 
EC1M dataset, Flickr, 
Google Maps 

RF Sunny, cloudy, snowy, rainy, 
foggy 70 

Qian et al., 2016 (251). Roadside camera, in-
vehicle camera 

Nearest Neighbor, 
Naive Bayes Boost, 
SVM, AdaBoost, 
DT 

Dry, wet, Iced, snow-covered, 
snow-packed 88 

Lu et. al., 2017 (300) Stationary camera CNN Sunny, cloudy 91 

Guerra et al., 2018 (247) 
Flickr, Pixabay, 
Wikimedia, RFS 
dataset 

Pre-trained CNN Sunny, cloudy, snowy, rainy, 
foggy 80 

Ozcan et. al., 2019 (243) Roadside CCTV, 
mobile camera, NDS VGG16 Clear, rainwet, snow 77 

Gbeminiyi Oluwafemi 
and Zenghui, 2019 (301) 

Google, Flickr, 
Gettyimages, Yahoo 

Said Ensemble 
Method Cloudy, sunshine, rainy, sunrise 86 

Zhao et al., 2019 (302) Open source images 
from the internet CNN-LSTM Sunny, cloudy, foggy, rainy, 

snowy 91 

Ibrahim et. al., 2019 (245) Google image ResNet50, 
WeatherNet Clear, rain, snow 93 

Khan and Ahmed, 2019 
(167) 

SHRP2 NDS 
trajectory-level video 
data 

SVM, KNN, RF Clear, light Snow, heavy snow 96 

Ali et al., 2020 (303) 
SHRP2 NDS 
trajectory-level video 
data 

ANN, DT, RF, 
GBT Clear, snowy 89 

Khan and Ahmed, 2020 
(250) 

SHRP2 NDS 
trajectory-level video 
data 

DNN, RNN, 
LSTM, CNN Clear, distant Fog, near Fog 98 

RoadweatherNet 
SHRP2 NDS 
trajectory-level video 
data 

CNN, Pre-trained 
CNN 

Clear, light rain, heavy rain, 
light snow, heavy snow, 
distant fog, and near fog 

93 

*SVM = Support Vector Machine, RF = Random Forest, GBT = Gradient Boosted Trees, DT = Decision Tree CNN = 
Convolution Neural Network, RNN = Recurrent Neural Network, DNN = Deep Neural network, ANN = Artificial Neural 
Network, LSTM = Long Short-Term Memory, EC1M =   European City 1 Million, RFS = Rain Fog Snow, NDS = Naturalistic 
Driving Study 
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Chapter 7. Integration of SHRP2 NDS Findings: Weather-based 
Microsimulation Modeling and Variable Speed Limit System 

Literature Review 
Development of Weather-based Microsimulation Model 
Prevailing weather conditions impact the safety and mobility of the transportation network. 
Decades of experience and research illustrate that limited visibility and adverse road surface 
conditions increase travel time and decrease network capacity (304). In efforts to reduce the 
effect of adverse weather conditions on travelers and roadway infrastructure, transportation 
agencies dedicate resources to predictive, real-time, and responsive countermeasures. Recent 
developments in technology have enabled the introduction of intelligent transportation system 
(ITS) applications used for network planning, safety assessments, countermeasure evaluation, 
and roadway operations. Among these applications, microsimulation modeling is a powerful tool 
used to emulate traffic flow by predicting individual vehicle movements throughout a roadway 
network. Microsimulation is currently used as a forecasting tool to assess the safety and mobility 
impacts of proposed roadway designs or alterations. More recently, transportation agencies have 
started using microsimulation applications in their traffic management centers for online 
forecasting, in which traffic data are collected in real-time and used to make short-term 
predictions (305). 
The development of a microsimulation model requires three primary components: roadway 
configuration, travel demand, and driving behavior. The third input requirement refers to the 
portrayed behavior of the individual vehicles in the model. Microsimulation models predict the 
behavior of individual drivers at sub-second intervals using designated driving behavior models. 
Different microsimulation tools use various behavioral models derived from different theories 
and data sources. The classic driving models were developed from the concept of traffic flow 
theory, while others were developed considering a driver’s psychological nature and perception 
of their environment (133, 306). Each behavioral model is controlled by a set of input parameters 
that dictate the predicted vehicle response. While default values are available for most models, 
numerous studies have shown that realistic predictions require these parameters to be tuned to 
match local conditions (307–310). 
Researchers have investigated methods for calibrating driving behavior models using both 
macroscopic data (e.g., loop detector data) and microscopic data (e.g., individual vehicle 
trajectories, collecting driving speed, acceleration, following distance, and so forth, at a 
minimum resolution of 1 s) (311–316). Calibration with macroscopic data is attractive because of 
the availability of data and the decreased computational complexity; however, researchers 
hypothesize that this procedure of calibration may not be sufficient for realistic characterization 
of driving behavior as the resolution of the calibration data should be equivalent to that of the 
model’s predicted behavior (131, 317). Recently available sources of microscopic trajectory-
level data have introduced new possibilities for testing this hypothesis and assessing the 
importance of using high resolution data for driving behavior model calibration (318, 319). 
Transportation agencies are interested in using microsimulation to forecast the impact of 
different adverse weather conditions on their roadway network. While microsimulation analyses 
are becoming increasingly commonplace, a consensus of how to develop a weather dependent 
microsimulation model is missing. Dozens of studies have evaluated macroscopic traffic data 
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(i.e., traffic counts, average travel speeds, headways) to study the influence of weather conditions 
on driving behavior (320–322). For instance, Rakha et al. (320) used freeway loop detector data 
from three geographic locations to evaluate traffic flow (i.e., free flow speed, speed at capacity, 
capacity, and jam density) in different weather conditions. Their findings indicated that in snow 
conditions, free flow speed and capacity are reduced more severely than in rain conditions. 
Lastly, the authors note that free flow speed and speed at capacity decrease as rain intensifies, 
but roadway capacity stays constant. As a result of these findings, the authors presented weather 
adjustment factors (WAFs) for computing traffic stream parameters as a function of weather type 
and intensity (320). This study and many others with similar goals and findings served as the 
motivation to compile WAFs in the 2016 edition of the U.S. Highway Capacity Manual (HCM) 
(323) 
Other studies have aimed to calibrate microsimulation models using driving data in different 
weather conditions (320, 324–326). However, most of these efforts have been conducted using 
macroscopic traffic data and only a few research groups have calibrated driving models with 
weather-influenced trajectory-level driving data (137, 327, 328). To this end, this paper 
contributes a methodology for calibrating car-following models—a fundamental driving 
behavior model required for successful development of microsimulation models—using 
trajectory-level data captured in various weather conditions. The research was completed using 
data from the SHRP2 Naturalistic Driving Study (NDS) to capture realistic driving behavior 
from a diverse population of drivers.  

Microsimulation of Weather-based Variable Speed Limit 
Though the traditional before-after field evaluations of VSL applications provide the most direct 
insight into the effectiveness of VSL, it was found to be costly and time-consuming to collect 
traffic performance data from field. Another concern is that the effects of speed changes might 
not control for confounding factors that are not linked to the VSL system, such as changes in 
traffic volumes (329).  
With consideration of these challenges and limitations of field tests, numerous researchers have 
employed microsimulation approach to assess the benefits of VSL. Lee et al. (330) developed a 
real-time crash prediction model to estimate the reduction of crash potential through simulating 
the changes in short-term speed variation before and after implementing VSL. The authors 
determined the threshold of crash potential at which VSL should be applied. Based on 
microsimulation, it was found that VSL reduced crash potential by 5 to 17 percent. Abdel-Aty et 
al. (331) employed PARAMICS microsimulation approach to evaluate the effects of VSL in term 
of reduction of crash likelihood. Simulations results showed that safety benefit was achieved 
when freeway speed was high. When freeway was congested (i.e., low-speed situation), the 
safety benefit of VSL was not significant. Hellinga and Mandelzys (332) employed PARAMICS 
simulation method to evaluate the sensitivity of the safety impacts of VSL to driver compliance 
rate. Simulation results indicated that safety was shown to be positively correlated with the level 
of compliance; the safety benefits of VSL under very high compliance scenario (i.e., greater than 
70 percent) were more than four times the benefits obtained under low compliance scenario (i.e., 
lower than 1 percent).  Lee et al. (333) examined the performance of VSL for addressing freeway 
recurring traffic congestion. A 5-mile freeway section was coded in VISSIM and calibrated using 
INRIX speed data and historical traffic counts from Virginia DOT. A VSL algorithm developed 
by California PATH was adopted in VISSIM to be used for determining optimum speed 
adjustments at three specific locations along the freeway section. Hadiuzzaman et al. (334) found 
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that the safety benefits of VSL were positively correlated with increasing compliance levels. The 
collision probability was improved when compliance level reached 50 to 60 percent. Muller et al. 
(335) applied a local feedback Mainstream Traffic Flow Control (MTFC) in microscopic 
simulation for an on-ramp merge bottleneck with VSL control. The authors pointed out that a 
more realistic VSL application at specific points instead of along an entire freeway section might 
produce a slower traffic response to speed limit changes. In addition, the nonlinear flow-variable 
speed limit relation observed in the microscopic model is more appropriate than that observed at 
the macroscopic level. Sadat and Celikoglu (336) analyzed the performance of VSL system using 
VSSIM and MATLAB simulation techniques on a 5.2-kilometer section in Istanbul, Turkey. 
Traffic volume, occupancy and average speed from the Remote Traffic Microwave Sensor 
(RTMS) were used to calibrate VISSIM. Results show reduction in Total Travel Time (TTT) and 
occupancy level along with improvement in average speed and volume. Conran (337) developed 
a two-state microscopic model and calibrated it using driving-simulation trajectory data. The 
microscopic model was implemented within VISSIM and utilized for a safety-mobility 
performance assessment of an incident-responsive VSL control algorithm implemented in a 
MATLAB COM interface. It was recommended that safety and mobility performance of VSL 
system indicated an inverse relationship, thus the selection of VSL control design parameters 
needs to balance the trade-offs between safety and mobility. 

Microsimulation of Weather-Responsive VSL 
For VSL under adverse weather conditions, Rama (338) investigated the effects of VSL on 
driver behavior under adverse weather conditions using historical traffic flow data. In summary, 
it was found that the weather-controlled VSL system decreased both the mean speed and the 
variance of speeds. In addition, statistical results showed that though the speed patterns were 
different in winter and in summer seasons, under both seasons VSL increased the homogeneity 
of driver behavior and reduced speed variance. Robinson (339) summarized the VSL 
applications throughout the world. The author noted that weather-responsive VSL is effective at 
reducing speeds and speed variability during poor weather in several locations. VSL on several 
rural areas in Germany has reduced crash rates by 20 to 30 percent; a VSL system on the M-25 
highway near London contributed to a 10 to 15 percent  reduction in crashes; and a VSL system 
in Netherlands led to an 8 to 10 kilometers per hour drop in mean speeds during foggy weather 
conditions. Another VSL system that primarily aimed at addressing foggy conditions in Utah led 
to a reduction in the average standard deviation of vehicle speeds by 22 percent  (340). Rama and 
Schirokoff (338) found that a weather-responsive VSL system in Finland reduced crashes by 13 
percent during the winter and 2 percent during the summer and reduced the overall injury crash 
risk by 10 percent. In 2012, the U.S. Department of Transportation issued the “Guidelines for the 
Design of Wet Weather Variable Speed Limit Systems” (341) which provided guidance on the use 
of VSL systems in wet weather at locations where the operating speed exceeds the design speed 
and the stopping distance exceeds the available sight distance. The report recommended to take 
into account traffic volume, operating speeds, weather information, sight distance, and roadway 
surface condition when posted speed limits. 
A number of studies employed microsimulation approach for the development and evaluation of 
weather-responsive VSL. Buddemeyer et al. (342) developed a VSL control strategy based on 
speed and weather data collected on a segment of the Interstate-80 (I-80) corridor in Wyoming. 
The VSL control strategy was tested using a simulation of an actual storm event on the corridor. 
Results show that speed compliance increased from 64 percent to 79 percent with the new 
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recommended speed limit. Young et al. (343) and Sabawat and Young (344) pointed out that the 
primary purpose of weather-responsive VSL system is to reduce speed variation during winter 
storms because it provided drivers guidance as to an appropriate reduced speed. The authors 
developed a methodology to support speed posting decisions based on the real-time observed 
vehicle speeds and weather variables. Based on simulation, it was found that there was a 
significant increase in speed compliance and reduced speed variation with the implementation of 
automated control strategy. Kim et al. (345) developed and assessed a simulation framework to 
support weather-responsive traffic management (WRTM) strategies, including advisory and 
control variable message signs (VMSs). Various strategies are demonstrated with locally 
calibrated network simulation-assignment model capabilities. The analysis results illustrated the 
benefits of WRTM under inclement weather conditions. Li et al. (346) developed a VSL control 
strategy to reduce the risks of secondary collisions under adverse weather conditions. Based on 
microsimulation, the authors concluded that VSL reduced the risks of secondary collisions in 
terms of time-to-collision under various weather types. In comparison with weather conditions of 
rain and light fog, the safety benefits were more significant under moderate fog and snow 
weather conditions. Saha et al. (347) evaluated the effectiveness of VSL system on crash 
frequency in adverse weather conditions. Through a traditional safety analysis, the VSL system 
was found to be significant in reducing crashes. Choi and Oh (348) proposed a proactive VSL 
strategy that employed visibility distance, safe stopping distances, and average speeds to reduce 
the potential of crashes under fog weather conditions. Simulation results indicated that with VSL 
control, traffic conflicts reduced by approximately 19 and 27 percent under moderate and severe 
fog weather conditions, respectively. 

