

High Speed Rail Noise Standards ar CONTRAST

- Spreadsheet-Based Tool for Com
- Conversion Tool for Noise Regula

Program Worksheet Index and High Leve

Worksheet Index

Worksheet Name

Program Overview

Train Set Data Requirements

Passby Data Library Summary

Regulations (US EU China Japan)

Common Reference Analysis

Data Set Comparisons

Passby Data Set 1

Passby Data Set 1 Output

Passby Data Set 2

Passby Data Set 2 Output

Passby Data Set 3

Passby Data Set 3 Output

Passby Data Set 4

Passby Data Set 4 Output

Passby Data Set 5

Passby Data Set 5 Output

Common Reference Data Set

Common Reference Data Set Output

Program Flow Chart

Assemble librar CONTRAST inclube added.

Data are to be c instrumentation

From the pass US: L_{max (fast)}, L EU: L_{pAeq,Tp}, L_{pA} to 250 km/ China: L_d, L_n Other: L_{pASmax}

Scale selected pa L_{pAeq,Tp} normalize

Use this scaled d EU, China, Japan.

Using noise met rail noise regula ortation Administration

nd Regulations

Comparison Of Noise for TRAin STandards

paring Noise Standards and Regulations

ations and Standards to Common Reference

I Flow Chart

Contents

Program Description, Program Capabilities, Legal Terms & Conditions

Descriptions of instrumentation and measurement procedures regulations and standards, note on measurement accuracy and uncertainty

Descriptions of Train Sets Contained in the Current Library

Summary of Current High Speed Train Noise Regulations and Metrics

Comparisons of US, EU, China, and Japan High Speed Noise Regulations to a Common Reference. The common reference train pass-by noise data set is based on a scaled sound pressure level graph that exactly meets the EU TSI Normalized Equivalent 80 km/hr and 250 km/hr normalized limits. The corresponding US, China, and Japan limits are then calculated using the same data set, thus allowing direct comparisons.

Comparisons of the data sets in the program library relative to the identified passby noise metrics associated with the regulations of each country

Train set information and pass-by sound pressure measurement data for the Korean HEMU-430X

Calculated noise metrics for the Korean HEMU-430X based on the passby data set

Train set information and passby sound pressure measurement data for the Thalys PBKA

Calculated noise metrics for the Thalys PBKA based on the passby data set

Train set information and passby sound pressure measurement data for the China CRH3 Series Trains, Microphone Position 2

Calculated noise metrics for the China CRH3 Series Trains, Microphone Position 2, based on the passby da Train set information and pass-by sound pressure measurement data for the China CRH3 Series Trains, Mi Calculated noise metrics for the China CRH3 Series Trains, Microphone Position 1, based on the passby da Train set information and passby sound pressure measurement data for the China CRH3 Series Trains, Mic

Calculated noise metrics for the China CRH3 Series Trains, Microphone Position 3, based on the passby data set

The scaled passby data set that exactly meets the TSI NOI (2014) normalized limits

Analysis of the noise metrics for the common reference data set

Program Version:	7	14-Oct-19	RICARDO	
ta set crophone Position 1				
ta set				
crophone Position 3				

ne US, EU, China and Japan high speed

ison charts are shown as percentages num allowable sound pressure level or each regulation.

CONTRAST

U.S. Department of Transportation Federal Railroad Administration

Federal Railroad Administration

High Speed Rail Noise Standards and Regulations

Program Version:

• Spreadsheet-Based Tool for Comparing Noise Standards and Regulations

Comparison Of Noise for TRAin STandards

• Conversion Tool for Noise Regulations and Standards to Common Reference

Program Key Features:

1. The program employs passby sound pressure level (SPL) data to determine whether a train set n The program is based on a library of pass-by SPL data obtained using test procedures prescribed agencies having jurisdiction, such as European Railway Agency (EU), U.S. Environmental Protect Japan Ministry of the Environment, and the China Ministry of Transport. Using the basic A. Compare selected train sets to US Regulations i. Determine passby noise level at distance of 30 m (100 ft) from track cente (microphone elevation is 1.2 m (4 ft) above track elevation) ii. Determine $\rm L_{_{max(fast)}}$ for selected train set at 30 m from track centerline and iii. Compare results to US FRA Noise Regulations (locomotives and rail cars) at speeds greater than 45 mph (72.4 km/hr) B. Compare train set pass-by data to EU Regulations i. Determine passby noise level at distance of 7.5 m (25 ft) from track center (microphone elevation is 1.2 m (4 ft) above track elevation) ii. Normalize $\rm L_{_{pAeq,Tp}}$ data to 80 km/hr (50 mph) and 250 km/hr (155 mph) pe iii. Compare results to TSI Noise Regulations (electric locomotives) at reference speeds of 80 km/hr (50 mph) and 250 km/hr (155 mph) C. Compare train set passby data to Japanese Regulations i. Determine pass-by noise level at boundary of railroad property, defined as 25 m (82 ft) from outer track centerline and 1.2 m (4 ft) above ii. Calculate the noise metrics L_{eq} and L_{Amax} using the energy mean of the period ii. Provide indication whether noise barriers are required D. Compare train set pass-by data to Chinese Regulations i. Determine pass-by noise level at boundary of railroad property, defined as 30 m (100 ft) from outer track centerline and 1.2 m (4 ft) abov ii. Determine number of train set passbys allowed during daytime period iii. Determine number of train set passbys allowed during nightime period

2. Use of Common Reference high speed train passby sound pressure levels to compare regulation A representative passby noise data set was scaled so the equivalent sound pressure level ($L_{pAeq,T}$ the normalized TSI Noise (2014) regulations: $L_{pAeq,Tp}$ for 80 km/hr, which is 80 dB(A) and $L_{pAeq,Tp}$ f This "Common Reference" data set was then employed to determine the noise metrics correspc and Japan to allow direct comparison of the noise regulations. For countries that impose immission regulations, the program calculates the maximum number that will not exceed regulation limits.

Legal Terms and Conditions:

The CONTRAST Spreadsheet-Based Analysis Tool was developed as an aid to evaluating train passby noise dat train noise regulations as part of FRA Program 693JJ618C000020, "High Speed Rail: Cost of Compliance for N It is provided "as is" to US DOT Federal Railroad Administration for their internal use only. Ricardo offfers n usage of this analysis tool.

References:

Acela Graphic Reference: National Railroad Passenger Corporation, *Amtrak Fiver Year Service Line Plans*, Base (FY 2018) - Five Year Strategic Plan (FY 2019-2013), 2018.

Note: this spreadsheet-based program was developed by Ricardo Strategic Consulting for the Federal Railroad Administra Contract Number 693JJ618C000020

neets noise regulations: by ion Agency,

erline

1.2 m elevationii. Determine $L_{max(fast)}$ for selected train set at 30 m from track centerline and 1.2 m elevation

rline

er TSI 1304 (2014)ii. Normalize L _{pAeq,Tp} data to 80 km/hr (50 mph) and 250 km/hr (155 mph) per TSI 1304 (2014)

top of rail
ak noise levels

/e top of rail

s from the US, EU, China, and Japan:

 $_{\rm p}$) for the passby period was equal to

[•]or 250 km/hr, which is 95 dB(A)

onding to the other countries (US, China,

of train passby events

ata relative to identified high speed loise Mitigation Procedures." o warranties or guarantees of any kind regarding

ation under

+

)

Instrumentation

Per U.S. Interstate Rail Carriers Noise Regulations, 40 CFR Part 2C Measurements are to be made using a sound level meter or alter as a minimum, all the requirements of American National Standa used with the "fast" or "slow" meter response characteristic. In the event that a Type 1 instrument is not available, the measu measured sound pressure levels are to be adjusted to account fo The A-weighted levels for the instrument "fast" or "slow" meter I American National Standard S1.419711.

Measurement Procedures

Per U.S. Interstate Rail Carriers Noise Regulations, 40CFR Part 20. For rail car passby tests, the microphone is to be positioned on a from the track centerline.

The microphone is to be located at an elevation of 1.2 m (4 ft) ab Brake squeal should not be present and tracks are to be well mai FRA references ISO Standard 3095: *Railway Applications - Acoust*

Per U.S. Interstate Rail Carriers Noise Regulations, 40CFR Part 20. Measurement locations must be selected such that no substantia or commercial unit wall or facility boundary noise barrier, that ex 10 meters (33.3 feet) of the microphone and that no exterior wal 2.0 meters (6.6 feet) of the microphone.

Average wind velocity should be 12 mph (19.3 km/hr) or less and

2. European Union

• Instrumentation

Per EN ISO 3095: 2013, Acoustics - Railway Applications - Measur The instrumentation system, including the microphones, cables a a type 1 instrument specified in EN 61672-1.

The microphones shall have an essentially flat frequency respons The 1/3 octave band filters shall meet the requirements of class : A suitable windscreen shall always be used.

Before and after each series of measurements a sound calibrator shall be applied to the microphone(s) for verifying the calibratior over the frequency range of interest. If the difference between the measurement results shall be rejected.

The compliance of the calibrator with the requirements of EN 60 the instrumentation system with the requirements of EN 61672-The date of the last verification of the compliance with the releva

• Measurement Procedures

Per EN ISO 3095: 2013, Acoustics - Railway Applications - Measur Test Environment: must meet acoustical environment (ground fla conditions (no rain or falling snow), and background sound press Microphone Positions: permitted positions are summarized below

Perpendicular Position			
from Track			
Centerline (m)			
7.5			
7.5			
25			

Vehicle Conditions: Vehicle shall have run in normal cc is to be unloaded and unoccupied except for the train crew. Doc operating auxiliary equipment shall be in action.

Track Conditions: the track is to meet guidelines specified in ISO Test Procedure: Measurements to be made for pass-by events ir third octave bands according to EN ISO 266.

3. China

Instrumentation

Chinese Standard *GB/T 3785.2-2010, Sound Level Meters* applies level meters, testing and test methods for Chinese Standard *GB/* level meters, testing and test methods for

Class I and 2 sound level meters. Its purpose is to ensure that all Instruments must meet the following standards (compatible with GB 9254-2008 Radio disturbance limits and measurement metho GB/T 17312 sound level meter random incidence and diffusion fi GB/T 17799.2-2003 Electromagnetic compatibility - General stan (IEC 61000-6-2..1999,IDT)

GB/T 3785.1-2010 electroacoustics sound level meter - Part 1. Sc GB/T 15173 (IEC 60942) electroacoustic sound calibrator

IEC 61000-4-2..2001 Electromagnetic compatibility (EMC) - Part ² discharge immunity test 1)

IEC 61000-4-3..2002 Electromagnetic compatibility (EMC) - Part 4 electromagnetic radiation immunity Test 2)

IEC 61000-4-6..2001 Electromagnetic compatibility (EMC) - Part 4 of radio frequency field induction Immunity 3)

Measurement of microphones - Part 1. Specification for laborato Guide, Guidance on Measurement Uncertainty

ISO /IEC , International Basic and General Metrology terminology CISPR16-1..1999 Specification for radio frequency interference a Part 1. Radio frequency interference and immunity test.

• Measurement Procedures

Per Chinese Regulation GB 12525-90. The regulation requires fiv property with the microphone located 1.2 m (3.94 ft) above the Measurements are taken at a distance of 30 m (98.4 ft) from the Measuring conditions should meet the GB 3222 standards (Meas should be taken in the absence of rain or snow. Measurement ti measurements and 8 hours is the duration for night measuremer

4. Japan

- Instrumentation
 - Instrumentation must comply with JIS C1502 which requires the Publication 179

JIS Number	Measured Quantity	Measurement Environment	Accuracy Grade
Z 8731:1999	Sound Pressure	Free-Field & Hemi-Field	Engineering
Z 8732:xxxx	Sound Pressure	Free-Field & Hemi-Field	Precision
Z 8733:xxxx	Sound Pressure	Approximately Hemi Free-Field	Engineering
Z 8734:xxxx	Sound Pressure	Reverberant	Precision
Z 8736-1:99	Sound Intensity	Any	Precision, Engineering, Survey
Z 8735-2	Sound Intensity	Any	Engineering, Survey

Japanese Noise Instrument Standards and Corresponding ISO Sta

Reference: Ministry of the Environment, Government of Japan, "Environmer Notification No. 91," Japan Ministry of the Environment, Tokyo, J

• Measurement Procedures

Compliance with ISO 11201:95 Acoustics - Noise Emitted by Mac Compliance with ISO 112012:95 Acoustics - Noise Emitted by Ma The Shinkansen Superexpress Railway Noise regulation requires a the ground in the open air along the railway line with the measu This is not applicable in sparsely inhabited forests, agricultural lau According to the environmental quality standards for the Shinkar

- Measurement are to be carried out by recording the peak noise in principle for 20 successive trains
- Measurement shall be carried out outdoors and in principle at represent Shinkansen railway noise levels in the area concerned
- Any period when there are special weather conditions or when
- The Shinkansen railway noise shall be evaluated by the energy
- The measuring instrument used shall be a noise meter that me

Track Roughness

Track roughness can impact pass-by sound pressure levels (SPLs) by up to 9 dB(A), depe pass-by noise measurements under acceptable roughness conditions. The CONTraST pr levels. The EU TSI NOI provided guidelines for determining acceptable levels of track su

The EU Technical Specifications for Interoperability define track surface roughness and (track is considered suitable for comparable measurements if the one-third octave band Measurement Related to Rolling Noise Generation)2 throughout the test, fulfill the follc [0.010 ft to 0.328 ft (0.118 inches to 3.94 inches)] corresponding to the graph below.

1 is the 1/3 octave band roughness level, dB(A)2 is the wavelength (cm)

3 is the 1/3 octave band roughness level, dB(A)

The dynamic properties of the test track are considered suitable for acceptable noise m (European Standard for Characterization of the Dynamic Properties of Track Selections 1 below.

Lower Limit Curves for TSI-Compliant Track Decay Rates

1 is the track decay rate, dB/m

2 is the frequency, Hz

3 is the track decay rate in the vertical direction

4 is the track decay rate in the lateral direction

References:

¹D. Biasin and B. Leermakers, "Interoperability Unit, Trans-European Conven Reference IU-NOI-11032010_TSI rev 3.0," The European Railway Agency, Eu ²European Committee for Standardization (CEN), "BS EN 15610, Railway App British Standards Institution, London, England, 2009.

³E. C. f. Standardization, "BS EN 15461: 2008 + A1: 2010, Railway Application Measurements," British Standards Institute, London, England, 2010.

A Note on Accuracy and Uncertainty:

where

The data sets contained in the library for the CONTRAST spreadsheet-based analysis toc and instruments described above. It is important to know that there are many factors t Zoontjens² in Australia for both passenger and freight trains included extensive measure obtain the standard deviation for each pass-by event and for multiple data sets collecte measured noise levels was analyzed for single data sets as well as 5, 10, 15, 20, and 60 c instruments and procedures, showed standard deviations in LAE of approximately 5 dB calculated noise levels are within ±3 dB of the true $L_{Aeq(period)}$ noise levels when at least 20 assessment parameter, the uncertainty increases to approximately ±5 dB for the same r The 2008 version of the EU TSI Noise Regulation included an uncertainty level of ±1 dB(*k* not included in the 2014 version of the the TSI Noise Regulation. References:

¹International Electrotechnical Commission, "IEC 60942:2003, Electroaccous² C. Weber and L. Zoontjens, "The Uncertainty Associated with Short-Term N IWRN 12, Terrigal, NSW, Australia, 2016.

³International Organization for Standardization, "Draft International Standar Part 1: Basic Quantities and Assessment Procedures, Reference Number ISO, ⁴K. Brinkmann, "Treatment of Measurement Uncertainties in International a Le Mans, France, 2005, https://www.bruit.fr/revues/78_11096.PDF. Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

Program Version: 7

14-Oct-19

cedures as defined by the respective regulations.

11.21 and Part 201.22, US EPA Measurement Criteria nate sound level measurement system that meets, rd S1.419711 for a Type 1 (or S1A) instrument, to be

rements may be made with a Type 2 instruement, but r possible instrument errors. response characteristics are to be as defined in

1.24, US EPA Measurement Criteria line perpendicular to the track 30 m (100 ft)

ove the track. Intained (see TSI roughness requirements below). tics - Measurement of Noise Emitted by Railbound Vehicles

1.25, US EPA Measurement Criteria

ally vertical plane surface, other than a residential (ceeds 1.2 meters (4 feet) in height is located within Il of a residential or commercial structure is located within

I maximum wind gust must be 20 mph (32.2 km/hr) or less.

rement of Noise Emitted by Railbound Vehicles and recording devices shall meet the requirements for

e in a free sound field. 1 according to EN 61260.

 meeting the requirements of class 1 according to EN 60942
of the entire measuring system at one or more frequencies he two calibrations is more than 0.5 dB all the

942 shall be verified at least once a year. The compliance of 1 and EN 61672-2 shall be verified at least every 2 years. ant European Standards shall be recorded.

rement of Noise Emitted by Railbound Vehicles atness, free of large reflecting objects), meteorological ure levels (10 dB below value during pass-by event). w:

Elevation above Top of Rail (m)		
1.2		
3.5		
3.5		

nditions at least 3,000 km on track with normal traffic. The train rs and windows are to be kept closed and normally-

3095 including levelness, curvature, and roughness. <code>nclude: L_______ and, if frequency analysis is included, at lease in one</code>

to multi-channel sound *T 3785.2-2010, Sound Level Meters* applies to multi-channel sound

testing laboratories can perform a consistent evaluation tests. n global standards IEC 651 & ANSI S1.4): nds for information technology equipment (CISPR22..1997, IDT) eld calibration (GB/T 17312-1998, eqvIEC 61183..1994) dards - Immunity test in industrial environments

ecifications (IEC 61672-1..2002, IDT): sound meter performance

1-2. Test and measurement techniques Electrostatic

1-3. Test and measurement techniques radio frequency

1-6. Test and measurement techniques Conducted disturbance

ry standard microphones (IEC 61094-1..2000); ISO Presentation

nd immunity test instruments and methods:

e measurement points to be taken at the border of the railway ground and not less than 1 m (3.28 ft) from a reflective surface. centerline of the outer track. urement Methods for Community Noise which states measurements me to be day or night; 16 hours is the duration for day nts.

precision noise meter prescribed by International Electric Standards Conference (IESC)

indards	JIS = Japanese Industrial Standard	
Corresponding ISO Standard		
ISO 1996-1:2016		
ISO/DIS 3745		
ISO 3744:94		
ISO 3741:99	lanan	
ISO 9614-1:93	Jupan	
ISO 9614-2:96		

ntal Quality Standards for Shinkansen Superexpress Railway Noise, apan, 1993.

hinery and Equipment (Free Field over a Reflecting Plane)

chinery and Equipment (Environmental Corrections)

a power mean of the peak noise level shall be measured at 1.2 m (3.94 ft) above ring point located at 25 m (82 ft) from the centre line of the near side of the track. nds etc.

nsen Superexpress, noise measurements are to be performed as described below: e level of each of the Shinkansen trains passing in both the directions,

the height of 1.2m above the ground. Measurement points shall be selected to d as well as the points where the noise is posing a problem the speed of the trains is lower than normal shall not be considered mean value of the higher half of the measured peak noise levels ets the requirements of Article 88 of the measuring Law (Law no 207 of 1951), nding upon train speed, microphone distance, and degree of roughness. It is thus important to conduct ogram assumes the pass-by noise data sets were obtained at sites with acceptable track roughness rface roughness.

dynamics characteristics for pass-by noise measurements.¹ The "rail acoustic roughness" of the test roughness spectra assessed according to EN15610 (European Standard for Rail Roughness wing upper limit: the wavelength bandwidth is to be at least 0.003 m to 0.10 m (0.3 cm to 10.0 cm)

ail Roughness

Reference, TSI Noise Regulations (2014)

easurements if the one-third octave band track decay rates spectra measured according to EN15461 for Pass By Noise Measurements)³ throughout the test section fulfill the limits shown in the graph

Reference, TSI Noise Regulations (2014)

tional Rail System, Subsystem Rolling Stock, TSI Rolling Stock - Noise, ropean Commission, Valenciennes, France, 2010. lications; Noise Emission; Rail Roughness Measurement Related to Rolling Noise Generation,"

is, Noise Emission, Characterization of the Dynamic Properties of Track Selections for Pass By Noise

) I were obtained by a number of researchers using standardized the standardized test procedures hat affect the accuracy and uncertainty of these data sets. ^{1,2,3,4} Tests performed by Weber and and instrum ements of pass-by noise levels (L_{AE}). Statistical analyses were performed for each set of data to Zoontjens² d over periods ranging from one week to over six months. The maximum range in log-averaged lata sets for each site. Tests conducted on passenger trains using ISO standard-compliant which led to the statement: "For the measurements in this study, there is a 95% confidence that the D train pass-bys of each type under the same operating conditions are measured. For the L_{Amax calculated noise level}: number of train pass-bys".

4) relative to maximum pass-by sound pressure measurement limits. This allowance factor wasThe 2008 version of the

tics - Sound Calibrators," 2003, https://webstore.iec.ch/publication/3954. ¹International Electrotechnical C loise Measurements of Passenger and Freight Trains," in International Workshop on Railway Noise, ² C. Weł

d ISO/DIS 1996-1, Acoustics - Description, Measurement and Assessment of Environmental Noise, ³Interna /DIS 1996:2014(E)," International Organization for Standardization, Geneva, Switzerland, 2014. nd European Standards on Acoustics," *Acoustique & Techniques* No. 40, in Uncertainty - Noise,

nents descr bed above. It is important to know that there are many factors that affect the accuracy and in Australia for both passenger and freight trains included extensive measurements of pass-by noise levels.

s are within ±3 dB of the true LAeq(period) noise levels when at least 20 train pass-bys of each type under the same oper

EU TSI Noise Regulation included an uncertainty level of ±1 dB(A) relative to maximum pass-by sound pressure me

ommission, "IEC 60942:2003, Electroaccoustics - Sound Calibrators," 2003, https://webstore.iec.ch/put per and L. Zpontjens, "The Uncertainty Associated with Short-Term Noise Measurements of Passenger a

tional Organization for Standardization, "Draft International Standard ISO/DIS 1996-1, Acoustics - Descr

1 uncertainty of these data sets. $^{\rm 1,2,3,4}$ Tests performed by Weber and vels (L $_{\rm AE}$). Statistical analyses were performed for each set of data to

ating conditions are measured. For the $\mathrm{L}_{_{\mathrm{Amax}}}$

easurement limits. This allowance factor was

plication/3954. and Freight Trains," in International Workshop on Railway Noise,

iption, Measurement and Assessment of Environmental Noise,

Every Standards and Regulations Federal Railroad Administration High Speed Rail Noise Standards and Regulations Train Set Pass-By Noise Library

Input: Selection of Train Sets

See individual worksheets for details of each t

Current Library:

		Train Se	
Data Set Number	Data Set Name	Manufacturer	
1	Korean HEMU-430X	Hyundai Rotem	
2	Thalys PBKA	GEC-Alsthom	
3	CRH3 Series (based on Siemens)	Changchun Railway Vehicles, Siemens	
4	CRH3 Series (based on Siemens)	Changchun Railway Vehicles, Siemens	
5	CRH3 Series (based on Siemens)	Changchun Railway Vehicles, Siemens	

Spreadsheet-Based Tool for Comparing Noise Standards and Regu Conversion Tool for Noise Regulations and Standards to Common

CONTRAST

Comparison Of Noise for TRAin STandards

rain set.

Operator	Train Length (m)	Test Train Speed (km/hr)	Pass-By Time, T _p (sec)	Position Designation
Korail	147.40	400	1.33	2
Thalys	200.19	296	2.43	1
China Railway Corporation	200.00	271	2.66	2
China Railway Corporation	200.00	271	2.66	1
China Railway Corporation	200.00	271	2.66	3

Microphone Position			
Distance from Track Centerline (m)	Elevation above Top of Rail (m)		
7.5	3.5		
7.5	1.2		
7.5	3.5		
7.5	1.5		
25	3.5		

U.S. Department of Transportation Federal Railroad Administration

Federal Railroad Administration High Speed Rail Noise Standards and Regulations

Regulations (US, EU, China, Japan)

Regulations Summary

	For Moving Trains	Applicable Rolling	Sound Pressure Measurement	Train Speed
Location	Reference	Stock	Method	(km/h)
US	40 CFR Part 201.12	Locomotives	L _{max} (fast)	all
	40 CFR Part 201.13	Rail Cars	L _{max} (fast)	>45
		Locomotives		80
				250
EU	TSI Noise 2014	EMUs	L _{pAeq,Tp}	80
				250
		DMUs		80
				250
			L _d	all
China	GB 12525-90	All Rolling Stock	L _n	all
Japan	Environmental Law 91 of 1993	High Speed Rail: Shinkansen	L _{eq} , Zone I	all
			L _{eq} , Zone II	all
*Sound pressure level at receiver allows use of barriers and other noise path attenuation me				

Metrics

US

 L_{pASmax} is the maximum sound pressure level, slow and A-weighted and L_{pAFmax} = maximum sound pr L_{pAFmax} is equal to L_{max} (fast)

 $L_{_{max}}$ (fast) can be calculated as the logarithmic average of the recorded Sound Pressure Levels (SPLs
$r_{pAeq,Tp}$ is the A-weighted equivalent continuous sound pressure level produced by the train as meas

$\begin{pmatrix} T_2 \\ T_2 \\ T_2 \end{pmatrix}$		where	
$L_{pAeq,T_p} = 10 \text{ Ig } \left[\frac{1}{T_p - T_t} \int \frac{p_A(t)}{r_a^2} dt \right]$	dB	T p	is the pass
$\begin{pmatrix} 1_2 - 1_1 & p_{\bar{0}} \\ T_1 & p_{\bar{0}} \end{pmatrix}$		T	is the time
		T ₂	is the time
		P _A (t)	is the A-we
		p _o	is the refer
		$\Delta t_{_{i}}$	is the time
		P _A (i)	is the A-we

China

Ld

ΕU

The A-weighted equivalent sound level measured during the day time, dB(A). The sounc level averaged on an energy basis is:

$$L_{d} = 10 \log_{10} \left[\sum_{j=1}^{N} t(j) 10^{\frac{L(j)}{10}} \right]$$

t(j) is the fractio during time peri

Measuring conditions should meet the GB 3222 standards (Measurement Methods for Community Measurement time to be day or night; 16 hours is the duration for day measurements and 8 hours

Japan

 $L_{eq} (hour) = 10 \log_{10} \left[\sum_{j=1}^{N} t(j) 10^{\frac{L(j)}{10}} \right]$ The time increment for calculating t(j) is 1 hour (5)

For areas adjacent to Japan's high speed train lines, the Shinkansen Superexpress Railwa Shinkansen noise limits vary by adjacent land use categories. Zone I is designated as res

Another noise metric employed in Japan is L_{amax} and is defined as the power- or energy-a

$$L_{Amax} = 10 \log_{10} \left[\frac{1}{20} \sum_{i=1}^{20} 10^{(L_{max,s})_i} \right]$$

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

CONTRAST

Comparison Of Noise for TRAin STandards

Program Version:

Maximum		Measurement Location
Allowable Sound	Elevation	Distance from
Pressure, dB(A)	(m)	Track Centerline (m)
90	1.2 (above top of rail)	30
93		
84		
99		
80	1.2 (above top or rail)	7.5
95		
81		
96		
70		
60	1.2 (above top of rail)	30
70*	1.2 above ground	25
75*		
ods.		

For the measurements in this study, there is a within ± 3 dB of the true values.

Tests conducted on passenger trains using ISC standard deviations in LAE of approximately ! this study, there is a 95% confidence that the LAeq(period) noise levels when at least 20 tra conditions are measured. For the LAmax asse approximately ±5 dB for the same number of

Calculation procedures for Ld and Ln can be f Ross, J.C., and Towers, D.A., High-Speed Grou U.S. Department of Transportation, Federal R September 2012.

ressure level, fast and A-weighted. The time period for the "slow" reading is 1 second. The time period for th

) for the 0.125 second time interval containing the highest values

ured during the pass-by event

-by time interval = time when trail tail passes microphone minus time when train nose passes microphone = \neg when the train nose passes the microphone when the train tail passes the microphone eighted instantaneous sound pressure in Pa at time t rence sound pressure: $p_0 = 20\mu Pa = 0.00002$ Pa increment between measured data points (0.05 seconds for the data sets included in this program). eighted instantaneous sound pressure in Pa at pass-by time increment i

LThe A-weighted equivalent sound level measured during the night time, dB(A).equation for Lwould be the same as that for Lwith the sound levels corresponthe time period defined as night.

In of time during which sound pressure level, L(j), occurs iod over which L_d applies

Noise [139] which states measurements should be taken in the absence of rain or snow. is the duration for night measurements.

3,600 seconds)

 $L_{eq} = L_A(t) =$

Receiver's cumulative noise exposure from all events over a A-weighted equivalent continuous sound pressure level proc where the 1-hour time interval extends from t_1 to t_2 and T = the time increment for calculating t(j) is 1 hour (3,600 second

iy Noise regulations apply and supersede the stricter Environmental Quality standards. sidential areas and has an L_{eq} (hour) limit of 70 dB(A); Zone 2 is designaed as commercial and industrial and he

verage of the "slow" maximum sound pressure level (L_{max.s}) of 20 consecutive train passbys:

14-Oct-19

3 95% confidence that the calculated passby noise levels are

7

D standard-compliant instruments and procedures, showed 5 dB which led to the statement: "For the measurements in calculated noise levels are within ±3 dB of the true ain pass-bys of each type under the same operating assment parameter, the uncertainty increases to train pass-bys."

ound in Appendix A of the following reference: Hanson, C. E., Ind Transportation Noise and Vibration Impact Assessment ailroad Administration, Final Report DOT/FRA/ORD-12/15,

ne "fast" reading is 0.125 seconds.

Γ₂ - Τ₁

The Iding to

specified time period (1 hour)

luced by the train as measured during the passby event $t_2 - t_1 = 1$ hour ds) and $L_{A(j)} = L(j)$

as an $L_{_{eq}}$ (hour) limit of 75 dB(A

U.S. Department of Transportation Federal Railroad Administration

Federal Railroad Administration High Speed Rail Noise Standards and Regulations

The Common Reference is based on scaled pass-by data for the Thalys PBKA train set The Common Reference data set was scaled so that the TSI NOI (2014) maximum nor The corresponding pass-by metrics for the other regulations (US, China, Japan) are th maximum allowable pass-by values for each noise regulation (EU, US, China, Japan).

Common Reference Maximum Regulation Maximum Value, Pa Value, dB(A) Value, dB(A) 0.2000000 EU Normalized 80 km/hr 80 80 EU Normalized 250 km/hr 95 95 1.1246827 0.6324555 US Locomotive 250 km/hr 90 84.2 US Locomotive 300 km/hr 90 87.4 0.6324555 0.6324555 US Locomotive 350 km/hr 90 90.6 0.8933672 US Rail Car 250 km/hr 93 84.2 US Rail Car 300 km/hr 0.8933672 93 87.4 US Rail Car 350 km/hr 93 90.6 0.8933672

Comparison of EU and US Regulations

How to Interpret this Graph: The Common Reference Train Set exhibits pass-by noise sound pressure levels that correspond to the maximum allowable values in the TSI regulation. The same train set is predicted to emit sound pressure levels that range range from 41% to 120% of the maximum levels allowed by US railroad noise regulations.

