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Problem Statement: 

The deployment of autonomous vehicles (AVs) has been troubled by the soaring cost of 
operations and the public’s concerns about the safety and fairness issues potentially brought by 
the new mobility. As leading companies such as Waymo and Uber which have obtained permits 
to commercialize their robotaxi fleets domestically and overseas, it is urgent to investigate 
deployment strategies that are sustainable for companies to run their business and beneficial to 
the public. 

This project aims to develop a safe, profitable, and fair deployment strategy for robotaxis by 
studying the possibility of deploying a fleet of autonomous vehicles with different functionalities. 
The temporospatial requirement for AVs will be analyzed using the traffic primitives method and 
synthesized with transportation demands. In this project, we visualize the complexity of the 
possible situations and the risk level on the whole Pittsburgh City level. Strategies will be 
developed to minimize the costs by commanding AVs with different functionalities to appropriate 
routes while maintaining an appropriate safety standard. In addition, we incorporate inverse 
general-sum non-cooperative dynamic games to estimate human drivers’ intrinsic utility function 
and therefore obtain a model of social norms that can be used to improve the safety and social 
compliance of AVs. 

To ensure safety and lay the foundation of autonomous vehicles deployment, this project first 
leverages past research on labeling the city's roads with different risk levels based on 
large-scale real-world datasets of Pittsburgh city, including multi-dimensional and multi-fidelity 
data [1]. The identification of typical driving scenarios is based on 
Dirichlet-Process-Gaussian-Process [3,4]. 

From the game-theoretical perspective, we study socially compliant driving behaviors based on 
human driving data. Here we understand social norms as “mental representations of appropriate 
behavior”. A social norm often consists of social conventions that can be explicitly or implicitly 
learned under certain social contexts, which serves as guidelines for how humans and 
autonomous vehicles should behave. 
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Methods: 

The first-stage analysis is based on the Argoverse tracking Dataset [1], which is collected from 
onboard sensors such as lidars and cameras of AVs in Pittsburgh City. The dataset contains the 
location, type, and bounding box of surrounding objects. The second-stage analysis is based on 
the Interstate 80 (I-80) Freeway trajectory of the eastbound traffic during rush hour from the 
Next Generation Simulation (NGSIM) dataset [6]. The dataset contains vehicle information such 
as length and type, and kinematic information such as position, speed, headings, etc., with a 
resolution of 10 frames per second. The trajectories are smoothened using simple vehicle 
dynamics. We focus on the highway on-ramp merging scenario in this project. 

We use a hierarchical Bayesian nonparametric model with a high-level manager as a Direchlet 
Process (DP) [3] that serves as a prior and helps select low-level executors, and low-level 
executors as Gaussian Processes [2] that model different types of multi-vehicle interaction 
scenarios. Note that DP releases the assumption that the algorithm designer will enumerate all 
the possible intersection scenarios or will provide a preset total number of possible scenarios. It 
allows a growing number of clusters based on the data collected. More concretely, given a 
relative location pair (x,y) as the input, a GP model outputs a Gaussian distribution for a 
2-dimensional random variable that represents the velocity in two directions. We further use the 
number of clustered scenarios corresponding to the map layout as a sign of the risk level. To 
improve scalability, we used a sparse GP [5] and implemented the DPGP algorithm based on 
GPyTorch [4]. 

We also studied the social norm as the guidance for Robotaxi deployment. Specifically, we 
modeled social norms as parameters of average human beings’ intrinsic utility function. 
According to [7], a stable social norm must constitute a Nash equilibrium. Therefore, we first 
learned the social norms from human driving data, assuming that human actions form a Nash 
equilibrium. At evaluation time, the learned parameters can be used to predict vehicle 
trajectories. Then the distance between predicted trajectories and true trajectories is calculated. 
The distance represents how much the vehicles’ actions deviate from social norms. 

We consider a discrete-time N-player generals-sum non-cooperative dynamic game defined 
over a fixed time horizon K. The system dynamics is known as a nonlinear function 

We assume that any agent is minimizing the cost function 

where the stage-wise cost function g is a linear combination of M basis functions such that 
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The control sequences constitute an open-loop Nash equilibrium solution to the N-player 
general-sum non-cooperative dynamic game if and only if inequalities 

hold for all agents. Therefore, in inverse N-player general-sum game non-cooperative dynamic 

game, we want to recover the unknown parameters given the trajectory and 
. The problem can be formulated as 

Although we write the optimization problem in this form, to solve this optimization problem 
actually involves bi-level optimization. The top level is to find θ1 and θ2 that minimizes the 
difference between the predicted trajectory and noisy measurements. The lower level is to find 
the optimal control input sequences that form Nash equilibrium given the θ1 and θ2 selected by 
the top level optimization. Since solving Nash equilibrium involves solving a coupled 
optimization problem which is nontrivial, we replace the lower level optimization problem of the 
Nash equilibrium with the necessary (but not complete) conditions for the Nash equilibrium. We 
can then reformulate the bilevel optimization as a single level optimization can be efficiently 
solved by state-of-the-art nonlinear optimization solvers such as IPOPT solver implemented in 
CasADi [8]. 

Findings: 

Our main results include the traffic scenario clustering method, a method to study the human 
drivers’ intrinsic utility function and social norms for safer and social compliant Robotaxi 
deployment. More specifically, we analyzed the driving risk levels of Pittsburgh City based on 
the Argoverse Dataset by modeling the scenario as Dirichlet Process Gaussian Process. In the 
analysis of social norms, we verify our method by a simple illustrative example to show that our 
method can recover the ground truth parameters and reconstruct the trajectories. Then we 
deploy our method on a real-world dataset, NGSIM, to show that it can reconstruct the 
parameters even with relatively more complicated cost features and a long time horizon. 

Conclusion: 
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We argue that a trustworthy robotaxi is expected to have the ability to (1) handle a dynamic 
number of surrounding vehicles in a complex intersection scenario and (2) infer the utility 
function of others for accurate predictions. We address the first problem using a hierarchical 
Bayesian nonparametric model and the second one with inverse dynamic games. For future 
work, we will do extensive experiments to test the robotaxi agent in simulators such as CARLA. 

Reference: 

[1] Chang, Ming-Fang, et al. "Argoverse: 3d tracking and forecasting with rich maps." 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. 
[2] Rasmussen, Carl Edward. "Gaussian processes in machine learning." Summer School on 
Machine Learning. Springer, Berlin, Heidelberg, 2003. 
[3] Teh, Yee Whye. "Dirichlet Process." (2010): 280-287. 
[4] Gardner, Jacob, et al. "Gpytorch: Blackbox matrix-matrix gaussian process inference with 
gpu acceleration." Advances in Neural Information Processing Systems. 2018. 
[5] Titsias, Michalis. "Variational learning of inducing variables in sparse Gaussian processes." 
Artificial Intelligence and Statistics. 2009. 
[6] “Traffic Analysis Tools: Next Generation Simulation - FHWA Operations.” n.d. Accessed July 
30, 2021. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. 
[7] Bicchieri, C. 2005. The grammar of society: The nature and dynamics of social norms 
[8] Andersson, J. A. E.; Gillis, J.; Horn, G.; Rawlings, J. B.; and Diehl, M. 2019. {CasADi} – 
{A}software framework for nonlinear optimization and optimal control.Mathematical 
ProgrammingComputation11(1):1–36 

4 

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm



