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EXECUTIVE SUMMARY 

In traffic management systems, detectors are deployed to obtain real-time traffic 

information and support various traffic control functions. The most commonly used detectors, 

such as loop and radar detectors, can measure traffic flow, speed, and occupancy on major roads. 

In the state of Utah, freeway detector data are accessible through online platforms, such as 

UDOT’s Performance Measurement System (PeMS). However, it should be noted that detectors’ 

performance might become unstable over time due to lack of maintenance and recalibration. 

Impaired detectors will produce errors in the databases and could affect traffic control system 

decisions. Erroneous data usually can be found by exploring the historical data of a detector, in 

comparison to the rest of detectors in the same corridor. In the literature, preliminary screening 

algorithms usually first identify the missing data. Then, the overall data quality is evaluated 

based on traffic flow characteristics and the conservation law, where traffic flow patterns are 

assumed to be steady through time, and traffic states such as speed and flow rate should have 

reasonable values. However, such preliminary screenings can only find the obvious errors. 

Hence, statistical tests need to be conducted for an in-depth review of data distribution and to 

further identify the potential data errors that cannot be examined by the preliminary screening 

process. With the completion of the screening, a data quality evaluation report could be 

generated and those malfunctioning detectors would be found.  

This research project uses UDOT’s detector database, PeMS, to construct an error-

identification algorithm. The algorithm uses a multi-stage scheme that pinpoints the potential 

errors in the database and marks the detectors that need to be corrected through maintenance or 

recalibration. First, the algorithm looks for missing data and irregular recorded parameters 

through the preliminary data screening. Then, the distribution of Average Effective Vehicle 

Length (AEVL) recorded by detectors is examined in two stages. In each stage, data from 

adjacent detectors are compared by using the Kolmogorov-Smirnov (K-S) test and Multiple 

Comparison with the Best (MCB) method. Notably, when a potential malfunctioning detector is 

identified, its data will be eliminated in further MCB tests as this method aims to compare the 

data from adjacent detectors. Results of the developed screening algorithm can help locate 

detectors that need to be prioritized for maintenance and recalibration. The algorithm can also 
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help traffic management systems to monitor detector performance and keep the recorded datasets 

validated. 

For algorithm implementation, a freeway corridor in Utah is selected for case study. 

Using the validated datasets, the recorded data are analyzed with the algorithm and the 

corresponding data quality is evaluated. In addition, high-speed locations are also identified by 

investigating speed data after the screening process. 
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1.0  INTRODUCTION 

1.1 Problem Statement 

In traffic management systems, how to improve the efficiency of road traffic performance 

is always a vital issue due to increasing traffic demand. For example, implementing Intelligent 

Transportation Systems (ITS) can help achieve this goal by using real-time control to better 

utilize the capacity of existing road networks (Lawrence A. Klein et al., 2006). Particularly, 

traffic detection systems are one type of ITS facility that are designed to show the presence or 

passage of vehicles in a road segment, as defined by the National Electrical Manufacturers 

Association (NEMA). In the state of Utah, two types of detectors are commonly used to measure 

flow, speed, and occupancy of traffic: loop detectors and radar sensors. The collected data are 

accessible through online platforms such as the Freeway Performance Metrics (i.e., occurrence 

data) and the Performance Measurement System (PeMS). These platforms are maintained by 

staff at UDOT’s Traffic Operation Center (TOC).  

In practice, much decision-making in traffic operations tasks is inferred by measured data 

from detectors. Therefore, malfunctioning detectors can produce data errors or biases and affect 

control decisions. Accordingly, a reliable and efficient data screening algorithm is needed to 

prevent such situations by identifying potential errors in the database, evaluating the detector 

performance, and notifying the system managers of the need for detector maintenance. In the 

literature, commonly used screening algorithms often search for obvious errors based on traffic 

characteristics and flow conservation laws, considering that recorded values must be within 

reasonable ranges. As an extension, the value of the Average Effective Vehicle Length (AEVL) 

is used as a measurement to inspect the quality of the dataset with more in-depth analysis (Payne, 

Harold J., E. D. Helfenbein, 1976). For example, the comparison of AEVL distributions by 

adjacent detectors in the same road segment is applied to check for data consistency and identify 

potential errors (Lu et al., 2014).  

The algorithm developed in this research project consists of three main stages that can 

evaluate the quality of PeMS data. The data include the 5-min aggregated mean speeds and flow 
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rates, which are computed based on the occurrence data. In the first stage, the primary screening 

is conducted to identify missing data and to perform single and multiple variable threshold 

checks. Specific data errors are identified based on fundamental traffic concepts and missed data 

due to the system malfunctioning, e.g., deactivation of the detector. 

In the second stage, statistical analysis is performed on each station with a comparison of 

its AEVL distribution to that of adjacent stations. This stage is a dual comparison based on the 

traffic flow theory, where the significant variation of AEVL at two successive stations, 

depending on the flow characteristics, may imply an error in the recorded data. Notably, the 

analysis method shall fully account for the impact of detection locations. For example, traffic 

from an on-ramp may affect the AEVL at the downstream detection site. 

The last stage uses another advanced statistical method, named Multiple Comparison 

with the Best (MCB), to find all potential errors in a road segment that may not be caught by the 

previous two screening stages and to identify possible malfunctioning detectors. In statistics, the 

MCB method is designed to concurrently compare data in multiple sets and to identify the set 

that is most different from all others. In this stage, MCB is implemented to concurrently compare 

AEVLs at multiple adjacent stations. If the AEVL at one station is found to be statistically 

different from AEVLs at other stations, the detector at that station can be marked with a 

“malfunctioning” label and its data would be eliminated in future comparisons.  

1.2 Objectives  

The first main objective of this research project is to develop a multi-stage data screening 

tool to evaluate the data quality of UDOT’s PeMS database and mark probable detection errors. 

After the preliminary screening, which is based on traffic flow/speed thresholds and traffic 

conservation laws, the advanced data screening is achieved by implementing statistical models to 

identify the potential errors in the datasets. Also, the algorithm will be used to perform an in-

depth review of detector stations and to highlight the ones that need maintenance or re-

calibration. 
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Using the data screened by the developed algorithm, another objective of this research 

project is to conduct an in-depth analysis of vehicle speed profiles. The purpose of this objective 

is to identify high-speed locations that pose high crash risks.  

1.3 Scope  

There are four tasks involved in this research. Task 1 is a literature review that focuses on 

reviewing papers and resources related to detector data screening methods. Task 2 involves 

algorithm development and the identification of potential detection errors within Utah’s data. 

Task 3 demonstrates the algorithm by applying it to a real dataset in order to locate 

malfunctioning stations. Task 4 applies the algorithm to a group of datasets to validate them and 

remove invalid detector data. It then analyzes the resulting validated speed data.  

1.4 Outline of Report 

The remainder of this report is structured as follows: 

• Literature review 

• Investigation of datasets and algorithm development 

• Application of data screening algorithm  

• High-speed spot identification 

• Conclusions and key findings 
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2.0 LITERATURE REVIEW 

2.1 Overview  

This chapter presents the research background and reviews existing studies that focus on 

detection error identification and data screening. According to the literature, many scholars have 

developed error identification algorithms to detect potential errors in detection databases. Also, 

they have utilized a variety of tools and approaches to evaluate data records in ITS applications, 

which can be useful depending on the scope and limitations of a given use case.  

2.2 Data Screening Algorithm 

Malfunctioning detectors, due to lack of maintenance or recalibration, are often the cause 

of errors in databases. In traffic management systems, such errors could negatively affect control 

decisions and pose risks of downgrading systems’ performances. However, those erroneous data 

usually can be tracked over time. Hence, an effective data screening algorithm is necessary for 

evaluating the detector performance and notifying traffic engineers when maintenance is needed. 

The literature contains many studies that identify potential detection errors and develop data 

screening algorithms to determine the reasons for these failures. According to a Federal Highway 

Administration (FHWA) report, methods used to establish the criteria of detector data screening 

can be categorized into the following three groups (Turner, 2007): 

• The variation range check of thresholds for both singular and combinations of variables, 

• The consistency of traffic characteristics within the spatial and temporal recorded data, 

and 

• An in-depth diagnosis including a supplementary estimation to be implemented 

The earliest studies in this area mainly focused on tracking single variables and relied on 

basic traffic engineering regulations. In 1976, Payne et al. used aggregated volume, speed, and 

occupancy data to develop an incident detection algorithm and introduced a threshold for each 

variable to specify any inaccurate information in databases (Payne, Harold J., E. D. Helfenbein, 



7 

 

1976). As the traffic flow theory evolved, it became possible to improve the data screening 

algorithm. The basic traffic parameters and boundaries were used to evaluate data recorded by 

single loop detectors (Chen et al., 2019). Historical data and upstream/downstream data, with the 

combination of control parameters, were used to identify unusual records in paired-loop systems 

(Cleghorn et al., 1991). Turochy also used multiple variable thresholds based on traffic flow 

theory principles to mark the errors in existing datasets (Turochy and Smith, 2000). FHWA  

suggests that quick variations between variables in consecutive periods of time implies that the 

datapoints are inaccurate (Federal Highway Administration, 2012). The thresholds used by many 

scholars were determined to be dependent on where the lane detector is placed as well as the 

features of passing traffic flow (Hamad, 2015). 

In early years, Chen et al. (1976) utilized time series data to develop an evaluation model 

based on linear regression with neighboring historical loop detectors. Vanajakshi and Rilett also 

used the concept of vehicle conservations through nonlinear optimization modeling to uncover 

detector errors (Vanajakshi and Rilett, 2004). Turochy and Smith classified the data collected 

from detectors using thresholds of plotting time-series data, which showed constant values over 

time or higher values compared to the adjacent detectors at specified times are inaccurate 

(Turochy and Smith, 2002).  

Since occurrence data is commonly used to take measurements for traffic management 

and operations, it is also essential to validate the accuracy of these measurements. Using 

individual vehicle records, the AEVL concept was found to be an efficient way to monitor the 

occurrence data (Bullock and Achillides, 2004; J. Wells et al., 2008; Lu et al., 2014; Turochy and 

Smith, 2000). The value of AEVL and its criteria have been used in a case study at the Virginia 

Department of Transportation (VDOT) to screen and prepare the data for further use in freeway 

management (Turochy and Smith, 2002). Wells et al. devised a six-step procedure to analyze 

data using the AEVL concept alongside historical data (J. Wells et al., 2008). The findings 

proved that AEVL is an effective operational approach for managing online data collected by 

detectors. Yu and Zhijie used the AEVL for real-time data as well as parameter thresholds and 

the probability distribution of vehicle arrivals to screen traffic data (Yu and Zhijie, 2016). Along 
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the same line, Lu et al. (2018) set a threshold for AEVL to remove anomalous records between 

10 and 75 feet.  

A recent study by Zhang et al. (2019), focusing on wrong-way driving hotspots, 

suggested a new screening algorithm for data validation. They made use of probability 

distribution with the t-test comparison method to determine if detector data was inaccurate. 