Microsimulation of VSL in a Connected Autonomous Vehicle Environment 
With the booming of Connected Vehicle (CV) technology, a number of studies have been 
conducted to investigate the potential of incorporating CV data in the development of VSL 
algorithms and assessing the benefits of VSL in a CV environment.  
Pisano (349) indicated the advantage of CV is that it is able to collect and transmit real-time 
weather information at precise locations. With these data, local transportation management 
center could assess, forecast, and determine the suitable speed limits to address the impacts of 
the prevailing weather on roads and vehicles. Later on, Hill (350) pointed out that the emergence 
of new sources of road weather information from CVs opens opportunities to dramatically 
enhance existing freeway management strategies, tools, and systems that are focused on the 
needs of the traffic and maintenance management community to respond to the impacts of 
adverse weather on the roadways. Hammit and Young (351) pointed out that for rural freeways, 
the real-time weather and roadway information obtained from CVs could benefit the 
development of VSL algorithms. While the standardization of CV data between different vehicle 
makes and models will be required when developing weather-responsive VSL algorithms. Li et 
al. (352) pointed out that the successful operation of VSL relies on drivers compliance to the 
displayed speed limits and their interaction with other vehicles. The authors explored ways to 
implement VSL under a mixed Connected Autonomous Vehicles (CAVs) and regular vehicles 
condition. It was assumed that CAVs automatically followed the displayed speed limits. 
Simulation results showed that when CAV penetration rate was high, vehicle speed well aligned 
with the displayed speed limit. Later on, another study made by Li et al. (353) developed control 
strategy of an integrated system of cooperative adaptive cruise control (CACC) VSL to reduce 
rear-end collision risks near freeway bottlenecks. A feedback control algorithm was then 
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developed for the proposed vehicle to infrastructure system of CACC and VSL. Simulation 
results indicated that the VSL control plays an important role in reducing rear-end collision risks 
when the penetration rate of CACC is low; the combination of CACC and VSL controls 
mitigates the negative effects of the mixed traffic flow of the manual and CACC vehicles. 
Paikari et al. (354) explored a low-cost modeling approach to provide guidelines for improving 
safety and mobility on freeways, specifically by using advisory speed and re-routing guidance in 
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) systems. The study tested fifteen 
scenarios differentiated by the V2V percentage penetration (0 percent, 10 percent, 20 percent, 30 
percent, and 40 percent ), and demand loading (60 percent, 80 percent, and 100 percent ) 
implicitly representing peak and off-peak traffic, the study demonstrated that CV technology can 
enhance traffic safety on freeways, if the percentage of CVs is significant (e.g. 30-40 percent ) 
and when it is accompanied by advisory speed reflected on VMSs not only upstream but also 
downstream of the incident location. Grumert et al. (355) studied the potential benefits of 
introducing infrastructure-to-vehicle (I2V) communication, autonomous vehicle control, and 
individualized speed limits in VSL systems. Communication between infrastructure and vehicles 
was used to transmit variable speed limits to upstream vehicles before the VSL signs were 
visible to the drivers. Microsimulation was employed to evaluate the performance of the I2V-
based VSL system. Results showed that the I2V-based VSL system systems resulted in lower 
acceleration rates and thereby harmonized traffic flow. Khondaker and Kattan (356) employed 
microsimulation approach and used Time-to-Collision (TTC) as a Surrogate Measure of Safety 
(SMoS) to assess the safety benefits of VSL in a CV environment. Real-time driver compliance 
to the posted speed limit was used to adjust the optimal speed limits. It was concluded that with 
100 percent CV penetration rate, VSL resulted in up to 11 percent of safety improvements. A 
comprehensive simulation framework to model driver behavior in a connected driving 
environment was presented by Talebpour et al. (357). The framework consists of a microscopic 
traffic simulator integrated with a discrete-event communications network simulator, Network 
Simulator 3, forms a basis for exploration of the properties of the resulting traffic systems and 
assessment of the system-level impacts of the CV technology. Furthermore, the connectivity of a 
vehicle-to-vehicle and vehicle-to-infrastructure communications network was investigated with 
the FHWA Next Generation Simulation: US-101 Highway dataset. Smith and Razo (358) have 
established a methodology to develop a regional traffic microsimulation model. The 
methodology includes the following steps: (a) converted the existing network planning model for 
the Ann Arbor area to a regional microsimulation model, (b) developed a method to identify the 
numbers, origins, and destinations of trips using equipped vehicles, and (c) developed post-
processing code to track all equipped vehicles from the second-by-second microsimulation 
vehicle snapshot data and to identify interactions between equipped vehicles. Wang et al. (359) 
designed and tested a VSL control system that connected a traffic controller with in-vehicle 
controllers via vehicle-to-infrastructure communication. The link-level traffic controller 
regulates traffic speeds through VSL. The effectiveness of the connected VSL control was tested 
with simulation on a two-lane freeway stretch with connected vehicles randomly distributed 
among regular vehicles. Simulation shows that the connected VSL and vehicle control system 
improves traffic efficiency and sustainability. Li et al. (360) developed an I2V integrated system 
that incorporated VSL and Adaptive Cruise Control (ACC) system to reduce rear-end collision 
on freeways. Simulation results indicated that the proposed method reduced the potential rear-
end collisions by up to 77.3 percent. Grumert, and Tapani (361) indicated that the real-time 
speed and location information from CV provided detailed information about the traffic state, 
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which has the potential to identify bottlenecks on a freeway and adjust speed limits. A recent 
study presented a thorough microscopic simulation investigation of a recently proposed 
methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both 
connected and conventional vehicles, which employs only speed measurements stemming from 
connected vehicles and a limited number (sufficient to guarantee observability) of flow 
measurements from spot sensors (362). The estimation scheme is tested using the commercial 
traffic simulator AIMSUN under various penetration rates of connected vehicles, employing a 
traffic scenario that features congested as well as free-flow conditions. Rahman et al. (363) 
evaluated the effectiveness of CV technologies in adverse visibility conditions using VISSIM 
microsimulation model. This study analyzed two types of CV approaches:  CVs without 
platooning (CVWPL) and connected vehicles with platooning (CVPL). Simulation results 
showed that both CV approaches improved safety significantly in fog conditions, particularly 
when market penetration rate of CV was greater than 30 percent. Generally speaking, both safety 
and mobility benefits of CVPL significantly outperformed CVWPL when market penetration 
rates were equal to or higher than 50 percent. 

Microsimulation and Surrogate Measure of Safety 
Using microsimulation for safety evaluation, the most commonly used method is the Surrogate 
Safety Assessment Model (SSAM), which was first introduced by Gettman et al. (364, 365). One 
of the advancements of the traffic conflict techniques combined with the micro-simulation is that 
it offers an innovative way of conducting safety assessment of traffic systems even before safety 
improvements are actually implemented. After the conception of Surrogate Measure of Safety 
(SMoS) was proposed, several researches were conducted to validate the simulation traffic 
conflicts using SMoS. Among various surrogate measures of safety used in the literature, time-
to-collision (TTC) was found to be an efficient surrogate safety measure. Ozbay et al. (366) 
developed and validated an analytically derived Crash Index (CI) and Modified Time-to-
Collision (MTTC) as new safety indicators based on the extension of the traditional TTC safety 
index. Preliminary results indicate that there was a strong relationship between the proposed 
surrogate safety measures and real accident data. Dijkstra et al. (367) found that there is a 
quantitative relationship between the detected conflicts at intersections in the PARAMICS 
microsimulation model and recorded crashes at the same locations in the real world. The number 
of conflicts at intersections and the number of passing motor vehicles appeared to be statistically 
related to the number of observed crashes for all the intersections. Huang et al. (368) compared 
the conflicts generated by the VISSIM simulation model and identified by SSAM to the traffic 
conflicts measured at ten signalized intersections in China. Similarly, Essa and Sayed (369) 
investigated the relationship between field-measured and simulated conflicts at an urban 
signalized intersection in Canada. Results from both studies showed that there was a reasonable 
goodness-of-fit between the simulated and the observed conflicts, and both researches 
highlighted the importance of the calibration of VISSIM model to match the existing traffic 
conditions and the actual driver behavior parameters. Young et al. (370) summarized the 
developments of road safety simulation models and proposed new research areas to direct the 
further work of simulating safety. The suggested developments mainly include: using crash as 
the measure of performance; investigate the theory behind driver behavior in crashes; present a 
more detailed representation of the vehicle and conflict situations, and a generalization of the 
models to look at more crash and vehicle types. 
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To date, there has been a number of studies that adopted surrogate measure of safety and SSAM 
for traffic safety assessment. Habtemichael and Santos (371) employed VISSIM and SSAM 
simulation models to assess the safety benefits of VSL under various traffic conditions and driver 
compliance levels. It was found that the safety benefits were highest during highly congested 
conditions and a higher compliance level led to more significant benefits. Fan et al. (372) 
developed a procedure that using VISSIM and SSAM for safety assessment at freeway merge 
areas. The authors employed a two-stage procedure to calibrate and validate the VISSIM 
simulation models. Data analysis results from Linear regression models and the Spearman rank 
correlation coefficient indicated that there was a reasonable consistency between the simulated 
and the observed conflicts. Olia et al. (373) attempted to quantify potential safety benefits of 
deploying a Connected Vehicle system through microscopic traffic simulation modeling. 
PARAMICS was used to model Connected Vehicles, construction zones, and incidents 
associated with work zones. The result of this research clearly demonstrates the effectiveness of 
Connected Vehicle systems to improve network safety. The percentage of Connected Vehicles 
within the network is the most significant factor to increase network safety and can be explained 
by re-routing to alternate routes and increased driver awareness with improvements of up to 50 
percent in network safety. Another study evaluated the impact of connected vehicle on work 
zone safety (374). A dynamic route guidance system ,based on decaying average-travel-time and 
shortest path routing, was developed and tested in a microscopic traffic simulation environment 
to avoid routes with work zones. To account for the unpredictable behavior and psychology of 
driver’s response to information, three behavior models, in the form of multinomial distributions, 
are proposed and studied in this research. The surrogate safety measure improved Time to 
Collision was used to gauge network safety at various market penetrations of connected vehicles. 
Results show that higher market penetrations of connected vehicles decrease network safety due 
to increased average travel distance, while the safest conditions, 5 percent -10 percent reduction 
in critical Time to Collision events, were observed at market penetrations of 20 percent -40 
percent connected vehicle, with network safety strongly influenced by behavior model. Genders 
and Raviza (375) evaluated the potential safety benefits of deploying a connected vehicle system 
on a traffic network in the presence of a work zone. The modeled connected vehicle system in 
the study uses vehicle-to-vehicle (V2V) communication to share information about work zone 
links and link travel times. Vehicles which receive work zone information will also modify their 
driving behavior by increasing awareness and decreasing aggressiveness. Traffic 
microsimulation software was used to model the network and a C plugin was developed to 
implement connected vehicle in the simulation. The surrogate safety measure improved time to 
collision (TTC) is used to assess the safety of the network. Various market penetrations of 
connected vehicles were utilized along with three different behavior models to account for the 
uncertainty in driver response to connected vehicle information. The results show that network 
safety is strongly correlated with the behavior model used; conservative models yield 
conservative changes in network safety. The results also show that market penetrations of 
connected vehicles under 40 percent contribute to a safer traffic network, while market 
penetrations above 40 percent decrease network safety. The decrease in safety when rerouting 
more than 40 percent of traffic on a work zone is attributed to longer average trip distances 
(375). This also could be explained by the fact that more traffic will be diverted to other alternate 
routes resulting in more exposure to higher traffic volumes and increased crash risks. Fyfe and 
Sayed (376) combined VISSIM and SSAM with the application of the cumulative travel time 
(CTT) algorithm to evaluate the safety under CV environment. The study showed a 40 percent 
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reduction of rear-end conflict frequency at a signalized intersection with the application of CV. 
Abdel-Aty and Wang (377) tested several variable speed limit (VSL) strategies in a well-
calibrated and validated microsimulation (VISSIM). The crash odds were calculated based on a 
real-time safety analysis model for weaving segments, and the conflicts were obtained by 
processing VISSIM vehicle trajectory file in the Surrogate Safety Assessment Model (SSAM). 
The results showed that both the location and the speed value of VSL were important. The VSL 
installed at the upstream of the weaving segment better enhanced the safety than the VSL set at 
downstream. Hence, the reduction of upstream speed is the key to improve the safety of weaving 
segment. Furthermore, lower upstream variable speed limit would better improve the safety of 
the whole weaving segment. Li et al. (353) developed a microsimulation testbed to assess the 
safety benefits of an integrated system of cooperative adaptive cruise control (CACC) and 
variable speed limit (VSL); surrogate safety measures of the time exposed time-to-collision 
(TET) and time integrated time-to-collision (TIT) were used. The simulation results showed that 
the proposed integration system with 100 percent  CACC penetration rate can reduce the rear-
end collision risks effectively, with the TIT and TET declined by 98 percent . Rahman et al. 
(363) employed the standard deviation of speed, the standard deviation of headway, and rear-end 
crash risk index (RCRI) as surrogate measures of safety in a microsimulation environment to 
assess the safety effectiveness of CV technologies. Simulation results indicated that CV 
improved traffic safety significantly in fog conditions as market penetration rates of CV increase. 
In addition to the microsimulation based analysis of SMoS, Peng et al. (378) employed time-to-
collision, speed variance and headway variance as surrogate measures of safety to assess the 
impact of reduced visibility on traffic crash risk based on field collected microscopic traffic flow 
data. Log-Inverse Gaussian regression modeling was used to explore the relationship between 
time-to-collision and visibility together with other traffic parameters. It was concluded that 
reduced visibility would significantly increase the traffic crash risk especially rear-end crashes 
and the impact on crash risk was different for different vehicle types and for different lanes. 

