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EXECUTIVE SUMMARY 

The objectives of this research project were to: 1) develop models to estimate annual average 
daily traffic (AADT) at non-coverage locations, and 2) develop a user-friendly tool that 
implements the models. 

A literature review and state department of transportation (DOT) survey were conducted to 
determine the most applicable models.  Findings from the literature review indicate that multiple 
linear regression is the most widely used method to estimate AADT due to their simplicity.  
Machine learning models can provide more accurate results; however, its complexity makes it 
difficult to implement.  Travel demand methods are theoretically sound, but they are 
computationally expensive.  Kriging is simple to implement, and it requires only the use of known 
nearby AADT values.  The point-based model, essentially a look-up table, proposed by Portland 
State University researchers in a project sponsored by the Oregon DOT is simple to understand 
and easy to implement, but it requires collection of additional data.  Multiple regression models 
and travel demand models also require collection of additional data.  

Findings from the online State DOTs survey indicate that multiple linear regression is the most 
commonly used method to estimate AADT at non-coverage locations among the 17 respondents.  
The next two most popular methods are visual estimation and default values.  This finding suggests 
that there is a need for an AADT estimation technique, one that is simple to implement.  This 
inference is supported by the fact that most respondents rated their satisfaction with the current 
non-coverage AADT estimation technique as three or less, with one being unsatisfied and five 
being satisfied.   

Based on the findings from the literature review and state DOT survey, the kriging, regression and 
point-based models were developed using a dataset consisting of 3,687 coverage counts, 2,510 
were collected in 2020 and 1,177 in 2021, and 1,024 non-coverage counts, 548 were collected in 
2019, 239 in 2020 and 237 in 2021.   The standard kriging approach was modified in this project 
to use a default value when its predicted value is over a user-specified threshold.  Specifically, 
when a sampled coverage location is found to have a high absolute error using the kriging method, 
it is assumed that the surrounding non-coverage locations will also have AADT errors if kriging 
is used.  In such cases, the mean AADT, based on county and functional class, is used as the AADT 
estimate. The advantage of the kriging model over the point-based and regression models is that it 
uses only the coverage counts to make prediction; no additional information, such as land use and 
socio-demographic information is needed.   

Two types of regression models were developed: regular and quantile.  The statistically significant 
variables in the regular regression model are Urban, Single Line, Other Type Median, Left-Turn 
Lane, Right-Turn Lane and Sidewalk.  The statistically significant variables in the quantile 
regression model are Urban, Single Line, Other Type Median, Right-Turn Lane, Left-Turn Lane, 
Sidewalk and Parking Lot.   

The point-based model, developed based on the work of Portland State University for Oregon 
DOT, predicts the AADT using the median AADT of roadways that have the same number of 
points or features.  One point is assigned for each of the following roadway features:  
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• In urban area 
• Presence of centerline marking (i.e., double yellow line) 
• Presence of median  
• Presence of right-turn lane  
• Presence of left-turn lane  
• Presence of parking lot adjacent to the study road segment  
• Presence of sidewalk 

 
The point-based model equates to a lookup table, as shown below.  A local road with none of the 
above features is expected to have 125 vehicle per day (vpd) and a road with six or seven features 
is expected to have 1,800 vpd. 

Point Predicted AADT for Local Roads 
0 125 
1 175 
2 350 
3 650 
4 900 
5 1,600 

6 or 7 1,800 
 
The Root Mean Square Error (RMSE) was used to evaluate the performance of the different 
models.  Compared to the current default values, the kriging model yielded a 21.37% 
improvement, the point-based model yielded a 22.82% improvement, the regular regression model 
yielded a 17.03% improvement, and the quantile regression model yielded a 23.19% improvement.  

To facilitate the implementation of the developed models, an Excel-based tool was created, where 
the hybrid kriging model serves as the primary model because it provides comparable 
improvement to other models, but it does not require the SCDOT to collect any additional data.  
The tool also allows the user to use the predicted AADT from either regression models or point-
based model if the road features data are available.  Other configurable parameters include an 
absolute error threshold for when a default value should be used instead of the kriging estimate 
and a reduction factor to account for discrepancy between coverage counts’ mean AADT and non-
coverage counts’ mean AADT. 

Based on this project’s findings, it is recommended that the SCDOT consider adopting the 
developed Excel-based tool.  A 21.37% improvement in terms of RMSE can be expected with the 
use of the hybrid kriging model.  When roadway features are available for non-coverage roads, the 
SCDOT could change the configurable parameter in the tool to use estimates from the point-based 
model (a 1.45% improvement over kriging) or the quantile regression model (a 1.82% 
improvement over kriging). 
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CHAPTER 1:  INTRODUCTION 
 

The South Carolina Department of Transportation (SCDOT) is responsible for the planning, 
design, construction and maintenance of over 41,000 centerline miles of interstate, non-interstate 
National Highway System (NHS), non-NHS primary, Federal Aid secondary, and Non-Federal 
Aid secondary roads within the State.  For the SCDOT to adequately perform these tasks, the 
agency needs to perform traffic counts on a regular basis.  Specifically, traffic counts provide 
annual average daily traffic (AADT), which serves as an input to many transportation studies (e.g., 
transportation planning, traffic safety analysis, and pavement design).  The SCDOT is also 
required to collect and report AADTs to the FHWA annually as part of the Highway Performance 
Monitoring System (HPMS) program.  

Currently, the SCDOT has about 185 permanent count and weight-in-motion stations located 
throughout the entire state; these stations are primarily on interstates.  Additionally, the SCDOT 
has about 12,000 short-term count stations.  A map of these locations is shown in Figure 1-1; these 
locations are called coverage locations because traffic counts are updated on an annual, biennial, 
or triennial basis.  At these stations, counts are collected for 48 hours, and these “short-term” 

counts are then converted to AADTs using expansion factors.  These factors account for the day 
of the week and month of the year in which the short-term count was collected, as well as the 
number of axles per vehicle class.  A short-term count requires the SCDOT to send its personnel 
to the roadway of interest and set up the pneumatic tubes and counters or hire a contractor at a 
cost.  This practice is labor intensive, costly, and puts the safety of SCDOT personnel or 
contractors at risk.   

 
Figure 1-1 Map of coverage locations where short-term counts are regularly collected 
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In Figure 1-1, even though it may appear that the coverage locations cover most roadways in the 
state, there are significantly more roadways where the SCDOT does not collect traffic counts, and 
hence, does not know their actual AADTs.  These locations are shown in Figure 1-2, and they are 
referred to as non-coverage because traffic counts have not been collected at these locations or it 
has been at least 10 years since the last time a short-term count was performed; some DOTs refer 
to these locations as “out-of-network.”  While SCDOT performs counts at non-coverage locations 
as scheduling and funds permit, it is cost prohibitive to perform a short-term count at every non-
coverage location in the state.  Therefore, the SCDOT simply uses a default AADT value based 
on the roadway's functional class and area type.   That is, if the roadway is a local, rural road, then 
a default value of 100 vehicles/day (vpd) is used.  Similarly, if the roadway is an urban, local road, 
then a default value of 200 vpd is used.  The SCDOT recognizes that these default values may not 
reflect the actual AADTs, and therefore, sought to improve upon current practice with this research 
project.  The aim of this project is to provide quantitative and justifiable methods for obtaining 
AADT at non-coverage locations.  To this end, this research project sought to: 1) develop models 
to estimate AADT at non-coverage locations, and 2) develop a user-friendly tool that implements 
the models. 

 
Figure 1-2 Map of non-coverage locations where an AADT estimate is required  
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CHAPTER 2:  LITERATURE REVIEW 
2.1 Literature Review 

There have been many studies that focused on AADT estimation. The majority developed 
techniques to estimate AADT using short-term counts.  A much smaller number of studies 
explored methods to estimate AADT using other sources of data such as land use, census, roadway 
and network characteristics.  These studies are reviewed below and grouped into the following 
categories: regression analysis, kriging, travel demand, machine learning, centrality, and point-
based. 

2.1.1 Regression Analysis 

Regression analysis is a statistical procedure used to study the linear/non-linear relationship 
between a dependent variable (i.e., AADT) and multiple independent variables. The commonly 
used regression techniques for estimating AADT are multiple linear regression, nonlinear 
regression, and geographically weighted regression. 

2.1.1.1 Multiple Linear Regression 

In 1998, Mohamad et al. (1998) applied multiple linear regression to predict the AADT of local 
roads in Indiana. In this model, both quantitative and qualitative variables were used to predict 
AADT values. The independent variables that were initially used include urban/rural classification, 
easy access to state highway, interstate existence, county population, total state highway mileage 
of county, per capita income, total households, total vehicle registration of county, total 
employment, total arterial mileage of county, and total collector mileage of county. Lastly, it was 
determined that urban/rural classification, easy access to state highway, county population, and 
total arterial mileage of county were the most significant variables. The final model containing 
with four independent significant was then validated by randomly measuring the AADT at eight 
new locations and using the model to predict those values.  The mean square error of the validation 
set was 16%.  The authors indicated that since the mean square prediction error of the validation 
set was similar to the mean square error of the test set, their model is unbiased. 

In 1999, Xia et al. (1999) developed a multiple linear regression model to estimate AADT on out-
of-network roads in urban areas of Florida. Using 450 count stations, their study was able to 
develop a large data set for multiple linear regression modeling, which had not been accomplished 
before.  The 14 predictor variables investigated were categorized into roadway characteristics, 
socioeconomic characteristics, and road network connectivity measurements.  Variable reduction 
was performed using statistical methods similar to those in Mohamad et al., 1998.  After utilizing 
statistical tests, the authors noted that roadway characteristics were more significant than 
socioeconomic factors; the socioeconomic factors had little effect on AADT. The roadway 
characteristics considered included the number of lanes, the area land use type, and the functional 
classification.  After removing redundant independent variables, the final model had six predictor 
variables including accessibility to non-state roads, number of lanes, land use type, functional 
classification, automobile ownership, and service employment.  It was validated using data from 
40 additional locations.  The R-squared value for the 40 selected locations was 0.63 and the Mean 
Absolute Percentage Error (MAPE) was 22.7%.   
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Yang et al. (2014) proposed one multi-linear regression model, using the smooth clipped absolute 
deviation (SCAD) procedure to estimate the coefficients as well as select significant variables in 
one step. Data was assembled for four categories of input variables – driving behavior, roadway 
characteristics, satellite data, and socio-economic variables. With respect to driving behavior, the 
initial data considered include loading factor or the contribution of each household to roadway 
sections. The following variables was considered for roadway characteristics – number of lanes, 
length, connectivity to local roads, connectivity to high-level roads, AADT of nearest collector, 
and location of road. From Google map images, data on number of cars on the road and the car 
intensity - number of cars per unit length was extracted. The following socio-economic variables 
were assembled at the zip code level – population, population density, housing units, land area, 
water area, median income, percentage of unemployed, and percentage of people below poverty 
line. AADT and relevant explanatory variable data was assembled for 243 count locations in 
Mecklenburg County, NC, in 2007 for local subtracting the mean and dividing by the standard 
deviation. Two hundred out of the 243 data points were used for model calibration. The remaining 
43 data points was used to validate the model. The above model obtained from SCAD variable 
selection procedure was found to outperform the multiple linear regression model obtained from 
forward stepwise regression procedure.   

In 2000, Seaver et al. (2000) expanded the multiple linear regression methodology by 
incorporating principal component analysis and a cluster regression analysis.  Starting with 45 
potential parameters, principal component analysis was used to reduce the number of independent 
variables to around seven or eight, depending on the area being investigated.  These principal 
variables include percent population change, median travel time, number of agricultural farms, 
percent of farm with 500+ acres, median household income, median time to leave for work, 
distance to MSA, average daily traffic, population density, unemployment rate, number of persons 
working outside of the county, and per capita income.  The cluster regression analysis was able to 
locate groups with the same road type and metropolitan status (i.e., either in or out of a 
metropolitan statistical area, MSA).  Within each cluster, a multiple linear regression was 
performed to estimate AADT using the previously determined principal variables. However, even 
with the integration of these techniques, the success of the model varied greatly.  The models 
within an MSA achieved an R-squared value ranging from 0.46 to 0.75, and the models outside of 
an MSA achieved an R-squared value ranging from 0.27 to 0.94. 

In 2001, Zhao and Chung (2001) continued the work that was started in 1999 by Xia et al.  By 
2001, the already large database of AADT count information had grown to incorporate all AADT’s 

for state roads, the federal functional classification system, and more extensive land-use and 
accessibility variables.  With these improvements to the database, four multiple linear regression 
models were developed.  One model had four variables, two models had five variables, and one 
model had six variables.  The most promising of the models had five variables, number of lanes, 
functional class, regional accessibility to employment centers, an employment indicator, and direct 
access to an expressway.  It had an R-squared value of 0.818, which is a good improvement from 
the R-squared value of 0.63 obtained in the 1999 study.    

In 2006, Anderson et al. (2006) was able to compare the multiple linear regression method to a 
travel demand method by focusing on a small urban community in Alabama.  The travel demand 
method is regarded as a well-established method, but it is computationally expensive, especially 
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for large networks. Therefore, it was necessary to determine if multiple linear regression, which is 
much more time efficient, could produce comparable results.  The multiple linear regression model 
had five independent variables: number of lanes, functional class, population, employment, and a 
binary variable that represents mobility.  After both models were developed, it was observed that 
both models produced similar results.  This was confirmed by using a t-test, graphical inspection, 
and a Nash-Sutcliffe statistic.  The R-squared value for the multiple linear regression model was 
0.819.   

In 2008, Pan (2008) extended multiple linear regression to estimate the AADT of all roads in 
Florida.  The independent variables that were considered included population, total lane mileage 
of highway, vehicle registration, personal income, retail sales, municipalities, labor force, and 
roadway characteristics (e.g., divided/undivided median, number of lanes, rural/urban, land use, 
and accessibility to freeways).  The state of Florida was broken into three categories based on 
population (low, medium, and high population), and for each of these two models were developed.  
One model was developed for the state/county highways and another model was developed for 
local street roads.  It was observed that the highway model outperformed the local model for all 
three population areas.  However, it was also noticed that the models developed for the low 
population areas (MAPE of 31.99% and 46.69%) outperformed the models that were developed 
for the medium (MAPE of 65.01% and 65.35%) and high (MAPE of 46.81% and 159.49%) 
population areas.  

In 2012, Lowry and Dixon (2012) integrated a multiple linear regression model into ArcGIS by 
using open-source Python scripts.  Since most rural roads have uniform characteristics, a multiple 
linear regression analysis would not be able to predict AADT because there is not enough 
variability in the independent variables.  To overcome this limitation, a new parameter called 
connectivity importance index was introduced.  The connectivity importance index is determined 
by finding the shortest path between every node in the network.  The number of times a node is 
included in a shortest path is that node’s connectivity importance index.  By using functional class, 

number of lanes, and connectivity importance index as independent variables, a multiple linear 
regression model was created with an R-squared value of 0.72. 

In 2014, Yang et al. (2014) proposed a new variable selection procedure for multiple linear 
regression called smoothly clipped absolute deviation penalty (SCAD).  This selection procedure 
was able to select significant independent variables and estimate regression coefficients in one 
step, instead of being split into two different procedures.  The SCAD selection procedure was then 
compared to backward and forward variable selection procedures.  The following variables were 
determined to be significant: number of cars in a satellite image, number of lanes, housing units, 
median income, percentage below poverty line, and car intensity in a satellite image.  It was 
observed that backward and SCAD selection procedures resulted in the same R-squared value 
(0.6954), while both outperformed forward variable selection (0.6423). 

In 2016, Apronti et al. (2016) developed a multiple linear regression model to predict AADT 
values in Wyoming.  The final model utilized pavement type, access to primary or secondary roads, 
agricultural cropland, agricultural pastureland, industrial areas, and population in the census block 
group as independent variables.  Using the Box-Cox transformation, it was determined that a log 
transform of AADT would enhance the multiple linear regression.  Before the log transformation 
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was applied the R-squared value was 0.44, and after the log transformation was applied the R-
squared value was 0.64.  Also, after the log transformation of AADT, the errors appeared constant 
and the residuals appeared normally distributed, again showing the benefit of a log transformation.  
Lastly, when the multiple linear regression model was validated, the R-squared value was 0.69.  
Similar test and validation R-squared values implied that the model was not biased. 

In 2016, Staats (2016) utilized probe counts in multiple linear regression to predict AADT values 
on local roads in Kentucky.  The state of Kentucky was split into three geographic areas by using 
highway districts, which was done to account for geographic and socioeconomic variability.  Then 
a model was developed using counts from probe vehicles, residential vehicle registration, and 
curve rating as independent variables for each of the three areas.  For each of the three areas 
investigated, a rural model and an urban model was developed.  The rural models were developed 
by using only AADT values that ranged between 20 and 1,000.  This was chosen because a road 
is not considered rural if the AADT is above 1,000.  This limitation was not imposed on the urban 
model.  For the rural models, the MAPE ranged from 61% to 87%, while the MAPE for the urban 
models ranged from 354% to 1,956%. 

2.1.1.2 Geographically Weighted Multiple Linear Regression 

Geographically weighted multiple linear regression models account for dependencies and 
correlations between variables based on geographic locations. Geographically weighted multiple 
linear regression models are increasingly becoming popular in transportation applications due to 
their ability to better capture geographical variations.  

In 2004, Zhao and Park (2004)  were one of the first to investigate geographically weighted 
multiple linear regression (GWMLR) models for use to estimate AADT. Studying roads in Florida, 
an ordinary multiple linear regression model was created to serve as a control, and the same 
parameters were then used in two geographically weighted models. The parameters utilized 
included the number of lanes, regional accessibility to employment centers, population size, 
employment size, and direct access to expressways.  The first model utilized a bi-square weighting 
function, and the second model utilized a Gaussian weighting function.  Both GWMLR models 
outperformed the control model (R-squared value of 0.764), while the bi-square model (R-squared 
value of 0.8756) outperformed the Gaussian model (R-squared value of 0.8700).  This 
improvement over ordinary MLR shows the necessity of utilizing spatial variation when predicting 
AADT values. 

In 2012, Pulugurtha and Kusam (2012) improved upon GWMLR by investigating multiple 
bandwidths to estimate off-network characteristics.  Both negative binomial and Poisson weighting 
distributions were investigated, and it was observed that the negative binomial weighting 
distribution outperformed the Poisson weighting distribution. It was also observed that an 
appropriate bandwidth varies with the functional class being investigated. For 
freeways/expressways a five-mile buffer was appropriate, while a three mile buffer was 
appropriate for major thoroughfares and a two mile buffer was appropriate for minor 
thoroughfares.  A model was developed for the entire study area and additional models were 
developed for each functional class.  The entire study area model had the following predictor 
variables: urban classification, freeways or expressways, major thoroughfares, number of lanes, 
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population, manufactured house, and innovative.  The quasi-likelihood under the independence 
model criterion (QIC) was used to assess the models, and for this metric a smaller value is optimal.  
The entire study area model’s QIC was found to be 61.43 for the negative binomial weighting and 
1,945 for the Poisson weighting.  The functional class-based models included the following 
predictor variables: urban classification, number of lanes, speed limit, upstream link speed limit, 
downstream link speed limit, downstream cross street link number of lanes, population, 
manufactured house, and rural district.  Based on a drop in QIC, it was observed that segmenting 
the study area into groups based on functional class allowed for better accuracy.  This improvement 
was also observed in the ordinary MLR models.  

2.1.2 Nonlinear Regression Model 

Nonlinear regression techniques assume that the AADT or the logarithm of AADT can be 
predicted as a nonlinear function of independent land use, socio-economic, and demographic 
variables. 

In 2018, Chang and Cheon (2019) proposed a methodology to estimate AADT based on vehicle 
GPS data, also known as probe data, in South Korea.  The methodology (KWPC) uses a locally 
weighted power curve to transform the k nearest probe counts to AADT.  The number of nearest 
probe counts, k, was calibrated by using the elbow method.  The KWPC model was then compared 
to multiple linear regression, geographically weighted multiple linear regression, and kriging.  The 
KWPC model had the lowest MAPE (7.5%), followed by multiple linear regression (9.5%), then 
GWMLR (10.5%), and lastly kriging (42.5%). 

2.1.3 Kriging 

Kriging is a popular geostatistics method originally used in the mining industry for predicting ore 
reserves. The AADT at location s is determined based on a function of a deterministic trend 𝜇(𝑠) 
and an error 𝜖(𝑠) as follows: 

( ) ( ) ( )Z s s s = +   

The error terms are assumed to be spatially correlated. There are three different types of kriging 
depending on the nature of the assumption in describing 𝜇(𝑠). In simple kriging, the trend is 
assumed to be a known constant. In ordinary kriging, the trend is assumed to be an unknown 
constant. In universal kriging, the trend is assumed to be a function of independent variables. A 
semivariogram function is used to capture the spatial correlations. The three commonly used 
functions in AADT estimation are exponential, spherical, and gaussian. 

In 2006, Eom et al. (2006) were at the forefront of utilizing kriging to estimate AADT at 
nonfreeway facilities.  Multiple theoretical semivariograms were investigated, including Gaussian, 
exponential, and spherical.  A theoretical semivariogram model was fitted to the experimental 
semivariogram by two approaches, weighted least squares (WLS) and restricted maximum 
likelihood (REML), with ordinary least squares (OLS) acting as a benchmark.  The best 
semivariogram model for the weighted least squares was the spherical model while the best model 
for restricted maximum likelihood was the exponential model.  It was observed that both methods 
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provided more accurate AADT estimations in both urban and rural areas when compared to 
traditional regression estimates; WLS had a mean square prediction error of 2.91, REML achieved 
an MSPE of 2.86, and OLS achieved an MSPE of 3.12.  This shows that kriging can be utilized to 
estimate AADT values more accurately than MLR, without drastically increasing the complexity 
of the method. 

In 2009, Wang and Kockelman (2009) improved upon the use of kriging by breaking the state of 
Texas into two different models, one for interstate highways and another for principal arterials.  
Once theoretical semivariograms were computed for each road type, it was observed that interstate 
highways had a higher nugget effect and range when compared to the principal arterial road class.  
It was also observed that the interstate highway developed model resulted in a median error of 
33%.  This was due to the kriging method overestimating the AADT values on roads that had low 
traffic volumes.  It was observed that the model performed well for roads that have an AADT 
greater than 1,000.  However, the overestimation could have occurred because the model was being 
implemented on interstate highways, meaning that a highway with a low AADT value would be 
an outlier compared to the other AADT locations. 