Furthermore, Lu et al. (2014) utilized data quality and error identification based on the AEVL 

distribution to compare lanes and detectors. They developed a multi-stage algorithm to first 

check for primary data errors including missing data and values. Then, with the implementation 

of the AEVL concept, the probable erroneous records were marked by comparing these detectors 

with inflow stations, and the malfunctioning detectors were identified. Combining AEVLs with 

the MCB method (Hsu and Nelson, 2003) created an efficient algorithm to identify detector 

errors. The MCB method was found to reduce the number of comparisons needed for cases with 

large sample sizes and employs the best performing data to analyze other samples’ behavior 

(Hochberg and Tamhane, 1987; Horrace and Schmidt, 2000). Along the same track, some studies 

have shown that the AEVL varies in time and between lanes (Maghrour Zefreh et al., 2017; 

Zhanfeng Jia et al., 2001). Meanwhile, it should be noted that PeMS is an interface that helps 

planners and engineers access real-time traffic network data. It collects data from detectors all 

over the network and turns them into useful and understandable information that is accessible to 

users. More specifically, the data (speed and flow) are collected through detectors within a 

specific period of time and are converted to aggregated information that can be retrieved online 

(Chen, 2003). Therefore, the use of AEVL variations to identify potential detection errors in the 

PeMS database is applicable to the research being conducted in this study (Chen, 2003; Varaiya, 

2004). 

Recently, the popularity of machine learning methods has also yielded data screening 

algorithm tools. For example, a group of studies utilized the K-mean clustering method to 

remove outliers and identify anomalous data points (Lin et al., 2012; Megler et al., 2016). Fuzzy 

clustering, based on the relationships of three basic traffic parameters, is also used to screen and 

evaluate records (Ishak, 2003). The stochastic process in the Markov model also contributed to 
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ITS data screening methods. This method with two other supplemental modules is used to 

identify sensors’ status instead of evaluating the measurements  (Randeniya and Kim, 2013).  

In a more recent study, a new technique called technical ground truth (TGT), is 

introduced to use an indicator to evaluate the qualities of real-time traffic data. Hubber et al. 

(2014) estimated the key traffic parameter, compared it to the one recorded by the detector, and 

used the error rate to measure the data quality. After using an index for data consistency 

evaluation, the obtained information was then analyzed both spatially and temporally to evaluate 

real-time traffic data (Park et al., 2015). Spatio-temporal data provided a basis for further studies 

using graphical modeling of the detector network to demonstrate the data quality (Wu et al., 

2018). A quality check also can be accomplished through evaluation of data from various 

resources, as was performed by Ackaah et al. (2016) in their comparison of loop detector data 

with space-time traffic information using a variable speed limit (VSL) system. Predicting a 

parameter such as level of service (LOS) with data obtained from other resources can also help 

traffic system managers in evaluating detector data quality (Xiao et al., 2015).  

  



10 

 

3.0  INVESTIGATION OF DATASETS AND ALGORITHM DEVELOPMENT 

3.1 Overview 

At UDOT, many real-time traffic data are collected by detectors and are made available 

through the PeMS online platform. Inaccuracies caused by various factors can be identified in 

this database. This section classifies the potential errors into several types by exploring PeMS 

data records. Then, the corresponding error-identification method for each type is discussed.  

3.2 Potential Errors Within the PeMS Database 

PeMS is a web-based platform that gives users access to offline and online traffic data 

that have been recorded by all types of detectors in the state of Utah. Many analytical tools 

embedded in this platform can help transportation planners and engineers obtain the information 

needed for traffic analysis. Data provided by PeMS can also help TOC employees monitor traffic 

flow patterns and make decisions to establish a more efficient and safe traffic operational 

environment (Caltrans, 2002). 

The PeMS system collects data from detectors all over the network and transforms them 

into useful and understandable information for users. It receives vehicle count and occupancy 

data at 20-second intervals. Then, it calculates the f-factor of each detector based on the g-factor 

to measure the speed (Choe et al., 2002). Notably, Caltrans defines the data process differently, 

in which the detector (i) senses vehicles through time and reports the vehicle count (Qi), average 

occupancy (Ki), and average speed (Vi). Average speed is only measured directly from double 

loop detectors. However, for other types of detectors, it is measured from vehicle miles traveled 

(VMT) and vehicle hours traveled (VHT). VMT and VHT are defined by a period of time (t) on a 

segment of road (i=1, 2, …, n). Therefore, these two variables are the sum of VMT and VHT at a 

specific segment of the route, as shown in the equations below: 

1

( ) ( )
n

i

i

VMT t VMT t
=

=           (3.1) 
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1

( ) ( )
n

i

i

VHT t VHT t
=

=           (3.2) 

on which 𝑉𝑀𝑇𝑖 and 𝑉𝐻𝑇𝑖 are calculated using the following equations: 

( ) ( )i i iVMT t Q t l=         (3.3) 

( )

( )

i i
i

i

Q t l
VHT

V t
=        (3.4) 

and are measured at five-minute intervals. Here, li is the length of segment i between detectors 

i+1 and i-1 at location xi+1; xi-1 and correspondingly equates to 

1 1

1
( )

2
i i il x x+ −= −       (3.5) 

In the case of a double loop detector, the speed is calculated by the distance between two loops 

(d) divided by the time difference (∆), when the front edge of the vehicle passes the edges of the 

two successive loops, as measured by the equation below: 

d
Speed =


 (3.6)  

However, for the other types of detectors, the average speed would be measured using the 

following equation: 

( )
( ) ( )

( )

Q t
V t L t

K t
=      (3.7) 

where, Q(t) represents the average five-minute period of volume and K(t) denotes the average 

five-minute period of occupancy that is derived from the 30 seconds of raw data collected by the 

detectors. L(t) is the average vehicle length of period t at the location, which is usually 

continuous (e.g., 20 feet) but can be intermittent depending on the location and the time. When a 
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vehicle's length changes through time and location,  another PeMS algorithm is used to measure 

this varying element (Chen, 2003). 