Comparison of EU and China Regulations

To complete comparisons for China regulations, need to calculate L_{d} and L_{d} for Common Refer

L Calculations

Common Parameters	Value	Units
Duration of Night Time Period	8	hours
	28,800	sec
Reference Train Length	200.19	m

Calculation of Chines	se L _n based on	Common Reference 1	Train Data Set
Time of Pass-By Event	sec	9.01	2.88
t(j): Ratio of Pass-By Time to 8- Hour Night Period		0.0003128	0.0001001
Train Speed	km/hr	80.00	250.00
	m/sec	22.22	69.44
L _{pAEQ,pass-by} (microphone position 4)	dB(A)	65.55	80.50
Number of Trains during 8-Hour Night Period		L _n (the A-weighted ec	រុuivalent sound level me
8		39.53	49.54
16		42.55	52.55
24		44.31	54.31
32		45.56	55.56
40		46.52	56.53
48		47.32	57.32
56		47.99	57.99
60		48.29	58.29

Comparison of El

L_d Calculations

Common Parameters	Value	Units
Duration of Day Time Period	16	hours
	57,600	sec
Reference Train Length	200.19	m

Calculation of Ch	inese L _d based	on Common Referen	ice Train Data Set
Time of Pass-by Event	sec	9.01	2.88
t(j): Ratio of Pass-by Time to 16- Hour Day Period		0.0001564	0.0000500
Train Speed	km/hr	80.00	250.00
	m/sec	22.22	69.44
L _{pAEQ,pass-by} (microphone position 4)	dB(A)	65.55	80.50
Number of Trains during 16-Day Time Period		L _d (the A-weighte	d equivalent sound leve
50		44.48	54.49
100		47.49	57.50
150		49.25	59.26
200		50.50	60.51
250		51.47	61.48
300		52.26	62.27
350		52.93	62.94
400		53.51	63.52

Comparise

EU Microphone Position: 7.5 m from Tra Centerline, 1.2 m Above Top of Rail

Comparison of EU and Japan Regulations for Japan Shinkansen High Speed Rail: Zone I, Residen

L_{eq} (hour) =
$$10 \log_{10} \left[\sum_{j=1}^{N} t(j) 10^{\frac{L(j)}{10}} \right]$$

the time increment for calculating t(j) is 1 hour (3,600 secor

Common Parameters	Value	Units
Duration of Day Time Period	1	hour
	3,600	sec
Reference Train Length	200.19	m

Calculation of Japanese	L _{eq} based on C	ommon Reference Tra	ain Data Set
Time of Passby Event	sec	9.01	2.88
t(j): Ratio of Passby Time to 16- Hour Day Period		0.0025024	0.0008008
Train Speed	km/hr	80.00	250.00
	m/sec	22.22	69.44
L _{pAEQ,pass-by} (microphone position 3)	dB(A)	66.34	81.30
Number of Trains during 1-Hour Time Period		L _d (the A-weighted ec	quivalent sound level me
8		49.36	59.36
16		52.37	62.37
24		54.13	64.13
32		55.38	65.38
40		56.35	66.35
48		57.14	67.14
56		57.81	67.81
60		58.11	68.11

Comparison of EU and Japan Regulations for Japan Shinkansen High Speed Rail: Zone II, Comme

Reference: Ministry of the Environment, Government of Japan, Environmental Quality Standa Supeexpress Railway Noise, Notification No. 91 of 1993, Article 16 of the Basic Environmental Quality Standards, https://www.env.go.jp/en/air/noise/railway.html

Comp

Centerline, 1.2 m Above Top of Rail

Spreadsheet-Based Tool for Comparing Noise Standa Conversion Tool for Noise Regulations and Standards

CONTRAST

Comparison Of Noise for TRAin STandards

Comparisons of Noise Regulations for US, EU, China, and Japan, based on Com

t (see Common Reference Data Set worksheets).

malized values, $L_{pAeq,Tp (80 \text{ km/hour})}$ and $L_{pAeq,Tp (250 \text{ km/hr})}$ are exactly achieved (values are 100% of maximum allowak en calculated using this Common Reference dat set. Comparions are made based on percentages of

For the measurements in this study, there is a 95% cc

Common Reference Value, Pa	Percent of Maximum Allowed Value %
0.200000	100%
1.124683	100%
0.324777	51%
0.471339	75%
0.677876	107%
0.324777	36%
0.471339	53%
0.677876	76%

Centerline, 1.2 m Above Top of Rai

rence Data Set.

$$Pa = 0.00002*(10^{(dB/20)})$$

The calculation includes all of the pass-by data points from the time recording of the microphone SPL signals starts until the time recording of microphone SPL signals ends.

$$10\log_{10}\left|\sum_{i=1}^{N} t(j) 10^{\frac{L(j)}{10}}\right|$$

Comparison

I	L ^{J=1} J
2.40	2.06
0.0000834	0.0000715
300.00	350.00
83.33	97.22
83.74	86.89
easured during	the night time), dB(A)
51.98	54.47
54.99	E7 /0
56.75	57.40
	59.24
58.00	59.24 60.49
58.00 58.97	59.24 60.49 61.46
58.00 58.97 59.76	57.48 59.24 60.49 61.46 62.25
58.00 58.97 59.76 60.43	57.46 59.24 60.49 61.46 62.25 62.92

Regulation	Maximum Value, dB(A)
EU Normalized 80 km/hr	80
EU Normalized 250 km/hr	95
China 80 km/hr, 40 Pass-bys	60
China 80 km/hr, 60 Pass-bys	60
China 250 km/hr, 40 Pass-bys	60
China 250 km/hr, 60 Pass-bys	60
China 300 km/hr, 40 Pass-bys	60
China 300 km/hr, 60 Pass-bys	60
China 350 km/hr, 40 Pass-bys	60
China 350 km/hr, 60 Pass-bys	60

J and China Night Time L_n Noise Regulation Sound Pressure Level Limits

The calculation includes all of the pass-by data points from the time recording of the microphone SPL signals starts until the time recording of microphone SPL signals ends.

2.40	2.06
0.0000417	0.0000357
300.00	350.00
83.33	97.22
83.74	86.89

56.93	59.42
59.94	62.43
61.70	64.19
62.95	65.44
63.92	66.41
64.71	67.20
65.38	67.87
65.96	68.45

Regulation	Maximum Value, dB(A)
EU Normalized 80 km/hr	80
EU Normalized 250 km/hr	95
China 80 km/hr, 250 Passbys	70
China 80 km/hr, 400 Passbys	70
China 250 km/hr, 250 Passbys	70
China 250 km/hr, 400 Passbys	70
China 300 km/hr, 250 Passbys	70
China 300 km/hr, 400 Passbys	70
China 350 km/hr, 250 Passbys	70
China 350 km/hr, 400 Passbys	70

on of EU and China Day Time Ld Noise Regulation Sound Pressure Level Limits

itial Areas

าds)

L_{eq} = L_A(t) =

Receiver's cumulative noise exposure from all A-weighted equivalent continuous sound pres where the 1-hour time interval extends from the time increment for calculating t(j) is 1 hou

The calculation includes all of the pass-by data points from the time recording of the microphone SPL signals starts until the time recording of microphone SPL signals ends.

The Japan Shinkansen Train noise regulations are related to Microphone Position 3 (25 m from track centerline and 1.

2.40	2.06
0.0006673	0.0005720
300.00	350.00
83.33	97.22
84.53	87.69
easured during	the 1-hour time period), dB(A)
easured during 61.80	the 1-hour time period), dB(A) 64.29
easured during 61.80 64.81	the 1-hour time period), dB(A) 64.29 67.30
easured during 61.80 64.81 66.58	the 1-hour time period), dB(A) 64.29 67.30 69.06
61.80 64.81 66.58 67.83	the 1-hour time period), dB(A) 64.29 67.30 69.06 70.31
easured during 61.80 64.81 66.58 67.83 68.79	the 1-hour time period), dB(A) 64.29 67.30 69.06 70.31 71.28
easured during 61.80 64.81 66.58 67.83 68.79 69.59	the 1-hour time period), dB(A) 64.29 67.30 69.06 70.31 71.28 72.07
easured during 61.80 64.81 66.58 67.83 68.79 69.59 70.26	the 1-hour time period), dB(A) 64.29 67.30 69.06 70.31 71.28 72.07 72.74

Regulation	Maximum Value, dB(A)
EU Normalized 80 km/hr	80
EU Normalized 250 km/hr	95
Japan 80 km/hr, 40 Passbys	70
Japan 80 km/hr, 60 Passbys	70
Japan 250 km/hr, 40 Passbys	70
Japan 250 km/hr, 60 Passbys	70
Japan 300 km/hr, 40 Passbys	70
Japan 300 km/hr, 60 Passbys	70
Japan 350 km/hr, 40 Passbys	70
Japan 350 km/hr, 60 Passbys	70

Table Above is for L_{ea} relative to Zo

Comparison of EU and Japan Leq (1-hour) Noise Regulation Limits:

zone i, residentiai

, for 1-Hour Time Period: Note Indicated Number of Passbys Occurs during the 1-Hour 71.3 d of passby events exceeds 20 per hour, they will occur on parallel tracks. 70.6 dB(A) 116 107% Percentages are based on sound 68.8 dB(A) 68.1 dB(A) pressure levels in units of Pascals. 87% Reported values are in units of dB(A) 80% 66.4 dB(A) 66% ion um: 58.1 dB(A) : 95 56.3 dB(A) 25% 21% Regulation Maximum: Leg = 70 dB(A) for Zone I Residential Areas lized Japan 80 km/hr, Japan 80 km/hr, Japan 250 Japan 250 Japan 300 Japan 300 Ja pan 40 Passbys 60 Passbys km/hr, 40 km/hr, 60 km/hr, 40 km/hr, 60 hr km/hi Passbys Passbys Passbys Passbys Pass 1 from Track

of Rail

Japan Microphone Position: 25 m from Track Centerline, 1.2 m Above Top of Rail

ercial and Industrial Areas

ference Train Passby Noise Data Set

rds for Shinkansen Law, Environmental

Regulation	Maximum Value, dB(A)
EU Normalized 80 km/hr	80
EU Normalized 250 km/hr	95
Japan 80 km/hr, 40 Pass-bys	75
Japan 80 km/hr, 60 Pass-bys	75
Japan 250 km/hr, 40 Pass-bys	75
Japan 250 km/hr, 60 Pass-bys	75
Japan 300 km/hr, 40 Pass-bys	75
Japan 300 km/hr, 60 Pass-bys	75
Japan 350 km/hr, 40 Pass-bys	75
Japan 350 km/hr, 60 Pass-bys	75

Table Above is for L_{ea} relative to Zone II, Co

arison of EU and Japan L_{eq} (1-hour) Noise Regulation Limits: Zone II, Commercial and Industrial

Based on Common Reference Train Passby Noise Data Set bise Metric, Les, for 1-Hour Time Period: Note Indicated Number of Passbys Occurs during the 1-Hour If the number of passby events exceeds 20 per hour, they will occur on parallel tracks. 71.3 d ages are based on sound 70.6 dB(A) 65% : levels in units of Pascals. 60% d values are in units of dB(A) 68.8 dB(A) 68.1 dB(A) 49% 45% 66.4 dB(A) 37% 58.1 dB(A) B(A) b. Regulation Maximum: L_{ig} = 75 dB(A) for Zone II Commerical and Industrial Areas km/hr, Japan 80 km/hr, Japan 250 Japan 250 Japan 300 Japan 300 Japan B abys. 60 Passbys km/hr, 40 km/hr, 60 km/hr, 40 km/hr, 60 km/hr, Passb Passbys: Passbys Passbys Passbys

Japan Microphone Position: 25 m from Track Centerline, 1.2 m Above Top of Rail rds and Regulations to Common Reference

Program Version: 7 14-Oct-19

mon Reference

)le)

onfidence that the calculated pass-by noise levels are within ±3 dB of the true values.

of EU and US Passby Noise Regulation Sound Pressure Level Limits

US Pass-by Noise Metric = $L_{pAFmax} = L_{max(fast)}$

Common Reference Value, dB(A)	Maximum Value, Pa	Common Reference Value, Pa	Percent of Maximum Allowed Value %
80.0	0.2000000	0.2000000	100%
95.0	1.1246827	1.1246827	100%
46.5	0.0200000	0.0042389	21%
48.3	0.0200000	0.0051916	26%
56.5	0.0200000	0.0134105	67%
58.3	0.0200000	0.0164245	82%
59.0	0.0200000	0.0177665	89%
60.7	0.0200000	0.0217595	109%
61.5	0.0200000	0.0236563	118%
63.2	0.0200000	0.0289729	145%

3.2 dB(A)

145%

Common Reference Value, dB(A)	Maximum Value, Pa	Common Reference Value, Pa	Percent of Maximum Allowed Value %
80.0	0.2000000	0.2000000	100%
95.0	1.1246827	1.1246827	100%
51.5	0.0632456	0.0074935	12%
53.5	0.0632456	0.0094786	15%
61.5	0.0632456	0.0237067	37%
63.5	0.0632456	0.0299868	47%
63.9	0.0632456	0.0314071	50%
66.0	0.0632456	0.0397272	63%
66.4	0.0632456	0.0418188	66%
68.4	0.0632456	0.0528971	84%

l events over a specified time period (1 hour)

ssure level produced by the train as measured during the pass-by event t_1 to t_2 and T = $t_2 - t_1 = 1$ hour ir (3,600 seconds) and $L_{A(j)} = L(j)$

2 m above top of rail)

Common Reference Value, dB(A)	Maximum Value, Pa	Common Reference Value, Pa	Percent of Maximum Allowed Value %
80.0	0.2000000	0.2000000	100%
95.0	1.1246827	1.1246827	100%
56.3	0.0632456	0.0131339	21%
58.1	0.0632456	0.0160856	25%
66.4	0.0632456	0.0415510	66%
68.1	0.0632456	0.0508893	80%
68.8	0.0632456	0.0550476	87%
70.6	0.0632456	0.0674193	107%
71.3	0.0632456	0.0732964	116%
73.0	0.0632456	0.0897693	142%

ne I, Residential Areas

Common Reference Value, dB(A)	Maximum Value, Pa	Common Reference Value, Pa	Percent of Maximum Allowed Value %
80.0	0.2000000	0.2000000	100%
95.0	1.1246827	1.1246827	100%
56.3	0.1124683	0.0131339	12%
58.1	0.1124683	0.0160856	14%
66.4	0.1124683	0.0415510	37%
68.1	0.1124683	0.0508893	45%
68.8	0.1124683	0.0550476	49%
70.6	0.1124683	0.0674193	60%
71.3	0.1124683	0.0732964	65%
73.0	0.1124683	0.0897693	80%

mmercial and Industrial Areas

U.S. Department of Transportation Federal Railroad Administration

Federal Railroad Administration High Speed Rail Noise Standards and Regulations

Pass-By Noise Comparisons

Summary of Pass-by Data Sets Currently in LibraryMicrophone Position 1:Pass-By Noise MetricsSpeed = 250 km/hrPass-By Noise Metrics

Train Set	L pAeq,Tp	L p(maximum)	L pASmax
Korean HEMU-430X	97.61	100.34	98.18
Thalys PBKA	96.35	99.02	94.92
CRH3 Series (based on Siemens)	91.71	93.28	92.23

Pass-By Noise Metrics

Train Set			
	L pAeq,Tp	L p(maximum)	L pASmax
Korean HEMU-430X	84.93	87.67	85.50
Thalys PBKA	82.29	84.95	80.85
CRH3 Series (based on Siemens)	77.23	78.80	77.76

EU Regulations

Comparison of $\rm L_{_{pAeq,Tp}}$ values: Data Reduction vs. TSI NOI 2014 Methods

Train Set	L pAeq,Tp (80 kph) dB(A)		
	Calculated	TSI NOI (2014)	Calculated
Korean HEMU-430X	84.9	84.9	97.6
Thalys PBKA	82.3	82.3	96.4
China CRH3 Series, Microphone 1	77.2	77.2	91.7
China CRH3 Series, Microphone 2	77.0	77.0	91.5
China CRH3 Series, Microphone 3	77.4	77.4	91.9

Comparison of $L_{pAeq,Tp}$ Calculations

US Noise Regulations

Comparisons of $L_{max (fast)}$ (which is equal to L_{pAFmax}) for trainsets relative to US Microphone Position 4 (30 m from track centerline and 1.2 meters above top

			L _{max (fast)} dB(A
Train Set			Train Speed
	80	150	200
Korean HEMU-430X	79.8	86.2	89.5
Thalys PBKA	70.1	77.0	80.8
China CRH3 Series, Microphone 4	66.6	73.6	77.5

Compliance with China Noise Regulations Microphone I

L_d =

$$L_{d} = 10 \log_{10} \left[\sum_{j=1}^{N} t(j) 10^{\frac{L(j)}{10}} \right] \text{ where } \underbrace{t(j)}_{du}$$

Similarly, $L_n =$ The A-weighted equivalent sound leve

levels corresponding to the time perio

Example, the Thalys PBKA traveling at a speed of 296 km/hr, has a sound pressure le The pass-by time is 4.2 seconds. If the pass-by event occurs during the 8 hour night For this case, t(j) = 0.0001458 and L_n for two pass-by events

L_n Calculations

Common Parameters	Value	Units
	8	hours
Duration of Night Time Period	28,800	sec
Korean HEMU-430X Train Length	147.4	m
Thalys PBKA Train Length	200.19	m
China CRH3 Series Train Length	200	m

		Train Speed:	80
Specific Parameters	Units		22.22
		Korean HEMU-430X	Thalys PBKA
Time of Passby Event	sec	6.63	9.01
t(j): Ratio of Passby Time to 8-Hour Night Period		0.0002303	0.0003128
L _{pAEQ,pass-by} (microphone position 4)	dB(A)	74.38	67.67
Number of Trains during 8-Hour Night Period			
8		47.04	41.65
16		50.05	44.66
24		51.81	46.42
32		53.06	47.67
40		54.03	48.64
48		54.82	49.43
56		55.49	50.10

Mitigation methods required if Ln exceeds 60 dB(A), for examples, barriers

 $\overline{j=1}$

L_d Calculations

Common Parameters	Value	Units
Duration of Night Time Period	16	hours
	57,600	sec
Korean HEMU-430X Train Length	147.4	m
Thalys PBKA Train Length	200.19	m
China CRH3 Series Train Length	200	m

		Train Speed:	80
Specific Parameters	Units		22.22
		Korean HEMU-430X	Thalys PBKA
Time of Pass-by Event	sec	6.63	9.01
t(j): Ratio of Pass-by Time to 16-Hour Night Period		0.0001152	0.0001564
L _{pAEQ,pass-by} (microphone position 4)	dB(A)	74.38	67.67
Number of Trains during 16-Hour Day Period			
30		49.77	44.38
60		52.78	47.39
90		54.54	49.15
120		55.79	50.40
150		56.76	51.37
180		57.55	52.16

210 58.22 52.83

Compliance with Japanese Regulations

In Japan, noise measurements are made at the railroad property line (microphone p

		Noise Limits fo	r Japan Shinka
Code	Applies to:	Area Category	Maximum Sound Pressure Level dB(A)
In accordance with Basic Environmental Law (Law 91 of 1993)	Shinkansen (HS Rail)	I	70 or less
		II	75 or less
Notes:			
1. Area Categories:	I	Residential Zon	ies
	П	Commercial an	d Industrial Zor

2. The noise metric $\mathsf{L}_{_{\mathsf{eq}}}$ is calculated using the energy mean of the peak noise levels

3. Sound pressure limits are not indexed by train speed

 Measurements are to be carried out by recording the peak noise level of each of t directions, in principle for 20 successive trains

5. Wayside noise mitigation methods, such as barriers, can be implemented to meet The L_{an} noise metric is defined by the following equation:

$$L_{eq}(hour) = 10 \log_{10} \left[\frac{1}{T} \int_{t_1}^{t_2} 10^{L_A(t)/1} \right]$$

The maximum speed for Shinkansen trains is 320 km/hr. Train speeds of 300 this is discretized as L_{eq} (hour) = $10\log_{10} [(1/T)\Sigma 10^{LA(j)(t)/10}\Delta t]$

Thus, L_{eq} (hour) = $10 \log_{10} \left[\sum_{j=1}^{N} t(j) 10^{\frac{L(j)}{10}} \right]$ the time increment for calcula

L_{ea} Calculations

Common Parameters	Value	Units
Duration of Night Time Period	1	hour
	3,600	sec
Korean HEMU-430X Train Length	147.4	m
Thalys PBKA Train Length	200.19	m
China CRH3 Series Train Length	200	m

		Train Speed:	80
Specific Parameters	Units		22.22
		Korean HEMU-430X	Thalys PBKA
Time of Pass-by Event	sec	6.63	9.01
t(j): Ratio of Passby Time to 1-Hour L eq		0.0018425	0.0025024
L _{eq,pass-by} (microphone position 3)	dB(A)	75.18	68.46
Number of Trains during 1-Hour L _{eq} Time	Period		
8		56.86	51.48
16		59.87	54.49
24		61.63	56.25
32		62.88	57.50
40		63.85	58.47
48		64.64	59.26
56		65.31	59.93

L_{Amax} Calculations

Another metric employed in Japan to describe the noise from train passages L_{Amax} is defined as the power- or energy-average of the "slow" maximum leve

$$L_{Amax} = 10 \log_{10} \left[\frac{1}{20} \sum_{j=1}^{20} 10^{(L_{pASmax})_j/10} \right]$$

If we assume all 20 consecutive pass-by measurements are identical, for purp

$$L_{Amax} = 10 \log_{10} \left[\frac{20}{20} \ 10^{(L_{pASmax})/10} \right] = 10 \log_{10} \left[1 \right]$$

Since:	$\log_{10}(x^{y}) = y \log_{10}(x)$	and	log ₁₀ (10) =
--------	-------------------------------------	-----	--------------------------

Comparisons of $L_{Amax (slow)}$ (which is equal to L_{pASmax}) for trainsets relative to J. Microphone Position 3 (25 m from track centerline and 1.2 meters above top

		L (Amax (slow)	dB(A), Micropho
Train Set			Train Speed
	80	150	200
Korean HEMU-430X	78.4	84.8	88.1
Thalys PBKA	69.1	76.0	79.8
China CRH3 Series	67.1	74.1	78.0

Measurement Uncertainty is ±3

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

CONTRAST

Comparison Of Noise for TRAi

Pass-By Noise Metric: Measurement Uncertainty is ±3 dB					
L pAFmax	L pAeq,pass-by	TEL	SEL	L ₁₀	L_ ₅₀
100.34	94.98	98.54	105.73	72.40	90.50
97.02	94.21	96.96	107.24	73.38	94.32
92.96	91.32	92.51	102.97	81.78	91.98

Korean HEMU-430X

■ Thalys PBKA

CRH3 Series (based on Siemens)

Pass-By Noise Metric					
L pAFmax	L pAeq,pass-by	TEL	SEL	L ₁₀	L ₅₀
87.67	82.30	85.86	93.05	59.72	77.83
82.95	80.14	82.89	93.17	59.31	80.25
78.49	76.85	78.04	88.50	67.30	77.50

Measurement Uncertainty is ±3 dB

Korean HEMU-430X

■ Thalys PBKA

CRH3 Series (based on Siemens)

Pass-By Noise Metric

L pAeq,Tp (250 kph) dB(A)				
TSI NOI (2014)				
95.7				
95.7				
91.4				
91.1				
91.5				

EU TSI NOI (2014): Limit for $L_{pAeq,Tp}$ at 250 km/hr = 95 dB(A)

> EU TSI NOI (2014): Limit for $L_{pAeq,Tp}$ at 80 km/hr = 80 dB(A)

- LpAeq,Tp (80 kph) Calculated
- LpAeq,Tp (80 kph) TSI NOI
- LpAeq,Tp (250 kph) Calculated
- LpAeq,Tp (250 kph) TSI NOI

i regulations.

of rail)

v)		
(km/hr)		
250	300	350
92.5	95.3	98.1
84.2	87.4	90.6
81.0	84.4	87.7

Position 4 (30 m from track centerline, 1.2 m above top of rail)

I measured during the day time, dB(A). The sound level averaged on an energy basis is:

) is the fraction of time during which sound pressure level, L(j), occurs uring time period over which L_d applies

• · · · · ·

I measured during the night time, dB(A). The equation for L_n would be the same as that for L_d with the sour d defined as night .

vel (SPL), $L_{pAeq (pass-by)} = 84.7 dB(A)$ for microphone position 4 (30 m from track centerline, 1.2 m above top of rail). time period, the fraction of time for each pass-by event is equal to 4.2 seconds divided by 8 hours (28,800 seconds) s during the 8 hour time period would be = 10LOG10(2*t(j)*10^(84.7/10)) which is equal to:

The calculation includes all of the pass-by data points from the time recording of the microphone SPL signals starts until the time recording of microphone SPL signals ends.

km/hr	Train Speed:	250	km/hr	Train Speed:	300
m/sec		69.44	m/sec		83.33
China CRH3 Series	Korean HEMU- 430X	Thalys PBKA	China CRH3 Series	Korean HEMU- 430X	Thalys PBKA
9.00	2.12	2.88	2.88	1.77	2.40
0.0003125	0.0000737	0.0001001	0.0001000	0.0000614	0.0000834
65.04	87.06	81.74	79.51	89.89	84.97
	L _n (the A-weighted	l equivalent sound lev	el measured during the	e night time), dB(A)
39.02	54.77	50.77	48.54	56.80	53.21
42.03	57.78	53.78	51.55	59.81	56.22
43.79	59.54	55.54	53.31	61.57	57.98
45.04	60.79	56.79	54.56	62.82	59.23
46.01	61.76	57.76	55.53	63.79	60.20
46.80	62.55	58.55	56.32	64.58	61.00
47.47	63.22	59.22	56.99	65.25	61.66

China Noise Regulation: Max L_n for 8-Hour Night Time Period

The calculation includes all of the pass-by data points from the time recording of the microphone SPL signals starts until the time recording of microphone SPL signals ends.

km/hr	Train Speed:	250	km/hr	Train Speed:	300
m/sec		69.44	m/sec		83.33
China CRH3 Series	Korean HEMU- 430X	Thalys PBKA	China CRH3 Series	Korean HEMU- 430X	Thalys PBKA
9.00	2.12	2.88	2.88	1.77	2.40
0.0001563	0.0000369	0.0000500	0.0000500	0.0000307	0.0000417
65.04	87.06	81.74	79.51	89.89	84.97
	L _d (the A-weighted	l equivalent sound lev	el measured during the	e day time), dB(A	
41.75	57.50	53.50	51.27	59.53	55.94
44.76	60.51	56.51	54.28	62.54	58.95
46.52	62.27	58.27	56.04	64.30	60.71
47.77	63.52	59.52	57.29	65.55	61.96
48.74	64.49	60.49	58.26	66.52	62.93
49.53	65.28	61.28	59.05	67.31	63.73

osition 3). Maximum sound pressure levels vary by land use category.

nsen High Speed Rail	
Metric for Noise Measurement	Measurement Location
L _{eq} , L _{Amax}	centerline at elevation of 1.2

For areas adjacent to Japan's hig

the stricter Environmental Qualit References:

¹ Ministry of the Environment, G Notification No. 91," Japan Min

² Ministry of the Environment, G https://www.env.go.jp/en/air/r

he Shinkansen trains passing in both

Period: Commercial &

Industrial Zone II

noise limits.

$$\begin{array}{c} \mathbf{D}_{eq} = \\ \mathbf{L}_{A}(t) = \\ \mathbf{L}_{A}$$

km/hr and 350 km/hr are included in the following analysis. since $\Delta t/T = t(j)$ = the fraction of time during which the sound pressurel level L_a(t) occurs during the time period over v to that for L_d and L_p , except for the time period being equal to 1 hour (3,600 seconds). sting t(j) is 1 hour (3,600 seconds) and $L_{A(i)} = L(j)$

Microphone Position 3 (25 meters from track centerline, 1.2 meters above top of rail)

The calculation includes all of the passby data points from the time recording of the microphone SPL signals starts until the time recording of microphone SPL signals ends. For the Japan regulation the total time period is 1 hour.

km/hr	Train Speed:	250	km/hr	Train Speed:	300
m/sec		69.44	m/sec		83.33
China CRH3 Series	Korean HEMU- 430X	Thalys PBKA	China CRH3 Series	Korean HEMU- 430X	Thalys PBKA
9.00	2.12	2.88	2.88	1.77	2.40
0.0025000	0.0005896	0.0008008	0.0008000	0.0004913	0.0006673
65.83	87.85	82.53	80.30	90.68	85.76
	L _{eq} (the A-weighte	d equivalent sound lev	el measured during a	one-hour time pe	riod), dB(A)
48.84	64.59	60.59	58.36	66.62	63.04
51.85	67.60	63.60	61.37	69.63	66.05
53.61	69.36	65.36	63.13	71.40	67.81
54.86	70.61	66.61	64.38	72.64	69.06
55.83	71.58	67.58	65.35	73.61	70.03
56.62	72.37	68.37	66.14	74.41	70.82
57.29	73.04	69.04	66.81	75.08	71.49

is L_{Amax} . I (L_{pASmax}) of 20 consecutive train passbys, as expressed in the following equation:

coses of comparing noise metrics, we find $L_{Amax} = L_{pASmax}$ as shown below:

$$0^{(L_{pASmax})/10} = \left[\frac{L_{pASmax}}{10}\right] 10 \log_{10}(10) = L_{pASmax}$$

apan regulations for 20 passby events.