Tools Available and Data Needed for VSL microsimulation 
In summary, findings from several representative research revealed that safety benefits of 
freeway countermeasure, including VSL, were mostly stemmed from speed harmonization and 
reductions in speed variance. The emerging connected and autonomous vehicle technologies 
create opportunities to collect real-time road weather and traffic information, which has the 
possibility to dramatically enhance existing freeway management strategies, tools, and systems. 
Also, a well-calibrated microsimulation model will be a useful tool in analyzing the mobility and 
safety of various traffic systems. A number of simulation tools have been used for safety 
simulation, including but not limited to VISSIM, PARAMICS, AIMSUM, MATLAB, and 
SSAM, etc., as well as driving simulators. Tools and data used for microsimulation study from 
previous research works are summarized in Table 54. 
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Table 54 Tools and Data Used for Microsimulation of VSL 
Reference Tool(s) for 

Simulation 
Data used for Simulation Measure of Performance  

Lee et al., 2013, (333) VISSIM 
Speed, Traffic Volume, 
Driver Behavior, Driver 
Compliance 

Travel Time 

Habtemichael and Santos, 
2013, (371) VISSIM, SSAM Traffic Flow, Driver 

Compliance Level 
Travel Time, 
Traffic Conflict 

Sabawat and Young, 
2013, (344) N/A Weather, Speed, Traffic 

volume 
Speed Compliance and 
Speed Variation 

Li, Z. et al., 2014, (346) MATLAB Accel/Decel, Driver 
Behavior, Weather SMoS (TET, TIT) 

Grumert et al, 2015, 
(355)* 

SUMO – 
Simulation of 
Urban MObility, 
CMEM 

Accel/Decel, Driver 
Imperfection, Reaction, 
Headway, Vehicle Length 

Speed Harmonization, 
Emission 

Hadiuzzaman et al., 2015, 
(334) 

VISSIM, 
MATLAB 

Traffic Density Dynamics, 
Speed Dynamics, Driver 
Compliance Level 

Travel Time, Throughput 
Collision Probability, Speed 
Variance 

Khondaker and Kattan, 
2015, (356)* 

VISSIM, 
MATLAB, VT-
Micro 

Traffic Flow, Density, 
Speed, Driver Compliance 

Total Travel Time, 
SMoS (Time-To-Collision) 
Fuel Consumption 

Kim et al., 2015, (345) 
TrEPS (Traffic 
Estimation and 
Prediction System) 

Weather, Traffic Flow, O-D 
Pattern, Driver Reaction and 
Behavior 

Travel Time 

Muller et al., 2015, (335) AIMSUN Acceleration, Reaction 
Time, Speed, Traffic Flow Travel Time 

Choi and Oh, 2016, (348) VISSIM  Weather, Visibility, Speed, 
Traffic Flow 

S.D. of Speed, Traffic 
Conflict 

Li, Y. et al., 2016, (352)* MATLAB Traffic Flow, Headway, 
Speed Change Rate 

SMoS (TET- Time Exposed 
To Collision, and TIT – 
Time Integrated Time To 
Collision), 
Travel Time 

Wang et al., 2016, (359)* MOTUS, 
MATLAB 

Traffic Flow, Speed, Driver 
Behavior, Penetration Rate 

Travel Time, 
Fuel Consumption 

Abdel-Aty and Wang, 
2017, (377)  VISSIM , SSAM Crash, Traffic, Weather, 

Geometry 
Crash Odds, Traffic 
Conflicts 

Conran, 2017, (337) VISSIM, 
MATLAB 

Driver Compliance, Driver 
Behavior 

Coefficient Of Variation of 
Speed, Travel Time 

Grumert and Tapani, 
2017, (361)* SUMO Speed And Position of Each 

CV Travel Time 

Li, D. et al., 2018, (360) AISUN 
Drive Compliance, Speed, 
Driver Behavior, Penetration 
Rate of Cavs 

Speed And Speed Difference 

Li, Y. et al., 2017, (353)* MATLAB 
Traffic Flow, Speed, 
Accel/Decel, Headway, 
Penetration of CV 

TIT, TET, 
Travel Time 

Sadat and Celikouglu, 
2017, (336) 

VISSIM, 
MATLAB 

Traffic Flow, Speed, Driver 
Compliance Level 

Traffic Volume, Average 
Speed and Occupancy, 
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Reference Tool(s) for 
Simulation 

Data used for Simulation Measure of Performance  

Travel Time, Fuel 
Consumption, Emission 

Rahman et al., 2018, 
(363)* VISSIM 

Weather, Traffic Flow, 
Driver Behavior, CV 
Penetration Rate 

Smos (S.D. of Speed, S.D. 
of Headway, Rear-End 
Crash Risk Index (RCRI)) 

Yang et al.,2019, (379)* Driving Simulator Truck Driver Behavior, 
Weather, CV-VSL Warnings 

Comparisons of Participants’ 
Speeds under Baseline and 
CV Scenarios 

Yang et al., 2020, (380)* Driving Simulator 

CV Pilot’s Traveler 
Information Messages 
(TIMs), Driver Behavior, 
Weather, Road Surface 

SMoS (TTC, Modified 
Deceleration to Avoid Crash 
(MDRAC)) 

Yang et al., 2020, (381)* VISSIM, Driving 
Simulator, SSAM 

Traffic Flow, Driver 
Behavior, SHRP 2, 
Penetration of CV 

TTC 

Ahmed et al., 2020, 
(382)* Driving Simulator 

Survey Response, Human–
Machine Interface (HMI),  
Weather, CV Applications 

Effectiveness of CV 
Technology 

Subedi et al., 2020, (383)* Driving Simulator 

Driver Behavior of Highway 
Patrol Troopers, TIMs, 
Forward Collision Warning, 
Spot Weather Warnings, 
Work Zone Warnings 

Evaluation of E-Training, 
Evaluation of Driving 
Simulator Training 

Yang et al., 2020, (384)* Driving Simulator 
Truck Driver Behavior, 
Driver Preference Survey, 
Vehicle Dynamics  

Effectiveness of CV 
Warnings 

Raddaoui et al., 2020, 
(385)* Driving Simulator 

Driver Behavior of Truck 
Drivers, Weather, Work 
Zones 

Effectiveness of CV 
Weather and Work 
Zone Warnings 

Raddaoui et al., 2020, 
(386)* Driving Simulator 

Eye Glance 
Behavior of Truck Drivers, 
Weather, Work Zones  

Comparison of the 
Visual/Cognitive Workload 
Demands of the CV 
Applications, Effects of 
Exposure to the CV 
Warnings on Participants’ 
Visual/Cognitive Workload 

Bakhshi et al., 2021, 
(387)* Driving Simulator 

Truck Driver Behavior, 
Vehicle Dynamics form 
Driving Simulator 

Kinematic-based Surrogate 
Measures of Safety (K-
SMoS), including deviation 
from the pathway, 
instantaneous acceleration, 
lateral speed, and steering 
angle. 

Gaweesh et al., 2021, 
(387)* Driving Simulator 

Truck Driver Behavior, 
Vehicle Dynamics form 
Driving Simulator 

Longitudinal Speed, Lateral 
Speed, Longitudinal 
Acceleration, Lateral 
Acceleration, Steering 
Angle, Pitch, Roll, Yaw 

Adomah et al., 2021, 
(388)* 

VISSIM, Driving 
Simulator, SSAM 

Driver Behavior, Weather, 
CV Work Zone Warning 

SMoS (TTC, TET, TIT, 
MDRAC) 

Bakhshi and Ahmed, 
2021, (389)* Driving Simulator Driver Behavior, CV Work 

Zone Warning 
TTC, Four hierarchical 
Negative Binomial 
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Reference Tool(s) for 
Simulation 

Data used for Simulation Measure of Performance  

Regressions Under Bayesian 
Inference 

Note: * Connected Vehicle Environment 

Data Processing 
Development of Weather-based Microsimulation Model 
Reliable and systematic data processing procedures are crucial when handling large datasets; the 
quality of even the most novel analysis is limited by the quality of the provided input data. The 
WYDOT SHRP2 NDS dataset comprises 1,284 trips (i.e., equivalent to 1,212h of driving data). 
In the SHRP2 NDS, a trip is defined by a single driving event captured continuously from a 
vehicle start (i.e., activation of the DAS) until the vehicle is turned off. To evaluate car-following 
behavior, the authors developed a radar-vision algorithm to identify the presence of a preceding 
or lead vehicle from the SHRP2 NDS post-processed radar data. Details about the formulation 
and verification of this radar-vision algorithm can be found in Hammit et al. (390). After 
processing each of the trips through the radar-vision algorithm to identify continuous segments 
of car-following, a moving average filter with a window size of 1.4s was applied to the radar 
range rate, that is, relative velocity, to smooth the resulting measurements. The window size was 
identified from a sensitivity analysis, as it provided optimal smoothing while maintaining the 
original data trends. 
To evaluate car-following behavioral changes between different weather conditions, each 
adverse weather trip was manually clustered based on the most prevalent weather conditions 
observed in the front-facing video feed. Detailed descriptions of each cluster were clearly 
defined and a single video reviewer performed all observations to reduce bias in the manual 
processing (89). Trips with missing radar data or other erroneous values were removed, which 
resulted in 1,206 trips, as summarized in Table 1. The number of trips classified in each 
condition are provided, alongside their average total driving time, average driving time while 
influenced by a leading vehicle (i.e., car following), and the average travel speed during these 
periods of car-following behavior. A significantly greater distribution of weather intensity was 
observed in precipitation, specifically trips in rain conditions, therefore, these trips were further 
separated into categories: very light rain, light rain, moderately heavy rain, and heavy rain. These 
categories were defined by a review of the available data and by referencing existing 
classifications of rain, such as those provided in the HCM. Fog and snow conditions were 
identified to be more homogeneous than rain; however, larger datasets with greater exposure to 
these conditions would enable more detailed categorization. 