In this project, the online data from UDOT PeMS was analyzed to determine possible 

errors that may occur within the database. The preliminary data analysis showed four different 

types of errors in the one-month period of data collection on the I-15 and I-80 freeways: missing 

data, large variations, out-of-range data, and data inconsistencies. We analyzed speed, flow, and 

occupancy to explore any potential errors. 

3.2.1 Missing Data 

Based on the preliminary data screening, it has been shown that many records examined 

were missing one or more of the vehicle parameters for flow, occupancy, or speed. Some records 

had unavailable data for all three variables. For example, in one case, the corresponding flow and 

occupancy were quite high; however, no speed variable was shown for that particular station. 

Temporarily missing data may be the result of insufficient information due to low flow rates 

during the collection time. However, if no records were associated with a specific detector for an 

extended period of time, the detector was considered to be faulty. This situation may be related 

to detector breakdown such as a problem with its wiring. 

3.2.2 Large Variations Within the Data 

Another type of potential error may occur when neighboring stations show a considerable 

variation in recorded variables over consecutive periods. For instance, there might be two 

adjacent detectors that show more variations in traffic flows than can be accounted for by 

changes in the road segment between them. Such variations may be due to malfunctions in one 

or both of the detectors. Notably, data variations between adjacent lanes along the same direction 

may not be an indicator of detector malfunction due to the fact that various types of vehicles (i.e., 

passenger cars, trucks, buses, etc.) are not evenly distributed among lanes. 
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3.2.3 Out-of-Range Data 

The Highway Capacity Manual (HCM) specifies maximum values for flow, speed, and 

occupancy depending on road characteristics (Highway Research Board, 2000). Each variation 

has a maximum level and the values shown by detectors are usually lower than the maximum 

limit. Hence, each variation must be higher than zero and less than the maximum level 

depending on the geometric conditions of the freeway. For example, the traffic flow on interstate 

freeways ranges from 2,000 to 2,200 vehicles per hour per lane, according to the HCM. Hence, 

the flow rate should range from 0 to 180 vehicles per lane in each time interval because study 

data are aggregated at 5-minute intervals in this project. However, some records were found to 

exceed these maximum values. Also, in some cases, the detectors showed a non-zero value for 

one variable and a zero value for others. Such cases may indicate failures in detector 

performance. 

3.2.4 Inconsistencies 

PeMS data are in the aggregated raw form, which takes the occurrence data (individual 

vehicle records) and aggregates them by a 20-second interval. However, some detectors showed 

inconsistencies between the PeMS data and the occurrence data. These inconsistencies may 

originate from aggregation errors within the PeMS database. Moreover, in other cases, data 

inconsistencies can be observed by comparing the data from adjacent detectors. For example, if 

there is no ramp between two adjacent detectors, flows and speeds produced by them should be 

close to each other. Significant differences in flows and speeds could indicate potential detection 

errors in one or both of them. 

To identify the four types of data errors mentioned above, this research aims to leverage 

the characteristics of traffic flow theory to develop a multi-stage data screening algorithm. The 

data screening process can also help identify potential malfunctioning detectors when any of 

them are found to produce erroneous data constantly. The next subsection will introduce the 

details of the developed algorithm. 



14 

 

3.3 Multi-Stage Data Screening Algorithm 

“Turbulence” in a traffic stream means that traffic flow patterns are not always consistent 

and might undergo changes over time (van Beinum et al., 2018a). Turbulence affects flow 

behaviors and traffic characteristics. This phenomenon occurs most commonly on highway 

ramps and when vehicles are unevenly distributed among lanes [e.g., the majority of heavy 

vehicles are in the right-hand lane] (Kwon et al., 2003). According to the AEVL definition that is 

related to flow rate, occupancy, and speed, these scenarios create an exception in previous data 

screening algorithms since the inconsistencies in traffic patterns cause the spatial comparisons 

among data records to be imprecise. To account for such considerations, the screening algorithm 

developed in this research project was tested in four major stages. The primary screening stage 

was a check for missing data as well as single and multiple variable thresholds. Then, the data 

quality was evaluated using the AEVL distribution and the corresponding statistical analysis 

method. Different scenarios with various types of detector stations were studied. Multiple new 

approaches are presented in this project report. 

3.3.1 Stage 1: Primary Screening  

At this stage, primary monitoring was applied to check for any apparent faults in the 

databases. The first step was to examine all stations for any missing variables. In addition, the 

single variable threshold check according to basic traffic concepts was conducted, which 

determined whether or not all variables were within the meaningful ranges. These ranges are 

related to the geometric characteristics of the road segment (Lu et al., 2014): 

- Flow (𝑞𝑖): 

max0 iq q   (3.8)  

where 𝑞𝑖 is the flow rate according to detector 𝑖  in vehs/lane/hr, and the 𝑞𝑚𝑎𝑥 is the maximum 

flow rate on the road. Notably, 𝑞𝑚𝑎𝑥 is directly related to roadway conditions and differs based 

on the number of lanes and aggregated data from the station. 
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- Speed (𝑣𝑖): 

max0 iv v   (3.9)   

where 𝑣𝑖 is the speed according to detector 𝑖 in miles/hr and the 𝑣𝑚𝑎𝑥 is the maximum speed 

limit based on road characteristics and station type. 