) of rail)

ne Position 3					
(km/hr)					
250	300	350			
91.1	93.9	96.7			
83.2	86.4	89.5			
81.5	84.9	88.2			

; dB

			Japan Noise Regulation: Max L _{Amax} for 20 Passby Events: Commercial & Industrial Zone II
- → Kore - → Thaly - China	an HEMU-430X ys PBKA a CRH3 Series		– Japan Noise Regulation: Max L _{Amax} for 20 Passby Events: Residential
186.4	217.5	248.5	Zone I
300	350	400	

: 1

L ₉₀
98.69
97.48
92.68

L ₉₀
86.01
83.41
78.20

nd levels corresponding to

49.35 dB(A)

km/hr	Train Speed:	350	km/hr
m/sec		97.22	m/sec
China CRH3 Series	Korean HEMU- 430X	Thalys PBKA	China CRH3 Series
2.40	1.52	2.06	2.06
0.0000833	0.0000526	0.0000715	0.0000714
82.86	92.64	88.13	86.14
51.10	58.88	55.70	53.71
54.11	61.89	58.71	56.72
55.87	63.65	60.47	58.48
57.12	64.90	61.72	59.73
58.09	65.87	62.69	60.70
58.88	66.66	63.48	61.49
59.55	67.33	64.15	62.16

China Noise Regulation: Max L_n for 8-Hour Night ⊢Korean HEMU-430X

I Thalys PBKA

- China CRH3 Series

China Noise Regulation: Max L_n for 8-Hour Night

----- Korean HEMU-430X

------ Thalys PBKA

---- China CRH3 Series

km/hr	Train Speed:	350	km/hr
m/sec		97.22	m/sec
China CRH3 Series	Korean HEMU- 430X	Thalys PBKA	China CRH3 Series
2.40	1.52	2.06	2.06
0.0000417	0.0000263	0.0000357	0.0000357
82.86	92.64	88.13	86.14
53.83	61.61	58.43	56.44
56.84	64.62	61.44	59.45
58.60	66.38	63.20	61.21
59.85	67.63	64.45	62.46
60.82	68.60	65.42	63.43
61.61	69.39	66.21	64.22

62.28	70.06	66.88	64.89
Chi Reį for	na Noise gulation: Max L 16-Hour Day	d	
─ → Kore ─ <u></u> → Thal ─ <mark>■</mark> ─Chin	an HEMU-430X ys PBKA ese CRH3 Serie:	5	
i0 - Chin Reg for	na Noise ulation: Max L _d 16-Hour Day		
- — Kor - — Tha - — Chin	ean HEMU-430) Iys PBKA na CRH3 Series	x	
50			

h speed train lines, the Shinkansen Superexpress Railway Noise regulations $^{\rm 1}$ apply and supersedes

ty standards².

overnment of Japan, "Environmental Quality Standards for Shinkansen Superexpress Railway Noise, istry of the Environment, Tokyo, Japan, 1993.

overnment of Japan, "Environmental Quality Standards for Noise, Environmental Agency Notification No. 64, noise/noise.html," Japan Ministry of the Environment, Tokyo, Japan, 1998.

eriod

n as measured during the passby event

which $\mathsf{L}_{_{\!\!\text{eq}}}$ applies, we obtain a relationship similar to

km/hr	Train Speed:	350	km/hr
m/sec		97.22	m/sec
China CRH3 Series	Korean HEMU- 430X	Thalys PBKA	China CRH3 Series
2.40	1.52	2.06	2.06
0.0006667	0.0004211	0.0005720	0.0005714
83.66	93.43	88.92	86.93
60.93	68.70	65.52	63.53
63.94	71.71	68.53	66.54
65.70	73.47	70.29	68.30
66.95	74.72	71.54	69.55
67.92	75.69	72.51	70.52
68.71	76.48	73.30	71.31
69.38	77.15	73.97	71.98

Japan Noise Regulation: Max L_{eq} for 1-Hour Time Period: Commercial & Industrial Zone II

	\sim
	Japan Noise Regulation: Max L _{eq} for 1-Hour Time Period: Residential Zone I
	Korean HEMU-430X
	— — — Thalys PBKA
) od	60 Japan Noise Regulation: Max L _{eq} for 1-Hour Time Period: Commercial & Industrial Zone II
	Japan Noise Regulation: Max L _{eq} for 1-Hour Time Period: Residential Zone I
0	— — China CRH3 Series 60
od	

Data Point Number	Passby Data ^{1Passby Data1Pas}		Sound Pressure (Pa)	Event
	Time (sec)	dB(A)		
1	0	79.1	0.18031	
2	0.05	79.4	0.18665	
3	0.10	79.9	0.19771	
4	0.15	80.2	0.20466	
5	0.20	80.7	0.21679	
6	0.25	81.6	0.24045	
7	0.30	82.1	0.25470	
8	0.35	83.2	0.28909	
9	0.40	84.2	0.32436	
10	0.45	85.2	0.36394	
11	0.50	86.1	0.40367	
12	0.55	86.6	0.42759	
13	0.60	87.2	0.45817	
14	0.65	88.9	0.55722	
15	0.70	90.2	0.64719	
16	0.75	91.3	0.73456	
17	0.80	93.2	0.91418	←
18	0.85	95.2	1.15088	10 dB(A) lower than SPL when
19	0.90	98.1	1.60705	Train Nose Passes Microphone
20	0.95	100.4	2.09426	

21	1.00	103.2	2.89088	
22	1.05	106.4	4.17859	
23	1.10	106.2	4.08348	Train Nose Passes Microphone
24	1.15	105.7	3.85505	Start Time for LpASmax Calculat
25	1.20	108.2	5.14079	
26	1.25	108.6	5.38307]
27	1.30	108.2	5.14079]
28	1.35	107.5	4.74275	1
29	1.40	107.2	4.58174	1
30	1.45	108.8	5.50846]
31	1.50	108.9	5.57224	1
32	1.55	107.3	4.63479	1
33	1.60	106.2	4.08348	1
34	1.65	108.3	5.20032	1
35	1.70	109.9	6.25216	1
36	1.75	108.3	5.20032	1
37	1.80	106.8	4.37552	1
38	1.85	107.5	4.74275	1
39	1.90	108.7	5.44540	1
40	1.95	107.5	4.74275	1
41	2.00	107.2	4.58174	
42	2.05	108.7	5.44540	
43	2.10	110.4	6.62262	Maximum Sound Pressure Leve
44	2.15	110.2	6.47187	End Time for LpASmax Calculat
45	2.20	109.3	5.83485	Tail of Train Passes Microphone
46	2.25	107.4	4.68846	1
47	2.30	107.2	4.58174	1
48	2.35	104.2	3.24362	1
49	2.40	100.5	2.11851]₊_
50	2.45	100.3	2.07028	10 dB(A) lower than SPI when
51	2.50	99.1	1.80314	Train Tail Passes Microphone
52	2.55	97.2	1.44887	
53	2.60	96.4	1.32139	1
54	2.65	95.3	1.16421	1
55	2.70	92.6	0.85316	1
56	2.75	92.3	0.82420	1
57	2.80	91.2	0.72616	1
58	2.85	90.7	0.68554	1
59	2.90	89.7	0.61098	1

Spreadsheet-Based Tool for Comparing Noise Standards and Regulatio Conversion Tool for Noise Regulations and Standards to Common Refe

CONTRAST

Comparison Of Noise for TRAin STandards

	Train Set Inform	nation	
Year Data Set was Generated:		2016	¹ SoundView Instrun
Train Set Manufacturer:		Hyundai Rotem	http://www.soun
Operator:		Korail	
Train Set G	eometry and Test	Conditions	
Parameter	Value	Units	
Car Lengths			
End Cars:	23.5	m	
Intermediate Cars:	25.1	m	
Number of End Cars:	2		
Number of Intermediate Cars:	4		
Test Train Length:	147.4	m	
Test Train Speed(s):	400	km/hr	
Microphone Position:	2		dB (sound press
Distance from Track Centerline:	7.5	m	where 0.0002 is
Elevation above Top of Rail:	3.5	m	so, Pa = 0.00002
Time Increment for Passby Data, Δ T:Tim	0.05	sec	
Number of Passby Data Points:	59		

Plot of Passby Noise Data, Including Key Time Para

। ion १

rence	Program Version:	7	RICARDO 14-Oct-19	
		References		

nents, High-Speed Train Noise, South Korea HEMU, Virtual Train, 2016, ¹SoundView Instruments, High-Speed Train Noise, South Korea

ndviewinstr.com/high-speed-train-noise/ and http://www.soundviewinstr.com/virtual-train/

Formula

sure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (

; the reference sound pressure level in Pascals 2*10^{(dB/20)so, Pa = 0.00002*10(dB/20)so, Pa = 0.00002*10(dB/20)}

meters

HEMU, Virtual Train, 2016, ¹SoundView Instruments, High-Speed Train Noise, South Korea HEMU, Virtual Train, 2016, ¹SoundV

sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$
iew Instruments, High-Speed Train Noise, South Korea HEMU, Virtual Train, 2016, ¹SoundView Instruments, High-Speed Train N

(Pa/0.00002) dB (sound pressure level in decibels) = $20 \log_{10}(Pa/0.00002)$

loise, South Korea HEMU, Virtual Train, 2016,

U.S. Department of Transportation Federal Railroad Administration

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

CONTRAST

14-0ct-19

Federal Railroad Administration High

Program Version: 7

Data Set Name: Korean HEMU-430X Calculate Train Passby Parameters He, et al., Investigation into External Noise of a High-Speed Train at Different Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033	
Calculate Train Passby Parameters He, et al., Investigation into External Noise of a High-Speed Train at Different Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033	
Train Speed (V): 400 km/hr = 111.11 m/sec Paul, et al, High Speed Rail Noise Standards and Regulations, US DOT Federal Railroad Administration, Contract DTFR35-16-C00006, May 2017.	
Train Length: 147.4 m 6 cars: 2 end cars and 4 intermediate cars ¹ G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese	
Time for Passby (Tp) 1.3266 seconds This is the time increment between nose of train passing Academy of Railway Sciences (CARS) Research Report, Beijing Shi, China, 2003.	
microphone and tail of train passing microphone. Hanson, C.E., et. al., High Speed Ground Transportation Noise and Vibration Impact Assessment, U.S. Department of Transportation, Federal Railroad	oad
Time for TEL (T _m) 1.65 seconds TEL is the Transit Exposure Limit and represents the equivalent Administration, Report Number DOT/FRA/ORD-12/15, September 2012.	
A-weighted SPL over the time period beginning when the ¹ Gautier, P.E., Poisson, F., and Letourneaux, F., High Speed Trains External Noise: A Review of Measurements and Source Models for TGV Case Up to	to
instantaneous meter reading is 10 dB(A) less than L _{placto} and 360 km/hr, in Proceedings of the 8th World Congress on Railway Research (2008).	
continuing through the passby event until the meter reading is European Union, "Commission Regulation Number 1304/2014, on the technical specification for interoperability relating to the subsystem 'rolling	3
again 10 dB(A) less than L _{peq:p} stock — noise' amending Decision 2008/232/EC and repealing Decision 2011/229/EU," Official Journal of the European Union, Brussels, Belgium, 2014.	

Comparison Of Noise for TRAin STandards

Calculate L

is the A-weighted equivalent continuous sound pressure level produced by the train as measured during the passby event

 $L_{pAeq,T_{p}} = 10 \text{ lg} \left(\frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right) \quad dB$

 $L_{pAeq,Tp}$ can be calculated from the passby data using the following Riemann Sum relationship:

Microphone Position is 7.5 m from track centerline and 3.5 m above top of rail (Microphone Position 2).

where

- T, is the passby time interval = time when trail tail passes microphone minus time when train nose passes microphone = T2 - T1
- Τ, is the time when the train nose passes the microphone
- Τ, is the time when the train tail passes the microphone
- P_(t) is the A-weighted instantaneous sound pressure in Pa at time t
- p₀ p₀ = 20μPa = is the reference sound pressure: 0.00002
- Ра Δt.
- is the time increment between measured data points = 0.05 seconds

P_(i) is the A-weighted instantaneous sound pressure in Pa at pass-by time increment i

$\int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \approx \sum_{i=1}^{i=n} \left(\frac{\operatorname{Pa}(i)^2}{p_0^2} \right) \Delta t_i$ An analysis conducted during the current study indicated the integral can be determined numerically, with acceptable accuracy, by employing a midpoint Reimann sum scheme with a mimimum Δti = 0.05 seconds, and the corresponding Pa(i) analog meter values. This approach is described in: Hughes-Hallett, Deborah; McCullum, William G.; et al. (2005). Calculus (4th ed.), Wiley. p. 252.

Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²
1	0.00	79.10	0.180314	8.12831E+07	16	0.75	91.30	0.734565	1.34896E+09	31	1.50	108.90	5.572242	7.76247E+10	46	2.25	107.40	4.688458	5.49541E+10
2	0.05	79.40	0.186651	8.70964E+07	17	0.80	93.20	0.914176	2.08930E+09	32	1.55	107.30	4.634789	5.37032E+10	47	2.30	107.20	4.581735	5.24807E+10
3	0.10	79.90	0.197711	9.77237E+07	18	0.85	95.20	1.150880	3.31131E+09	33	1.60	106.20	4.083476	4.16869E+10	48	2.35	104.20	3.243620	2.63027E+10
4	0.15	80.20	0.204659	1.04713E+08	19	0.90	98.10	1.607052	6.45654E+09	34	1.65	108.30	5.200319	6.76083E+10	49	2.40	100.50	2.118507	1.12202E+10
5	0.20	80.70	0.216785	1.17490E+08	20	0.95	100.40	2.094257	1.09648E+10	35	1.70	109.90	6.252159	9.77237E+10	50	2.45	100.30	2.070284	1.07152E+10
6	0.25	81.60	0.240453	1.44544E+08	21	1.00	103.20	2.890880	2.08930E+10	36	1.75	108.30	5.200319	6.76083E+10	51	2.50	99.10	1.803142	8.12831E+09
7	0.30	82.10	0.254701	1.62181E+08	22	1.05	106.40	4.178592	4.36516E+10	37	1.80	106.80	4.375523	4.78630E+10	52	2.55	97.20	1.448872	5.24807E+09
8	0.35	83.20	0.289088	2.08930E+08	23	1.10	106.20	4.083476	4.16869E+10	38	1.85	107.50	4.742747	5.62341E+10	53	2.60	96.40	1.321387	4.36516E+09
9	0.40	84.20	0.324362	2.63027E+08	24	1.15	105.70	3.855050	3.71535E+10	39	1.90	108.70	5.445403	7.41310E+10	54	2.65	95.30	1.164206	3.38844E+09
10	0.45	85.20	0.363940	3.31131E+08	25	1.20	108.20	5.140792	6.60693E+10	40	1.95	107.50	4.742747	5.62341E+10	55	2.70	92.60	0.853159	1.81970E+09
11	0.50	86.10	0.403673	4.07380E+08	26	1.25	108.60	5.383070	7.24436E+10	41	2.00	107.20	4.581735	5.24807E+10	56	2.75	92.30	0.824195	1.69824E+09
12	0.55	86.60	0.427592	4.57088E+08	27	1.30	108.20	5.140792	6.60693E+10	42	2.05	108.70	5.445403	7.41310E+10	57	2.80	91.20	0.726156	1.31826E+09
13	0.60	87.20	0.458174	5.24807E+08	28	1.35	107.50	4.742747	5.62341E+10	43	2.10	110.40	6.622622	1.09648E+11	58	2.85	90.70	0.685536	1.17490E+09
14	0.65	88.90	0.557224	7.76247E+08	29	1.40	107.20	4.581735	5.24807E+10	44	2.15	110.20	6.471873	1.04713E+11	59	2.90	89.70	0.610984	9.33254E+08
15	0.70	90.20	0.647187	1.04713E+09	30	1.45	108.80	5.508457	7.58578E+10	45	2.20	109.30	5.834854	8.51138E+10					
Data Point Num Data Point Num	t (time at whic (time at which		23 45	i = 1 i - n	thus, $\sum_{i=1}^{i=n}$	$\frac{Pa(i)^2}{p_0^2} \int \Delta t_i$	=	7.67250E+10)										

$$\left[\frac{1}{1} \int_{1}^{T_2} \frac{p_A^2(t)}{p_A^2(t)} dt \right]$$

107.62

Impact of Microphone Position

Microphone Position	Track Centerline	Elevation Above Top of Rail (m)		Applies to Regulation	Comment				
			US	EU	China	Japan			
1	7.5	1.2		X (TSI 2014)			TSI 1304		
2	7.5	3.5		X (TSI 2014)			Also required for speeds > 250 m/hr		
3	25	3.5		X (TSI 2008)		х	Reference for pre 2014 train sets		
4	30	1.2	х		Х		US and China measurement location		

Impact of microphone distance is determined from the following equation:³ L_a = L_m - 10*LOG(d/d0), where L_m is the equivalent A-weighted constant sound pressure level for the microphone at distance d0, and d is the distance for Ld.

dB(A)

References:

^AL. Lu, X. Hu, Y. Zhang and X. Zhou, "Survey and Analysis of the Beijing-Shanghai High Speed Rail

Noise," in The 21st International Congress on Sound and Vibration, Beijing, China, 2014.

⁸G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese Academy of Railway Sciences (CARS) Research Report, Beijing Shi, China, 2003.

^cW. Elliott, "Request for Information Reference FOI13-580, Comparison of Measured Sound

Levels for High Speed Trains as a Function of Distance from Track," High Speed Rail Two (HS2), London, England, 2013.

 $L_{pAeq,Tp} = 10 \text{ Ig } \left[\frac{1}{T_2 - T_1} \int_{T_1} \frac{1}{p_0^2} \alpha r \right]$

culated Noise Metrics: Maximum Recor ؛ following calculations are for Microphon	1	Track Centerline	Elevation Above Top of Rail (m)	L _{pAeq,Tp} at 400 km	ı/h dB(A)	L _{pAeq,Tp} at 400	km/h (Pa)				Sound Pressure Variations for Microphone Positions &				
culated Noise Metrics: Maximum Recor ؛ following calculations are for Micropho	1	(m)							To convert dB(A) to Pascals: Pa = 0.00	002*(10^(dBA/20))	Trai	n Speed from Re	ference 5	
culated Noise Metrics: Maximum Recor ؛ following calculations are for Microphol		7.5	1.2	105.9	90		3.946		To convert Pa	to dB(A), dB(A) = 20	*LOG10(Pa/0.00002)	Speed (km/hr)	L _{pAeq,Tj}	dB(A)	
i culated Noise Metrics: Maximum Recor ؛ following calculations are for Microphon	2	7.5	3.5	107.6	52		4.810	4	••••••	also and the st			M1	M2	M3
culated Noise Metrics: Maximum Recor ? following calculations are for Microphon	3	25	3.5	94.72	2		1.089	-	Note: The sim underestimate	ple sound level corre	ection formula es Therefore	271	93.2	95.8	82.0
culated Noise Metrics: Maximum Recor 2 following calculations are for Micropho			1.2	55.55	<u> </u>		0.554	1	ratios based o	n actual measuremer	its were used to	386	98.5	100.1	88.1
culated Noise Metrics: Maximum Recor e following calculations are for Micropho									adjust for mic	rophone location (tab	ole at right).				
e following calculations are for Micropho															
e following calculations are for interopho.	ded Sound Pre	essure Levels													
- 110.4	dp(A)			p(maximum) maxi	imum recorde	d pass-by sou	na pressure i	evei							
saximum) 110.4	UB(A)	which occurs at d	ata point	43 at pa	ssby time		2.10	seconas							
Is the maximum sound pressure leve	l, slow and A-	weighted and L _{pA}	Fmax = maximum sou	ind pressure level,	fast and A-we	eighted. The t	time period fo	or the "slow" rea	ding is 1 secor	d. The time period f	or the "fast" reading is 0	.125 seconds.			
smax can be calculated as the logarithmic a	average of the	a recorded SPLs fo	r the 1 second time	interval containin	ig the highest	values		The logarithmic	average for a	Excel array is: {=10*	LOG(AVERAGE(10^(ARRA	(Y/10)))} array-ent	ered, i.e. using	CTRL-Shift-Ente	er keys
								where array is c	of the form A10	A15. In the current	case, the array is Pass-By	Data Set 1, C:48:	C68		
hest 1-second interval occurs from start	time	1.2	to end time	2.2		Thus, L pASmax =		108.20	dB(A)						
illarly, L _{pAFmax} can be calculated as the log	arithmic aver,	age of the recorde	d SPLs for the 0.12	5 second time inte	erval containin	ig the highest	values								
hest 0.125-second interval occures from	start time		2.10	to end time	2.225	Т	hus, L =	110.40	dB(A)						
laulated Naise Matrice, Other Standard I															
e following calculations are for Micropho	ne Position ?														
is the A-weighted equivalent continue	ous sound press	sure level produced	during the entire pas	s-by event, including	g approach, T ॢ,	and departure	e (used for L _a , L	., etc.)							
calculation includes all of the passby data p	oints.														
a Point Number for Start of Passby Event	: (time at whic	h microphone be:	gins recording):		1	i = 1	i= n	Pa(i) ²							
a Point Number for End of Passby Event	(time at which	1 microphone end	s recording):		59	i-n th	hus, \sum	$\frac{1}{p_0^2} \Delta t_i$	=	9.05886E+10	$T_{2} - T_{1} =$	2.90	seconds		
$_{\text{eq,pass-by}} = 10 \text{ Ig} \left(\frac{1}{T - T} \int_{0}^{T_2} \frac{p_A^2}{p_A^2} \right)$	$\frac{(t)}{2} dt$	L pAeq, pass-by =	104.95	dB(A)			1=1								
$I_2 - I_1 I_1 P_1$	5														
is the Transit Exposure Limit ^{4.}	It is measured	over the time inter-	/al starting when the	SPL is 10 dB(A) lowe	r than L pAeg, Tp an	nd ending wher	n the SPL again	1 reaches a value t	hat is 10 dB(A)	ower than L					
	TEL is calculate	d using the followig	,n formula:	TEL =	= L + 10*L	LOG(T _{TEL} /T _p)		TEL =	108.569406	dB(A)					
is the Sound Exposure Limit ⁴ .	Like L pAeq, Tp' it ir	itegrates the total s	ound energy over a n	neasurement period	i, but for SEL, th	ne measuremer	nt period is no	rmalized to a dura	tion of 1 secon	 At a microphone dist 	tance of 30 m (100 ft), SEL	= L _{pteq,Tp} + 10*LOG	(Tp) + 1		
	SEL at 30 m:	109.85	dB(A)	SEL a	it 7.5 m:	115.87 di	B(A)	SEL at 25 m:	110.64	dB(A) using	the distance correction f	factor:	$L_{d} = L_{d0} - 10*LO$	G(d/d0)	
	SEL is the cumu	ulative noise exposu	re (i.e. "dose") for a s	single noise event no	rmalized over 1	1 second. The f	fact that SEL is	a cumulative mea	sure means that	t (1) louder events hav	e higher SELs than quieter (ones, and			
atistical Parameters	(2) events that	last longer in time	have higher SELS than	i shorter ones."											
e following parameters are determined by	y specifying th	ne indicated perce	ntile of the data valı	ues using Excel Fur	ttion PERCEN	TILE(range,P).									
•.	f values (e.g. !	K10:K68) and P = t	he percentile (betw	een 0 and 1, for ex	ample, P for th	he 90th percei	ntile would b	e entered as 0.9							
where" range" is the array o	% of the recor	ded values are gre	ater. It includes le	ad-in (prior to nos	e passing micr	ophone) and	trail-off (afte	r tail of train pas	ses) data.		L ₁₀ =	82.00	dB(A)		
where" range" is the array c is the sound pressure level for which 909	% of the recor	ded values are gro	ater. It includes le	ad-in (prior to nos	e passing micr	ophone) and	trail-off (afte	r tail of train pas	ses) data.		L _{so} =	100.40	dB(A)		
where" range" is the array c is the sound pressure level for which 909 is the sound pressure level for which 509	% of the recor	ded values are gro	eater. It includes le	ad-in (prior to nos	e passing micr	ophone) and			,				dB(A)		
where" range" is the array of is the sound pressure level for which 909 is the sound pressure level for which 509 is the sound pressure level for which 109							trail-off (afte	r tail of train pas	ses) data.		L =	108.72			
where" range" is the array c is the sound pressure level for which 90: is the sound pressure level for which 50: is the sound pressure level for which 10:							trail-off (afte	r tail of train pas	ses) data.		L ₉₀ =	108.72			
where" range" is the array (is the sound pressure level for which 90: is the sound pressure level for which 50: is the sound pressure level for which 10: mary of Pass-by Noise Metrics for Each	Microphone	Position					trail-off (afte	er tail of train pas	ses) data.		L ₉₀ =	108.72			
where" range" is the array (is the sound pressure level for which 90: is the sound pressure level for which 10: is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Each noise metrics shown in the following tal	Microphone	Position d to the baseline s	peed of		400	km/hr L _d	trail-off (afte	r tail of train pas G(d/d0), where	ses) data. L _{do} is the equiv	valent A-weighted co	nstant sound pressure le	108.72	ohone at distan	ce d0, and d is	the distance for
where" range" is the array c is the sound pressure level for which 90: is the sound pressure level for which 50: is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Each a noise metrics shown in the following tal	Microphone ble correspond	Position d to the baseline s	peed of		400	km/hr L	trail-off (afte	er tail of train pa:)G(d/d0), where	ses) data. L _{do} is the equiv	valent A-weighted co	nstant sound pressure le	108.72	ohone at distan	ce d0, and d is	the distance for
where" range" is the array (is the sound pressure level for which 90' is the sound pressure level for which 50' is the sound pressure level for which 10' nmary of Pass-by Noise Metrics for Each a noise metrics shown in the following tal Microphore	1 Microphone	Position d to the baseline s	peed of Noise Metr	ic: Table Entries are	400 dB(A)	km/hr L _d	trail-off (afte	er tail of train pas	ses) data. L _{do} is the equi	valent A-weighted co	nstant sound pressure le	108.72 evel for the microprophone Position A	ohone at distan djustment Factor	ce d0, and d is	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 10 is the sound pressure level for which 10 mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tal Microphone Position	Microphone	d to the baseline s	peed of Noise Metr	ic: Table Entries are	400 dB(A)	km/hr ^L a	trail-off (afte	er tail of train pae	ses) data. L _{do} is the equi	valent A-weighted co	nstant sound pressure le	108.72 evel for the microp ophone Position A	ohone at distan	ce d0, and d is	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Each a noise metrics shown in the following tal Microphone Position	Microphone ble correspon L _{pAeq.Tp}	d to the baseline s	peed of Noise Metr	ric: Table Entries are	400 dB(A)	km/hr L	trail-off (afte	er tail of train pas DG(d/d0), where	ses) data.	L ₃₀	nstant sound pressure le Micr Speed (km/hr)	108.72 evel for the microp ophone Position A M1	ohone at distan djustment Factor M2	ce d0, and d is rs ^s M3	the distance for
where" range" is the array (is the sound pressure level for which 90' is the sound pressure level for which 50' is the sound pressure level for which 10' mmary of Pass-by Noise Metrics for Each a noise metrics shown in the following tal Microphone Position	Microphone ble correspon L _{pAeg.Tp} 105.9	Position d to the baseline s L _{p(maximum)} 108.6 110.4	peed of Noise Metr L _{pA5max} 108-2	ric: Table Entries are L _{pAFmax} 108.6 110.4	400 dB(A) L _{pAeq.passby} 103.3 104.9	km/hr L	trail-off (afte 	27 tail of train pa: DG(d/d0), where L ₁₀ 80.7 82.0	ses) data.	valent A-weighted co	nstant sound pressure le Micr Speed (km/hr)	108.72 evel for the microp ophone Position A M1	ohone at distan djustment Factor M2	ce d0, and d is rs ⁵ M3	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 50: is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Eact e noise metrics shown in the following tai Microphone Position	Microphone ble correspond L _{pAeg,Tp} 105.9 107.6 98.8	Position d to the baseline s L _{g(maximum)} 108.6 110.4	peed of Noise Metr L _{pA5max} 106.5 108.2 99.4	ric: Table Entries are	400 dB(A) L _{pAeq,passby} 103.3 104.9 96.1	km/hr L 106.8 108.6 99.8 1	trail-off (afte 	er tail of train pa: DG(d/d0), where L ₁₀ 80.7 82.0 73.2	L ₅₀ is the equi 98.8 100.4 91.6	L ₉₀ 107.0 99.9	L ₃₀ – Instant sound pressure le Speed (km/hr) 271	108.72 evel for the microp ophone Position A M1 0.931	ohone at distan djustment Factor M2 0.957 0.979	ce d0, and d is rs ⁵ M3 0.819 0.854	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tal Microphone Position 1 2 3 4	Microphone ble correspon 105.9 107.6 98.8 98.0	Position d to the baseline s L _{p(maximum)} 108.6 110.4 101.6 100.8	peed of Noise Metr LptSmax 106.5 108.2 99.4 98.6	ric: Table Entries are L _{pA/max} 108.6 110.4 101.6 100.8	400 b dB(A) L _{pAeq.pastby} 103.3 104.9 96.1 95.4	km/hr L 106.8 108.6 99.8 99.0	trail-off (afte	Er tail of train pa: DG(d/d0), where L ₁₀ 80.7 82.0 73.2 72.4	L ₄₀ is the equi L ₅₀ 98.8 100.4 91.6 90.8	L _{so} 107.0 108.7 99.1	nstant sound pressure le	108.72 evel for the microp ophone Position A 0.931 0.964 0.984	djustment Factor M2 0.957 0.979 1.000	ce d0, and d is rs ³ 0.819 0.854 0.880	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 50: is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tai Microphone Position 1 2 3 4	Microphone ble correspon L _{pAeg,Tp} 105.9 107.6 98.8 98.0	Position d to the baseline s L _{p(maximum)} 108.6 110.4 101.6 100.8	Peed of Noise Metr Lptmax 106.5 108.2 99.4 98.6	ric: Table Entries are L _{pAfmax} 108.6 110.4 101.6 100.8	400 e dB(A) L _{pAce,passby} 103.3 104.9 96.1 95.4	km/hr L _d TEL 106.8 108.6 99.8 99.0	trail-off (afte 	L ₁₀ (d/d0), where 80.7 82.0 73.2 72.4	ses) data. L _{do} is the equi 98.8 100.4 91.6 90.8	L ₃₀ 107.0 108.7 99.9 99.1	nstant sound pressure le	108.72 vevel for the microp ophone Position A M1 0.931 0.964 0.984	bhone at distan djustment Factor M2 0.957 0.979 1.000	ce d0, and d is rs ³ 0.819 0.854 0.880	the distance for
where" range" is the array c is the sound pressure level for which 90 is the sound pressure level for which 50 is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Eact e noise metrics shown in the following tai Microphone Position 1 2 3 4	Microphone ble correspond L _{pAug.Tp} 105.9 107.6 98.8 98.0	Position d to the baseline s L _{plenation} 108.6 110.4 101.6 100.8	peed of Noise Metr L _{pA5max} 106.5 108.2 99.4 98.6	ric: Table Entries are L pAfrmax 108.6 110.4 101.6 100.8	400 e dB(A) L _{pAeq.passby} 103.3 104.9 96.1 95.4	Km/hr L 106.8 108.6 99.8 99.0	trail-off (afte 	L 10 (d/d0), where L 10 (d/d0), where 80.7 (d/d0)	ses) data. L _{do} is the equiv 98.8 100.4 91.6 90.8	L ₃₀ 107.0 108.7 99.9 99.1	nstant sound pressure le Speed (km/hr) 271 341 386	108.72 evel for the microp ophone Position A 0.931 0.964 0.984	bhone at distan djustment Factor M2 0.957 0.979 1.000	ce d0, and d is rs ⁵ 0.819 0.854 0.880	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 10 mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tal Microphone Position 1 2 3 4 act of Train Speed on Noise Levels	h Microphone ble correspond L _{pAug.Tp} 105.9 107.6 98.8 98.0	Position d to the baseline s L _{ighnational} 108.6 110.4 101.6 100.8	peed of Noise Metr L _{pKmax} 106.5 108.2 99.4 98.6	ric: Table Entries are L _{pATRess} 108.6 110.4 101.6 100.8	400 dB(A) L _{pAce,passby} 103.3 104.9 96.1 95.4	Km/hr L 106.8 108.6 99.8 99.0	trail-off (afte 	er tail of train pa: DG(d/d0), where L ₁₀ 80.7 82.0 73.2 72.4	ses) data. L _{a0} is the equi 98.8 100.4 91.6 90.8	Lss 107.0 108.7 99.9 99.1	start sound pressure le	108.72 evel for the microp ophone Position A 0.931 0.964 0.984	bhone at distan djustment Factor M2 0.957 0.979 1.000	ce d0, and d is rs ⁵ 0.819 0.854 0.880	the distance for
where" range" is the array (is the sound pressure level for which 90 is the sound pressure level for which 10 mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tai Microphone Position 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 3 4 3 4 3	Learning the in	Position d to the baseline s Lyterational 108.6 110.4 101.6 100.8 	peed of Noise Metr L _{ptimus} 106.5 108.2 99.4 98.6 ed on pass-by noise	ric: Table Entries are Lafmax 101.6 110.4 100.6 100.8 Elevels. The approx	400 dB(A) L _{pAce, passby} 103.3 104.9 96.1 95.4 	Km/hr L 106.8 108.6 99.8 99.0 ed by Gautier, 108.0	trail-off (afte 	r tail of train pa: DG(d/d0), where	ses) data. L _{a0} is the equiv 98.8 100.4 91.6 90.8 ided the higher	L	nstant sound pressure le	108.72 evel for the micropophone Position A M1 0.931 0.964 0.984 the basis for the c	djustment Factor M2 0.957 0.979 1.000	ce d0, and d is rs ¹ 0.819 0.854 0.880 sented below.	the distance for
where" range" is the array (i is the array (i is the sound pressure level for which 90 is the sound pressure level for which 10: mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tal Microphone Position 1 1 2 3 4 Description 2 Description 2 Descri	Microphone ble correspon- los 9 107.6 98.8 98.0 	Position d to the baseline s Leptonium 108.6 101.6 100.8 mpact of train spe is an empirical fa	peed of Noise Metr L _{ptoma} 106.5 108.2 99.4 98.6 98.6 ed on pass-by noise tor	ric: Table Entries are 108.6 100.6 101.6 101.6 100.8 2 levels. The approx where V=	400 dB(A) L _{pAce,paraby} 103.3 104.9 96.1 95.4 Sach develope	TEL L 106.8 108.6 99.8 99.0 ed by Gautier, train speed (k	trail-off (afte _a = L _{ao} - 10*LC SEL 114.0 115.9 110.6 109.8 Poisson & Le m/hr)	er tail of train pa: DG(d/d0), where L ₁₀ 80.7 82.0 73.2 72.4 tourneaux ⁵ prov	L ₀₀ is the equi L ₀₀ is the equi 98.8 100.4 91.6 90.8 ided the higher If the SPL is ka	L _{so} 107.0 108.7 99.9 99.1 st level of correlation	set of the speed (km/hr) 271 386 with measured data is r with speed at a is r with speed at a is	108.72 evel for the microp ophone Position A M1 0.931 0.954 0.984 U.984 U.984	djustment Factor M2 0.957 0.979 1.000 alculations pre- ined from this fo	ce d0, and d is rs ⁵ 0.819 0.854 0.880 sented below. ormula	the distance for
where'' range'' is the array (\cdot is the sound pressure level for which 90 is the sound pressure level for which 10 is the sound pressure level for which 10 is the sound pressure level for which 10 mmary of Pass-by Noise Metrics for Each e noise metrics shown in the following tal Microphone Position 1 2 3 4 sact of Train Speed on Noise Levels ardo evaluated several methods for dete $L_{Maga}(V) = K \log(V) \neq K \log(V)$	Місгорhone ble correspon- lible correspon- 105.9 107.6 98.8 98.0 98.0 98.0 ув.0 ув.8 ув.0	Position d to the baseline s lease 108.6 110.4 101.6 100.8 mpact of train spe is an empirical fa	peed of Noise Metr Latense 108.2 99.4 98.6 ed on pass-by noise tor	ric: Table Entries are Later and the second	400 • dB(A) L _{pAce,pastby} 103.3 104.9 96.1 95.4 pach develope	km/hr L _a TEL 106.8 108.6 99.8 99.0 4 by Gautier, train speed (k reference trai	trail-off (afte a = L _{a0} - 10*LC SEL 114.0 115.9 110.6 109.8 Poisson & Le m/hr) n speed (km/	r tail of train par DG(d/d0), where <u>Las</u> 80.7 82.0 73.2 73.2 73.4 tourneaux ⁵ prov hr)	L _{go} is the equivalence of the	L 107.0 108.7 99.9 99.1 st level of correlation	h with measured data is	108.72 cevel for the microp ophone Position A M1 0.931 0.964 0.984 the basis for the c V can be determined	djustment Factor M2 0.957 0.979 1.000 acculations pre- ned from this fo	ce d0, and d is rs ¹ 0.819 0.854 0.880 sented below. ormula	the distance for