Microsimulation of Variable Speed Limit 
During VISSIM calibration stage, the VISSIM simulation models will be calibrated to reproduce 
performance measures collected by WYDOT’s Wavetronix speed sensors and RWIS sensors. 
The key traffic performance data used for model calibration are 2-min traffic volume counts and 
spot speed at each speed sensor. Based on the available dataset, traffic performance data from 
two speed sensors were selected: Sensor #2146 (nearest RWIS sensor: WY28) and Sensor #2178 
(nearest RWIS sensor: KVDW). In VISSIM model, data collection points were added at the 
same location to report the simulated traffic flow and speed data. Locations of the speed and 
RWIS sensors and VISSIM data collection points are illustrated in Figure 96. 
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Figure 96 Location of Data Collection Points in VISSIM (Source: WYDOT) 

Methodology  
Development of Weather-based Microsimulation Model 
Optimal Car-Following Model Parameter Sets 
This analysis uses the W99 car-following model, as it is one of the two car following models 
available in PTV’s VISSIM microsimulation software which is widely used in research and 
practice (391). The W99 model was selected over the W74 model as its use is recommended for 
freeway facilities. Limited documentation is available for this model; however, the fundamental 
logic was gathered from the original source code (392) and Liu’s W99 Demo source code (393). 
The W99 model is a psychophysical car-following model derived to predict a driver’s response 
(i.e., their acceleration) to leading vehicles at varying perception thresholds. The model contains 
four regimes which capture different car-following behavior in free flow, approaching, 
following, and danger zones. These regimes are defined in the psychophysical plane, which 
describes the relationship between the following distance and relative speed between an ego-
vehicle and its preceding or leading vehicle (shown in Figure 97). A driver enters a regime by 
passing through a defined perception threshold (i.e., SDXC, SDXO, SDVC, SDVO, and SDXV) 
which indicates a shift in how the driver perceives his or her relationship with the leading 
vehicle. In accordance with this perception, different acceleration response equations are used to 
predict the ego-vehicle’s (i.e., following vehicle) response in each regime. The model is 
calibrated by tuning 11 parameters which dictate the placement of the regime thresholds and the 
produced acceleration behavior. 
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Figure 97 Wiedemann 1999 Car-Following Model Psychophysical Plane Regime Diagram.  

Numerous research groups have calibrated car following models using trajectory-level driving 
data (137, 311, 313–315, 328). A calibration optimization problem was developed through a 
synthesis of best practices found in the literature. In this paper, the model parameters were 
calibrated using the leader–follower driving trajectories from the SHRP2 NDS. The W99 model 
logic was used to predict the behavior of the following vehicle, and the resulting trajectory was 
compared with the actual trajectory by measuring the root mean squared error (RMSE) between 
the two following distance profiles. The optimization problem was designed to calibrate the W99 
model parameters using a genetic algorithm in which the average RMSE of all leader–follower 
trajectories extracted from a single trip is minimized. Additional details related to the identified 
best practices and calibration implementation can be found in Hammit et al. (394). Using this 
calibration protocol, each individual NDS trip is calibrated, and optimal car-following model 
parameters are collected. 
Concurrent research conducted by the authors considers various methodologies for selecting 
optimal car following parameter values to describe a set of SHRP2 NDS trips from a specific 
driver population or driving condition. Details about these methodologies will be available in 
James and Hammit (395), where a methodology is identified for obtaining a representative 
parameter set for a specific driving condition which achieves reasonable validation results while 
balancing practical implementation challenges; specifically for W99, it was recommended to 
sample the median value from each parameter independently. This sampling methodology was 
verified as the method that achieved the lowest error estimate, subject to computation 
constraints, using a 10-fold cross-validation procedure. Using this procedure, optimal car-
following parameter values are presented for each weather condition and discussed based on 
their defined physical interpretation. 
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Comparison of Predicted and Expected Network-Wide Impacts Using Optimal Car-
Following Model Parameter Sets 
The next task applies the optimal W99 car following model parameter values—attained by the 
first analysis—in PTV’s VISSIM microsimulation software and evaluates their performance on a 
simple freeway weaving segment (taken from the HCM). The freeway weaving segment is 
illustrated in Figure 98, and includes four lanes in one direction with three on-ramps and three 
off-ramps. A demand profile with increasing input volumes at each of the four inlet positions 
(denoted as A, B, C, and D in Figure 98) was used to load the network over a one-hour simulated 
time period. Data were then collected at 20-s time intervals to extrapolate networkwide 
fundamental diagrams, describing the speed, density, and flow rate throughout the network. 

  
Figure 98 Simple Freeway Weaving Segment Constructed in VISSIM to Assess Calibrated 

Parameter Sets Representing Different Weather Conditions 
In practice, when generating a microsimulation model, driving behavior is typically the last 
priority, as the development of the roadway configuration and appropriate representation of 
travel demand is extremely time intensive. In this analysis, however, all other simulation 
variables are held constant, and the driving behavior is modified to reflect the calibrated results 
from the SHRP2 NDS data in each weather condition. In the W99 model, 11 parameters are 
calibrated. The first ten values—CC0 through CC9—can be adjusted directly in VISSIM, as 
shown in Figure 99. The final calibrated parameter represents the desired travel speed. For the 
purpose of this analysis, the desired travel speed was associated with the 85th percentile free 
flow speed and the desired speed distribution in VISSIM was adjusted accordingly. Figure 100 
shows the methodology used to construct the desired speed distribution, assigning the calibrated 
desired speed value as the free flow speed. 
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Figure 99  Snapshot of Driving Behavior Parameter Set in VISSIM 

 
Figure 100  Snapshot of Desired Speed Distribution Graphical User Interfaces in VISSIM   

Using this methodology, the VISSIM simulation model is created for each weather condition and 
data from each run were collected to compile fundamental diagrams representing network-wide 
traffic flow in each weather condition. 

Microsimulation of Variable Speed Limit 
Adjustment of VISSIM Parameters 
The desired speed distribution has been updated based on the finding from the speed selection 
behavior investigation, as already described in Chapter 2. It was found that speeds followed 
normal distribution in clear weather and Weibull distribution in adverse weather. The range of 
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the speed distribution, i.e., the minimum and maximum speed in a particular weather condition 
were selected based on the spot speed data from WYDOT’s Wavetronix detectors. Considering 
the input requirement of VISSIM, cumulative speed distribution curves were generated based on 
the above-mentioned distributions and used for the microsimulation modeling instead of using 
the default VISSIM speed distribution, as shown in Figure 101.   

 
 Figure 101 Adjusted Cumulative Speed Distribution 

In VISSIM microsimulation the weather and traffic conditions are represented via various driver 
behavioral models, such as look-ahead distance, desired following gap, and desired velocity. 
However, parameters in driver behavior models cannot be linked to weather and road surface 
conditions directly. Therefore, driver behavior parameters should be calibrated based on different 
weather conditions to represent real-world driving behavior. The research team calibrated 10 car-
following parameters for different weather conditions, as shown in Table 55. 

Table 55 Calibrated Car-Following Parameters for Different Weather Conditions 

 
The definitions of CC0 through CC9 are as follows (396): 
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CC0 (Standstill Distance) defines the desired rear-bumper to front-bumper distance (feet) 
between stopped vehicles. 
CC1 (Headway Time) defines the gap (seconds) which a driver wants to maintain at a certain 
speed. The higher the value, the more cautious the driver is. 
CC2 (Following Variation) defines the longitudinal oscillation during following conditions. It 
defines the additional distance (feet) from the desired safety distance a driver allows before he 
intentionally moves closer to the car in front. 
CC3 (threshold for entering following) defines the start (in seconds) of the deceleration process, 
i.e., the time in seconds, when the driver recognizes a slower moving preceding vehicle, and 
starts to decelerate. 
CC4 (negative following threshold) and CC5 (positive following threshold) define the speed 
difference (in m/s) during the following process. CC4 controls speed differences during closing 
process, and CC5 controls speed differences in an opening process. 
CC6 (speed dependency of oscillation) defines the influence of distance on speed oscillation 
during following condition. 
CC7 (oscillation acceleration) defines the actual acceleration during oscillation in a following 
process. 
CC8 (standstill acceleration) defines the desired acceleration when starting from a standstill. 
CC9 (acceleration at 80 km/h) defines the desired acceleration when at 80km/h. However, it is 
limited by maximum acceleration for the vehicle type. 
In addition to car following parameters, the research team also calibrated the default lane change 
parameters in VISSIM. The parameters were calibrated based on the trajectory SHRP2 time 
series data and associated lane change events, as well as engineering judgments. Note that the 
lane change events were identified based on an automated algorithm developed by the research 
team. More details of the algorithm can be found in (235). VISSIM classified the lane changes 
into two categories: necessary lane change and free lane change. In VISSIM, necessary lane 
change is described by the following most important parameter:   

• Maximum Deceleration (Own/Trailing): Refers to the upper bound of deceleration for 
own vehicle and tailing vehicle for a lane change. 

• Accepted Deceleration (Own/Trailing): Refers to the lower bound of deceleration for 
own vehicle and tailing vehicle for a lane change. 

However, for free lane changes the following most important parameters are used in VISSIM. 

• Minimum Headway (Front/Rear): The minimum distance between two vehicles that must 
be available after a lane change, so that the change can take place.  

• Safety Distance Reduction Factor: During the lane change Vissim reduces the safety 
distance to the value that results from the multiplication between original safety distance 
and safety distance reduction factor.  

• Maximum Deceleration for Cooperative Breaking: Refers to cooperative deceleration of a 
trailing vehicle that allows an own vehicle to change lanes. 

The calibrated necessary and free lane change parameters in VISSIM for own vehicle and 
trailing vehicle are presented in Table 56 and Table 57, respectively. 
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Table 56 Calibrated Necessary Lane Change Parameters for Own Vehicle and Trailing 
Vehicle 

 
Table 57 Calibrated Free Lane Change Parameters 

 
Model Calibration and Validation 
After running the simulation using the calibrated parameters, simulation results were compared 
against field observed data to check the errors between simulation inputs and outputs. One 
reliable measure to compare traffic volume inputs and outputs is the Geoffrey E. Havers (GEH) 
statistics that can be described using the following equation (381). 

𝐺𝐺𝐺𝐺𝐺𝐺 = �2(𝑀𝑀−𝐿𝐿)2

(𝑀𝑀+𝐿𝐿)
         Equation 36 

Where: 
M = hourly traffic volume output from the simulation model (vph) 
C = real-world hourly traffic volume input (vph) 
To determine if an acceptable fit is achieved, this report employed the GEH interpretation guide 
presented in Table 58 (381). The GEH test results using the updated parameters for all sensor 
locations were found to be within an acceptable range indicating that the microsimulation models 
were calibrated successfully.  

Table 58 GEH Interpretation Guide 
GEH Statistic Result  Reference 

GEH < 5.0  Acceptable fit 
5.0 <= GEH <= 10.0  Caution: possible model error or bad data 

GEH>10.0  Unacceptable 
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Safety Evaluation Using SSAM 
During the VISSIM simulation, the default settings were modified to generate the vehicle 
trajectory files for each simulation run. Note that it is not possible to evaluate traffic safety 
within VISSIM. Therefore, Surrogate Safety Assessment Model (SSAM) software was used. The 
generated vehicle trajectory data were processed in SSAM for identifying the simulated 
conflicts. Although SSAM can provide various SMoSs, including TTC, Post Enchroachment 
Time (PET), etc., the research team assessed the safety performance of VSL using TTC 
considering its applicability in rural freeway corridors. TTC is defined as the time required for 
two vehicles to collide if they continue at their present speeds on the same path, as shown in the 
following equation (381). 

𝑇𝑇𝑇𝑇𝐺𝐺 = �
𝐷𝐷1−2
𝐿𝐿2−𝐿𝐿1

, 𝑙𝑙𝐼𝐼 𝐺𝐺2 > 𝐺𝐺1 

∞,𝑂𝑂𝑙𝑙ℎ𝑅𝑅𝐴𝐴𝑒𝑒𝑙𝑙𝑃𝑃𝐴𝐴
        Equation 37 

Where 𝐷𝐷1−2 represents the gap distance between the leading and the following vehicle, 𝐺𝐺1 and 𝐺𝐺2 
are the speeds of the leading and following vehicles, respectively.  

Results and Discussions 
Development of Weather Based Microsimulation Model 
As described in the Methodology section, calibrated W99 parameters were produced with each 
trip and descriptive parameter sets representing each weather condition were collected by taking 
the median value from the distribution of calibrated parameter values. The calibrated parameters 
for the W99 car-following model are shown in Table 59. 
The calibrated parameters for each weather condition are described in Figure 102 through 
Figure 107. The most well-known parameters tuned in the W99 model are CC0 and CC1. 
Combined, these parameters represent the average following distance the ego-vehicle attempts 
to maintain throughout the following segment. Typically, these values are adjusted 
independently; however, their relationship with one another and the vehicle’s travel speed are 
critical for understanding their impact on the resulting driving behavior. Figure 102 illustrates 
the average following distance for each weather condition derived from the CC0, CC1, and 
desired travel speed parameters. As shown, the shortest standstill distance is reported for snow 
conditions; however, its average following distance is the largest. The calibrated results 
indicate that the average following distance for moderate rain and heavy rain conditions are 
slightly shorter or the same as in clear conditions, while the average following distance in fog, 
very light rain, and light rain are slightly higher. 
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Table 59 Calibrated Model Parameters 

 

 
Figure 102 Investigation of Calibrated CC0, CC1, and Desired Velocity Parameters from 

W99 
Figure 103 illustrates the minimum, average, and maximum following distance for each 
condition using the aforementioned average following distance and the following variation or 
maximum drift threshold (CC2). This drift defines the height of the following regime illustrated 
in Figure 97 by the SDXC and SDXO thresholds. These values can be interpreted as the largest 
and smallest following distances which a driver subconsciously aims to maintain while following 
a leading vehicle. Once these thresholds are passed and the ego-vehicle enters a new regime, 
different acceleration equations are used. 