In 2013, Selby and Kockelman (2013) compared kriging to GWMLR, and then investigated 
utilizing Euclidian distance instead of network distance.  After developing the models, it was 
observed that kriging outperformed the GWMLR model by 3 to 8% in average absolute error.  
Following this, Euclidian distance and network distance were compared to see the effects on the 
model’s error.  There was no sizable difference in error between using Euclidian or network 

distance.  This means that the time costly work of finding network distances can be exchanged 
with simple Euclidian distance. 

In 2015, Shamo et al. (2015) comprehensively investigated different kriging techniques and 
different semivariogram models to estimate AADT on roads in Washington.  The different kriging 
techniques that were investigated included simple kriging, ordinary kriging, and universal kriging, 
while the semivariogram models that were investigated included spherical, exponential, and 
Gaussian.  The models were developed using traffic count data from different years - 2008, 2009, 
and 2010.  The best fitting semivariogram model was not consistent for each kriging technique or 
year.  In 2008, the exponential model was the best choice for all techniques, while in 2009 it was 
the spherical model.  In 2010, the spherical model was used for simple and ordinary kriging, but 
the exponential model was used for universal kriging.  It was also observed that simple kriging 
was the best model in 2008 and 2009, but ordinary kriging was the best model in 2010.  Lastly, it 
was noticed that the RMSE was not constant for each year.  In 2008 the RMSE ranged from 56.48% 
to 59.01%, while in 2009 it ranged from 94.49% to 95.31%, and in 2010 it ranged from 82.54% to 
84.15%.  This lack of consistency between the best performing semivariogram model shows the 
necessity in comparing all semivariogram models whenever new data is available, instead of 
relying on one model. 

2.1.4 Travel Demand  

Travel demand-based approaches mimic the four-step travel demand forecasting process.  Instead 
of obtaining volume on links from the fourth step (i.e., traffic assignment), the modified approach 
produces AADTs. 
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In 2009, Zhong and Hanson (2009) put forward the four-step travel demand modeling approach to 
estimate the missing AADT information for low-class roads in York County and Beresford regions 
in New Brunswick, Canada. The quick response method from the National Cooperative Highway 
Research Program was used for trip generation, attraction, and balancing. Trip distribution was 
performed using a gravity model with a gamma function based on distances used for estimating 
impedances. The stochastic user equilibrium model was used for traffic assignment.  The 
summation of traffic volumes for all trips was then used to estimate the daily traffic volume, which 
was then the AADT estimate.  Traffic counts were then used to compare the estimations to actual 
results.  Arterial highways had an average error of 9%, while collector highways had an average 
error of 44% and local highways had an average error of 174%.  It was observed that these errors 
could be the result of traffic not being distributed to local or rural roads during the trip distribution 
process. 

In 2013, Wang et al. (2013) proposed an updated travel demand method to predict the AADT of 
local roads in Florida. The proposed travel demand model was based on parcel level trip 
generation, distribution, and assignment.  The parcel level model accounts for driver’s response to 

a given local street system, while the traditional model would try to predict a driver’s choices for 

an entire origin destination trip.  The parcel level model was compared to a typical regression 
model.  The typical regression model resulted in a MAPE of 211%, while the proposed parcel level 
model resulted in a MAPE of 52%.  This is an improvement when compared to the previous study 
by Zhong and Hanson in 2009 and is caused by a mechanism similar to the improvement seen in 
other methods when a study area is broken into different regions. 

2.1.5 Machine Learning  

Machine Learning is an artificial intelligence technique which relies on pattern recognition 
algorithms.  Two types of machine learning techniques have been applied to AADT estimation: 
support vector regression and decision trees. 

In 2009, Castro-Neto et al. (2009) investigated the use of support vector regression with data-
dependent parameters to predict AADT values on Tennessee roads.  A comparison between 
support vector regression with data-dependent parameters, Holt exponential smoothing, and 
ordinary least squares regression was conducted by using Tennessee DOT data.  After applying 
the different models to urban and rural roads, it was observed that the support vector regression 
with data-dependent parameters performed better than Holt exponential smoothing (MAPE of 
2.26% compared to 2.69%), which performed better than the ordinary least squares regression 
(MAPE of 3.85%). 

In 2015, Sun and Das (2015) utilized a modified support vector regression (SVR) method to 
estimate AADT on non-state roads in Louisiana.  Using total population, total jobs, distance from 
interstate, and distance from a major US highway as independent variables,  the SVR models were 
developed.  Eight parishes in Louisiana were selected as the validation set for the analysis.  Two 
SVR models were developed for each parish, one for rural areas and another for urban areas.  For 
the rural models, the percent of samples that had an error of less than 100 ranged from 64% to 
84%, while the percent of samples that had an error less than 100 for the urban area ranged from 
63% to 100%. 
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In 2020, Sfyridis and Agnolucci (2020) integrated clustering with regression modeling to predict 
AADT on all roads in England and Wales.  Since the predictor variables were both numeric and 
categorical, the K-prototype algorithm was used for clustering.  Utilizing the elbow method, it was 
determined that the optimum number of clusters was five.  The regression modeling was performed 
by ordinary multiple linear regression, random forest, and support vector regression.  After using 
80% of the test data for model development, the models were compared on the remaining 20%.  
The support vector regression model produced a MAPE ranging from 2% to 277% and was 
comparable to the random forest method, which produced a MAPE ranging from 2% to 288%.  
Both methods outperformed the multiple linear regression method, which produced a MAPE 
ranging from 2% to 325%.  

2.1.6 Centrality 

Centrality based methods rely on a node’s centrality measure to predict the node’s AADT value.  

There are multiple forms of centrality, but each form is a measure of how popular or utilized a 
node is.  For example, stress centrality is the number of times a node is included in the shortest 
distance between every node pair.  If a node has a high stress centrality, then multiple shortest 
paths go through that node, implying its popularity.  Another common form of centrality is 
closeness centrality, which is based on the distance between every node.  A node with high 
closeness centrality will be close to multiple nodes, which implies that node’s popularity.   

In 2014, Lowry (2014) studied the use of centrality for AADT estimation in Moscow, Idaho.  Stress 
centrality was used as the form of centrality and is equal to the number of times a link would be 
used if someone traveled the shortest distance between every node pair.  This was then modified 
by limiting the set of nodes to only origin-destination pairs and applying multipliers based on the 
land use type of the origin and destination nodes. The modified stress centrality was then 
implemented in an ordinary least squares regression and a robust regression that used a 
transformed AADT value.  The calibration median absolute percent error (MdAPE) for the 
ordinary least squares model was 34% while the validation MdAPE was 22%.  The calibration 
MdAPE for the robust model was 28% and the validation MdAPE was 29%.  Lastly, the number 
of AADT observations being utilized was varied from 10 to 350, and the MdAPE for each number 
of observations was determined.  It was observed that having over 100 observations made the 
validation and calibration MdAPE similar, which means that having over 100 observations made 
the model less biased. 

In 2017, Keehan (2017) studied the applicability of a centrality measure to predict AADT values 
on roads in South Carolina. Origin-destination centrality was investigated, which includes internal-
internal, internal-external, and external-external. These three parameters were then combined with 
three additional parameters, functional class, speed limit, and number of lanes, to produce a 
multiple linear regression model.  It was determined that internal-internal centrality, external-
external centrality, and speed limit would be the parameters in the final regression model.  The 
final regression model was then compared to the traditional travel demand model, and it was 
observed that the regression model outperformed the travel demand model in terms of RMSE and 
R-squared value.  The number of count stations used for input was also varied, and it was observed 
that using 60% or more of the count stations resulted in similar median absolute percent error 
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values.  Therefore, the number of count stations used can be reduced by 40% without a loss of 
accuracy. 

2.1.7 Point-Based Model 

In 2018, Unnikrishnan et al. (2018)  implemented a point-based model to estimate the AADT of 
roads in Oregon.  The idea behind this method is to predict the AADT based on the number of 
“points” or roadway features a roadway has.  The fewer the number of features a roadway has 
(e.g., left-turn lane, two-way left-turn lane, parking lot), the less traffic it is likely to carry, and 
vice versa.  In their work, the point-based model assigns a region a set of roadway features that are 
each worth one point.  The number of features that a roadway has will be the number of points 
associated with that roadway.  The number of points that the roadway has was then related to the 
estimated AADT of that roadway.  The region studied was divided into four separate areas, each 
having its own model and set of roadway characteristics.  For local roads, the median error ranged 
from -16 to 151.  The limitation of this model is the homogenous nature of local roads, which 
generally have the same features in an area.  This means that the features will not vary enough in 
an area to reflect the trends in AADT. 

2.1.8 Summary  

Table 2-1 provides a summary of the studies reviewed.  The study technique, study area, and 
reported error are shown.  The error values are intended to provide a reference or benchmark for 
this study. 

The following conclusions can be made from the above review. 

• The performance of a methodological approach depends on the scope of the application 
(e.g., statewide vs small urban area) and  data availability.  In general, the recommendation 
is to develop models customized to various regions (e.g., urban vs rural, north vs south) 
rather than rely on a single statewide model. 

• Multiple linear regression is the simplest technique for AADT estimation.  This has led to 
numerous studies investigating the use of MLR, which makes it a very well documented 
method, and many advancements have been made through its utilization. Spatial regression 
models appear to perform better than multiple linear regression but are more complex to 
calibrate and may have transferability issues. Spatial approaches have not been tested or 
shown to perform well when transferred to other areas. 
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Table 2-1  Summary of literature review 

Year Author(s) AADT Estimation 
Technique Study Area Reported Error 

1998 Mohamad et al. MLR Indiana MSE=16% 
1999 Xia et al. MLR Florida MPE=20% 
2000 Seaver et al. MLR Georgia R2=0.27-0.94 
2001 Zhao and Chung MLR Florida R2=0.818 
2004 Zhao and Park GWMLR Florida R2=0.8756 
2006 Anderson et al. MLR Alabama R2=0.819 
2006 Eom et al. K North Carolina MSPE=2.86 
2008 Pan MLR Florida MAPE=32-159% 
2009 Castro-Neto et al. SVR Tennessee MAPE=2.26% 
2009 Wang and Kockelman K Texas Median percent error=33% 
2009 Zhong and Hanson TD New Brunswick Average error=9-174% 
2012 Lowry and Dixon MLR Idaho R2=0.72 
2012 Pulugurtha and Kusam GWMLR North Carolina MAPE=26-35% 
2013 Selby and Kockelman K Texas MPE=-6.5-3.9% 
2013 Wang et al. TD Florida MAPE=52% 
2014 Lowry C Idaho MdAPE=22-29% 
2014 Yang et al. MLR North Carolina R2=0.6954 
2015 Shamo et al. K Washington RMSE=56.48-95.31 
2015 Sun and Das SVR Louisiana Percent within 100=63-100 
2016 Apronti et al. MLR Wyoming R2=0.64 
2016 Staats MLR Kentucky MAPE=61-87% 
2017 Keehan C South Carolina R2=0.8292 
2018 Chang and Cheon EM Ulsan City MAPE=7% 
2018 Unnikrishnan et al. EM Oregon Median error=-16-151 

2020 Sfyridis and 
Agnolucci SVR Wales MAPE=2-277% 

MLR=Multiple linear regression, GWMLR=Geographically multiple linear regression, K=Kriging, 
SVR=Support vector regression, TD=Travel demand, C=Centrality, and EM=Emerging methods 

 
• Kriging is similar to geographically weighted multiple linear regression in terms of 

complexity, but it has the advantage of not requiring additional data, unlike other types of 
models.  This method is promising due to its simplicity and cost-effectiveness. 

• Machine learning shows promise as a method for AADT estimation and has been shown 
to produce accurate results.  However, its complexity makes it difficult to implement and 
it suffers from the “black-box” problem.  It should be noted that the machine learning 
models have not been used to estimate AADT at non-coverage locations. 

• Travel demand methods are theoretically sound; however, even for relatively small 
networks, the assignment step takes a long time to complete.  Therefore, this type of models 
cannot be applied at the state level. 
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• The point-based model is simple to understand and is data driven.  Also, its lookup table 
nature is easy to implement.   

2.2 State-of-the-Practice on Non-Coverage AADT Estimation 

As part of this study, an online survey was conducted to understand the state-of-the-practice in 
AADT estimation for non-coverage locations.  The survey was distributed to other state DOTs on 
July 1, 2020.  A total of 17 state DOTs responded to the survey. 

The questions and responses are summarized below.  The questions are numbered and shown in 
italics. 

1. Please indicate the method, technique, or procedure your agency uses to estimate AADT 
at non-coverage or out-of-network locations.  At these locations, there is no recent history 
of past counts (within the last 10 years), and they are not near a station with recent counts 
(within the last 10 years). Check all that apply. 

Table 2-2 The method(s) being used to estimate AADT at non-coverage locations 
Methods, technique, or procedure No. of Responses  Percent of Responses 

Multiple linear regression 5 27.8% 
Visual estimation 4 22.2% 
Geospatial method 2 11.0% 

Nonlinear regression 1 5.6% 
Default Values 4 22.2% 

Spatial regression 1 5.6% 
Travel demand 1 5.6% 

Total 18 100% 
 
As shown in Table 2-2, multiple linear regression is the most commonly used technique to estimate 
AADT at non-coverage locations.  The next two most popular techniques are visual estimation and 
default value.  These two methods have been shown to underestimate or overestimate the actual 
AADTs (Christian, 2021).  These responses suggest that state DOTs do not have the manpower 
and resources to estimate non-coverage AADT. 

2. How satisfied are you with your current AADT estimation at non-coverage locations? 

Table 2-3 Satisfaction with current AADT method 
Satisfaction Level No. of Responses  Percent of Responses 

5 2 14.3% 
4 2 14.3% 
3 5 35.7% 
2 2 14.3% 
1 3 21.4% 

Total 14 100% 
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There were 14 responses to this question because three state DOTs indicated that they do not use 
any AADT estimation technique.  The majority of the respondents rated their satisfaction as three 
or less, with one being unsatisfied and five being satisfied.  This finding suggests that there is a 
need for an AADT estimation technique, one that is simple to implement.   

3. Is your agency using any tool to estimate AADT at non-coverage locations? 

Table 2-4 Use of tool to estimate AADT at non-coverage locations 
Responses No. of Responses  Percent of Responses 

Yes 4 23.5% 
No 13 76.5% 

Total 17 100% 
 
The majority of the respondents (76.5%) indicated that they do not use any tool to estimate AADT 
at non-coverage locations.  This finding suggests that there is a lack of resources made available 
to state DOTs to accomplish this task. 

4. Would you be willing to share your tool with the SCDOT? 

Table 2-5 Willingness to share tool with SCDOT 
Responses No. of Responses  Percent of Responses 

Yes 4 100% 
No 0 0% 

Total 4 100% 
 
Four state DOTs responded to this question and all four indicated that they were willing to share 
the tool with the SCDOT.  The methods used by these tools are default values based on function 
class and rural/urban classification, default values based on mobility index, geospatial, and linear 
regression.  The tool that uses linear regression was deemed most appropriate for the SCDOT. A 
screenshot of this tool is shown in Figure 2-1.  Upon further examination, it was found that the 
technique(s) used by the tool is similar to what the project team had intended to implement.  Given 
that the goal of this project is to utilize easy to implement techniques and to provide the SCDOT 
with an easy-to-use tool, it was decided that a custom Excel-based tool would best meets the need 
of the SCDOT. 
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Figure 2-1. Non-coverage AADT estimation tool 
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CHAPTER 3:  MODELS DEVELOPMENT 
 

This chapter is composed of four parts.  The first part provides information about the coverage and 
non-coverage datasets.  The second part explains how the training dataset was prepared.  The third 
part presents mathematical details underlying the developed models.   

3.1 Data Description 
3.1.1 Non-Coverage Counts Dataset 

Prior to this project, the SCDOT did not have a list of non-coverage locations and did not have a 
procedure to identify them.  The following procedure was developed in conjunction with the 
project steering committee to identify the stations: 

1. Group road segments in each county into two categories, red and green, as follows.  If 
there is a recent count (within the last 10 years) on a segment, then it is considered “green.”  

If there is not a recent count, then it is considered “red.” 
2. Remove “red” segments that are less than 0.2 miles long and classified as dead ends. 
3. Remove “red” segments that are classified as church, school, or cemetery driveways. 
4. If there is a road that is comprised of both “red” and “green” segments, make the entire 

road “red.”  
5. Remove “green” segments. 
6. Combine connecting “red” segments and break up segments that are longer than five miles 

in a rural area or longer than two miles in an urban area into two segments. 
7. The midpoints of the remaining segments are the locations that will be considered non-

coverage count stations. 

After the non-coverage stations were determined, the SCDOT provided a file that contained all of 
the required attributes for each location.  These attributes include: a unique ID, latitude, longitude, 
and functional class.  A map of the non-coverage locations is shown in Figure 3-1.  Note that there 
are significantly more non-coverage locations than coverage.  More than 90% of the non-coverage 
locations are urban (FC 18) and rural (FC 9) local roads.  For this reason, it was decided in 
consultation with the committee that the to be-developed models should focus on predicting AADT 
of only urban (FC 18) and rural (FC 9) local roads at non-coverage locations. 
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Figure 3-1 Map of non-coverage count stations 

3.1.2 Coverage Counts Dataset 

Two files were combined to obtain the necessary information for the coverage counts.  The first 
file is the count station shapefile, which contained the AADT value, latitude, longitude, county, 
and Linear Reference System (LRS).  The second file is the functional classification shapefile, 
which contained the functional class, latitude, longitude, county, and LRS attributes.  These two 
files were joined by the LRS values.  The coverage counts dataset comprised of seven attributes: 
station ID, AADT, latitude, longitude, functional class, county and LRS.  A map of coverage 
counts’ locations based on their latitudes and longitudes is shown in Figure 3-2. 
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Figure 3-2 Map of coverage count stations. 

Each of the attributes provided for the coverage counts is explained in the following. 

• The ID is a seven-digit identifier that is unique to each station.  The first two digits are the 
code for the county that the station is located in, and the remaining five digits denote the 
station number.  For example, a station with an ID of 0200232 indicates that it is in county 
02, which corresponds to Aiken County, and its station number is 00232, meaning it is the 
232nd coverage station.  

• The provided AADTs were not obtained from permanent count stations.  They were 
obtained from short-term counts and expansion factors.  In years when short-term counts 
were not collected, the current year’s AADTs were estimated by multiplying the previous 
year’s AADTs by a growth factor.   

• The latitudes and longitudes are the GPS coordinates of the count stations.  The latitudes 
and longitudes were converted to decimal degrees to facilitate computations. 

• The functional class specifies the type of road, with each having a corresponding number 
as shown in Table 3-1.  There are three major functional classes; arterial, collector, and 
local.  The arterial group is divided into principal arterials and minor arterials, and the 
collector group is divided into major and minor arterials.  The principal arterial group is 
further subdivided into interstates, freeways/expressways, and other.  Each functional class 
is also divided into two groups: urban and rural. 

Table 3-1 Functional class 

Functional Classification Functional Class 
Number 

Arterial Principal 
Arterial Interstate Urban 1 

Rural 11 



 

19 

Functional Classification Functional Class 
Number 

Freeways & 
Expressways 

Urban 6 
Rural 12 

Other Urban 2 
Rural 13 

Minor Arterial Urban 3 
Rural 14 

Collector 
Major Collector Urban 4 

Rural 15 

Minor Collector Urban 5 
Rural 16 

Local Rural 9 

Urban 18 

 
• The county attribute contains the county name where the count station is located. 
• The LRS is an 11-digit number that is used to describe a count station.  The first two digits 

represent the county number, the next two represent the route type, the next five represent 
the route number, and the last two represent the route auxiliary.  In addition, N or E is 
attached to the end to indicate the direction of the route (i.e., north and south or east and 
west).   

Preliminary analysis of the coverage dataset showed that the number of count stations per 
functional class is not evenly distributed.  Their distributions are shown in Figure 3-3. The 
unbalance number of counts per functional class could lead to a biased dataset where the estimated 
AADT is weighted more toward those with higher counts.  Moreover, there is a large variation in 
the minimum, median, mean, maximum, and standard deviation of counts across the different 
functional classes as shown in Table 3-2.  Note that the average AADT of an urban freeway is 14 
times higher than that of an urban local road (i.e., 21,542 vs. 1,534).  For these reasons, only the 
urban (FC 18) and rural (FC 9) local roads are retained in the coverage counts dataset when used 
to predict AADT of non-coverage locations. 
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Figure 3-3 Distribution of coverage counts by functional class 

Table 3-2 Summary statistics of AADT values for each functional class 

Functional 
Class Number 

Minimum 
AADT 

Median 
AADT 

Average 
AADT 

Maximum 
AADT 

Standard 
Deviation 

1 225 42,800 42,990 120,200 17,059 
2 250 6,000 8,470 111,200 9,076 
3 25 3,500 4,884 56,200 5,187 
4 25 1,050 1,943 63,800 3,393 
5 25 325 743 11,900 1,381 
6 7,400 22,800 21,542 44,600 10,884 
9 25 550 1,534 80,500 4,483 

11 125 73,800 74,475 176,500 33,729 
12 1,000 26,300 28,533 60,200 14,966 
13 175 18,000 20,627 97,900 12,962 
14 75 8,100 10,472 61,000 8,109 
15 25 2,600 3,977 38,800 4,103 
16 75 1,200 2,224 12,700 2,571 
18 25 1,250 2,746 83,000 6,347 
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3.2 Models Training Dataset  

From the initial data exploratory analysis and findings, it was determined that AADTs from 
coverage urban (FC 18) and rural (FC 9) local roads will be used to predict AADT of urban (FC 
18) and rural (FC 9) local roads at non-coverage locations.  Table 3-3 shows a summary of the 
statistics between the two datasets.  Even though only urban (FC 18) and rural (FC 9) local roads 
are considered in both datasets, the mean AADT of coverage counts is much higher than that of 
non-coverage counts.  This discrepancy was resolved by first removing outliers from the coverage 
counts dataset, and second, by applying a reduction factor to the coverage counts.  The reduction 
factor is determined by dividing the mean AADT of the coverage counts by the mean AADT of 
the known non-coverage counts and taking the integer value of this quotient.  Once this reduction 
factor is determined, any coverage count higher than the maximum value of non-coverage counts 
times the reduction factor was removed.  The remaining coverage counts were then divided by the 
reduction factor.  The revised counts were then used by the kriging model to determine its optimal 
parameters (i.e., Euclidean distance, bin, nugget, range, partial sil, and weighted coefficients).  
Initial testing found that all models’ performance improved if the training dataset was 

supplemented with known non-coverage data.  For this study, 50% of the known non-coverage 
dataset was used to supplement the coverage dataset in evaluating the models’ performance, and 
the same percentage is used by the Excel-based tool if the known non-coverage data is provided 
by the user (see Section three of Chapter five for additional discussion). 