 $K = a^*V + b \text{ where} \qquad a= \qquad 0.0625 \qquad \text{and } b= \qquad 25.00$

V for this train set is: 400 km/hr

The following tables contain the calculated variation with train speed for the various noise parameters described above:

			Microph								
Train Speed (km/hr)	к	K L _{pAeq,Tp} L _{p(maxis}		LpASmax	L _{pAFmax}	L pAeq, passby	TEL	SEL	L ₁₀	L ₅₀	L ₉₀
80	30.0000	84.9	87.7	85.5	87.7	82.3	85.9	93.0	59.7	77.8	86.0

										-			
	150	34.3750	91.3	94.0	91.8	94.0	88.6	92.2	99.4	66.0	84.2	92.3	¥ 10
	200	37.5000	94.6	97.3	95.2	97.3	92.0	95.5	102.7	69.4	87.5	95.7	×
	250	40.6250	97.6	100.3	98.2	100.3	95.0	98.5	105.7	72.4	90.5	98.7	0
	300	43.7500	100.4	103.2	101.0	103.2	97.8	101.4	108.6	75.2	93.3	101.5	0 50 100 150 200 250 300 350 400 450
	350	46.8750	103.2	105.9	103.8	105.9	100.6	104.1	111.3	78.0	96.1	104.3	Train Speed (km/hr)
Test Speed \rightarrow	400	50.0000	105.9	108.6	106.5	108.6	103.3	106.8	114.0	80.7	98.8	107.0	
		1		Ad an a sh	and Devision 2		Notes Mar	ter Table For	1	1			The exclusion for the K consists with the interest it is an the ender of 20 is second
				wicroph	one Position 2		Noise ivie	tric: Table Ent	ries are db(A)	<u> </u>	r –		The empirical factor, K, varies with train speed: it is on the order of 30 in speed
	Train Speed (km/hr)	к	L pAeq,Tp	L _{p(maximum)}	L pASmax	L pAFmax	L pAeq, passby	TEL	SEL	L_10	L _{so}	L ₉₀	range to 300 kph and up to 50 for very high speed trains, for which aerodynamic
	80	30.0000	86.7	89.4	87.2	89.4	84.0	87.6	94.9	61.0	79.4	87.8	noise sources are dominant.
	150	34.3750	93.0	95.8	93.6	95.8	90.3	93.9	101.2	67.4	85.8	94.1	K = 0.0625(Train Speed, km/hr) + 25
	200	37.5000	96.3	99.1	96.9	99.1	93.7	97.3	104.6	70.7	89.1	97.4	
	250	40.6250	99.3	102.1	99.9	102.1	96.7	100.3	107.6	73.7	92.1	100.4	
	300	43.7500	102.2	104.9	102.7	104.9	99.5	103.1	110.4	76.5	94.9	103.3	
	350	46.8750	104.9	107.7	105.5	107.7	102.2	105.9	113.2	79.3	97.7	106.0	
Test Speed \rightarrow	400	50.0000	107.6	110.4	108.2	110.4	104.9	108.6	115.9	82.0	100.4	108.7	Measurement Uncertainty is ±3 dB
				Microph	one Position 3		Noise M	etric: Table Er	ntries are dB(A)				
	Train Speed (km/hr)	к	L pAeq,Tp	L _{p(maximum)}	L pASmax	L pAFmax	L pAeq, passby	TEL	SEL	L_10	L_50	L ₉₀	
	80	30.0000	77.9	80.6	78.4	80.6	75.2	78.8	89.7	52.2	70.6	78.9	
	150	34.3750	84.2	87.0	84.8	87.0	81.5	85.1	96.0	58.6	77.0	85.3	
	200	37.5000	87.5	90.3	88.1	90.3	84.9	88.5	99.4	61.9	80.3	88.6	
	250	40.6250	90.5	93.3	91.1	93.3	87.9	91.5	102.3	64.9	83.3	91.6	
	300	43.7500	93.4	96.1	93.9	96.1	90.7	94.3	105.2	67.7	86.1	94.5	
	350	46.8750	96.1	98.9	96.7	98.9	93.4	97.0	107.9	70.5	88.9	97.2	
Test Speed \rightarrow	400	50.0000	98.8	101.6	99.4	101.6	96.1	99.8	110.6	73.2	91.6	99.9	
				Microph	one Position 4		Noise M	etric: Table En	tries are dB(A)				
	Train Speed (km/hr)	к	L pAeq,Tp	L _{p(maximum)}	L pASmax	L _{pAFmax}	L _{pAeq,passby}	TEL	SEL	L ₁₀	L _{so}	L ₉₀	
	80	30.0000	77.1	79.8	77.6	79.8	74.4	78.0	88.9	51.4	69.8	78.2	
	150	34.3750	83.4	86.2	84.0	86.2	80.7	84.3	95.2	57.8	76.2	84.5	
	200	37.5000	86.7	89.5	87.3	89.5	84.1	87.7	98.6	61.1	79.5	87.8	
	250	40.6250	89.7	92.5	90.3	92.5	87.1	90.7	101.6	64.1	82.5	90.8	
	300	43.7500	92.6	95.3	93.1	95.3	89.9	93.5	104.4	66.9	85.3	93.7	
	350	46.8750	95.3	98.1	95.9	98.1	92.6	96.3	107.1	69.7	88.1	96.4	
Test Speed \rightarrow	400	50.0000	98.0	100.8	98.6	100.8	95.4	99.0	109.8	72.4	90.8	99.1	
The European The measurem Procedures def For the HEMU,	Fechnical Sta ents are mad ined within tl no measurer	ndards for Inte e at a lateral dis he TSI to allow ments were ma	roperability (T stance of 7.5 n noise levels to ade at 80 km/h	SI) include two no n from the rail cen be calculated at v nr and 250 km/hr:	ormalized values for terline and 1.2 m a arious train speeds Thus, the Gautier	or L _{pAEQ,TP} . The bove the top of based on mea method was u	values are normali of the rail. asurements made a used to calculate th	zed to 80 km at 80 km/hr (nese values	ı/hr and 250 kn 50 miles/h) and	n/hr. ⁶ I 250 km/hr (15	5 miles/h).		
From the Micro	opnone Positi	ion 1 & 2 lable	Above, the no	ormalized values fo	or L can be to	und and are id	ientied below:			-		-	
			Valu	es Obtained from	Data Analysis		Value fro	m TSI Formu	la	(00 km //)	TSI Form	nulas	tone (he)
			L pAeq,Tp (80 km/hr) =		84.9	dB(A)	dB(A) 84.9 dB(A) L _{pAeq,Tp} (80 km/h) = L _{pAeq,Tp} (vtest) - 30 * log (vtest/80 km					KIII/II) Moocurement Uncertainty is ±2 dP	
L pAeg, Tp (250 km/hr) = 97.6								95.7	dB(A)	L _{pAeq,Tp} (250 km/h) = L) - 50 * log (vtest/25	0 km/h) Weasurement Oricertainty is ±5 ub

Data Point Number	Passby D	ata ^{1Passby Data1}	Sound Pressure (Pa)	Event
	Time (sec)	dB(A)		
1	0.00	75.3	0.11642	
2	0.05	76.0	0.12619	
3	0.10	76.0	0.12619	
4	0.15	77.2	0.14489	
5	0.20	77.6	0.15172	
6	0.25	79.3	0.18451	
7	0.30	80.5	0.21185	
8	0.35	81.7	0.24324	
9	0.40	82.5	0.26670	
10	0.45	85.0	0.35566	
11	0.50	86.2	0.40835	←
12	0.55	88.0	0.50238	10 dB(A) lower than SPI when
13	0.60	89.9	0.62522	Train Nose Passes Microphone
14	0.65	91.9	0.78710	←
15	0.70	94.4	1.04961	
16	0.75	96.5	1.33669	Train Nose Passes Microphone
17	0.80	98.0	1.58866	
18	0.85	100.4	2.09426	
19	0.90	100.3	2.07028	
20	0.95	99.1	1.80314	
21	1.00	100.0	2.00000	
22	1.05	99.1	1.80314	

23	1.10	98.8	1.74193		
24	1.15	97.7	1.53472		
25	1.20	96.9	1.39968		
26	1.25	98.7	1.72199		
27	1.30	100.8	2.19296		
28	1.35	100.0	2.00000	1	
29	1.40	98.0	1.58866	←	
30	1.45	97.4	1.48262		
31	1.50	97.9	1.57047] :	Start Time for LpASmax Calculat
32	1.55	98.3	1.64449		
33	1.60	98.2	1.62566		
34	1.65	96.3	1.30626		
35	1.70	97.1	1.43229	1	
36	1.75	98.0	1.58866		
37	1.80	99.0	1.78250		
38	1.85	97.5	1.49979		
39	1.90	99.1	1.80314	←	
40	1.95	101.3	2.32290	1	
41	2.00	101.9	2.48903		Maximum Sound Pressure Leve
42	2.05	101.0	2.24404	1	
43	2.10	99.0	1.78250		
44	2.15	100.0	2.00000		
45	2.20	101.6	2.40453		
46	2.25	102.0	2.51785		
47	2.30	100.5	2.11851		
48	2.35	98.6	1.70228		
49	2.40	100.0	2.00000	-	
50	2.45	100.0	2.00000		
51	2.50	99.6	1.90999		End Time for LpASmax Calculati
52	2.55	98.0	1.58866		
53	2.60	97.3	1.46565		
54	2.65	100.0	2.00000		
55	2.70	99.8	1.95447		
56	2.75	98.0	1.58866		
57	2.80	97.3	1.46565		
58	2.85	98.4	1.66353		
59	2.90	100.1	2.02316		
60	2.95	101.6	2.40453	l	
61	3.00	100.5	2.11851		
62	3.05	99.0	1.78250	l	
63	3.10	98.0	1.58866	ł	
64	3.15	96.9	1.39968	ł	Train Tail Passes Microphone
65	3.20	97.0	1.41589		
66	3.25	95.0	1.12468		
67	3.3U	92.1	0.80543	-	
60	3.35	90.8	0.09347	I	

69	3.40	89.4	0.59024
70	3.45	88.0	0.50238
71	3.50	87.0	0.44774
72	3.55	85.9	0.39448
73	3.60	85.0	0.35566
74	3.65	82.5	0.26670
75	3.70	81.7	0.24324
76	3.75	80.5	0.21185
77	3.80	79.2	0.18240
78	3.85	79.1	0.18031
79	3.90	76.9	0.13997
80	3.95	75.9	0.12475
81	4.00	75.3	0.11642
82	4.05	74.3	0.10376
83	4.10	73.1	0.09037
84	4.15	74.2	0.10257
85	4.20	72.0	0.07962

10 αB(A) lower than SPL when Train Tail Passes Microphone

Spreadsheet-Based Tool for Comparing Noise Standards and Re Conversion Tool for Noise Regulations and Standards to Commo

CONTRAST

Comparison Of Noise for TRAin STandards

Train Set Information										
Year Data Set was Generated:		2010	¹ Dittrich, M.G., et							
Train Set Manufacturer:		GEC-Alsthom	Thalys treinen op							
Operator:		Thalys	trains on HSL Rhe							
Train Set Geometry and Te	est Conditions		Natuurwetenschap							
Parameter	Value	Units	² Thalys PBKA image							
Car Lengths			Version 1.2 or any l							
End Cars:	22.15	m	https://commons.v							
Intermediate Cars: two at 21.845 m and	six at 18.7 m									
Number of End Cars:	2									
Number of Intermediate Cars:	8									
Test Train Length:	200.19	m								
Test Train Speed(s):	296	km/hr								
Microphone Position:	1		dB (sound press							
Distance from Track Centerline:	7.5	m	where 0.0002 is							
Elevation above Top of Rail:	1.2	m	so, Pa = 0.00002							
Time Increment for Passby Data, Δ T:Time	0.05	sec								
Number of Passby Data Points:	85									

Plot of Passby Noise Data, Including Key Time Parameters

ion

۶ļ

ion

gulations on Reference

Program Version:

14-Oct-19

References

7

t. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MC

HSL Rheda- en ballastpoor, (Noise emission measurements on V250 and Thalys

eda and ballast track), Nederlandse Organisatie voor Toegepast

pelijk Onderzoek (TNO Industrie en Techniek), 13 December 2010.

e used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under ater version published by the Free Software Foundation,

vikimedia.org/wiki/File:Thalys_PBKA_Refurbished_Nederland.jpg

Formulas

sure level in decibels) = $20 \log_{10}(Pa/0.00002) dB$ (sound pressure level in decibels) = $20 \log_{10}(Pa/0.00002) dB$

; the reference sound pressure level in Pascals

DN-RPT-2010-03023, Geluidemissiemetingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-0302

er the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU F

|B (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 \log_{10}(Pa/0.00002)

23, Geluidemissiemetingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-03023, Geluidemissier

ree Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation Licen

 g_{10} (Pa/0.00002) dB (sound pressure level in decibels) = 20 \log_{10} (Pa/0.00002) dB (sound pressure level in

netingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V25

se, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under terms of term

decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$

0 en ¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V250 en ¹Dittrich, M.G

sed with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: unde

i., et. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V2 $\,$

er the terms of the GNU Free Documentation License,

U.S. Department of Transportation Federal Railroad Administration

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

CONTRAST Comparison Of Noise for TRAin STandards Federal Railroad Administration Program Version: 7 14-Oct-19 High Speed Rail Noise Standards and Regulations Pass-By Noise Calculations Data Set Number: References 2 Data Set Name: Thalys PBKA Calculate Train Pass-by Parameters ⁴He, et al., Investigation into External Noise of a High-Speed Train at Different Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033 Train Speed (V): 296 km/hr = 82.22 m/sec ²Paul, et al, High Speed Rail Noise Standards and Regulations, US DOT Federal Railroad Administration, Contract DTFR35-16-C00006, May 2017. 200.19 Train Length: m 10 cars: 2 end cars and 8 intermediate cars ³G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese Time for Pass-By (T) 2.434743243 seconds This is the time increment between nose of train passing Academy of Railway Sciences (CARS) Research Report, Beijing Shi, China, 2003. ⁴Hanson, C.E., et. al., High Speed Ground Transportation Noise and Vibration Impact Assessment, U.S. Department of Transportation, Federal Railroad microphone and tail of train passing microphone. Time for TEL (T_{TEI}) Administration, Report Number DOT/FRA/ORD-12/15, September 2012. 2 80 seconds TEL is the Transit Exposure Limit and represents the equivalent A-weighted SPL over the time period beginning when the ⁵Gautier, P.E., Poisson, F., and Letourneaux, F., High Speed Trains External Noise: A Review of Measurements and Source Models for TGV Case Up to instantaneous meter reading is 10 dB(A) less than L_pAEQ.TO and 360 km/hr, in Proceedings of the 8th World Congress on Railway Research (2008). continuing through the pass-by event until the meter reading is ⁶European Union, "Commission Regulation Number 1304/2014, on the technical specification for interoperability relating to the subsystem 'rolling again 10 dB(A) less than L tock — noise' amending Decision 2008/232/EC and repealing Decision 2011/229/EU," Official Journal of the European Union, Brussels, Belgium, 2014.

Calculate L

is the A-weighted equivalent continuous sound pressure level produced by the train as measured during the pass-by event

 $L_{pAeq,T_{p}} = 10 \text{ Ig} \left(\frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right) \quad dB$

 $r_{\text{pAreq,Tp}}$ can be calculated from the pass-by data using the following relationship:

Microphone Position is 7.5 m from track centerline and 1.5 m above top of rail (Microphone Position 1).

where

16

64

- is the pass-by time interval = time when trail tail passes microphone minus time when train nose passes microphone = T, -T, Т
- Τ, is the time when the train nose passes the microphone
- Τ, is the time when the train tail passes the microphone
- $\mathsf{P}_{_{\!\mathsf{A}}}(t)$ is the A-weighted instantaneous sound pressure in Pa at time t
- р_о = 20µРа = P_o is the reference sound pressure: 0.00002 Ра

Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2P} A(i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	(i)²/p ₀ ²²,(i)²/p	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2P} A(i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2P} A(i) ² /p ₀ ²
1	0.00	75.30	0.116421	3.38844E+07	23	1.10	98.80	1.741927	7.58578E+09	45	2.20	101.60	2.404529	1.44544E+10	67	3.30	92.10	0.805434	1.62181E+09
2	0.05	76.00	0.126191	3.98107E+07	24	1.15	97.70	1.534723	5.88844E+09	46	2.25	102.00	2.517851	1.58489E+10	68	3.35	90.80	0.693474	1.20226E+09
3	0.10	76.00	0.126191	3.98107E+07	25	1.20	96.90	1.399684	4.89779E+09	47	2.30	100.50	2.118507	1.12202E+10	69	3.40	89.40	0.590242	8.70964E+08
4	0.15	77.20	0.144887	5.24807E+07	26	1.25	98.70	1.721988	7.41310E+09	48	2.35	98.60	1.702276	7.24436E+09	70	3.45	88.00	0.502377	6.30957E+08
5	0.20	77.60	0.151716	5.75440E+07	27	1.30	100.80	2.192956	1.20226E+10	49	2.40	100.00	2.000000	1.00000E+10	71	3.50	87.00	0.447744	5.01187E+08
6	0.25	79.30	0.184514	8.51138E+07	28	1.35	100.00	2.000000	1.00000E+10	50	2.45	100.00	2.000000	1.00000E+10	72	3.55	85.90	0.394485	3.89045E+08
7	0.30	80.50	0.211851	1.12202E+08	29	1.40	98.00	1.588656	6.30957E+09	51	2.50	99.60	1.909985	9.12011E+09	73	3.60	85.00	0.355656	3.16228E+08
8	0.35	81.70	0.243237	1.47911E+08	30	1.45	97.40	1.482620	5.49541E+09	52	2.55	98.00	1.588656	6.30957E+09	74	3.65	82.50	0.266704	1.77828E+08
9	0.40	82.50	0.266704	1.77828E+08	31	1.50	97.90	1.570471	6.16595E+09	53	2.60	97.30	1.465649	5.37032E+09	75	3.70	81.70	0.243237	1.47911E+08
10	0.45	85.00	0.355656	3.16228E+08	32	1.55	98.30	1.644485	6.76083E+09	54	2.65	100.00	2.000000	1.00000E+10	76	3.75	80.50	0.211851	1.12202E+08
11	0.50	86.20	0.408348	4.16869E+08	33	1.60	98.20	1.625661	6.60693E+09	55	2.70	99.80	1.954474	9.54993E+09	77	3.80	79.20	0.182402	8.31764E+07
12	0.55	88.00	0.502377	6.30957E+08	34	1.65	96.30	1.306261	4.26580E+09	56	2.75	98.00	1.588656	6.30957E+09	78	3.85	79.10	0.180314	8.12831E+07
13	0.60	89.90	0.625216	9.77237E+08	35	1.70	97.10	1.432287	5.12861E+09	57	2.80	97.30	1.465649	5.37032E+09	79	3.90	76.90	0.139968	4.89779E+07
14	0.65	91.90	0.787100	1.54882E+09	36	1.75	98.00	1.588656	6.30957E+09	58	2.85	98.40	1.663528	6.91831E+09	80	3.95	75.90	0.124747	3.89045E+07
15	0.70	94.40	1.049615	2.75423E+09	37	1.80	99.00	1.782502	7.94328E+09	59	2.90	100.10	2.023159	1.02329E+10	81	4.00	75.30	0.116421	3.38844E+07
16	0.75	96.50	1.336688	4.46684E+09	38	1.85	97.50	1.499788	5.62341E+09	60	2.95	101.60	2.404529	1.44544E+10	82	4.05	74.30	0.103760	2.69153E+07
17	0.80	98.00	1.588656	6.30957E+09	39	1.90	99.10	1.803142	8.12831E+09	61	3.00	100.50	2.118507	1.12202E+10	83	4.10	73.10	0.090371	2.04174E+07
18	0.85	100.40	2.094257	1.09648E+10	40	1.95	101.30	2.322897	1.34896E+10	62	3.05	99.00	1.782502	7.94328E+09	84	4.15	74.20	0.102572	2.63027E+07
19	0.90	100.30	2.070284	1.07152E+10	41	2.00	101.90	2.489029	1.54882E+10	63	3.10	98.00	1.588656	6.30957E+09	85	4.20	72.00	0.079621	1.58489E+07
20	0.95	99.10	1.803142	8.12831E+09	42	2.05	101.00	2.244037	1.25893E+10	64	3.15	96.90	1.399684	4.89779E+09					
21	1.00	100.00	2.000000	1.00000E+10	43	2.10	99.00	1.782502	7.94328E+09	65	3.20	97.00	1.415892	5.01187E+09					
22	1.05	99.10	1.803142	8.12831E+09	44	2.15	100.00	2.000000	1.00000E+10	66	3.25	95.00	1.124683	3.16228E+09					

Data Point Number for Start of Pass-by Event (time at which train nose passes microphone): Data Point Number for End of Pass-by Event (time at which train tail passes microphone):

i = 1
i - n thus,
$$\sum_{i=1}^{i=n} \left(\frac{Pa(i)^2}{P_0^2} \right) \Delta t_i = 2.08771E+10$$

$$L_{pleq,Tp} = 10 \text{ Ig } \left(\frac{1}{T_2 - T_1} \frac{T_2^2}{T_1} \frac{p_A^2(\ell)}{p_0^2} d\ell \right) \qquad L_{pleq,Tp} = 99.33 \quad dB(A)$$

Impact of Microphone Position

	Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	Appl	ies to Regulatio	ns in these F	legions ²		Comment		[^] L. Lu, X. Hu, Y. Zhang	g and X. Zhou, "Sur	rvey and Analysis of the Beijing-S	hanghai High Speed Rail	
				US	EU	China	Japan				Noise," in The 21st In	nternational Congr	ess on Sound and Vibration, Beij	ng, China, 2014.	
	1	7.5	1.2		X (TSI 2014)			TSI 1304	-		⁸ G. Xiaoan and J. Hua	a, "Application Res	earch on Descending Vibration a	1d Reducing Noise in	
	2	7.5	3.5		X (TSI 2014)			Also required for	speeds > 250 km/hr		Accelerating Speed T	rains and Express	Trains," Chinese Academy of Rail	way Sciences (CARS)	
	3	25	3.5		X (TSI 2008)	×	X	Reference for pre	2014 train sets	_	Research Report, Bei	ijing Shi, China, 200	03. eference FOI13 F80. Comparison	of Manurad Cound	
Impact of microphone dist	ance is deterr	nined from the fol	owing equation	· ³ = - 1(0*LOG(d/d0) w	/here L is:	the equivalent	Us and Uning mepsurement logation 'W. Elliott, "Request for Information Reference FOI13-580, Comparison of Measured Sound							
for the microphone at dist	ance d0 and (l is the distance fo	r I d	d _do _	, 200(0/00), 1	do lo	che equivalent	in meighted con	stante sound pressure level		Levels for High Speed	d Trains as a Functi 12	ionof Distance from Track," High	Speed Rail Two (HS2),	
for the microphone at use		Distance from						1			London, England, 201	15.			
	Microphone Position	Track Centerline (m)	Elevation Above Top of Rail (m)	L _{pAeq,Tp} at 296	km/h dB(A)	L _{pAeq,Tp} at 2	96 km/h (Pa)					Sound Pressure	e Variations for Microphone	ositions &	
									To convert dB(A) to Pascals:	Pa = 0.00002*(10	0^(dBA/20))	Train S	Speed from Reference 5		
	1	7.5	1.2		99.33		1.852		To convert Pa to dB(A), dl	8(A) = 20*LOG1	0(Pa/0.00002)	Speed (km/hr)) L dB(A)		
	2	7.5	3.5		102.10		2.548	1	Note: The simple sound le	vel correction f	ormula		M1 M2	M3	
	3	25	3.5		87.40		0.469	4	underestimates the measuration based on actual ma	ired values. The	eretore,	2/1	93.2 95.8	82.0	
	4	30	1.2		80.00		0.428	1	adjust for microphone loc	ation (table at r	ight)	386	98.5 98.0	88.1	
									adjust for microphone loc	and a cable at a	5	500	50.5	00.1	
Calculated Noise Metrics: Maximum Reco	orded Sound F	ressure Levels													
The following calculations are for Microph	one Position 1			L =	maximum rec	orded pass	-by sound pres	sure level							
L _{p(maximum)} = 102.0	dB(A)	which occurs at c	lata point	46	at pass-by tim	e	2.25	seconds							
L _{pASmax} is the maximum sound pressure lev	el, slow and A	-weighted and L _p ,	Fmax = maximum	sound pressu	ure level, fast a	nd A-weigh	ted. The time	period for the "s	low" reading is 1 second.	he time period	for the "fast" read	ding is 0.125 se	conds.		
L _{nasmax} can be calculated as the logarithmic	average of th	e recorded SPLs fo	r the 1 second t	ime interval o	containing the	highest valu	Jes	The logarithmic	average for an Excel array	is: {=10*LOG(A	VERAGE(10^(ARRA	AY/10)))} array-	-entered, i.e. using CTRL-SI	ift-Enter keys	
president and a second s								where array is o	of the form A10:A15. In th	e current case, 1	the array is Pass-By	y Data Set 1, C:	48:C68	,.	
Highest 1-second interval occurs from star	t time	1.5	to end time	2.5		Thus, L	=	97.90	dB(A)						
Similarly, L can be calculated as the lo	garithmic ave	rage of the record	ed SPLs for the (0.125 second	time interval o	ontaining tl	he highest valu	es							
Highest 0.125-second interval occures from	n start time		2.15	to end time	2.275		Thus, L=	100.00	dB(A)						
•					-		promise		· ()						
Calculated Noise Metrics: Other Standard The following calculations are for Microph $L_{\text{parameters}}$ is the A-weighted equivalent continu The calculation includes all of the pass-by data Data Point Number for Start of Pass-by Eve Data Point Number for End of Pass-by Eve	I Parameters one Position 1 ious sound pres points. ent (time pass- nt (time pass-	sure level produced -by SPLs begin bei by SPLs end being	during the entire ng recorded): recorded):	pass-by event	, including appro 1 85	oach, T _p , and i = 1 i - n	I departure (used thus, $\sum_{i=n}^{i=n} \int_{a}^{a}$	$\int \frac{Pa(i)^2}{p_0^2} \Delta t_i$	= 2.19727E+	10	T ₂ - T ₁ =	4.20	seconds		
							i=1	10)							
$L_{pAeq,pass.by} = 10 \text{ Ig } \left(\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{p_1^2}{p_1^2} \right)$	$\left(\frac{2}{p_0^2} dt\right)$	L _{pAeq,pass-by} =	97.19	dB(A)											
TEL is the Transit Exposure Limit ^{4.}	It is measured	over the time inter	val starting when	the SPL is 10 d	B(A) lower than	L _{pAeq,Tp} and e	nding when the	SPL again reaches	a value that is 10 dB(A) lowe	than L _{pAeq,Tp}					
	TEL is calculat	ed using the followi	ng formula:		IEL = L PAeq,Tp +	10*LOG(1	_{el} /1 _p)	TEL =	99.9392281 dB(A)						
SEL is the Sound Exposure Limit ⁴ .	Like L _{pAeq,Tp} , it i	ntegrates the total :	ound energy ove	r a measureme	ent period, but f	or SEL, the m	neasurement per	riod is normalized	to a duration of 1 second. At	a microphone di	stance of 30 m (100	ft), SEL = L pAeq,T	_{rp} + 10*LOG(Tp) + 1		
	SEL at 30 m: SEL is the cum	104.20 Iulative noise exposi	dB(A) ure (i.e. "dose") fo	or a single nois	SEL at 7.5 m: e event normaliz	110.22 ed over 1 se	dB(A) cond. The fact t	SEL at 25 m: hat SEL is a cumul	104.99 dB(A) ative measure means that (1	using the dis louder events h	tance correction fa ave higher SELs than	actor: I quieter ones, ai	$L_d = L_{d0} - 10*LOG(d/d0)$ nd		
Statistical Parameters	(2) evenus tha	r iast ionger in time	nave nigher SELS	man shurter o	1163.										
The following parameters are determined where" range" is the array	by specifying of values (e.g	the indicated perc . K10:K68) and P =	entile of the dat the percentile (a values usin between 0 ar	g Excel Functio nd 1, for examp	n PERCENT ble, P for th	ILE(range,P). e 90th percenti	ile would be ente	ered as 0.9)						
L ₁₀ is the sound pressure level for which 9	0% of the reco	rded values are gr	eater. It include	s lead-in (pri	or to nose pass	ing microph	none) and trail-	off (after tail of	train passes) data.		L ₁₀ =	76.36	dB(A)		
L _{co} is the sound pressure level for which 50	0% of the reco	rded values are gr	eater. It include	s lead-in (pri	or to nose pass	ing microph	none) and trail-	off (after tail of	train passes) data.		L=	97.30	dB(A)		
L is the sound pressure level for which 10	0% of the reco	rded values are gr	eater. It include	s lead-in (pri	or to nose pass	ing microph	none) and trail-	off (after tail of	train passes) data.		L =	100 46	dB(A)		
-90		taldes are gr						, area can or			90	100.46	ub(A)		
Summary of Pass-by Noise Metrics for Fa	ch Microphon	e Position													
The noise metrics shown in the following	able correspo	nd to the baseline	speed of		296	km/hr	L _d = L _{d0} - 10*LC	0G(d/d0), where	L _{do} is the equivalent A-wei	ted constant	sound pressure lev	vel for the micr	ophone at distance d0, and	d is the distance for L_d .	
Microphone Position			Noise Metric	: Table Entrie	s are dB(A)						Microphone	Position Adjustr	ment Factors ⁵		

Impact of Train Speed on Noise Levels

Ricardo evaluated several methods for determining the impact of train speed on passby noise levels. The approach developed by Gautier, Poisson & Letourneaux⁵ provided the highest level of correlation with measured data is the basis for the calculations presented below.

