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METRIC CONVERSIONS 

 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2
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EXECUTIVE SUMMARY 
Weigh-in-Motion (WIM) is the process of measuring dynamic tire forces of a moving vehicle and 
estimating the corresponding tire loads (ASTM, 2009). Unlike static scales that require select trucks to 
exit the highway mainlines to be weighed, WIM systems capture vehicle characteristics while the vehicle 
is moving at full highway speeds in the mainline highway lanes.  Since the WIM sensor operates 
continuously throughout the year and measures all passing trucks, WIM provide a means to estimate 
current and historical trends in truck volumes and weights.  Through proper calibration procedures, such 
as those outlined in American Society of Testing and Materials (ASTM) Standard E1318-09 (ASTM, 2009), 
measurement errors commonly observed within WIM measured weights can be addressed.  However, 
calibration protocols outlined in ASTM E1318-09 require on-site testing which can be cost prohibitive.   

As a result, many states have adopted lower cost protocols that do not require on-site testing.  One such 
practice, called auto-calibration, uses software to periodically calculate calibration factors based on 
presumed traffic characteristics.  Weight data collected by the WIM sensor are then adjusted based on 
these calibration parameters.  Although auto-calibration has significant value for budget-constrained 
state agencies, it has several drawbacks that limit its effectiveness.  The proposed work sought to 
evaluate the auto-calibration practices used in the WIM systems in Arkansas and to propose an 
alternative method based on Automatic Vehicle Identification (AVI). 

The proposed AVI-based auto-calibration method consisted of first, matching AVI-tracked trucks to WIM 
Per Vehicle Records (PVR), and second, applying a calibration procedure. This procedure measures the 
weights of the same truck, tracked by AVI across multiple WIM sites, to generate a reference weight and 
calibration factor.  The approach currently used by ARDOT generates calibration factors based on the 
measured Front Axle Weight (FAW) averaged for a sample of 50 five-axle tractor trailers and compares it 
to a pre-defined reference weight.  A more robust method, developed by the MnDOT, expands on that 
approach by defining three FAW references based on Gross Vehicle Weight (GVW) bins and applying 
correction factors when sample sizes are small.   

The proposed AVI-based approach was compared to the ARDOT and MnDOT approaches for a set of six 
Arkansas WIM sites at Lamar, Lonoke, Bald Knob, Glen Rose, Arkadelphia, and Texarkana.  During two 
data collections in March of 2018 and 2019, we collected WIM PVR at each WIM site, AVI data from a 
national truck GPS data provider, and static weight recordings at Arkansas Highway Police weight 
enforcement sites at Alma and Hope.  An extensive data preprocessing methodology was developed and 
applied to provide data necessary for auto-calibration algorithm performance evaluation. In total, we 
identified approximately 500 truck matches from WIM to static scale locations which were used to 
evaluate performance of the three auto-calibration approaches.   

Without any form of auto-calibration, we observed FAW errors ranging from 24% to 85% with GVW 
error in the same range.  Site-specific tuning of the user-specified values required in the ARDOT and 
MnDOT auto-calibration algorithms resulted in errors for FAW between 9% and 11% and for GVW 
between 14% and 18%. Overall, through site-specific tuning of parameters like FAW reference values 
and GVW bin thresholds used in the ARDOT and MnDOT algorithms, we can potentially reduce 
measurement errors by 1% to 23%.  Due to the fourth power relationship between measured weight 
and Equivalent Single Axle Load (ESAL) used in pavement design, an improvement in weight 
measurement of only 1% can result in a 4% increase in accuracy of estimated ESALs.  More accurate 
estimates of ESALs will lead to more efficient pavement designs and more reliable estimates of highway 
maintenance costs and rehabilitation schedules. A limitation of developing site-specific, user-specific 
values like FAW references is that it would require detailed, time-consuming, and potentially expensive 
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data collection efforts to gather necessary data.  The AVI approach, on the other hand, alleviates some 
of the need to perform manual field data collection by leveraging AVI truck-tracking technologies such 
as GPS.   

Comparison of FAW and GVW estimation accuracy across all three auto-calibration methods and study 
sites are summarized as follows: 

• The ARDOT method reduced errors to between 12% and 16% for FAW and 14% to 29% for GVW. 
• The MnDOT method reduced errors to between 11% and 26% for FAW and 11% to 41% for 

GVW. 
• The AVI-based method reduced errors to between 10% and 35% for FAW and 16% and 35% for 

GVW. 

In general, the AVI-based method worked well for sites with higher measurement error as seen at 
Lonoke and Glen Rose but maintained similar performance as the ARDOT and MnDOT algorithms in most 
other cases.  Performance of the AVI-based algorithm was also found to correlate with the volume of 
trucks tracked by the AVI system, in this case a GPS tracking system. When more trucks were present, 
lower FAW and GVW estimation errors were observed. Using the ARDOT method, there was a 
correlation between higher GVW ranges and increased error. The AVI-based approach did not exhibit 
this same trend.  

Future improvements to the proposed AVI-based approach include the following: (1) Although we saw 
performance in line with existing auto-calibration algorithms, we anticipate performance improvements 
as we increase the size of the AVI sample.  We propose gathering AVI data, specifically GPS tracking 
data, from multiple providers to ensure a large and robust sample.  (2) The manual process to generate 
data for model development and evaluation was time-consuming which limited our ability to increase 
our test sample size beyond 500 truck samples.  We propose allowing license plate matching technology 
in place of side-fire video as was used here, to increase sample size and speed up data pre-processing. 
To be clear, video and license plate matching are only needed for model evaluation, not for real-time 
deployment.  AVI-based auto-calibration using license plate readers instead of GPS tracking has the 
potential to greatly increase the sample size of trucks matched across sites as well as to alleviate 
possible biases in the sample of GPS trucks. (3) AVI data can be used to prioritize WIM sensor 
improvements (e.g., sensor upgrades, planning calibration frequency, or other maintenance scheduling) 
so that system-wide weight measurement accuracy can be improved.  We can consider a set of “anchor” 
sites which are commonly crossed by all trucks.  Then, as we track trucks from these sites to “satellite” 
WIM sites (e.g., those with lower volume or lower quality sensors), we can use the measured weight at 
the “anchor” site as a reference by which to calculate a calibration factor for the “satellite” location. In 
this way, we may choose to prioritize the anchor WIM sites so that they receive more frequent on-site 
calibration or are considered for sensor updates (to bending plate sensors, for example). 

The estimated Return on Investment (ROI) for this project was estimated at a 63% cost savings over 
anticipated expenditures related to on-site calibration requirements that involve test trucks of known 
weight or use of static scales for weight comparisons.  The tradeoff between on-site calibration costs 
and measurement accuracy can be balanced by replacing on-site calibration methods with AVI-based 
solutions like that proposed in this work. 
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CHAPTER 1: PROJECT OVERVIEW 

BACKGROUND 

Weigh-in-Motion (WIM) is the process of measuring dynamic tire forces of a moving vehicle and 
estimating the corresponding tire loads (ASTM, 2009).  A WIM system consists of embedded roadway 
sensors that collect vehicle arrival time and date, axle weights and Gross Vehicle Weight (GVW), axle 
spacing, and speed.  WIM system software takes axle count, axle spacing, and weight measurements 
and predicts the vehicle class.  Typically, vehicles are classified using the classification sieve for FHWA 
Scheme F that includes 13 axle-based classes (Figure 1).  Unlike static scales that require select trucks to 
exit the highway mainlines to be weighed, WIM systems capture vehicle characteristics while the vehicle 
is moving at full highway speeds in the mainline highway.  Since the WIM sensor operates continuously 
throughout the year and measures all passing trucks, WIM provides a means to estimate current and 
historical trends in truck volumes and weights.  There are 42 WIM stations in Arkansas (Figure 2).  

 

 
Figure 1. FHWA Classification Scheme (REF: TxDOT, 2017) 
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Figure 2. WIM Sites in Arkansas 

WIM systems have been used since the 1950s to collect data for highway traffic monitoring, truck size 
and weight enforcement, infrastructure preservation and design, traffic safety, and transportation policy 
(Nichols and Bullock, 2004; FHWA, 2016).  In most states, the main use of WIM data is for federal report 
requirements such as the Highway Performance Monitoring System (HPMS) database (NCHRP Synthesis 
386). In pavement design, under the Mechanical Empirical Pavement Design Guide (MEPDG), truck 
weight data is needed at a high level of spatial resolution.  Several reports detail the use of WIM data for 
pavement and bridge design: 

• Long Term Pavement Performance Program (LTPP) 
• Commercial Vehicle Information System and Network (CVISN) Program 
• Mechanistic Empirical Pavement Design Guide (MEPDG) (NCHRP Project 1-37A) 
• Protocols for Collecting and Using Traffic Data in Bridge Design (NCHRP Project 12-76)  

Freight forecasting models such as the Arkansas Statewide Travel Demand Model (AR STDM) use truck 
weight and volume data from WIM for model calibration and validation (Battelle, 2011; Alliance, 2015).    
Emissions estimation tools use vehicle classification schemes based on truck weights to apply emissions 
rates (CARB, 2016).   Truck weight data from WIM has also been used to assess the impact of truck loads 
on the performance and durability of bridges (FHWA, 2016; Caltrans, 2016).  Beyond public agency uses, 
WIM sensors are an essential component of truck pre-clearance and bypass programs like PrePassTM and 
Drivewyze (PrePass, 2017; Drivewyze, 2017).  These pre-clearance systems allow trucks that pass specific 
safety checks to bypass static enforcement scales. Every truck is weighed as it passes over the mainline 
WIM sensor located several hundred feet upstream of the static scale and an in-cab bypass signal is 
given if the truck measures within a specified tolerance of state weight limits.    
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Agencies using WIM data are aware that WIM data is prone to accuracy errors in speed, spacing, and 
weight measurements (FHWA, 2001). WIM measurement inaccuracies are the result of several possible 
factors: (1) vehicle dynamics such as speed, acceleration, tire condition, load, and body type; (2) site 
conditions such as pavement smoothness; (3) environmental factors such as temperature and 
precipitation (Lee, 1998; NCHRP, 2008).  On the other hand, systematic errors, more commonly referred 
to as calibration errors, are persistent inaccuracies in which the true weight is either consistently over- 
or under-estimated.   Figure 3 shows the effects of WIM sensor calibration error on calculated 
Equivalent Single Axle Loads (ESAL) values commonly used for pavement design (FHWA, 1998).  In this 
example, calibration error is the difference between the weight measured by the WIM sensor and the 
true weight of the truck.  In general, for every 1% of error that a scale is under-calibrated, ESALs are 
approximately 3% underestimated; for every 1% of error that a scale is over-calibrated, ESALs are 
approximately 4.5% overestimated (FHWA, 1998).   If a WIM station produced 10% over-estimated truck 
weights, this would result in 45% error in estimating damage to the pavement.  Since ESALs and truck 
loads are critical inputs to pavement and bridge designs, a 45% over-estimate of ESAL would result in 
unnecessarily more costly pavements and bridges.   

Through proper calibration procedures such as those outlined in American Society of Testing and 
Materials (ASTM) Standard E1318-09 (ASTM, 2009), systematic error can be addressed.  However, 
calibration protocols outlined in ASTM E1318-09 require on-site testing which can be cost prohibitive.  
Many states have adopted lower cost protocols that do not require on-site testing.  One such practice, 
called auto-calibration, uses software to calculate adjustment parameters based on presumed traffic 
characteristics.  Weight data collected by the WIM sensor are then adjusted based on these calibration 
parameters.  Although auto-calibration has significant value for budget-constrained state agencies, it has 
several drawbacks that limit its effectiveness.    

The work described in this report includes an evaluation of the auto-calibration practices used in the 
WIM systems in Arkansas with the goal to develop methods to improve auto-calibration practices to 
produce more accurate weight measurements. The following sections describe WIM system hardware 
and provide an overview of WIM calibration and auto-calibration practices.  

 

 
Figure 3. Effects of Sensor Calibration on ESAL Value (REF: FHWA, 1998) 
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PROJECT OBJECTIVES 

The goal of this study was to develop a method to improve auto-calibration of WIM sites in Arkansas.  
The approach detailed in this report makes use of AVI systems, specifically truck GPS data, to estimate 
site and lane specific calibration factors.  This research goal was carried out under three objectives 
which are summarized below. 

Objective 1: Coordination with WIM Sensor Vendors 

The research team worked with Peek Traffic, the WIM system provider used by ARDOT, to detail the 
current auto-calibration procedures and system characteristics.  Peek was able to provide information 
on the auto-calibration algorithm and reference values used within the algorithm.  

Objective 2: Field Test Calibration 

Two field data collection efforts were carried out in March 2018 and 2019 to provide data for model 
development and validation.  Video recordings taken at WIM sites were used to track trucks as they 
passed over the static enforcement scales.  Each data collection consisted of two to three WIM sites and 
one static scale at an enforcement weigh station.  The objective was to determine a WIM weight and a 
static weight for each truck in the sample for algorithm development and validation.  

Objective 3: Automatic Vehicle Identification (AVI)-Based Calibration 

The research team worked with Drivewyze, a truck pre-clearance program, to collect AVI data for the 
Arkansas WIM sites.  Truck GPS data was provided to the research team monthly and used to develop 
and validate the proposed AVI-based auto-calibration algorithm.  The algorithm has two main parts: (1) 
a matching algorithm to assign AVI trucks to the respective WIM record, and (2) an algorithm to 
calculate hourly, site, and lane specific calibration factors based on the GPS tracked trucks.  Results of 
the proposed AVI-based auto-calibration algorithm, the current algorithm used by ARDOT, and an 
enhanced algorithm developed by MnDOT were compared using data from the two field experiments.   

STRUCTURE OF THE REPORT 

Following the Project Overview in Chapter 1, this report is organized as follows:  

• Chapter 2 briefly describes WIM calibration challenges and calibration procedures, 
• Chapter 3 presents the proposed AVI-based auto-calibration methodology, 
• Chapter 4 summarizes the data collection efforts,   
• Chapter 5 describes modifications to the existing ARDOT methodology and summarizes performance 

metrics resulting from applying the ARDOT and MnDOT methods to the collected data,  
• Chapter 6 presents the performance metrics for the AVI-based auto-calibration method and 

compares performance to existing auto-calibration algorithms, and 
• Chapter 7 summaries key findings, addresses limitations, and suggests avenues for future work. 
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CHAPTER 2: WEIGH-IN-MOTION (WIM) SYSTEMS 
This chapter describes WIM system components and calibration procedures.  Three general calibration 
procedures are discussed: on-site calibration using test trucks or traffic stream parameters, off-site 
calibration using data quality control procedures, and auto-calibration algorithms.   

WEIGH-IN-MOTION (WIM) SYSTEM COMPONENTS 

WIM system components include a controller, communications equipment, and roadway weight and 
presence sensors for all monitored lanes (NCHRP Synthesis 386).  The ASTM E1318-09 classifies WIM 
systems according to their applications and functional performance: 
 

• Type I systems are equipped with bending plates, load cell plates, or quartz piezoelectric sensors.  
Type I systems weigh the right- and left- hand side axles individually.  Type I sensors can measure 
load data at speeds of 10 to 80 mph. 

• Type II systems are equipped with ceramic or polymer piezoelectric sensors in various 
configurations.  Piezoelectric sensors can be rated as Class 1 (for weighing) or Class 2 (for axle 
detection only).  Type II systems weigh entire axles and can measure load data at speeds of 15 to 
80 mph. 

• Type III systems are used for load enforcement screening or sorting.  They are installed on the 
approaches to truck inspection stations. Type III sensors can measure load data at speeds up to 
10 mph. 

A typical WIM station includes a weight sensor, e.g., piezoelectric or bending plate, straddled by 
Inductive Loop Detectors (ILD) (Figure 4).  ILDs act as presence detectors while the piezoelectric or 
bending plate sensor measures axle or tire weight.  The weight sensor measures the dynamic forces 
applied by the vehicle as it passes over the sensor. The type of weight sensor varies in application and 
desired accuracy.   