 

185 
 

 
Figure 103 Investigation of Calibrated CC1, Desired Velocity, and CC2 Parameters from 

W99 
The widest drift was calibrated for very light rain and moderate rain conditions, and the smallest 
drift is seen in light rain and snow conditions. The largest maximum following distance is 
associated with fog conditions, and the smallest minimum following distance is attributed to 
moderate rain conditions. While the trends illustrated by the maximum and minimum following 
distances are similar to the computed average following distance is shown in Figure 102, their 
subtle differences reinforce the relationship between CC0, CC1, CC2, and the current travel 
speed in defining perception thresholds surrounding the following regime. 
Figure 104 shows CC4 and CC5 parameter values, the negative and positive following 
thresholds, respectively. These parameters are used in computing the SDVC and SDVO 
thresholds shown in Figure 97; the parameters describe the range of relative velocity values a 
driver subconsciously aims to stay within while following a lead vehicle. The larger the absolute 
value of the following threshold, the greater the acceptable difference in relative velocity. The 
positive following threshold dictates how quickly the ego-vehicle reacts when separating from 
the lead vehicle; conversely, the negative following threshold dictates how quickly the ego-
vehicle reacts when approaching the lead vehicle. The results clearly indicate that in all scenarios 
drivers react much faster when gaining speed on the lead vehicle than they do when falling 
behind from the lead vehicle. The calibration results indicate that in fog, very light rain, and 
heavy rain conditions, drivers’ subconscious following behavior allowed for longer periods of 
separation, while drivers traveling in snow conditions reacted much more quickly. Conversely, 
the fastest reaction to approaching a leading vehicle is seen for clear, fog, and light rain 
conditions, followed closely by the remaining weather conditions. 
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Figure 104 Investigation of Calibrated CC4 and CC5 Parameters from W99. 

Figure 105 presents the calibration results from CC6, speed dependency of oscillation. This 
parameter is used in conjunction with CC4 and CC5 to compute the SDVC and SDVO 
thresholds shown in Figure 97. One key aspect of psychophysical car-following models is the 
observation of oscillating subconscious behavior made visible in the psychophysical plane. This 
behavior is hypothesized to occur within the car-following regime, as defined by the 
aforementioned thresholds; however, the magnitude of this oscillation is dependent on the CC6 
parameter; a larger magnitude represents wider oscillation, while a smaller magnitude represents 
narrower oscillation. The findings indicate that the narrowest range of oscillatory behavior is 
attributed to light and moderate rain conditions, while the widest range is associated with heavy 
rain conditions. Similar to the complex relationship exhibited between parameters defining 
following distance thresholds, the relationship between CC4, CC5, and CC6 is equally complex 
and difficult to interpret individually. 

 
Figure 105 Calibration Outputs from CC6 

Figure 106 illustrates the calibrated values for CC3, the threshold for entering. This parameter is 
used in the computation of the perception threshold SDXV separating the free flow and 
approaching regimes in Figure 97; it is a parameter representing when a vehicle ‘‘enters’’ the 
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approaching regime and begins to adjust its response in reaction to the lead vehicle. As the 
magnitude of the CC3 parameter decreases, the perception-reaction threshold for approaching a 
lead vehicle increases. Therefore, since the minimum threshold for entering is seen in snow 
conditions, this means that a driver traveling in snow conditions perceives and reacts to the 
leading vehicle more quickly than in the other conditions. The largest entering threshold, 
representing the slowest perception-reaction time is attributed to heavy rain conditions, followed 
by fog and very light rain. In reality, multiple factors contribute to a driver’s perception and 
subsequent reaction to a lead vehicle. When considering behavior in adverse weather conditions, 
limited visibility can restrict the driver’s line of sight to a leading vehicle increasing the entering 
threshold, while increased awareness and caution as a result of the adverse conditions can 
simultaneously cause a decrease in the entering threshold. The complexity in the definition of 
this parameter reinforces the need for calibrating its value concurrently with the other model 
parameters using trajectory-level data, as this behavior is nearly impossible to measure in 
isolation. 

 
Figure 106 Investigation of the Calibrated W99 CC3 Parameter 

The first seven W99 parameter values are used to construct the framework defining the regions 
of the psychophysical plane associated with each regime. The final parameters, CC7, CC8, and 
CC9, shown in Figure 107, are used in the calculation of driver response. CC7 represents the 
maximum acceleration during oscillation, CC8 represents the maximum acceleration from a 
standstill, and CC9 represents the maximum acceleration at 80 km/ h. In the W99 model, the 
negative inverses of these values are used for maximum deceleration thresholds. The largest 
acceleration for most conditions is the standstill acceleration, with the exception of light and 
moderate rain conditions, and the acceleration at high speeds is significantly lower than either of 
the other acceleration parameters in each scenario. An investigation of the oscillatory 
acceleration parameter, CC7—which controls acceleration behavior in both the danger and 
following regimes—shows that all rain conditions have greater oscillatory acceleration than clear 
conditions. In addition, the least aggressive behavior is demonstrated in snow conditions and the 
most aggressive behavior in fog conditions. The magnitude of acceleration in fog compared with 
precipitation conditions may be interpreted as overconfidence stemming from dry pavement 
conditions, while simultaneously eliciting more severe reactions than clear conditions because of 
the reduced visibility. 
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Figure 107 Investigation of the Calibrated CC7, CC8, and CC9 Parameters from W99. 

While behavioral trends can be identified from the calibrated parameter values, it is critical to 
review the predicted behavior of the model using the complete parameter set to fully understand 
the behavioral differences attributed to each weather condition through the calibration of the car-
following model. Figure 108 shows a basic simulated roadway segment controlled by a reduced 
speed area. Identical demand was given to each segment representing the behavior from each 
weather condition. Investigation of the queue lengths for each weather condition in comparison 
with the isolated calibration parameter values raises some unexpected findings. For example, 
snow conditions were associated with the largest average following distance; however, the 
simulated queue is shorter than the other conditions. On the other hand, a close look at the 
reduced speed area (i.e., shaded rectangles in Figure 108) for light and moderate rain conditions 
shows uniform following distances, which is supported by the low CC6 parameter value. 
Assessment of each individual parameter and the parameter set as a cohesive unit reinforces the 
importance of the relationships between the parameter values—dictated by the parameter 
interactions in the underlying model logic—in computing the driver response predicted for each 
weather condition. 
The simulation results from the VISSIM network presented in the Methodology section are 
provided in Table 60, Figure 109, and Figure 110. The purpose of this discussion is to validate 
and compare the simulated traffic flow resulting from the calibrated models with expected traffic 
flow characteristics represented in the literature and in macroscopic field data.  
Eight different cases were tested: (i) default W99 parameter values with the desired speed 
computed from clear weather conditions and (ii–viii) calibrated W99 parameter values and 
desired speeds from each weather condition identified from the SHRP2 NDS data. The capacity 
was calculated as the maximum flow rate observed during the simulation; therefore, the speed 
and density at capacity were derived from their fundamental relationship with flow rate (i.e., 
speed observed at the maximum flow rate and density computed from the maximum flow rate 
divided by the optimal speed).  
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Figure 108 Application of Optimal W99 Parameters for Each Weather Condition in 

VISSIM 
According to the 2010 HCM, the capacity of a basic segment in baseline conditions is 2,400 
pcphpl (passenger cars per hour per lane) and 45 pcpmpl (passenger cars per mile per lane). 
Capacity reductions from these baseline conditions are expected in the simulated network 
illustrated in Figure 98 because of the sequence of weaving segments increasing the frequency of 
lane changes at merge and diverge points. Investigation of the results illustrates that when using 
the default parameters, the flow rate and density at capacity are substantially higher than the 
calibrated values. Moreover, interesting results are seen when investigating the calibrated 
behaviors. Intuitively, it is expected that the maximum capacity would be associated with clear 
conditions; however, capacity improvements are shown in moderate and heavy rain conditions 
and no capacity change is computed for very light and light rain. In clear conditions, the speed at 
capacity is 50 mph. In fog, very light rain, and light rain, this speed is shown to increase by 
approximately 22 percent and in moderate rain, heavy rain, and snow conditions, the speed at 
capacity decreases by approximately 11 percent. Further, the density at capacity is measured to 
be 38 pcphpl in clear conditions. Following the same pattern as the speed at capacity, a density 
reduction is evident in fog, very light rain, and light rain conditions, and an increase in density is 
shown in moderate rain, heavy rain, and snow conditions. 

Table 60 Simulated Network Flow Characteristics: Flow, Speed, and Density at Capacity, 
and Jam Density  
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Figure 109 Simulated Speed – Flow Rate Relationship for Driving Behavior Calibrated from Each Weather Condition 
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Figure 110 Simulated Speed – Density Relationship for Driving Behavior Calibrated from Each Weather Condition
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The projection of jam density—estimated from Greenshield’s hypothesis of a linear relationship 
between speed and density (397) shown in Figure 110—shows that the default parameters 
predicted a jam density of 97 pcpmpl. In calibrated clear conditions, the jam density is shown as 
85 pcpmpl. Contrary to the traffic flow characteristics at capacity, when comparing all weather 
conditions, the jam density is highest in clear conditions and reduced for all adverse conditions. 
Exploration of the predicted traffic flow in moderate and heavy rain conditions—the conditions 
that experienced an increase in capacity from the baseline clear conditions—shows a decrease in 
speed at capacity of approximately 10 percent. Similarly, they demonstrate a nearly 20 percent 
increase in optimal density. Further, this suggests that the predicted response of drivers in 
different weather conditions do not uniformly reduce the capacity; rather, these behaviors cause a 
shift in driver behavior which results in a change in traffic flow evident in the way traffic flow 
destabilizes. This phenomenon is illustrated in the fundamental diagrams in Figure 109 and 
Figure 110.  
Initial inspection of Figure 109 and Figure 110 shows that traffic flow exhibited from the default 
parameters not only projects substantially higher flow rate and density values, but also forms a 
less defined pattern (i.e., greater spread in values resulting in less uniformity) than any of the 
calibrated parameter sets. The dark color on the upper edge of the default histogram indicates 
that the simulated vehicles traveled at their desired speed with larger flow rates compared with 
other conditions, indicating that the drivers’ behavior was less affected by the surrounding 
traffic.  
The speed–flow relationships for moderate and heavy rain conditions indicate that the maximum 
flow rate occurred at a lower speed than most other conditions, facilitating a density that bisects 
the oversaturated flow at the bottom of the curve. Comparatively, in clear conditions, in fog, very 
light rain, and light rain, the maximum flow rate occurs at a higher travel speed, indicating 
greater instability in the queue discharge flow (i.e., the flow located between undersaturated—
top of curve— and oversaturated—bottom of curve). While very light and light rain conditions 
did not result in a change in capacity from clear conditions, Figure 109 illustrates that the 
simulated driving behavior was not the same for these three conditions.  
In both very light rain and light rain conditions, the density is smaller because the speed at 
capacity is higher; this could be caused by a more rapid decline in traffic flow caused by the 
adverse weather conditions and drivers’ reluctance to change their behaviors. In moderate and 
heavy rain conditions, however, drivers appeared to be more proactive in adjusting their 
behavior, that is, exhibiting a quicker speed reduction, which in turn resulted in greater roadway 
capacity.  
Investigation of the calibrated weather conditions showed that the steepest slope—interpreted as 
the steepest decline from free flow to jam density—is associated with moderate rain conditions 
followed by very light rain, light rain, and heavy rain conditions. Intuitively, the steeper the 
slope, the quicker the traffic flow deteriorates; this results in a lower jam density. Clear 
conditions exhibited the most gradual decline of all simulations with calibrated parameters, 
followed closely by snow conditions. 
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Microsimulation of Variable Speed Limit 
Preliminary Analysis 
Currently, Wyoming has four VSL corridors on Interstate-80 covering approximately 145 miles. 
These VSL corridors have VSL signs spaced on average between 5 and 7 miles and have speed 
radar and RWIS equipment installed at each VSL sign location. The current VSL logic is 
primarily based on several weather-related variables, including surface condition, relative 
humidity, visibility, surface temperature, and wind speed. Although previous studies revealed 
that the current VSL logic has improved the operational and safety performance on the corridors, 
it lacks the integration of one of the most important factors that are “human factors” (347). The 
SHRP2 NDS has opened up unprecedented opportunities to investigate driver behaviors in 
naturalistic settings. The research team thoroughly investigated driver behavior using this unique 
dataset and found many insightful findings which could be useful to update current VSL 
algorithm. More details of the investigated driver behaviors are already discussed in Chapter 2. 
However, one major question is whether the current algorithm needs any further improvements. 
To answer this question, the research team thoroughly investigated the effectiveness of the VSL 
logic in terms of safety, operation, and speed compliance under various weather conditions. 
Based on previous literature drivers are considered in compliance with the posted speed limit if 
they are traveling at no more than 5 mph over the posted speed (398).      
Figure 111 and Figure 112 shows the speed compliance and variation by speed limit in different 
road surface condition and visibility levels. It is worth mentioning the categories of the road 
surface and visibility were selected based on WYDOT guidelines (398). These figures provided 
the following important findings: 

• Truck compliance was always higher than passenger car compliance. 
• Drivers were more compliant with higher posted speed limits. In other words, it was found 

that driver compliance rate, in general, was lower in lower speed limit. 
• Considering road surface conditions, overall drivers are more compliant in adverse surface 

conditions (e.g., snowy, wet, and icy) compared to dry surface conditions. 
• Considering visibility levels, similarly, drivers were more compliant in moderate and poor 

visibility compared to good visibility. These results are not surprising considering the fact 
that drivers expect the post speed limits to be higher in clear conditions and therefore if 
lower speed limits are posted in such conditions, they disregard the posted speed limits. 
These findings indirectly show that the current algorithm is not always representative and 
hence needs to be updated.  