Table 3-3 AADT statistics of coverage and non-coverage counts 

Counts Coverage Counts Non-coverage Counts 
Average Value 1,750 233 

Minimum Value 25 25 
First Quartile 300 50 

Median Quantile 700 100 
Third Quantile 1,650 250 
95% Quantile 6,215 850 

Maximum Value 83,000 5,900 
 
To develop the regression models and point-based model, several roadway features were collected, 
including the area where the roadway segment is located, its median type, the presence of an 
exclusive right-turn lane, the presence of an exclusive left-turn lane, the presence of a sidewalk on 
both sides of the roadway segment, and the presence of a parking lot.  Table 3-4 shows the variables 
considered.  The variable “Urban” is determined by the functional class provided by the SCDOT.  
Other remaining variables were collected using Google Earth. 
 

Table 3-4  Roadway features collected for model development 

Variable  Description of the Variable 
Urban “1” if the roadway segment is in an urban area; otherwise, “0”  

Single Line “1” if the type of the median of the roadway segment is a single line; 
otherwise, “0” 

Other Type Median “1” if the type of the median of the roadway segment is flush, raised, 
or two-way left turn lane (TWLTL); otherwise, “0” 
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Variable  Description of the Variable 

Right-turn Lane “1” if an exclusive right-turn lane on the roadway segment is present 
1,000 feet upstream and downstream of the midpoint 

Left-turn Lane “1” if an exclusive left-turn lane on the roadway segment is present 
1,000 feet upstream and downstream of the midpoint; otherwise, “0” 

Sidewalk “1” if a sidewalk on both sides of the roadway segment is present 
1,000 feet upstream and downstream of the midpoint; otherwise, “0”  

Parking Lot 

“1” if a parking lot (e.g., pay to park, parking lots, and parking lots 
for schools, shopping centers, recreational facilities, and hospitals) 
adjacent to the roadway segment is present 1,000 feet upstream and 
downstream of the midpoint; otherwise, “0”   

 
Table 3-5 to Table 3-10 present descriptive statistics of AADT by each roadway feature.  These 
results indicate that urban local roads (FC 18) have a higher mean and median AADT than rural 
local roads (FC 9) (Table 3-5).  Roads with flushed, raised, or TWLTL median have a higher mean 
and median AADT than undivided roads (Table 3-6).  Roads with an exclusive right-turn lane have 
a higher mean and median AADT than roads without it (Table 3-7).  Roads with an exclusive left-
turn lane have a higher mean and median AADT than roads without it (Table 3-8).  Roads with a 
sidewalk have a higher mean and median AADT than roads without it (Table 3-9).  Roads with a 
parking lot have a higher mean and median AADT than roads without it (Table 3-10).  These 
findings correspond to tuition in that these features are added as a result of forecasted or realized 
demand. 

Table 3-5 Descriptive statistics of AADT by area 

Area Number of 
Observations Mean AADT Median AADT Min AADT Max AADT 

Rural 2,339 185 75 4 13,900 
Urban 1,851 350 164 4 19,183 

 

Table 3-6 Descriptive statistics of AADT by median types 

Median types Number of 
Observations 

Mean 
AADT 

Median 
AADT 

Min 
AADT 

Max 
AADT 

Undivided 1,347 103 61 4 2,200 
Single line 

 1,885 265 136 4 3,886 

Other types (e.g., flush, 
raised, TWLTL) 958 463 136 4 19,183 

 

Table 3-7  Descriptive statistics of AADT by presence of an exclusive right-turn lane 
Exclusive right-turn 

lane 
Number of 

Observations 
Mean 
AADT 

Median 
AADT 

Min 
AADT 

Max 
AADT 

Not present 3,974 230 107 4 19,183 
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Exclusive right-turn 
lane 

Number of 
Observations 

Mean 
AADT 

Median 
AADT 

Min 
AADT 

Max 
AADT 

Present 216 783 593 36 5,557 
 

Table 3-8 Descriptive statistics of AADT by presence of an exclusive left-turn lane 
Exclusive left-turn 

lane 
Number of 

Observations 
Mean 
AADT 

Median 
AADT 

Min 
AADT 

Max 
AADT 

Not present 3,852 200 100 4 19,183 
Present 338 920 700 46 5,557 

 

Table 3-9 Descriptive statistics of AADT by presence of a sidewalk on both sides of the roadway  

Sidewalk Number of 
Observations Mean AADT Median AADT Min AADT Max AADT 

Not present 3,619 225 100 4 19,183 
Present 571 470 243 4 5,557 

 

Table 3-10 Descriptive statistics of AADT by presence of a parking lot 

Parking lot Number of 
Observations Mean AADT Median AADT Min AADT Max AADT 

Not present 2,762 193 79 4 19,183 
Present 1,428 384 221 4 5,557 

 

3.3 Models 
3.3.1 Kriging 

Given a set of 𝑛 data points with known information, the goal of kriging is to determine an estimate 
at an unknown location, which is shown in Figure 3-4.  The known locations are represented by 
𝑌(𝑠𝑖) , where 𝑠𝑖  is a position vector that describes the location 𝑖 .  Since there are 𝑛  known 
locations, 𝑖 is in the range of 1 to 𝑛.  The unknown location is represented by 𝑠0, and the estimate 
at that unknown location, 𝑌̂(𝑠0), is determined by finding a linear combination of nearby known 
locations.  There are multiple methods that use a linear combination of nearby known locations, 
but what makes kriging unique is its use of geostatistical methods to estimate weights to use for 
each utilized location.  The weights are described by 𝜆𝑖, which corresponds to location 𝑖.   
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Figure 3-4 Illustration of kriging assigning weights to neighbors (Smith, 2020) 

Kriging makes an estimation at an unknown location, 𝑌̂(𝑠0), by using a linear combination of 
known values, 𝑌(𝑠𝑖).  This can be represented by the following equation. 

𝑌̂(𝑠0) = ∑ 𝜆𝑖 ∗ 𝑌(𝑠𝑖)
𝑛0
𝑖=1                                                         (3-1) 

It is important to note that not every known coverage count/location will be utilized for the 
estimation, and therefore, the summation does not go to 𝑛, which is the number of locations, but 
instead goes to 𝑛0, which is the number of utilized neighbors for location 𝑠0.  Kriging utilizes 
geostatistical methods to determine the weights, 𝜆𝑖.  There are multiple methods that can be used 
to determine these weights.  A common approach is to use the inverse distance weighting.  With 
inverse distance weighting, the weight for a location is based on the reciprocal of its distance from 
the unknown location.  This method places a higher weight on known coverage counts/locations 
that are closer to the unknown location.  In general, this makes sense, but it can cause problems if 
there is an outlier that is close to the unknown location.  Kriging solves this problem by using 
geostatistical methods. 

3.3.1.1 Semivariogram 

Kriging uses the covariance between locations to determine how much weight should be given to 
each utilized neighbor.  To calculate the covariance, the semivariogram is used.  A semivariogram 
describes the relationship between the squared difference of two locations and the distance 
between them.  There are three key concepts shown in a semivariogram.  The first is called the 
nugget and refers to the squared difference at a distance of zero.  Since the squared distance is not 
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zero at this location, it implies that the measuring the AADT at a location multiple times will result 
in different values.  This is reasonable because there is variability in AADT measurement, and the 
nugget is a representation of that variability.  The next concept is the range, and that is the distance 
where the semivariogram goes from increasing to remaining constant.  Physically, this implies that 
after a certain distance the new AADT value that is measured can only have a maximum difference 
from the original location, and the distance required for this to take place is the range.  Lastly, the 
partial sil is the difference between the maximum squared difference and the nugget.  This is just 
a representation of the maximum squared difference between two locations.  Instead of the partial 
sil, the sil could be used, which is the sum of the nugget and partial sil and is equal to the maximum 
squared difference.  Usually, the partial sil is used because it allows the effects of the nugget to be 
taken into account.  Instead of reporting the maximum squared difference, which is equal to the 
sil, the partial sil reports the maximum squared difference minus the nugget.  An example 
semivariogram is shown below in Figure 3-5 to illustrate these concepts.  In Figure 3-5, the nugget 
is equal to 0.2, the range is equal to 0.5, the partial sil is equal to 0.8, and the sil is equal to 1.0.   

The procedure for constructing a semivariogram is as follows.  Imagine recording the AADT at a 
location on a roadway, and then moving a distance d away from the starting location.  Now, 
measure the new AADT value and compute the squared difference between them.  By doing this 
for multiple distances, a plot could be developed that looks similar to that shown in Figure 3-5.  
However, there is not only one location that is a distance d from the original position.  A circle 
with radius d could be drawn around the original point, and any value on that circle would be a 
distance d from the original location.  Therefore, for the squared difference at a distance d to be 
represented by one value, an average is taken of all squared differences a distance d from the 
original location.  When performing this on actual data, every pair of locations will have a distance 
between them and their squared AADT difference is calculated.  It is not likely for there to be 
many pairs of locations that have the exact same distance between them.  Therefore, binning is 
used to determine the average squared difference for a bin, γ, and the distance that represents that 

bin is its midpoint.  This set of squared differences and distance is referred to as an empirical 
semivariogram.  To calculate the squared difference between the distances of an empirical 
semivariogram, a semivariogram model is fitted to the empirical semivariogram. 

There are multiple semivariogram models that can be fitted to an empirical semivariogram.  Four 
of the most commonly used in the literature are the Gaussian model, exponential model, spherical 
model, and linear model.  These models have the same three parameters, the nugget, range, and 
partial sil.  Therefore, the theoretical models could be fitted to the empirical semivariogram by 
optimizing the parameters such that they minimize some error criteria.  After determining which 
model best fits the empirical semivariogram, the squared difference can be calculated by inputting 
the distance between two locations and the optimized parameters.   
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Figure 3-5 Semivariogram example 

3.3.1.2 Weighted Determination 

The weights utilized in the kriging method are determined by utilizing the semivariogram.  The 
semivariogram is related to another important function called the covariogram shown the 
following equation (Equation 3-2).  From the relationship between the covariogram and 
semivariogram, it is evident that the covariogram represents the relationship between the similarity 
between two locations to the distance between them.  As the semivariogram increases, the 
covariogram decreases.  Therefore, the covariogram starts at a maximum value and then decreases 
to a minimum.  

𝐶(𝑑) = 𝑛𝑢𝑔 + 𝑝𝑠 − 𝛾(𝑑)                                               (3-2) 

Since the covariogram represents the similarity between two locations, it can be used to calculate 
the covariance between two locations.  Using the covariogram, the following matrices could be 
determined.  The first is a matrix of covariances between the unknown location and every utilized 
neighbor, 𝑐𝑢.  The second is a matrix of covariances between every pair of utilized neighbors, 𝑐𝑘.  
Using these matrices, the optimum weights are determined with the following equation. 

𝜆 = 𝑐𝑘
−1𝑐𝑢                                                        (3-3) 

After determining these weights, the AADT at the non-coverage location could be determined.   

3.3.1.3 Implementation of Kriging Model 

To develop the semivariogram for the kriging model, the first step is to read the coverage count 
data into a matrix.  The latitude is read into a vector, 𝑥, longitude is read into 𝑦, the logarithm of 
AADT is read into 𝑧, functional class is read into 𝐹𝐶, and unique ID is read into 𝐼𝐷𝑠.  Next, the 
distance between every coverage count station, as well as the square difference in AADT between 
every coverage count station, is calculated and stored in a matrix called 𝑑𝑎𝑡𝑎.   
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It is important to note how the distances between two locations were calculated.  First, a Euclidean 
distance was used instead of a network distance because of the complexity involved in calculating 
network distances and the lack of increased accuracy over Euclidean distance (Selby & 
Kockelman, 2013).  However, even calculating the Euclidean distance between two pairs of 
latitude and longitude can be complex.  Given a pair of latitude and longitude, the distance between 
the two follows the curvature of the earth.  Since the earth’s radius is not constant, to determine 

the exact distance would be improbable.  A simplifying assumption would be to assume that the 
earth’s radius is constant.  Doing so would allow the calculation of the great circle distance, which 
is the shortest distance between two points on a sphere.  The first step is to calculate the angle 
between the pairs of latitude and longitude, Δ𝜎, using Equation 3-4, where all angles are in radians, 
and then the great circle distance could be calculated using Equation 3-5 . 

Δ𝜎 = arccos(𝑠𝑖𝑛(𝑥1) 𝑠𝑖𝑛(𝑥2) + 𝑐𝑜𝑠(𝑦1) 𝑐𝑜𝑠(𝑦2) 𝑐𝑜𝑠(𝑦2 − 𝑦1))                (3-4) 

𝑑𝑔𝑐 = 𝑟𝑒Δ𝜎                                                              (3-5) 

A problem with this formulation is that the pairs of latitude and longitude are close enough to cause 
rounding errors.  Also, calculating the angle between each pair and then the corresponding great-
circle distance for approximately 2,500 locations would require much computational power and 
time.  To simplify these calculations, instead of using a linear distance such as miles, the distance 
in terms of degrees is used.   

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                           (3-6) 

After computing the distance, using Equation 3-6, the squared difference between every pair of 
coverage count stations’ AADT values is determined with Equation 3-7. 

𝛿 = (𝐴𝐴𝐷𝑇𝑖 − 𝐴𝐴𝐷𝑇𝑗)
2

                                                 (3-7) 

The matrix of distances and squared differences is then sorted so the smallest distance is at the 
lowest index and each following distance is the next smallest.  In other words, the matrix is sorted 
from smallest to largest by distance.  This sorting is needed to be performed efficiently, because if 
there are 𝑛 known data points, calculating the distance and squared difference between every pair 
of coverage count stations would result in (𝑛2 − 𝑛)/2 distances and squared differences.  Since 𝑛 
is approximately 2,500, the resulting matrix will have approximately 3,125,000 rows.  Sorting this 
in 𝑂(𝑛2) time would take too long for the Excel tool to be used practically.  Therefore, to sort this 
matrix in an adequate amount of time, the quicksort algorithm is used.   

The empirical semivariogram is then developed by choosing a number of bins and calculating the 
average squared difference for each bin.  This average squared difference is equal to the empirical 
semivariogram at the midpoint of the bin.  The average squared difference and bin midpoint are 
stored in a matrix called ℎ𝑖𝑠𝑡.  A plot of the empirical semivariogram is shown below. 
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Figure 3-6 Example emperical semivariogram 

After defining the empirical semivariogram, the next step in the subroutine is to fit a 
semivariogram model to the empirical semivariogram.  There are four semivariogram models that 
are fitted to the empirical semivariogram by minimizing the sum of the squared errors.  These 
included a Gaussian semivariogram, exponential semivariogram, spherical semivariogram, and 
linear semivariogram.  These models are represented with the following set of equations. 

𝛾𝑔(𝑑) = 𝑛𝑢𝑔 + 𝑝𝑠 ∗ (1 − exp (−
𝑑

𝑟
)

2
)                                        (3-8) 

𝛾𝑒(𝑑) = 𝑛𝑢𝑔 + 𝑝𝑠 ∗ (1 − exp (−
𝑑

𝑟
))                                              (3-9) 

𝛾𝑠(𝑑) = 𝑀𝑖𝑛 (𝑛𝑢𝑔 + 𝑝𝑠 ∗ (1.5 (
𝑑

𝑟
) − 0.5 (

𝑑

𝑟
)

3
) , 𝑛𝑢𝑔 + 𝑝𝑠)                    (3-10) 

𝛾𝑙(𝑑) = 𝑀𝑖𝑛 (𝑛𝑢𝑔 + 𝑑 (
𝑝𝑠

𝑟
) , 𝑛𝑢𝑔 + 𝑝𝑠)                                   (3-11) 

 
Excel’s Solver function is used to adjust the nugget, partial sil, and range parameters to minimize 
the sum of squared error for each theoretical semivariogram model.  An example of each optimized 
semivariogram model is shown in Figure 3-7. 
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Figure 3-7 Comparison of different theoretical semivariogram models: (a) gaussian model, (b) 

exponential model, (c) spherical model, and (d) linear model 

After optimizing each model, the model with the lowest sum of squared error is chosen as the best 
model.   

The following procedure is used to calculate the AADT of a sampled dataset, which is a subset of 
the coverage count dataset.  This procedure is then performed for every sampled dataset to 
calculate all unknown AADT values.  The first step in the procedure is to determine the coverage 
count locations that would be utilized by the kriging model.  This is done by calculating the 
Euclidean distance between the sampled dataset location and a coverage location.  If the distance 
is less than the range of the optimized model from step one, that coverage count station would be 
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considered a neighbor of the sampled dataset location.  This is repeated for the distances between 
the sampled dataset location and every coverage location.  Next, the distances between the sampled 
dataset location and its neighbors are then sorted, using the quicksort algorithm, and the smallest 
N neighbors are utilized in the kriging model.  If there is less than N neighbors, then all of the 
neighbors are utilized.   

After determining the utilized neighbors, two covariance matrices are required to determine the 
weights for the utilized neighbors.  The first covariance matrix, 𝑐𝑘 , contains the covariance 
between each pair of utilized neighbors.  In 𝑐𝑘, the element in row 𝑖 and column 𝑗 is the covariance 
between utilized neighbors 𝑖 and 𝑗.  The second covariance matrix, 𝑐𝑢, contains the covariance 
between the non-coverage location and each utilized neighbor.  In 𝑐𝑢, the element in row 𝑖 is the 
covariance between the non-coverage location and utilized neighbor 𝑖.  The covariance between 
two locations is determined by utilizing the covariogram. After determining the model 
semivariogram, the covariance is calculated with Equation 3-12.  Therefore, to determine the 
covariance between two locations, only the model semivariogram and the distance between those 
two locations are required. 

𝐶(𝑑) = 𝑛𝑢𝑔 + 𝑝𝑠 − 𝛾(𝑑)                                             (3-12) 

 
Once the two covariance matrices are determined, the kriging weights are determined using 
Equation 3-13.   

𝜆 = 𝑐𝑘
−1𝑐𝑢                                                              (3-13) 

 
After calculating the kriging weights, each weight is normalized with respect to the sum of absolute 
value of the weights as shown in Equation 3-14.  It is observed that the kriging weights would sum 
to unity, but each individual weight’s value would range drastically.  For example, one weight 

could be 0.13 while the next weight could be -23.  The estimated AADT values are sensitive to 
these large weights because they could cause dramatic overestimation, to the point where Excel 
would show an error stating that the value is too large to be calculated.  Therefore, it is necessary 
to normalize the weights to prevent such overestimation. 

𝜆𝑛𝑜𝑟𝑚,𝑖 =
𝜆𝑖

∑ 𝑎𝑏𝑠(𝜆𝑖)𝑁
𝑖=1

                                              (3-14) 

 
After obtaining the normalized kriging weights, the sampled dataset AADT estimate is determined 
by applying each normalized weight to its respective AADT value, which is shown in Equation 3-
15.   

𝐴𝐴𝐷𝑇 = ∑ 𝜆𝑖 ∗ 𝐴𝐴𝐷𝑇𝑖
𝑁
𝑖=1                                            (3-15) 

After calculating the estimated AADT, it is rounded to the nearest whole number. If it is less than 
25 vpd, it is rounded up to 25 since that is the minimum AADT the SCDOT would use.  If the 
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AADT is between 25 and 500, it is rounded to the nearest 25, between 501 and 2,000, it is rounded 
to the nearest 50, and if it is over 2,000, it is rounded to the nearest 100.  This procedure is used to 
estimate the AADT of a sampled dataset location.  It is then repeated for every non-coverage 
location.   

After determining all AADT of the sampled coverage locations, their absolute errors are ranked 
from the smallest to largest.  An example is shown in Figure 3-8. 

 
Figure 3-8 Sampled locations and their absolute errors 

If the absolute error of the sampled location is above the user-specified error percentile, all non-
coverage locations within 0.9 degrees of that coverage location will take on the mean AADT of 
all coverage counts in that county and corresponding functional class. Figure 3-9 illustrates that 
all non-coverage locations within 0.9 degrees of the coverage station 801453 will use the average 
AADT instead of the kriging-predicted value.  For all other non-coverage locations, their AADTs 
will use the kriging predicted values. The term “hybrid kriging” is used hereafter to refer to the 

approach implemented, where the average AADT is used in place of the kriging-predicted value 
when there is evidence that a coverage location may not have an accurate AADT. 
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Figure 3-9 Illustration of scenario when an average AADT is used instead of kriging-predicted 

AADT 

3.3.2 Point-Based Model 

The point-based model used in this study is based on a study conducted by the Oregon Department 
of Transportation (Unnikrishnan, Figliozzi, Moughari, & Urbina, 2018).  It uses the median AADT 
as the predicted AADT based on the number of points the roadway has; points are roadway 
features, some of which are shown in Table 3-4.  Roadway features are collected on 4,701 urban 
(FC 18) and rual (FC 9) local roads4,189 of which are used to develop the model and 512 are used 
to validate the model.  These roads are then grouped by the number of points they have.  Within 
each group, the median AADT is calculated.  The median AADT is used as the predicted value. 

3.3.3 Regression Models 
 
3.3.3.1 Regular Regression Model 

The regular regression model explores the relationship between a scalar response and one or more 
explanatory variables.  The standard form of the regular regression model is as follows: 

                                        𝑦𝑝𝑟𝑒𝑑 =  𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑖𝑋𝑖  (3-16)                                           

where 𝑦𝑝𝑟𝑒𝑑   is the predicted or expected value of the dependent variable, X1 through 𝑋𝑖  are i 
distinct independent or predictor variables, 𝑏0 is the value of Y when all the independent variables 
(𝑋1 through 𝑋𝑖) are equal to zero, 𝑏1 and through 𝑏𝑖 are the estimated regression coefficients. 
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3.3.3.2 Quantile Regression Model 

The quantile regression model is more robust against outliers in the response variable compared 
to the regular regression model. The general quantile regression model can be described by the 
following equation. 