- Occupancy (𝑜𝑖): 

 max0 io o      (3.10) 

where 𝑜𝑖 is the percentage of occupancy according to detector 𝑖 and the 𝑜𝑚𝑎𝑥 is the maximum 

occupancy rate. The effectiveness of the measurements should be tested according to the 

relationship among flow, speed, and occupancy (i.e., there should not be a record with zero value 

for a single variable and non-zero values for other variables). If any of the recorded data is 

missing or does not fall into the provided ranges, the corresponding detector is marked as faulty.  

3.3.2 Stage 2: Piecewise Quality Check 

At this stage,  the AEVL distribution and Kolmogorov–Smirnov (K-S) test (Massey, 

1951) were used to evaluate detector performance. This comparison was performed between two 

successive stations to check the consistency of data within partial road segments. More 

specifically, the AEVL distribution of a target detector was compared to its upstream or 

downstream detectors' values using the K-S test. Notably, this stage doesn’t compare different 

types of vehicles within the same station because typically vehicles are not evenly distributed 

among lanes. For example, we can often observe concentrations of heavy vehicles in the right-

hand lanes, an accident in a specific lane, or a traffic barrier placed along the road in practice 

(Coifman, 2009).  

Typically, there are several types of detection stations in the state of Utah: mainline, on-

ramp, off-ramp, high-occupancy vehicle (HOV), and freeway-to-freeway. Ramp stations are 

placed in areas of heavy traffic stream changes, including the downstream and upstream stations 

[according to ramp type] (van Beinum et al., 2018b). As a result, these stations' traffic 
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characteristics cannot be compared to those of adjacent lanes. Nevertheless, based on traffic flow 

conservation, the traffic characteristics of a ramp and those of its adjacent lane will be similar to 

nearby stations since these two traffic flow patterns should be similar to nearby station traffic 

flow. Figure 3.1  and 

Figure 3.2 show a schematic of ramp traffic flow for on-ramp and off-ramp stations compared to 

other stations nearby. 

 

Figure 3.1 Traffic flow of on-ramp station vs. merged flow 
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Figure 3.2 Traffic flow of off-ramp station vs. merged flow 

 

As discussed in the literature, the AEVL is described as follows: 

3 i i
i

i

o v
AEVL

q
  (3.11) 

where 𝐴𝐸𝑉𝐿𝑖 is the average effective vehicle length of station 𝑖 in feet (Jia et al., 2001). After 

measuring the AEVL distribution over the specified length of time (e.g., one hour), the 

distribution of each lane was compared to the distribution of its corresponding downstream or 

upstream stations, as shown in Figure 3.3. Using the K–S test, the estimated AEVL distribution 

of the target detector during the time granularity of recorded data should not be statistically 

different from the neighboring stations’ AEVL distribution. Otherwise, further tests would be 

needed to evaluate the efficacy of the target detector. 
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Figure 3.3 Detector map for spatial comparison 

The purpose of the K-S test is to compare the sample data to a reference distribution and 

evaluate whether these two distributions are similar. According to the null hypothesis of the K-S 

test, the sample distribution belongs to the reference distribution if the maximum distances of 

two distributions are higher than the critical value. Then, the null hypothesis is rejected and 

shows that the sample is not part of the distribution (Massey, 1951), which indicates that there 

are potential errors in the recorded data. The critical value for the K-S test is as follows: 

, ,0.05

1 1
(0.05)m nD c

m n
= +            (3.12) 

where 𝐷𝑚,𝑛,0.05 is the critical value for two distributions with a corresponding sample size of 𝑚 

and 𝑛, and 𝑐(0.05) is the inverse of the Kolmogorov distribution table at 0.05 (Confidence 

Interval [CI]=95%), which depends on the sample size of the two distributions (Wolfe, 2012). 

The goal of this stage is to measure the exact changes in the data patterns and uncover any 

erroneous records.  

3.3.3 Stage 3: Continuous Quality Check 

To further test detector performance, the AEVL values of each lane at neighboring 

stations were compared using the MCB method. The ramp stations are exceptions at this stage 

due to the created weaving in traffic flows. The MCB compares the target lane to the inflow 

detectors and forms a CI for statistical assessment. If the CI is zero, this indicates no significant 

difference of AEVL at neighboring stations. The former K-S test method measures the data 

quality by comparing continuous road segment data to determine if the target detector produced 
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erroneous records. In MCB, the inflow detectors include both the upstream and downstream data 

of the corresponding lane detector. 

The MCB method requires detector data over a specific period of time (e.g., one week) to 

be grouped into equal segments (e.g., one hour), and the mean and variance of the group to be 

computed. The AEVL distribution for inflow stations can then be calculated and the CI is 

determined using the equation shown below: 

2
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         (3.13) 

where 𝑖 is the target detector, 𝑙 represents the other inflow detectors, 𝑛𝑖 is the sample size of 

detected data in the target lane, 𝛼 symbolizes the significance level, 𝐴𝐸𝑉𝐿𝑖,𝑎𝑣𝑒 shows the average 

AEVL of the target detector 𝑖 of a specific time period, and  𝑆2 represents the variance of group 𝑖. 

The value of parameter 𝑇 depends on the sample size, the number of groups that are being 

compared (three in this case), and the significance level (Hochberg and Tamhane, 1987). Several 

scenarios were established for the detector status when the CI was calculated by using the MCB 

test and the results from previous steps. If the detectors show errors in both stages, there is a 

chance that there will be errors at all stations, which would require further investigation. More 

specifically, the following rules can be followed: 

1. If detectors show no significant errors in both steps, there is a 95% CI that no other 

error is present. 