In order to further investigate the effectiveness of the existing algorithms, the research team also 
selected a storm event that occurred on January 9, 2017. The findings are reported in Table 61 
and Figure 113, which revealed that driver compliance varied significantly over spatial 
dimensions. Drivers were less compliant in some locations on the VSL corridor, for instance, the 
compliance rate at milepost 11.86 near sensor “2359” was found to be only around 46 percent. 
These results indirectly indicate that weather sensors in some locations might provide erroneous 
weather data which resulted in posted speed limits that were not consistent with the actual 
weather condition. Further, the research team also investigated driver speed compliance 
temporally. As an example, Figure 114 demonstrates the temporal speed profile at milepost 
329.88 near sensor “2178”. As observer previously, drivers were found to be less compliant at 
lower speed limits.         
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Table 61 Speed Compliance during a Storm Event (January 9, 2017) 
Sensor Lat Long Milepost Compliance 
2359 41.267286 -110.836625 11.86  45.9 percent 
2372 41.273333 -110.807992 13.45  93.2 percent 
3296 41.524088 -109.437853 91.99  74.4 percent 
1269 41.587455 -106.179183 273.85  84.1 percent 
2146 41.246296 -105.441189 322.6  62.1 percent 
2178 41.152375 -105.395392 329.88  83.6 percent 

 

 
Figure 111 Speed Compliance and Variation by Speed Limit in Different Road Surface  
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Figure 112 Speed Compliance and Variation by Speed Limit in Different Visibility Levels 
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Figure 113 Speed Compliance at Various Sensor Locations During a Strom Event (January 9, 2017) 

 
Figure 114 Speed Profile During a Strom Event at Sensor 2178 (January 9, 2017)
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Updated VSL Algorithm 
Considering the findings from preliminary analysis, the research team updated the current VSL 
algorithm that has two modules, namely weather module and driver behavior/ compliance 
module. The weather module is mainly based on the current VSL logic, as illustrated in Figure 
115. The weather module considered five weather-based variables: surface condition, relative 
humidity, visibility, surface temperature, and wind speed. In-depth descriptions of the current 
VSL logic can be found in (343). The next module is the compliance module which takes the 
final speed limits from the first module (weather module) and updates it based on real-time 
driver behavior. Figure 116 illustrates the detailed logic of the compliance module. The primary 
steps of the compliance module are described below: 

• First, the algorithm will define the maximum and minimum VSL. The VSLmin is the final 
speed limit from the weather module and VSLmax is the maximum speed that is allowed to be 
posted. The research team used a 10 mph increment for the VSLmax, however, this increment 
could be modified based on engineer judgment, real-time traffic and weather data, as well as 
driver behavior.  

• Next, the algorithm will flag a location on the corridor if the speed compliance in less than 50 
percent and the co-efficient of speed variation is more than 20 percent. These thresholds were 
selected based on engineering judgment and preliminary analysis. 

• Consequently, the algorithm will check the quality of the VSL data at the flagged location 
based on several matrices, as listed in Table 62 (399). The VSL database consists of data 
from speed sensors, RWIS, and webcams.   

Table 62 Metrics to Measure Data Quality 
 Metric Definition How to calculate 

1 Ratio of Data to Errors How many errors do you have relative 
to the size of your data set? 

Divide the total number of errors by 
the total number of items. 

2 Number of missing Values Empty values indicate information is 
missing from a data set. 

Count the number of fields that are 
empty within a data set. 

3 Data Transformation Error 
Rates 

How many errors arise as you convert 
information into a different format? 

How often does data fail to convert 
successfully? 

4 Amounts of Dark Data How much information is unusable 
due to data quality problems? 

Look at how much of your data has 
data quality problems. 

5 Data Time-to-Value How long does it take to get value 
from its information? 

Decide what “value” means to your 
firm, then measure how long it takes to 
achieve that value. 

• If the data quality is good, instead of updating the posted speed limit, the algorithm will focus 
on increasing enforcement and providing speeding alerts via DMS and 511 apps.  

• However, if there is some problem with the data, the algorithm will update the speed limit 
based on real-time driver speed behavior until the issue with the data at a location on the 
VSL corridor is fixed. 

• Finally, the posted speed limits will be updated at a 5 mph increment up to VSLmax following 
the logic shown in Figure 116. 
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Figure 115 Updated VSL Algorithm (Weather Module) 
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Figure 116 Updated VSL Algorithm (Compliance Module) 
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Performance Evaluation 
The effectiveness of the updated VSL algorithm was examined from operational and safety 
perspectives. Various performance measures including total travel time, average delay, and 
average speed were utilized to analyze and compare the operational characteristics of the current 
and updated VSL algorithms. Figure 117 to Figure 119 and Figure 122 to Figure 124 illustrate 
the operational evaluation of the existing and updated VSL in snow and rain conditions, 
respectively. As for the snow conditions, it was observed that total travel and average delay were 
lower for the updated algorithm compared to the existing algorithm. More specifically, the travel 
time was reduced from around 6.3 to 4.9 hours and the average delay per vehicle was reduced 
from around 1 to 0.6 seconds. For the average speed, it was found that drivers’ speed increased 
from about 34 to 49 mph considering the updated algorithm. Similar trends were also observed 
for rain conditions where travel time and average delay per vehicle were found to be lower and 
average speed was higher after implementing the updated VSL algorithm.  
As mentioned earlier, this study considered SSAM to identify the probable conflicts during 
simulations.  To evaluate the safety effectiveness of the updated VSL, this study adopted three 
different levels of TTC threshold: high risk (1.5 s), medium risk (3.5 s), and low risk (9 s) to 
qualitatively compare the simulated conflicts under various weather condition on the VSL 
corridor. The results of the simulated number of conflicts based on three TTC thresholds for the 
existing and updated algorithm in snow are provided in Figure 120 and Figure 121. In addition, 
the corresponding results for rain conditions are provided in Figure 125 and Figure 126. It was 
observed that conflicts in all TTC thresholds were found to be lower for the updated algorithm 
compared to the existing algorithm in snow conditions, as shown in Figure 120. For instance, the 
high-risk conflicts per hour per vehicle were reduced from 3 to 2.2 using the updated algorithm. 
Similarly, total number of conflicts was reduced for medium and low-risk scenarios when 
considering the updated algorithm. In addition, rear-end and lane change conflicts were found to 
be lower for the updated algorithm, as observed in Figure 121. Considering the rain conditions, 
overall conflicts per hour per vehicle were found to be lower after incorporating updated 
algorithm similar to snow conditions. More precisely, the rear-end conflicts were reduced from 
28.3 to 13.8, and lane change conflicts were reduced from 29.5 to 9.8, respectively.  
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Figure 117 Evaluation of Total Travel Time in the Existing and Updated VSL in Snow  

 
Figure 118 Evaluation of Average Delay in the Existing and Updated VSL in Snow 

 
Figure 119 Evaluation of Average Speed in the Existing and Updated VSL in Snow 
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Figure 120 Safety Evaluation of the Existing and Updated VSL in Snow Based on Risk 

Level 

 
Figure 121 Safety Evaluation of the Existing and Updated VSL in Snow Based on Conflict 

Type 
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Figure 122 Evaluation of Total Travel Time in the Existing and Updated VSL in Rain 

 
Figure 123 Evaluation of Average Delay in the Existing and Updated VSL in Rain 

 
Figure 124 Evaluation of Average Speed in the Existing and Updated VSL in Rain 
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Figure 125 Safety Evaluation of the Existing and Updated VSL in Rain by Risk Levels 

 
Figure 126 Safety Evaluation of the Existing and Updated VSL in Rain by Conflict Types 
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Chapter 8. Conclusions and Recommendations 
Research Summary and Key Findings 
Driver Behavior Investigation 
Several driver behaviors, including lane keeping, lane changing characteristics, gap acceptance, 
and speed selection, have been thoroughly investigated. First, a lane-keeping model was 
calibrated to assess the factors contributing to the driver lane-keeping behavior in different 
weather conditions. Different environmental, traffic, driver, and roadway characteristics with 
some of the interaction terms were found to be significant in the developed ordered logistic 
regression model. Based on the developed lane-keeping model, drivers in affected visibility 
conditions were 1.37 times more likely to have higher SDLP (poor lane keeping) than drivers 
who were driving in good visibility conditions. Drivers in congested traffic conditions had better 
lane-keeping ability than drivers who were driving in free-flow conditions. Additionally, it was 
found that experienced drivers were 68 percent more likely to have better lane-keeping ability 
than inexperienced drivers in wet surface conditions. To enhance the modeling approach, 
association rules mining was performed to analyze driver lane-keeping performance under foggy 
weather conditions. Keeping SDLP as a consequent, some interesting findings were observed by 
mining association rules among a set of environmental, roadway geometry, traffic and driver 
demographics. It was found that affected visibility was associated with poor lane-keeping 
performance in several rules. Male drivers were found to be dominant in the rules for having 
poor lane-keeping performance compared to female drivers. In addition, a higher number of 
lanes and presence of curve were found to be significant factors for having higher proportions of 
poor lane-keeping performance. On the other hand, rules from the good lane-keeping 
performance indicated that visibility had no/little effect on good lane-keeping performance. 
However, drivers who drove equal or more than 12,000 miles were found to have better lane 
keeping.    
After investigating lane-keeping ability, this research further analyzed lane changing 
characteristics based on aggressiveness. According to the several hypotheses tested in fog and 
clear weather under various traffic conditions, it was found that the mean of lane-changing 
durations in heavy fog was significantly higher than clear weather in mixed-flow conditions, 
which indicated that drivers were more cautious in heavy fog conditions under mixed-flow than 
clear weather. In addition, no significant differences were observed between the mean durations 
of mixed-flow lane changes to the left and right in both fog and clear weather, which might 
imply the cooperative behavior of driver to avoid vehicle collisions. All the lane-changing 
durations followed lognormal distribution except distant fog under mixed-flow conditions, which 
fitted gamma distribution. The range of the lane-changing durations was observed from 1.69 to 
15.87 s with a mean of 4.86 to 5.47 s in lane-changing analysis. The k-means clustering analysis 
was utilized to identify various driver types (i.e., conservative and aggressive) based on their 
number of lane-changing events per mile and speed differences from speed limits in fog and 
clear weather under different traffic conditions. The clustering results showed that aggressive 
drivers in all weather and traffic condition had higher speed differences in comparison with 
conservative drivers. In addition, significant differences in number of lane-changing events and 
speed differences were observed between aggressive and conservative drivers. Drivers’ 
questionnaire responses collected by SHRP2 were compared with the cluster analysis results. It 
was observed that drivers’ responses related to foggy weather were more consistent with survey 



 

206 
 

questionnaires compared to their responses in clear weather during free-flow conditions. The 
results of the mean lane-changing durations of the two driver types concluded that both 
conservative and aggressive drivers in heavy fog conditions had longer lane-changing durations 
than in clear weather, which might indicate that drivers’ lane-changing durations were affected 
by the reduced visibility in heavy fog conditions.  
Next, the research provided valuable insights into lane-changing gap acceptance behavior. 
Summary statistics of lead and lag gaps showed that several statistics of lead gaps (i.e., mean and 
maximum) are relatively higher than lag gaps indicating that the perception of lag gaps are 
inconsistent compared to their lead gaps. Additionally, it was observed that drivers lead and lag 
gap acceptance followed gamma and lognormal distributions, respectively. The MARS models 
of lead and lag gap were developed to account for complex relationship between variables 
affecting gap acceptance behavior. Different factors that would affect gap acceptance were 
identified under several conditions using the developed knots in the MARS model. Considering 
all the explanatory variables in both models, relative speed between lane-changing vehicle 
(LCV) and lead vehicle (LV), as well as LCV speed turned out to be the most important 
variables affecting lead and lag gap acceptance, respectively. In addition, traffic conditions, 
acceleration of LCV and FV, and roadway geometric characteristics had significant effects on 
gap acceptance behavior. 
Finally, the research investigated speed selection behavior in different adverse weather 
conditions. The preliminary analysis revealed that speeds follow Weibull distribution in adverse 
weather and normal distribution in clear weather. In addition, it was found that drivers reduced 
their speeds by 5.95 percent, 15.89 percent, and 3.91 percent due to the presence of rain, snow, 
and fog, respectively. The results from the association rule mining indicated that speeds more 
than 5 mph were highly associated with clear weather conditions, dry road surface, clear 
visibility, less experienced and young drivers; whereas a speed reduction of more than 5 mph 
was highly associated with snowy weather, affected visibility, snowy road surfaces, and middle-
aged and older drivers. The results of ordered logistic regression were also in line with the 
findings from the association rules mining. It was found that drivers were 1.45. 4.57, and 1.77 
times more likely to reduce their speeds in rain, snow, and fog respectively, compared to their 
speeds in clear weather conditions. Several other weather-related factors, such as surface 
conditions and visibility, were also found to have a significant effect on driver speed selection. 