SEL 110.2

113.3

97.0 96.2

L_10

76.4

78.5

67.2 66.4

L_____50

97.3

100.0

85.6

84.8

L____

100.5

103.3

88.4 87.6

Speed (km/hr)

271

341 386

M1

1.000

1.035

M3

0.880

0.917

0.945

M2

1.028

1.052

1.074

L pASmax 97.9

100.6

86.1 85.3

L pAeq,Tp

99.3 102.1

87.4

86.6

2

3

4

p[maximum 102.0

104.8

89.7 89.0

PAeq,pass-by 97.2

99.9

85.5

84.7

TEL

99.9

102.7

87.9

87.1

L pAFmax 100.0

102.8

88.0

87.2

 $L_{Aeq,tp}$ (V) - $L_{Aeq,tp}$ (V₀) = K log(V/V₀) where K is an empirical factor where V= train speed (km/hr) thus, $L_{Aeq,tp}(V) = K \log(V/V_0) + L_{Aeq,tp}(V_0)$

V_= reference train speed (km/hr) If the SPL is known at train speed V_o, the SPL at train speed V can be determined from this formula

The empirical factor K varies with train speed. This is because the contribution of noise sources (e.g. wheel/rail interaction, propulsion components, aerodynamics) vary with train speed. Ricardo calculated the K factor values for 12 pass-by noise data sets. The relationship between the K factor and train speed is provided by the following equation:

25.00 K = a*V + b where a= 0.0625 and b=

296 km/hr for this train set is:

The following tables contain the calculated variation with train speed for the various noise parameters described above:

			Microphone	Position 1		Noise	e Metric: Ta	ble Entries are dl	B(A)		
Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq,passby	TEL	SEL	L ₁₀	L_50	L ₉₀
80	30.0000	82.3	85.0	80.9	83.0	80.1	82.9	93.2	59.3	80.3	83.4
150	34.3750	89.2	91.9	87.8	89.9	87.0	89.8	100.1	66.2	87.2	90.3
200	37.5000	92.9	95.6	91.5	93.6	90.8	93.6	103.8	70.0	90.9	94.1
250	40.6250	96.4	99.0	94.9	97.0	94.2	97.0	107.2	73.4	94.3	97.5
300	43.7500	99.6	102.3	98.2	100.3	97.4	100.2	110.5	76.6	97.6	100.7
350	46.8750	102.7	105.4	101.3	103.4	100.6	103.4	113.6	79.8	100.7	103.9
296	43.5000	99.3	102.0	97.9	100.0	97.2	99.9	110.2	76.4	97.3	100.5

Test Speed \rightarrow

			Microphone	Position 2		Nois	e Metric: Ta	ble Entries are d	B(A)		
Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq,passby	TEL	SEL	L_10	L_50	L ₉₀
80	30.0000	85.1	87.8	83.6	85.7	82.9	85.7	96.2	61.4	83.0	86.2
150	34.3750	92.0	94.7	90.5	92.6	89.8	92.6	103.1	68.3	89.9	93.1
200	37.5000	95.7	98.5	94.2	96.4	93.5	96.3	106.9	72.1	93.6	96.9
250	40.6250	99.1	101.9	97.7	99.8	96.9	99.7	110.3	75.5	97.0	100.3
300	43.7500	102.4	105.1	100.9	103.0	100.2	103.0	113.5	78.7	100.3	103.5
350	46.8750	105.5	108.3	104.0	106.2	103.3	106.1	116.7	81.9	103.4	106.7
296	43,5000	102.1	104.8	100.6	102.8	99.9	102.7	113.3	78.5	100.0	103.3

Test Speed—

			Microphone	Position 3		No	ise Metric: 1	Table Entries are	dB(A)		
Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L pASmax	L	L pAeq,passby	TEL	SEL	L_10	L_50	L ₉₀
80	30.0000	70.3	72.7	69.1	70.9	68.5	70.9	79.9	50.1	68.6	71.3
150	34.3750	77.2	79.6	76.0	77.8	75.4	77.8	86.8	57.0	75.5	78.2
200	37.5000	81.0	83.4	79.8	81.6	79.1	81.5	90.6	60.8	79.2	82.0
250	40.6250	84.4	86.8	83.2	85.0	82.5	84.9	94.0	64.2	82.6	85.4
300	43.7500	87.7	90.0	86.4	88.2	85.8	88.2	97.2	67.4	85.9	88.6
350	46.8750	90.8	93.2	89.5	91.4	88.9	91.3	100.4	70.6	89.0	91.8
296	43.5000	87.4	89.7	86.1	88.0	85.5	87.9	97.0	67.2	85.6	88.4
				D				11 5 1 1	10(4)		

				Microphone Position 4			Noise Metric: Table Entries are dB(A)							
	Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L _{pASmax}	LpAFmax	L pAeq, passby	TEL	SEL	L ₁₀	L_50	L ₉₀		
	80	30.0000	69.6	71.9	68.3	70.1	67.7	70.1	79.1	49.3	67.8	70.5		
	150	34.3750	76.5	78.8	75.2	77.0	74.6	77.0	86.0	56.2	74.7	77.4		
	200	37.5000	80.2	82.6	79.0	80.8	78.3	80.8	89.8	60.0	78.4	81.2		
	250	40.6250	83.6	86.0	82.4	84.2	81.7	84.2	93.2	63.4	81.8	84.6		
	300	43.7500	86.9	89.2	85.6	87.4	85.0	87.4	96.4	66.6	85.1	87.9		
	350	46.8750	90.0	92.4	88.8	90.6	88.1	90.5	99.6	69.8	88.2	91.0		
d→	296	43 5000	86.6	89.0	85.3	87.2	84.7	87.1	96.2	66.4	84.8	87.6		

Test Speed-

Test Spee

The European Technical Standards for Interoperability (TSI) include two normalized values for L pAGG, TP, The values are normalized to 80 km/hr and 250 km/hr.⁶

The measurements are made at a lateral distance of 7.5 m from the rail centerline and 1.2 m above the top of the rail.

Procedures defined within the TSI to allow noise levels to be calculated at various train speeds based on measurements made at 80 km/hr (50 miles/h) and 250 km/hr (155 miles/h).

For the Thalys PBKA, no measurements were made at 80 km/hr and 250 km/hr: Thus, the Gautier method was used to calculate these values

From the Microphone Position 1 Table Above, the normalized values for L aler To can be found and are idenfied below:

Values Obtained fr	om Data Analysis		Value from TSI Forr	mula	TSI Formulas
L =	82.3	dB(A)	82.3	dB(A)	L _{pAeq.Tp} (80 km/h) = L _{pAeq.Tp} (vtest) - 30 * log (vtest/80 km/h)
= pAeq.Tp (250 km/hr)	96.4	dB(A)	95.7	dB(A)	$L_{pAeq,Tp}(250 \text{ km/h}) = L_{pAeq,Tp}(vtest) - 50 * \log (vtest/250 \text{ km/h})$

The empirical factor, K, varies with train speed: it is on the order of 30 in speed range to 300 kph and up to 50 for very high speed trains, for which aerodynamic noise sources are dominant.

K = 0.0625(Train Speed, km/hr) + 25

]	1.35217	96.6	2.10	23
]	1.21907	95.7	2.15	24
]	1.26191	96.0	2.20	25
]	1.38366	96.8	2.25	26
]	1.41589	97.0	2.30	27
1	1.38366	96.8	2.35	28
1	1.27653	96.1	2.40	29
1	1.19132	95.5	2.45	30
1	1.17769	95.4	2.50	31
1	1.29131	96.2	2.55	32
1	1.39968	96.9	2.60	33
1	1.41589	97.0	2.65	34
1	1.35217	96.6	2.70	35
1	1.24747	95.9	2.75	36
1	1.26191	96.0	2.80	37
←	1.29131	96.2	2.85	38
1	1.27653	96.1	2.90	39
1	1.32139	96.4	2.95	40
1	1.33669	96.5	3.00	41
1	1.39968	96.9	3.05	42
1	1.15088	95.2	3.10	43
1	1.15088	95.2	3.15	44
1	1.16421	95.3	3.20	45
1	1.27653	96.1	3.25	46
1	1.33669	96.5	3.30	47
1	1.33669	96.5	3.35	48
1	1.23319	95.8	3.40	49
1	1.12468	95.0	3.45	50
1	1.12468	95.0	3.50	51
1	1.15088	95.2	3.55	52
1	1.20512	95.6	3.60	53
1	1.23319	95.8	3.65	54
1	1.20512	95.6	3.70	55
1	1.09908	94.8	3.75	56
1	1.09908	94.8	3.80	57
₩	1.08650	94.7	3.85	58
1	1.24747	95.9	3.90	59
1	1.19132	95.5	3.95	60
1	1.07406	94.6	4.00	61
1	0.91418	93.2	4.05	62
]-	0.75167	91.5	4.10	63
	0.61806	89.8	4.15	64
	0.50238	88.0	4.20	65
1	0.39905	86.0	4.25	66
	0.35158	84.9	4.30	67
1	0.28578	83.1	4.35	68

End Time for LpASmax Calculati

Train Tail Passes Microphone

10 dB(A) lower than SPL when Train Tail Passes Microphone

69	4.40	82.0	0.25179
70	4.45	80.5	0.21185
71	4.50	80.0	0.20000

Spreadsheet-Based Tool for Comparing Noise Standards and Re Conversion Tool for Noise Regulations and Standards to Commo

CONTRAST

Comparison Of Noise for TRAin STandards

Train Set Information			
Year Data Set was Generated:		2014	¹ He, B., <i>et. al.</i> , Inν
Train Set Manufacturer:	Changchun Railw	ay Vehicles, Siemens	J. Zhejang Univ-So
Operator:	China Railway Co	rporation	² China CRH3 Series
Train Set Geometry and Test	Conditions		https://www.railw
Parameter	Value	Units	
Car Lengths			
End Cars:	25.641	m	
Intermediate Cars:	24.786	m	
Number of End Cars:	2		
Number of Intermediate Cars:	6		
Test Train Length:	200	m	
Test Train Speed(s):	271	km/hr	
Microphone Position:	2		dB (sound press
Distance from Track Centerline:	7.5	m	where 0.0002 is
Elevation above Top of Rail:	3.5	m	so, Pa = 0.00002
Time Increment for Passby Data, Δ T:Time In	0.05	sec	
Number of Passby Data Points:	71		

Plot of Passby Noise Data, Including Key Time Parameters

ion

gulations on Reference		RICARDO	
Program Version:	7	14-Oct-19	
Re	ferences		_
vestigation into Exterior Noise of a H ci A (Applied Physics and Enginering High Speed Train Image; provided by R ay-technology.com/projects/beijing-tia	ligh-Speed Tr ;), 2014, Vol 1 ailway Technolo njin/	rain at Different Speeds, ¹ He, B., <i>et. a</i> L5 (12), Pages 1019-1033. <i>ogy</i> , 2019, ² China CRH3 Series High Speed	I., Investigation into Exterior N Train Image; provided by <i>Railway</i>
For sure level in decibels) = $20 \log_{10}(F$; the reference sound pressure le $2*10^{(dB/20)so, Pa = 0.0002*10(dB/20)so, Pa = 0.000}$	mulas Pa/0.00002) evel in Pasca	dB (sound pressure level in decibe lls a = 0.00002*10(dB/20)so, Pa = 0.00002*10(dB/20)	els) = 20 log ₁₀ (Pa/0.00002) d
	LpA	eq,T _p = 95.8 dB(A)	

oise of a High-Speed Train at Different Speeds, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Tr *Technology*, 2019, ²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019, ²China CRH3 Series High

|B (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 \log_{10}(Pa/0.00002)

ain at Different Speeds, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Train at Different Speeds Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Ser

 g_{10} (Pa/0.00002) dB (sound pressure level in decibels) = 20 \log_{10} (Pa/0.00002) dB (sound pressure level in

, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Train at Different Speeds, ¹He, B., *et. al.*, Investiger *echnology*, 2019, ²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,

decibels) = $20 \log_{10}(Pa/0.00002)$

gation into Exterior Noise of a High-Speed Train at Different Spe

U.S. Department of Transportation Federal Railroad Administration

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

CONTRAST

30-Sep-19

Program Version: 3

Federal Railroad Administration High Speed Rail Noise Standards and Regulations

Data Set Number:			3	Passby Noise Calculations	References
Data Set Name:	CRH3 Series	(based on	Siemens)	•	
Calculate Train Pass-by Pa	arameters				He, et al., Investigation into External Noise of a High-Speed Train at Different Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033
Train Speed (V):	271	km/hr =	75.28	m/sec	² Paul, et al, High Speed Rail Noise Standards and Regulations, US DOT Federal Railroad Administration, Contract DTFR35-16-C00006, May 2017.
Train Length:	200	m	10 cars: 2 end car	s and 8 intermediate cars	³ G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese
Time for Passby (T _p)	2.656826568	seconds	This is the time in	crement between nose of train passing	Academy of Railway Sciences (CARS) Research Report, Beijing Shi, China, 2003.
			microphone and t	ail of train passing microphone.	4Hanson, C.E., et. al., High Speed Ground Transportation Noise and Vibration Impact Assessment, U.S. Department of Transportation, Federal Railroad
Time for TEL (T_TEL)	3.05	seconds	TEL is the Transit	Exposure Limit and represents the equivalent	Administration, Report Number DOT/FRA/ORD-12/15, September 2012.
			A-weighted SPL ov	ver the time period beginning when the	⁵ Gautier, P.E., Poisson, F., and Letourneaux, F., High Speed Trains External Noise: A Review of Measurements and Source Models for TGV Case Up to
			instantaneous me	ter reading is 10 dB(A) less than $L_{pAEq,Tp}$ and	360 km/hr, in Proceedings of the 8th World Congress on Railway Research (2008).
			continuing throug	h the pass-by event until the meter reading is	⁶ European Union, "Commission Regulation Number 1304/2014, on the technical specification for interoperability relating to the subsystem 'rolling
			again 10 dB(A) les	s than L	stock — noise' amending Decision 2008/232/EC and repealing Decision 2011/229/EU," Official Journal of the European Union, Brussels, Belgium, 2014.

Comparison Of Noise for TRAin STandards

Calculate L_{pAeq,Tp}

is the A-weighted equivalent continuous sound pressure level produced by the train as measured during the passby event

 $_{_{\text{pareq},\text{TP}}}$ can be calculated from the passby data using the following relationship:

 $L_{pAeq,T_{p}} = 10 \text{ lg} \left(\frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right) = dB$

Microphone Position is 7.5 m from track centerline and 3.5 m above top of rail (Microphone Position 2).

where

is the passby time interval = time when trail tail passes microphone minus time when train nose passes microphone = T, - T, Т

- Τ, is the time when the train nose passes the microphone
- Τ, is the time when the train tail passes the microphone
- $\mathsf{P}_{_{\!\!A}}\!(t)$ is the A-weighted instantaneous sound pressure in Pa at time t

p₀ = 20µPa = 0.00002 p₀ is the reference sound pressure: Ра

- $\Delta t_{_i} \qquad$ is the time increment between measured data points =

 $\int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \approx \sum_{i=1}^{i=n} \left(\frac{Pa(i)^2}{p_0^2} \right) \Delta t_i \qquad \text{is the time increment between measured data points =} \\ \Delta t_i \qquad \text{is the time increment between measured data points =} \\ \Delta t_i \qquad \text{is the time increment between measured data points =} \\ \Delta t_i \qquad \text{is the time increment between measured data points =} \\ \Delta t_i \qquad \text{is the time increment between measured data points =} \\ \Delta t_i \qquad \text{is the time increment i} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, and the corresponding Pa(i) analog meter values.} \\ \Delta t_i = 0.05 \text{ seconds, analog meter values.} \\ \Delta t_i = 0.05$

Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²
1	1.00	80.10	0.202316	1.02329E+08	19	1.90	96.20	1.291308	4.16869E+09	37	2.80	96.00	1.261915	3.98107E+09	55	3.70	95.60	1.205119	3.63078E+09
2	1.05	82.00	0.251785	1.58489E+08	20	1.95	96.70	1.367823	4.67735E+09	38	2.85	96.20	1.291308	4.16869E+09	56	3.75	94.80	1.099082	3.01995E+09
3	1.10	83.90	0.313350	2.45471E+08	21	2.00	97.20	1.448872	5.24807E+09	39	2.90	96.10	1.276527	4.07380E+09	57	3.80	94.80	1.099082	3.01995E+09
4	1.15	85.00	0.355656	3.16228E+08	22	2.05	97.00	1.415892	5.01187E+09	40	2.95	96.40	1.321387	4.36516E+09	58	3.85	94.70	1.086501	2.95121E+09
5	1.20	88.00	0.502377	6.30957E+08	23	2.10	96.60	1.352166	4.57088E+09	41	3.00	96.50	1.336688	4.46684E+09	59	3.90	95.90	1.247470	3.89045E+09
6	1.25	90.50	0.669931	1.12202E+09	24	2.15	95.70	1.219074	3.71535E+09	42	3.05	96.90	1.399684	4.89779E+09	60	3.95	95.50	1.191324	3.54813E+09
7	1.30	93.00	0.893367	1.99526E+09	25	2.20	96.00	1.261915	3.98107E+09	43	3.10	95.20	1.150880	3.31131E+09	61	4.00	94.60	1.074064	2.88403E+09
8	1.35	95.00	1.124683	3.16228E+09	26	2.25	96.80	1.383662	4.78630E+09	44	3.15	95.20	1.150880	3.31131E+09	62	4.05	93.20	0.914176	2.08930E+09
9	1.40	94.90	1.111809	3.09030E+09	27	2.30	97.00	1.415892	5.01187E+09	45	3.20	95.30	1.164206	3.38844E+09	63	4.10	91.50	0.751675	1.41254E+09
10	1.45	95.30	1.164206	3.38844E+09	28	2.35	96.80	1.383662	4.78630E+09	46	3.25	96.10	1.276527	4.07380E+09	64	4.15	89.80	0.618059	9.54993E+08
11	1.50	95.30	1.164206	3.38844E+09	29	2.40	96.10	1.276527	4.07380E+09	47	3.30	96.50	1.336688	4.46684E+09	65	4.20	88.00	0.502377	6.30957E+08
12	1.55	95.30	1.164206	3.38844E+09	30	2.45	95.50	1.191324	3.54813E+09	48	3.35	96.50	1.336688	4.46684E+09	66	4.25	86.00	0.399052	3.98107E+08
13	1.60	96.00	1.261915	3.98107E+09	31	2.50	95.40	1.177687	3.46737E+09	49	3.40	95.80	1.233190	3.80189E+09	67	4.30	84.90	0.351585	3.09030E+08
14	1.65	96.10	1.276527	4.07380E+09	32	2.55	96.20	1.291308	4.16869E+09	50	3.45	95.00	1.124683	3.16228E+09	68	4.35	83.10	0.285779	2.04174E+08
15	1.70	96.00	1.261915	3.98107E+09	33	2.60	96.90	1.399684	4.89779E+09	51	3.50	95.00	1.124683	3.16228E+09	69	4.40	82.00	0.251785	1.58489E+08
16	1.75	95.50	1.191324	3.54813E+09	34	2.65	97.00	1.415892	5.01187E+09	52	3.55	95.20	1.150880	3.31131E+09	70	4.45	80.50	0.211851	1.12202E+08
17	1.80	95.10	1.137706	3.23594E+09	35	2.70	96.60	1.352166	4.57088E+09	53	3.60	95.60	1.205119	3.63078E+09	71	4.50	80.00	0.200000	1.00000E+08
18	1.85	95.00	1.124683	3.16228E+09	36	2.75	95.90	1.247470	3.89045E+09	54	3.65	95.80	1.233190	3.80189E+09					

Data Point Number for Start of Passby Event (time at which train nose passes microphone): Data Point Number for End of Passby Event (time at which train tail passes microphone):

$$L_{pleq,Tp} = 10 \, \log \left(\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \right) \qquad L_{pleq,Tp} = 95.4$$

8

60

i = 1

$$\sum_{i=1}^{n} thus, \sum_{i=1}^{n} \left(\frac{Pa(i)^2}{p_0^2} \right) \Delta t_i = 9.39146E+09$$

Impact of Microphone Position

Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	Appl	ies to Regulation	ıs in these Regi	ions²	Comment
			US	EU	China	Japan	
1	7.5	1.2		X (TSI 2014)			TSI 1304
2	7.5	3.5		X (TSI 2014)			Also required for speeds > 250 km/hr

References:

^AL. Lu, X. Hu, Y. Zhang and X. Zhou, "Survey and Analysis of the Beijing-Shanghai High Speed Rail

Noise," in The 21st International Congress on Sound and Vibration, Beijing, China, 2014. ⁸G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese Academy of Railway Sciences (CARS)

1		25	25	,	V /TEL 2002)	-		Reference for p-100	A train colo	–	a norma cha cha			
	4	30	3.5	×	X (1512008)	x	<u> </u>	US and China measur	ement location	^C W Elliott "Be	rt, Beijing Shi, China, 2 quest for Information	UU3. Reference FOI13.5	580 Comparison of	Measured Sound
Impact of microphone dist	ance is detern	nined from the fo	llowing equation	³ L = L - 10)*LOG(d/d0), w	here L is the	equivalent A-w	eighted constant sou	nd pressure level	Levels for High	Canad Trains as a Fun	itianal Distance fr	oon Track " High Car	and Bail Ture (US2)
for the microphone at dist	ance d0. and	d is the distance f	or Ld.	d d0		d0				Levels for High	nd, 2013.	LIGHOI DISLANCE II	oni track, High spe	eu Kall 1w0 (H52),
	Microphone	Distance from	Elevation Above					1		, .				
	Position	Track Centerline	Top of Rail (m)	L at 271	. km/h dB(A)	L _{pAeq,Tp} at 271	. km/h (Pa)				Sound Pres	sure Variations f	or Microphone P	ositions and
		(m)						To a	onvort dP(A) to Pascalar (0 0 00002*/100/dPA (20))	Train	need from Pofe	ronco F	
	1	7.5	12	<u> </u>	93.20		0.914	Tot	convert Pa to dB(A) dF	$R(\Delta) = 20*10G10(Pa/0.00002)$	Sneed (km/h		dB(A)	
	2	7.5	3.5		95.80		1.233	Not	e: The simple sound lev	vel correction formula	.) Speed (iiii) ii	/ PAG	M2 M2	M3
	3	25	3.5		82.08		0.254	und	erestimates the measu	red values. Therefore,	271	93.2	95.8	82.0
	4	30	1.2		81.29		0.232	rati	os based on actual mea	asurements were used to	341	96.5	98.0	85.5
								adji	ust for microphone loca	ation (table at right).	386	98.5	100.1	88.1
Calculated Noise Metrics: Maximum Reco	orded Sound P	ressure Levels												
The following calculations are for Microph	none Position	2		L =	maximum rec	orded passby	sound pressure	level						
L _{p(maximum)} = 97.2	dB(A)	which occurs at	data point	21	at passby time		2.20	seconds						
,														
L _{pASmax} is the maximum sound pressure lev	el, slow and A	-weighted and L _p	AFmax = maximum	sound pressur	re level, fast ar	nd A-weighted	J. The time peri	od for the "slow" rea	ding is 1 second. The ti	me period for the "fast" read	ding is 0.125 secor	ds.		
L _{pASmax} can be calculated as the logarithmic	average of the	e recorded SPLs fo	or the 1 second ti	ime interval co	ontaining the h	highest values	·	The logarithmic ave	erage for an Excel array	is: {=10*LOG(AVERAGE(10^	(ARRAY/10)))} arr	y-entered, i.e.	using CTRL-Shif	t-Enter keys
						Thurs 1		where array is of th	e form A10:A15. In the	e current case, the array is P	assby Data Set 1,	C:48:C68		
Highest 1-second interval occurs from star	rt time	1.95	to end time	2.95		Inus, L _{pASmax} =	, 	96.42	dB(A)					
Similarly, L pAFmax can be calculated as the lo	igarithmic avei	rage of the record	led SPLs for the U	J.125 second t	time interval co	ontaining the l	nighest values							
Highest 0.125-second interval occures fro	m start time		1.90	to end time	2.025		Inus, L =	96.79	dB(A)					
Calculated Noise Metrics: Other Standard	Darameters													
The following calculations are for Microph	none Position	2												
L _{pAeq,passby} is the A-weighted equivalent continue	ous sound press	sure level produced	during the entire	passby event, i	including approa	ach, T _p , and dep	parture (used for 1	L _d , L _n , etc.)						
The calculation includes all of the pass-by data	points.													
Data Point Number for Start of Passby Eve	ent (time at wh	ich train nose pa	sses microphone	:):	1	i = 1	i=n (Pa(i) ²						
Data Point Number for End of Passby Ever	nt (time at whi	ch train tail passe	s microphone):		71	i - n	thus, \	$\frac{1}{p_0^2} \Delta t_i =$	1.10857E+:	10 I ₂ - I ₁ =	3.50	seconds		
()						<i>i</i> = 1							
$L = 10 \ln \left(\frac{1}{2} \frac{p_A^2}{p_A^2} \right)$	$\frac{1}{2}$	L .=	95.01	dB(A)										
pAeq, pass-by $T_2 - T_1 T_2 - T_1 T_3$	20	pAeq,pass-by	55.01	ub(A)										
TEL is the Transit Exposure Limit ^{4.}	It is measured	over the time inter	val starting when	the SPL is 10 dE	B(A) lower than	L and endi	ing when the SPL	again reaches a value tl	hat is 10 dB(A) lower than	L PARG,TP				
	TEL is calculate	ed using the followi	ng formula:		$TEL = L_{_{pAeq,Tp}} +$	10*LOG(T	í.)	TEL =	96.08 dB(A)					
SEL is the Sound Exposure Limit ⁴ .	Like L , , it i	ntegrates the total	sound energy over	r a measureme	nt period, but fo	or SEL, the mea	surement period	is normalized to a dura	tion of 1 second. At a mic	crophone distance of 30 m (100	ft), SEL = $L_{pAeq,Tp}$ +	10*LOG(Tp) + 1		
	SEL at 30 m:	100.73	dB(A)	1	SEL at 7.5 m:	106.75	dB(A)	SEL at 25 m: 1	l01.52 dB(A)	using the distance correct	tion factor:	$L_{d} = L_{d0} - 10$	*LOG(d/d0)	
	SEL is the cum	ulative noise expos	ure (i.e. "dose") fo	r a single noise	event normalize	ed over 1 secon	d. The fact that S	EL is a cumulative meas	ure means that (1) louder	events have higher SELs than q	uieter ones, and			
Charles I Daman Anna	(2) events that	t last longer in time	have higher SELs t	than shorter on	ies.4									
Statistical Parameters	by specifying	the indicated per	centile of the da	ta values usin	ng Evcel Functio	DR PERCENTIL	E(range P)							
where" range" is the array	of values (e.g	. K10:K68) and P	= the percentile ((between 0 ar	nd 1, for exam	ple, P for the 9	90th percentile	would be entered as	0.9)					
L ₁₀ is the sound pressure level for which 90	0% of the reco	rded values are gr	reater. It include	s lead-in (pric	or to nose passi	ing microphon	ne) and trail-off	(after tail of train pas	ses) data.	L ₁₀ =	84.90	dB(A)		
L _{in} is the sound pressure level for which 50	0% of the reco	rded values are gr	reater. It include	s lead-in (pric	or to nose passi	ing microphon	ne) and trail-off	(after tail of train pas	ses) data.	L _{sn} =	95.50	dB(A)		
L _m is the sound pressure level for which 10	0% of the reco	rded values are gr	reater. It include	s lead-in (pric	or to nose passi	ing microphon	ne) and trail-off	(after tail of train pas	ses) data.	L=	96,80	dB(A)		
L														
Summary of Pass-by Noise Metrics for Ea	ch Microphon	e Position												
The noise metrics shown in the following	table correspo	and to the baseline	e speed of		271	km/hr	$L_{d} = L_{d0} - 10*L00$	G(d/d0), where L _{d0} is t	the equivalent A-weigh	ted constant sound pressure	level for the micr	ophone at dista	ance d0, and d is	s the distance for L _d .
1														

Noise Metric: Table Entries are dB(A) Microphone Position Adjustment Factors⁵ Microphon L pASmax L TEL SEL L_10 L____ L____ M2 L pAeq,Tp L pAeq,passby Speed (km/hr) M1 L Position 92.9 93.8 94.2 92.4 103.9 82.6 92.9 94.2 94.6 93.5 1 95.5 97.2 96.4 96.8 95.0 96.1 106.7 84.9 95.5 96.8 271 1.000 1.028 2 3 81.7 83.2 82.5 82.8 81.3 82.2 91.4 72.7 81.7 82.9 341 1.035 1.052 81.5 82.1 386 Λ 80.9 82.4 81.7 82.1 80.5 90.6 71.9 81.0 1.057 1.074

Impact of Train Speed on Noise Levels

Ricardo evaluated several methods for determining the impact of train speed on passby noise levels. The approach developed by Gautier, Poisson & Letourneaux⁵ provided the highest level of correlation with measured data is the basis for the calculations presented below. $L_{Aeq,tp}$ (V) - $L_{Aeq,tp}$ (V₀) = K log(V/V₀) where K is an empirical factor If the SPL is known at train speed V_o, the SPL at train speed V can be determined from this formula V= train speed (km/hr) where

thus, $L_{Aeq,tp}(V) = K \log(V/V_0) + L_{Aeq,tp}(V_0)$

V_= reference train speed (km/hr)

The empirical factor K varies with train speed. This is because the contribution of noise sources (e.g. wheel/rail interaction, propulsion components, aerodynamics) vary with train speed. The relationship between the K factor and train speed is provided by the following equation:

K = a*V + b where a= . 0.0625 and b= 25.00

V for this train set is: 271 km/hr Ricardo calculated the K factor values for 12 passby noise data sets.