                              𝑦
𝑝𝑟𝑒𝑑

=  𝑏0(𝑞) + 𝑏1(𝑞)𝑋1 + 𝑏2(𝑞)𝑋2 + ⋯ + 𝑏𝑖(𝑞)𝑋𝑖 (3-17)  

where, 𝑦𝑝𝑟𝑒𝑑  is the predicted or expected value of the dependent variable, X1 through 𝑋𝑖  are i 
distinct independent or predictor variables, 𝑏0 is the value of Y when all the independent variables 
(𝑋1  through 𝑋𝑖 ) are equal to zero, 𝑏1 and through 𝑏𝑖  are the estimated regression coefficients 
associated with 𝑞𝑡ℎ quantile. This study used the 50th quantile for the quantile regression model. 
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CHAPTER 4:  RESULTS 
 

To compare the performance of the developed models, the Root Mean Squared Error (RMSE) is 
used.  RMSE gives the square root of the average of squared differences between actual values 
and predicted values as shown in the following equation: 
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑛
                                                     (4-1) 

where,  
yi = predicted value of the  𝑖𝑡ℎ observation, 
xi = observed values of the 𝑖𝑡ℎ observation, 
 n = number of observations 

4.1 Use of Default Value 

The SCDOT currently uses default values to estimate AADT at non-coverage locations based on 
their functional class.  The current default value for rural local roads (FC 9) is 100, and the current 
default value for urban local roads (FC 18) is 200.  For this project, the SCDOT collected counts 
on 1,024 non-coverage urban (FC 18) and rural (FC 9) local roads between late 2019 and early 
2021.  The AADT statistics for these roads are shown in Table 4-1. These results indicate that the 
current default values are lower than the actual AADT values.   

Table 4-1 Statistics of rural and urban AADT values for non-coverage counts 

Statistics Rural Local Roads (FC 9) Urban Local Roads (FC 18) 
Size 320 704 

Mean 170 262 
Minimum Value 25 25 

First Quartile 50 75 
Median Value 125 125 
Third Quartile 250 275 

Maximum Value 2,200 5,900 
 
Since coverage counts are readily available, they can be used to obtain the default values.  That is, 
a statewide average could be obtained annually for rural (FC 9) and urban (FC 18) local roads and 
then divide those values by the reduction factor; a factor of six is found based on the provided 
coverage and known non-coverage datasets.  This approach would yield a default value of 154 for 
rural local roads (FC 9) and 175 for urban local roads (FC 18).  Compared to the SCDOT’s current 

default values, use of these values would provide a 2.11% improvement in terms of RMSE based 
on the validation set.  Instead of using a default value for the entire state, a default value could also 
be used for each county; these values are shown in Table 4-2 and they are calculated by taking 
county averages and then dividing them by six. Using county-based default values would provide 
a 2.63% improvement over the current values in terms of RMSE. 



 

35 

Table 4-2 Default AADT values for counties 

County Default Rural (FC 9) AADT Default Urban (FC 18) AADT 
ABBEVILLE 84 115 

AIKEN 265 265 
ALLENDALE 31 30 
ANDERSON 275 185 
BAMBERG 114 114 

BARNWELL 182 182 
BEAUFORT 375 425 
BERKELEY 621 1,025 
CALHOUN 77 75 

CHARLESTON 790 600 
CHEROKEE 275 325 
CHESTER 175 75 

CHESTERFIELD 100 211 
CLARENDON 105 105 
COLLETON 205 170 

DARLINGTON 120 265 
DILLON 178 340 

DORCHESTER 530 810 
EDGEFIELD 100 381 
FAIRFIELD 164 222 
FLORENCE 500 290 

GEORGETOWN 300 326 
GREENVILLE 325 495 
GREENWOOD 350 110 

HAMPTON 50 75 
HORRY 620 563 
JASPER 190 190 

KERSHAW 275 260 
LANCASTER 253 260 

LAURENS 342 164 
LEE 60 63 

LEXINGTON 365 623 
MARION 182 135 

MARLBORO 83 155 
MCCORMICK 60 55 
NEWBERRY 161 295 

OCONEE 155 404 
ORANGEBURG 127 405 

PICKENS 351 433 
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County Default Rural (FC 9) AADT Default Urban (FC 18) AADT 
RICHLAND 725 691 

SALUDA 130 130 
SPARTANBURG 322 370 

SUMTER 200 630 
UNION 70 282 

WILLIAMSBURG 81 215 
YORK 325 440 

4.2 Kriging Model 

The implemented hybrid kriging model allows the user to specify the absolute error threshold.  
When a sampled coverage location has an absolute error above this threshold, then all non-
coverage locations within a certain radius of that coverage station will use a default value.  The 
default value is the mean AADT based on county and functional class.  Table 4-3 shows the RMSE 
for different radii with the absolute error set at 90th.  As shown, a radius of 0.9 degrees resulted in 
the lowest RMSE.  For this reason, 0.9 degrees is used in the tool for estimation. 

Table 4-3 Effect of radius on kriging model performance  

Absolute Error 
Threshold (percentile) Radius (degrees) RMSE 

90 0.1 375 
90 0.2 375 
90 0.3 373 
90 0.4 371 
90 0.5 369 
90 0.6 367 
90 0.7 367 
90 0.8 361 
90 0.9 357 
90 1.0 362 
90 1.1 368 

* Size of training dataset is 3,677; size of testing dataset is 1,024. 
 
Table 4-4 shows the effect of changing the absolute error threshold.  A threshold of 90th percentile 
resulted in the lowest RMSE.  For this reason, it is set as the default value.  However, the user can 
change it to whatever value is deemed appropriate. 

Table 4-4 Effect of absolute error threshold on kriging model performance 

Absolute Error Threshold 
(percentile) Radius (degrees) RMSE 

95 0.9 352 
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Absolute Error Threshold 
(percentile) Radius (degrees) RMSE 

90 0.9 347 
85 0.9 349 

* Size of training dataset is 3,677; size of testing dataset is 1,024. 
        
The implemented hybrid kriging model also allows the user to supplement the coverage counts 
data with known non-coverage counts.  It can be seen in Table 4-5 that when the training dataset 
is supplemented with known non-coverage data, it resulted in an improvement in RMSE from 
19.79% to 21.37% over the current default value method. 

Table 4-5  Effect of including known non-coverage counts 

Dataset Coverage counts 

only 
Coverage counts with non-

coverage counts 
Size of training dataset 3,677 4,189 
Size of testing dataset 1,024 512 
Threshold (percentile) 90 90 

Reduction factor 6 6 
RMSE 304 215 

Improvement over current default 

value method 19.79% 21.37% 

 

4.3 Point-Based Model 

Features from a total of 4,189 urban (FC 18) and rural (FC 9) local roads are collected; they include 
all locations from the list of coverage stations and all locations from the list of known non-coverage 
stations.  Figure 4-1 shows the locations of these roads. As explained previously, the coverage 
counts are grouped by the number of points or features they have in common and the median 
AADT in each group are used as the predicted value.  The features collected at unknown non-
coverage locations are used to validate the point-based model.  Table 4-6 shows the results of the 
point-based model using SCDOT data.  It is essentially a lookup table.  That is, given a number of 
points a road has, there is a corresponding predicted AADT.  For example, a road with zero points 
is predicted to have an AADT of 125 vpd, and a road with three points is predicted to have an 
AADT of 650 vpd.  
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Figure 4-1 Locations of stations used for model training 

Table 4-6 AADT prediction by the point-based model 

Point Predicted AADT Description of Each Point Level 

0 125 A roadway segment contains none of the seven variables 
shown in Table 3-4 

1 175 A roadway segment contains one of the seven variables 
shown in Table 3-4 

2 350 A roadway segment contains two of the seven variables 
shown in Table 3-4 

3 650 A roadway segment contains three of the seven variables 
shown in Table 3-4 

4 900 A roadway segment contains four of the seven variables 
shown in Table 3-4 

5 1,600 A roadway segment contains five of the seven variables 
shown in Table 3-4 
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Point Predicted AADT Description of Each Point Level 

6/7 1,800 A roadway segment contains at least six of seven variables 
shown in Table 3-4. 

4.4 Regression Model 
4.4.1 Regular Regression Model 

Table 4-7 shows the regular regression model estimation results.  Only the statistically significant 
variables are shown.  To be statistically significant at the 0.05 significance level, their t-values 
need to be greater than 1.96 or less than -1.96.  This implies that their p-values must be less than 
0.05, which can be verified in the last column.  All variables have a positive sign, which suggest 
that the presence of these features will increase the AADT.  Their coefficients represent the 
increase in AADT.  For example, the AADT is increased by 110 if the urban (FC 18) or the rural 
(FC 9) local road is located in an urban area versus rural area.  Similarly, the AADT is increased 
by 113 if the urban (FC 18) or the rural (FC 9) local road has a double yellow line versus no 
centerline marking.  If a road has none of these features, it is estimated to have an AADT of 40; 
using the SCDOT rounding procedure, it would be rounded to 50. 

Table 4-7 Regular regression model estimation results 
Variable Estimate Std. Error t-value p-value 
(Intercept) 40 18.47 2.143 0.032134 

Urban 110 19.19 5.724 1.11E-08 
Double Yellow Line 113 21.31 5.314 1.13E-07 
Other Type Median 249 25.43 9.784 < 2e-16 

Right-turn Lane 158 47.03 3.35 0.000816 
Left-turn Lane 539 39.71 13.582 < 2e-16 

Sidewalk 66 28.55 2.296 0.021745 

4.4.2 Quantile Regression Model 

Table 4-8 shows the quantile regression model estimation results.  Only the statistically significant 
variables are shown (i.e., those with p-values < 0.05).  Similar to the regular regression model, all 
coefficients are positive.  However, their coefficients are different.  For example, this model 
predicts that a non-coverage road located in an urban area adds only 50 more vpd compared to 110 
predicted by the regular regression model.  Parking lot is found to be statistically significant in this 
model.  Its presence is estimated to add 50 more vpd to the AADT.  If a road has none of these 
features, this model predicts the AADT to be 25, which corresponds the minimum AADT the 
SCDOT would report. 

Table 4-8 Coefficients for the quantile regression model 
Variable Estimate Std. Error t-value p-value 
(Intercept) 25 2.2 13.2 0 

Urban 50 4.8 10.4 0 
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Variable Estimate Std. Error t-value p-value 
Double Yellow Line 75 4.9 13.0 0 
Other Type Median 50 5.5 7.6 0 

Right-turn Lane 275 36.7 7.8 0 
Left-turn Lane 450 65.3 6.9 0 

Sidewalk 25 12.8 2.8 0.0049 
Parking Lot 50 6.5 7.6 0 

 

4.5 Comparison of Models Performance 

Figure 4-2 shows the performance of the different models in terms of RMSE using a validation 
dataset consisting of 512 non-coverage locations.  As shown, using the current default values 
resulted in an RMSE of 276.  Using the hybrid kriging model reduced the RMSE to 217, a 21.37% 
improvement in terms of RMSE. The point-based model yielded an improvement of 22.28% 
compared to the current default value method, whereas the regular regression model yielded a 
17.03% improvement, and the quantile regression model yielded a 23.19% improvement. 

 
Figure 4-2 Comparison of models’ performance 
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CHAPTER 5:  CONCLUSION AND RECOMMENDATIONS 
 

5.1 Conclusion 

Currently, the SCDOT assigns a default value based on the functional class of the non-coverage 
road.  If the road is a rural local road, then the default value is 100 vpd, and if the road is an urban 
local road, then the default value is 200 vpd.  If the SCDOT practice requires the continual use of 
the default value method, then it is found that it would be better in terms of RMSE if a statewide 
average AADT is used.  By using a default value of 154 vpd for rural local roads (FC 9) and 175 
vpd for urban local roads (FC 18), it would lower the RMSE from 379 to 371.  Instead of using 
statewide default value, having a separate default value for each county as shown in Table 4-2 
would lower the RMSE further to 369.  In summary, using statewide average value would lead to 
a 2.11% improvement, whereas using a county-based average value would lead to a 2.63% 
improvement over the current default values. 

This project identified suitable methods to estimate AADT at non-coverage locations in terms of 
ease of implementation and accuracy. These methods include kriging, point-based model, regular 
regression model, and quantile regression model.  The kriging model was selected as the primary 
model because it leverages existing coverage counts and does not require the SCDOT to collect 
additional data.  Other models were also developed to complement the kriging model.  Compared 
to the SCDOT’s current default value method, the hybrid kriging model yielded a 21.37% 
improvement, the point-based model yielded a 17.03% improvement, the regular regression model 
yielded a 17.03% improvement, and the quantile regression model yielded a 23.19% improvement.  
The use of the point-based model, regular regression model and quantile regression model requires 
the collection of roadway features: location (urban or rural), presence of centerline marking 
(double yellow line), presence of median, presence of right turn lane, presence of left turn lane, 
presence of parking lot adjacent to the study road segment, and presence of sidewalks. 

5.2 Recommendations 

Based on this project’s findings, it is recommended that the SCDOT consider adopting the 
developed Excel-based tool.  A 21.37% improvement in terms of RMSE can be expected with the 
use of the kriging model.  When roadway features are available for non-coverage roads, the 
SCDOT could change the configurable parameter in the tool to use estimates from the point-based 
model (a 1.45% improvement over kriging) or the quantile regression model (a 1.82% 
improvement over kriging). 

5.3 Implementation 

An Excel-based tool was developed as part of this project to assist the SCDOT in utilizing the 
developed models.  Figure 5-1shows a screenshot of the user interface.  Running the tool simply 
involves clicking on the buttons in the sequence indicated and providing the necessary data files.  
Sample data files are provided along with the Excel-based tool which has VBA codes embedded. 
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Figure 5-1 Graphical user interface of non-coverage AADT estimation tool 

The following explains the steps involved in running the program. 

• Step one: Click on the “Clear Data” button.  As the name implies, this step clears all the 
data in various worksheets such as coverage counts, known non-coverage counts, and 
unknown non-coverage counts. 

• Step two: Click on the “Import Coverage Counts” button.  The user will be prompted to 
select a file from the user’s computer using standard Windows File Dialog.  Upon 
successful reading of the file, a dialog box will be displayed informing the user that the 
data has been loaded successfully into the “Coverage Counts” worksheet.  A map of the 
coverage counts’ location will be generated based on the stations’ latitudes and longitudes 
as shown in Figure 5-2. 
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Figure 5-2 Map of coverage counts generated by developed tool 

• Step three: Click on the “Import Known Non-coverage Counts” button.  This step is 
optional and should only be executed if the SCDOT has collected counts from non-
coverage locations.  The user will be prompted to select a file from the user’s computer 
using standard Windows File Dialog.  Upon successful reading of the file, a dialog box 
will be displayed informing the user that the data has been loaded successfully into the 
“Known Non-Coverage Counts” worksheet.  A map of the known non-coverage counts’ 

location will be generated based on the stations’ latitudes and longitudes.  If Step three is 
performed, the dropdown box will be enabled. 

• Step four: Select desired reduction factor from the dropdown box.  Users has the option to 
use the default reduction factor entered on the parameter worksheet (discussed below) or 
use the reduction factor calculated based on the provided data.  If the latter option is 
selected, the tool will display the calculated reduction factor as shown in Figure 5-3. 
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Figure 5-3 Dialog showing value of calculated reduction factor 

• Step five:  Click on “Import Non-coverage Locations” button.  Similar to previous steps, 
the user will need to provide the appropriate data file, and the tool will provide a message 
indicating successful reading of the file, and it will generate a map showing the locations 
of the non-coverage locations. 

• Step six: Click on “Run Model” button.  This step executes a series of VBA subroutines 
that implement the kriging model.  The run time depends on the number of locations 
provided.  It takes a couple of minutes to complete when the coverage and non-coverage 
counts are less than 5,000. 

 
The tool allows the user to change three parameters as shown in Figure 5-4. 

1. Absolute error threshold (percentile).  The default is 90th percentile.  The decimal form of 
the percentile should be specified.  For example, 0.8 should be entered if the desired 
threshold for switching from kriging-predicted to default value is 80th percentile. 

2. Complimentary model.  The default is “0” which means the hybrid kriging model will be 
used to predict AADT.  If “1” is specified, then the point-based model will be applied to 
those stations with the provided road features.  The AADT of the remaining stations will 
be predicted by the hybrid kriging model.  Similarly, if “2” is selected, then the regular 
regression model will be applied and if “3” is selected then the quantile regression model 
will be applied to those stations with the provided road features.  Note that columns F to L 
in the “Non-Coverage AADT Estimation” worksheet must have “0” or “1” (where “1” 

indicates true) if “1”, “2” or “3” is specified for this parameter. 
3. Default reduction factor.  The default is “6.”  The user has the option to use this value or 

have the tool calculate the reduction factor from the data. 

 
Figure 5-4 Configurable parameters 

On the parameters worksheet, in addition to the ability to change the three parameters discussed 
above, the user can also change the predicted AADT for the point-based model and coefficients of 
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the regular regression and quantile regression models.  The updating of the regression models’ 

coefficients should only be done if the models are re-estimated. 
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	EXECUTIVE SUMMARY 
	The objectives of this research project were to: 1) develop models to estimate annual average daily traffic (AADT) at non-coverage locations, and 2) develop a user-friendly tool that implements the models. 
	A literature review and state department of transportation (DOT) survey were conducted to determine the most applicable models.  Findings from the literature review indicate that multiple linear regression is the most widely used method to estimate AADT due to their simplicity.  Machine learning models can provide more accurate results; however, its complexity makes it difficult to implement.  Travel demand methods are theoretically sound, but they are computationally expensive.  Kriging is simple to implem
	P
	Findings from the online State DOTs survey indicate that multiple linear regression is the most commonly used method to estimate AADT at non-coverage locations among the 17 respondents.  The next two most popular methods are visual estimation and default values.  This finding suggests that there is a need for an AADT estimation technique, one that is simple to implement.  This inference is supported by the fact that most respondents rated their satisfaction with the current non-coverage AADT estimation tech
	Based on the findings from the literature review and state DOT survey, the kriging, regression and point-based models were developed using a dataset consisting of 3,687 coverage counts, 2,510 were collected in 2020 and 1,177 in 2021, and 1,024 non-coverage counts, 548 were collected in 2019, 239 in 2020 and 237 in 2021.   The standard kriging approach was modified in this project to use a default value when its predicted value is over a user-specified threshold.  Specifically, when a sampled coverage locati
	Two types of regression models were developed: regular and quantile.  The statistically significant variables in the regular regression model are Urban, Single Line, Other Type Median, Left-Turn Lane, Right-Turn Lane and Sidewalk.  The statistically significant variables in the quantile regression model are Urban, Single Line, Other Type Median, Right-Turn Lane, Left-Turn Lane, Sidewalk and Parking Lot.   
	The point-based model, developed based on the work of Portland State University for Oregon DOT, predicts the AADT using the median AADT of roadways that have the same number of points or features.  One point is assigned for each of the following roadway features:  
	• In urban area 
	• In urban area 
	• In urban area 

	• Presence of centerline marking (i.e., double yellow line) 
	• Presence of centerline marking (i.e., double yellow line) 

	• Presence of median  
	• Presence of median  

	• Presence of right-turn lane  
	• Presence of right-turn lane  

	• Presence of left-turn lane  
	• Presence of left-turn lane  

	• Presence of parking lot adjacent to the study road segment  
	• Presence of parking lot adjacent to the study road segment  

	• Presence of sidewalk 
	• Presence of sidewalk 


	 The point-based model equates to a lookup table, as shown below.  A local road with none of the above features is expected to have 125 vehicle per day (vpd) and a road with six or seven features is expected to have 1,800 vpd. 
	Point 
	Point 
	Point 
	Point 
	Point 

	Predicted AADT for Local Roads 
	Predicted AADT for Local Roads 



	0 
	0 
	0 
	0 

	125 
	125 


	1 
	1 
	1 

	175 
	175 


	2 
	2 
	2 

	350 
	350 


	3 
	3 
	3 

	650 
	650 


	4 
	4 
	4 

	900 
	900 


	5 
	5 
	5 

	1,600 
	1,600 


	6 or 7 
	6 or 7 
	6 or 7 

	1,800 
	1,800 




	 The Root Mean Square Error (RMSE) was used to evaluate the performance of the different models.  Compared to the current default values, the kriging model yielded a 21.37% improvement, the point-based model yielded a 22.82% improvement, the regular regression model yielded a 17.03% improvement, and the quantile regression model yielded a 23.19% improvement.  
	To facilitate the implementation of the developed models, an Excel-based tool was created, where the hybrid kriging model serves as the primary model because it provides comparable improvement to other models, but it does not require the SCDOT to collect any additional data.  The tool also allows the user to use the predicted AADT from either regression models or point-based model if the road features data are available.  Other configurable parameters include an absolute error threshold for when a default v
	Based on this project’s findings, it is recommended that the SCDOT consider adopting the developed Excel-based tool.  A 21.37% improvement in terms of RMSE can be expected with the use of the hybrid kriging model.  When roadway features are available for non-coverage roads, the SCDOT could change the configurable parameter in the tool to use estimates from the point-based model (a 1.45% improvement over kriging) or the quantile regression model (a 1.82% improvement over kriging). 
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	CHAPTER 1:  INTRODUCTION 
	 
	The South Carolina Department of Transportation (SCDOT) is responsible for the planning, design, construction and maintenance of over 41,000 centerline miles of interstate, non-interstate National Highway System (NHS), non-NHS primary, Federal Aid secondary, and Non-Federal Aid secondary roads within the State.  For the SCDOT to adequately perform these tasks, the agency needs to perform traffic counts on a regular basis.  Specifically, traffic counts provide annual average daily traffic (AADT), which serve
	Currently, the SCDOT has about 185 permanent count and weight-in-motion stations located throughout the entire state; these stations are primarily on interstates.  Additionally, the SCDOT has about 12,000 short-term count stations.  A map of these locations is shown in Figure 1-1; these locations are called coverage locations because traffic counts are updated on an annual, biennial, or triennial basis.  At these stations, counts are collected for 48 hours, and these “short-term” counts are then converted t
	 
	Figure
	Figure 1-1 Map of coverage locations where short-term counts are regularly collected 
	In Figure 1-1, even though it may appear that the coverage locations cover most roadways in the state, there are significantly more roadways where the SCDOT does not collect traffic counts, and hence, does not know their actual AADTs.  These locations are shown in Figure 1-2, and they are referred to as non-coverage because traffic counts have not been collected at these locations or it has been at least 10 years since the last time a short-term count was performed; some DOTs refer to these locations as “ou
	 
	Figure
	Figure 1-2 Map of non-coverage locations where an AADT estimate is required  
	  