 

 
Figure 4. Typical WIM System Configuration 

Bending plate sensors (Figure 5a) use strain gauges mounted to the underside of high-strength steel 
plates called weight pads. For traffic data collection, two weight pads are installed in a staggered 
configuration to allow speed estimation.  This configuration also allows the left and right wheels to be 
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measured individually.  Load-cell WIM weight sensors use transducers to convert dynamic tire forces to 
proportional electrical signals. Load-cell installations are costly due to the requirements for a reinforced 
concrete vault to support the scales in the pavement, however they are the most accurate.  Piezoelectric 
sensors translate the voltage generated by a tire force acting on a piezoelectric material to a dynamic 
load (Figure 5b).   

In Arkansas, all of the WIM sites use piezoelectric sensors. Three types of piezoelectric sensors are used 
for WIM systems: piezoceramic, pizeopolymer, and piezoquartz.  The main distinction lies in the data 
quality and cost of the sensors.   Piezoquartz are the most expensive at $20,000 per installation 
compared to $9,000 for piezoceramic sensors, but provide the highest quality data (FHWA, 2016).   In 
Arkansas, only one of the WIM sites is equipped with a piezoquartz sensor.  The remainder of the sites 
contain piezoceramic sensors.  

 

 
(a) Bending Plate Weight Sensors in a Staggered Configuration (Type I) 

 
(b) Piezoelectric Weight Sensors (Type II) 

Figure 5. Examples of Weight Sensor Types (REF: FHWA, 2016) 

 

Accuracy standards are set by ASTM E1318-09 and are dependent on the sensor type, e.g. Type I, II, or 
III, as shown in Table 1.  Accuracy is measured in terms of the probability that individual axle load 
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measurement errors are within prescribed limits and is calculated according to Equation 1.  Error can be 
calculated using individual axle loads, axle-group load (e.g. tandem or single axles), or GVW.  ASTM 
standards are more stringent for Type I than Type II sensors, typically used for traffic monitoring.  Type 
III, which are used for enforcement, are subject to the highest accuracy standards.   

 

𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 =
𝑾𝑾𝑾𝑾𝑾𝑾− 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙% 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏 

Where  
‘error’ is the percent error between the static and WIM measured loads 
‘static’ is the load measurement of a vehicle as measured by a static scale 
‘WIM’ is the load measurement of a vehicle as measured by a WIM sensor 
 

Table 1. WIM System Accuracy Tolerances (REF: ASTM E1318-09) 

Function 
Tolerance for 95% Compliance 

Type I Type II Type III 
Wheel Load ±25% NA ±20% 
Axle Load ±20% ±30% ±15% 
Axle-Group Load ±15% ±20% ±10% 
Gross Vehicle Weight ±10% ±15% ±6% 
Speed ±1 mph 
Axle-Spacing ±0.5 ft 

CALIBRATION AND AUTO-CALIBRATION PROCEDURES 

WIM sensors can contain both random and systematic measurement errors due to vehicle dynamics 
over the sensor, site conditions, and environmental factors (Nichols and Bullock, 2004; Papagiannakis et 
al., 2008; Prozzi and Hong, 2007).  Random errors are difficult to detect, and no procedures have been 
introduced to correct for them.  Systematic errors, sometimes called calibration errors, are consistent 
inaccuracies, which exhibit as over- or under- estimations of the true weights.    

Once a site has been identified to have calibration issues, the system should be recalibrated.  Calibration 
involves adjusting the system’s calibration factors by setting the mean error measurements to zero.  As 
mentioned in the previous section, error can be measured against the individual axle weights, the axle-
group loads, or the GVW.  The factors that minimize errors between known weights and WIM-measured 
weights are subsequently applied within WIM system calculations to correlate measurements taken by 
the WIM system to those taken at static scales.  The data for determining error are obtained from one of 
two on-site sources: (A) test trucks or (B) traffic stream trucks of known static weights. It is ideal to 
compute multiple calibration factors for different speed bins and temperature ranges.  In fact, the Long 
Term Pavement Performance Program Field Operation Guide for Specific Pavement Study (SPS) WIM 
Sites (2012), advises 40 initial runs at a minimum of two different speeds for each test truck to 
determine initial equipment performance and 10 runs at two different speeds for each test truck after 
making changes to calibration factors.  While this procedure was designed for special WIM sites included 
in the SPS program, the procedure for regular calibration is similar. The task of acquiring multiple 
calibration factors can be costly to implement when relying on test truck or traffic stream approaches as 
additional runs of test trucks or matched traffic stream trucks would be needed at different speeds and 
temperature ranges.  Implementation of this approach can therefore be time consuming and thus, tends 
to be performed infrequently.   
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Alternatively, instead of on-site calibration, protocols have been developed for off-site data quality 
control procedures and auto-calibration methods.  In short, off-site and auto-calibration are less costly 
as they do not require on-site operations and can be done remotely. This project, TRC1801, focused on 
off-site and auto-calibration approaches as they provide more cost-effective means of calibrating the 
WIM systems. 

Calibration Using Test Trucks 

The ASTM E1318-09 standard describes on-site calibration methods using test trucks of known static 
weight and dimensions.  Under the ASTM standard, two test trucks are required to make multiple runs 
over the WIM system sensors at prescribed speeds in each lane.  Most states use a FHWA Class 5 (two-
axle, single-unit truck) and FHWA Class 9 (five-axle tractor-trailer) as test trucks.  These trucks should 
have a suspension type that is typical of the trucks operating at that site.  Weight and axle spacing of the 
trucks should be taken a minimum of three times at static scales prior to site testing.  The ASTM 
standard calls for routine calibration at least annually for sensors over one year in operation (NCHRP 
Synthesis 386). According to the survey findings of NCHRP Synthesis 386, 22 of the 34 DOTs that 
responded to the survey reported use of test trucks as part of their calibration protocol when the 
system is used for data collection.   

The Traffic Monitoring Guide (TMG) enhances procedures outlined in ASTM E1318-09.  Enhancements 
include (1) testing more than two test vehicles, (2) testing at various speeds, (3) testing under varying 
environmental conditions (e.g. temperatures), and (4) performing data quality control (QC) procedures.  
Basic QC procedures involve monitoring traffic stream data over time.  Traffic stream parameters of 
interest are: (1) front axle weights of five-axle tractor-trailers, (2) GVW distribution of five-axle tractor-
trailers, (3) spacing of tandem drive axles, and (4) vehicle classification counts.  The Long Term Pavement 
Performance Program (LTPP) protocol requires the following in addition to the ASTM requirements: (1) 
one of the test trucks must be a five-axle tractor trailer with air ride suspension and weigh between 72 
and 80 kips, (2) the second test truck must be of a different configuration or different suspension type 
and cannot be a three or four axle truck, (3) both test trucks must have conventional tread patterns, and 
(4) at least 20 passes of each truck must be made at highway speeds.  Like the TMG, the LTPP protocol 
also recommends ongoing monitoring using data QC procedures such as calibrating using the GVW 
distribution pattern (LTPP, 1998).  

The Long Term Pavement Performance Specific Pavement Study Traffic Data Collection Pooled Fund 
Study refined the LTPP protocol by adding the following requirements for test trucks: (1) a minimum of 
two test trucks with different configurations and axle loadings was recommended, (2) one test truck 
must be a five-axle tractor-trailer with GVW between 76 and 80 kips and the second truck must be 
another five-axle tractor-trailer with GVW between 60 and 64 kips, (3) the heavier test truck must have 
air ride suspension for both tractor and trailer tandem axles, and (4) ASTM tolerance limits must be met 
by the entire data set and also for subsets of the dataset based on temperature and speeds.  Ideally, 
calibration using the test truck characteristics specified above should be performed for different speed 
bins and during times of the year when the greatest daily temperature variations are likely at each site.  
Moreover, calibration should be performed two or three times per year to ensure the scale work 
properly under all environmental conditions.  

Calibration Using Traffic Stream Vehicles 

On-site calibration using traffic stream vehicles involves comparing measurements of vehicles passing 
the WIM system to the measurements taken at a static scale site for that same vehicle.  This requires 
tracking vehicles as they pass both the WIM and static scale sites.  Tracking can be performed manually 
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using video recording or automatically using license plate readers or other Automated Vehicle 
Identification (AVI) technologies.  According to the survey findings of NCHRP Synthesis 386, seven of the 
34 DOTs that responded to the survey reported use of traffic stream data as part of their calibration 
protocol when the system is used for data collection.   

For on-site testing using traffic stream vehicles, either a fixed number of trucks must be sampled, or a 
fixed time interval is used.  The results of NCHRP Synthesis 386 show that when a fixed number of trucks 
is used, the average sample size was 40 vehicles.  The Long Term Pavement Performance Program (LTPP) 
protocol for calibrating WIM located near enforcement scales is based on direct comparisons of WIM 
and static scale weights for a test set of at least 150 vehicles.  Due to the sample size requirements, this 
method is usually only applicable to WIM sites located near static scale sites.  When using a fixed time 
interval, the majority of state agencies used a time interval between one and four hours (NCHRP 
Synthesis 386).   

NCHRP Project 3-39(02) On-Site Evaluation and Calibration of Weigh-in-Motion Systems provides 
guidelines for on-site calibration using traffic stream vehicles equipped with AVI systems, specifically 
license place readers.  This method is based on comparing static weight data from enforcement stations 
for a subset of vehicles which have been identified though AVI to have also driven over mainline WIM 
systems. Similarly, the Montana DOT developed a traffic stream calibration procedure using AVI data 
from the truck bypass program, PrePassTM (NCHRP Synthesis 386).  In this procedure, PrePassTM static 
axle load data are obtained for 25 five-axle tractor-trailers for each of the lanes being monitored.  WIM 
measurements are collected for the same 25 trucks by manually (visually) matching the truck from the 
WIM sensor and static scale.  

Calibration Using Data Quality Control Procedures 

WIM data QC procedures involve analysis of historical WIM data to determine calibration issues.  
Several methods have been developed to assess whether a WIM sensor may contain errors due to 
calibration (Dhalin, 1992; Hand et al, 1995).  A common method of data QC is to compare the 
measurements of traffic stream vehicles to some reference value.  A typical reference value is the FAW 
of five-axle semi-tractor trailers.  This value is restricted to a very narrow range typically centered at 10 
kips.  Although the reference value for FAW is typically around 10 kips, the average FAW for a site is 
dependent on traffic characteristics.  So, rather than compare measured average FAW to a set value of 
10 kips, QC procedures tend to examine how the FAW changes over time such that significant shifts in 
average FAW at a site over time should trigger QC procedures. At initial calibration and for calibration 
updates, the LTPP program recommends a range of +/- 20% for FAW.  

Similarly, the GVW distribution can be used as a reference measure.  The GVW distribution of five-axle 
tractor-trailers typically follow a distinct bimodal distribution due to the presence of loaded and 
unloaded trucks (NCHRP Synthesis 386).  If the peaks of the GVW distribution are shifted, it is likely that 
the scale has calibration problems. Specific examples of data QC checks are provided in Table 2. The 
main challenge with these approaches is that average FAW and GVW measures, even of the same class 
of truck (e.g., five-axle semi-tractor trailers), can vary “naturally” due to the characteristics of freight in a 
region.  For example, FAW is affected by the position of the kingpin (the mechanism connecting the 
tractor and trailer) which reflects the loading preferences of the driver.  Also, areas with higher 
concentrations of loaded or unloaded trucks may affect the peak locations (average loaded and 
unloaded weight) in the GVW distribution. For these reasons, it is important to develop reference 
measures that are specific to a site and/or a region.  
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Several state agencies have adopted data QC procedures to support or replace on-site calibration 
protocols (NCHRP Synthesis 386).  In many cases, data QC is used to monitor when a site needs to be 
calibrated using on-site testing procedures.   According to the survey findings of NCHRP Synthesis 386, 
20 of the 34 DOTs that responded to the survey reported use of data quality control (QC) as part of their 
calibration protocol when the system is used for data collection.   

 

Table 2. Examples of Data QC Elements 
Document Data QC Elements 

Traffic Monitoring Guide  
(TMG) 

• FAW of five-axle tractor-trailers 
• GVW distribution of five-axle tractor-trailers 
• Spacing between tandem drive axles 
• Vehicle classification counts     

NCHRP Report 509:  
Equipment for Collecting 
Traffic Load Data 

• Distribution of loaded and unloaded GVW peaks for five-axle tractor-
trailers 

• Consistency of mean FAW for loaded five-axle tractor-trailers 
• Consistency of percentage of weekday five-axle tractor-trailers  
• Changes in percentage of unclassified vehicles 
• Increases in equipment counting errors 
• Consistency in load-relative magnitudes between right and left wheel path 

weighing sensors 
• Consistency of spacing between tandem drive axles 
• Total number of vehicles within expected load ranges 
• Changes to time-of-day traffic patterns 
• Changes in hourly data volumes 

Auto-Calibration Algorithms 

Auto-calibration is a mechanism built into WIM software effecting automatic calibration adjustments 
when certain measurements fall outside prescribed limits (NCHRP Synthesis 386).  The ASTM E1318 
standard describes auto-calibration as the ability for WIM software to automatically adjust the 
calibration factor (ASTM, 2017).  Auto-calibration borrows the same general principles from off-site data 
QC protocols in that traffic stream measurements are compared to reference values to determine 
calibration status.  The main difference is that auto-calibration routinely updates calibration factors and 
adjusts output measurements whereas data QC is used only to monitor calibration status.  The survey 
conducted in NCHRP Synthesis 386 revealed that auto-calibration is used primarily for Type II systems 
but did not detail how many states rely on auto-calibration methods or how those methods are 
implemented.  

Generally, state-of-the-practice auto-calibration algorithms vary in their calibration factor adjustment 
procedure.  For instance, the FAW can be used as a target measurement such that the calibration factor 
is adjusted to ensure FAWs are within range of the target value.  Other methods may use GVW as the 
target measure.  The Minnesota DOT, for instance, developed a procedure which compares the peaks of 
the GVW distribution of five-axle tractor-trailers.  The loaded peak should be between 74 and 78 kips 
and the unloaded peak should be between 28 and 30 kips.  If these data are within range, then an auto-
calibration factor is estimated based on the FAW of five-axle tractor-trailers for each GVW group. The 
auto-calibration algorithm determines differences between the average FAW for each GVW class and 
calculates weighted adjustment factors.  The adjustment factors are weighted by the number of 
sampled vehicles used to compute their value. Florida DOT, Texas DOT, and Caltrans monitor the 
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average GVW, while Indiana DOT and MnDOT monitor both the GVW and the FAW (Papagiannakis and 
Quinley 2008). 

In addition to variability in the reference metric used, there is also variability in the target value of the 
metric, target vehicle type, the sample size used to update the calibration parameter, and the time 
period over which to routinely perform auto-calibration.  The auto-calibration algorithm implemented 
by Peek Traffic (the vendor of WIM system equipment in Arkansas), for example, allows the following 
settings to be defined at each site and for each lane: (1) type of vehicle to use for reference, (2) which 
axle to use for reference, (3) target value for reference axle, and (4) number of vehicles to include in the 
sample used to calculate parameter updates.  For a four-lane site (two lanes in each direction), the auto-
calibration may be set as shown in Table 3. 

Auto-calibration can be specified for different volumes of the same vehicle type over all the lanes or for 
higher volumes of different types of vehicles. An issue facing several of the sites in Arkansas is that of 
low volumes of trucks to use when sampling to adjust the calibration factor.   For instance, to update the 
calibration parameter each hour (recommended to compensate for temperature fluctuations) a large 
enough sample of five-axle tractor-trailers is needed to ensure consistency.  While the number of 
sampled trucks can range from 1 to 100, the majority of state DOTs use 50 vehicles (NCHRP Synthesis 
386). In some locations in Arkansas, within a given hour, truck volumes can be too low to provide 
consistent data to reliably update the calibration factors.  In these cases, a more common vehicle, such 
as a passenger car, can be used as the reference vehicle to achieve a larger sample size.     