M3

0.880

0.917

0.945

The following tables contain the calculated variation with train speed for the various noise parameters described above:

Train (ki				Microphone	Position 1		Noise N	etric: Table En	tries are dB(A)				60
	ain Speed (km/hr)	к	L pAseq, Tp	L p(maximum)	L _{pASmax}	L pAFmax	L pAeq,passby	TEL	SEL	L ₁₀	L	L ₉₀	50
	80	30.0000	77.0	78.7	77.9	78.3	76.5	77.6	88.0	66.7	77.0	78.3	40
	150	34.3750	84.1	85.7	85.0	85.3	83.6	84.6	95.0	73.8	84.1	85.3	
	200	37.5000	87.9	89.6	88.9	89.2	87.5	88.5	98.9	77.6	88.0	89.2	30
	250	40.6250	91.5	93.1	92.4	92.7	91.0	92.1	102.4	81.2	91.5	92.7	
	300	43.7500	94.8	96.5	95.7	96.1	94.4	95.4	105.8	84.5	94.8	96.1	0 20
	350	46.8750	98.1	99.8	99.0	99.4	97.6	98.7	109.1	87.8	98.1	99.4	
Test Speed→	271	41.9375	92.9	94.6	93.8	94.2	92.4	93.5	103.9	82.6	92.9	94.2	10
			1				1						• 0 +
Tereir	in Court			Microphone	Position 2		Noise N	letric: Table Er	tries are dB(A)	1			0 100 200 300 400 500
(ki	km/hr)	к	L pAeq, Tp	L p(maximum)	L pASmax	LpAFmax	L pAeq,passby	TEL	SEL	L ₁₀	L _{so}	L ₉₀	Train Speed (km/hr)
	80	30.0000	79.6	81.3	80.5	80.9	79.1	80.2	90.9	69.0	79.6	80.9	
	150	34.3750	86.7	88.4	87.6	88.0	86.2	87.3	97.9	76.1	86.7	88.0	
	200	37.5000	90.5	92.3	91.5	91.8	90.1	91.1	101.8	80.0	90.6	91.9	
	250	40.6250	94.1	95.8	95.0	95.4	93.6	94.7	105.3	83.5	94.1	95.4	The empirical factor, K, varies with train speed: it is on the order of 30 in speed
	300	43.7500	97.4	99.1	98.3	98.7	96.9	98.0	108.7	86.8	97.4	98.7	range to 300 kph and up to 50 for very high speed trains, for which aerodynamic
	350	46.8750	100.7	102.4	101.6	102.0	100.2	101.3	112.0	90.1	100.7	102.0	noise sources are dominant.
Test Speed→	271	41.9375	95.5	97.2	96.4	96.8	95.0	96.1	106.7	84.9	95.5	96.8	K = 0.0625(Train Speed, km/hr) + 25
			-										
				Microphone	Position 3		Noise	Metric: Table I	Entries are dB(A)				
Trair (ki	ain Speed km/hr)	к	L pAeq,Tp	L p(maximum)	L _{pASmax}	L pAFmax	L pAeq,passby	TEL	SEL	L ₁₀	L ₅₀	L ₉₀	
	80	30.0000	65.8	67.3	66.6	67.0	65.4	66.3	75.5	56.8	65.8	67.0	
	150	34.3750	72.9	74.4	73.7	74.0	72.5	73.4	82.5	63.8	72.9	74.0	
	200	37.5000	76.8	78.3	77.6	77.9	76.4	77.3	86.4	67.7	76.8	77.9	
	250	40.6250	80.3	81.8	81.1	81.4	79.9	80.8	89.9	71.2	80.3	81.4	
	300	43.7500	83.7	85.1	84.5	84.8	83.3	84.2	93.3	74.6	83.7	84.8	
	350	46.8750	86.9	88.4	87.7	88.1	86.5	87.5	96.6	77.9	87.0	88.1	
Tort Encod .	271	41.9375	81.7	83.2	82.5	82.8	81.3	82.2	91.4	72.7	81.7	82.9	
rest speeu -				Missonham	Desister 4		Naire	Astria Table F	atains and dD(A)				
rest speed -					POSITION 4		i inoise	vietric: Table E	ntries are db(A)				
Train	ain Sneed			witcrophone									
Trair (ki	ain Speed /km/hr)	к	L pAeq,Tp	L _{p(maximum)}	L pASmax	L pAFmax	L pAeq,passby	TEL	SEL	L_10	L50	L ₉₀	
Train (ku	ain Speed km/hr) 80	к 30.0000	L _{pAeq,Tp} 65.0	L _{p(maximum)} 66.5	L _{pASmax} 65.8	L pAFmax 66.2	L pAeq,passby 64.6	TEL 65.6	SEL 74.7	L ₁₀ 56.0	L ₅₀ 65.1	L ₉₀ 66.2	
Train (ku	ain Speed (km/hr) 80 150	к 30.0000 34.3750	L _{pAeq,Tp} 65.0 72.1	L _{p(maximum)} 66.5 73.6	L _{pASmax} 65.8 72.9	L _{pAFmax} 66.2 73.2	L pAeq.passby 64.6 71.7	TEL 65.6 72.6	SEL 74.7 81.7	L ₁₀ 56.0 63.0	L ₅₀ 65.1 72.1	L ₉₀ 66.2 73.2	
Train (kr	ain Speed (km/hr) 80 150 200	к 30.0000 34.3750 37.5000	L _{pAeq,Tp} 65.0 72.1 76.0	L _{p(maximum)} 66.5 73.6 77.5	L _{pASmax} 65.8 72.9 76.8	L _{pAFmax} 66.2 73.2 77.1	L _{pAeq,passby} 64.6 71.7 75.6	TEL 65.6 72.6 76.5	SEL 74.7 81.7 85.6	L ₁₀ 56.0 63.0 66.9	L ₅₀ 65.1 72.1 76.0	L ₉₀ 66.2 73.2 77.1	
Train (ki	ain Speed (km/hr) 80 150 200 250	к 30.0000 34.3750 37.5000 40.6250	L _{pAeq,Tp} 65.0 72.1 76.0 79.5	L _{p(maximum)} 66.5 73.6 77.5 81.0	L _{pASmax} 65.8 72.9 76.8 80.3	L _{pAFmax} 66.2 73.2 77.1 80.6	L _{pAeq,passby} 64.6 71.7 75.6 79.1	TEL 65.6 72.6 76.5 80.0	SEL 74.7 81.7 85.6 89.2	L ₁₀ 56.0 63.0 66.9 70.5	L ₅₀ 65.1 72.1 76.0 79.5	L ₉₀ 66.2 73.2 77.1 80.6	
Train (ku	ain Speed km/hr) 80 150 200 250 300	к 30.0000 34.3750 37.5000 40.6250 43.7500	<mark>L</mark> _{рАед,Тр} 65.0 72.1 76.0 79.5 82.9	L _{p(maximum)} 66.5 73.6 77.5 81.0 84.3	L _{pASmax} 65.8 72.9 76.8 80.3 83.7	L _{pAFmax} 66.2 73.2 77.1 80.6 84.0	L _{pAeq,passby} 64.6 71.7 75.6 79.1 82.5	TEL 65.6 72.6 76.5 80.0 83.4	SEL 74.7 81.7 85.6 89.2 92.5	L ₁₀ 56.0 63.0 66.9 70.5 73.8	L ₅₀ 65.1 72.1 76.0 79.5 82.9	L ₉₀ 66.2 73.2 77.1 80.6 84.0	
Train (ku	ain Speed (km/hr) 80 150 200 250 300 350	к 30.0000 34.3750 37.5000 40.6250 43.7500 46.8750	<mark>L</mark> _{рАед,Тр} 65.0 72.1 76.0 79.5 82.9 86.1	66.5 73.6 77.5 81.0 84.3 87.6	L _{pA5max} 65.8 72.9 76.8 80.3 83.7 86.9	LpAFmax 66.2 73.2 77.1 80.6 84.0 87.3	LpAeq.passby 64.6 71.7 75.6 79.1 82.5 85.7	TEL 65.6 72.6 76.5 80.0 83.4 86.7	SEL 74.7 81.7 85.6 89.2 92.5 95.8	L ₁₀ 56.0 63.0 66.9 70.5 73.8 77.1	L ₅₀ 65.1 72.1 76.0 79.5 82.9 86.2	L ₉₀ 66.2 73.2 77.1 80.6 84.0 87.3	

23	2.10	93.1	0.90371		
24	2.15	92.7	0.86304	1	
25	2.20	92.5	0.84339	1	
26	2.25	93.2	0.91418		
27	2.30	93.4	0.93547	1	
28	2.35	93.3	0.92476	1	
29	2.40	93.4	0.93547	1	
30	2.45	93.6	0.95726	1	
31	2.50	93.9	0.99090	1	
32	2.55	93.7	0.96834	1	
33	2.60	94.1	1.01398]≁	
34	2.65	94.5	1.06177	1	
35	2.70	94.7	1.08650	1	Maximum So
36	2.75	94.2	1.02572	1	
37	2.80	93.4	0.93547]≁-	
38	2.85	93.5	0.94630	1	
39	2.90	93.9	0.99090	1	End Time for
40	2.95	93.8	0.97956	1	
41	3.00	93.9	0.99090	1	
42	3.05	94.1	1.01398	1	
43	3.10	93.9	0.99090	1	
44	3.15	93.5	0.94630		
45	3.20	93.6	0.95726	1	
46	3.25	93.4	0.93547	1	
47	3.30	93.5	0.94630	1	
48	3.35	93.7	0.96834	1	
49	3.40	93.8	0.97956	1	
50	3.45	93.2	0.91418	1	
51	3.50	93.4	0.93547	1	
52	3.55	94.0	1.00237	1	
53	3.60	93.6	0.95726	1	
54	3.65	94.0	1.00237	1	
55	3.70	94.0	1.00237	1	
56	3.75	93.2	0.91418	1	
57	3.80	92.9	0.88314	1	
58	3.85	92.9	0.88314	┣──	
59	3.90	93.3	0.92476	1	
60	3.95	93.3	0.92476		Train Tail Pas
61	4.00	92.5	0.84339]	
62	4.05	91.8	0.77809		
63	4.10	90.7	0.68554	1	
64	4.15	89.2	0.57681	4	
65	4.20	87.2	0.45817	┣—	
66	4.25	86.2	0.40835	4	
67	4.30	84.7	0.34358	4	10 dB(Δ) Ιονν
68	4.35	83.2	0.28909	1	

Maximum Sound Pressure Leve

End Time for LpASmax Calculat

Train Tail Passes Microphone

10 dB(A) lower than SPL when

69	4.40	82.2	0.25765
70	4.45	81.2	0.22963
71	4.50	80.2	0.20466

Irain Iail Passes Microphone

Spreadsheet-Based Tool for Comparing Noise Standards and Re Conversion Tool for Noise Regulations and Standards to Commo

CONTRAST

Comparison Of Noise for TRAin STandards

Train Set Informa			
Year Data Set was Generated:		2014	¹ He, Β., <i>et. al.,</i> Inv
Train Set Manufacturer:	Changchun Railw	ay Vehicles, Siemens	J. Zhejang Univ-S
Operator:	China Railway Co	rporation	² China CRH3 Series
Train Set Geometry and Test Co	onditions		https://www.railw
Parameter	Value	Units	
Car Lengths			
End Cars:	25.641	m	
Intermediate Cars:	24.786	m	
Number of End Cars:	2		
Number of Intermediate Cars:	6		
Test Train Length:	200	m	
Test Train Speed(s):	271	km/hr	
Microphone Position:	1		dB (sound press
Distance from Track Centerline:	7.5	m	where 0.0002 is
Elevation above Top of Rail:	1.5	m	so, Pa = 0.00002
Time Increment for Passby Data, Δ T:Time In	0.05	sec	
Number of Passby Data Points:	71]

Plot of Passby Noise Data, Including Key Time Parameters

эl

ion

oise of a High-Speed Train at Different Speeds, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Tr *Technology*, 2019, ²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019, ²China CRH3 Series High

|B (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 \log_{10}(Pa/0.00002)

ain at Different Speeds, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Train at Different Speeds Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Ser

 g_{10} (Pa/0.00002) dB (sound pressure level in decibels) = 20 \log_{10} (Pa/0.00002) dB (sound pressure level in
, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Train at Different Speeds, ¹He, B., *et. al.*, Investiger *echnology*, 2019, ²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,

decibels) = $20 \log_{10}(Pa/0.00002)$

gation into Exterior Noise of a High-Speed Train at Different Spe

U.S. Department of Transportation Federal Railroad Administration

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

CONTRAST

14-Oct-19

Program Version: 7

Federal Railroad Administration High Speed Rail Noise Standards and Regulations

Data Set Number:			4	Passby Noise Calculations	References
Data Set Name:	CRH3 Serie	s (based o	n Siemens)	•	
Calculate Train Pass-by P	arameters				¹ He, et al., Investigation into External Noise of a High-Speed Train at Different Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033
Train Speed (V):	271	km/hr =	75.28	m/sec	² Paul, et al, High Speed Rail Noise Standards and Regulations, US DOT Federal Railroad Administration, Contract DTFR35-16-C00006, May 2017.
Train Length:	200	m	10 cars: 2 end ca	rs and 8 intermediate cars	⁸ G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese
Time for Passby (T _p)	2.656826568	seconds	This is the time in	crement between nose of train passing	Academy of Railway Sciences (CARS) Research Report, Beijing Shi, China, 2003.
			microphone and	tail of train passing microphone.	Hanson, C.E., et. al., High Speed Ground Transportation Noise and Vibration Impact Assessment, U.S. Department of Transportation, Federal Railroad
Time for TEL (T _{TEL})	3.20	seconds	TEL is the Transit	Exposure Limit and represents the equivalent	Administration, Report Number DOT/FRA/ORD-12/15, September 2012.
			A-weighted SPL o	ver the time period beginning when the	⁶ Gautier, P.E., Poisson, F., and Letourneaux, F., High Speed Trains External Noise: A Review of Measurements and Source Models for TGV Case Up to
			instantaneous me	eter reading is 10 dB(A) less than L _{pAEq,Tp} and	360 km/hr, in Proceedings of the 8th World Congress on Railway Research (2008).
			continuing throu	gh the passby event until the meter reading is	^E European Union, "Commission Regulation Number 1304/2014, on the technical specification for interoperability relating to the subsystem 'rolling
			again 10 dB(A) le	ss than L pAeg, Tp	stock — noise' amending Decision 2008/232/EC and repealing Decision 2011/229/EU," Official Journal of the European Union, Brussels, Belgium, 2014.

Comparison Of Noise for TRAin STandards

Calculate L_{pAeq,Tp}

is the A-weighted equivalent continuous sound pressure level produced by the train as measured during the passby event

 $L_{{}_{pAeq,Tp}}$ can be calculated from the passby data using the following relationship:

 $L_{pAeq,T_{p}} = 10 \text{ lg} \left(\frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right) \quad dB$

where

is the passby time interval = time when trail tail passes microphone minus time when train nose passes microphone = T, - T, Т

- Τ_1 is the time when the train nose passes the microphone
- Τ_2 is the time when the train tail passes the microphone
- P_(t) is the A-weighted instantaneous sound pressure in Pa at time t

p_o = 20µPa = 0.00002 p₀ is the reference sound pressure: Ра

- Δt

Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P_(i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²
1	1.00	78.80	0.174193	7.58578E+07	19	1.90	94.00	1.002374	2.51189E+09	37	2.80	93.40	0.935470	2.18776E+09	55	3.70	94.00	1.002374	2.51189E+09
2	1.05	79.50	0.188812	8.91251E+07	20	1.95	93.90	0.990900	2.45471E+09	38	2.85	93.50	0.946303	2.23872E+09	56	3.75	93.20	0.914176	2.08930E+09
3	1.10	81.30	0.232290	1.34896E+08	21	2.00	93.80	0.979558	2.39883E+09	39	2.90	93.90	0.990900	2.45471E+09	57	3.80	92.90	0.883141	1.94984E+09
4	1.15	83.10	0.285779	2.04174E+08	22	2.05	93.20	0.914176	2.08930E+09	40	2.95	93.80	0.979558	2.39883E+09	58	3.85	92.90	0.883141	1.94984E+09
5	1.20	85.90	0.394485	3.89045E+08	23	2.10	93.10	0.903712	2.04174E+09	41	3.00	93.90	0.990900	2.45471E+09	59	3.90	93.30	0.924762	2.13796E+09
6	1.25	88.30	0.520032	6.76083E+08	24	2.15	92.70	0.863038	1.86209E+09	42	3.05	94.10	1.013981	2.57040E+09	60	3.95	93.30	0.924762	2.13796E+09
7	1.30	90.20	0.647187	1.04713E+09	25	2.20	92.50	0.843393	1.77828E+09	43	3.10	93.90	0.990900	2.45471E+09	61	4.00	92.50	0.843393	1.77828E+09
8	1.35	92.90	0.883141	1.94984E+09	26	2.25	93.20	0.914176	2.08930E+09	44	3.15	93.50	0.946303	2.23872E+09	62	4.05	91.80	0.778090	1.51356E+09
9	1.40	93.00	0.893367	1.99526E+09	27	2.30	93.40	0.935470	2.18776E+09	45	3.20	93.60	0.957260	2.29087E+09	63	4.10	90.70	0.685536	1.17490E+09
10	1.45	93.40	0.935470	2.18776E+09	28	2.35	93.30	0.924762	2.13796E+09	46	3.25	93.40	0.935470	2.18776E+09	64	4.15	89.20	0.576806	8.31764E+08
11	1.50	93.70	0.968345	2.34423E+09	29	2.40	93.40	0.935470	2.18776E+09	47	3.30	93.50	0.946303	2.23872E+09	65	4.20	87.20	0.458174	5.24807E+08
12	1.55	93.40	0.935470	2.18776E+09	30	2.45	93.60	0.957260	2.29087E+09	48	3.35	93.70	0.968345	2.34423E+09	66	4.25	86.20	0.408348	4.16869E+08
13	1.60	94.10	1.013981	2.57040E+09	31	2.50	93.90	0.990900	2.45471E+09	49	3.40	93.80	0.979558	2.39883E+09	67	4.30	84.70	0.343582	2.95121E+08
14	1.65	93.40	0.935470	2.18776E+09	32	2.55	93.70	0.968345	2.34423E+09	50	3.45	93.20	0.914176	2.08930E+09	68	4.35	83.20	0.289088	2.08930E+08
15	1.70	94.30	1.037600	2.69153E+09	33	2.60	94.10	1.013981	2.57040E+09	51	3.50	93.40	0.935470	2.18776E+09	69	4.40	82.20	0.257650	1.65959E+08
16	1.75	94.20	1.025723	2.63027E+09	34	2.65	94.50	1.061769	2.81838E+09	52	3.55	94.00	1.002374	2.51189E+09	70	4.45	81.20	0.229631	1.31826E+08
17	1.80	93.80	0.979558	2.39883E+09	35	2.70	94.70	1.086501	2.95121E+09	53	3.60	93.60	0.957260	2.29087E+09	71	4.50	80.20	0.204659	1.04713E+08
18	1.85	93.50	0.946303	2.23872E+09	36	2.75	94.20	1.025723	2.63027E+09	54	3.65	94.00	1.002374	2.51189E+09					

Data Point Number for Start of Passby Event (time at which train nose passes microphone): Data Point Number for End of Passby Event (time at which train tail passes microphone):

i = 1
i - n thus,
$$\sum_{i=1}^{i=n} \left(\frac{\operatorname{Pa}(i)^2}{p_0^2} \right)^{i}$$

$$\frac{Pa(i)^2}{p_0^2}\Delta t_i = 5.461$$

$$\frac{1}{2} \Delta t_i = 5.461$$

$$r_{pAeq,Tp} = 10 \text{ Ig} \left(\frac{1}{T_2 - T_1} \int_{T_4}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \right) \qquad L_{pAeq,Tp} = 10 \text{ Ig} \left(\frac{1}{T_2 - T_1} \int_{T_4}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \right)$$

Impact of Microphone Position

Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	Appl	es to Regulatio	ons in these Re	gions ²	Co	omment	
			US	EU	China	Japan			
1	7.5	1.2		X (TSI 2014)			TSI 1304		
2	7.5	3.5		X (TSI 2014)			Also required for sp	oeeds > 250 l	m/hr

8

60

References:

^AL. Lu, X. Hu, Y. Zhang and X. Zhou, "Survey and Analysis of the Beijing-Shanghai High Speed Rail

Noise," in The 21st International Congress on Sound and Vibration, Beijing, China, 2014.

⁸G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese Academy of Railway Sciences (CARS)

4 30 1.2 X X US and China measurement location	3	25	3.5		X (TSI 2008)		х	Reference for pre 2014 train sets
	4	30	1.2	Х		х		US and China measurement location

Impact of microphone distance is determined from the following equation: $L_a = L_a - 10^{\circ}LOG(d/d0)$, where L_{a0} is the equivalent A-weighted constant sound pressure level

for the microphone at distance d0, and d is the distance for Ld.

Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	L _{pAeq,Tp} at 271 km/h dB(A)	L _{pAeq.Tp} at 271 km/h (Pa)
1	7.5	1.2	93.13	0.907
2	7.5	3.5	95.80	1.233
3	25	3.5	82.08	0.254
4	30	1.2	81.29	0.232

Research Report, Beijing Shi, China, 2003. ^cW. Elliott, "Request for Information Reference FOI13-580, Comparison of Measured Sound

Levels for High Speed Trains as a Function of Distance from Track," High Speed Rail Two (HS2),

London, England, 2013.

ound Pressure Variations for Microphone Positions and

To convert dB(A) to Pascals: Pa = 0.00002*(10^(dBA/20)) To convert Pa to dB(A), dB(A) = 20*LOG10(Pa/0.00002) Note: The simple sound level correction formula underestimates the measured values. Therefore, ratios based on actual measurements were used to adjust for microphone location (table at right).

Train Spe	Train Speed from Reference 5										
Speed (km/hr)	L _{pArg,Tp} dB(A)										
	M1	M2	M3								
271	93.2	95.8	82.0								
341	96.5	98.0	85.5								
386	98.5	100.1	88.1								

Calculated Noise Metrics: Maximum Recorded Sound Pressure Levels	
The following calculations are for Microphone Position 1	e level
L, , = 94.7 dB(A) which occurs at data point 35 at pass-by time 2 70	seconds
pinsamun)	
L pAmax is the maximum sound pressure level, slow and A-weighted and L pAmax = maximum sound pressure level, fast and A-weighted. The time per particular the time per particular term of the time per particular term of the time per particular term of the term of the term of the term of the term of term	riod for the "slow" reading is 1 second. The time period for the "fast" reading is 0.125 seconds.
L _{pASmax} can be calculated as the logarithmic average of the recorded SPLs for the 1 second time interval containing the highest values	The logarithmic average for an Excel array is: {=10*LOG(AVERAGE(10^(ARRAY/10)))} array-entered, i.e. using CTRL-Shift-Enter keys where array is of the form A10:A15. In the current case, the array is Pass-By Data Set 1, C:48:C68
Highest 1-second interval occurs from start time 1.9 to end time 2.9 Thus, Lasonar =	93.65 dB(A)
Similarly, L can be calculated as the logarithmic average of the recorded SPLs for the 0.125 second time interval containing the highest values	
Highest 0.125-second interval occures from start time 2.60 to end time 2.725 Thus, L	94.38 dB(A)
Calculated Noise Metrics: Other Standard Parameters The following calculations are for Microphone Position 1 $L_{parameters}$ is the A-weighted equivalent continuous sound pressure level produced during the entire pass-by event, including approach, T _p , and departure (used for The calculation includes all of the pass-by data points. Data Point Number for End of Passby Event (time at which train nose passes microphone): 1 i = 1 $i = 1$ Data Point Number for End of Passby Event (time at which train tail passes microphone): 71 i - n thus, $\sum_{i=1}^{i=n} \left(-\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{t^2 A_i(t)}{p_0^2} dt \right) L_{parameters} = 92.75 dB(A)$ TEL is the Transit Exposure Limit ⁴ It is measured over the time interval starting when the SPL is 10 dB(A) lower than $L_{parameters}$ and ending when the SP TEL is calculated using the following formula: TEL = $L_{parameters} + 10^{\circ} LOG(T_{TL}/T_p)$	$\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$ $\frac{Pa(j)^2}{p_0^2}\Delta t_j = 6.58863E+09 T_2 - T_3 = 3.50 \text{seconds}$
SEL is the Sound Exposure Limit.	a is normalized to a duration of 1 second. At a microphone distance of so in (100 h), set $= \sum_{p \neq q, T_p} 10 \cos(p) + 1$
SEL at 30 m: 98.37 dB(A) SEL at 7.5 m: 104.39 dB(A)	SEL at 25 m: 99.17 dB(A) using the distance correction factor: $L_a = L_{ab}$ to to do duty
(2) events that last longer in time have builder SEL than shorter ones ⁴	SEL is a cumulative measure means that (1) louder events have higher SELS than quieter ones, and
(2) events that last longer in time have righer size than shorter ones.	
The following parameters are determined by specifying the indicated percentile of the data values using Excel Function PERCENTILE(range,P).	
where" range" is the array of values (e.g. K10:K68) and P = the percentile (between 0 and 1, for example, P for the 90th percentile	e would be entered as 0.9)
L ₁₀ is the sound pressure level for which 90% of the recorded values are greater. It includes lead-in (prior to nose passing microphone) and trail-of	f (after tail of train passes) data. L ₁₀ = 83.20 dB(A)
L_{so} is the sound pressure level for which 50% of the recorded values are greater. It includes lead-in (prior to nose passing microphone) and trail-of	ff (after tail of train passes) data. L _{so} = 93.40 dB(A)
L ₅₀ is the sound pressure level for which 10% of the recorded values are greater. It includes lead-in (prior to nose passing microphone) and trail-of	if (after tail of train passes) data. $L_{_{50}} = 94.10 \text{ dB(A)}$

Summary of Pass-by Noise Metrics for Each Microphone Position

ŀ	he noise metrics shown in	the following ta	able correspo	nd to the baseline	e speed of		271	km/hr	$L_{d} = L_{d0} - 10*LOG($	d/d0), where L _d	is the equiva	lent A-weighted	constant sou	nd pressure level f	or the microph	one at distand	e d0, and d is
		Microphone Position			Noise Metric:	ise Metric: Table Entries are dB(A)								Microphone	e Position Adjust	ment Factors ⁵	
			L pAeq.Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq, passby	TEL	SEL	L_10	L 50	L ₉₀		Speed (km/hr)	M1	M2	M3
		1	93.1	94.7	93.7	94.4	92.7	93.9	104.4	83.2	93.4	94.1]				
		2	95.7	97.3	96.3	97.0	95.3	96.6	107.3	85.5	96.0	96.7	1	271	1.000	1.028	0.880
		3	81.9	83.3	82.4	83.0	81.6	82.6	91.8	73.2	82.2	82.8]	341	1.035	1.052	0.917
		4	81.1	82.5	81.6	82.2	80.8	81.9	91.1	72.4	81.4	82.0	1	386	1.057	1.074	0.945

Impact of Train Speed on Noise Levels

Ricardo evaluated several methods for determining the impact of train speed on passby noise levels. The approach developed by Gautier, Poisson & Letourneaux ⁵ provided the highest level of correlation with measured data is the basis for the calculations presented below. $L_{Aeq,tp}$ (V) - $L_{Aeq,tp}$ (V₀) = K log(V/V₀) where K is an empirical factor If the SPL is known at train speed V_n, the SPL at train speed V can be determined from this formula where V= train speed (km/hr)

thus, $L_{Aeq,tp}(V) = K log(V/V_0) + L_{Aeq,tp}(V_0)$ V_o= reference train speed (km/hr)

The empirical factor K varies with train speed. This is because the contribution of noise sources (e.g. wheel/rail interaction, propulsion components, aerodynamics) vary with train speed. The relationship between the K factor and train speed is provided by the following equation:

K = a*V + b where a= 0.0625 and b= 25.00

V_n for this train set is: 271 km/hr

The following tables contain the calculated variation with train speed for the various noise parameters described above:

Ricardo calculated the K factor values for 12 passby noise data sets.