Radar-Vision Algorithms to Process the Trajectory-Level Driving Data 
This research presents a novel methodology that leverages forward-facing radar data to 
continuously predict driving state, identify homogeneous driving segments with the same driving 
state, and estimate events that caused the transition between driving states. A thorough 
understanding of driver behavior is necessary to forecast and operate a safe and reliable 
transportation network. Driver behavior models have historically used traffic simulations to 
inform planning decisions; however, more recently these models have been incorporated into 
Active Traffic Management Decision Support Systems housed in transportation agency Traffic 
Management Centers. Realistic depiction of driver behavior is critical to the success of these 
applications, and while many researchers have focused effort on developing, calibrating, and 
validating driver behavior, their research is limited in scope due to a lack of trajectory-level data. 
The SHRP2 NDS introduces a new opportunity to investigate driver behavior with a surplus of 
trajectory-level driving data that could be used to broaden the transferability and emphasize the 
importance of research findings for practical application. When used in parallel with its 
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complementary RID database, researchers can gather hundreds of trips from hundreds of drivers 
traversing specific roadway sections or in specific roadway conditions. In order to fully reap the 
benefits of this massive database, systematic processing procedures are needed to transform the 
available SHRP2 NDS data into a format in which driver behavior can easily be analyzed. 

Detection and Prediction of Lane Change Maneuvers 
The research also focused on developing trajectory-level lane change detection and prediction 
models. Through cutting-edge Machine Learning techniques, this research developed trajectory-
level lane change detection models based on features from vehicle kinematics, machine vision, 
roadway characteristics, and driver demographics under different weather conditions with 
promising detection accuracy. With respect to all features, the RF model provided the highest 
overall detection accuracy of around 91.5 percent and 88.9 percent during validation and testing, 
respectively. In addition, the highest detection accuracy of 81.8 percent during validation and 
79.9 percent during testing were observed in the RF model while excluding features based on 
machine vision. Moreover, it was found that the trained ANN model provided the highest 
accuracy of 80.1 percent and 77.1 percent during validation and testing, respectively, utilizing 
features based on only vehicle kinematics, indicating that the vehicle kinematics features have 
the potential to detect lane change maneuver with reasonable accuracy. Considering the results 
from the detection models, the study recommends to use RF model if all the data from different 
sensors are available and in absence of machine vision-based data (e.g., lane position offset), and 
ANN model if only vehicle kinematics data are available.   
Similarly, considering different data availability, the subsequent study developed reliable and 
efficient machine learning based lane change prediction models utilizing a data fusion approach. 
Considering the Feature Set 1 (i.e., vehicle kinematics, machine vision, driver, and roadway 
geometric characteristics), the XGBoost model outperformed all other models with respect to its 
overall accuracy (97.0 percent during validation and 96.7 percent during testing) and F1-score 
(95.5 percent during validation and 94.9 percent during testing). In addition, the highest overall 
accuracy and F1-score of 97.3 percent and 95.9 percent during validation and 96.5 percent and 
94.6 percent during testing, respectively, were observed in the XGBoost model based on features 
from vehicle kinematics (i.e., Feature Set 6). Moreover, XGBoost was found to be the only 
model that achieved a reliable and balanced prediction performance across all six feature sets. 
Furthermore, it has been observed that the tree-based models performed better compared to other 
models. Considering the detailed performance evaluation from the prediction models, the study 
recommends to use XGBoost model at predicting lane change maneuvers. 

Detection of Surrogate Measures of Safety in Adverse Weather Conditions 
Detecting near-crash events on freeways using continuous naturalistic data could be one of the 
essential approaches to enhance traffic safety in the era of CV. This research aimed to use the 
NDS data for an early investigation of SMoS on freeways that could be collected from CV in the 
future. So, this work attempts to identify those measures that would be helpful in assessing 
traffic safety using the wealth of vehicle kinematic data collected from CV. This research 
showed that continuous vehicle kinematics dataset could be used to understand the effect of 
rainfall on increasing the likelihood of near-crash events through variation in driver behavior and 
vehicle kinematics. Also, the research presented the change in vehicle kinematics signatures due 
to the change in weather condition and how far the driving patterns were different according to 
having a safe or risky driving event. It was shown in this study that speed, acceleration and 
deceleration rate, and yaw rate could be used as SMoS indicators to distinguish between normal 
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driving and near-crash events. The time chunking technique attempted in this study might help 
future studies in defining the interest zone of vehicle kinematics used as indicators of risk for 
near-crash events. The significant time zone was determined to be the 11-seconds preceding the 
event timestamp using a parametric model and 23-seconds using non-parametric models. 
Therefore, the time zone of interest resulted from non-parametric models is more accurate in 
detecting near-crash events compared to the logistic regression model.  

Weather Detection 
To ensure safe driving in adverse weather, it is essential to detect and provide real-time weather 
and road surface conditions to road users. This study proposes some unique techniques based on 
machine learning and SHRP2 NDS trajectory-level video data to enhance the reliability of real-
time weather detection. First, a snow detection system was developed using the in-vehicle video 
camera from the SHRP2 NDS dataset capable of detecting clear, light snow, and heavy snow 
conditions. To train the snow detection models two texture-based image features including Grey 
Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP), and three classification 
algorithms including Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and 
Random Forest (RF) were used. The overall prediction accuracy of the SVM, K-NN, and RF 
models based on the GLCM based features was found to be around 86 percent, 85 percent, and 
84 percent, respectively. After that, the same technique was applied considering the LBP-based 
features, which improved the prediction accuracy significantly with overall prediction accuracies 
of 96 percent, 93 percent, and 94 percent for SVM, K-NN, and RF models, respectively.  
After the effective development of snow detection systems, this research explored the possibility 
of detecting fog using the SHRP2 NDS dataset. To enhance the classification accuracy, the next 
study utilized several promising deep learning techniques, including Deep Neural Network 
(DNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and 
Convolutional Neural Network (CNN), to detect the levels of fog.  Python programming on the 
TensorFlow Machine Learning library was used for training the deep learning models. During 
the training process, two optimizers, including Adam and Gradient Descent, were used. The 
overall prediction accuracy of the DNN, RNN, LSTM, and CNN using the Gradient Descent 
optimizer was found to be around 85 percent, 77 percent, 84 percent, and 97 percent, 
respectively. Much improved overall prediction accuracy of 88 percent, 91 percent, 93 percent, 
and 98 percent for the DNN, RNN, LSTM, and CNN, were observed considering the Adam 
optimizer, respectively.  
The research then experimented with more refined categories of adverse weather and defined 
seven levels of adverse weather: clear, light rain, heavy rain, light snow, heavy snow, distant fog, 
and near fog. Extensive data reduction steps were taken to identify and classify the levels of 
adverse weather conditions to form a unique ground truth dataset from the massive SHRP2 NDS. 
To further improve the detection accuracy, this study then crafted a novel CNN-based weather 
detection algorithm and named it RoadweatherNet. The evaluation results revealed that the 
RoadweatherNet can provide a high degree of performance in detecting seven weather categories 
with an overall detection accuracy of around 93 percent. 

Integration of SHRP2 NDS Findings: Weather-based Microsimulation and VSL 
The research seeks to contribute to the state-of-practice in microsimulation modeling by applying 
a methodology to use the SHRP2 NDS data to calibrate car-following models as a function of 
specific weather conditions. The Wiedemann 1999 model was calibrated using 1,206 SHRP2 
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NDS trips and optimal parameter values were derived to represent each observed weather 
condition. These parameter values were investigated in relation to their physically interpretable 
meaning, which underscored the existence of parameter interaction in predicting driver response. 
In other words, driving behavior in various weather conditions can be characterized as unique 
simply by investigating the calibrated parameter values; however, a complete under- standing of 
the produced behavior requires that these parameters be used in simulation for their true 
representations of driving behavior to be realized. Next, a realistic microsimulation network was 
modeled in VISSIM, and the calibrated W99 parameters representing each weather condition 
were used to simulate traffic flow. Each of the calibrated parameter sets resulted in substantially 
lower capacity predictions and more uniform traffic flow-as illustrated on the fundamental 
diagram-than the default parameter values. Further, the predictions of capacity, speed at capacity, 
and density at capacity for clear weather conditions sat in-between the predictions for each of the 
adverse weather conditions, contrary to expectations that capacity decreases linearly with the 
level of weather adversity. A detailed synthesis of the fundamental diagram suggests, however, 
that these descriptive values may not tell the full story of how drivers adjusted their behavioral 
tendencies.   

Practical Implications: Next Generation of Traffic Management 
Driver Behavior Investigation  
A better understanding of lane-keeping behavior could provide a more practical and realistic 
threshold for Lane Departure Warning (LDW) systems, especially under reduced visibility 
during foggy conditions. More specifically, integrating the findings into LDW systems would 
improve their capability to distinguish between a lane departure event due to behavior (i.e., 
inattention, fatigued driving, etc.) vs poor ability to maintain a lane due to limited visibility 
conditions. Additionally, differentiating poor lane keeping due to reduction in visibility and 
fatigue might be helpful in identifying the best driving mode in Autonomous Vehicles (AVs). 
Having affected visibility as one of the contributing factors for occurring poor lane keeping 
recommends implementing safety countermeasures, such as Changeable Message Signs (CMSs) 
to disseminate safety messages at roadway segments with limited visibility due to fog. Male 
drivers showed greater propensity towards poor lane-keeping, therefore necessary training, 
educational programs, and campaigns are needed to improve their lane-keeping ability. 
The findings from lane-changing characteristics based on aggressiveness could provide 
perceptions into integrating driver aggressiveness behavior into Connected Vehicle (CV) 
technology and microsimulation modeling. In the future, with similar data like NDS, the analysis 
results could be used to classify drivers as conservative or aggressive based on their lane-
changing behavior in a vehicle-to-vehicle (V2V) or CV environment in real-time. The outcome 
of the analysis related to the distributions of lane-changing durations could be used as inputs in 
microsimulation model calibration and validation related to lane-change in reduced visibility 
under various weather and traffic conditions. 
The results of the analysis of gap acceptance behavior can help contribute to the calibration of 
traffic microsimulation. The distributions of lead and lag gaps using naturalistic data could be 
used as input in microsimulation lane-changing models to generate simulated values of lead and 
lag gaps. Using similar data to NDS, the developed automatic identification algorithm could be 
used to extract necessary gap acceptance parameters in real-time in a Connected and 
Autonomous Vehicles (CAV) environment. As the developed models provided overall 
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perception into gap acceptance behavior with several variables, the models have important 
implications for safety improvements in CAV. More specifically, the developed models can help 
with assessing and ameliorating active safety systems in CAV (8). 
Investigating driver speed behavior at a trajectory level using the NDS data unlocked new 
opportunities to overcome the unpredictable behavioral trends of drivers, especially in adverse 
weather under various traffic conditions. With the rapid advancement in CV technologies and 
real-time crowdsourcing, trajectory-level data similar to NDS will be available soon. With this 
similarity in data, this study presented early insights into statistical methodologies to examine 
trajectory-level Basic Safety Messages data collected from CV. In a connected vehicle 
environment, speed data, as well as other driver demographics, traffic, and weather data, could 
be shared in real-time with other users and with the Traffic Management Centers (TMCs). If any 
unusual traffic patterns are observed, especially due to the presence of adverse weather 
conditions, these locations can be flagged to provide appropriate mitigation strategies in a timely 
manner.   