Another form of auto-calibration attempts to compensate for the effects of temperature changes on 
WIM sensor measurements (Burnos, 2008).  As pavements heat and cool due to ambient weather 
conditions, relative variation in the weight data can be observed (Figure 6).  To account for this 
variation, a temperature compensation curve is defined and is referenced to update the calibration 
parameters as temperatures shift throughout the day.  A temperature probe at the site is required if 
auto-calibration is supported or replaced by a temperature compensation curve.  In communications 
with Peek Traffic, the use of temperature probes and compensation curves have been shown to have 
poor performance due to the difficulty in maintaining temperature probes.  Also, when only one 
temperature probe is installed at a site, it may not accurately reflect the temperature conditions across 
all travel lanes.  As a result, the WIM systems in Arkansas do not use temperature probes and instead 
rely on auto-calibration based on comparing measured to reference FAWs . 

NCHRP Report 509: Equipment for Collecting Traffic Load Data states that auto-calibration should not be 
used to replace data QC procedures.   However, it seems to be common practice to rely on the auto-
calibration procedures and parameters set by the WIM system vendors.   Often, instead of determining 
site-specific auto-calibration settings like reference vehicle type or volume, state agencies use default 
values based on state or regional averages.   This can be problematic because there is variability in the 
target values not only by site, but also across lanes at the same site.   If auto-calibration values are not 
correctly defined, auto-calibration can actually force scales to become uncalibrated (LTPP, 1998).  Thus, 
for auto-calibration to be effective, a state must determine what procedure should be used, how to 
determine site-specific parameters, and how many test trucks cross the sensor during the calibration 
process to allow for proper calibration (LTPP, 1998).  
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Table 3. Auto-Calibration Settings for a Four Lane WIM Site 
(REF: Personal Correspondence with Peek Traffic) 

Lane (1) 
Type of Vehicle 

(2) 
Reference Axle 

(3) 
Target Value 

(4) 
No. of Vehicles 

1 (outer lane) Five-axle  
tractor-trailers Front axle 10.2 kips 50 

2 (inner lane) Passenger cars Front axle 2.2 kips 50 

3 (inner lane) Passenger cars Front axle 2.3 kips 75 

4 (outer lane) Five-axle  
Tractor-trailers Front axle 10.8 kips 25 

 

 
Figure 6. Relative Variations in Weight at Varying Pavement Temperatures (REF: Burnos, 2008) 
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CHAPTER 3: AUTOMATIC VEHICLE IDENTIFICATION (AVI)-BASED AUTO-
CALIBRATION 

This chapter describes the AVI-based auto-calibration method developed for this project.  Following a 
brief overview of the AVI-based approach, a description of the AVI data obtained from Drivewyze and 
WIM Per Vehicle Record (PVR) data are provided. The two main components of the AVI-based auto-
calibration are discussed: (1) a matching algorithm to assign AVI truck records to WIM PVR records, and 
(2) an algorithm to estimate hourly, lane, and site specific calibration factors that uses AVI data to track 
trucks across multiple WIM sensors.  

OVERVIEW OF AVI-BASED APPROACH 

Instead of using reference values to calculate calibration factors, it is possible to track trucks across WIM 
sites and compare their weights to generate calibration factors. Automatic Vehicle Identification (AVI) is 
a method of using computers to identify and track vehicles.  Common examples of AVI technologies 
include vision-based systems like cameras, license plate readers, and Radio Frequency Identification 
(RFID).  AVI is used for traffic enforcement in border and customs checkpoints, electronic toll collection, 
intersection violations, and for transportation analysis (Ozbay et al., 2007). AVI has the capability of 
recording path flow information and tracking a vehicle’s trip from origin to destination. In addition, AVI 
methods may have the capability to capture a larger sample than traditional surveys and traffic counts if 
desired.  

The two most common methods using visual recordings in AVI are tag-based, and license plate-based 
recognition. Other forms of AVI are cellular phone based (Dixon and Rilett, 2002), GPS-based (Hyun K., 
Tok A., Ritchie S. G., 2017), transponder number (Nichols & Cetin, 2015), and inductive signature (Jeng & 
Chu, 2015 & Hyun K., Tok A., Ritchie S. G. 2017). Inductive loops and transponders create unique records 
using inductive signatures and transponder numbers, uniquely identifying trucks with their respective 
time stamps when they travel over these sensors. These trucks may then be identified in other sensor 
sites of the network with their unique IDs or signatures. Hyun K., Tok A. and Ritchie S. G. (2017) and Jeng 
and Chu (2015) used Inductive Loop Detectors (ILDs) along with WIM sensors to collect vehicle 
attributes of shared trucks for their studies.   

The type of AVI technology applied depends on traffic sensor, infrastructure and equipment available, 
and budget. For example, California uses advanced ILDs to track trucks across multiple scales while 
Oregon uses transponder identification numbers (Cetin and Nichols, 2015). The state of Arkansas does 
not have ILD available and automatic license plate recognition is not permitted.  Thus, a suitable form of 
AVI for Arkansas is to use passive GPS tracking. There are many private data providers that collect and 
share GPS tracking data with public agencies for various applications including INRIX, HERE, and 
Drivewyze.  Each of these companies collect data from only a small percentage of the total traffic. 
However, this type of probe vehicle data is often enough to estimate performance measures like travel 
time and speed.   

For this study, the GPS AVI data was provided by Drivewyze, a private company that operates as an app 
providing pre-clearance for trucks through weigh and enforcement stations. This AVI data was used to 
derive calibration factors (CFs) by comparing the weight of the same truck as measured by different 
WIM sites (Figure 7). 
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Figure 7. Overview of AVI-Based Auto-Calibration Methodology 

DESCRIPTION OF ALGORITHM INPUT DATA 

The main data used by the AVI-based auto-calibration algorithm include (1) truck AVI data from 
Drivewyze and (2) WIM PVR data.  Each source is briefly described in this section. 

Truck AVI Data 

Each AVI truck record contained a unique ID that remains constant across traveled sites, time of day, 
and day of week. AVI records can be represented as an array for each unique truck 𝑑𝑑𝑘𝑘 , with the origin 
WIM site and time stamp at which the truck crossed the site, 𝑆𝑆𝑤𝑤 , and 𝑡𝑡𝑘𝑘,𝑠𝑠, and the next term 𝑆𝑆𝑤𝑤′, 𝑡𝑡𝑘𝑘,𝑠𝑠′ 
corresponding to site and timestamp of the next WIM site crossed:  

dk = [ (𝑆𝑆𝑤𝑤 , 𝑡𝑡𝑘𝑘,𝑠𝑠),  (𝑆𝑆𝑤𝑤′  , 𝑡𝑡𝑘𝑘,𝑠𝑠′)…]  

Where: 

dk is the AVI record, where k denotes the unique id. 

𝑆𝑆𝑤𝑤 is the ID of the WIM site that the truck traveled over. 

tk,s is the timestamp of truck k at site s.  

WIM PVR Data 

WIM PVR files include data of each vehicle detected by the WIM sensors.  PVR data contains a record 
number, traveled lane, direction of travel, speed, vehicle class (according to the FHWA 13 class scheme), 
axle and gross vehicle weights, and axle spacing. Note that the WIM sensor may not detect all vehicles 
and may also produce duplicate records (e.g., when vehicles change lanes over the sensors). WIM 
records for each vehicle may be represented in an array for vehicle parameters of interest with WIM site 
𝐷𝐷𝑠𝑠 with vehicle parameter, 𝑊𝑊𝑖𝑖: 

 𝐷𝐷𝑠𝑠 = �𝑊𝑊𝑠𝑠,1,𝑊𝑊𝑠𝑠,2,𝑊𝑊𝑠𝑠,3 …𝑊𝑊𝑠𝑠,𝑛𝑛� 

 Where: 

 𝐷𝐷𝑠𝑠 is WIM site s. 

𝑊𝑊𝑠𝑠,𝑖𝑖 is a vehicle parameter data record at s for vehicle parameter i, e.g. axle weight, axle 
spacing, vehicle length, etc. 

AVI-BASED AUTO-CALIBRATION METHODOLOGY 

The WIM auto-calibration model consisted of two parts: (1) a truck-matching algorithm and (2) an auto-
calibration algorithm. Each is described in the following sections. 

Input:
Weights of trucks 

crossing over the WIM 
station are recorded. 

GPS tracking is used to 
match trucks across 

sites.

Process:
The weights at the WIM site 

are compared with other WIM 
sites for each truck that was 
found to cross multiple sites.  

A Calibration Factor (CF) is 
calculated for each site, for 

each hour.

Output:
Adjusted WIM axle 

weights using time and 
site dependent CFs.
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Truck-Matching Algorithm 

As part of data pre-processing, time offsets between the AVI truck records and WIM PVR were manually 
determined using video data.  In this section, the algorithm, called “Truck-Matching”, used to perform 
the same task automatically is described. The Truck-Matching algorithm followed three steps (Figure 8): 
(1) Time Offset Calculation, (2) Match Filtering, and (3) Data Pairing. Each is described below. 

 
Figure 8. Truck-Matching Inputs, Processes, and Outputs 

Time Offset Calculation 

Since the GPS data provides unique IDs for each truck record, trucks can be tracked across WIM sites 
solely based on their ID (e.g., advanced truck re-identification was not necessary). However, it was 
necessary to find the time offset between the AVI records and the WIM PVRs via an automated process.  
The algorithm steps were as follows: 

1. Query the AVI truck records for a given day and year to produce a list of stations and trucks 
crossing those stations.  

2. For each AVI truck, query WIM PVRs within a specified time window around the AVI truck 
timestamp (the optimal time window was found to be three minutes, or 180 seconds).  

3. For each WIM PVR returned by the query, calculate the time offsets between the PVRs and the 
AVI truck timestamp. 

4. Find the ‘mode’ (e.g., the most frequently occurring value) among all AVI trucks and PVR offsets.  

5. If no mode exists or there are multiple modes within the initial time window, then widen the 
window and repeat Steps 3-6. The time window was widened by 10 seconds each iteration and 
allowed to increase to five minutes. Note that no mode exists if all offset values occur only once.  

6. When a mode is found, assign it as the offset for the station.  

Match Filtering 

AVI records of trucks tracked across multiple WIM sites were subjected to a match filter. A travel time 
filter was applied first to reduce the possibility of truck weight differences due to pick-up and deliveries 
between sites.  A maximum travel time threshold ensured the same truck with the same cargo and 
trailer was found. The maximum threshold was based on observed travel time distributions among WIM 

Truck Matching Algorithm 

WIM PVR 
Data 

AVI Truck 
Records 

WIM to 
WIM 
Pairs 

Time Offset Calculation 

 Match Filtering 

Data Pairing 
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sites. A minimum travel time threshold controlled for recording errors inherent in the GPS data. A 
temporal window of one day was applied to the AVI-matched trucks (dk) to filter out potential variation 
in weights due to drop-off, pick-up, cargo, and trailer changes.  

Data Pairing 

Data pairing between the AVI and WIM records was necessary because there are typically several 
candidates within the time window of each AVI record when matching AVI to WIM records, even after 
filtering out records outside the match filter. There are many more WIM records than AVI records, e.g. 
the AVI data represents less than 10% of the total truck population.  Therefore, the set of candidate 
matches was reduced by examining the timestamps and axle spacing recorded by the WIM. The 
objective of data pairing was to assign each AVI record uniquely to a WIM record. The algorithm was 
carried out in two steps: (1) identify candidate WIM records for each AVI record, and (2) assign a unique 
WIM record to each AVI record.   

Step 1.  Identify Candidate WIM Records. A time buffer, Δ, around the AVI timestamp (tk,s + Δ) 
for each site of interest, for each truck dk was established based on time offsets and was used to 
obtain candidate WIM records.  The set of candidate matches for truck dk was: 

C(tk, s) = [ W((t+x)-Δ)s,i, ..., W(t+x)s,i,+n  ,… W((t+x) +Δ)s,m]  

Where, 

C(tk,s) is the set of WIM records corresponding to the time stamp of an AVI truck at site s 
at time 𝑡𝑡𝑘𝑘,𝑠𝑠. 

W(t)s,i  is the WIM record of the vehicle at site s, timestamp t such that the set of 
candidates is within a buffer, Δ, around tk,s (t-Δ, t, t+∆), i = 1… m.  

Step 2. Assign WIM Record to AVI Record. Finally, for an AVI truck dk crossing stations 𝑠𝑠 and 𝑠𝑠′ , 
the set of candidate WIM records were filtered to find a unique match such that the timestamp 
and vehicle parameters from each corresponding WIM record were minimized. A matrix 𝐷𝐷𝑠𝑠,𝑠𝑠′ 
representing all pairwise combinations of WIM to WIM pairs (𝑊𝑊𝑠𝑠,𝑖𝑖 to 𝑊𝑊𝑠𝑠′,𝑗𝑗) contained the 
candidate sets C(tk,s) and C(tk,s’) for sites s and s’. The sum of absolute differences of vehicle 
parameters was used as a metric to find the unique match. The WIM records that produce the 
minimum difference, e.g., 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝑠𝑠,𝑠𝑠′ , {𝑊𝑊𝑠𝑠,𝑖𝑖,𝑊𝑊𝑠𝑠′,𝑗𝑗}), and were within all temporal constrains 
are selected as a unique match.  The vehicle parameters compared in the study were inter-axle 
spacing values.  

𝐷𝐷𝑠𝑠,𝑠𝑠′ = �
�𝑊𝑊𝑠𝑠,1 −𝑊𝑊𝑠𝑠′,1� … �𝑊𝑊𝑠𝑠,1 −𝑊𝑊𝑠𝑠′,𝑚𝑚�

… … …
�𝑊𝑊𝑠𝑠,𝑛𝑛 −𝑊𝑊𝑠𝑠′,1� … �𝑊𝑊𝑠𝑠,𝑛𝑛 −𝑊𝑊𝑠𝑠′,𝑚𝑚�

�   

Where, 

𝐷𝐷𝑠𝑠,𝑠𝑠′ is the matrix of differences between all WIM records at sites s and s’ pertaining to 
𝑡𝑡𝑘𝑘,𝑠𝑠 and 𝑡𝑡𝑘𝑘,𝑠𝑠′   

𝑊𝑊𝑠𝑠,𝑖𝑖 is WIM record i at site s contained in C(tk,s) = [ W(t-Δ)s,i, ..., W(t)s,i,+n,… W(t+Δ)s,n], i = 
1…n 

𝑊𝑊𝑠𝑠′,𝑗𝑗 is WIM record j at site 𝑠𝑠′ contained in C(tk,s’) = [ W(t-Δ)s’,j, ..., W(t)s’,j,+n,… W(t+Δ)s’,m], 
j = 1… m 
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�𝑊𝑊𝑠𝑠,𝑛𝑛 −𝑊𝑊𝑠𝑠′,𝑚𝑚� =  ∑ �𝑦𝑦𝑝𝑝,𝑠𝑠 − 𝑦𝑦𝑝𝑝,𝑠𝑠′  �𝑃𝑃
𝑝𝑝=1  , the sum of the absolute differences between 

vehicle parameters, y, for sites s and 𝑠𝑠′.   

Auto-Calibration Algorithm 

The output of the Truck-Matching Algorithm was WIM records paired to each AVI truck record. This data 
was then used to compare weights of the same vehicle at different WIM sites as a form of auto-
calibration. This auto-calibration process requires calibration factors to be determined based on the 
weight of the same truck measured at different WIM sites (Figure 10).  

The proposed auto-calibration method computed hourly, site-specific calibration factors. Calibration 
factors were calculated as the ratio of the measured FAW of FHWA Class 9 tractor-trailers to a likely 
FAW based on the set of FAW measurements for the same truck across multiple sites. The algorithm 
first calculated the deviation among FAWs for the same AVI truck.  Pairwise differences between FAWs 
were calculated and the differences were measured against a predefined threshold, 𝛿𝛿𝑆𝑆.  If percent of 
sites with FAWs above 𝛿𝛿𝑆𝑆 was greater than a predefined threshold on the number of sites in agreement, 
𝑃𝑃𝑆𝑆, the calibration factor for each site for the specified hour was set to 1.0, e.g., all sites were in 
agreement on the FAWs and thus are in calibration. Otherwise, for sites with FAWs in “disagreement”, a 
calibration factor was calculated as follows. 