				Microphone Po	sition 1		Noise Me	ric: Table Entr	ies are dB(A)			
	Train Speed (km/hr)	к	L pAsq,Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq,passby	TEL	SEL	L_10	L50	L ₉₀
	80	30.0000	77.2	78.8	77.8	78.5	76.9	78.0	88.5	67.3	77.5	78.2
	150	34.3750	84.3	85.9	84.8	85.6	83.9	85.1	95.6	74.4	84.6	85.3
	200	37.5000	88.2	89.8	88.7	89.4	87.8	89.0	99.4	78.3	88.5	89.2
	250	40.6250	91.7	93.3	92.2	93.0	91.3	92.5	103.0	81.8	92.0	92.7
	300	43.7500	95.1	96.6	95.6	96.3	94.7	95.9	106.3	85.1	95.3	96.0
	350	46.8750	98.3	99.9	98.9	99.6	98.0	99.1	109.6	88.4	98.6	99.3
→	271	41.9375	93.1	94.7	93.7	94.4	92.7	93.9	104.4	83.2	93.4	94.1
				Microphone	osition 2		Noise	Metric: Table	Entries are dB(A)			
	Train Speed (km/hr)	к	L pAeq, Tp	L p(maximum)	L	L	L pAeq, passby	TEL	SEL	L ₁₀	L	L ₉₀
	80	30.0000	79.8	81.4	80.4	81.1	79.4	80.7	91.4	69.6	80.1	80.8
	150	34.3750	86.9	88.5	87.4	88.2	86.5	87.7	98.5	76.7	87.2	87.9
	200	37.5000	90.8	92.4	91.3	92.1	90.4	91.6	102.4	80.6	91.1	91.8
	250	40.6250	94.3	95.9	94.8	95.6	93.9	95.1	105.9	84.1	94.6	95.3
	300	43.7500	97.7	99.3	98.2	98.9	97.3	98.5	109.2	87.5	97.9	98.7
	350	46.8750	100.9	102.5	101.5	102.2	100.5	101.8	112.5	90.7	101.2	101.9
→	271	41.9375	95.7	97.3	96.3	97.0	95.3	96.6	107.3	85.5	96.0	96.7
				Microphone		Nois	e Metric: Table					
	Train Speed (km/hr)	к	L _{pAeq,Tp}	L p(maximum)	L pASmax	L pAFmax	L pAeq, passby	TEL	SEL	L ₁₀	L_ ₅₀	L ₉₀
	80	30.0000	66.0	67.4	66.5	67.1	65.7	66.8	76.0	57.3	66.3	66.9
	150	34.3750	73.1	74.5	73.6	74.2	72.8	73.8	83.0	64.4	73.3	74.0
	200	37.5000	77.0	78.4	77.4	78.1	76.7	77.7	86.9	68.3	77.2	77.8
	250	40.6250	80.5	81.9	81.0	81.6	80.2	81.2	90.4	71.8	80.8	81.4
	300	43.7500	83.9	85.3	84.3	85.0	83.5	84.6	93.8	75.1	84.1	84.7
	350	46.8750	87.1	88.5	87.6	88.2	86.8	87.9	97.1	78.4	87.4	88.0
→	271	41.9375	81.9	83.3	82.4	83.0	81.6	82.6	91.8	73.2	82.2	82.8
									E			
				Microphone	osition 4		NOIS	e Metric: Lable	Entries are dB(A)		1	
	Tranks Coursed		L	L	L	L	L náeo nasshv	TEL	SEL	L,,,	L.	L
	(km/hr)	к	pAeq,Tp	p(maximum)	pesmax	permax	p			10	50	50
	(km/hr)	к 30.0000	65.2	66.6	65.7	66.4	64.9	66.0	75.2	56.5	65.5	66.1

The empirical factor, K, varies with train speed: it is on the order of 30 in speed range to 300 kph and up to 50 for very high speed trains, for which aerodynamic noise sources are dominant. K = 0.0625(Train Speed, km/hr) + 25

Test

est

				Microphone Position 4			Nois	Metric: Table	Entries are dB(A)			
	Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq, passby	TEL	SEL	L_10	L_50	L ₉₀
	80	30.0000	65.2	66.6	65.7	66.4	64.9	66.0	75.2	56.5	65.5	66.1
	150	34.3750	72.3	73.7	72.8	73.4	72.0	73.0	82.2	63.6	72.6	73.2
	200	37.5000	76.2	77.6	76.7	77.3	75.9	76.9	86.1	67.5	76.4	77.1
	250	40.6250	79.7	81.1	80.2	80.8	79.4	80.4	89.6	71.0	80.0	80.6
	300	43.7500	83.1	84.5	83.5	84.2	82.7	83.8	93.0	74.3	83.3	83.9
	350	46.8750	86.4	87.7	86.8	87.5	86.0	87.1	96.3	77.6	86.6	87.2
Test Speed \rightarrow	271	41.9375	81.1	82.5	81.6	82.2	80.8	81.9	91.1	72.4	81.4	82.0

The European Technical Standards for Interoperability (TSI) include two normalized values for L_{pAEq.Tp}. The values are normalized to 80 km/hr and 250 km/hr.⁶

The measurements are made at a lateral distance of 7.5 m from the rail centerline and 1.5 m above the top of the rail.

Procedures defined within the TSI to allow noise levels to be calculated at various train speeds based on measurements made at 80 km/hr (50 miles/h) and 250 km/hr (155 miles/h).

For the CHR3 Series Trains, no measurements were made at 80 km/hr and 250 km/hr: Thus, the Gautier method was used to calculate these values

From the Microphone Position 1 Table Above, the normalized values for L_{nden To} can be found and are identified below:

Values Obtained fr	om Data Analysis		Value from TSI Formula		TSI Formulas
L =	77.2	dB(A)	77.2	dB(A)	$L_{pAeq,Tp}$ (80 km/h) = $L_{pAeq,Tp}$ (vtest) - 30 * log (vtest/80 km/h)
L =	91.7	dB(A)	91.4	dB(A)	$L_{pAeq,Tp}$ (250 km/h) = $L_{pAeq,Tp}$ (vtest) - 50 * log (vtest/250 km/h)

23	2.10	82.1	0.25470	
24	2.15	82.0	0.25179	
25	2.20	82.4	0.26365	
26	2.25	82.4	0.26365	
27	2.30	82.8	0.27608	
28	2.35	83.1	0.28578	
29	2.40	82.9	0.27927]←
30	2.45	82.9	0.27927	
31	2.50	83.0	0.28251	Start Time for LpASmax Calculat
32	2.55	82.8	0.27608	
33	2.60	82.7	0.27292	
34	2.65	82.6	0.26979	
35	2.70	82.9	0.27927	
36	2.75	82.9	0.27927	
37	2.80	82.9	0.27927	
38	2.85	83.3	0.29244]←
39	2.90	83.1	0.28578	
40	2.95	83.4	0.29582	Maximum Sound Pressure Lev
41	3.00	83.2	0.28909	
42	3.05	82.8	0.27608	
43	3.10	82.8	0.27608	
44	3.15	82.8	0.27608	
45	3.20	82.9	0.27927	
46	3.25	83.0	0.28251	
47	3.30	83.0	0.28251	
48	3.35	82.8	0.27608	
49	3.40	82.8	0.27608	←
50	3.45	83.2	0.28909	
51	3.50	83.1	0.28578	End Time for LpASmax Calculati
52	3.55	82.5	0.26670	
53	3.60	82.3	0.26063	
54	3.65	82.6	0.26979	
55	3.70	82.2	0.25765	
56	3.75	82.2	0.25765	
57	3.80	81.7	0.24324	
58	3.85	81.4	0.23498	 ¶−−−
59	3.90	81.3	0.23229	
60	3.95	81.3	0.23229	Train Tail Passes Microphone
61	4.00	80.7	0.21679	4
62	4.05	79.4	0.18665	4
63	4.10	78.4	0.16635	4
64 65	4.15	//.6	0.151/2	4
66	4.20 1 25	//.⊥ 77 1	0.14323	4
67	4 30	76.1	0.14323	1
68	4.35	75.4	0.11777	←

69	4.40	74.9	0.11118
70	4.45	73.8	0.09796
71	4.50	73.2	0.09142

10 dB(A) lower than SPL when Train Tail Passes Microphone

Spreadsheet-Based Tool for Comparing Noise Standards and Re Conversion Tool for Noise Regulations and Standards to Commo

CONTRAST

Comparison Of Noise for TRAin STandards

Train Set Informatio			
Year Data Set was Generated:		2014	¹ He, Β., <i>et. al.,</i> Inv
Train Set Manufacturer:	Changchun Railw	ay Vehicles, Siemens	J. Zhejang Univ-So
Operator:	China Railway Co	rporation	² China CRH3 Series
Train Set Geometry and Test	Conditions		https://www.railw
Parameter	Value	Units	
Car Lengths			
End Cars:	25.641	m	
Intermediate Cars:	24.786	m	
Number of End Cars:	2		
Number of Intermediate Cars:	6		
Test Train Length:	200	m	
Test Train Speed(s):	271	km/hr	
Microphone Position:	3		dB (sound press
Distance from Track Centerline:	25	m	where 0.0002 is
Elevation above Top of Rail:	3.5	m	so, Pa = 0.00002
Time Increment for Pass-By Data, Δ T:Time Ir	0.05	sec	
Number of Pass-By Data Points:	71		

ion

gulations on Reference Program Version: 7 14-Oct-19 References /estigation into Exterior Noise of a High-Speed Train at Different Speeds, ¹He, B., et. al., Investigation into Exterior No ci A (Applied Physics and Enginering), 2014, Vol 15 (12), Pages 1019-1033. High Speed Train Image; provided by Railway Technology, 2019,²China CRH3 Series High Speed Train Image; provided by Railway ay-technology.com/projects/beijing-tianjin/ Formulas sure level in decibels) = 20 log₁₀(Pa/0.00002) dB (sound pressure level in decibels) = 20 log₁₀(Pa/0.00002) d ; the reference sound pressure level in Pascals 2*10^(dB/20)so, Pa = 0.00002*10(dB/20)so, Pa = 0.00002*10(dB/20)so, Pa = 0.00002*10(dB/20)so, Pa = 0.00002*10(dB/20) Rear of Train Passes Microphone

oise of a High-Speed Train at Different Speeds, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Tr *Technology*, 2019, ²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019, ²China CRH3 Series High

|B (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 \log_{10}(Pa/0.00002)

ain at Different Speeds, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Train at Different Speeds Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,²China CRH3 Ser

 g_{10} (Pa/0.00002) dB (sound pressure level in decibels) = 20 \log_{10} (Pa/0.00002) dB (sound pressure level in

, ¹He, B., *et. al.*, Investigation into Exterior Noise of a High-Speed Train at Different Speeds, ¹He, B., *et. al.*, Investiger *echnology*, 2019, ²China CRH3 Series High Speed Train Image; provided by *Railway Technology*, 2019,

decibels) = $20 \log_{10}(Pa/0.00002)$

gation into Exterior Noise of a High-Speed Train at Different Spe

U.S. Department of Transportation Federal Railroad Administration

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

where

CONTRAST

14-Oct-19

Program Version: 7

Federal Railroad Administration High Speed Rail Noise Standards and Regulations Comparison Of Noise for TRAin STandards

Data Set Number:		5		Passby Noise Calculations		References
Data Set Name:	CRH3 Series	(based on	Siemens)			
Calculate Train Passby Pa	arameters				¹ He, et al., Investigation into External Noise of a High-Speed Train at I	ifferent Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033
Train Speed (V):	271	km/hr =	75.28	m/sec	² Paul, et al, High Speed Rail Noise Standards and Regulations, US DOT	Federal Railroad Administration, Contract DTFR35-16-C00006, May 2017.
Train Length:	200	m	10 cars: 2 end car	rs and 8 intermediate cars	³ G. Xiaoan and J. Hua, "Application Research on Descending Vibration	and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese
Time for Passby (T _p)	2.656826568	seconds	This is the time in	crement between nose of train passing	Academy of Railway Sciences (CARS) Research Report, Beijing Sh	i, China, 2003.
			microphone and	tail of train passing microphone.	⁴ Hanson, C.E., et. al., High Speed Ground Transportation Noise	and Vibration Impact Assessment, U.S. Department of Transportation, Federal Railroad
Time for TEL (T _{TEL})	4.70	seconds	TEL is the Transit	Exposure Limit and represents the equivale	Administration, Report Number DOT/FRA/ORD-12/15, Septemb	er 2012.
			A-weighted SPL o	ver the time period beginning when the	⁵ Gautier, P.E., Poisson, F., and Letourneaux, F., High Speed Train	is External Noise: A Review of Measurements and Source Models for TGV Case Up to
			instantaneous m	eter reading is 10 dB(A) less than $L_{pAEq,Tp}$ and	360 km/hr, in Proceedings of the 8th World Congress on Railway	rResearch (2008).
			continuing throug	gh the passby event until the meter reading	⁶ European Union, "Commission Regulation Number 1304/2014,	on the technical specification for interoperability relating to the subsystem 'rolling
			again 10 dB(A) le	ss than L	stock — noise' amending Decision 2008/232/EC and repealing Decision	n 2011/229/EU," Official Journal of the European Union, Brussels, Belgium, 2014.

Calculate L

aAeo.To is the A-weighted equivalent continuous sound pressure level produced by the train as measured during the passby event

$$L_{pAeq,T_{p}} = 10 \ \log \left(\frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right)$$
 dB

pArq_Tp can be calculated from the passby data using the following relationship:

$$\int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \approx \sum_{i=1}^{i=n} \left(\frac{Pa(i)^2}{p_0^2} \right)$$

 Δt_i

Microphone Position is 25 m from track centerline and 3.5 m above top of rail (Microphone Position 3).

is the passby time interval = time when trail tail passes microphone minus time when train nose passes microphone = T, - T, T_

Τ, is the time when the train nose passes the microphone

Τ, is the time when the train tail passes the microphone

P_A(t) is the A-weighted instantaneous sound pressure in Pa at time t

- p_o p₀ = 20µPa = 0.00002 is the reference sound pressure:
- Δt
- is the time increment between measured data points = 0.05

P_A(i) is the A-weighted instantaneous sound pressure in Pa at passby time increment i

An analysis conducted during the current study indicated the integral can be determined numerically, with acceptable accuracy, by employing a midpoint Reimann sum scheme with a minimum Δti = 0.05 seconds, and the corresponding Pa(i) analog meter values. This approach is described in: Hughes-Hallett, Deborah; McCullum, William G.; et al. (2005). Calculus (4th ed.), Wiley. p. 252.

Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ²
1	1.00	73.60	0.095726	2.29087E+07	19	1.90	82.60	0.269793	1.81970E+08	37	2.80	82.90	0.279274	1.94984E+08	55	3.70	82.20	0.257650	1.65959E+08
2	1.05	74.60	0.107406	2.88403E+07	20	1.95	82.50	0.266704	1.77828E+08	38	2.85	83.30	0.292435	2.13796E+08	56	3.75	82.20	0.257650	1.65959E+08
3	1.10	75.50	0.119132	3.54813E+07	21	2.00	82.70	0.272917	1.86209E+08	39	2.90	83.10	0.285779	2.04174E+08	57	3.80	81.70	0.243237	1.47911E+08
4	1.15	76.60	0.135217	4.57088E+07	22	2.05	82.30	0.260633	1.69824E+08	40	2.95	83.40	0.295822	2.18776E+08	58	3.85	81.40	0.234980	1.38038E+08
5	1.20	77.30	0.146565	5.37032E+07	23	2.10	82.10	0.254701	1.62181E+08	41	3.00	83.20	0.289088	2.08930E+08	59	3.90	81.30	0.232290	1.34896E+08
6	1.25	78.60	0.170228	7.24436E+07	24	2.15	82.00	0.251785	1.58489E+08	42	3.05	82.80	0.276077	1.90546E+08	60	3.95	81.30	0.232290	1.34896E+08
7	1.30	79.90	0.197711	9.77237E+07	25	2.20	82.40	0.263651	1.73780E+08	43	3.10	82.80	0.276077	1.90546E+08	61	4.00	80.70	0.216785	1.17490E+08
8	1.35	80.70	0.216785	1.17490E+08	26	2.25	82.40	0.263651	1.73780E+08	44	3.15	82.80	0.276077	1.90546E+08	62	4.05	79.40	0.186651	8.70964E+07
9	1.40	81.20	0.229631	1.31826E+08	27	2.30	82.80	0.276077	1.90546E+08	45	3.20	82.90	0.279274	1.94984E+08	63	4.10	78.40	0.166353	6.91831E+07
10	1.45	81.30	0.232290	1.34896E+08	28	2.35	83.10	0.285779	2.04174E+08	46	3.25	83.00	0.282508	1.99526E+08	64	4.15	77.60	0.151716	5.75440E+07
11	1.50	81.70	0.243237	1.47911E+08	29	2.40	82.90	0.279274	1.94984E+08	47	3.30	83.00	0.282508	1.99526E+08	65	4.20	77.10	0.143229	5.12861E+07
12	1.55	82.00	0.251785	1.58489E+08	30	2.45	82.90	0.279274	1.94984E+08	48	3.35	82.80	0.276077	1.90546E+08	66	4.25	77.10	0.143229	5.12861E+07
13	1.60	82.20	0.257650	1.65959E+08	31	2.50	83.00	0.282508	1.99526E+08	49	3.40	82.80	0.276077	1.90546E+08	67	4.30	76.10	0.127653	4.07380E+07
14	1.65	82.30	0.260633	1.69824E+08	32	2.55	82.80	0.276077	1.90546E+08	50	3.45	83.20	0.289088	2.08930E+08	68	4.35	75.40	0.117769	3.46737E+07
15	1.70	82.30	0.260633	1.69824E+08	33	2.60	82.70	0.272917	1.86209E+08	51	3.50	83.10	0.285779	2.04174E+08	69	4.40	74.90	0.111181	3.09030E+07
16	1.75	82.10	0.254701	1.62181E+08	34	2.65	82.60	0.269793	1.81970E+08	52	3.55	82.50	0.266704	1.77828E+08	70	4.45	73.80	0.097956	2.39883E+07
17	1.80	82.70	0.272917	1.86209E+08	35	2.70	82.90	0.279274	1.94984E+08	53	3.60	82.30	0.260633	1.69824E+08	71	4.50	73.20	0.091418	2.08930E+07
18	1.85	82.80	0.276077	1.90546E+08	36	2.75	82.90	0.279274	1.94984E+08	54	3.65	82.60	0.269793	1.81970E+08					

Data Point Number for Start of Passby Event (time at which train nose passes microphone): Data Point Number for End of Passby Event (time at which train tail passes microphone):

$$L_{pAeq.Tp} = 10 \text{ Ig} \left(\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \right) \qquad L_{pAeq.Tp} =$$

82.08 dB(A)

i = 1
i - n thus,
$$\sum_{i=1}^{i=n} \left(\frac{-Pa(i)^2}{p_0^2} \right) \Delta t_i$$
 = 4.29114E+08

Impact of Microphone Position

Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	Applie	s to Regulations	in these Regio	ins²	Comment
			US	EU	China	Japan	
1	7.5	1.2		X (TSI 2014)			TSI 1304
2	7.5	3.5		X (TSI 2014)			Also required for speeds > 250 km/hr
3	25	3.5		X (TSI 2008)		х	Reference for pre 2014 train sets
4	30	1.2	х		х		US and China measurement location

8

60

References

Ра

seconds

⁴L. Lu, X. Hu, Y. Zhang and X. Zhou, "Survey and Analysis of the Beijing-Shanghai High Speed Rail

Noise," in The 21st International Congress on Sound and Vibration, Beijing, China, 2014.

[®]G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese Academy of Railway Sciences (CARS)

Research Report, Beijing Shi, China, 2003.

^cW. Elliott, "Request for Information Reference FOI13-580, Comparison of Measured Sound

Impact of microphone dis	tance is deterr	nined from the fo	llowing equation	³ L _d = L _{d0} - 10*LOG(d/d0)	, where L _{do} is the	equivalent A-w	veighted constan	t sound pressu	re level	Levels for High Spe	ed Trains as a Functi	onof Distance from T	rack," High Spe	ed Rail Two (HS2),
for the microphone at dis	ance d0, and d	d is the distance fo	r Ld.							London, England, 2	013.			
	Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	L _{pAeq,Tp} at 271 km/h dB(A)	L _{pAeq,Tp} at 271	km/h (Pa)		To convert dB	A) to Pascals: Pa = 0	0.00002*(10^(dBA/20))	Sound Pressur	e Variations for Mi	icrophone Po	itions and
								To convert Pa	to dB(A), dB(A) =	20*LOG10(Pa/0.00002)	Train	Speed from Refere	ence 5	
	1	7.5	1.2	93.20		0.914		Note: The sir	nple sound level co	prrection formula	Speed (km/hr)	L dB	8(A)	
	2	7.5	3.5	95.80	_	1.233		underestimat	es the measured v	alues. Therefore,		M1	M2	M3
	3	25	3.5	82.08	-	0.254	_	ratios based (on actual measurer	nents were used to	271	93.2	95.8	82.0
	4	50	1.2	61.25		0.232		aujusciorini	a opnone location	(table at right).	386	98.5	100.1	88.1
alculated Noise Metrics: Maximum Rec	orded Sound Pi	ressure Levels		I =			امينوا							
			data a stat	p(maximum) Maximum r	ecorded passby s		level							
p(maximum) 03.4	UB(A)	which occurs at	data point	40 at pass-by ti	me	2.95	seconds							
L_{pASmax} is the maximum sound pressure le	vel, slow and A	A-weighted and L	AFmax = maximum	sound pressure level, fast	t and A-weighted	l. The time peri	iod for the "slow	" reading is 1 s	econd. The time p	eriod for the "fast" reading	is 0.125 seconds.			
_{pASmax} can be calculated as the logarithmi	c average of th	e recorded SPLs f	or the 1 second t	ime interval containing th	e highest values		The logarithm where array is	ic average for a of the form A1	n Excel array is: {=1 0:A15. In the curre	0*LOG(AVERAGE(10^(ARRA	(Y/10)))} array-en (Data Set 1, C:48)	tered, i.e. using C	TRL-Shift-En	er keys
Highest 1-second interval occurs from star	t time	2.5	to end time	35	Thus, L _ =		82.96	dB(A)	ostas: in the carr		5010 501 1, 0.40			
Similarly, L can be calculated as the l	ogarithmic ave	rage of the record	led SPLs for the 0	0.125 second time interva	l containing the h	highest values	02100	40(11)						
Highest 0.125-second interval occures fro	m start time		2.85	to end time 2 975		Thus, L	83.25	dB(A)						
			2.05	2.575		рчтных	00120	45(14)						
Calculated Noise Metrics: Other Standard	Parameters													
The following calculations are for Microph	one Position 3			and by succeeding the second										
L pAegpassby is the A-weighted equivalent contini pAegpassby	ious sound pres	sure level produced	a during the entire	pass-by event, including app	proacn, 1 , and dep	parture (used for	r L ₂ , L ₂ , etc.)							
he calculation includes all of the pass-by dat	a points. nt (time at whi	ich train nose nass	es micronhone):	1	i = 1	i= n								
ata Point Number for End of Passby Ever	t (time at which	h train tail nasses	micronhone):	- 71	i-n i	thus ∇	$Pa(i)^2 \Delta t_i$	-	5 20501E±08	T T. =	3 50	seconds		
	ie (enne de mine	an a an passes	merophone).	/1	1-11	$(iius), \sum_{i=1}^{i}$	p_0^2		5.205512.00	2 1	5.50	3000103		
(T2	()					7-1								
$_{\text{pAeq,passby}}^{\text{=}}$ = 10 lg $\left(\frac{1}{T_2 - T_1}\int_{T_1}^{T}\frac{p}{T_1}\right)$	$\frac{A(t)}{p_0^2} dt$	L =	81.72	dB(A)										
FEL is the Transit Exposure Limit [*]	It is measured	over the time inte	rval starting when	the SPL is 10 dB(A) lower th	an L _{pAeqTp} and endi	ng when the SPL • \	again reaches a va	alue that is 10 de	s(A) lower than L pAeq.	Tp				
	TEL is calculat	ted using the follow	ing formula:	IEL = L	+ 10 · LOG(1 _{TEL} /1	p)	TEL =	84.56	dB(A)			000(7-) - 1		
EL IS the Sound Exposure Limit .	CEL at 20 mm		sound energy over	a measurement period, bu	c tot sec, the meas		is normalized to a		conu. At a microph	une distance of 50 m (100 m),	SEL - L pAeq.Tp + 10	1 -1 - 10*106	(d/d0)	
	SEL at 30 m:	87.33	dB(A)	SEL at 7.5 m	1: 93.35	dB(A)	SEL at 25 m:	88.12	dB(A) us	ing the distance correction	factor:	L _d = L _{d0} - 10 100	(0/00)	
	(2) events that	it last longer in time	have higher SELS	than shorter ones. ⁴	ilizeu over 1 secon		SEL IS a CUITIUIALIVE	e measure mean	s that (1) louder even	nts nave nigher sets than quie	ter ories, and			
Statistical Parameters														
The following parameters are determined	by specifying t	he indicated perce	entile of the data	values using Excel Function	on PERCENTILE(ra	inge,P).								
where" range" is the array	of values (e.g.	K10:K68) and P =	the percentile (b	etween 0 and 1, for exam	ple, P for the 90th	h percentile wo	uld be entered a	s 0.9)						
₁₀ is the sound pressure level for which 9	0% of the reco	orded values are g	reater. It include	s lead-in (prior to nose pa	issing microphon	e) and trail-off	(after tail of train	n passes) data.		L ₁₀ =	76.10	dB(A)		
50 is the sound pressure level for which 5	0% of the reco	orded values are g	reater. It include	s lead-in (prior to nose pa	ssing microphon	e) and trail-off	(after tail of train	n passes) data.		L ₅₀ =	82.30	dB(A)		
90 is the sound pressure level for which 1	0% of the reco	orded values are g	reater. It include	s lead-in (prior to nose pa	ssing microphon	e) and trail-off	(after tail of train	n passes) data.		L ₉₀ =	83.00	dB(A)		
ummary of Passby Noise Metrics for Eac	h Microphone	Position				1 - 1 - 10*104	G(d/d0) where !	is the equiva	lent A-weighted c	anstant sound pressure low	l for the microph	one at distance d	+ sib bac 0F	e distance for I
ne noise metrics snown in the following	aule correspor	iu to the baseline	speed or	271	km/hr	r ^d - r ^{d0} - 10, 100	Glaruoj, where L	do is the equiva	ient A-weighted to	matant sound pressure leve	and the micropi	ione at uistaille u	.o, anu u is t	distance for L _d .
Microphon														
Position	-		Noise Metric	: Table Entries are dB(A)						Microphone	Position Adjustm	ent Factors ⁵		
	L pAeq,Tp	L p(maximum)	L pASmax	L L pAFmax pAeo.passbv	TEL	SEL	L_10	L 50	L	Speed (km/hr)	M1	M2	M3	
1	93.3	94.8	94.3	94.6 92.9	96.1	100.2	86.5	93.5	94.3					
2	95.9	97.4	96.9	97.3 95.5	98.8	102.9	88.9	96.2	97.0	271	1.000	1.028	0.880	
3	82.1	83.4	83.0	83.3 81.7	84.6	88.1	76.1	82.3	83.0	341	1.035	1.052	0.917	
4	61.5	62.0	02.2	02.3 80.9	o3.ŏ	0/.3	/5.3	01.5	02.2	380	1.057	1.074	J.343	
mpact of Train Speed on Noise Levels														
Ricardo evaluated several methods for de	termining the	impact of train sp	eed on passby no	oise levels. The approach	developed by Ga	autier, Poisson a	& Letourneaux ⁵	provided the hi	ghest level of corr	elation with measured data	is the basis for th	he calculations pr	esented belo	w.
$L_{Aeq,tp}(V) - L_{Aeq,tp}(V_0) = K \log$	(V/V ₀) where	K is an empirical f	actor	where V=	train speed (kr	m/hr)		If the SPL is k	nown at train spee	ed V _o , the SPL at train speed	V can be determ	nined from this fo	rmula	
thus, $L_{Aeq,tp}(V) = K \log(V/V_0) + I$	Aeq.tp (V0)			V_0=	reference train	n speed (km/hr))							
he empirical factor K varies with train spe	ed. This is bec	cause the contribu	tion of noise sou	rces (e.g. wheel/rail intera	ction, propulsion	n components, a	aerodynamics) va	ry with train sp	eed.	Ricardo calculat	ed the K factor va	lues for 12 passb	y noise data	sets.
he relationship between the K factor and	train speed is	provided by the fo	ollowing equation	i and by an on										
K = a*V + b where		a=	0.0625	and D= 25.00										

V_o for this train set is: 271 km/hr

The following tables contain the calculated variation with train speed for the various noise parameters described above:

Microphone Position 1 Noise Metric: Table Entries are dB(A)

60 -----

	Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L _{pASmax}	L pAFmax	L pAeq, passby	TEL	SEL	L ₁₀	L_50	L ₉₀
	80	30.0000	77.4	78.9	78.4	78.7	77.0	80.2	84.3	70.6	77.6	78.4
	150	34.3750	84.5	86.0	85.5	85.8	84.1	87.3	91.3	77.7	84.7	85.5
	200	37.5000	88.3	89.8	89.3	89.7	87.9	91.2	95.2	81.5	88.6	89.4
	250	40.6250	91.9	93.4	92.9	93.2	91.5	94.7	98.7	85.1	92.1	92.9
	300	43.7500	95.2	96.7	96.2	96.6	94.8	98.0	102.1	88.4	95.5	96.3
	350	46.8750	98.5	100.0	99.5	99.8	98.1	101.3	105.4	91.7	98.7	99.5
d→	271	41.9375	93.3	94.8	94.3	94.6	92.9	96.1	100.2	86.5	93.5	94.3

			Microphone	Position 2		Noise	Metric: Table E	Entries are dB(A)			
Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq.passby	TEL	SEL	L_10	L50	L ₉₀
80	30.0000	80.0	81.5	81.0	81.4	79.6	82.9	87.1	73.0	80.3	81.1
150	34.3750	87.1	88.6	88.1	88.4	86.6	90.0	94.1	80.1	87.3	88.1
200	37.5000	90.9	92.5	92.0	92.3	90.5	93.8	98.0	84.0	91.2	92.0
250	40.6250	94.5	96.0	95.5	95.8	94.1	97.4	101.5	87.5	94.7	95.5
300	43.7500	97.8	99.4	98.8	99.2	97.4	100.7	104.9	90.8	98.1	98.9
350	46.8750	101.1	102.6	102.1	102.5	100.7	104.0	108.2	94.1	101.4	102.2
271	41.9375	95.9	97.4	96.9	97.3	95.5	98.8	102.9	88.9	96.2	97.0

The empirical factor, K, varies with train speed: it is on the order of 30 in speed range to 300 kph and up to 50 for very high speed trains, for which aerodynamic noise sources are dominant. K = 0.0625 (Train Speed, km/hr) + 25

Test Speed \rightarrow

-											
			Microphone	Position 3		Nois	e Metric: Table	Entries are dB(A)			
Train Speed (km/hr)	к	L pAeq.Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq,passby	TEL	SEL	L_10	L_50	L ₉₀
80	30.0000	66.2	67.5	67.1	67.4	65.8	68.7	72.2	60.2	66.4	67.1
150	34.3750	73.3	74.6	74.1	74.4	72.9	75.7	79.3	67.3	73.5	74.2
200	37.5000	77.1	78.5	78.0	78.3	76.8	79.6	83.2	71.2	77.4	78.1
250	40.6250	80.7	82.0	81.5	81.8	80.3	83.1	86.7	74.7	80.9	81.6
300	43.7500	84.0	85.3	84.9	85.2	83.7	86.5	90.0	78.0	84.2	84.9
350	46.8750	87.3	88.6	88.2	88.5	86.9	89.8	93.3	81.3	87.5	88.2
271	41.9375	82.1	83.4	83.0	83.3	81.7	84.6	88.1	76.1	82.3	83.0

Test Speed \rightarrow

			Microphone	Position 4		Noise	Metric: Table	Entries are dB(A)			
Train Speed (km/hr)	к	L pAeq,Tp	L p(maximum)	L _{pASmax}	L pAFmax	L pAeq,passby	TEL	SEL	L ₁₀	L_50	L ₉₀
80	30.0000	65.4	66.7	66.3	66.6	65.0	67.9	71.4	59.4	65.6	66.3
150	34.3750	72.5	73.8	73.3	73.6	72.1	74.9	78.5	66.5	72.7	73.4
200	37.5000	76.3	77.7	77.2	77.5	76.0	78.8	82.4	70.4	76.6	77.3
250	40.6250	79.9	81.2	80.7	81.0	79.5	82.3	85.9	73.9	80.1	80.8
300	43.7500	83.2	84.5	84.1	84.4	82.9	85.7	89.3	77.2	83.4	84.1
350	46.8750	86.5	87.8	87.4	87.7	86.1	89.0	92.5	80.5	86.7	87.4
271	41.9375	81.3	82.6	82.2	82.5	80.9	83.8	87.3	75.3	81.5	82.2

Test Speed→

The European Technical Standards for Interoperability (TSI) include two normalized values for L pate, 7, The values are normalized to 80 km/hr and 250 km/hr.⁶

The measurements are made at a lateral distance of 7.5 m from the rail centerline and 1.5 m above the top of the rail.

Procedures defined within the TSI to allow noise levels to be calculated at various train speeds based on measurements made at 80 km/hr (50 miles/h) and 250 km/hr (155 miles/h).