Radar-Vision Algorithms to Process the Trajectory-Level Driving Data 
Fusion of the developed “radar vision” procedure with “video vision” algorithms is suggested as 
the most promising method for streamlining the detection of driving state for efficient analysis of 
driver behavior using a large sample of the SHRP2 NDS database. Development of video-vision 
algorithms that can be used to complement the radar-vision algorithms in verifying the presence 
of a leading vehicle and adding additional context to trips systematically without the need for 
manual video observation. The developed radar vision algorithms hold great promise for the 
SHRP2 NDS dataset towards presenting a solution to achieve value from this massive dataset as 
a whole. These algorithms could also be applied to other Instrumented Research Vehicle (IRV) 
and Instrumented Personal Vehicle (IPV) datasets. 

Detection and Prediction of Lane Change Maneuvers: Development of Advanced Driver 
Assistance Systems 
The developed lane change detection models could be applied to monitor and control driver 
behavior in a CV environment. If unusual traffic patterns are detected in terms of lane changes 
under the CV environment, these roadway segments could be flagged, and appropriate 
countermeasures could be provided in a timely manner to reduce/prevent the risk of crashes. 
However, the proposed lane change prediction model could help in trajectory planning for AVs 
and could be used to develop more reliable Advanced Driver Assistance Systems (ADAS) in a 
Cooperative Connected and Automated Vehicles (CAV) environment. To be specific, the 
prediction information can help in improving cooperative driving through behavior cloning and 
enhancing the safety and mobility of CAVs.  

Detection of Surrogate Measures of Safety in Adverse Weather Conditions 
The SHRP2 NDS data is similar to Basic Safety Messages (BSM) collected in a CV 
environment. In the future, the results from this study might be used in Advanced Driver 
Warning Systems. It is worth mentioning that any early change in the vehicle kinematics might 
be a reason for an aggressive driving accumulation and would result in changing other vehicle 
kinematics. This might be a direct reason for a near-crash event occurrence. In addition, this 
reflects the accumulation of vehicle kinematics change from normal driving to aggressive diving 
in near-crash scenarios. Therefore, providing an early warning would help in inhibiting 
aggressive driving early according to the driver response to overcome any unexpected risky 
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event. So, based on the study results, an early warning message for aggressive driving behavior 
could be displayed to drivers starting from 23 to 5 seconds before the expected event. This early 
warring would help drivers take proper actions to overcome an unexpected risky event. 

Integrating Weather Information into Active Traffic Management 
The proposed trajectory-level weather detection systems based on SHRP2 NDS have numerous 
safety applications, especially in the context of active traffic management systems. The results 
can be effectively applied using the existing infrastructures and facilities. With the rapid 
advancement in connectivity, processing power, and camera quality of smartphones, the 
proposed weather detection model can be trained and integrated on smartphones of regular road 
users, thus making it an effective way for collecting real-time road weather information. Through 
crowdsourcing, weather data from regular road users can be shared with the TMCs, where data 
from all the vehicles from a road network can be weighted to get more representing and accurate 
real-time weather. The TMCs then can leverage this information to provide appropriate warnings 
back to the road users and to develop a more accurate and reliable Weather Responsive Traffic 
Management (WRTM), including weather-based Variable Speed Limit (VSL) system, especially 
on roadways with no RWISs. The methodology provided in this study could be extended to 
detect work zones, pedestrians, lane changes, motor vehicle crashes, and road closures. In a 
Connected Vehicle (CV) environment, this information can easily be shared with other road 
users and TMCs. Subsequently, based on the real-time road information, the TMCs can 
disseminate cautionary messages within Advanced Traveler Information Systems (ATIS), such 
as “Dense Fog 1-mile Ahead” over the DMS to warn drivers about any potentially hazardous 
weather on roadways where no RWIS is present. However, in extremely harsh weather 
conditions, such as snowstorms and blizzards, there might not be enough regular vehicles on the 
roads, which makes the above-mentioned concept for collecting weather data not always 
feasible. In such extreme weather conditions, maintenance vehicles, such as snowplows, can be 
equipped with smart devices to collect geocoded weather data that could be easily classified via 
mobile apps using the proposed weather detection system. 

Integration of SHRP2 NDS Findings 
The demonstrated procedure for collecting a single car-following model parameter set 
representing a specific weather condition is widely transferrable for investigation using other 
data sources and microsimulation tools to address additional research and practical questions. 
Using this methodology with trajectory-level data, such as the SHRP2 NDS, research questions 
seeking to characterize how different populations of drivers drive differently (e.g., age, gender, 
or geographic location) or how different drivers drive in varying conditions (e.g., weather 
conditions, work zones, or varying penetration rates of connected or automated vehicles) can be 
addressed and microsimulation models representing these different behaviors can be constructed. 
Human behavior is complex, stochastic, and often irrational; therefore, it is extremely difficult to 
interpret and summarize in a single metric (e.g., capacity, average speed, or average headway). 
Microsimulation offers an unprecedented platform to model unexplainable behavioral tendencies 
to more realistically predict traffic flow. While microsimulation tools have great potential, this 
research exemplifies the role that complex human behaviors have in traffic flow theory and the 
importance of using trajectory-level data to accurately calibrate driving behavior used in the 
microsimulation model.  
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Integrating Human Behavior Toward the Development of Cooperative Automated 
Transportation 
The emergence of innovative transportation technologies comprises vehicle connectivity, 
autonomy, and personal mobility are accelerated by the rapid advancement in communication 
and information technologies along with advanced artificial intelligence on a large scale. Among 
the most comprehensively researched innovative technologies, Cooperative Automated 
Transportation (CAT), which includes Connected Vehicles (CV), Autonomous Vehicles (AV), 
and Connected and Automated Vehicles (CAV) received remarkable interest in recent years and 
recognized as “game-changer” in the current transportation system. With the booming of high-
performance mobile processors, affordable and robust sensors/cameras, and high-speed 
connectivity, such as 5G technologies, CAT will likely emerge sooner than anticipated on the 
roadways. However, 100 percent market penetration rates (MPR) of CAT might not be achieved 
before long because it will be challenging to integrate CAT technologies into all the existing 
vehicles and roadway facilities. Despite the potential benefits of CAT, there is an increasing 
concern regarding the transition era of CAT where both CAT and HV will interact and share the 
same roadways in a mixed traffic environment. In terms of AV, we are far from level 5 
implementation. Many car manufactures are experimenting with level 3/level 4 automation (e.g., 
partial/conditional automation), which frequently requires human override, continuous attention 
of the drivers, and might not work as intended due to poor visibility. Tesla® mentioned that 
“Autopilot is a hands-on driver assistance system that is intended to be used only with a fully 
attentive driver. It does not turn a Tesla® into a self-driving car nor does it make a car 
autonomous (400).” Therefore, CAT could introduce a variety of traffic problems caused by the 
complex behavior of human driving. If the CAT is not appropriately integrated and tested with 
human behavior, it might generate unexpected consequences. In order to overcome these 
limitations, the CAT equipped vehicle should mimic human driving to reduce variability and to 
ensure more harmonious traffic flow. However, mimicking human drivers requires driver 
behavior cloning, which is a popular approach where human behavior could be integrated into 
CAT so that it imitates the actions of human drivers. The findings from this study could provide 
valuable insights to incorporate complex human behavior from the naturalistic environment via 
behavior cloning for the development of realistic CAT and analyze their ability at different levels 
of MPR. 

Development of Analysis, Modeling, and Simulation (AMS) Tools for Road Weather 
Connected Vehicle Applications 
CV technologies would open up new opportunities for the state and local agencies to effectively 
mitigate the negative effects of adverse weather on traffic safety and operation. Implementation 
of WRTM requires representative analysis, modeling, and simulation frameworks. The findings 
from this study relevant to microsimulation provided valuable insights for developing AMS tools 
for road weather-connected vehicle applications.  

Weather Responsive Traffic Management (WRTM) 
FHWA WRTM is aimed at the development of implementable strategies for system management 
and operations in adverse weather conditions. I-80 was selected to apply AMS tools based on CV 
data to simulate three Weather Responsive Management Strategies (WRMS), including Traveler 
Information Messages (TIM), Connected Vehicle-Based Variable Speed Limit (CV–VSL), and 
snowplow pre-positioning. To ensure roadway safety on the roadways, Wyoming connected 
vehicle pilot (WYDOT CV Pilot) leveraged dedicated short-range communication (DSRC) 
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technologies to create V2V and vehicle-to-infrastructure (V2I) connectivity in an attempt to 
support an array of services, including advisories, roadside warnings, and active travel guidance 
for passenger and freight travels. CV–VSL can disseminate more VSL information to CV road 
users compared to traditional VSL. However, to evaluate the effectiveness of the CV–VSL, 
representative microsimulation modeling is required. Considering the fact that real-time CV data 
are not readily available, researchers have been using the findings from this study to develop 
representative microsimulation models in various driving scenarios, including adverse weather. 
This study captured driving behavior, including car following and lane changing, in various 
adverse weather conditions. The updated car-following parameters were integrated into various 
tools developed by FHWA to evaluate CV applications, including cooperative adaptive cruise 
control (CACC), signalized intersection approach and departure, cooperative merge, speed 
harmonization, and CV-VSL (401). 

Safety Performance Assessment of the Wyoming Connected Vehicle Pilot 
The USDOT selected Interstate-80 (I-80) in Wyoming to create, assess, and implement a suite of 
CV applications (WYDOT CV Pilot) (379–381, 388, 398, 402, 403). This program is aimed at 
enhancing safety and operations in inclement weather via generating innovative ways to connect 
not only the drivers but also the fleet managers with real-time road and travel information. 
Microsimulation modeling efforts were conducted to evaluate the safety performance of the 
WYDOT CV Pilot. Representative driving behavior models in various adverse weather were 
calibrated as part of this project. Observed behavioral changes identified from SHRP2 NDS were 
used to develop driving behavior models for the CV Pilot microsimulation modeling. Several 
studies under the WYDOT CV Pilot project extensively used the findings from SHRP2 to 
calibrate baseline microsimulation models by updating the default Wiedemann 99 car-following 
model and lane-changing parameters (381, 398). 

Future Research 
Next Generation NDS 
It is worth mentioning that no new comprehensive NDS has been conducted in the US after 
2013. Considering numerous insightful findings from the previous NDS in the field of roadway 
safety and operations, it is of utmost importance to conduct a new NDS integrating updated 
technologies and sensors. Since SHRP2 NDS vehicles were instrumented with a single front-
facing radar unit, it was not possible to include data related to all surrounding vehicles. 
Consequently, the lane change was considered as a single behavior of the subject vehicle. Future 
NDS studies could include 360-degree radar/ LiDAR that could provide better surrounding 
perception around vehicle for the analysis. In addition, future studies could consider rapidly 
emerging Artificial Intelligence and Machine Vision based technologies to collect more 
comprehensive driving data using advanced DAS systems. Moreover, the current NDS mainly 
used passenger cars, SUVs, and pickups without considering heavy vehicles including trucks.  
Trucks can negatively impact traffic flow by increasing speed variability on roadways with 
higher upgrades, taking longer time to stop in safety-critical situations, and by being more 
susceptible to rolling over and losing control in inclement conditions, especially on roadways 
with black eyes coupled with strong crosswinds. Hence, a dedicated naturalistic study 
considering only trucks could be introduced.  
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Development of Realistic Behavior Cloning 
Behavior cloning is necessary for proper CAT deployment; however, it is extremely difficult to 
achieve due to the unpredictability and peculiar nature of individual human behaviors. In order to 
integrate heterogeneous nature of human behavior through behavior cloning approach, real-time 
trajectory-level naturalistic driving data is essential. Although SHRP2 NDS provided valuable 
initial insights for behavior cloning, more in-depth research/studies should be conducted to 
perfect the behavior cloning in order to facilitate the rapid development and deployment of CAV.  

Expanding the Current Research 
The study datasets were mainly limited to freeways. Future studies could consider all roadway 
facility types from the SHRP2 NDS to investigate driving behavior. A significant effort of this 
study was given in data preparation and manual image annotation. Therefore, to reduce the data 
processing time, future studies could also investigate the possibility of using unsupervised 
learning techniques, including clustering analysis, to automatically annotate and train images in 
various weather conditions. Additionally, future studies could investigate other driver behaviors, 
such as acceleration, and deacceleration, in different adverse weather conditions. Moreover, this 
study investigated driver behavior without considering age groups. In the future, speeding 
behavior of young drivers will be assessed and analyzed. In addition, an in-depth investigation of 
safety-critical events will also be conducted using the SHRP2 NDS data. 
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