First, high-volume sites were used to determine the likely weight (𝜔𝜔𝐿𝐿) of the truck’s front axle. The 
likely weight was found through a cluster analysis in which FAWs corresponding to the AVI truck across 
multiple WIM sites were compared to find a common measurement (Figure 9). The inputs to clustering 
were the FAWs and the GVW.  

 
Figure 9. Example of Cluster Analysis for AVI Auto-Calibration 

Then, the likely weight was compared to a reference weight (𝑊𝑊𝑅𝑅), e.g., the same used in the traditional 
ARDOT auto-calibration method of 10 kips, to assess its reasonableness.  The likely weight was used to 
compute the calibration factor if it fell within a certain deviation,𝛿𝛿𝑊𝑊, of the reference weight; otherwise 
the reference weight was used. The likely weight found through the cluster analysis of the high-volume 
sites were used to compute the calibration factors for the high- and low-volume sites.  
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Thus, each truck, k, produced a calibration factor corresponding to each site, i, during the corresponding 
hour, h, it was detected at the 
sit

𝑪𝑪𝑪𝑪𝒌𝒌,𝒉𝒉,𝒊𝒊 = 𝑾𝑾𝒌𝒌,𝒉𝒉,𝒊𝒊
𝝎𝝎𝑳𝑳

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟐𝟐 
    

Where, 

 𝑊𝑊𝑘𝑘,ℎ,𝑖𝑖 is the WIM recorded weight of the truck k at site i in hour h 

Next, calibration factors for each truck (𝐶𝐶𝐶𝐶𝑘𝑘,𝑖𝑖,ℎ) were averaged for each site to determine the average 
calibration factor, 𝐶𝐶𝐶𝐶�𝑖𝑖,ℎ, for each site for each hour.   

 

𝑪𝑪𝑪𝑪𝒉𝒉,𝒊𝒊 = ∑ Wk,h,i ωL 
�𝑲𝑲

𝒌𝒌 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟑𝟑
   

Finally, the adjusted weights for every truck at each WIM site were computed as: 

 

𝑾𝑾�𝒌𝒌,𝒊𝒊 = 𝑪𝑪𝑪𝑪𝒉𝒉,𝒊𝒊 × 𝑾𝑾𝒌𝒌,𝒉𝒉,𝒊𝒊 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟒𝟒 

    

The key distinction between traditional and the proposed auto-calibration was the method to 
incorporate reference axle weights to compute calibration factors. In traditional auto-calibration 
algorithms, WIM-measured weights are compared to a predetermined, non-changing reference weight, 
such as a reference FAW, to compute a calibration factor.  In the proposed auto-calibration method the 
use of a reference weight was replaced by a likely weight,𝜔𝜔𝐿𝐿, defined from the AVI-WIM pairs.  

Rather than averaging, choosing the mode, or using a median FAW from the set of WIM FAWs for a 
truck, the clustering approach was adopted to ensure that the likely weight reflected the majority 
among all measurements. The clustering approach also allowed the ability to detect weight 
discrepancies caused by trucks making pick-ups or deliveries between WIM sites resulting in different 
FAWs and/or GVWs. Moreover, the proposed auto-calibration algorithm distinguished between high- 
and low-volume sites when estimating the likely weight. This was an important distinction because FAW 
measurements taken at high-volume WIM sites, e.g., sites with more than 50 FHWA Class 9 trucks per 
hour, tended to be more accurate than those collected at low-volume sites as more values could be 
used for clustering. Differences in accuracy can be attributed to the increased auto-calibration 
frequency at high-volume sites that, in turn, tracks with temperature changes.  Ambient and pavement 
temperatures significantly affect WIM piezo-sensor accuracy. 
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Figure 10. AVI Auto-Calibration Procedure 

 

 

Get AVI-WIM truck records 
for specified hour, t

Determine number of WIM sites, n, 
crossed by each AVI truck

Calculate the percent of 
WIM sites for which the 
difference in front axle 

weights is < +/- δs

For each hour of the day, h = 1… 24

Set Calibration Factor for 
WIM site equal to 1,

CFi = 1

For each AVI truck k = 1…K
corresponding to a ‘3-S2’ axle configuration 

< ρ ρ

Cluster analysis to determine 
likely front axle weight, ωL

from AVI-WIM records

Compute calibration factor for each truck at 
each site i,

CFk,h,i=

n = 2+

n = 1 Record not used for 
auto-calibration

Apply hourly averaged calibration factors to all 
WIM records to estimate calibrated weight, 

=CFh,i×Wk,h,i

High Volume 
Sites

Distinguish between high 
and low volume sites using 

lookup table

Use high volume site(s) likely 
front axle weight, ωL

Low Volume 
Sites Compare likely 

front axle weight, ωL, to 
reference front axle weight, WR.

If ωL is within the weight deviation 
±δW use ωL, else replace with WR

Compute hourly average calibration factor for 
site i,

CFh,i=



 

32 

 

CHAPTER 4: DATA COLLECTION 
This chapter reviews the data collection efforts carried out to provide data for model development and 
validation.  A description of the site selection process, field data collection procedures, and summary of 
collected samples is presented in this chapter.  Equations for the performance metrics to compare auto-
calibration methods are also provided. 

Data include WIM PVR, AVI truck-tracking data, and video recordings at select sites. Still images taken at 
selected static enforcement sites and video footage of trucks crossing selected WIM sites were recorded 
and used for model development and validation.  

SITE SELECTION 

Static scale and WIM sites used for data collection were selected based on an analysis of the common 
truck paths, e.g., ‘shared traffic’, observed in Arkansas using historical AVI data from Drivewyze. Traffic 
flows for the month of March 2018 among WIM sites show a large portion of truck volumes from 
Texarkana to Malvern along I-30 and from Little Rock to West Memphis along I-40 (Figure 11).  

 
Figure 11. Drivewyze Truck Traffic Patterns for March 2018 

For the first round of data collection on March 2018, the selected static scale was the Alma Eastbound 
weigh station along I-40 and the selected WIM sites were Lamar and Lonoke along I-40 and Bald Knob 
along Highway 67. In this case, Lamar (WIM 360009) and Lonoke (WIM 430037) were higher volume 
sites with a significant proportion of shared truck volume, and Bald Knob (WIM 730068) was selected as 
a low-volume site. For the second round of data collection on March 2019 the WIM sites selected where 
Glen Rose (WIM 301769) and Arkadelphia (WIM 100019) on I-30 and Texarkana (WIM 460286) on I-49. 
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The selected static scale for this instance was Westbound Hope on I-30 located between the Glen Rose 
and Arkadelphia WIM sites. Data collection sites are highlighted in Figure 12. 

 
Figure 12. March 2018 and 2019 Data Collection Sites 

FIELD DATA COLLECTION PROCEDURES 

Data collection was performed on March 15th, 2018 and March 19th, 2019. In the 2018 data collection, 
raw or “un-calibrated” weights at WIM sites were recorded because auto-calibration was turned off at 
the selected sites. In the 2019 data collection, auto-calibration was running for all the selected sites, 
thus the PVR records for the 2019 sites have calibrated axle and gross vehicle weights per the ARDOT 
calibration method. The static weight data collection and visual data recordings procedure in 2018 was 
repeated in 2019 where cameras were set up at each static and WIM site to record passing trucks. Static 
weights were collected from trucks that stopped at the static enforcement scales using weight receipts 
that recorded axle and Gross Vehicle Weights (Figure 13). The FAW was categorized as ‘Steer’, the 
second and third axles where weighed as ‘Drive’, and third and fourth axle were weighed as ‘Trailer’, 
further distinguished as ‘TrailerA’ and ‘TrailerB’ if multiple trailers were present. Still images and video 
recordings were collected at the static sites for traffic that exited the interstate into the weigh station. 
Video was recorded for all the selected WIM sites for the study. GPS records were gathered for all WIM 
sites in the Arkansas network. Figure 14 and Figure 15 show examples of still images recorded at the 
weight enforcement station. 

It should be noted that during the March 2018 data collection, the WIM sites at Lonoke and Bald Knob 
were not located at the latitude/longitude positions indicated in the WIM site specifications.  Instead, 
they had been moved about 1 mile upstream of their current locations. Since the incorrect positions 
were shared with the GPS data provider, the AVI screen line point and the WIM station did not 
correspond to the same location. The camera was set up at the correct WIM station. Further 
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complicating the data collection, a traffic incident occurred upstream of the WIM site. This reduced our 
ability to match WIM and AVI data at the Lonoke site. 

 

  
(A) (B) 

Figure 13. Example of a Weight Receipts (A) and Weight Recording Configuration (B) 

 

  
Figure 14. Examples of Still Camera Images at Weight Enforcement Station 

 

  
Figure 15. Examples of Video Frames from Camcorders at WIM Stations 
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DATA PRE-PROCESSING 

Pre-processing of the field data required two main tasks: (1) Manual matching of trucks from WIM to 
static scale locations, and (2) Manual matching of WIM PVR records to AVI truck records.  Prior to these 
tasks, the time offset between the cameras and the WIM sensors was determined. This was done by 
looking at truck sequencing patterns from the WIM vehicle records and then finding that same truck 
sequence in the traffic videos using timestamps as reference, e.g., one-minute buffer of video watching 
around the WIM record timestamps. First, we compared vehicle headways by vehicle class (Table 4).  
This was repeated for the morning, noon, and afternoon at each study site to find an average time offset 
between the WIM and video. The example below pertains to the time offset for the Texarkana video and 
WIM for the morning, which was a difference of 17 seconds.  

The video processing for identifying shared trucks between the static scales and WIM was performed by 
manually examining pictures of trucks weighed at the static scale and re-identifying them in the video 
recordings from the WIM sites.  

Table 4. Video to WIM Time Offset Calculation Example 
WIM Records Video Estimated 

Offset Record Class Timestamp Headway Class Timestamp Headway 
604 5 10:02:40 0:00:13 5 10:02:22 0:00:12 -0:00:18 
605 7 10:02:52 0:00:12 7 10:02:35 0:00:13 -0:00:17 
606 9 10:03:05 0:00:13 9 10:02:48 0:00:13 -0:00:17 
607 9 10:03:07 0:00:02 9 10:02:50 0:00:02 -0:00:17 
608 4 10:03:12 0:00:05 4 10:02:55 0:00:05 -0:00:17 
Average Time Offset -0:00:17 

To match the AVI and WIM PVR truck records, first 20 minutes of video for each AVI truck, e.g., a 10-
minute buffer around the AVI timestamp, was examined. Images and descriptions of each truck were 
recorded. Then the same process was followed when observing the video at the second WIM site 
looking for trucks that had previously crossed first WIM site within the 10-minute buffer of the AVI time 
stamp. After trucks started being successfully matched or re-identified crossing both WIM sites, the 
video to AVI time offset was determined.  At Lamar the offset was 12 to 17 seconds and at Lonoke it was 
1 min 45 seconds to 3 minutes. The greater time variability at Lonoke was attributed to traffic 
congestion caused by a traffic accident during the data collection.  

PERFORMANCE METRICS 

The Truck-Matching Algorithm was evaluated using three performance indexes: True Match Rates 
(TMR), Correct Match Rates (CMRs), and Error Rates (ER). The TMR reflects our ability to match all 
vehicles seen in the video. There were three reasons for being unable to manually match all AVI trucks 
to their corresponding WIM record to achieve 100% TMR. First, trucks had to be visually confirmed to 
have passed both stations but with the camera recording from a side-fire position it was not possible to 
view trucks in the inner lane due to occlusion.  Second, trucks were not able to be visually confirmed if a 
site had a high variability in the time offset between the records and the video.  This was found to occur 
at Lonoke due to traffic congestion upstream of the data collection site. Third, some trucks seen in the 
video and recorded in the AVI data were not recorded by the WIM sensor. This is likely due to sensor 
error or the truck traveling off-center to the sensors causing measurement error.  
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𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑, 𝑻𝑻𝑻𝑻𝑻𝑻 =  
𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝑻𝑻𝒗𝒗𝒗𝒗𝒗𝒗
 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟓𝟓 

 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑, 𝑪𝑪𝑪𝑪𝑪𝑪 =  
𝑴𝑴𝑻𝑻𝑻𝑻

𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟔𝟔 

 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑, 𝑬𝑬𝑬𝑬 =  
𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟕𝟕 

 

Where, 

𝑇𝑇𝑣𝑣𝑣𝑣ℎ = total number of vehicles observed at the site 
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = total number of actual true matches from groundtruth 
𝑀𝑀𝑡𝑡𝑡𝑡 = number of successful matches obtained using algorithm 
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = number of missmatched trucks selected by algorithm 

    

Absolute Percent Error (APE), Mean Absolute Percent Error (MAPE), and Median Absolute Percent Error 
(MdAPE) were used to measure the discrepancy between the auto-calibration algorithm outputs and 
static (or true) weights.  Unlike MAPE which averages APE for each truck, the MdAPE, which computes 
the median APE, is robust to outliers. 

 

𝑨𝑨𝑨𝑨𝑨𝑨 =
|𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑾𝑾𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾|

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾
× 𝟏𝟏𝟏𝟏𝟏𝟏              𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟖𝟖 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =
∑𝑨𝑨𝑨𝑨𝑨𝑨
𝒏𝒏

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟗𝟗 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(𝑨𝑨𝑨𝑨𝑨𝑨) 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏 

Where, 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 is the truck axle or GVW weight adjusted using calibration 
factors produced by the AVI auto-calibration method 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 is the truck axle or GVW weight measured by static scales 

Three methods which seek to reduce the discrepancy between weights recorded at WIM sites will be 
evaluated, however it is important to know that the adjusted weights by a calibration method always 
tend to have some discrepancy between true static weights due to dynamic weights and scale errors. 
The performance of three auto-calibration methods were evaluated using the above performance 
metrics to test how close they got to static weights. The three methods included the current ARDOT 
method, an enhanced version of the ARDOT method used by MnDOT, and the proposed AVI auto-
calibration algorithm. The calibration factors for the proposed study where applied to FAWs and GVWs.  
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DATA COLLECTION SUMMARY 

Sample Size 

Data was collected on March 15, 2018 and March 20, 2019 at different sites (Table 5). The WIM sites 
selected for the 2018 data collection were eastbound along I-40 at Lamar and Lonoke and 
east/northbound along Highway 167 at Bald Knob.  The eastbound Alma weigh station along I-40 was 
used as the static enforcement site. The WIM PVR records for 2018 show that at around 6 a.m. the auto-
calibration algorithm was turned off at Lamar, Lonoke, and Bald Knob and from that time unadjusted 
weight records were reported. At the Alma static scale, 263 trucks were recorded, from these 106 were 
re-identified at Lamar, 69 at Lonoke and 2 at Bald Knob. A total of 121 AVI trucks crossed Lamar and 
Lonoke during video recording hours (8 a.m. – 6 p.m.), 44 of these trucks also crossed the Alma weigh 
station, and 33 of these were without error at either WIM site.  

The WIM sites for the data collection in 2019 were southbound on I-30 at Glen Rose and Arkadelphia, 
and southbound on I-49 at Texarkana.  The southbound weigh station on I-30 at Hope was used as the 
static enforcement site. The WIM PVR for this instance were recorded with the ARDOT calibration 
method on, therefore the PVR are all adjusted. The number of trucks weighed at Hope weigh station 
was of 261. From these 88 were re-identified at Glen Rose, 157 at Arkadelphia, and 17 at Texarkana. A 
total of 157 AVI truck crossed Arkadelphia of which 88 and 17 also crossed Glen Rose and Texarkana. 
Unfortunately, a data logging error occurred during the data collection and the AVI data for the 
southbound WIM sites at Glen Rose and Arkadelphia were not available.  Therefore, we were not able to 
evaluate the WIM to AVI truck-matching algorithm. But we were able to replicate the AVI data with 
video records to evaluate the auto-calibration method at these sites. 