2. If the target detector shows no errors during the continuous comparison test but does 

indicate some in the piecewise test, it can be concluded that there might be a change 

in traffic flow patterns such as a special event, or there might be a fixed error within 

the detector. 
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3. If the detector only fails the continuous comparison test, an additional investigation is 

needed due to two possible scenarios: a) the target detector may have an error, or b) 

the adjacent station detector may not be in proper working order. 

3.3.4 Step 4: Further Investigation 

When further investigation is needed, the AEVL of the target detector is compared to the 

neighboring stations (downstream and upstream). If the continuous comparison indicates 

significant data variations, the CI of that error will be at least 95%. Otherwise, its adjacent 

detector would be the faulty one. After a malfunctioning detector is found, it is not compared to 

other detectors during further performance evaluations. Instead, the nearest remaining detector is 

used for comparisons, depending on the location of the malfunctioning detector. Figure 3.4 

shows the adjustment process when a malfunctioning detector is found.  
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(a) Comparison with the downstream farther station  

 

(b) Comparison with the upstream farther station  

 

(c) Comparison with both upstream and downstream farther stations  

 

Figure 3.4 Detector comparisons with farther stations. 

The developed data screening algorithm is presented in Figure 3.5 to illustrate the 

procedure presented in this study.  
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Figure 3.5 The data screening algorithm 
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4.0  APPLICATION OF THE DATA SCREENING ALGORITHM 

4.1 Overview 

This chapter focuses on a case study in which the developed data screening algorithm 

was implemented. Specifically, the error identification tool was applied to a section of freeway to 

uncover any malfunctioning detectors. This chapter includes a brief summary of the case study 

and a discussion of the thresholds used in the algorithm. Then, some erroneous data were 

discovered by applying all stages of the algorithm. 

4.2 Error-Identification Case Study 

Algorithm performance was tested by conducting a case study on I-15. Data were 

collected from January 12-19, 2019 in the northbound direction between mileposts 302.75 and 

312.16.  

 

Figure 4.1 I-15 northbound segment for case study (302.75-312.16) 
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After the raw data were collected from the PeMS database, they were cleared and pre-

processed for application of the screening algorithm. Table 4.1 shows a summary of the data that 

were used in the case study. 

Table 4.1 Summary of data used for the case study 

Detectors Count Percentage Data Point Percentage 

Mainlines 20 32.79% 35,277 34.92% 

HOV 19 31.15% 33,480 33.14% 

Ramps 22 36.07% 32,277 31.95% 

Total  61 100.00% 101,034 100% 

The developed data screening algorithm was first used to seek out the problematic data. 

Then, the single variable thresholds were tested. Those thresholds are shown in Table 4.2. 

Table 4.2 Single variable thresholds 

Variable Threshold 

Flow 180 (Vehs/5mins/lane) 

Speed 90 (mph) 

Occupancy 95 (%) 

4.3 Error-Identification Results 

The algorithm identified some potential errors in the obtained dataset at various stages. 

These potential errors are shown in Table 4.3. The highest percentage of errors occurred in the 

missing data section, which may be due to problematic data transferring from the stations to the 

database. Also, the distribution of errors appeared to differ at each station location.  
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Table 4.3 Distribution of data errors based on station location and algorithm stage 

Station Type  
Ramps HOV Mainline Summation 

Total Percent Total Percent Total Percent Total Percent 

No Error 26,521 82.17% 27,470 82.05% 32,299 91.56% 86,290 85.41% 

Missing Data 5,521 17.11% 4,368 13.05% 679 1.92% 10,568 10.46% 

Primary Error 235 0.73% 420 1.25% 754 2.14% 1,409 1.39% 

Piecewise 

Comparison 
79 0.24% 1,448 4.32% 2,128 6.03% 3,655 3.62% 

Continuous 

Comparison 
- - 1,222 3.65% 1,545 4.38% 2,767 2.74% 

*Note: the total of each percentage column doesn’t have to be 100% as some errors can be detected 

several times at different stages.  

Mainline station errors can be discovered by comparing detector data (i.e., with piecewise 

and continuous comparisons) at different stages of the data screening process. By contrast, errors 

at other station types are often identified at earlier stages. The data quality distribution is shown 

in Figure 4.2. 

 

Figure 4.2 Distribution of data points after algorithm implementation 
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Analysis of the error distribution at various station locations can give decision makers a 

better sense of the type of errors that are likely to occur at a particular type of station. The error 

distribution based on the station type is presented in Figure 4.3. 

 

Figure 4.3 Stacked distribution of error detection stage based on station type 

As shown in Figure 4.3, missing data is most likely to occur at ramp stations and least 

likely at mainline stations. The reason is that mainline stations are more regularly maintained and 

thus less likely to yield obvious errors such as missing data. More in-depth study is needed to 

identify malfunctioning detectors that yield inaccurate measurements. 

Figure 4.4 shows that more errors were found at ramps and HOV stations than at 

mainline stations. This may be the result of a lack of detector maintenance.  
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Figure 4.4 Pie chart of errors by detector location 

The percentages of errors detected at various stages of the developed algorithm are 

summarized in Table 4.4 based on station type. The highest percentage of ramp station errors 

was due to missing data. Also, errors related to flow distribution (stages 2 and 3) accounted for 

the highest percentage of mainline station errors, which can indicate the high level of traffic 

fluctuations around these detectors. However, it must be noted that when these errors are 

observed less than 10% of the time, a given station should not be deemed as problematic.  