	CHAPTER 2:  LITERATURE REVIEW 
	2.1 Literature Review 
	There have been many studies that focused on AADT estimation. The majority developed techniques to estimate AADT using short-term counts.  A much smaller number of studies explored methods to estimate AADT using other sources of data such as land use, census, roadway and network characteristics.  These studies are reviewed below and grouped into the following categories: regression analysis, kriging, travel demand, machine learning, centrality, and point-based. 
	2.1.1 Regression Analysis 
	Regression analysis is a statistical procedure used to study the linear/non-linear relationship between a dependent variable (i.e., AADT) and multiple independent variables. The commonly used regression techniques for estimating AADT are multiple linear regression, nonlinear regression, and geographically weighted regression. 
	2.1.1.1 Multiple Linear Regression 
	In 1998, Mohamad et al. (1998) applied multiple linear regression to predict the AADT of local roads in Indiana. In this model, both quantitative and qualitative variables were used to predict AADT values. The independent variables that were initially used include urban/rural classification, easy access to state highway, interstate existence, county population, total state highway mileage of county, per capita income, total households, total vehicle registration of county, total employment, total arterial m
	In 1999, Xia et al. (1999) developed a multiple linear regression model to estimate AADT on out-of-network roads in urban areas of Florida. Using 450 count stations, their study was able to develop a large data set for multiple linear regression modeling, which had not been accomplished before.  The 14 predictor variables investigated were categorized into roadway characteristics, socioeconomic characteristics, and road network connectivity measurements.  Variable reduction was performed using statistical m
	Yang et al. (2014) proposed one multi-linear regression model, using the smooth clipped absolute deviation (SCAD) procedure to estimate the coefficients as well as select significant variables in one step. Data was assembled for four categories of input variables – driving behavior, roadway characteristics, satellite data, and socio-economic variables. With respect to driving behavior, the initial data considered include loading factor or the contribution of each household to roadway sections. The following
	In 2000, Seaver et al. (2000) expanded the multiple linear regression methodology by incorporating principal component analysis and a cluster regression analysis.  Starting with 45 potential parameters, principal component analysis was used to reduce the number of independent variables to around seven or eight, depending on the area being investigated.  These principal variables include percent population change, median travel time, number of agricultural farms, percent of farm with 500+ acres, median house
	In 2001, Zhao and Chung (2001) continued the work that was started in 1999 by Xia et al.  By 2001, the already large database of AADT count information had grown to incorporate all AADT’s for state roads, the federal functional classification system, and more extensive land-use and accessibility variables.  With these improvements to the database, four multiple linear regression models were developed.  One model had four variables, two models had five variables, and one model had six variables.  The most pr
	In 2006, Anderson et al. (2006) was able to compare the multiple linear regression method to a travel demand method by focusing on a small urban community in Alabama.  The travel demand method is regarded as a well-established method, but it is computationally expensive, especially 
	for large networks. Therefore, it was necessary to determine if multiple linear regression, which is much more time efficient, could produce comparable results.  The multiple linear regression model had five independent variables: number of lanes, functional class, population, employment, and a binary variable that represents mobility.  After both models were developed, it was observed that both models produced similar results.  This was confirmed by using a t-test, graphical inspection, and a Nash-Sutcliff
	In 2008, Pan (2008) extended multiple linear regression to estimate the AADT of all roads in Florida.  The independent variables that were considered included population, total lane mileage of highway, vehicle registration, personal income, retail sales, municipalities, labor force, and roadway characteristics (e.g., divided/undivided median, number of lanes, rural/urban, land use, and accessibility to freeways).  The state of Florida was broken into three categories based on population (low, medium, and hi
	In 2012, Lowry and Dixon (2012) integrated a multiple linear regression model into ArcGIS by using open-source Python scripts.  Since most rural roads have uniform characteristics, a multiple linear regression analysis would not be able to predict AADT because there is not enough variability in the independent variables.  To overcome this limitation, a new parameter called connectivity importance index was introduced.  The connectivity importance index is determined by finding the shortest path between ever
	In 2014, Yang et al. (2014) proposed a new variable selection procedure for multiple linear regression called smoothly clipped absolute deviation penalty (SCAD).  This selection procedure was able to select significant independent variables and estimate regression coefficients in one step, instead of being split into two different procedures.  The SCAD selection procedure was then compared to backward and forward variable selection procedures.  The following variables were determined to be significant: numb
	In 2016, Apronti et al. (2016) developed a multiple linear regression model to predict AADT values in Wyoming.  The final model utilized pavement type, access to primary or secondary roads, agricultural cropland, agricultural pastureland, industrial areas, and population in the census block group as independent variables.  Using the Box-Cox transformation, it was determined that a log transform of AADT would enhance the multiple linear regression.  Before the log transformation 
	was applied the R-squared value was 0.44, and after the log transformation was applied the R-squared value was 0.64.  Also, after the log transformation of AADT, the errors appeared constant and the residuals appeared normally distributed, again showing the benefit of a log transformation.  Lastly, when the multiple linear regression model was validated, the R-squared value was 0.69.  Similar test and validation R-squared values implied that the model was not biased. 
	In 2016, Staats (2016) utilized probe counts in multiple linear regression to predict AADT values on local roads in Kentucky.  The state of Kentucky was split into three geographic areas by using highway districts, which was done to account for geographic and socioeconomic variability.  Then a model was developed using counts from probe vehicles, residential vehicle registration, and curve rating as independent variables for each of the three areas.  For each of the three areas investigated, a rural model a
	2.1.1.2 Geographically Weighted Multiple Linear Regression 
	Geographically weighted multiple linear regression models account for dependencies and correlations between variables based on geographic locations. Geographically weighted multiple linear regression models are increasingly becoming popular in transportation applications due to their ability to better capture geographical variations.  
	In 2004, Zhao and Park (2004)  were one of the first to investigate geographically weighted multiple linear regression (GWMLR) models for use to estimate AADT. Studying roads in Florida, an ordinary multiple linear regression model was created to serve as a control, and the same parameters were then used in two geographically weighted models. The parameters utilized included the number of lanes, regional accessibility to employment centers, population size, employment size, and direct access to expressways.
	In 2012, Pulugurtha and Kusam (2012) improved upon GWMLR by investigating multiple bandwidths to estimate off-network characteristics.  Both negative binomial and Poisson weighting distributions were investigated, and it was observed that the negative binomial weighting distribution outperformed the Poisson weighting distribution. It was also observed that an appropriate bandwidth varies with the functional class being investigated. For freeways/expressways a five-mile buffer was appropriate, while a three 
	population, manufactured house, and innovative.  The quasi-likelihood under the independence model criterion (QIC) was used to assess the models, and for this metric a smaller value is optimal.  The entire study area model’s QIC was found to be 61.43 for the negative binomial weighting and 1,945 for the Poisson weighting.  The functional class-based models included the following predictor variables: urban classification, number of lanes, speed limit, upstream link speed limit, downstream link speed limit, d
	2.1.2 Nonlinear Regression Model 
	Nonlinear regression techniques assume that the AADT or the logarithm of AADT can be predicted as a nonlinear function of independent land use, socio-economic, and demographic variables. 
	In 2018, Chang and Cheon (2019) proposed a methodology to estimate AADT based on vehicle GPS data, also known as probe data, in South Korea.  The methodology (KWPC) uses a locally weighted power curve to transform the k nearest probe counts to AADT.  The number of nearest probe counts, k, was calibrated by using the elbow method.  The KWPC model was then compared to multiple linear regression, geographically weighted multiple linear regression, and kriging.  The KWPC model had the lowest MAPE (7.5%), follow
	2.1.3 Kriging 
	Kriging is a popular geostatistics method originally used in the mining industry for predicting ore reserves. The AADT at location s is determined based on a function of a deterministic trend 𝜇(𝑠) and an error 𝜖(𝑠) as follows: 
	  
	  
	InlineShape

	The error terms are assumed to be spatially correlated. There are three different types of kriging depending on the nature of the assumption in describing 𝜇(𝑠). In simple kriging, the trend is assumed to be a known constant. In ordinary kriging, the trend is assumed to be an unknown constant. In universal kriging, the trend is assumed to be a function of independent variables. A semivariogram function is used to capture the spatial correlations. The three commonly used functions in AADT estimation are exp
	In 2006, Eom et al. (2006) were at the forefront of utilizing kriging to estimate AADT at nonfreeway facilities.  Multiple theoretical semivariograms were investigated, including Gaussian, exponential, and spherical.  A theoretical semivariogram model was fitted to the experimental semivariogram by two approaches, weighted least squares (WLS) and restricted maximum likelihood (REML), with ordinary least squares (OLS) acting as a benchmark.  The best semivariogram model for the weighted least squares was the
	provided more accurate AADT estimations in both urban and rural areas when compared to traditional regression estimates; WLS had a mean square prediction error of 2.91, REML achieved an MSPE of 2.86, and OLS achieved an MSPE of 3.12.  This shows that kriging can be utilized to estimate AADT values more accurately than MLR, without drastically increasing the complexity of the method. 
	In 2009, Wang and Kockelman (2009) improved upon the use of kriging by breaking the state of Texas into two different models, one for interstate highways and another for principal arterials.  Once theoretical semivariograms were computed for each road type, it was observed that interstate highways had a higher nugget effect and range when compared to the principal arterial road class.  It was also observed that the interstate highway developed model resulted in a median error of 33%.  This was due to the kr
	In 2013, Selby and Kockelman (2013) compared kriging to GWMLR, and then investigated utilizing Euclidian distance instead of network distance.  After developing the models, it was observed that kriging outperformed the GWMLR model by 3 to 8% in average absolute error.  Following this, Euclidian distance and network distance were compared to see the effects on the model’s error.  There was no sizable difference in error between using Euclidian or network distance.  This means that the time costly work of fin
	In 2015, Shamo et al. (2015) comprehensively investigated different kriging techniques and different semivariogram models to estimate AADT on roads in Washington.  The different kriging techniques that were investigated included simple kriging, ordinary kriging, and universal kriging, while the semivariogram models that were investigated included spherical, exponential, and Gaussian.  The models were developed using traffic count data from different years - 2008, 2009, and 2010.  The best fitting semivariog
	2.1.4 Travel Demand  
	Travel demand-based approaches mimic the four-step travel demand forecasting process.  Instead of obtaining volume on links from the fourth step (i.e., traffic assignment), the modified approach produces AADTs. 
	In 2009, Zhong and Hanson (2009) put forward the four-step travel demand modeling approach to estimate the missing AADT information for low-class roads in York County and Beresford regions in New Brunswick, Canada. The quick response method from the National Cooperative Highway Research Program was used for trip generation, attraction, and balancing. Trip distribution was performed using a gravity model with a gamma function based on distances used for estimating impedances. The stochastic user equilibrium 
	In 2013, Wang et al. (2013) proposed an updated travel demand method to predict the AADT of local roads in Florida. The proposed travel demand model was based on parcel level trip generation, distribution, and assignment.  The parcel level model accounts for driver’s response to a given local street system, while the traditional model would try to predict a driver’s choices for an entire origin destination trip.  The parcel level model was compared to a typical regression model.  The typical regression mode
	2.1.5 Machine Learning  
	Machine Learning is an artificial intelligence technique which relies on pattern recognition algorithms.  Two types of machine learning techniques have been applied to AADT estimation: support vector regression and decision trees. 
	In 2009, Castro-Neto et al. (2009) investigated the use of support vector regression with data-dependent parameters to predict AADT values on Tennessee roads.  A comparison between support vector regression with data-dependent parameters, Holt exponential smoothing, and ordinary least squares regression was conducted by using Tennessee DOT data.  After applying the different models to urban and rural roads, it was observed that the support vector regression with data-dependent parameters performed better th
	In 2015, Sun and Das (2015) utilized a modified support vector regression (SVR) method to estimate AADT on non-state roads in Louisiana.  Using total population, total jobs, distance from interstate, and distance from a major US highway as independent variables,  the SVR models were developed.  Eight parishes in Louisiana were selected as the validation set for the analysis.  Two SVR models were developed for each parish, one for rural areas and another for urban areas.  For the rural models, the percent of
	In 2020, Sfyridis and Agnolucci (2020) integrated clustering with regression modeling to predict AADT on all roads in England and Wales.  Since the predictor variables were both numeric and categorical, the K-prototype algorithm was used for clustering.  Utilizing the elbow method, it was determined that the optimum number of clusters was five.  The regression modeling was performed by ordinary multiple linear regression, random forest, and support vector regression.  After using 80% of the test data for mo
	2.1.6 Centrality 
	Centrality based methods rely on a node’s centrality measure to predict the node’s AADT value.  There are multiple forms of centrality, but each form is a measure of how popular or utilized a node is.  For example, stress centrality is the number of times a node is included in the shortest distance between every node pair.  If a node has a high stress centrality, then multiple shortest paths go through that node, implying its popularity.  Another common form of centrality is closeness centrality, which is b
	In 2014, Lowry (2014) studied the use of centrality for AADT estimation in Moscow, Idaho.  Stress centrality was used as the form of centrality and is equal to the number of times a link would be used if someone traveled the shortest distance between every node pair.  This was then modified by limiting the set of nodes to only origin-destination pairs and applying multipliers based on the land use type of the origin and destination nodes. The modified stress centrality was then implemented in an ordinary le
	In 2017, Keehan (2017) studied the applicability of a centrality measure to predict AADT values on roads in South Carolina. Origin-destination centrality was investigated, which includes internal-internal, internal-external, and external-external. These three parameters were then combined with three additional parameters, functional class, speed limit, and number of lanes, to produce a multiple linear regression model.  It was determined that internal-internal centrality, external-external centrality, and s
	values.  Therefore, the number of count stations used can be reduced by 40% without a loss of accuracy. 
	2.1.7 Point-Based Model 
	In 2018, Unnikrishnan et al. (2018)  implemented a point-based model to estimate the AADT of roads in Oregon.  The idea behind this method is to predict the AADT based on the number of “points” or roadway features a roadway has.  The fewer the number of features a roadway has (e.g., left-turn lane, two-way left-turn lane, parking lot), the less traffic it is likely to carry, and vice versa.  In their work, the point-based model assigns a region a set of roadway features that are each worth one point.  The n
	2.1.8 Summary  
	Table 2-1 provides a summary of the studies reviewed.  The study technique, study area, and reported error are shown.  The error values are intended to provide a reference or benchmark for this study. 
	The following conclusions can be made from the above review. 
	• The performance of a methodological approach depends on the scope of the application (e.g., statewide vs small urban area) and  data availability.  In general, the recommendation is to develop models customized to various regions (e.g., urban vs rural, north vs south) rather than rely on a single statewide model. 
	• The performance of a methodological approach depends on the scope of the application (e.g., statewide vs small urban area) and  data availability.  In general, the recommendation is to develop models customized to various regions (e.g., urban vs rural, north vs south) rather than rely on a single statewide model. 
	• The performance of a methodological approach depends on the scope of the application (e.g., statewide vs small urban area) and  data availability.  In general, the recommendation is to develop models customized to various regions (e.g., urban vs rural, north vs south) rather than rely on a single statewide model. 

	• Multiple linear regression is the simplest technique for AADT estimation.  This has led to numerous studies investigating the use of MLR, which makes it a very well documented method, and many advancements have been made through its utilization. Spatial regression models appear to perform better than multiple linear regression but are more complex to calibrate and may have transferability issues. Spatial approaches have not been tested or shown to perform well when transferred to other areas. 
	• Multiple linear regression is the simplest technique for AADT estimation.  This has led to numerous studies investigating the use of MLR, which makes it a very well documented method, and many advancements have been made through its utilization. Spatial regression models appear to perform better than multiple linear regression but are more complex to calibrate and may have transferability issues. Spatial approaches have not been tested or shown to perform well when transferred to other areas. 


	  
	Table 2-1  Summary of literature review 
	Year 
	Year 
	Year 
	Year 
	Year 

	Author(s) 
	Author(s) 

	AADT Estimation Technique 
	AADT Estimation Technique 

	Study Area 
	Study Area 

	Reported Error 
	Reported Error 


	1998 
	1998 
	1998 

	Mohamad et al. 
	Mohamad et al. 

	MLR 
	MLR 

	Indiana 
	Indiana 

	MSE=16% 
	MSE=16% 


	1999 
	1999 
	1999 

	Xia et al. 
	Xia et al. 

	MLR 
	MLR 

	Florida 
	Florida 

	MPE=20% 
	MPE=20% 


	2000 
	2000 
	2000 

	Seaver et al. 
	Seaver et al. 

	MLR 
	MLR 

	Georgia 
	Georgia 

	R2=0.27-0.94 
	R2=0.27-0.94 


	2001 
	2001 
	2001 

	Zhao and Chung 
	Zhao and Chung 

	MLR 
	MLR 

	Florida 
	Florida 

	R2=0.818 
	R2=0.818 


	2004 
	2004 
	2004 

	Zhao and Park 
	Zhao and Park 

	GWMLR 
	GWMLR 

	Florida 
	Florida 

	R2=0.8756 
	R2=0.8756 


	2006 
	2006 
	2006 

	Anderson et al. 
	Anderson et al. 

	MLR 
	MLR 

	Alabama 
	Alabama 

	R2=0.819 
	R2=0.819 


	2006 
	2006 
	2006 

	Eom et al. 
	Eom et al. 

	K 
	K 

	North Carolina 
	North Carolina 

	MSPE=2.86 
	MSPE=2.86 


	2008 
	2008 
	2008 

	Pan 
	Pan 

	MLR 
	MLR 

	Florida 
	Florida 

	MAPE=32-159% 
	MAPE=32-159% 


	2009 
	2009 
	2009 

	Castro-Neto et al. 
	Castro-Neto et al. 

	SVR 
	SVR 

	Tennessee 
	Tennessee 

	MAPE=2.26% 
	MAPE=2.26% 


	2009 
	2009 
	2009 

	Wang and Kockelman 
	Wang and Kockelman 

	K 
	K 

	Texas 
	Texas 

	Median percent error=33% 
	Median percent error=33% 


	2009 
	2009 
	2009 

	Zhong and Hanson 
	Zhong and Hanson 

	TD 
	TD 

	New Brunswick 
	New Brunswick 

	Average error=9-174% 
	Average error=9-174% 


	2012 
	2012 
	2012 

	Lowry and Dixon 
	Lowry and Dixon 

	MLR 
	MLR 

	Idaho 
	Idaho 

	R2=0.72 
	R2=0.72 


	2012 
	2012 
	2012 

	Pulugurtha and Kusam 
	Pulugurtha and Kusam 

	GWMLR 
	GWMLR 

	North Carolina 
	North Carolina 

	MAPE=26-35% 
	MAPE=26-35% 


	2013 
	2013 
	2013 

	Selby and Kockelman 
	Selby and Kockelman 

	K 
	K 

	Texas 
	Texas 

	MPE=-6.5-3.9% 
	MPE=-6.5-3.9% 


	2013 
	2013 
	2013 

	Wang et al. 
	Wang et al. 

	TD 
	TD 

	Florida 
	Florida 

	MAPE=52% 
	MAPE=52% 


	2014 
	2014 
	2014 

	Lowry 
	Lowry 

	C 
	C 

	Idaho 
	Idaho 

	MdAPE=22-29% 
	MdAPE=22-29% 


	2014 
	2014 
	2014 

	Yang et al. 
	Yang et al. 

	MLR 
	MLR 

	North Carolina 
	North Carolina 

	R2=0.6954 
	R2=0.6954 


	2015 
	2015 
	2015 

	Shamo et al. 
	Shamo et al. 

	K 
	K 

	Washington 
	Washington 

	RMSE=56.48-95.31 
	RMSE=56.48-95.31 


	2015 
	2015 
	2015 

	Sun and Das 
	Sun and Das 

	SVR 
	SVR 

	Louisiana 
	Louisiana 

	Percent within 100=63-100 
	Percent within 100=63-100 


	2016 
	2016 
	2016 

	Apronti et al. 
	Apronti et al. 

	MLR 
	MLR 

	Wyoming 
	Wyoming 

	R2=0.64 
	R2=0.64 


	2016 
	2016 
	2016 

	Staats 
	Staats 

	MLR 
	MLR 

	Kentucky 
	Kentucky 

	MAPE=61-87% 
	MAPE=61-87% 


	2017 
	2017 
	2017 

	Keehan 
	Keehan 

	C 
	C 

	South Carolina 
	South Carolina 

	R2=0.8292 
	R2=0.8292 


	2018 
	2018 
	2018 

	Chang and Cheon 
	Chang and Cheon 

	EM 
	EM 

	Ulsan City 
	Ulsan City 

	MAPE=7% 
	MAPE=7% 


	2018 
	2018 
	2018 

	Unnikrishnan et al. 
	Unnikrishnan et al. 

	EM 
	EM 

	Oregon 
	Oregon 

	Median error=-16-151 
	Median error=-16-151 


	2020 
	2020 
	2020 

	Sfyridis and Agnolucci 
	Sfyridis and Agnolucci 

	SVR 
	SVR 

	Wales 
	Wales 

	MAPE=2-277% 
	MAPE=2-277% 


	MLR=Multiple linear regression, GWMLR=Geographically multiple linear regression, K=Kriging, SVR=Support vector regression, TD=Travel demand, C=Centrality, and EM=Emerging methods 
	MLR=Multiple linear regression, GWMLR=Geographically multiple linear regression, K=Kriging, SVR=Support vector regression, TD=Travel demand, C=Centrality, and EM=Emerging methods 
	MLR=Multiple linear regression, GWMLR=Geographically multiple linear regression, K=Kriging, SVR=Support vector regression, TD=Travel demand, C=Centrality, and EM=Emerging methods 




	 
	• Kriging is similar to geographically weighted multiple linear regression in terms of complexity, but it has the advantage of not requiring additional data, unlike other types of models.  This method is promising due to its simplicity and cost-effectiveness. 
	• Kriging is similar to geographically weighted multiple linear regression in terms of complexity, but it has the advantage of not requiring additional data, unlike other types of models.  This method is promising due to its simplicity and cost-effectiveness. 
	• Kriging is similar to geographically weighted multiple linear regression in terms of complexity, but it has the advantage of not requiring additional data, unlike other types of models.  This method is promising due to its simplicity and cost-effectiveness. 

	• Machine learning shows promise as a method for AADT estimation and has been shown to produce accurate results.  However, its complexity makes it difficult to implement and it suffers from the “black-box” problem.  It should be noted that the machine learning models have not been used to estimate AADT at non-coverage locations. 
	• Machine learning shows promise as a method for AADT estimation and has been shown to produce accurate results.  However, its complexity makes it difficult to implement and it suffers from the “black-box” problem.  It should be noted that the machine learning models have not been used to estimate AADT at non-coverage locations. 

	• Travel demand methods are theoretically sound; however, even for relatively small networks, the assignment step takes a long time to complete.  Therefore, this type of models cannot be applied at the state level. 
	• Travel demand methods are theoretically sound; however, even for relatively small networks, the assignment step takes a long time to complete.  Therefore, this type of models cannot be applied at the state level. 


	• The point-based model is simple to understand and is data driven.  Also, its lookup table nature is easy to implement.   
	• The point-based model is simple to understand and is data driven.  Also, its lookup table nature is easy to implement.   
	• The point-based model is simple to understand and is data driven.  Also, its lookup table nature is easy to implement.   