Table 5. Data Collection Summary 

Data Collection Site WIM PVRs AVI Trucks Matched 
to Static Scale 

March 15, 2018 
I-40 EB/Hwy 167 NB 

Lamar 5,346 106 
Lonoke 10,801 69 
Bald Knob 1,963 2 
Alma (Static Scale) 263 

March 20, 2019 
I-30 SB/I-49 SB 

Glen Rose 9,905 88 
Arkadelphia 11,007 157 
Texarkana 2,159 19 
Hope (Static Scale) 255 

Data Characteristics 

WIM-recorded Front Axle Weight and Gross Vehicle Weights of FHWA Class 9 five-axle tractor-trailers 
for the March 2018 sites show a distinct drop in weight around 6 a.m. when the auto-calibration 
program was disabled (Figure 16 and Figure 17). Clear distinctions between lanes are observed for all 
sites.  Disabling the WIM auto-calibration function during the March 2018 data collection also disabled 
the calibration factors set when the site was initially installed.  As a result, we see a distinct shift in 
recorded weights around 6 a.m. when the auto-calibration function was disabled.  Throughout the day, 
we observe that the recorded weights track with daily temperature changes.  While the auto-calibration 
algorithms proposed in this work can correct calibration as a result of temperature or other minor 
fluctuations, it may not be possible to fully correct for an initial site calibration factor.  Similar trends in 
shifts throughout the day and differences by lane were also observed for the March 2019 sites (Figure 
18, Figure 19, and Figure 20). Recall that for the March 2019 data, the auto-calibration function 
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remained enabled during data collection but that it appears to produce poor results for at least one of 
the lanes at each site.    

 

 
(A) Lamar FAW 

 
(B) Lamar GVW 

Figure 16. Lamar Front Axle and Gross Vehicle Weight by Time of Day 
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(A) Lonoke FAW 

 
(B) Lonoke GVW 

Figure 17. Lonoke Front Axle and Gross Vehicle Weight by Time of Day 
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(A) Glen Rose FAW 

 
(B) Glen Rose GVW 

Figure 18. Glen Rose Front Axle and Gross Vehicle Weight by Time of Day 
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(A) Arkadelphia FAW 

 
(B) Arkadelphia GVW 

Figure 19. Arkadelphia Front Axle and Gross Vehicle Weight by Time of Day 
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(A) Texarkana FAW 

 
(B) Texarkana GVW 

Figure 20. Texarkana Front Axle and Gross Vehicle Weight by Time of Day 

FAW and GVW recorded by the WIM and the static scales were used to calculate MAPE and MdAPE for 
each data collection site.  Only samples with the same vehicle class designation at both sites were 
considered in the comparison. MAPE ranged from 24% to 85% for FAW and 26% to 83% for GVW (Table 
6). Lonoke exhibited the highest MAPE and Texarkana exhibited the lowest MAPE.  

For static scale measured weights, the Front Axle Weights (FAWs) vary by Gross Vehicle Weight (GVW) 
for the March 2018 and 2019 data collections (Figure 21 A and B).  In comparison to the reference 
weights used for auto-calibration by ARDOT (10.2 kips) and MnDOT (8.5, 9.3, and 10.4 kips), the March 
2018 and 2019 samples exhibit higher FAW.  
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Table 6.  Front Axle Weight and Gross Vehicle Weight Error Summary 
Static Scale and 

Date WIM Site Samples Measure MdAPE 
(%) 

MAPE 
(%) 

Alma 
March 2018 

Lamar 94 FAW 30 32 
GVW 26 31 

Lonoke 56 FAW 85 85 
GVW 86 83 

Hope 
March 2019 

Glen Rose 88 FAW 53 56 
GVW 54 54 

Arkadelphia 157 FAW 23 25 
GVW 26 29 

Texarkana 19 FAW 21 24 
GVW 19 26 

 

 
(A) Alma FAW vs GVW 

 
(B) Hope FAW vs GVW 

Figure 21. Static Scale Front Axle and Gross Vehicle Weights by Time of Day 
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Site Conditions 

The average speed of the March 2018 WIM sites ranged from 54 to 72 miles per hour (mph) with a 
median speed of 70 mph (Figure 22A).  The decrease in speed at Lonoke around 1 p.m. was a result of 
the traffic incident that occurred between the camera location and the WIM site. The average speed of 
the March 2019 WIM sites ranged from 61 to 69 mph with a median speed of 67 mph (Figure 22b).  At 
the Glen Rose and Arkadelphia sites, the speed dropped to around 65 mph around 4 p.m. but recovered 
to 68 mph by 5 p.m.  At the Texarkana site along I-49, the speed was relatively slower than the I-30 
locations, approximately 62 mph, but increased to 65 mph by 3 p.m. before returning to around 63 mph. 

Pavement temperature was recorded hourly during the data collection activities using a laser 
temperature gun.  The temperature gun had a sensitivity of +/- 3.6 degrees Fahrenheit and was aimed at 
the center of the outside lane closest to the observer at a range of approximately 6 feet from the 
observer. The pavement temperature of the March 2018 WIM sites ranged from 40 to 92 degrees 
Fahrenheit with an average temperate of 73 degrees Fahrenheit (Figure 23A).  The pavement 
temperature of the March 2019 WIM sites ranged from 46 to 73 degrees Fahrenheit with an average 
temperate of 62 degrees Fahrenheit (Figure 23B).   

 

 
(A) March 2018 WIM Site Speeds 

 
(B) March 2019 WIM Site Speeds 

Figure 22. Speeds by Time of Day and Data Collection Period 
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(A) March 2018 WIM Sites 

 
(B) March 2019 WIM Sites 

Figure 23. Pavement Temperature by Time of Day and Data Collection Period 
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CHAPTER 5: EVALUATION OF CURRENT ARDOT AUTO-CALIBRATION 
METHODOLOGY 

This chapter presents an evaluation of the current ARDOT auto-calibration methodology that uses front 
axle weight reference values to derive calibration factors.  Following a brief description of the current 
ARDOT methodology and a similar, but more robust methodology developed by MnDOT which use 
reference weight comparisons to derive calibration factors, an analysis of the reference parameters 
used by both methods is presented.  Finally, performance metrics for each methodology are 
summarized and limitations of the method are discussed. 

AUTO-CALIBRATION USING REFERENCE PARAMETERS 

ARDOT’s Auto-Calibration Method 

The current auto-calibration method employed in Arkansas compares the average FAW of 50 FHWA 
Class 9 vehicles against the expected average FAW, e.g., 10,200 lbs., and computes a calibration factor 
so that the average measured FAW is equal to the reference value (Figure 24).   

 

 
Figure 24. ARDOT Auto-Calibration Procedure 

This method has several limitations.  The first is that this algorithm relies on a frequent sample of FHWA 
Class 9 vehicles.  To compute a calibration factor, 50 vehicles of the specified class must pass over the 
sensor.  This does not present a problem for areas with high traffic volume, however there are locations 
that do not receive fifty reference-class vehicles passing for many hours at a time.  During the time that 
it takes to accumulate 50 vehicles, the calibration of the WIM sensor will have drifted considerably due 
to temperature changes.  While the WIM software can utilize a temperature correction curve when 
computing a calibration factor, this feature is not used in Arkansas.  

Measure 50 
vehicles from 
traffic stream, 

as sample s

Filter records 
with error flags 
from data, 𝑠𝑠′

USER-DEFINED PARAMETERS:
• Target class by lane
• Front Axle Weight (FAW) reference value

Filter by target class or 
other user-defined vehicle 

characteristics, 𝑠𝑠′′

Calculate 
average FAW of ,

𝐶𝐶𝐹𝐹𝑊𝑊𝐵𝐵 ,𝑠𝑠′′

Compute Calibration Factor,

𝐶𝐶𝐶𝐶𝐵𝐵 ,𝑠𝑠 =  𝐶𝐶𝐹𝐹𝑊𝑊𝑡𝑡𝑣𝑣𝑟𝑟
𝐶𝐶𝐹𝐹𝑊𝑊𝐵𝐵 ,𝑠𝑠′′

�

WIM site is 
calibrated

Adjust weights of all 
vehicles in sample s, 

𝐶𝐶𝐹𝐹𝑊𝑊𝐵𝐵,𝑖𝑖� =  𝐶𝐶𝐶𝐶𝐵𝐵 ,𝑠𝑠 ×𝐶𝐶𝐹𝐹𝑊𝑊𝐵𝐵 ,𝑖𝑖

For each WIM site… 

For each lane, 𝐶𝐶 = 1 … 𝐿𝐿
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Another limitation of this method is the variability of the reference value.  Often the FAW reference 
value is a regional average; however, the average FAW can vary between sites depending on local 
industry, season, the specific lane the sensor is located in, weight laws, and vehicle drivers (Hallenbeck, 
1998; Vaziri et al., 2013). Although the FAW distributions may vary between WIM sites, each site’s own 
distribution should remain consistent (Dahlin 1992). Lastly, the accuracy of piezoelectric sensors is 
heteroscedastic as a function of vehicle weight (Hashemi et al., 2013) and thus reference values should 
likely vary by weight.  The ARDOT method uses only one weight bin when calculating the calibration 
factor and as a result, heavy vehicles are adjusted by the same factor as lighter vehicles.   

MnDOT’s Auto-Calibration Method 

The MnDOT auto-calibration algorithm assigns unique reference values to each GVW bin (Figure 25) 
(McCall and Vodrazka Jr 1997). Since the GVW weight bins represent unloaded trucks, partially-loaded 
trucks, and fully-loaded trucks, a unique reference FAW for each bin more accurately reflects loading 
characteristics and their effect on FAW.   

The MnDOT algorithm preforms calibration every 250 vehicles, specifically FHWA Class 9 trucks (‘3-S2’ 
configurations), or every 48 hours.  First, a percent deviation is computed via Equation 11 from the 
average FAW of the vehicles in each GVW weight bin to the reference FAW for each bin (Table 7).  If two 
of the three weight bins are outside acceptable deviation limits, then calibration factors are calculated. 
Calibration factors are modified based on the number of samples in each GVW bin (Table 8).   
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Figure 25. MnDOT Auto-Calibration Procedure 

 

Table 7. MnDOT Reference Parameters (McCall and Vodrazka Jr 1997) 
Gross Vehicle Weight Range 

(x) 
Reference Front Axle Weight, 

𝑭𝑭𝑭𝑭𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓,𝒙𝒙 
< 32,000 lbs. 8.5 kips 

32,000 – 70,000 lbs. 9.3 kips 
> 70,000 lbs. 10.4 kips 

 

∆𝒙𝒙=
𝑭𝑭𝑭𝑭𝑭𝑭�������𝒔𝒔𝒙𝒙′ − 𝑭𝑭𝑭𝑭𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓,𝒙𝒙

𝑭𝑭𝑭𝑭𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓,𝒙𝒙
∗ 𝟏𝟏𝟏𝟏𝟏𝟏% 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏 

 
Where, 
∆𝑥𝑥 = percent deviation for GVW bin x 
𝐹𝐹𝐹𝐹𝐹𝐹�������𝑠𝑠𝑥𝑥′  is the average front axle weight of the filtered sample, 𝑠𝑠𝑥𝑥′  
𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟,𝑥𝑥 is the reference front axle weight of GVW bin x 

Measure 250 vehicles or 48 
hours from traffic stream, as 

sample, s

Filter records 
with error flags 
from data, 𝑠𝑠′

USER-DEFINED PARAMETERS:
• Adjustment factors by sample size, 𝜑𝜑𝑗𝑗
• Gross Vehicle Weight (GVW) bin edges, 𝐺𝑉𝑊𝑊𝑥𝑥
• Percent deviation allowed by GVW bin
• Front Axle Weight (FAW) reference value per bin, 𝐶𝐶𝐹𝐹𝑊𝑊𝑥𝑥

Filter by GVW bin, 
𝑠𝑠1′ ,𝑠𝑠2′ , 𝑠𝑠3′

Calculate 
average FAW of ,

𝐶𝐶𝐹𝐹𝑊𝑊𝑠𝑠𝑥𝑥′

Compute calibration Factor,

𝐶𝐶𝐶𝐶𝑠𝑠𝑥𝑥 =  𝐶𝐶𝐹𝐹𝑊𝑊𝑡𝑡𝑣𝑣𝑟𝑟𝑥𝑥
𝐶𝐶𝐹𝐹𝑊𝑊𝑠𝑠𝑥𝑥′

� ×𝜑𝜑𝑗𝑗

WIM site is 
calibrated

Adjust weights of all vehicles 
in sample s, 

𝐶𝐶𝐹𝐹𝑊𝑊𝑖𝑖� =  𝐶𝐶𝐶𝐶𝑠𝑠′� ×𝐶𝐶𝐹𝐹𝑊𝑊𝑖𝑖

For each WIM site… 

For each GVW bin, 𝑠𝑠𝑥𝑥′

Compute deviation 
between 𝐶𝐶𝐹𝐹𝑊𝑊𝑠𝑠𝑥𝑥′ and 

reference, 𝐶𝐶𝐹𝐹𝑊𝑊𝑥𝑥

WIM site is 
calibrated

2/3 GVW bins within 
allowable deviation

1/3 GVW bins within 
allowable deviation

Adjust weights of all vehicles 
in sample s, 

𝐶𝐶𝐶𝐶𝑠𝑠′� = ∑ 𝐶𝐶𝐶𝐶𝑠𝑠𝑥𝑥
�
𝑥𝑥 /3
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𝑪𝑪𝑪𝑪𝒔𝒔𝒙𝒙 =  �
𝑭𝑭𝑭𝑭𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓,𝒙𝒙

𝑭𝑭𝑭𝑭𝑭𝑭�������𝒔𝒔𝒙𝒙′
� � × 𝝋𝝋𝒋𝒋 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏𝟏𝟏 

 
Where, 
𝐶𝐶𝐶𝐶𝑠𝑠𝑥𝑥  is the calibration factor for GVW bin x that applies to the sample s 
φ𝑖𝑖 is the sample size adjustment factor for sample 𝑠𝑠𝑥𝑥′  

 

Table 8. Minnesota DOT Sample Size Adjustment Factors (McCall and Vodrazka Jr 1997) 
Number of 5-Axle 

Semis Weighed 
Adjustment Factor 

Percentage (𝜑𝜑) 
Number of 5-Axle 

Semis Weighed 
Adjustment Factor 

Percentage (𝜑𝜑) 

0 0.0 45 - 49 80.0 
1 20.0 50 - 54 80.0 
2 20.0 55 - 59 90.0 
3 20.0 60 - 64 90.0 
4 20.0 65 - 69 90.0 

5 - 9 30.0 70 - 74 90.0 
10 - 14 50.0 75 - 79 90.0 
15 - 19 50.0 80 - 84 90.0 
20 - 24 60.0 85 - 89 90.0 
25 - 29 70.0 90 - 94 90.0 
30 - 34 70.0 95 - 99 90.0 
35 - 39 70.0 100 95.0 
40 - 44 80.0 > 100 95.0 



 

50 

 

 

PERFORMANCE EVALUATION 

We applied the ARDOT and MnDOT auto-calibration algorithms with original parameters to the 2018 and 
2019 datasets to estimate MAPE and MdAPE for FAW and GVW.  For the 2018 data, the ARDOT and 
MnDOT algorithms were applied to raw measurement data since auto-calibration at these sites was 
disabled during data collection. Although auto-calibration was enabled during the 2019 data collection, 
the measured weights differed considerably for each lane leading us to suspect that auto-calibration 
may have been disabled or malfunctioning. Thus, we carried out the ARDOT and MnDOT auto-
calibration procedures on the 2019 to provide a best-case performance evaluation.  