Table 4.4 Detector error summary based on station type 

Test Stage  
Station Type 

Total 
Mainline (%) HOV (%) Ramps (%) 

Missing Data 16.84 63.27 96.50 63.44 

Primary Error 18.70 6.08 4.11 8.46 

Piecewise Check 52.76 20.97 1.38 21.94 

Continuous Check 38.31 17.70 0.00 16.61 

Table 4.5 shows the distribution of errors based on flow levels. The missing data issues 

often happened at stations with lower flow exposures. As the flow level increased, the 

distribution progressively shifted to later stages of the algorithm process. This means that errors 

have been chiefly found in stages that look for consistency of flow distribution in more 

congested situations. Moreover, in free-flow conditions, errors are marked instead in primary 

stages.  
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Table 4.5 Detector error summary based on the traffic flow rate  

Test Stage 
Flow Level (veh/5mins) 

<50 (%) 50 – 100 (%) 100 – 200 (%) >200 (%) 

Missing Data 65.35 52.29 28.15 0.22 

Primary Error 5.48 3.81 2.05 29.79 

Piecewise Check 13.09 28.84 55.28 54.47 

Continuous Check 8.16 23.06 38.71 50.76 

*Note: the total of each column doesn’t have to be 100% as some errors can be detected 

several times at different stages.  

The distribution displayed in Figure 4.5 indicates the flow level variation for each error 

type. 

 

Figure 4.5 Distribution of flow level for various errors 
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After implementation of the developed algorithm, the next step was to identify the 

detectors that frequently produce inaccurate measurements. Detector stations with more than 

50% inaccurate data were denoted as problematic, as shown in Table 4.6. Most malfunctioning 

detectors were either on ramps or in HOV lanes. The average rate of erroneous data points 

observed at mainline stations over the one-week study period was only 8%, which was 

satisfactory. 

Table 4.6 Malfunctioning stations on I-15 northbound 

ID Milepost Lanes Type 

1418 303.63 2 On Ramp 

3422 304.53 2 Fwy-Fwy 

1431 306.51 2 On Ramp 

91431 306.51 1 Off Ramp 

 

Our examination showed that all four of the stations mentioned in Table 4.6 experienced 

missing data issues more than 50% of the time. However, at station 3422, it only occurred in one 

lane. Moreover, although stations 1431 and 91431 are at the same location, data were only 

received from one detector. The specific locations of each malfunctioning station are shown in 

Figure 4.6 through Figure 4.8. 
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Figure 4.6 Location of malfunctioning on-ramp station 1418 

 

Figure 4.7 Location of malfunctioning fwy-fwy station 3422 
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Figure 4.8 Location of malfunctioning on-ramp station 1431 and off-ramp station 91431 

The rates of error types at each station location are shown in Figure 4.9. As stated earlier, 

the stations with a rate higher than 0.50 are defined as malfunctioning. 
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Figure 4.9 Error rate of stations by locations 

 

  



33 

 

5.0  IDENTIFICATION OF HIGH-SPEED SPOTS 

 Overview 

The second objective of this project is to identify segments where traffic tends to exceed 

the speed limit by analyzing cleaned data. To accomplish that objective, we applied multiple 

evaluation criteria to the cleaned data.  

 Data Description 

A segment of the I-80 freeway between mileposts 128.0 and 141.0 was chosen for this 

analysis of cleaned data. Data were recorded at 21 controllers in each direction (42 total 

detectors) from October 15th to 31st, 2019, along both directions. The geographic locations of 

these detectors are shown in Figure 5.1. 

 

Figure 5.1 Geographic positioning of detectors on the I-80 corridor 

Since some stations had insufficient data and were ignored in this study, the counts of 

useful records are shown in Table 5.1 for each direction of the corridor. 
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Table 5.1 Counts of records obtained from detectors utilizing each approach 

Direction # Detectors Data Points Data Time Series 

Eastbound 18 5,028,558  Oct 15-31, 2019 

Westbound 18 4,901,388 Oct 15-31, 2019 

 Using the Data Screening Algorithm to Validate Datasets 

The obtained datasets included 5-minute average speeds and flow rates. Data points were 

evaluated using the screening algorithm and then the percentage of records with an error in the 

dataset was calculated. The location of each station contrasted with the ratio of erroneous data 

points is presented in Figure 5.2.  

 

Figure 5.2 Ratio of erroneous records by station location 

Some locations experienced an error rate greater than 20 percent. The speed analysis was 

only applied to stations with error rates that are smaller than 20%. A clear overview of the error 

types and their distributions is presented in Figure 5.3 and Figure 5.4. The majority of errors are 

related to missing data, which may be due to collecting an insufficient amount of information. 
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Figure 5.3 Error type distribution for eastbound  

 

Figure 5.4 Error type distribution for westbound 

 Speed Data Analysis and High-Speed Locations 

After validating the datasets, the next step was to analyze the speed profiles and identify 

high-speed locations. The 85th percentile of the average recorded speed was compared to the 
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speed limit of 65 mph, as shown in Figure 5.5 and Figure 5.6. At all stations, the 85th percentile 

speeds were higher than the speed limit, which proves that people tend to drive faster than the 

speed limit. Moreover, as many existing studies (Abdel-Aty et al., 2006) indicated that the crash 

severity will be increased significantly if vehicles’ speeds are 10 mph higher than the speed limit, 

this study also selects a second threshold of 75 mph, which is also shown in Figure 5.5 and 

Figure 5.6. Notably, the 85th percentile speeds at most stations were higher than the second 

threshold, which highlights the potential need of adding other speed enforcement 

countermeasures at those locations. 