	2.2 State-of-the-Practice on Non-Coverage AADT Estimation 
	As part of this study, an online survey was conducted to understand the state-of-the-practice in AADT estimation for non-coverage locations.  The survey was distributed to other state DOTs on July 1, 2020.  A total of 17 state DOTs responded to the survey. 
	The questions and responses are summarized below.  The questions are numbered and shown in italics. 
	1. Please indicate the method, technique, or procedure your agency uses to estimate AADT at non-coverage or out-of-network locations.  At these locations, there is no recent history of past counts (within the last 10 years), and they are not near a station with recent counts (within the last 10 years). Check all that apply. 
	1. Please indicate the method, technique, or procedure your agency uses to estimate AADT at non-coverage or out-of-network locations.  At these locations, there is no recent history of past counts (within the last 10 years), and they are not near a station with recent counts (within the last 10 years). Check all that apply. 
	1. Please indicate the method, technique, or procedure your agency uses to estimate AADT at non-coverage or out-of-network locations.  At these locations, there is no recent history of past counts (within the last 10 years), and they are not near a station with recent counts (within the last 10 years). Check all that apply. 


	Table 2-2 The method(s) being used to estimate AADT at non-coverage locations 
	Methods, technique, or procedure 
	Methods, technique, or procedure 
	Methods, technique, or procedure 
	Methods, technique, or procedure 
	Methods, technique, or procedure 

	No. of Responses  
	No. of Responses  

	Percent of Responses 
	Percent of Responses 



	Multiple linear regression 
	Multiple linear regression 
	Multiple linear regression 
	Multiple linear regression 

	5 
	5 

	27.8% 
	27.8% 


	Visual estimation 
	Visual estimation 
	Visual estimation 

	4 
	4 

	22.2% 
	22.2% 


	Geospatial method 
	Geospatial method 
	Geospatial method 

	2 
	2 

	11.0% 
	11.0% 


	Nonlinear regression 
	Nonlinear regression 
	Nonlinear regression 

	1 
	1 

	5.6% 
	5.6% 


	Default Values 
	Default Values 
	Default Values 

	4 
	4 

	22.2% 
	22.2% 


	Spatial regression 
	Spatial regression 
	Spatial regression 

	1 
	1 

	5.6% 
	5.6% 


	Travel demand 
	Travel demand 
	Travel demand 

	1 
	1 

	5.6% 
	5.6% 


	Total 
	Total 
	Total 

	18 
	18 

	100% 
	100% 




	 
	As shown in Table 2-2, multiple linear regression is the most commonly used technique to estimate AADT at non-coverage locations.  The next two most popular techniques are visual estimation and default value.  These two methods have been shown to underestimate or overestimate the actual AADTs (Christian, 2021).  These responses suggest that state DOTs do not have the manpower and resources to estimate non-coverage AADT. 
	2. How satisfied are you with your current AADT estimation at non-coverage locations? 
	2. How satisfied are you with your current AADT estimation at non-coverage locations? 
	2. How satisfied are you with your current AADT estimation at non-coverage locations? 


	Table 2-3 Satisfaction with current AADT method 
	Satisfaction Level 
	Satisfaction Level 
	Satisfaction Level 
	Satisfaction Level 
	Satisfaction Level 

	No. of Responses  
	No. of Responses  

	Percent of Responses 
	Percent of Responses 



	5 
	5 
	5 
	5 

	2 
	2 

	14.3% 
	14.3% 


	4 
	4 
	4 

	2 
	2 

	14.3% 
	14.3% 


	3 
	3 
	3 

	5 
	5 

	35.7% 
	35.7% 


	2 
	2 
	2 

	2 
	2 

	14.3% 
	14.3% 


	1 
	1 
	1 

	3 
	3 

	21.4% 
	21.4% 


	Total 
	Total 
	Total 

	14 
	14 

	100% 
	100% 




	 There were 14 responses to this question because three state DOTs indicated that they do not use any AADT estimation technique.  The majority of the respondents rated their satisfaction as three or less, with one being unsatisfied and five being satisfied.  This finding suggests that there is a need for an AADT estimation technique, one that is simple to implement.   
	3. Is your agency using any tool to estimate AADT at non-coverage locations? 
	3. Is your agency using any tool to estimate AADT at non-coverage locations? 
	3. Is your agency using any tool to estimate AADT at non-coverage locations? 


	Table 2-4 Use of tool to estimate AADT at non-coverage locations 
	Responses 
	Responses 
	Responses 
	Responses 
	Responses 

	No. of Responses  
	No. of Responses  

	Percent of Responses 
	Percent of Responses 



	Yes 
	Yes 
	Yes 
	Yes 

	4 
	4 

	23.5% 
	23.5% 


	No 
	No 
	No 

	13 
	13 

	76.5% 
	76.5% 


	Total 
	Total 
	Total 

	17 
	17 

	100% 
	100% 




	 The majority of the respondents (76.5%) indicated that they do not use any tool to estimate AADT at non-coverage locations.  This finding suggests that there is a lack of resources made available to state DOTs to accomplish this task. 
	4. Would you be willing to share your tool with the SCDOT? 
	4. Would you be willing to share your tool with the SCDOT? 
	4. Would you be willing to share your tool with the SCDOT? 


	Table 2-5 Willingness to share tool with SCDOT 
	Responses 
	Responses 
	Responses 
	Responses 
	Responses 

	No. of Responses  
	No. of Responses  

	Percent of Responses 
	Percent of Responses 



	Yes 
	Yes 
	Yes 
	Yes 

	4 
	4 

	100% 
	100% 


	No 
	No 
	No 

	0 
	0 

	0% 
	0% 


	Total 
	Total 
	Total 

	4 
	4 

	100% 
	100% 




	 Four state DOTs responded to this question and all four indicated that they were willing to share the tool with the SCDOT.  The methods used by these tools are default values based on function class and rural/urban classification, default values based on mobility index, geospatial, and linear regression.  The tool that uses linear regression was deemed most appropriate for the SCDOT. A screenshot of this tool is shown in Figure 2-1.  Upon further examination, it was found that the technique(s) used by the 
	 
	Figure
	Figure 2-1. Non-coverage AADT estimation tool 
	  
	CHAPTER 3:  MODELS DEVELOPMENT 
	 
	This chapter is composed of four parts.  The first part provides information about the coverage and non-coverage datasets.  The second part explains how the training dataset was prepared.  The third part presents mathematical details underlying the developed models.   
	3.1 Data Description 
	3.1.1 Non-Coverage Counts Dataset 
	Prior to this project, the SCDOT did not have a list of non-coverage locations and did not have a procedure to identify them.  The following procedure was developed in conjunction with the project steering committee to identify the stations: 
	1. Group road segments in each county into two categories, red and green, as follows.  If there is a recent count (within the last 10 years) on a segment, then it is considered “green.”  If there is not a recent count, then it is considered “red.” 
	1. Group road segments in each county into two categories, red and green, as follows.  If there is a recent count (within the last 10 years) on a segment, then it is considered “green.”  If there is not a recent count, then it is considered “red.” 
	1. Group road segments in each county into two categories, red and green, as follows.  If there is a recent count (within the last 10 years) on a segment, then it is considered “green.”  If there is not a recent count, then it is considered “red.” 

	2. Remove “red” segments that are less than 0.2 miles long and classified as dead ends. 
	2. Remove “red” segments that are less than 0.2 miles long and classified as dead ends. 

	3. Remove “red” segments that are classified as church, school, or cemetery driveways. 
	3. Remove “red” segments that are classified as church, school, or cemetery driveways. 

	4. If there is a road that is comprised of both “red” and “green” segments, make the entire road “red.”  
	4. If there is a road that is comprised of both “red” and “green” segments, make the entire road “red.”  

	5. Remove “green” segments. 
	5. Remove “green” segments. 

	6. Combine connecting “red” segments and break up segments that are longer than five miles in a rural area or longer than two miles in an urban area into two segments. 
	6. Combine connecting “red” segments and break up segments that are longer than five miles in a rural area or longer than two miles in an urban area into two segments. 

	7. The midpoints of the remaining segments are the locations that will be considered non-coverage count stations. 
	7. The midpoints of the remaining segments are the locations that will be considered non-coverage count stations. 


	After the non-coverage stations were determined, the SCDOT provided a file that contained all of the required attributes for each location.  These attributes include: a unique ID, latitude, longitude, and functional class.  A map of the non-coverage locations is shown in Figure 3-1.  Note that there are significantly more non-coverage locations than coverage.  More than 90% of the non-coverage locations are urban (FC 18) and rural (FC 9) local roads.  For this reason, it was decided in consultation with the
	 
	Figure
	Figure 3-1 Map of non-coverage count stations 
	3.1.2 Coverage Counts Dataset 
	Two files were combined to obtain the necessary information for the coverage counts.  The first file is the count station shapefile, which contained the AADT value, latitude, longitude, county, and Linear Reference System (LRS).  The second file is the functional classification shapefile, which contained the functional class, latitude, longitude, county, and LRS attributes.  These two files were joined by the LRS values.  The coverage counts dataset comprised of seven attributes: station ID, AADT, latitude,
	 
	Figure
	Figure 3-2 Map of coverage count stations. 
	Each of the attributes provided for the coverage counts is explained in the following. 
	• The ID is a seven-digit identifier that is unique to each station.  The first two digits are the code for the county that the station is located in, and the remaining five digits denote the station number.  For example, a station with an ID of 0200232 indicates that it is in county 02, which corresponds to Aiken County, and its station number is 00232, meaning it is the 232nd coverage station.  
	• The ID is a seven-digit identifier that is unique to each station.  The first two digits are the code for the county that the station is located in, and the remaining five digits denote the station number.  For example, a station with an ID of 0200232 indicates that it is in county 02, which corresponds to Aiken County, and its station number is 00232, meaning it is the 232nd coverage station.  
	• The ID is a seven-digit identifier that is unique to each station.  The first two digits are the code for the county that the station is located in, and the remaining five digits denote the station number.  For example, a station with an ID of 0200232 indicates that it is in county 02, which corresponds to Aiken County, and its station number is 00232, meaning it is the 232nd coverage station.  

	• The provided AADTs were not obtained from permanent count stations.  They were obtained from short-term counts and expansion factors.  In years when short-term counts were not collected, the current year’s AADTs were estimated by multiplying the previous year’s AADTs by a growth factor.   
	• The provided AADTs were not obtained from permanent count stations.  They were obtained from short-term counts and expansion factors.  In years when short-term counts were not collected, the current year’s AADTs were estimated by multiplying the previous year’s AADTs by a growth factor.   

	• The latitudes and longitudes are the GPS coordinates of the count stations.  The latitudes and longitudes were converted to decimal degrees to facilitate computations. 
	• The latitudes and longitudes are the GPS coordinates of the count stations.  The latitudes and longitudes were converted to decimal degrees to facilitate computations. 

	• The functional class specifies the type of road, with each having a corresponding number as shown in Table 3-1.  There are three major functional classes; arterial, collector, and local.  The arterial group is divided into principal arterials and minor arterials, and the collector group is divided into major and minor arterials.  The principal arterial group is further subdivided into interstates, freeways/expressways, and other.  Each functional class is also divided into two groups: urban and rural. 
	• The functional class specifies the type of road, with each having a corresponding number as shown in Table 3-1.  There are three major functional classes; arterial, collector, and local.  The arterial group is divided into principal arterials and minor arterials, and the collector group is divided into major and minor arterials.  The principal arterial group is further subdivided into interstates, freeways/expressways, and other.  Each functional class is also divided into two groups: urban and rural. 


	Table 3-1 Functional class 
	Functional Classification 
	Functional Classification 
	Functional Classification 
	Functional Classification 
	Functional Classification 

	Functional Class Number 
	Functional Class Number 



	Arterial 
	Arterial 
	Arterial 
	Arterial 

	Principal Arterial 
	Principal Arterial 

	Interstate 
	Interstate 

	Urban 
	Urban 

	1 
	1 


	TR
	Rural 
	Rural 

	11 
	11 




	Functional Classification 
	Functional Classification 
	Functional Classification 
	Functional Classification 
	Functional Classification 

	Functional Class Number 
	Functional Class Number 



	TBody
	TR
	Freeways & Expressways 
	Freeways & Expressways 

	Urban 
	Urban 

	6 
	6 


	TR
	Rural 
	Rural 

	12 
	12 


	TR
	Other 
	Other 

	Urban 
	Urban 

	2 
	2 


	TR
	Rural 
	Rural 

	13 
	13 


	TR
	Minor Arterial 
	Minor Arterial 

	Urban 
	Urban 

	3 
	3 


	TR
	Rural 
	Rural 

	14 
	14 


	Collector 
	Collector 
	Collector 

	Major Collector 
	Major Collector 

	Urban 
	Urban 

	4 
	4 


	TR
	Rural 
	Rural 

	15 
	15 


	TR
	Minor Collector 
	Minor Collector 

	Urban 
	Urban 

	5 
	5 


	TR
	Rural 
	Rural 

	16 
	16 


	Local 
	Local 
	Local 

	Rural 
	Rural 

	9 
	9 


	TR
	Urban 
	Urban 

	18 
	18 




	 
	• The county attribute contains the county name where the count station is located. 
	• The county attribute contains the county name where the count station is located. 
	• The county attribute contains the county name where the count station is located. 

	• The LRS is an 11-digit number that is used to describe a count station.  The first two digits represent the county number, the next two represent the route type, the next five represent the route number, and the last two represent the route auxiliary.  In addition, N or E is attached to the end to indicate the direction of the route (i.e., north and south or east and west).   
	• The LRS is an 11-digit number that is used to describe a count station.  The first two digits represent the county number, the next two represent the route type, the next five represent the route number, and the last two represent the route auxiliary.  In addition, N or E is attached to the end to indicate the direction of the route (i.e., north and south or east and west).   


	Preliminary analysis of the coverage dataset showed that the number of count stations per functional class is not evenly distributed.  Their distributions are shown in Figure 3-3. The unbalance number of counts per functional class could lead to a biased dataset where the estimated AADT is weighted more toward those with higher counts.  Moreover, there is a large variation in the minimum, median, mean, maximum, and standard deviation of counts across the different functional classes as shown in Table 3-2.  
	 
	 
	Figure
	Figure 3-3 Distribution of coverage counts by functional class 
	Table 3-2 Summary statistics of AADT values for each functional class 
	Functional Class Number 
	Functional Class Number 
	Functional Class Number 
	Functional Class Number 
	Functional Class Number 

	Minimum AADT 
	Minimum AADT 

	Median AADT 
	Median AADT 

	Average AADT 
	Average AADT 

	Maximum AADT 
	Maximum AADT 

	Standard Deviation 
	Standard Deviation 



	1 
	1 
	1 
	1 

	225 
	225 

	42,800 
	42,800 

	42,990 
	42,990 

	120,200 
	120,200 

	17,059 
	17,059 


	2 
	2 
	2 

	250 
	250 

	6,000 
	6,000 

	8,470 
	8,470 

	111,200 
	111,200 

	9,076 
	9,076 


	3 
	3 
	3 

	25 
	25 

	3,500 
	3,500 

	4,884 
	4,884 

	56,200 
	56,200 

	5,187 
	5,187 


	4 
	4 
	4 

	25 
	25 

	1,050 
	1,050 

	1,943 
	1,943 

	63,800 
	63,800 

	3,393 
	3,393 


	5 
	5 
	5 

	25 
	25 

	325 
	325 

	743 
	743 

	11,900 
	11,900 

	1,381 
	1,381 


	6 
	6 
	6 

	7,400 
	7,400 

	22,800 
	22,800 

	21,542 
	21,542 

	44,600 
	44,600 

	10,884 
	10,884 


	9 
	9 
	9 

	25 
	25 

	550 
	550 

	1,534 
	1,534 

	80,500 
	80,500 

	4,483 
	4,483 


	11 
	11 
	11 

	125 
	125 

	73,800 
	73,800 

	74,475 
	74,475 

	176,500 
	176,500 

	33,729 
	33,729 


	12 
	12 
	12 

	1,000 
	1,000 

	26,300 
	26,300 

	28,533 
	28,533 

	60,200 
	60,200 

	14,966 
	14,966 


	13 
	13 
	13 

	175 
	175 

	18,000 
	18,000 

	20,627 
	20,627 

	97,900 
	97,900 

	12,962 
	12,962 


	14 
	14 
	14 

	75 
	75 

	8,100 
	8,100 

	10,472 
	10,472 

	61,000 
	61,000 

	8,109 
	8,109 


	15 
	15 
	15 

	25 
	25 

	2,600 
	2,600 

	3,977 
	3,977 

	38,800 
	38,800 

	4,103 
	4,103 


	16 
	16 
	16 

	75 
	75 

	1,200 
	1,200 

	2,224 
	2,224 

	12,700 
	12,700 

	2,571 
	2,571 


	18 
	18 
	18 

	25 
	25 

	1,250 
	1,250 

	2,746 
	2,746 

	83,000 
	83,000 

	6,347 
	6,347 




	 
	 
	  
	3.2 Models Training Dataset  
	From the initial data exploratory analysis and findings, it was determined that AADTs from coverage urban (FC 18) and rural (FC 9) local roads will be used to predict AADT of urban (FC 18) and rural (FC 9) local roads at non-coverage locations.  Table 3-3 shows a summary of the statistics between the two datasets.  Even though only urban (FC 18) and rural (FC 9) local roads are considered in both datasets, the mean AADT of coverage counts is much higher than that of non-coverage counts.  This discrepancy wa
	Table 3-3 AADT statistics of coverage and non-coverage counts 
	Counts 
	Counts 
	Counts 
	Counts 
	Counts 

	Coverage Counts 
	Coverage Counts 

	Non-coverage Counts 
	Non-coverage Counts 



	Average Value 
	Average Value 
	Average Value 
	Average Value 

	1,750 
	1,750 

	233 
	233 


	Minimum Value 
	Minimum Value 
	Minimum Value 

	25 
	25 

	25 
	25 


	First Quartile 
	First Quartile 
	First Quartile 

	300 
	300 

	50 
	50 


	Median Quantile 
	Median Quantile 
	Median Quantile 

	700 
	700 

	100 
	100 


	Third Quantile 
	Third Quantile 
	Third Quantile 

	1,650 
	1,650 

	250 
	250 


	95% Quantile 
	95% Quantile 
	95% Quantile 

	6,215 
	6,215 

	850 
	850 


	Maximum Value 
	Maximum Value 
	Maximum Value 

	83,000 
	83,000 

	5,900 
	5,900 




	 To develop the regression models and point-based model, several roadway features were collected, including the area where the roadway segment is located, its median type, the presence of an exclusive right-turn lane, the presence of an exclusive left-turn lane, the presence of a sidewalk on both sides of the roadway segment, and the presence of a parking lot.  Table 3-4 shows the variables considered.  The variable “Urban” is determined by the functional class provided by the SCDOT.  Other remaining variab
	 
	Table 3-4  Roadway features collected for model development 
	Variable  
	Variable  
	Variable  
	Variable  
	Variable  

	Description of the Variable 
	Description of the Variable 



	Urban 
	Urban 
	Urban 
	Urban 

	“1” if the roadway segment is in an urban area; otherwise, “0”  
	“1” if the roadway segment is in an urban area; otherwise, “0”  


	Single Line 
	Single Line 
	Single Line 

	“1” if the type of the median of the roadway segment is a single line; otherwise, “0” 
	“1” if the type of the median of the roadway segment is a single line; otherwise, “0” 


	Other Type Median 
	Other Type Median 
	Other Type Median 

	“1” if the type of the median of the roadway segment is flush, raised, or two-way left turn lane (TWLTL); otherwise, “0” 
	“1” if the type of the median of the roadway segment is flush, raised, or two-way left turn lane (TWLTL); otherwise, “0” 




	Variable  
	Variable  
	Variable  
	Variable  
	Variable  

	Description of the Variable 
	Description of the Variable 



	Right-turn Lane 
	Right-turn Lane 
	Right-turn Lane 
	Right-turn Lane 

	“1” if an exclusive right-turn lane on the roadway segment is present 1,000 feet upstream and downstream of the midpoint 
	“1” if an exclusive right-turn lane on the roadway segment is present 1,000 feet upstream and downstream of the midpoint 


	Left-turn Lane 
	Left-turn Lane 
	Left-turn Lane 

	“1” if an exclusive left-turn lane on the roadway segment is present 1,000 feet upstream and downstream of the midpoint; otherwise, “0” 
	“1” if an exclusive left-turn lane on the roadway segment is present 1,000 feet upstream and downstream of the midpoint; otherwise, “0” 


	Sidewalk 
	Sidewalk 
	Sidewalk 

	“1” if a sidewalk on both sides of the roadway segment is present 1,000 feet upstream and downstream of the midpoint; otherwise, “0”  
	“1” if a sidewalk on both sides of the roadway segment is present 1,000 feet upstream and downstream of the midpoint; otherwise, “0”  


	Parking Lot 
	Parking Lot 
	Parking Lot 

	“1” if a parking lot (e.g., pay to park, parking lots, and parking lots for schools, shopping centers, recreational facilities, and hospitals) adjacent to the roadway segment is present 1,000 feet upstream and downstream of the midpoint; otherwise, “0”   
	“1” if a parking lot (e.g., pay to park, parking lots, and parking lots for schools, shopping centers, recreational facilities, and hospitals) adjacent to the roadway segment is present 1,000 feet upstream and downstream of the midpoint; otherwise, “0”   




	 
	Table 3-5 to Table 3-10 present descriptive statistics of AADT by each roadway feature.  These results indicate that urban local roads (FC 18) have a higher mean and median AADT than rural local roads (FC 9) (Table 3-5).  Roads with flushed, raised, or TWLTL median have a higher mean and median AADT than undivided roads (Table 3-6).  Roads with an exclusive right-turn lane have a higher mean and median AADT than roads without it (Table 3-7).  Roads with an exclusive left-turn lane have a higher mean and med
	Table 3-5 Descriptive statistics of AADT by area 
	Area 
	Area 
	Area 
	Area 
	Area 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Rural 
	Rural 
	Rural 
	Rural 

	2,339 
	2,339 

	185 
	185 

	75 
	75 

	4 
	4 

	13,900 
	13,900 


	Urban 
	Urban 
	Urban 

	1,851 
	1,851 

	350 
	350 

	164 
	164 

	4 
	4 

	19,183 
	19,183 




	 
	Table 3-6 Descriptive statistics of AADT by median types 
	Median types 
	Median types 
	Median types 
	Median types 
	Median types 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Undivided 
	Undivided 
	Undivided 
	Undivided 

	1,347 
	1,347 

	103 
	103 

	61 
	61 

	4 
	4 

	2,200 
	2,200 


	Single line 
	Single line 
	Single line 
	 

	1,885 
	1,885 

	265 
	265 

	136 
	136 

	4 
	4 

	3,886 
	3,886 


	Other types (e.g., flush, raised, TWLTL) 
	Other types (e.g., flush, raised, TWLTL) 
	Other types (e.g., flush, raised, TWLTL) 