Both the ARDOT and MnDOT methods reduce FAW and GVW MAPE and MdAPE compared to the raw, 
un-calibrated measurements (Figure 26). MAPE for FAW are generally lower than for GVW for both 
methods at all WIM sites (Table 9). This is because the algorithms both aim to calibrate FAW.  The 
reduced MAPE and MdAPE for the March 2019 sites confirms the hypothesis that one of the lanes at 
each site was not calibrated properly even with auto-calibration enabled during data collection. 

Table 9. Performance Summary for Baseline Auto-Calibration Algorithms on March 2018 Sites 

Static 
Scale  

and Date 

Method ARDOT MnDOT 

Reference 
Parameters 

Frequency 50 250 

FAW 10,200 lbs. 8,500, 9,300, and 10,400 lbs. 

Thresholds None <32,000; 32,000-70,000; >70,000 
lbs. 

Error (%) MdAPE MAPE MdAPE MAPE 

Alma 
2018 

Lamar  
FAW 6.6 12.3 2.2 10.9 

GVW 7.6 17.9 2.5 11.4 

Lonoke  
FAW 9.9 14.1 21.0 26.0 

GVW 12.9 29.1 28.9 41.0 

Hope 
2019 

Glen Rose 
FAW 12.7 15.5 18.1 23.5 

GVW 17.0 19.5 17.9 21.4 

Arkadelphia 
FAW 12.9 15.3 12.9 17.6 

GVW 12.2 14.1 12.4 15.7 

Texarkana 
FAW 13.3 13.1 34.1 12.2 

GVW 22.3 13.5 26.5 13.8 
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(A) FAW MAPE 

 
(B) GVW MAPE 

Figure 26. Comparison MAPE for Baseline Auto-Calibration Algorithms for FAW and GVW 

EVALUATION OF AUTO-CALIBRATION PARAMETERS 

The ARDOT and MnDOT auto-calibration contain several tunable parameters including (1) auto-
calibration frequency, (2) weight thresholds, and (3) reference weights.  The weight threshold refers to 
the GVW bounds used in the MnDOT method to define loaded and unloaded vehicles. Each parameter 
individually effects the accuracy of the auto-calibrated weights and combinations of parameter values 
have compounding effects on accuracy.  Using the March 2018 data, we investigated how the selection 
of site-specific parameter values affects measurement accuracy.  First, ranges of feasible parameter 
values were assessed by comparing resulting MAPE.  Second, once individual parameter values were 
optimized, e.g., the values that produced the lowest MAPE, combinations of parameter values were 
assessed using an iterative search approach (Figure 27).  The analyses are described in this section. 
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Figure 27. Steps of the Parameter-Tuning Process 

Auto-Calibration Frequency 

Calibration frequency should ideally keep pace with temperature changes but should also maintain a 
reasonable number of sample vehicles in each calibration update.  When no temperature sensors are 
installed, more frequent calibrations are needed to keep pace with temperature changes, and therefore 
smaller sample sizes are required, e.g., 50 vehicles.  The ARDOT algorithm calibrates every 50th vehicle 
while the MnDOT procedure calibrates each 250 vehicles or 48 hours.   An error analysis was conducted 
for calibration frequency at values of 250, 200, 100, 50, and 30 vehicles for the ARDOT method and 250, 
200, 100, and 50 vehicles for the MnDOT method.   

In general, more frequent calibrations yielded the lowest MAPE for the ARDOT and MnDOT algorithms 
(Figure 28).  For both algorithms, minimal improvement in MAPE was achieved by reducing the 
frequency below 30 vehicles and increases in MAPE were observed when more than 100 vehicles were 
needed to trigger an auto-calibration update. We concluded that for both sites and both algorithms, 
calibration at 50 vehicle intervals was optimal.  

 

  
(A) ARDOT Auto-Calibration Algorithm (B) MnDOT Auto-Calibration Algorithm 

Figure 28. Auto-Calibration Frequency Parameter Tuning 
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Weight Thresholds  

Using the optimal calibration frequency parameters described above, e.g., 50 vehicles for the ARDOT 
and MnDOT algorithms, we assessed changed in MAPE resulting from changes to GVW thresholds. The 
MnDOT auto-calibration algorithm uses GVW bins to define FAW reference values.  The bin thresholds 
specified in the MnDOT algorithm defining unloaded, partially-loaded, and fully-loaded trucks were less 
than 32,000 lbs, 32,000 to 70,000 lbs, and greater than 70,000 lbs, respectively.  The two thresholds 
used in the MnDOT algorithm to separate unloaded, partially-loaded, and fully-loaded trucks should be 
used when the GVW distribution is tri-modal.  These two thresholds can be reduced to a single threshold 
separating loaded and unloaded/partially loaded trucks if the GVW distribution is observed to be 
bimodal.  The Lonoke and Lamar sites exhibited bi-modal GVW distributions.  Therefore, adjustments to 
the bin threshold value separating loaded and unloaded/partially-loaded trucks was carried out using 
5,000 lb increments ranging from 40,000 to 80,000 lbs. Additional iterations were performed at 32,000 
lbs for Lamar and 85,000, 90,000, and 95,000 lbs for Lonoke to assess performance improvements for 
extreme observations seen in the data.   

Overall, at both the Lonoke and Lamar sites, the lowest MAPE was achieved using the originally defined 
weight threshold separating loaded and unloaded/partially-loaded trucks, e.g., 72,000 lbs (Figure 29).  
For both sites, the GVW bin threshold had only minor effects on the MAPE as observed by the flatness of 
the lines in Figure 29. The maximum allowable, unpermitted GVW in Arkansas is 80,000 lbs and previous 
studies cited 72 kips as the threshold that likely separates fully-loaded vehicles from the rest of the 
traffic stream (Dahlin 1992; McCall and Vodrazka Jr 1997).   

 
Figure 29. GVW Threshold Parameter-Tuning for MnDOT Auto-Calibration Algorithm 

Reference Weights 

Holding the calibration frequency at 50 vehicles and the GVW weight bin threshold at 72,000 lbs for 
both sites and both algorithms, we assessed changes in MAPE resulting from changes to the FAW 
reference values. The ARDOT autocalibration algorithm uses only one FAW reference value, e.g., 10,200 
lbs.  We assessed the ARDOT auto-calibration algorithm performance as a result of changing the FAW 
reference parameter at 200 lb (0.2 kip) increments.  For Lamar, a 9,600 lb FAW reference value 
produced the lowest MAPE while at Lonoke a FAW reference value of 10,600 lbs was optimal (Figure 
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30).  This is indicative of the higher volumes of partially- and fully-loaded vehicles observed at Lonoke 
compared to Lamar.   

 
Figure 30. Front Axle Weight Parameter-Tuning for the ARDOT Auto-Calibration Algorithm 

The MnDOT auto-calibration algorithm, uses three FAW reference values, one for each GVW bin, e.g., 
8,500 lbs, 9,300 lbs, and 10,400 lbs.  We assessed the MnDOT auto-calibration algorithm performance as 
a result of changing the FAW reference parameters at 500 lb increments and then narrowing the 
increments to 100 lbs around the optimal FAW value.  For Lamar, the loaded FAW reference weight that 
produced lowest MAPE was 10,200 lbs and for Lonoke the FAW reference for loaded trucks was 11,000 
lbs (Figure 31A).  The unloaded FAW reference weight for Lamar was found to be 9,300 lbs and for 
Lonoke it was 10,300 lbs (Figure 31B).  

 

  
(A) Loaded FAW Reference Value (B) Unloaded FAW Reference Value 

Figure 31. Front Axle Weight Parameter-Tuning for the MnDOT Auto-Calibration Algorithm 
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SUMMARY OF FINDINGS 

We examined the sensitivity of auto-calibration parameters on algorithm accuracy as measured by the 
MAPE.  We analyzed three parameters, e.g., frequency, weight thresholds, and reference weights, using 
a tiered, iterative approach applied to the March 2018 data collection sites at Lamar and Lonoke.  First, 
we determined an optimal auto-calibration frequency. Then at that set frequency, we found the optimal 
GVW bin threshold values. Lastly, for the set frequency and GVW bin value, we found the optimal FAW 
reference values for each bin. Resulting MAPE for tuned, auto-calibration models show overall 
improvement for FAW estimation at both sites (Table 10).  However, estimation accuracy as measured 
by MAPE and MdAPE for GVW declined for the MnDOT tuned algorithm at Lamar.   

Comparing to the baseline parameters, the optimal (tuned) values of the ARDOT algorithm reduced 
MAPE for FAW by 3% on average, and for GVW by 6.5% on average (Figure 32).  Likewise, for the 
MnDOT algorithm, the tuned parameters reduced FAW MAPE by 9% on average.  However, we see an 
increase in MAPE for GVW at Lamar using the tuned MnDOT parameters.   This may be due to the 
distinct bimodal FAW measurement distribution seen for Lane 2 at Lamar and the inability to capture 
this distinction within the same lane using the MnDOT or ARDOT auto-calibration algorithms (see Figure 
16A).  Although calibration factors are calculated for each lane, we cannot account for differences within 
the same lane, which is the case for the Lamar WIM site. 

Using data collected from two WIM sites and a static scale we were able to show that the baseline 
ARDOT auto-calibration method can be improved by accounting for parameters which are unique to 
each data collection site.  It was determined that the loaded threshold value was spatially transferrable 
between sites with similar traffic stream characteristics; however, this parameter needs to be tested for 
transferability across sites with differing traffic stream characteristics, e.g., high- and low-volume sites.  
Moreover, the FAW reference values were shown to be specific to each site indicating that site-specific 
FAW reference values are needed.  Lastly, the use of a temperature correction curve should be 
investigated, which would allow for larger sample sizes and less frequent calibration. In all, site-specific 
data needs to include static scale and WIM measured weight comparisons for at least a 12-hour period 
across all four seasons to understand the temperature effects on the sensor.  This is cost prohibitive and 
time consuming. AVI-based auto-calibration algorithm should considerably reduce these data collection 
burdens by automating the process of matching trucks across sites. 

Table 10. Auto-Calibration Parameter-Tuning Results Summary 
Method ARDOT MnDOT 

Reference 
Parameters 

Frequency 50 50 

FAW 9,600 (Lamar) 
10,200 lbs. (Lonoke) 

9,300 and 10,200 lbs. (Lamar) 
10,300 and 11,000 lbs. (Lonoke) 

Thresholds None >70,000 lbs. 

Error (%) MdAPE MAPE MdAPE MAPE 

Lamar  
FAW 5.4 10.8 4.7 10.4 

GVW 7.4 15.7 4.9 13.6 

Lonoke  
FAW 2.5 8.7 3.8 8.6 

GVW 4.1 17.9 2.4 18.0 
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(A) FAW MAPE 

 
(B) GVW MAPE 

Figure 32. Comparison of Baseline and Tuned Auto-Calibration Algorithms for March 2018 Data 
Collection 
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CHAPTER 6: EVALUATION OF AVI-BASED AUTO-CALIBRATION METHODOLOGY 
This Chapter summarizes the performance of the AVI-based auto-calibration method when applied to 
the data collecting during the 2018 and 2019 field collection efforts.  Performance is evaluated for the 
Matching Algorithm and the Auto-Calibration Algorithm.  

WIM TO AVI MATCHING PERFORMANCE 

During the March 2018 data collection, a total of 121 AVI trucks traveled from Lamar to Lonoke. Out of 
these 121 trucks, 93 (e.g., TMR of 77%) were successfully matched with their respective WIM PVR at 
Lamar.  At Lonoke, matches between PVR and AVI were only sought for the trucks also found at Lamar. 
Thus, all 93 AVI trucks were successfully matched to their WIM PVR record, e.g., 100% TMR.     

The CMR and ER reflect the ability of the matching algorithm to correctly match WIM PVR and AVI truck 
records. CMR assesses the truck-matching algorithm success rate such that a value closer to 100% is 
better. We used the 93 successfully matched WIM records that were manually matched to AVI records. 
The CMR at Lamar was 75% (e.g., 70 of 93 records correctly matched) and at Lonoke 52% (e.g., 48 of 93 
records correctly matched).  ER captures the same concept as CMR but is represented as error, e.g., the 
goal is to achieve a low ER.  Thus, the ER for Lamar was 25% and Lonoke was 48%.  

An initial time window of 180 seconds (3 minutes) was found to produce the highest CMR across all 
sites. The selected time window was based on trial and error, running the algorithm under different 
time window settings which yielded the best CMR.  

Lower CMR can be attributed to WIM sensor errors like missed detections, ghost detections (detections 
of vehicles that were not actually there), counting vehicles with two trailers as two separate vehicles, 
and counting vehicles straddling two lanes as two separate vehicles. Traffic flow was also a contributing 
factor, as demonstrated in Lonoke. A lower CMR (higher ER) at Lonoke was mostly attributed to an 
upstream accident that occurred around noon during data collection which caused larger variability in 
the time offset between the WIM and AVI records and data recording errors. Data recording errors, 
indicated by a “flagged” record, peaked during the traffic incident (Figure 33). Recall the location of the 
WIM site and the AVI screen line were about 1 mile apart. Most of the shared AVI trucks between Lamar 
and Lonoke crossed Lonoke around noon also contributing to the lower CMR (Figure 34).  The temporal 
inputs and sequencing of the records were two central inputs components of the truck-matching 
algorithm therefore having uninterrupted traffic flow is critical if the WIM and AVI locations differ. 

 
Figure 33. WIM Sensor Error Rate by Time of Day at the Lonoke WIM Site During the March 2018 Data 

Collection 
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Figure 34. Shared AVI Trucks between Lamar to Lonoke During Field Data Collection Hours 

AUTO-CALIBRATION PERFORMANCE 

Auto-calibration performance was assessed via the MAPE and MdAPE for FAW and GVW adjustments 
for the March 2018 and 2019 data collection sites. The AVI-based auto-calibration method applied to 
the March 2018 and 2019 data resulted in FAW MAPE between 10% and 35% and GVW MAPE between 
16% and 35% (Table 11). The results of the proposed AVI algorithm were compared to the ARDOT and 
MnDOT methods using their baseline parameters (Figure 35).  The AVI-based auto-calibration approach 
presented only slight accuracy gains over the ARDOT and MnDOT methods at most sites.  Lamar was an 
exception where the AVI-method resulted in MAPE higher than that experienced for the unprocessed 
data.   

Table 11. MAPE and MdAPE for FAW and GVW by Data Collection Site 
Static Site 
and Data 

Method AVI 

Error (%) MdAPE MAPE 

Alma 
March 2018 

Lamar  
FAW 32.6 34.7 

GVW 28.4 34.8 

Lonoke  
FAW 14.5 18.0 

GVW 14.0 32.1 

Hope 
March 2019 

Glen Rose 
FAW 13.3 16.3 

GVW 17.4 20.3 

Arkadelphia 
FAW 11.6 13.7 

GVW 10.9 16.0 

Texarkana 
FAW 7.9 9.5 

GVW 7.3 16.1 
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(A) FAW 

 
(B) GVW 

Figure 35. Comparison of FAW and GVW MAPE by Auto-Calibration Method and WIM Site 

 

As part of the AVI-based auto-calibration method, the likely FAW of each truck that crosses multiple 
WIM sites is estimated and compared to a reference FAW. The likely FAW is taken as the center of the 
largest cluster of data where clusters are defined by FAW and GVW.  When the likely FAW is outside a 
predefined threshold from the reference FAW, then the reference FAW is used instead of the likely FAW. 
This is to prevent situations where all sensors crossed by an AVI truck are reporting erroneous 
measurements. In those cases, the comparison of the likely FAW to the reference FAW would reveal that 
the reference FAW should be used since the likely FAW is unreliable.  Using the data from the 2019 data 
collection, a comparison between the number of instances in which the likely FAW was replaced by the 
reference FAW showed the following: 

• at the Arkadelphia WIM site, approximately 16% of the truck records used the likely FAW for 
determining the calibration factor, and  

• at the Glen Rose WIM site, approximately 14% of the truck records used the likely FAW for 
determining the calibration factor. 