 

Figure 5.5 Spatial distribution of 85th percentile speed for eastbound stations  
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Figure 5.6 Spatial distribution of the 85th percentile speed for westbound stations  

For a more detailed analysis at each station, we grouped data into four-hour intervals and 

attempted to calculate the maximum speed at each interval. Figure 5.7 and Figure 5.8 show these 

values throughout the timeframe. Eastbound stations 100618 and 100619 and westbound stations 

100581 and 100169 were found to have the highest values at each interval (in excess of 120 

mph), which make them good candidates for targeted speed enforcement. 

 

Figure 5.7 Maximum speeds at eastbound stations  
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Figure 5.8 Maximum speeds at westbound stations  

In the next step, we took a more in-depth look into data points and resampled the data for 

a one-hour interval. One-hour samples consist of the maximum speed records in one hour of 

collected data. Next, the ratio of one-hour samples greater than 85 mph over the whole period of 

collected data (resampled to one hour) are calculated. This ratio is presented for both directions 

of each station in Table 5.2 and Table 5.3.  As seen below, some stations had at least one record 

higher than 85 mph in each one-hour interval for more than 90% of the range of collected data 

which is an indicator of high-speed hot spots in the corridor. 

Table 5.2 One-hour maximum higher than 85 mph records for eastbound stations  

Postmile Internal ID East Percentage 

127.39 100389 23.44 

127.76 100797 42.19 

129.2 100619 97.40 

129.88 100581 86.98 

130.37 100599 92.19 

132.54 100616 96.09 

132.97 100618 92.71 
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139.41 100171 77.08 

140.13 100170 89.06 

141.28 100169 93.23 

142.74 100168 69.01 

143.46 100167 70.05 

 

Table 5.3 One-hour maximum higher than 85 mph records for westbound stations 

Postmile Internal ID West Percentage 

127.39 100389 63.28 

127.76 100797 63.54 

129.2 100619 91.93 

129.5 100594 91.41 

129.88 100581 86.46 

130.37 100599 89.84 

132.54 100616 89.84 

139.41 100171 79.95 

140.13 100170 85.16 

141.28 100169 76.82 

142.74 100168 82.81 

143.85 100614 94.01 

 

The same comparison was made on the occurrence data for the speed limit and the 

threshold of 75 mph. The percentages of records over the speed limit and 75 mph are shown in 

Figure 5.9 and Figure 5.10. In the eastbound direction, the stations within mileposts 127.76 to 

142.47 were shown to have higher percentages for both thresholds of 65 and 75 mph. For the 

westbound stations, over half the drivers were traveling at over 75 mph at all stations. 
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Figure 5.9 The percentage of records over the thresholds on the eastbound approach 

 

Figure 5.10 The percentage of records over the threshold on the westbound approach 
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Based on the speed analysis in this section, we concluded that stations located in the 

eastbound 129.2, 132.54, and 141.28 mileposts and the westbound 143.85 milepost are 

potentially high-speed zones. Each of these stations showed a large percentage of high-speed 

records according to the data analysis. Based on the records, the 85th percentile of average speed 

was higher than 80 mph, and the stations showed a record in the dataset that was higher than 100 

mph every four hours. Furthermore, by examining the maximum individual speeds within hourly 

time intervals, these stations showed at least one record of 85 mph or higher more than 90 

percent of the time. Finally, based on a speed comparison with the 65 and 75 mph thresholds, the 

ratio of records greater than 75 mph was above 0.5, which is another indicator of the presence of 

high-speed zones. The locations of those zones are shown in yellow in Figure 5.11.  

 

Figure 5.11 High speed locations at I-80 freeway 

I-80 in the study area is generally uphill in the eastbound direction. However, the study 

station speed records show more spots in the eastbound direction with higher speed records. 

Even though the 85th percentile speed in the westbound direction is higher than the 75 mph 

threshold for most spots, they are limited to 80 mph. On the other hand, the eastbound sensors 

demonstrate spots with 85th percentile speeds higher than 80 mph as well as in excess of 75 mph 

at more than 50 percent of stations. The results show that despite the westbound direction being 

generally downhill, its speeds are more controlled, and the eastbound direction is experiencing 

spots with records further beyond the speed limit. 
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6.0  CONCLUSIONS 

6.1 Summary 

In this study, we developed a multi-stage data screening algorithm based on the types of 

potential errors in the PeMS database. Using the AEVL distribution as a key indicator, the data 

points were evaluated and statistically tested to identify inconsistency in traffic flow streams. 

The innovative aspect of this project was that we omitted the data comparison within stations due 

to uneven distribution of vehicle types among lanes. By applying the developed algorithm to the 

case studies, we were able to locate inaccurate records as well as potentially malfunctioning 

detectors.  

6.2 Findings 

The data screening algorithm mainly utilizes traffic flow regulation and flow 

conservations. Considering the variations within drivers’ behaviors at particular locations, the 

use of this approach may result in inaccurate assessments due to the condition of the detectors. In 

the algorithm presented here, while keeping in mind that there will always be turbulence in 

traffic flow, the statistical tests were used to monitor data errors and faults. This technique 

uncovered any errors at stations and compared them to those at nearby stations. It also was used 

to assess road segment flow behaviors. Eliminating the in-station comparison will help UDOT 

engineers to make more reliable evaluations of the detector performance. 

Furthermore, our results showed that the most common errors belong to the category of 

missing data, which implied that the detectors were not performing effectively for some periods 

or throughout the entire study period. Also, as shown in the case study, most detectors with 

inaccuracy issues are located at ramps. The reason might be that these detectors were placed on a 

lower priority list for maintenance compared to mainline detectors.   
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6.3 Limitations and Challenges 

Some missing information in the PeMS database might be caused by data visualization 

functions of the website rather than problems with detectors. This can result in less precise 

evaluation results because the developed algorithm always classified them as missing data errors. 
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