	958 
	958 

	463 
	463 

	136 
	136 

	4 
	4 

	19,183 
	19,183 




	 
	Table 3-7  Descriptive statistics of AADT by presence of an exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Not present 
	Not present 
	Not present 
	Not present 

	3,974 
	3,974 

	230 
	230 

	107 
	107 

	4 
	4 

	19,183 
	19,183 




	Exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 
	Exclusive right-turn lane 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Present 
	Present 
	Present 
	Present 

	216 
	216 

	783 
	783 

	593 
	593 

	36 
	36 

	5,557 
	5,557 




	 
	Table 3-8 Descriptive statistics of AADT by presence of an exclusive left-turn lane 
	Exclusive left-turn lane 
	Exclusive left-turn lane 
	Exclusive left-turn lane 
	Exclusive left-turn lane 
	Exclusive left-turn lane 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Not present 
	Not present 
	Not present 
	Not present 

	3,852 
	3,852 

	200 
	200 

	100 
	100 

	4 
	4 

	19,183 
	19,183 


	Present 
	Present 
	Present 

	338 
	338 

	920 
	920 

	700 
	700 

	46 
	46 

	5,557 
	5,557 




	 
	Table 3-9 Descriptive statistics of AADT by presence of a sidewalk on both sides of the roadway  
	Sidewalk 
	Sidewalk 
	Sidewalk 
	Sidewalk 
	Sidewalk 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Not present 
	Not present 
	Not present 
	Not present 

	3,619 
	3,619 

	225 
	225 

	100 
	100 

	4 
	4 

	19,183 
	19,183 


	Present 
	Present 
	Present 

	571 
	571 

	470 
	470 

	243 
	243 

	4 
	4 

	5,557 
	5,557 




	 
	Table 3-10 Descriptive statistics of AADT by presence of a parking lot 
	Parking lot 
	Parking lot 
	Parking lot 
	Parking lot 
	Parking lot 

	Number of Observations 
	Number of Observations 

	Mean AADT 
	Mean AADT 

	Median AADT 
	Median AADT 

	Min AADT 
	Min AADT 

	Max AADT 
	Max AADT 



	Not present 
	Not present 
	Not present 
	Not present 

	2,762 
	2,762 

	193 
	193 

	79 
	79 

	4 
	4 

	19,183 
	19,183 


	Present 
	Present 
	Present 

	1,428 
	1,428 

	384 
	384 

	221 
	221 

	4 
	4 

	5,557 
	5,557 




	 
	3.3 Models 
	3.3.1 Kriging 
	Given a set of 𝑛 data points with known information, the goal of kriging is to determine an estimate at an unknown location, which is shown in Figure 3-4.  The known locations are represented by 𝑌(𝑠𝑖), where 𝑠𝑖 is a position vector that describes the location 𝑖.  Since there are 𝑛 known locations, 𝑖 is in the range of 1 to 𝑛.  The unknown location is represented by 𝑠0, and the estimate at that unknown location, 𝑌̂(𝑠0), is determined by finding a linear combination of nearby known locations.  Th
	 
	Figure
	Figure 3-4 Illustration of kriging assigning weights to neighbors (Smith, 2020) 
	Kriging makes an estimation at an unknown location, 𝑌̂(𝑠0), by using a linear combination of known values, 𝑌(𝑠𝑖).  This can be represented by the following equation. 
	𝑌̂(𝑠0)=∑𝜆𝑖∗𝑌(𝑠𝑖)𝑛0𝑖=1                                                        (3-1) 
	It is important to note that not every known coverage count/location will be utilized for the estimation, and therefore, the summation does not go to 𝑛, which is the number of locations, but instead goes to 𝑛0, which is the number of utilized neighbors for location 𝑠0.  Kriging utilizes geostatistical methods to determine the weights, 𝜆𝑖.  There are multiple methods that can be used to determine these weights.  A common approach is to use the inverse distance weighting.  With inverse distance weighting
	3.3.1.1 Semivariogram 
	Kriging uses the covariance between locations to determine how much weight should be given to each utilized neighbor.  To calculate the covariance, the semivariogram is used.  A semivariogram describes the relationship between the squared difference of two locations and the distance between them.  There are three key concepts shown in a semivariogram.  The first is called the nugget and refers to the squared difference at a distance of zero.  Since the squared distance is not 
	zero at this location, it implies that the measuring the AADT at a location multiple times will result in different values.  This is reasonable because there is variability in AADT measurement, and the nugget is a representation of that variability.  The next concept is the range, and that is the distance where the semivariogram goes from increasing to remaining constant.  Physically, this implies that after a certain distance the new AADT value that is measured can only have a maximum difference from the o
	The procedure for constructing a semivariogram is as follows.  Imagine recording the AADT at a location on a roadway, and then moving a distance d away from the starting location.  Now, measure the new AADT value and compute the squared difference between them.  By doing this for multiple distances, a plot could be developed that looks similar to that shown in Figure 3-5.  However, there is not only one location that is a distance d from the original position.  A circle with radius d could be drawn around t
	There are multiple semivariogram models that can be fitted to an empirical semivariogram.  Four of the most commonly used in the literature are the Gaussian model, exponential model, spherical model, and linear model.  These models have the same three parameters, the nugget, range, and partial sil.  Therefore, the theoretical models could be fitted to the empirical semivariogram by optimizing the parameters such that they minimize some error criteria.  After determining which model best fits the empirical s
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	Figure 3-5 Semivariogram example 
	3.3.1.2 Weighted Determination 
	The weights utilized in the kriging method are determined by utilizing the semivariogram.  The semivariogram is related to another important function called the covariogram shown the following equation (Equation 3-2).  From the relationship between the covariogram and semivariogram, it is evident that the covariogram represents the relationship between the similarity between two locations to the distance between them.  As the semivariogram increases, the covariogram decreases.  Therefore, the covariogram st
	𝐶(𝑑)=𝑛𝑢𝑔+𝑝𝑠−𝛾(𝑑)                                               (3-2) 
	Since the covariogram represents the similarity between two locations, it can be used to calculate the covariance between two locations.  Using the covariogram, the following matrices could be determined.  The first is a matrix of covariances between the unknown location and every utilized neighbor, 𝑐𝑢.  The second is a matrix of covariances between every pair of utilized neighbors, 𝑐𝑘.  Using these matrices, the optimum weights are determined with the following equation. 
	𝜆=𝑐𝑘−1𝑐𝑢                                                        (3-3) 
	After determining these weights, the AADT at the non-coverage location could be determined.   
	3.3.1.3 Implementation of Kriging Model 
	To develop the semivariogram for the kriging model, the first step is to read the coverage count data into a matrix.  The latitude is read into a vector, 𝑥, longitude is read into 𝑦, the logarithm of AADT is read into 𝑧, functional class is read into 𝐹𝐶, and unique ID is read into 𝐼𝐷𝑠.  Next, the distance between every coverage count station, as well as the square difference in AADT between every coverage count station, is calculated and stored in a matrix called 𝑑𝑎𝑡𝑎.   
	It is important to note how the distances between two locations were calculated.  First, a Euclidean distance was used instead of a network distance because of the complexity involved in calculating network distances and the lack of increased accuracy over Euclidean distance (Selby & Kockelman, 2013).  However, even calculating the Euclidean distance between two pairs of latitude and longitude can be complex.  Given a pair of latitude and longitude, the distance between the two follows the curvature of the 
	Δ𝜎=arccos(𝑠𝑖𝑛(𝑥1)𝑠𝑖𝑛(𝑥2)+𝑐𝑜𝑠(𝑦1)𝑐𝑜𝑠(𝑦2)𝑐𝑜𝑠(𝑦2−𝑦1))                (3-4) 
	𝑑𝑔𝑐=𝑟𝑒Δ𝜎                                                              (3-5) 
	A problem with this formulation is that the pairs of latitude and longitude are close enough to cause rounding errors.  Also, calculating the angle between each pair and then the corresponding great-circle distance for approximately 2,500 locations would require much computational power and time.  To simplify these calculations, instead of using a linear distance such as miles, the distance in terms of degrees is used.   
	𝑑=√(𝑥2−𝑥1)2+(𝑦2−𝑦1)2                                           (3-6) 
	After computing the distance, using Equation 3-6, the squared difference between every pair of coverage count stations’ AADT values is determined with Equation 3-7. 
	𝛿=(𝐴𝐴𝐷𝑇𝑖−𝐴𝐴𝐷𝑇𝑗)2                                                 (3-7) 
	The matrix of distances and squared differences is then sorted so the smallest distance is at the lowest index and each following distance is the next smallest.  In other words, the matrix is sorted from smallest to largest by distance.  This sorting is needed to be performed efficiently, because if there are 𝑛 known data points, calculating the distance and squared difference between every pair of coverage count stations would result in (𝑛2−𝑛)/2 distances and squared differences.  Since 𝑛 is approximat
	The empirical semivariogram is then developed by choosing a number of bins and calculating the average squared difference for each bin.  This average squared difference is equal to the empirical semivariogram at the midpoint of the bin.  The average squared difference and bin midpoint are stored in a matrix called ℎ𝑖𝑠𝑡.  A plot of the empirical semivariogram is shown below. 
	 
	Figure
	Figure 3-6 Example emperical semivariogram 
	After defining the empirical semivariogram, the next step in the subroutine is to fit a semivariogram model to the empirical semivariogram.  There are four semivariogram models that are fitted to the empirical semivariogram by minimizing the sum of the squared errors.  These included a Gaussian semivariogram, exponential semivariogram, spherical semivariogram, and linear semivariogram.  These models are represented with the following set of equations. 
	𝛾𝑔(𝑑)=𝑛𝑢𝑔+𝑝𝑠∗(1−exp(−𝑑𝑟)2)                                        (3-8) 
	𝛾𝑒(𝑑)=𝑛𝑢𝑔+𝑝𝑠∗(1−exp(−𝑑𝑟))                                              (3-9) 
	𝛾𝑠(𝑑)=𝑀𝑖𝑛(𝑛𝑢𝑔+𝑝𝑠∗(1.5(𝑑𝑟)−0.5(𝑑𝑟)3),𝑛𝑢𝑔+𝑝𝑠)                    (3-10) 
	𝛾𝑙(𝑑)=𝑀𝑖𝑛(𝑛𝑢𝑔+𝑑(𝑝𝑠𝑟),𝑛𝑢𝑔+𝑝𝑠)                                   (3-11) 
	 Excel’s Solver function is used to adjust the nugget, partial sil, and range parameters to minimize the sum of squared error for each theoretical semivariogram model.  An example of each optimized semivariogram model is shown in Figure 3-7. 
	 
	Figure
	Figure 3-7 Comparison of different theoretical semivariogram models: (a) gaussian model, (b) exponential model, (c) spherical model, and (d) linear model 
	After optimizing each model, the model with the lowest sum of squared error is chosen as the best model.   
	The following procedure is used to calculate the AADT of a sampled dataset, which is a subset of the coverage count dataset.  This procedure is then performed for every sampled dataset to calculate all unknown AADT values.  The first step in the procedure is to determine the coverage count locations that would be utilized by the kriging model.  This is done by calculating the Euclidean distance between the sampled dataset location and a coverage location.  If the distance is less than the range of the optim
	considered a neighbor of the sampled dataset location.  This is repeated for the distances between the sampled dataset location and every coverage location.  Next, the distances between the sampled dataset location and its neighbors are then sorted, using the quicksort algorithm, and the smallest N neighbors are utilized in the kriging model.  If there is less than N neighbors, then all of the neighbors are utilized.   
	After determining the utilized neighbors, two covariance matrices are required to determine the weights for the utilized neighbors.  The first covariance matrix, 𝑐𝑘, contains the covariance between each pair of utilized neighbors.  In 𝑐𝑘, the element in row 𝑖 and column 𝑗 is the covariance between utilized neighbors 𝑖 and 𝑗.  The second covariance matrix, 𝑐𝑢, contains the covariance between the non-coverage location and each utilized neighbor.  In 𝑐𝑢, the element in row 𝑖 is the covariance betw
	𝐶(𝑑)=𝑛𝑢𝑔+𝑝𝑠−𝛾(𝑑)                                             (3-12) 
	 Once the two covariance matrices are determined, the kriging weights are determined using Equation 3-13.   
	𝜆=𝑐𝑘−1𝑐𝑢                                                              (3-13) 
	 After calculating the kriging weights, each weight is normalized with respect to the sum of absolute value of the weights as shown in Equation 3-14.  It is observed that the kriging weights would sum to unity, but each individual weight’s value would range drastically.  For example, one weight could be 0.13 while the next weight could be -23.  The estimated AADT values are sensitive to these large weights because they could cause dramatic overestimation, to the point where Excel would show an error stating
	𝜆𝑛𝑜𝑟𝑚,𝑖=𝜆𝑖∑𝑎𝑏𝑠(𝜆𝑖)𝑁𝑖=1                                              (3-14) 
	 After obtaining the normalized kriging weights, the sampled dataset AADT estimate is determined by applying each normalized weight to its respective AADT value, which is shown in Equation 3-15.   
	𝐴𝐴𝐷𝑇=∑𝜆𝑖∗𝐴𝐴𝐷𝑇𝑖𝑁𝑖=1                                           (3-15) 
	After calculating the estimated AADT, it is rounded to the nearest whole number. If it is less than 25 vpd, it is rounded up to 25 since that is the minimum AADT the SCDOT would use.  If the 
	AADT is between 25 and 500, it is rounded to the nearest 25, between 501 and 2,000, it is rounded to the nearest 50, and if it is over 2,000, it is rounded to the nearest 100.  This procedure is used to estimate the AADT of a sampled dataset location.  It is then repeated for every non-coverage location.   
	After determining all AADT of the sampled coverage locations, their absolute errors are ranked from the smallest to largest.  An example is shown in Figure 3-8. 
	 
	Figure
	Figure 3-8 Sampled locations and their absolute errors 
	If the absolute error of the sampled location is above the user-specified error percentile, all non-coverage locations within 0.9 degrees of that coverage location will take on the mean AADT of all coverage counts in that county and corresponding functional class. Figure 3-9 illustrates that all non-coverage locations within 0.9 degrees of the coverage station 801453 will use the average AADT instead of the kriging-predicted value.  For all other non-coverage locations, their AADTs will use the kriging pred
	 
	Figure
	Figure 3-9 Illustration of scenario when an average AADT is used instead of kriging-predicted AADT 
	3.3.2 Point-Based Model 
	The point-based model used in this study is based on a study conducted by the Oregon Department of Transportation (Unnikrishnan, Figliozzi, Moughari, & Urbina, 2018).  It uses the median AADT as the predicted AADT based on the number of points the roadway has; points are roadway features, some of which are shown in Table 3-4.  Roadway features are collected on 4,701 urban (FC 18) and rual (FC 9) local roads4,189 of which are used to develop the model and 512 are used to validate the model.  These roads are 
	3.3.3 Regression Models 
	 
	3.3.3.1 Regular Regression Model 
	The regular regression model explores the relationship between a scalar response and one or more explanatory variables.  The standard form of the regular regression model is as follows: 
	                                        𝑦𝑝𝑟𝑒𝑑= 𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑖𝑋𝑖  (3-16)                                           
	where 𝑦𝑝𝑟𝑒𝑑  is the predicted or expected value of the dependent variable, X1 through 𝑋𝑖 are i distinct independent or predictor variables, 𝑏0 is the value of Y when all the independent variables (𝑋1 through 𝑋𝑖) are equal to zero, 𝑏1 and through 𝑏𝑖 are the estimated regression coefficients. 
	Figure
	3.3.3.2 Quantile Regression Model 
	The quantile regression model is more robust against outliers in the response variable compared to the regular regression model. The general quantile regression model can be described by the following equation. 
	                              𝑦𝑝𝑟𝑒𝑑= 𝑏0(𝑞)+𝑏1(𝑞)𝑋1+𝑏2(𝑞)𝑋2+⋯+𝑏𝑖(𝑞)𝑋𝑖 (3-17)  
	where, 𝑦𝑝𝑟𝑒𝑑 is the predicted or expected value of the dependent variable, X1 through 𝑋𝑖 are i distinct independent or predictor variables, 𝑏0 is the value of Y when all the independent variables (𝑋1 through 𝑋𝑖) are equal to zero, 𝑏1and through 𝑏𝑖 are the estimated regression coefficients associated with 𝑞𝑡ℎ quantile. This study used the 50th quantile for the quantile regression model. 
	Figure
	  
	CHAPTER 4:  RESULTS 
	 
	To compare the performance of the developed models, the Root Mean Squared Error (RMSE) is used.  RMSE gives the square root of the average of squared differences between actual values and predicted values as shown in the following equation: 
	 
	𝑅𝑀𝑆𝐸= √∑(𝑦𝑖−𝑥𝑖)2𝑛𝑖=1𝑛                                                     (4-1) 
	where,  
	yi= predicted value of the  𝑖𝑡ℎ observation, 
	xi= observed values of the 𝑖𝑡ℎ observation, 
	 n= number of observations 
	4.1 Use of Default Value 
	The SCDOT currently uses default values to estimate AADT at non-coverage locations based on their functional class.  The current default value for rural local roads (FC 9) is 100, and the current default value for urban local roads (FC 18) is 200.  For this project, the SCDOT collected counts on 1,024 non-coverage urban (FC 18) and rural (FC 9) local roads between late 2019 and early 2021.  The AADT statistics for these roads are shown in Table 4-1. These results indicate that the current default values are
	Table 4-1 Statistics of rural and urban AADT values for non-coverage counts 
	Statistics 
	Statistics 
	Statistics 
	Statistics 
	Statistics 

	Rural Local Roads (FC 9) 
	Rural Local Roads (FC 9) 

	Urban Local Roads (FC 18) 
	Urban Local Roads (FC 18) 


	Size 
	Size 
	Size 

	320 
	320 

	704 
	704 


	Mean 
	Mean 
	Mean 

	170 
	170 

	262 
	262 


	Minimum Value 
	Minimum Value 
	Minimum Value 

	25 
	25 

	25 
	25 


	First Quartile 
	First Quartile 
	First Quartile 

	50 
	50 

	75 
	75 


	Median Value 
	Median Value 
	Median Value 

	125 
	125 

	125 
	125 


	Third Quartile 
	Third Quartile 
	Third Quartile 

	250 
	250 

	275 
	275 


	Maximum Value 
	Maximum Value 
	Maximum Value 

	2,200 
	2,200 

	5,900 
	5,900 




	 Since coverage counts are readily available, they can be used to obtain the default values.  That is, a statewide average could be obtained annually for rural (FC 9) and urban (FC 18) local roads and then divide those values by the reduction factor; a factor of six is found based on the provided coverage and known non-coverage datasets.  This approach would yield a default value of 154 for rural local roads (FC 9) and 175 for urban local roads (FC 18).  Compared to the SCDOT’s current default values, use o
	Table 4-2 Default AADT values for counties 
	County 
	County 
	County 
	County 
	County 