For the CRH3 Series Trains, no measurements were made at 80 km/hr and 250 km/hr: Thus, the Gautier method was used to calculate these values

From the Microphone Position 1 Table Above, the normalized values for L alon To can be found and are identified below:

Values Obtained fro	Values Obtained from Data Analysis				TSI Formulas
L pAeq,Tp (80 km/hr) =	77.4	dB(A)	77.4	dB(A)	$L_{pAeq,Tp}(80 \text{ km/h}) = L_{pAeq,Tp}(vtest) - 30 * \log (vtest/80 \text{ km/h})$
L _{pAeq,Tp} (250 km/hr) =	91.9	dB(A)	91.5	dB(A)	$L_{pAeq,Tp}(250 \text{ km/h}) = L_{pAeq,Tp}(vtest) - 50 * log (vtest/250 \text{ km/h})$

Data Point Number	Passby Data ^{1Passby Data1}		Sound Pressure (Pa)	Event
	Time (sec)	dB(A)		
1	0.00	73.9	0.09909	
2	0.05	74.6	0.10741	
3	0.10	74.6	0.10741	
4	0.15	75.8	0.12332	
5	0.20	76.2	0.12913	
6	0.25	77.9	0.15705	
7	0.30	79.1	0.18031	
8	0.35	80.3	0.20703	
9	0.40	81.1	0.22700	
10	0.45	83.6	0.30271	 10 dB(A) lower than SPL when Train Nose Passes Microphone
11	0.50	84.8	0.34756	
12	0.55	86.6	0.42759	
13	0.60	88.5	0.53215	
14	0.65	90.5	0.66993	
15	0.70	93.0	0.89337	
16	0.75	95.1	1.13771	Train Nose Passes Microphone
17	0.80	96.6	1.35217	
18	0.85	99.0	1.78250	
19	0.90	98.9	1.76210	
20	0.95	97.7	1.53472	
21	1.00	98.6	1.70228	
22	1.05	97.7	1.53472	
----	------	--------------	---------	---------------------------------
23	1.10	97.4	1.48262	1
24	1.15	96.3	1.30626	1
25	1.20	95.5	1.19132	1
26	1.25	97.3	1.46565	1
27	1.30	99.4	1.86651	1
28	1.35	98.6	1.70228	1
29	1.40	96.6	1.35217]←
30	1.45	96.0	1.26191	1
31	1.50	96.5	1.33669	Start Time for LpASmax Calculat
32	1.55	96.9	1.39968]
33	1.60	96.8	1.38366	1
34	1.65	94.9	1.11181	1
35	1.70	95.7	1.21907	1
36	1.75	96.6	1.35217	1
37	1.80	97.6	1.51716	1
38	1.85	96.1	1.27653]
39	1.90	97.7	1.53472]←
40	1.95	99.9	1.97711	
41	2.00	100.5	2.11851	Maximum Sound Pressure Leve
42	2.05	99.6	1.90999	
43	2.10	97.6	1.51716	
44	2.15	98.6	1.70228	
45	2.20	100.2	2.04659	
46	2.25	100.6	2.14304	
47	2.30	99.1	1.80314	
48	2.35	97.2	1.44887	
49	2.40	98.6	1.70228	-
50	2.45	98.6	1.70228	
51	2.50	98.2	1.62566	End Time for LpASmax Calculati
52	2.55	96.6	1.35217	
53	2.60	95.9	1.24747	
54	2.65	98.6	1.70228	
55	2.70	98.4	1.66353	
56	2.75	96.6	1.35217	
57	2.80	95.9	1.24747	
58	2.85	97.0	1.41589	
59	2.90	98.7	1.72199	
60	2.95	100.2	2.04659	4
61	3.00	99.1	1.80314	 ₄
62	3.05	97.6	1.51716	4
63	3.10	96.6	1.35217	
64	3.15	95.5 05.6	1.19132	Irain Iali Passes Microphone
66	3.20	92.0 92.6	0.05726	
67	3 30	90.7	0.68554	

68	3.35	89.4	0.59024
69	3.40	88.0	0.50238
70	3.45	86.6	0.42759
71	3.50	85.6	0.38109
72	3.55	84.5	0.33576
73	3.60	83.6	0.30271
74	3.65	81.1	0.22700
75	3.70	80.3	0.20703
76	3.75	79.1	0.18031
77	3.80	77.8	0.15525
78	3.85	76.7	0.13678
79	3.90	75.5	0.11913
80	3.95	74.5	0.10618
81	4.00	73.9	0.09909
82	4.05	72.9	0.08831
83	4.10	71.7	0.07692
84	4.15	71.0	0.07096
85	4.20	70.6	0.06777

10 dB(A) lower than SPL when Train Tail Passes Microphone

Spreadsheet-Based Tool for Comparing Noise Standards and Re Conversion Tool for Noise Regulations and Standards to Commo

CONTRAST Comparison Of Noise for TRAin STandards

Train Set Informati	on		
Year Data Set was Generated:		2010	¹ Dittrich, M.G., et
Train Set Manufacturer:		GEC-Alsthom	Thalys treinen op
Operator:		Thalys	trains on HSL Rhe
Train Set Geometry and Tes	t Conditions		Natuurwetenschap
Parameter	Value	Units	² Thalys PBKA image
Car Lengths			Version 1.2 or any l
End Cars:	22.15	m	https://commons.v
Intermediate Cars: two at 21.845 m and	six at 18.7 m	_	
Number of End Cars:	2		
Number of Intermediate Cars:	8		
Test Train Length:	200.19	m	
Test Train Speed(s):	296	km/hr	
Microphone Position:	1		dB (sound press
Distance from Track Centerline:	7.5	m	where 0.0002 is
Elevation above Top of Rail:	1.2	m	so, Pa = 0.00002
Time Increment for Passby Data, Δ T:Time	0.05	sec	
Number of Passby Data Points:	85		

Plot of Passby Noise Data, Including Key Time Parameters

Common Reference P

ion

эl

ion

gulations on Reference

Program Version:

14-Oct-19

References

t. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MC

HSL Rheda- en ballastpoor, (Noise emission measurements on V250 and Thalys eda and ballast track), Nederlandse Organisatie voor Toegepast

7

pelijk Onderzoek (TNO Industrie en Techniek), 13 December 2010.

e used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under ater version published by the Free Software Foundation,

vikimedia.org/wiki/File:Thalys_PBKA_Refurbished_Nederland.jpg

	Origina
Formulas	Data Point Number
Sure level in decibels) = 20 $\log_{10}(Pa/0.00002)$ dB (sound pressure level in decibels) = 20 $\log_{10}(Pa/0.00002)$	/0.00002) c
the reference sound pressure level in Pascals 2*10(dB/20)so, Pa = 0.00002*10(dB/20)so, Pa = 0.0	1
2 10	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
A	13
m n ft	14
$L_p \text{Aeq}, T_p = 97.9 \text{ dB(A)}$	15
	10
	18
	19
	20
↓ ↓	21

22
23
24
25
26
27
28
20
30
21
22
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

)N-RPT-2010-03023, Geluidemissiemetingen aan V250 en¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-0302

er the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free

al Thalys PBKA Data Set				
Passby Data	Sound Pressure (Pa)			
Time (sec)	dB(A)			
0.00	75.3	0.11642		
0.05	76.0	0.12619		
0.10	76.0	0.12619		
0.15	77.2	0.14489		
0.20	77.6	0.15172		
0.25	79.3	0.18451		
0.30	80.5	0.21185		
0.35	81.7	0.24324		
0.40	82.5	0.26670		
0.45	85.0	0.35566		
0.50	86.2	0.40835		
0.55	88.0	0.50238		
0.60	89.9	0.62522		
0.65	91.9	0.78710		
0.70	94.4	1.04961		
0.75	96.5	1.33669		
0.80	98.0	1.58866		
0.85	100.4	2.09426		
0.90	100.3	2.07028		
0.95	99.1	1.80314		
1.00	100.0	2.00000		

1.05	99.1	1.80314
1.10	98.8	1.74193
1.15	97.7	1.53472
1.20	96.9	1.39968
1.25	98.7	1.72199
1.30	100.8	2.19296
1.35	100.0	2.00000
1.40	98.0	1.58866
1.45	97.4	1.48262
1.50	97.9	1.57047
1.55	98.3	1.64449
1.60	98.2	1.62566
1.65	96.3	1.30626
1.70	97.1	1.43229
1.75	98.0	1.58866
1.80	99.0	1.78250
1.85	97.5	1.49979
1.90	99.1	1.80314
1.95	101.3	2.32290
2.00	101.9	2.48903
2.05	101.0	2.24404
2.10	99.0	1.78250
2.15	100.0	2.00000
2.20	101.6	2.40453
2.25	102.0	2.51785
2.30	100.5	2.11851
2.35	98.6	1.70228
2.40	100.0	2.00000
2.45	100.0	2.00000
2.50	99.6	1.90999
2.55	98.0	1.58866
2.60	97.3	1.46565
2.65	100.0	2.00000
2.70	99.8	1.95447
2.75	98.0	1.58866
2.80	97.3	1.46565
2.85	98.4	1.66353
2.90	100.1	2.02316
2.95	101.6	2.40453
3.00	100.5	2.11851
3.05	99.0	1.78250
3.10	98.0	1.58866
3.15	96.9	1.39968
3.20	97.0	1.41589
3.25	95.0	1.12468
3.30	92.1	0.80543

3.35	90.8	0.69347
3.40	89.4	0.59024
3.45	88.0	0.50238
3.50	87.0	0.44774
3.55	85.9	0.39448
3.60	85.0	0.35566
3.65	82.5	0.26670
3.70	81.7	0.24324
3.75	80.5	0.21185
3.80	79.2	0.18240
3.85	79.1	0.18031
3.90	76.9	0.13997
3.95	75.9	0.12475
4.00	75.3	0.11642
4.05	74.3	0.10376
4.10	73.1	0.09037
4.15	74.2	0.10257
4.20	72.0	0.07962

3, Geluidemissiemetingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-03023, Geluidemissiem

ee Documentation License, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation Licens

etingen aan V250 en ¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V250

e, ²Thalys PBKA image used with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image us

) en¹Dittrich, M.G., et. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V250 en¹Dittrich, M.G.

ed with permission: under the terms of the GNU Free Documentation License, ²Thalys PBKA image used with permission: unde

, et. al., TNO Report MON-RPT-2010-03023, Geluidemissiemetingen aan V2

r the terms of the GNU Free Documentation License,

U.S. Department of Transportation Federal Railroad Administration

Spreadsheet-Based Tool for Comparing Noise Standards and Regulations Conversion Tool for Noise Regulations and Standards to Common Reference

Т

CONTRAST

Federal Railroad Administration	
High Speed Rail Noise Standards and Regulations	

Comparison Of Noise for TRAin STandards

Program Version:	7	14-Oct-19
------------------	---	-----------

seconds

	Data Set Number:		6		Passby Noise Calculations	References
	Data Set Name:		Common R	teference	-	
Calculate Trai	n Passby Parameters					He, et al., Investigation into External Noise of a High-Speed Train at Different Speeds, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014, 15(12):1019-1033
Train Speed (V	/): 296		km/hr =	82.22	m/sec	Paul, et al, High Speed Rail Noise Standards and Regulations, US DOT Federal Railroad Administration, Contract DTFR35-16-C00006, May 2017.
Train Length:	200.	.9	m	10 cars: 2 end car	rs and 8 intermediate cars	G. Xiaoan and J. Hua, "Application Research on Descending Vibration and Reducing Noise in Accelerating Speed Trains and Express Trains," Chinese
Time for Pass	By (T _p) 2.43474	3243	seconds	This is the time in	crement between nose of train passing	Academy of Railway Sciences (CARS) Research Report, Beijing Shi, China, 2003.
				microphone and t	tail of train passing microphone.	Hanson, C.E., et. al., High Speed Ground Transportation Noise and Vibration Impact Assessment, U.S. Department of Transportation, Federal Railroad
Time for TEL (T _{TEL}) 2.8)	seconds	TEL is the Transit	Exposure Limit and represents the equivalent	Administration, Report Number DOT/FRA/ORD-12/15, September 2012.
				A-weighted SPL o	ver the time period beginning when the	Gautier, P.E., Poisson, F., and Letourneaux, F., High Speed Trains External Noise: A Review of Measurements and Source Models for TGV Case Up to
				instantaneous me	eter reading is 10 dB(A) less than $L_{pAEq,Tp}$ and	360 km/hr, in Proceedings of the 8th World Congress on Railway Research (2008).
				continuing throug	gh the passby event until the meter reading is	European Union, "Commission Regulation Number 1304/2014, on the technical specification for interoperability relating to the subsystem 'rolling
				again 10 dB(A) le	ss than L PARG, TP	stock — noise' amending Decision 2008/232/EC and repealing Decision 2011/229/EU," Official Journal of the European Union, Brussels, Belgium, 2014.

Calculate L

pAeg.Tp is the A-weighted equivalent continuous sound pressure level produced by the train as measured during the passby event

$$L_{p\text{Aeq},T_{p}} = 10 \text{ Ig} \left(\frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right) \quad \text{dB}$$

pArq_Tp can be calculated from the passby data using the following relationship:

$$\int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \approx \sum_{i=1}^{i=n} \left(\frac{\operatorname{Pa}(i)^2}{p_0^2} \right) \Delta t_i$$

Microphone Position is 7.5 m from track centerline and 1.5 m above top of rail (Microphone Position 1). where

is the passby time interval = time when trail tail passes microphone minus time when train nose passes microphone = T, - T,

- Τ, is the time when the train nose passes the microphone
- Τ, is the time when the train tail passes the microphone
- P_A(t) is the A-weighted instantaneous sound pressure in Pa at time t
- p_o p_= 20µPa = 0.00002 is the reference sound pressure:
- Ра Δt is the time increment between measured data points = 0.05
- P_A(i)

is the A-weighted instantaneous sound pressure in Pa at passby time increment i

An analysis conducted during the current study indicated the integral can be determined numerically, with acceptable accuracy, by employing a midpoint Reimann sum scheme with a minimum Δti = 0.05 seconds, and the corresponding Pa(i) analog meter values. This approach is described in: Hughes-Hallett, Deborah; McCullum, William G.; et al. (2005). Calculus (4th ed.), Wiley. p. 252.

Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2P} _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2p} _A (i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2p} A(i) ² /p ₀ ²	Data Point Number	Time (sec)	SPL dB(A)	SPL Pascals (Pa)	P _A (i) ² /p ₀ ^{2P} A(i) ² /p ₀ ²
1	0.00	73.90	0.099090	2.45471E+07	23	1.10	97.40	1.482620	5.49541E+09	45	2.20	100.20	2.046586	1.04713E+10	67	3.30	90.70	0.685536	1.17490E+09
2	0.05	74.60	0.107406	2.88403E+07	24	1.15	96.30	1.306261	4.26580E+09	46	2.25	100.60	2.143039	1.14815E+10	68	3.35	89.40	0.590242	8.70964E+08
3	0.10	74.60	0.107406	2.88403E+07	25	1.20	95.50	1.191324	3.54813E+09	47	2.30	99.10	1.803142	8.12831E+09	69	3.40	88.00	0.502377	6.30957E+08
4	0.15	75.80	0.123319	3.80189E+07	26	1.25	97.30	1.465649	5.37032E+09	48	2.35	97.20	1.448872	5.24807E+09	70	3.45	86.60	0.427592	4.57088E+08
5	0.20	76.20	0.129131	4.16869E+07	27	1.30	99.40	1.866509	8.70964E+09	49	2.40	98.60	1.702276	7.24436E+09	71	3.50	85.60	0.381092	3.63078E+08
6	0.25	77.90	0.157047	6.16595E+07	28	1.35	98.60	1.702276	7.24436E+09	50	2.45	98.60	1.702276	7.24436E+09	72	3.55	84.50	0.335761	2.81838E+08
7	0.30	79.10	0.180314	8.12831E+07	29	1.40	96.60	1.352166	4.57088E+09	51	2.50	98.20	1.625661	6.60693E+09	73	3.60	83.60	0.302712	2.29087E+08
8	0.35	80.30	0.207028	1.07152E+08	30	1.45	96.00	1.261915	3.98107E+09	52	2.55	96.60	1.352166	4.57088E+09	74	3.65	81.10	0.227002	1.28825E+08
9	0.40	81.10	0.227002	1.28825E+08	31	1.50	96.50	1.336688	4.46684E+09	53	2.60	95.90	1.247470	3.89045E+09	75	3.70	80.30	0.207028	1.07152E+08
10	0.45	83.60	0.302712	2.29087E+08	32	1.55	96.90	1.399684	4.89779E+09	54	2.65	98.60	1.702276	7.24436E+09	76	3.75	79.10	0.180314	8.12831E+07
11	0.50	84.80	0.347560	3.01995E+08	33	1.60	96.80	1.383662	4.78630E+09	55	2.70	98.40	1.663528	6.91831E+09	77	3.80	77.80	0.155249	6.02560E+07
12	0.55	86.60	0.427592	4.57088E+08	34	1.65	94.90	1.111809	3.09030E+09	56	2.75	96.60	1.352166	4.57088E+09	78	3.85	76.70	0.136782	4.67735E+07
13	0.60	88.50	0.532145	7.07946E+08	35	1.70	95.70	1.219074	3.71535E+09	57	2.80	95.90	1.247470	3.89045E+09	79	3.90	75.50	0.119132	3.54813E+07
14	0.65	90.50	0.669931	1.12202E+09	36	1.75	96.60	1.352166	4.57088E+09	58	2.85	97.00	1.415892	5.01187E+09	80	3.95	74.50	0.106177	2.81838E+07
15	0.70	93.00	0.893367	1.99526E+09	37	1.80	97.60	1.517155	5.75440E+09	59	2.90	98.70	1.721988	7.41310E+09	81	4.00	73.90	0.099090	2.45471E+07
16	0.75	95.10	1.137706	3.23594E+09	38	1.85	96.10	1.276527	4.07380E+09	60	2.95	100.20	2.046586	1.04713E+10	82	4.05	72.90	0.088314	1.94984E+07
17	0.80	96.60	1.352166	4.57088E+09	39	1.90	97.70	1.534723	5.88844E+09	61	3.00	99.10	1.803142	8.12831E+09	83	4.10	71.70	0.076918	1.47911E+07
18	0.85	99.00	1.782502	7.94328E+09	40	1.95	99.90	1.977106	9.77237E+09	62	3.05	97.60	1.517155	5.75440E+09	84	4.15	71.00	0.070963	1.25893E+07
19	0.90	98.90	1.762098	7.76247E+09	41	2.00	100.50	2.118507	1.12202E+10	63	3.10	96.60	1.352166	4.57088E+09	85	4.20	70.60	0.067769	1.14815E+07
20	0.95	97.70	1.534723	5.88844E+09	42	2.05	99.60	1.909985	9.12011E+09	64	3.15	95.50	1.191324	3.54813E+09					
21	1.00	98.60	1.702276	7.24436E+09	43	2.10	97.60	1.517155	5.75440E+09	65	3.20	95.60	1.205119	3.63078E+09					
22	1.05	97.70	1.534723	5.88844E+09	44	2.15	98.60	1.702276	7.24436E+09	66	3.25	93.60	0.957260	2.29087E+09					

Data Point Number for Start of Passby Event (time at which train nose passes microphone): Data Point Number for End of Passby Event (time at which train tail passes microphone):

i = 1
i - n thus,
$$\sum_{i=1}^{i=n} \left(\frac{P_{\mathbf{a}}(i)^2}{p_0^2} \right) \Delta t_i = 1.51242E+10$$

$$L_{pheq,Tp} = -10 \text{ Ig} \left(\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \right) \qquad L_{pheq,Tp} = -10 \text{ Ig} \left(\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{p_A^2(t)}{p_0^2} dt \right)$$

97.93 dB(A)

h thus,
$$\sum_{i=1}^{\infty} \left[\frac{|\mathbf{Pa}(i)^{*}|}{|p_{0}|^{2}} \right] \Delta t_{i} =$$

Microphone Position	Distance from Track Centerline (m)	Elevation Above Top of Rail (m)	Applie	s to Regulations	in these Regio	ns²	Comment
			US	EU	China	Japan	

16

64

⁴L. Lu, X. Hu, Y. Zhang and X. Zhou, "Survey and Analysis of the Beijing-Shanghai High Speed Rail

Noise," in The 21st International Congress on Sound and Vibration, Beijing, China, 2014.

References:

	1	7.5	1.2		X (TSI 2014)			TSI 1304	^{II} G. Xiaoan and J. H	ua, "Application Resea	arch on Descending Vibra	ition and Reducing Noise in		
	2	7.5	3.5		X (TSI 2014)			Also required for speeds > 250 m/hr Accelerating Speed Trains and Express Trains," Chinese Academy of Railway Sciences (CARS)						
	3	25	3.5		X (TSI 2008)		х	Reference for pre 2014 train sets	Research Report, F	Beijing Shi, China, 200	3.			
	4	30	1.2	х		х		US and China measurement location	°W. Elliott, "Reque	st for Information Ref	erence FOI13-580, Comp	arison of Measured Sound		
Impact of microphone dis	tance is detern	nined from the fol	llowing equation	$L_{d}^{3} L_{d} = L_{d0} - 10^{*}$	LOG(d/d0), w	/here L _{do} is the	e equivalent A-we	ighted constant sound pressure level	Levels for High Spe	ed Trains as a Functio	onof Distance from Track	," High Speed Rail Two (HS2),		
for the microphone at dis	for the microphone at distance d0, and d is the distance for Ld.								London, England,	2013.				
	Microphone Distance from Elevation Above		1 at 206	lum /h (Da)			Council Descourses	(Desible and					
	Position	(m)	Top of Rail (m)	PAeq,Tp at 250 KI	II/II UB(A)	PAeq,Tp	Killyli (Fd)			Sound Pressure	variations for ivlicroph	one Positions and		
		(,						To convert dB(A) to Pascals: Pa	= 0.00002*(10^(dBA/20))		erence 5			
	1	75	12	9	7.93		1.576	To convert Pa to dB(A), dB(A) = 20*I OG10(Pa/0.00002)	Speed (km/hr)	L dB(A)			
	2	7.5	3.5	10	00.66		2.159	Note: The simple sound leve	correction formula		M1 N	12 M3		
	3	25	3.5	8	6.16		0.407	underestimates the measure	d values. Therefore.	271	93.2 9	5.8 82.0		
	4	30	1.2	8	5.37		0.371	ratios based on actual measu	rements were used to	341	96.5 98	3.0 85.5		
		•		•				adjust for microphone locati	on (table at right).	386	98.5 10	0.1 88.1		
- -														
Calculated Noise Metrics: Maximum Rec	orded Sound Pr	essure Levels												
The following calculations are for Microph	one Position 1			L _{p(maximum)} = n	naximum rec	orded passby	sound pressure le	vel						
L _{p(maximum)} = 102.0	dB(A)	which occurs at d	data point	46 at	t passby time		2.25	seconds						
			•											
L is the maximum sound pressure le	vel, slow and A	-weighted and L	= maximum	sound pressure	e level, fast a	nd A-weighte	d. The time perio	d for the "slow" reading is 1 second. The tim	e period for the "fast" reading	is 0.125 seconds.				
promise.		pa												
L can be calculated as the logarithmi	c average of th	e recorded SPLs fo	or the 1 second t	time interval co	ntaining the	highest values	5	The logarithmic average for an Excel array is:		AV/10)))] array-en	tered i.e. using CTRI	-Shift-Enter keys		
pASmax	ů.							where array is of the form A10:A15. In the c	irrent case, the array is Pass-B	v Data Set 1. C:48:	C68	Sincenter keys		
Highest 1-second interval occurs from sta	rt time	15	40 0md 41mm	25		Thus. L =		07.00 dp(A)		,,				
Cimilarly I can be calculated as the l	e conte	1.5	to end time	2.5 0.135 second til		pASmax	high estimations	97.90 dB(A)						
Similarly, L _{pAFmax} can be calculated as the l	ogarithmic avei	rage of the record	led SPLs for the l	0.125 second til	me interval c	ontaining the	nignest values							
Highest 0.125-second interval occurs from	n start time		2.15	to end time	2.275		Thus, L =	100.00 dB(A)						
Calculated Noise Metrics: Other Standard	Parameters													
The following calculations are for Microph	ione Position 1		dunian tha antian					(
PAegpassby	Jous sound press	sure level produced	i during the entire	passby event, in	ciuuing approa	acti, i _p , and de		, c _n , etc.)						
The calculation includes all of the passby data	i points.	CDI e besis being			1	i = 1								
Data Point Number for Start of Passby Eve	ent (time passby	SPLS begin being	recorded):		1	1=1	· · · · · ·	Pa(i) ²	т.т					
Data Point Number for End of Passby Ever	it (time passby	SPLS end being red	corded):		85	i-n	thus, Σ [-	p_0^2 = 1.59169E+10	2 1	4.20	seconds			
(<i>i</i> = 1 ^C							
$1 \frac{T_2}{P}$	$A^{2}(t)$													
$r_{pAeq,passby} = 10 \text{ Ig} \left[\frac{T_2 - T_1}{T_2 - T_1} \right]$	n ² dt	PAeq, passby =	95.79	dB(A)										
$\begin{pmatrix} -2 & -1 & T_1 \end{pmatrix}$	P0)													
	14 (a				(A) 1		in a sub a sub a CDL as							
TEL is the Transit Exposure Limit."	it is measured	over the time linter	vai stai ting when	the SPL is to ub((A) lower than	PAegTp and end	nig when the SFL ag	gain reaches a value that is to ub(A) lower than L	Aeq.Tp					
	TEL is calculate	ed using the following	ng formula:	1	EL = L +	10*LOG(1 _{TEL} /	' _p)	TEL = 98.5392281 dB(A)						
SEL is the Sound Exposure Limit ⁴ .	Like L _{pAeq,Tp} , it i	ntegrates the total s	sound energy ove	r a measurement	t period, but f	or SEL, the mea	isurement period is	normalized to a duration of 1 second. At a micro	phone distance of 30 m (100 ft),	$SEL = L_{pAeq,Tp} + 10^*$	LOG(Tp) + 1			
	SEL at 30 m:	102.80	dB(A)	S	EL at 7.5 m:	108.82	dB(A)	SEL at 25 m: 103.59 dB(A)	using the distance correction	factor:	$L_{d} = L_{d0} - 10*LOG(d/d)$	(0L		
	SEL is the cum	ulative noise exposu	ure (i.e. "dose") fo	or a single noise e	event normaliz	ed over 1 seco	nd. The fact that SE	L is a cumulative measure means that (1) louder	events have higher SELs than qui	eter ones, and				
	(2) events that	t last longer in time	have higher SELs	than shorter one	es. ⁴									
Statistical Parameters														
The following parameters are determined	by specifying th	ne indicated perce	ntile of the data	values using Ex	cel Function	PERCENTILE(r	ange,P).							
where" range" is the array	ot values (e.g.	K1U:K68) and P = t	the percentile (b	etween 0 and 1	, tor example	e, P for the 901	n percentile woul	d be entered as 0.9)						
L ₁₀ is the sound pressure level for which S	0% of the reco	rded values are gr	eater. It include	es lead-in (prior	to nose pass	ing micropho	ne) and trail-off (a	fter tail of train passes) data.	L ₁₀ =	76.36	dB(A)			
L ₅₀ is the sound pressure level for which 5	0% of the reco	rded values are gr	eater. It include	es lead-in (prior	to nose pass	ing micropho	ne) and trail-off (a	fter tail of train passes) data.	L ₅₀ =	97.30	dB(A)			
L _{an} is the sound pressure level for which 1	0% of the reco	rded values are gr	eater. It include	es lead-in (prior	to nose pass	ing micropho	ne) and trail-off (a	fter tail of train passes) data.	L=	100.46	dB(A)			
aw .		, i i i i i i i i i i i i i i i i i i i							20					
Summary of Passby Noise Metrics for Ea	h Microphone	Position												
The noise metrics shown in the following	table correspon	d to the baseline s	speed of		296	km/hr	L = L - 10*LOG	d/d0), where L is the equivalent A-weighter	l constant sound pressure lev	el for the microph	one at distance d0, a	and d is the distance for L		
inclues shown in the following					250		a d0	d0				d		
Microphon	e				10(4)				1					
Desition			Noise Metric: Ta	able Entries are d	1B(A)				Micropho	one Position Adjust	ment Factors ²			

Micro	ophone			Noise Metric: Ta	ble Entries are	e dB(A)							Microphone	e Position A
		L pAeq,Tp	L p(maximum)	L pASmax	L pAFmax	L pAeq.passby	TEL	SEL	L_10	L 50	L		Speed (km/hr)	M1
	1	97.9	102.0	97.9	100.0	95.8	98.5	108.8	76.4	97.3	100.5			
	2	100.7	104.8	100.6	102.8	98.5	101.3	111.9	78.5	100.0	103.3		271	1.000
	3	86.2	89.7	86.1	88.0	84.3	86.7	95.7	67.2	85.6	88.4		341	1.035
	4	85.4	89.0	85.3	87.2	83.5	85.9	94.9	66.4	84.8	87.6		386	1.057
												-		

Impact of Train Speed on Noise Levels

Ricardo evaluated several methods for determining the impact of train speed on passby noise levels. The approach developed by Gautier, Poisson & Letourneaux⁵ provided the highest level of correlation with measured data is the basis for the calculations presented below. $L_{Auct, b}(V) - L_{Auct, b}(V_{0}) = K \log(V/V_{0})$ where K is an empirical factor where V = train speed (km/hr) If the SPL is known at train speed V_{or} the SPL at train speed V can be determined from this formula thus, $L_{Auct, b}(V) = K \log(V/V_{0}) + L_{Auct, b}(V_{0})$ $V_{0}^{=}$ reference train speed (km/hr)

The empirical factor K varies with train speed. This is because the contribution of noise sources (e.g. wheel/rail interaction, propulsion components, aerodynamics) vary with train speed. Ricardo calculated the K factor values for 12 passby noise data sets. The relationship between the K factor and train speed is provided by the following equation:

K = a*V + b where a= 0.0625 and b= 25.00 Scale K factor for 80 mph so L_{phys,Tp} = (17.93218/17.0460517)*30.000 where 30.000 is the original K factor for the Thalys at 80 km/hr.

V₀ for this train set is: 296 km/hr D146*Log(C146/D141) = -17.932180023 and it should be = -17.93218 to ensure L_{pixes,p} = 80 dB(A)

=\$D\$146*LOG(C146/\$D\$141)+\$E\$152

M2

1.028

1.052

1.074

M3

0.880

0.917

0.945

The following tables contain the calculated variation with train speed for the various noise parameters described above:

400

500

100

200

K = 0.0625(Train Speed, km/hr) + 25

Train Speed (km/hr)

300

From the Microphone Position 1 table above, the normalized values for L_name to be found and are identified below:

Values Obtained fr	rom Data Analysis		Value from TSI Formula		TSI Formulas		
L = =	80.0	dB(A)	80.9	dB(A)	$L_{pAeq,Tp}(80 \text{ km/h}) = L_{pAeq,Tp}(\text{vtest}) - 30 * \log(\text{vtest}/80 \text{ km/h})$		
L = = =	95.0	dB(A)	94.3	dB(A)	$L_{pAeq,Tp}$ (250 km/h) = $L_{pAeq,Tp}$ (vtest) - 50 * log (vtest/250 km/h)		