Thus, for the majority of the 2019 truck records, the reference FAW of 10 kips was used to determine 
the calibration factor.  This explains why there is similar performance in terms of MAPE between the 
ARDOT and AVI-based approaches.  It is anticipated that increasing the number of instances in which the 
likely FAW is used in favor of the reference FAW will increase model performance.  To accomplish this, it 
will be valuable to expand the number of test sites to include more low volume sites. Low volume sites 
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are assumed to have poorer performance under the current ARDOT auto-calibration algorithm, and are 
likely to benefit more from the AVI-based approach.   

PERFORMANCE EVALUATION 

The higher MAPE for FAW and GVW produced by the AVI-based auto-calibration algorithm at Lamar 
provided several insights into the benefits and limitations of the approach. First, the auto-calibration 
algorithm produced lower MAPE when the original “raw” data exhibited higher error such as at the Lonoke 
and Glen Rose locations.  When applied to locations with more accurate “raw” data, such as at Lamar, 
Arkadelphia, and Texarkana, the AVI-based auto-calibration algorithm performed just as well as the 
ARDOT and MnDOT algorithms, reducing FAW MAPE from around 25% to as low as 10%. The different in 
the degree of calibration produced by the AVI-based algorithm is evident when observing the raw and 
adjusted FAW and MAPE and comparing Lamar and Lonoke (Figure 36). 

 

  
(A) Lamar FAW (B) Lamar GVW 

  
(C) Lonoke FAW (D) Lonoke GVW 

Figure 36. Comparison of Static and WIM Weights for Lamar and Lonoke 

Second, the AVI-based auto-calibration algorithm produced lower FAW MAPE (increased accuracy) 
toward the end of the data collection time period (Figure 37).  Correlation between time of day and 
MAPE could be attributed to the inability of the AVI-based method to keep pace with temperature 
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changes earlier in the day when traffic volumes of GPS enabled trucks were lower.  With less trucks 
available to compare across sites, the frequency and accuracy of calibration factor updates is reduced.  
Thus, we are likely to see temporal trends in FAW auto-calibration accuracy that is related to volumes of 
GPS tracked trucks. For the ARDOT and MnDOT methods, changes in accuracy do not trend with time of 
day. 

 

 
(A) AVI-Based Auto-Calibration FAW MAPE Results by Time of Day 

 
(B) Volume of AVI-Tracked Trucks by Time of Day for March 15, 2018 Data Collection 

Figure 37. Comparison of FAW Estimation Error by Time of Day for AVI-based and ARDOT Methods for 
Lamar WIM Site 

Third, the AVI-based method produced more consistent MAPE across GVW ranges than the ARDOT and 
MnDOT methods. The AVI-based method calculated calibration factors by comparing the same truck’s 
FAW across WIM sites. This comparison takes into consideration the inherent relationship between FAW 
and GVW, e.g., with higher GVW slightly higher FAW is expected due to the location of the king-pin and 
loading pattern across the axles.  Therefore we see no trend between GVW and MAPE for the AVI-based 
method but for the ARDOT method (Figure 38A), we observe an increase in MAPE as GVW increases 
(Figure 38B). The ability to consistently calibrate across GVW ranges can be interpreted as an advantage 
of the AVI-based approach.  
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Considering this, we assessed a variation of the AVI-based method in which we estimate likely GVW 
instead of likely FAW. To adapt the algorithm, we analyzed the FAW of each truck to determine which 
GVW was “correct”, e.g., if the FAW of a truck was outside the tolerance of the reference FAW then we 
would not use that truck’s GVW as the likely GVW. However, this approach resulted in less accurate 
results than the originally proposed AVI-based method. This can be attributed to the high variability in 
GVWs which makes it impossible to assume a reference GVW to compare the likely GVW when GVWs 
across sites are in disagreement.   

 

 
(A) AVI-Based Method 

 
(B) ARDOT Method 

Figure 38. Comparison of FAW Estimation Error by GVW for AVI-based and ARDOT Methods for Lamar 
WIM Site 
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CHAPTER 7: CONCLUSIONS 

SUMMARY OF FINDINGS 

An AVI-based auto-calibration method was developed and compared to existing auto-calibration 
algorithms.  The AVI-based method consisted of first, matching AVI-tracked trucks to WIM PVR records 
and second, applying a calibration procedure in which the measured weights of the same truck tracked 
by AVI across multiple WIM sites are used to generate a reference weight and calibration factor.  The 
approach currently used by ARDOT generates calibration factors based on the measured Front Axle 
Weight (FAW) averaged for a sample of 50 five-axle tractor-trailers and compares it to a predefined 
reference weight.  A more robust method, developed by MnDOT, expands on that approach by defining 
three FAW references based on Gross Vehicle Weight (GVW) bins and applying correction factors when 
sample sizes are small.   

The proposed AVI-based approach was compared to the ARDOT and MnDOT approaches for a set of six 
WIM sites at Lamar, Lonoke, Bald Knob, Glen Rose, Arkadelphia, and Texarkana.  During two data 
collections in March of 2018 and 2019, we collected WIM Per Vehicle Record (PVR) at each WIM site, 
AVI data from a national truck GPS data provider, and static weight recordings at Arkansas Highway 
Police weight enforcement sites at Alma and Hope.  Auto-calibration at the Lamar and Lonoke WIM sites 
was disabled during data collection but was enabled for the Glen Rose, Arkadelphia, and Texarkana 
sites. An extensive data preprocessing methodology was developed and applied to provide data 
necessary for auto-calibration algorithm performance evaluation. Without auto-calibration, we 
observed FAW errors ranging from 24% to 85% with GVW error in the same range.  

Site-specific tuning of the user-specified values required in the ARDOT and MnDOT auto-calibration 
algorithms resulted in errors for FAW between 9% and 11% and for GVW between 14% and 18%. 
Overall, through site-specific tuning of parameters like FAW reference values and GVW bin thresholds 
used in the ARDOT and MnDOT algorithms, we can potentially reduce measurement errors by 1% to 
23%.  Due to the fourth power relationship between measured weight and Equivalent Single Axle Load 
(ESAL) used in pavement design, an improvement in weight measurement of only 1% can result in a 4% 
increase in accuracy of estimated ESALs.  More accurate estimates of ESALs will lead to more efficient 
pavement designs and more reliable estimates of highway maintenance costs and rehabilitation 
schedules. A limitation of developing site-specific user-specific values like FAW references is that it 
would require very detailed and time-consuming data collection efforts to gather necessary data.  This is 
potentially expensive and time consuming. The AVI approach, on the other hand, alleviates some of the 
need to perform manual field data collection by leveraging AVI truck-tracking technologies such as GPS.   

Comparison of FAW and GVW estimation accuracy across all three auto-calibration methods and study 
sites can be summarized as follows: 

• The ARDOT method reduced errors to between 12% and 16% for FAW and 14% to 29% for GVW. 
• The MnDOT method reduced errors to between 11% and 26% for FAW and 11% to 41% for 

GVW. 
• The AVI-based method reduced errors to between 10% and 35% for FAW and 16% and 35% for 

GVW. 

In general, the AVI-based method works well for sites with higher measurement error as seen at Lonoke 
and Glen Rose but maintains similar performance as the ARDOT and MnDOT algorithms in most other 
cases.  Performance of the AVI-based algorithm was also found to correlate with the volume of trucks 
tracked by the AVI system, in this case a GPS tracking system. When more trucks are present, lower FAW 
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and GVW estimation errors were observed. Using the ARDOT method, there is a correlation between 
higher GVW ranges and increased error. The AVI-based approach did not exhibit this same trend.  

FUTURE IMPROVEMENTS 

Using a single data provider for AVI data (in this case GPS data) could be considered a limitation of the 
current methodology since the data may not be representative of all truck industries and cargo types 
and may, in some time periods, represent small sample sizes. Although we did not note the cargo 
configurations of all trucks in the AVI and static weight sample, most trucks were van trailers. This 
means that calibration factors do not incorporate different trailer types that might have different 
loading patterns.  For example, liquid bulk tanks, livestock, and logging trailers may have very different 
loading patterns that effect the FAW variation and resulting calibration factors calculated via our 
proposed auto-calibration algorithm. In future work, consideration should be given to obtaining a 
broader spectrum of AVI data sources such as various GPS and Electronic Logging Device (ELD) providers 
or license plate matching technology installed at WIM sites.  Currently, the state of Arkansas restricts 
the use of license plate readers but there may be potential for an exception to this law for research 
purposes.  Another related issue was the size of the AVI data sample.  Our sample represented only a 
very small proportion of the total truck volumes. With a larger sample, we could compute more accurate 
likely weights within the AVI-based algorithm which could potentially increase the accuracy of the 
calibration factors.  

Through two separate data collection efforts we were able to gather a sample of around 500 trucks to 
evaluate the performance of the three auto-calibration methods.  However, due to restrictions on 
collecting and tracking license plate data, considerable effort was required to produce “ground truthed” 
matches from side-fire video. This was a time-consuming process due to the low number of trucks that 
entered the weight enforcement station relative to the total number of trucks that crossed each WIM 
site during the data collection and the need to manually verify matches based on visual descriptions of 
trucks using video recordings. In future work, it would be highly beneficial to use license plate readers to 
automatically match trucks across sites during data collection.  

Weight estimation errors as high as 85% were observed for WIM sites with auto-calibration disabled.  
Applying the currently used ARDOT auto-calibration algorithm reduced errors to as low as 14%.  This 
discrepancy points to the major source of measurement inaccuracy, quality of the WIM sensors. 
Although they are maintained adequately, the piezoelectric sensor in the WIM system has a 
measurement tolerance of 30% (FHWA, 2018 Part 3). With no temperature sensors at the sites to adjust 
weight measurements in accordance with pavement and ambient temperature changes, it is difficult to 
produce accurate weight measurements, even with the proposed AVI auto-calibration algorithm.  
Results show variation in CFs by time of day indicating the effect of temperature on sensor performance. 
Anecdotal conversations with WIM vendors suggested that although temperature sensors are low cost 
relative to the weight sensors and WIM controller equipment hardware, they have a short lifespan 
requiring frequent replacement.  Future studies should obtain costs estimates from WIM vendors to 
install and maintain temperature sensors at each scale.   

Further, piezoelectric sensors have short life spans (2-3 years, Table 12) but it is likely infeasible due to 
budget restrictions to replace sensors this frequently. As the sensors degrade, they become more 
sensitive to weather and pavement conditions.  Although budget prohibitive, a solution might be to 
transition higher volume WIM sites into higher quality scales such as strain gage or bending plate scales 
and possibly even relocate or drop sites that experience low volumes in order to shift funding priority to 
heavily-trafficked areas. Bending plates and load cells have a 6% to 10% error in GVW and 15% to 20% 
error in axle loads while piezo electric sensors have 15% error associated with GVW and up to 30% error 
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in axle loads. In terms of installation and operating costs (Table 12), for a typical two-lane site, a piezo 
polymer sensor is approximately half the cost of a bending plate sensor, but the bending plate sensors 
have double the accuracy and triple the life span.  In fact, a piezo polymer sensor could cost 
approximately $58,300 for installation and annual operational costs while a bending plate sensor could 
cost $90,600 (Note this cost calculation considers the midpoint cost between the high and low estimates 
in Table 12 and is evaluated for a two-lane installation).  

Moreover, the AVI-based algorithm which tracks and compares truck weights across multiple sensors 
can be used to prioritize WIM site sensor upgrades.  For example, we can consider a set of “anchor” 
sites which are commonly crossed by all trucks.  Then, as we track trucks from these sites to “satellite” 
WIM sites, e.g., those with lower volume or lower quality sensors, we can use the measured weight at 
the “anchor” site as a reference by which to calculate a calibration factor for the “satellite” location.  

Table 12. WIM Sensor Costs and Life Span 

Sensor Type Life 
(Years) 

Sensor Costs1  

($ per lane) 

Sensor 
Replacement 

Cost  
(annual $ per lane) 

Routine 
Maintenance2 

(annual $ per two-
lane site) 

Routine 
Calibration3 

(annual $ per two-
lane site) 

Low High Low High Low High 

Polymer Piezo 2-3 4,000 6,400 4,300 

500 1,200 2,500 6,000 

Quartz Piezo 3-5 16,000 24,000 10,600 

Strain Gauge  3-5 16,000 24,000 10,600 

Bending Plate 6-8 18,000 28,000 7,000 

Load Cell 10-12 44,000 53,000 9,000 

1. Sensor costs do not include installation costs.  For a typical two-lane installation with initial calibration, installation costs 
range from $20,500 to $56,500. This cost assumes pavement condition is acceptable, directional boring is used, three 
junction boxes and a traffic cabinet are needed, a host computer from the sensor vendor is installed, cell or modem service 
is available, and the equipment is powered with a solar panel.  

2. Operation costs include annual calibration costs as per ASTM E1318-09, routing maintenance of two site visits per year, 
and software updates.  

3. Calibration cost is based on using one test truck which typically costs $90 to $135 per hour, for a maximum of 20 runs per 
lane.  Bending plate and load cells may be calibrated every two years.  

Reference:  Weigh-in-Motion Pocket Guide Part 1: WIM Technology, Data Acquisition, and Procurement Guide, FHWA 
Publication No. FHWA-PL-18-015, June 2018. 

 

RETURN ON INVESTMENT  

Effective auto-calibration provides a means to reduce costs associated with on-site calibration using test 
trucks, e.g., the practice recommended by ASTM E1318-09.  This has both direct and induced impacts on 
costs.  Direct impacts are those related to the costs of performing routine calibration.  The induced 
impacts are those related to the increased accuracy of WIM data due to routine calibration.  Since WIM 
data is used in bridge and pavement design, data that are more accurate can lead to more efficient 
design and thus possible reduced costs.  The direct benefits are quantified here.   

A comparison of the cost of performing on-site calibration using test-trucks to effective auto-calibration 
using either field data collection or AVI data was made to show the direct impacts of the proposed 
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project.  A summary of the comparison is provided in Table 13 and explained in the following 
paragraphs.  All scenarios assume that Arkansas’s WIM sites are calibrated once per year and that staff 
labor costs can be neglected since all approaches have nearly the same labor costs.  

Table 13. Summary of Calibration Costs by Calibration Method 
Calibration Method Annual Cost Cost Savings 
Test Trucks (status-quo method) $219,826 - 
(A) Auto-Calibration Using AVI-Based Data Collection $5,0001 98% 
(B) Auto-Calibration Using Field and AVI-Based Data Collection $153,750 30% 

States Successful Practices Weigh-in-Motion Handbook provides an example of costs related to WIM 
installation, operations, and maintenance for a WIM network (McCall and Vodrazka, 1997; FHWA 2018).  
The following assumptions were made in estimating the total calibration costs for Arkansas (all costs 
gathered from McCall and Vodrazka have been converted from 1997 dollars to 2017 dollars2): 

1. Assume there are 50 WIM sites in Arkansas. 
2. Each scale will be independently calibrated once per year. 
3. 10% of the WIM sites (5 sites) are near static scales:  The cost of a single-lane calibration effort 

when that effort is performed by pulling trucks from the passing traffic stream and weighing 
them both at the WIM scale and a nearby static scale is $5,715.20 ($3,800 in 1997 dollars) per 
calibration. 

4. 90% of the WIM sites (45 sites) must be calibrated using test trucks: when test trucks are used, 
the calibration approach relies on one loaded test truck to make multiple passes over the 
WIM site.  The weight of the test trucks is known apriori. The cost per calibration using test 
trucks is $4,250.00 per calibration. 

5. Increases in staffing costs related to labor and travel associated with on-site calibration are 
not included in the cost estimate. 

Thus, the total cost of calibration for the WIM sites in Arkansas is $219,826 per year3.  This represents 
the minimum calibration effort for ASTM standards and recommended practices.   

Effective auto-calibration requires periodic updates of the calibration factors used in the update 
procedure.  This can be carried out in two ways as proposed in this project: (A) usage of AVI data and (B) 
a combination of on-site and AVI approaches.  