	Default Rural (FC 9) AADT 
	Default Rural (FC 9) AADT 

	Default Urban (FC 18) AADT 
	Default Urban (FC 18) AADT 



	ABBEVILLE
	ABBEVILLE
	ABBEVILLE
	ABBEVILLE
	ABBEVILLE
	 


	84
	84
	84
	 


	115
	115
	115
	 



	AIKEN
	AIKEN
	AIKEN
	AIKEN
	 


	265
	265
	265
	 


	265
	265
	265
	 



	ALLENDALE
	ALLENDALE
	ALLENDALE
	ALLENDALE
	 


	31
	31
	31
	 


	30
	30
	30
	 



	ANDERSON
	ANDERSON
	ANDERSON
	ANDERSON
	 


	275
	275
	275
	 


	185
	185
	185
	 



	BAMBERG
	BAMBERG
	BAMBERG
	BAMBERG
	 


	114
	114
	114
	 


	114
	114
	114
	 



	BARNWELL
	BARNWELL
	BARNWELL
	BARNWELL
	 


	182
	182
	182
	 


	182
	182
	182
	 



	BEAUFORT
	BEAUFORT
	BEAUFORT
	BEAUFORT
	 


	375
	375
	375
	 


	425
	425
	425
	 



	BERKELEY
	BERKELEY
	BERKELEY
	BERKELEY
	 


	621
	621
	621
	 


	1,025
	1,025
	1,025
	 



	CALHOUN
	CALHOUN
	CALHOUN
	CALHOUN
	 


	77
	77
	77
	 


	75
	75
	75
	 



	CHARLESTON
	CHARLESTON
	CHARLESTON
	CHARLESTON
	 


	790
	790
	790
	 


	600
	600
	600
	 



	CHEROKEE
	CHEROKEE
	CHEROKEE
	CHEROKEE
	 


	275
	275
	275
	 


	325
	325
	325
	 



	CHESTER
	CHESTER
	CHESTER
	CHESTER
	 


	175
	175
	175
	 


	75
	75
	75
	 



	CHESTERFIELD
	CHESTERFIELD
	CHESTERFIELD
	CHESTERFIELD
	 


	100
	100
	100
	 


	211
	211
	211
	 



	CLARENDON
	CLARENDON
	CLARENDON
	CLARENDON
	 


	105
	105
	105
	 


	105
	105
	105
	 



	COLLETON
	COLLETON
	COLLETON
	COLLETON
	 


	205
	205
	205
	 


	170
	170
	170
	 



	DARLINGTON
	DARLINGTON
	DARLINGTON
	DARLINGTON
	 


	120
	120
	120
	 


	265
	265
	265
	 



	DILLON
	DILLON
	DILLON
	DILLON
	 


	178
	178
	178
	 


	340
	340
	340
	 



	DORCHESTER
	DORCHESTER
	DORCHESTER
	DORCHESTER
	 


	530
	530
	530
	 


	810
	810
	810
	 



	EDGEFIELD
	EDGEFIELD
	EDGEFIELD
	EDGEFIELD
	 


	100
	100
	100
	 


	381
	381
	381
	 



	FAIRFIELD
	FAIRFIELD
	FAIRFIELD
	FAIRFIELD
	 


	164
	164
	164
	 


	222
	222
	222
	 



	FLORENCE
	FLORENCE
	FLORENCE
	FLORENCE
	 


	500
	500
	500
	 


	290
	290
	290
	 



	GEORGETOWN
	GEORGETOWN
	GEORGETOWN
	GEORGETOWN
	 


	300
	300
	300
	 


	326
	326
	326
	 



	GREENVILLE
	GREENVILLE
	GREENVILLE
	GREENVILLE
	 


	325
	325
	325
	 


	495
	495
	495
	 



	GREENWOOD
	GREENWOOD
	GREENWOOD
	GREENWOOD
	 


	350
	350
	350
	 


	110
	110
	110
	 



	HAMPTON
	HAMPTON
	HAMPTON
	HAMPTON
	 


	50
	50
	50
	 


	75
	75
	75
	 



	HORRY
	HORRY
	HORRY
	HORRY
	 


	620
	620
	620
	 


	563
	563
	563
	 



	JASPER
	JASPER
	JASPER
	JASPER
	 


	190
	190
	190
	 


	190
	190
	190
	 



	KERSHAW
	KERSHAW
	KERSHAW
	KERSHAW
	 


	275
	275
	275
	 


	260
	260
	260
	 



	LANCASTER
	LANCASTER
	LANCASTER
	LANCASTER
	 


	253
	253
	253
	 


	260
	260
	260
	 



	LAURENS
	LAURENS
	LAURENS
	LAURENS
	 


	342
	342
	342
	 


	164
	164
	164
	 



	LEE
	LEE
	LEE
	LEE
	 


	60
	60
	60
	 


	63
	63
	63
	 



	LEXINGTON
	LEXINGTON
	LEXINGTON
	LEXINGTON
	 


	365
	365
	365
	 


	623
	623
	623
	 



	MARION
	MARION
	MARION
	MARION
	 


	182
	182
	182
	 


	135
	135
	135
	 



	MARLBORO
	MARLBORO
	MARLBORO
	MARLBORO
	 


	83
	83
	83
	 


	155
	155
	155
	 



	MCCORMICK
	MCCORMICK
	MCCORMICK
	MCCORMICK
	 


	60
	60
	60
	 


	55
	55
	55
	 



	NEWBERRY
	NEWBERRY
	NEWBERRY
	NEWBERRY
	 


	161
	161
	161
	 


	295
	295
	295
	 



	OCONEE
	OCONEE
	OCONEE
	OCONEE
	 


	155
	155
	155
	 


	404
	404
	404
	 



	ORANGEBURG
	ORANGEBURG
	ORANGEBURG
	ORANGEBURG
	 


	127
	127
	127
	 


	405
	405
	405
	 



	PICKENS
	PICKENS
	PICKENS
	PICKENS
	 


	351
	351
	351
	 


	433
	433
	433
	 





	County 
	County 
	County 
	County 
	County 

	Default Rural (FC 9) AADT 
	Default Rural (FC 9) AADT 

	Default Urban (FC 18) AADT 
	Default Urban (FC 18) AADT 



	RICHLAND
	RICHLAND
	RICHLAND
	RICHLAND
	RICHLAND
	 


	725
	725
	725
	 


	691
	691
	691
	 



	SALUDA
	SALUDA
	SALUDA
	SALUDA
	 


	130
	130
	130
	 


	130
	130
	130
	 



	SPARTANBURG
	SPARTANBURG
	SPARTANBURG
	SPARTANBURG
	 


	322
	322
	322
	 


	370
	370
	370
	 



	SUMTER
	SUMTER
	SUMTER
	SUMTER
	 


	200
	200
	200
	 


	630
	630
	630
	 



	UNION
	UNION
	UNION
	UNION
	 


	70
	70
	70
	 


	282
	282
	282
	 



	WILLIAMSBURG
	WILLIAMSBURG
	WILLIAMSBURG
	WILLIAMSBURG
	 


	81
	81
	81
	 


	215
	215
	215
	 



	YORK
	YORK
	YORK
	YORK
	 


	325
	325
	325
	 


	440
	440
	440
	 





	4.2 Kriging Model 
	The implemented hybrid kriging model allows the user to specify the absolute error threshold.  When a sampled coverage location has an absolute error above this threshold, then all non-coverage locations within a certain radius of that coverage station will use a default value.  The default value is the mean AADT based on county and functional class.  Table 4-3 shows the RMSE for different radii with the absolute error set at 90th.  As shown, a radius of 0.9 degrees resulted in the lowest RMSE.  For this re
	Table 4-3 Effect of radius on kriging model performance  
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 

	Radius (degrees) 
	Radius (degrees) 

	RMSE 
	RMSE 



	90 
	90 
	90 
	90 

	0.1 
	0.1 

	375 
	375 


	90 
	90 
	90 

	0.2 
	0.2 

	375 
	375 


	90 
	90 
	90 

	0.3 
	0.3 

	373 
	373 


	90 
	90 
	90 

	0.4 
	0.4 

	371 
	371 


	90 
	90 
	90 

	0.5 
	0.5 

	369 
	369 


	90 
	90 
	90 

	0.6 
	0.6 

	367 
	367 


	90 
	90 
	90 

	0.7 
	0.7 

	367 
	367 


	90 
	90 
	90 

	0.8 
	0.8 

	361 
	361 


	90 
	90 
	90 

	0.9 
	0.9 

	357 
	357 


	90 
	90 
	90 

	1.0 
	1.0 

	362 
	362 


	90 
	90 
	90 

	1.1 
	1.1 

	368 
	368 


	* Size of training dataset is 3,677; size of testing dataset is 1,024. 
	* Size of training dataset is 3,677; size of testing dataset is 1,024. 
	* Size of training dataset is 3,677; size of testing dataset is 1,024. 




	 Table 4-4 shows the effect of changing the absolute error threshold.  A threshold of 90th percentile resulted in the lowest RMSE.  For this reason, it is set as the default value.  However, the user can change it to whatever value is deemed appropriate. 
	Table 4-4 Effect of absolute error threshold on kriging model performance 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 

	Radius (degrees) 
	Radius (degrees) 

	RMSE 
	RMSE 



	95 
	95 
	95 
	95 

	0.9 
	0.9 

	352 
	352 




	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 
	Absolute Error Threshold (percentile) 

	Radius (degrees) 
	Radius (degrees) 

	RMSE 
	RMSE 



	90 
	90 
	90 
	90 

	0.9 
	0.9 

	347 
	347 


	85 
	85 
	85 

	0.9 
	0.9 

	349 
	349 


	* Size of training dataset is 3,677; size of testing dataset is 1,024. 
	* Size of training dataset is 3,677; size of testing dataset is 1,024. 
	* Size of training dataset is 3,677; size of testing dataset is 1,024. 




	        
	The implemented hybrid kriging model also allows the user to supplement the coverage counts data with known non-coverage counts.  It can be seen in Table 4-5 that when the training dataset is supplemented with known non-coverage data, it resulted in an improvement in RMSE from 19.79% to 21.37% over the current default value method. 
	Table 4-5  Effect of including known non-coverage counts 
	Table
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	TD
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	Span
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	TD
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	Span
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	TR
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	TD
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	Span
	3,677
	 


	TD
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	Span
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	Size of testing dataset 
	Size of testing dataset 
	Size of testing dataset 

	TD
	P
	Span
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	TD
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	Span
	512
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	TD
	P
	Span
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	TD
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	Span
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	TD
	P
	Span
	6
	 


	TD
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	Span
	6
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	RMSE 
	RMSE 

	TD
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	Span
	304
	 


	TD
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	Span
	215
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	Improvement over current default value method
	 


	TD
	P
	Span
	19.79%
	 


	TD
	P
	Span
	21.37%
	 





	 
	4.3 Point-Based Model 
	Features from a total of 4,189 urban (FC 18) and rural (FC 9) local roads are collected; they include all locations from the list of coverage stations and all locations from the list of known non-coverage stations.  Figure 4-1 shows the locations of these roads. As explained previously, the coverage counts are grouped by the number of points or features they have in common and the median AADT in each group are used as the predicted value.  The features collected at unknown non-coverage locations are used to
	 
	Figure
	Figure 4-1 Locations of stations used for model training 
	Table 4-6 AADT prediction by the point-based model 
	Point 
	Point 
	Point 
	Point 
	Point 

	Predicted AADT 
	Predicted AADT 

	Description of Each Point Level 
	Description of Each Point Level 



	0 
	0 
	0 
	0 

	125 
	125 

	A roadway segment contains none of the seven variables shown in Table 3-4 
	A roadway segment contains none of the seven variables shown in Table 3-4 


	1 
	1 
	1 

	175 
	175 

	A roadway segment contains one of the seven variables shown in Table 3-4 
	A roadway segment contains one of the seven variables shown in Table 3-4 


	2 
	2 
	2 

	350 
	350 

	A roadway segment contains two of the seven variables shown in Table 3-4 
	A roadway segment contains two of the seven variables shown in Table 3-4 


	3 
	3 
	3 

	650 
	650 

	A roadway segment contains three of the seven variables shown in Table 3-4 
	A roadway segment contains three of the seven variables shown in Table 3-4 


	4 
	4 
	4 

	900 
	900 

	A roadway segment contains four of the seven variables shown in Table 3-4 
	A roadway segment contains four of the seven variables shown in Table 3-4 


	5 
	5 
	5 

	1,600 
	1,600 

	A roadway segment contains five of the seven variables shown in Table 3-4 
	A roadway segment contains five of the seven variables shown in Table 3-4 




	Point 
	Point 
	Point 
	Point 
	Point 

	Predicted AADT 
	Predicted AADT 

	Description of Each Point Level 
	Description of Each Point Level 



	6/7 
	6/7 
	6/7 
	6/7 

	1,800 
	1,800 

	A roadway segment contains at least six of seven variables shown in Table 3-4. 
	A roadway segment contains at least six of seven variables shown in Table 3-4. 




	4.4 Regression Model 
	4.4.1 Regular Regression Model 
	Table 4-7 shows the regular regression model estimation results.  Only the statistically significant variables are shown.  To be statistically significant at the 0.05 significance level, their t-values need to be greater than 1.96 or less than -1.96.  This implies that their p-values must be less than 0.05, which can be verified in the last column.  All variables have a positive sign, which suggest that the presence of these features will increase the AADT.  Their coefficients represent the increase in AADT
	Table 4-7 Regular regression model estimation results 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Estimate 
	Estimate 

	Std. Error 
	Std. Error 

	t-value 
	t-value 

	p-value 
	p-value 



	(Intercept) 
	(Intercept) 
	(Intercept) 
	(Intercept) 

	40 
	40 

	18.47 
	18.47 

	2.143 
	2.143 

	0.032134 
	0.032134 


	Urban 
	Urban 
	Urban 

	110 
	110 

	19.19 
	19.19 

	5.724 
	5.724 

	1.11E-08 
	1.11E-08 


	Double Yellow Line 
	Double Yellow Line 
	Double Yellow Line 

	113 
	113 

	21.31 
	21.31 

	5.314 
	5.314 

	1.13E-07 
	1.13E-07 


	Other Type Median 
	Other Type Median 
	Other Type Median 

	249 
	249 

	25.43 
	25.43 

	9.784 
	9.784 

	< 2e-16 
	< 2e-16 


	Right-turn Lane 
	Right-turn Lane 
	Right-turn Lane 

	158 
	158 

	47.03 
	47.03 

	3.35 
	3.35 

	0.000816 
	0.000816 


	Left-turn Lane 
	Left-turn Lane 
	Left-turn Lane 

	539 
	539 

	39.71 
	39.71 

	13.582 
	13.582 

	< 2e-16 
	< 2e-16 


	Sidewalk 
	Sidewalk 
	Sidewalk 

	66 
	66 

	28.55 
	28.55 

	2.296 
	2.296 

	0.021745 
	0.021745 




	4.4.2 Quantile Regression Model 
	Table 4-8 shows the quantile regression model estimation results.  Only the statistically significant variables are shown (i.e., those with p-values < 0.05).  Similar to the regular regression model, all coefficients are positive.  However, their coefficients are different.  For example, this model predicts that a non-coverage road located in an urban area adds only 50 more vpd compared to 110 predicted by the regular regression model.  Parking lot is found to be statistically significant in this model.  It
	Table 4-8 Coefficients for the quantile regression model 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Estimate 
	Estimate 

	Std. Error 
	Std. Error 

	t-value 
	t-value 

	p-value 
	p-value 



	(Intercept) 
	(Intercept) 
	(Intercept) 
	(Intercept) 

	25 
	25 

	2.2 
	2.2 

	13.2 
	13.2 

	0 
	0 


	Urban 
	Urban 
	Urban 

	50 
	50 

	4.8 
	4.8 

	10.4 
	10.4 

	0 
	0 




	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Estimate 
	Estimate 

	Std. Error 
	Std. Error 

	t-value 
	t-value 

	p-value 
	p-value 



	Double Yellow Line 
	Double Yellow Line 
	Double Yellow Line 
	Double Yellow Line 

	75 
	75 

	4.9 
	4.9 

	13.0 
	13.0 

	0 
	0 


	Other Type Median 
	Other Type Median 
	Other Type Median 

	50 
	50 

	5.5 
	5.5 

	7.6 
	7.6 

	0 
	0 


	Right-turn Lane 
	Right-turn Lane 
	Right-turn Lane 

	275 
	275 

	36.7 
	36.7 

	7.8 
	7.8 

	0 
	0 


	Left-turn Lane 
	Left-turn Lane 
	Left-turn Lane 

	450 
	450 

	65.3 
	65.3 

	6.9 
	6.9 

	0 
	0 


	Sidewalk 
	Sidewalk 
	Sidewalk 

	25 
	25 

	12.8 
	12.8 

	2.8 
	2.8 

	0.0049 
	0.0049 


	Parking Lot 
	Parking Lot 
	Parking Lot 

	50 
	50 

	6.5 
	6.5 

	7.6 
	7.6 

	0 
	0 




	 
	4.5 Comparison of Models Performance 
	Figure 4-2 shows the performance of the different models in terms of RMSE using a validation dataset consisting of 512 non-coverage locations.  As shown, using the current default values resulted in an RMSE of 276.  Using the hybrid kriging model reduced the RMSE to 217, a 21.37% improvement in terms of RMSE. The point-based model yielded an improvement of 22.28% compared to the current default value method, whereas the regular regression model yielded a 17.03% improvement, and the quantile regression model
	 
	Figure
	Figure 4-2 Comparison of models’ performance 
	  
	CHAPTER 5:  CONCLUSION AND RECOMMENDATIONS 
	 
	5.1 Conclusion 
	Currently, the SCDOT assigns a default value based on the functional class of the non-coverage road.  If the road is a rural local road, then the default value is 100 vpd, and if the road is an urban local road, then the default value is 200 vpd.  If the SCDOT practice requires the continual use of the default value method, then it is found that it would be better in terms of RMSE if a statewide average AADT is used.  By using a default value of 154 vpd for rural local roads (FC 9) and 175 vpd for urban loc
	Currently, the SCDOT assigns a default value based on the functional class of the non-coverage road.  If the road is a rural local road, then the default value is 100 vpd, and if the road is an urban local road, then the default value is 200 vpd.  If the SCDOT practice requires the continual use of the default value method, then it is found that it would be better in terms of RMSE if a statewide average AADT is used.  By using a default value of 154 vpd for rural local roads (FC 9) and 175 vpd for urban loc
	Table 4-2
	 would lower the RMSE further to 369.  In summary, using statewide average value would lead to a 2.11% improvement, whereas using a county-based average value would lead to a 2.63% improvement over the current default values. 

	This project identified suitable methods to estimate AADT at non-coverage locations in terms of ease of implementation and accuracy. These methods include kriging, point-based model, regular regression model, and quantile regression model.  The kriging model was selected as the primary model because it leverages existing coverage counts and does not require the SCDOT to collect additional data.  Other models were also developed to complement the kriging model.  Compared to the SCDOT’s current default value 
	5.2 Recommendations 
	Based on this project’s findings, it is recommended that the SCDOT consider adopting the developed Excel-based tool.  A 21.37% improvement in terms of RMSE can be expected with the use of the kriging model.  When roadway features are available for non-coverage roads, the SCDOT could change the configurable parameter in the tool to use estimates from the point-based model (a 1.45% improvement over kriging) or the quantile regression model (a 1.82% improvement over kriging). 
	5.3 Implementation 
	An Excel-based tool was developed as part of this project to assist the SCDOT in utilizing the developed models.  Figure 5-1shows a screenshot of the user interface.  Running the tool simply involves clicking on the buttons in the sequence indicated and providing the necessary data files.  Sample data files are provided along with the Excel-based tool which has VBA codes embedded. 
	 
	Figure
	Figure 5-1 Graphical user interface of non-coverage AADT estimation tool 
	The following explains the steps involved in running the program. 
	• Step one: Click on the “Clear Data” button.  As the name implies, this step clears all the data in various worksheets such as coverage counts, known non-coverage counts, and unknown non-coverage counts. 
	• Step one: Click on the “Clear Data” button.  As the name implies, this step clears all the data in various worksheets such as coverage counts, known non-coverage counts, and unknown non-coverage counts. 
	• Step one: Click on the “Clear Data” button.  As the name implies, this step clears all the data in various worksheets such as coverage counts, known non-coverage counts, and unknown non-coverage counts. 

	• Step two: Click on the “Import Coverage Counts” button.  The user will be prompted to select a file from the user’s computer using standard Windows File Dialog.  Upon successful reading of the file, a dialog box will be displayed informing the user that the data has been loaded successfully into the “Coverage Counts” worksheet.  A map of the coverage counts’ location will be generated based on the stations’ latitudes and longitudes as shown in Figure 5-2. 
	• Step two: Click on the “Import Coverage Counts” button.  The user will be prompted to select a file from the user’s computer using standard Windows File Dialog.  Upon successful reading of the file, a dialog box will be displayed informing the user that the data has been loaded successfully into the “Coverage Counts” worksheet.  A map of the coverage counts’ location will be generated based on the stations’ latitudes and longitudes as shown in Figure 5-2. 


	 
	Figure
	Figure 5-2 Map of coverage counts generated by developed tool 
	• Step three: Click on the “Import Known Non-coverage Counts” button.  This step is optional and should only be executed if the SCDOT has collected counts from non-coverage locations.  The user will be prompted to select a file from the user’s computer using standard Windows File Dialog.  Upon successful reading of the file, a dialog box will be displayed informing the user that the data has been loaded successfully into the “Known Non-Coverage Counts” worksheet.  A map of the known non-coverage counts’ loc
	• Step three: Click on the “Import Known Non-coverage Counts” button.  This step is optional and should only be executed if the SCDOT has collected counts from non-coverage locations.  The user will be prompted to select a file from the user’s computer using standard Windows File Dialog.  Upon successful reading of the file, a dialog box will be displayed informing the user that the data has been loaded successfully into the “Known Non-Coverage Counts” worksheet.  A map of the known non-coverage counts’ loc
	• Step three: Click on the “Import Known Non-coverage Counts” button.  This step is optional and should only be executed if the SCDOT has collected counts from non-coverage locations.  The user will be prompted to select a file from the user’s computer using standard Windows File Dialog.  Upon successful reading of the file, a dialog box will be displayed informing the user that the data has been loaded successfully into the “Known Non-Coverage Counts” worksheet.  A map of the known non-coverage counts’ loc

	• Step four: Select desired reduction factor from the dropdown box.  Users has the option to use the default reduction factor entered on the parameter worksheet (discussed below) or use the reduction factor calculated based on the provided data.  If the latter option is selected, the tool will display the calculated reduction factor as shown in Figure 5-3. 
	• Step four: Select desired reduction factor from the dropdown box.  Users has the option to use the default reduction factor entered on the parameter worksheet (discussed below) or use the reduction factor calculated based on the provided data.  If the latter option is selected, the tool will display the calculated reduction factor as shown in Figure 5-3. 


	 
	Figure
	Figure 5-3 Dialog showing value of calculated reduction factor 
	• Step five:  Click on “Import Non-coverage Locations” button.  Similar to previous steps, the user will need to provide the appropriate data file, and the tool will provide a message indicating successful reading of the file, and it will generate a map showing the locations of the non-coverage locations. 
	• Step five:  Click on “Import Non-coverage Locations” button.  Similar to previous steps, the user will need to provide the appropriate data file, and the tool will provide a message indicating successful reading of the file, and it will generate a map showing the locations of the non-coverage locations. 
	• Step five:  Click on “Import Non-coverage Locations” button.  Similar to previous steps, the user will need to provide the appropriate data file, and the tool will provide a message indicating successful reading of the file, and it will generate a map showing the locations of the non-coverage locations. 

	• Step six: Click on “Run Model” button.  This step executes a series of VBA subroutines that implement the kriging model.  The run time depends on the number of locations provided.  It takes a couple of minutes to complete when the coverage and non-coverage counts are less than 5,000. 
	• Step six: Click on “Run Model” button.  This step executes a series of VBA subroutines that implement the kriging model.  The run time depends on the number of locations provided.  It takes a couple of minutes to complete when the coverage and non-coverage counts are less than 5,000. 


	 The tool allows the user to change three parameters as shown in Figure 5-4. 
	1. Absolute error threshold (percentile).  The default is 90th percentile.  The decimal form of the percentile should be specified.  For example, 0.8 should be entered if the desired threshold for switching from kriging-predicted to default value is 80th percentile. 
	1. Absolute error threshold (percentile).  The default is 90th percentile.  The decimal form of the percentile should be specified.  For example, 0.8 should be entered if the desired threshold for switching from kriging-predicted to default value is 80th percentile. 
	1. Absolute error threshold (percentile).  The default is 90th percentile.  The decimal form of the percentile should be specified.  For example, 0.8 should be entered if the desired threshold for switching from kriging-predicted to default value is 80th percentile. 

	2. Complimentary model.  The default is “0” which means the hybrid kriging model will be used to predict AADT.  If “1” is specified, then the point-based model will be applied to those stations with the provided road features.  The AADT of the remaining stations will be predicted by the hybrid kriging model.  Similarly, if “2” is selected, then the regular regression model will be applied and if “3” is selected then the quantile regression model will be applied to those stations with the provided road featu
	2. Complimentary model.  The default is “0” which means the hybrid kriging model will be used to predict AADT.  If “1” is specified, then the point-based model will be applied to those stations with the provided road features.  The AADT of the remaining stations will be predicted by the hybrid kriging model.  Similarly, if “2” is selected, then the regular regression model will be applied and if “3” is selected then the quantile regression model will be applied to those stations with the provided road featu

	3. Default reduction factor.  The default is “6.”  The user has the option to use this value or have the tool calculate the reduction factor from the data. 
	3. Default reduction factor.  The default is “6.”  The user has the option to use this value or have the tool calculate the reduction factor from the data. 


	 
	Figure
	Figure 5-4 Configurable parameters 
	On the parameters worksheet, in addition to the ability to change the three parameters discussed above, the user can also change the predicted AADT for the point-based model and coefficients of 
	the regular regression and quantile regression models.  The updating of the regression models’ coefficients should only be done if the models are re-estimated. 
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