Alternatively, if AVI data were to be used in-place of on-site calibration methods, significant cost savings 
could be realized.  The costs associated with the use of AVI data for auto-calibration are expected to be 
minimal relative to on-site calibration costs, given that weigh station bypass programs like Drivewyze 
and/or PrePass are willing to share data with the ARDOT at minimal or no cost in return for access to 
weight data. For reference, the data purchase cost for this project was around $5,000. It should be 
noted that this cost was negotiated for research purposes and could differ when negotiated for regular 
implementation. Thus, for AVI-based autocalibration, the costs would be limited to data acquisition 

                                                           
1 Note: The cost of purchasing the AVI data from Drivewyze was approximately $5,000 for this research study.  This 
cost does not reflect an agreed upon price for the data to be shared with ARDOT.  Commercial AVI type of datasets 
from various vendor can range significantly.  
2 Source: The Bureau of Labor Statistics' annual Consumer Price Index (CPI) was 160.500 in 1997 and 241.353 in 
2017.  The purchasing power of $100 in 1997 is $150.38 in 2017 (the CPI inflation between 1997 and 2017 is 
calculated as 241.353/160.500). 
3 Calculation: 5 sites x 1 calibration/year x $5,715.20/calibration + 45 sites x $4,250.00/calibration = $219,826 per 
year 
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($5,000) and staff labor hours which are assumed the same for on-site calibration, and therefore not 
included in the comparative analysis. 

Since it may not be realistic to assume that all WIM sites can be calibrated using AVI data, e.g. some 
WIM sites may not be along the same routes as the Drivewyze or PrePass sites, a combination of on-site 
and AVI-based methods is more realistic.  To estimate an upper bound on the cost of implementing a 
mix of on-site and AVI-based calibration, it is assumed that 30% of the WIM sites (15 sites) can use AVI-
based calibration and the remaining 70% (35 sites) require field data collection to update auto-
calibration parameters. The assumed number of sites using AVI-based auto-calibration (15 sites) is based 
on the number of high-volume WIM sites observed from the 2018 WIM PVR data. It is not anticipated 
that a significant cost savings would be realized for obtaining the AVI-data by reducing the number of 
reported sites. Therefore, the cost for AVI data acquisition would remain the same ($5,000) and the cost 
of on-site calibration would be estimated for 35 sites at $4,250 per site.  The total cost would be 
$153,7504 for a combined approach of AVI and on-site calibration. This compares to the $219,826 
anticipated per year for on-site calibration representing a 30% cost savings by switching to a mix of AVI 
and on-site calibration.  

                                                           
4 Calculation: 5 sites with AVI-data for $5,000 + 45 sites x $4,250.00/calibration = $196,250 per year 
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APPENDIX A: AVI-BASED AUTO-CALIBRATION IMPLEMENTATION EXAMPLE 
 

An illustrative example of the Truck Matching and Auto-calibration methods are provided here using 
WIM stations Lamar, Lonoke and Bald Knob.  

TRUCK-MATCHING EXAMPLE 

Vehicle inter axle spacing in feet were utilized in the example as the vehicle parameter to compare in 
order to find the WIM records for AVI trucks.  

Step 1: Determine Time Offsets  

The AVI to WIM time offsets at Lamar, Lonoke and Bald Knob are found to be 15s, 20s, and 12s, 
respectively.  

Step 2: Identify Candidate WIM Records 

An AVI truck with unique ID ‘123’ is identified crossing these sites within one day at the following times. 

[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡123] :  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 @ 𝑡𝑡1 = 9: 00: 00 𝐴𝐴𝐴𝐴 

   𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 @ 𝑡𝑡2 = 10: 00: 00 𝐴𝐴𝐴𝐴 

   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 @ 𝑡𝑡3 = 10: 30: 00 𝐴𝐴𝐴𝐴 

 𝑑𝑑123: 

Site 1 Time 1 Site 2 Time 2 Site 3  Time 3 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿360009 9: 00: 00 𝑎𝑎.𝑚𝑚. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿430037 10: 00: 00 𝑎𝑎.𝑚𝑚. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘730068 10: 30: 00 𝑎𝑎.𝑚𝑚. 

 

Step 2: Assign WIM records to AVI records. A buffer of Δ = 5 minutes was used in this example to find 
sets of candidate WIM records at each site. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1235 min𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡1 = 9: 00: 00 𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 →      

Record Time AVI Time WB 1 WB 2 WB 3 WB 4 

90 8:55:15 a.m. 8:55:00  a.m. 17.50 4.02 28.78 4.64 

… … … … … … … 

95 9:00:15 a.m. 9:00:00  a.m. 17.00 4.20 32.00 4.15 

… … … … … … … 

100 9:05:15 a.m. 9:05:00  a.m. 15.88 4.23 32.98 4.71 

Where AW 1, 2… is the weight of the 1st, 2nd, etc. axle.  Note that inter-axle spacing could also be 
included. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1235 min𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡2 = 10: 00: 00 𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 → 

Record Time AVI Time WB 1 WB 2 WB 3 WB 4 

200 9:55:20 a.m. 9:55:00 a.m. 16.72 4.21 32.93 4.00 

… … … … … … … 

220 10:00:20 a.m. 10:00:00 a.m. 17.00 4.20 32.00 4.15 

… … … … … … … 

240 10:05:20 a.m. 10:05:00 a.m. 15.99 4.13 30.84 4.02 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1235 min𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡2 = 10: 30: 00 𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 → 

Record Time AVI Time WB 1 WB 2 WB 3 WB 4 

172 10:25:12 a.m. 10:25:00 a.m. 19.50 4.28 31.50 3.96 

… … … … … … … 

175 10:30:12 a.m. 10:30:00 a.m. 17.00 4.20 32.00 4.15 

… … … … … … … 

180 10:35:12 a.m. 10:35:00 a.m. 17.69 5.72 29.56 4.32 

The vehicle parameters differences were used to determine potential matches. The vehicle parameter 
used in this example was axle weights. For instance, WIM record 95 at Lamar would be compared to 
records 200 thru 240 at the Lonoke WIM site and to records 172 thru 180 at the Bald Knob site. Notice 
that records 95, 220 and 175 would have the least overall difference. The following are GVW 
differences: 

A. Data vector for Lamar: 

 𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = [ 17.0, 4.2, 32.0, 4.15] 

B. Differences between truck 95 at Lamar and candidates at Lonoke: 

𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −𝑊𝑊220,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0 

𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −𝑊𝑊200,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1.47 

𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −𝑊𝑊240,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 2.37 

Resulting match: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�[0, 1.47, 2.37], {𝑊𝑊𝑠𝑠,𝑖𝑖,𝑊𝑊𝑠𝑠′,𝑗𝑗}� = ( 𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑊𝑊220,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) 

C. Differences between truck 95 at Lamar and candidates at Bald Knob: 

𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −𝑊𝑊175𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 0 

𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −𝑊𝑊172,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 3.27 

𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −𝑊𝑊345,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 4.82 
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Resulting match: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�[0, 3.27,4.82], {𝑊𝑊𝑠𝑠,𝑖𝑖,𝑊𝑊𝑠𝑠′,𝑗𝑗}� = ( 𝑊𝑊95,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑊𝑊228,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) as 
𝑊𝑊175𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾has a closer time stamp to the AVI given the time offset, and least overall 
difference in axle weights as well. 

Records 95, 220 and 175 have the lowest overall difference therefore these records are assigned 
to truck 123 for auto-calibration.  Thus, the final unique WIM pairings for AVI truck ‘123’ are as 
follows: 

Site Record Time WB 1 WB 2 WB 3 WB 4 

Lamar 95 9:00:12 a.m. 17.00 4.20 32.00 4.15 

Lonoke 220 10:00:12 a.m. 17.00 4.20 32.00 4.15 

Bald Knob 175 10:30:12 a.m. 17.00 4.20 32.00 4.15 

The example above is suited for a WIM system network that does not have a lot of variability in weight 
recordings preferably using WIM systems with bending plates or load cells which are more accurate than 
piezoelectric sensors and WIM systems that are not Type II as they have a higher variability of 30% 
combined with the sensitivity to temperatures and pavement conditions of piezoelectric sensors (FHWA, 
2018). For the case study, inter-axle spacing was selected as the comparable vehicle parameter as these 
are more consistent measurements across FHWA vehicle class and due to the wide range in weight 
variability across WIM sites that was experienced in the recorded data. 

AUTO-CALIBRATION EXAMPLE 

The following is an idealized example of the AVI auto-calibration method presented in Flow Chart 4. In 
this example a 1-hour sample of trucks taken from 9 a.m. to 10 a.m. at WIM Station A includes three 
trucks: truck IDs 101, 105, and 203. WIM records for the same AVI trucks found at WIM Station A within 
time window T of 3.5 hours included three additional stations: B, C, and F.  The reference front axle 
weight, 𝑊𝑊𝑅𝑅, was set to 10 kips. The deviation among front axle weights among the sites (𝛿𝛿𝑆𝑆) was 10%. 
The deviation (𝛿𝛿𝑊𝑊) between the reference weight and likely weight was 10%. The volume of FHWA Class 
9 trucks at each WIM site on the given day were: 300, 250, 190, and 50, for sites A, B, C, and F, 
respectively.  The algorithm is as follows: 

1. Select samples: Obtain a set of FHWA Class 9 trucks crossing WIM site A from the AVI data.  

AVI Truck Sample at WIM A from 9 a.m. to 10 a.m. 

Truck ID Timestamp FAW (kips) 

105 9:03:00 10 

101 9:05:0 12 

203 9:30:00 9 

2. Find AVI trucks: Find each of the AVI trucks from site A that traversed other WIM sites in the 3.5 travel 
time window and count the number of sites crossed by each truck: truck 105 crossed 4 sites, truck 101 
crossed 3 sites, and truck 203 crossed three sites. 
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Trucks Cross WIM B: 

Truck ID Timestamp FAW (kip) 

105 10:03:00 9 

101 10:05:00 11 

203 10:30:00 10 

Trucks crossing WIM C: 

Truck ID Timestamp FAW (kip) 

105 11:33:00 10 

101 11:35:00 10 

203 12:00:00 12 

Trucks crossing WIM F: 

Truck ID Timestamp FAW (kip) 

105 13:03:00 8 

2. Check Deviation: Check the deviation, 𝛿𝛿𝑆𝑆, in front axle weight of each AVI truck recorded at each WIM 
site to see if the sites require calibration. For this example,  𝛿𝛿𝑆𝑆 was 10% so that if the difference in front 
axle weights (or FAW) recorded at two WIM sites for the same truck differed by more than 10%, we 
considered them to need calibration. The following table shows necessary calculations:  

Deviation for sites A and B: 

Truck 
ID 

Timestamp 
A 

 FAW 
A 

Timestamp 
B 

FAW  

B 

Difference 

|A-B|/A 

105 9:03:00  10 10:03:00 9 10% 

101 9:05:00  12 10:05:00 11 8% 

203 9:30:00  9 10:30:00 10 11% 

Deviation for sites B and C: 

Truck 
ID 

Timestamp 
B 

FAW 
B 

Timestamp 
C 

FAW  

C 

Difference 

|B-C|/B 

105 10:03:00 9 11:33:00 10 11% 

101 10:05:00 11 11:35:00 10 9% 

203 10:30:00 10 12:00:00 12 20% 

Deviation for C and F: 

Truck 
ID 

Timestamp 
C 

FAW 
C 

Timestamp 
F 

FAW  

F 

Difference 

|C-F|/C 

105 11:33:00 10 13:03:00 8 20% 
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By computing the deviations above it may be observed that in most cases the weights for a an AVI truck 
are significantly different in all cases except for truck 101 where the weights recorded in sites A and B 
are below the deviation, therefore they are similar. In this case, the calibration factor resulting from 
truck 101 recorded at sites A and B is 1.0. 

3. Find Likely Weight: To compute the likely weights, 𝜔𝜔𝑎𝑎 , we first differentiate between high and low 
volume sites based on historical AVI data such that a site with over 50 AVI trucks per day was considered 
to be high volume. This is referenced via a look up table. Clustering is used to find 𝜔𝜔𝑎𝑎 when there is 
more than one high volume site. Then the 𝜔𝜔𝑎𝑎  was compared to the reference FAW, 𝑊𝑊𝑅𝑅 , of 10 kips to see 
if it is within a weight deviation, 𝛿𝛿𝑊𝑊, of 10%. If deviation between 𝜔𝜔𝑎𝑎  and 𝑊𝑊𝑅𝑅 exceeds 𝛿𝛿𝑊𝑊 then 𝑊𝑊𝑅𝑅  was 
used to compute the calibration factor, otherwise 𝜔𝜔𝑎𝑎 was used. A calculation for Truck 105 was as 
follows: 

Truck 105: 

o FAWs were 10, 9, 10, and 8 for sites A, B, C, and F 

o High-volume sites = A, B, C 

o 𝜔𝜔𝑎𝑎 = 9.75 kips from clustering analysis (e.g., cluster with 10, 9, and 10 kip front axle 
weights and GVWs) 

o Deviation to reference weight: (9.75-10.00)/10.00 x 100% = 2.5%  

o Comparison to threshold: 𝛿𝛿𝑊𝑊 = 10% > 2.5%, therefore use 𝜔𝜔𝑎𝑎 = 9.75 kips 

4. Calculate Calibration Factors: The calibration factors were calculated as the ratio of the likely weights, 
𝜔𝜔𝑎𝑎 , to the recorded FAW.  An example for site A is: 

Site A: 

Truck ID Timestamp A FAW A Likely Weight A CF 

105 9:03:00 10 9.75 9.75/10 = 0.975 

101 9:05:00 12 11.20 11.20/12 = 0.933 

203 9:30:00 9 10.40 10.40/9.0 = 1.15 

Average 9:00 to 10:00 - - 1.02 

Since site F was a low-volume site, the likely weight of truck 105 determined from clustering FAWs from 
sites A, B, and C was used to calculate the calibration factor for Site F as follows. 

Site F: 

Truck ID Timestamp F FAW F Likely Weight A CF 

105 13:03:00 8 9.75 9.75/8 = 1.22 

Average 13:00 to 14:00 - - 1.22 

5. Calibrate Site: The resulting calibration factors generated from the AVI trucks were used to adjust the 
weights recorded by the WIM for all trucks by dividing each of the WIM measured weights by the 
calibration factor. 
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APPENDIX B: MANUAL IDENTIFICATION OF TRUCKS ACROSS WIM SITES 
The following steps explain how trucks were identified and matched once the time offsets were found 
using the Lamar and Lonoke sites as an example: 

1. Watch the video at Lamar of trucks near the Drivewyze timestamp considering the 17s offset 
between the video and DW records. Take screen shots (Figure B.1) and notes of the trucks. 

 

  
(A) (B) 

 
(C) 

Figure B.1. Example Truck Images from Video at Lamar WIM Site 

2. Observe the video footage from Lonoke near the GPS timestamp considering the offset between 
the video and GPS records at Lonoke (1min 45s - 3min) to find if any of the trucks from the 
captured images at Lamar cross the Lonoke WIM site.  Figure B.2 shows the truck found at 
Lonoke, which corresponds to a truck that previously crossed Lamar site in Figure 13. 

 
Figure B.2. Example of Truck Reidentified at Lonoke WIM Site 

 

3. Record the “matched” truck (Figure B.3). 
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Figure B.3. Example of Notes Used to Match Trucks Across WIM Sites 

This process resulted in a list of trucks and their WIM measurements for trucks that crossed Lamar and 
Lonoke (Figure B.4). A challenge was that the AVI to video time offset had some variability due to traffic 
flow at each site. GPS records were matched more precisely to WIM records by examining headways of 
WIM and video records. This was performed in order to obtain one-to-one matches at Lamar and 
Lonoke between the GPS and WIM vehicle records also looking at the truck lane and class sequence to 
find the exact match in order to develop the data to validate truck-matching and auto-calibration 
algorithms.  

 
Figure B.4. Example of Finalized Matches Between Video, GPS, and WIM Records 
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