complete index (for vols. 1–7)

a

accessibility

and road construction, vol. 5(1):26
business productivity, vol. 1(3):69–76
definition of, vol. 4(2/3):16
demarcation area, vol. 4(2/3):37
European context, vol. 4(2/3):38–40

indicators

travel-cost approach, vol. 4(2/3):33
utility-based surplus approach, vol. 4(2/3):35

modeling

and labor markets, vol. 4(2/3):54–57, 63–64
measurement of attraction masses, vol. 4(2/3):37
measurement of spatial separation, vol. 4(2/3):36–37
path-based accessibility, vol. 4(2/3):79–90
unimodality v. multimodality, vol. 4(2/3):37
space-time prisms, vol. 4(2/3):1–14

accidents. see also crashes, safety
air transportation, vol. 2(1):79, 85
costs, vol. 4(1):87–90, 99–100
free incidents, travel time, vol. 2(2):123–131
hazardous materials shipments by rail, vol. 3(1):81–92
high-risk sites, vol. 1(1):75–91
increased speed limits, vol. 4(1):1–26
traffic, vol. 7(2/3):13–26
trucks, vol. 1(1):75–91

advanced traveler information systems, vol. 7(2/3):53–70

afv. see alternative fuel vehicles

age. see also demographic factors
as a determinant of truck accidents, vol. 3(1):69–73
commuting, vol. 2(1):104
in relation to highway safety, vol. 6(2/3):51–65

agglomeration effects (accessibility modeling), vol. 4(2/3):37–38

aggregation/disaggregation of data
business interruption impacts, northridge earthquake, vol. 1(2):29
freight demand and mode choice, vol. 2(2):149–58
investment, macroeconomic analyses, vol. 1(3):65–79
motor vehicle emissions, vol. 3(2):25
motor vehicle license fees, vol. 2(2):139
travel demand, country comparisons, vol. 3(3):1–31
truck trips, statewide, vol. 3(1):53
urban passenger transport, vol. 1(1):44
value of time data, vol. 5(2/3):57–72

aic. see akaike's information criterion

air pollution, vol. 3(2):1–102
air quality assessment, vol. 3(2):85–101
air quality planning, local roads, vol. 6(1):59–69

air transportation, vol. 2(1):79–80, 85–86
analysis of covariance model, vol. 3(2):49–64
chase car data, vol. 3(2):15–28
costs from highway transportation, vol. 4(1):91–92, 100; vol. 5(2/3):84
light trucks and passenger cars, vol. 3(3):48
mobile emissions assessment system for urban and regional evaluation, vol. 3(2):65–83
mobile source emissions forecasting, vol. 6(1):17–32
trips, relationship to value of time data, vol. 5(2/3):2–72
and unregistered motor vehicles, vol. 7(2/3):1–12

air transportation statistics, vol. 2(1):71–92
airline
flight delay and cancellation analysis, vol. 7(1):74–84
low-cost carriers, vol. 7(1):88–101
regional carriers, vol. 7(1):88–101
traffic, vol. 7(1):69–85
networks, vol. 7(1):87–101

Air Travel Price Index, vol. 7(2/3):41–52
econometric forecasts, vol. 7(1):7–21
infrastructure needs, vol. 2(1):78–79, 84–85
international freight, vol. 7(2/3):93–97
policy formation, vol. 2(1):74–76, 81–82
productivity analysis, vol. 2(1):77–78, 83–84
safety, vol. 2(1):79, 85
use in cost analysis, vol. 2(1):77–78, 83–84
use in demand forecasting, vol. 2(1):76–77, 83–84
use in environmental analysis, vol. 2(1):79–80, 85–86

Akaike’s Information Criterion (AIC), vol. 7(1):3

Alabama
time-use behavior model, vol. 5(1):39
truck flows, vol. 1(1):69, 72

Alaska, truck flows, vol. 1(1):67, 69, 72

Alternative and replacement fuels, vol. 3(2):50–61

Alternative fuel vehicles (AFV)
emissions, vol. 3(2):50, 57–61
urban transportation, vol. 3(1):35

American Travel Survey, vol. 5(2/3):84

analysis of covariance (ANCOVA)
motor vehicle emissions, vol. 3(2):49–64
Analysis of variance (ANOVA), vol. 2(2):49–63
motor vehicle emissions, vol. 3(2):24
roadway inventory data collection, vol. 3(3):36–42

Atlanta, Georgia, parking, vol. 2(1):93–107

ARIMA. see Box-Jenkins ARIMA time series

Arizona
time-use behavior model, vol. 5(1):39
truck flows, vol. 1(1):69, 72

Arkansas
time-use behavior model, vol. 5(1):39
truck flows, vol. 1(1):69, 72

Australia
- crash statistics, Vol. 2(2):159–166
- freight travel time, Vol. 3(3):83–89
- modeling transportation in urban areas, Vol. 3(1):31–52
- travel demand, Vol. 3(3):1–31

Austria
- crash statistics, Vol. 2(2):159–166

Automatic vehicle identification, Vol. 7(2/3):53–70

Aviation. See Air transportation

B
- generalized cross validation, Vol. 7(2/3):56–70
- natural cubic splines, Vol. 7(2/3):54–70
- network model, Vol. 7(2/3):13–26
- smoothing splines, Vol. 7(2/3):53–70

Bayesian Information Criterion (BIC), Vol. 7(1):3
Belgium
- crash statistics, Vol. 2(2):159–166
- travel demand, Vol. 3(3):7
BIC. See Bayesian Information Criterion

Border crossings economics, Vol. 7(1):7–21
- forecast accuracy, Vol. 7(1):7–21
- international freight gateways, Vol. 7(2/3):93–97

Bootstrap methods
- validation of motor vehicle emissions, Vol. 3(2) 29–36

Box-Jenkins ARIMA time series, Vol. 4(1):13–15

Bridge improvements, Vol. 1(3):65–78
Bridges
- traffic counting, Vol. 6(1):61
- international crossings, Vol. 7(1):7–21

Buses, Vol. 1(2):4, 7, 11; Vol. 4(2/3):79–90. See also Public transportation
- noise pollution, Vol. 1(3):10–11

C
California
- commodity inflows, Vol. 7(1):36
- highway crashes and older drivers, Vol. 6(2/3):51–65
- Port of Los Angeles, international freight, Vol. 7(2/3): 93–97
- San Diego, increased roadway capacity, Vol. 5(1):27
- San Francisco, increased roadway capacity, Vol. 5(1):27
- San Francisco Bay Area Rapid Transit customer satisfaction among riders, Vol. 4(2/3):71
- unregistration rates of on-road vehicles, Vol. 7(2/3):1–12

Canada
- crash statistics, Vol. 2(2):159–166

Capital investment in highways
- environmental regulation and, Vol. 2(1):45–60

Carbon dioxide
- air transportation, Vol. 2(1):80

Carbon monoxide

Cargo
- containerized, Vol. 6(1):71–86
- international, U.S./Mexico, Vol. 7(1):7–21
- train waybill data models and statistics, Vol. 4(1):75–79

Cars. See Motor vehicles, Passenger cars
CFS. See Commodity Flow Survey
Chase car data
- measuring vehicle emissions, Vol. 3(2):15–28
- potential inaccuracy, Vol. 3(2):17–18

China, containerized cargo, Vol. 6(1):71-86
Clean Air Act emissions standards, Vol. 3(2):2–3, 5
Climate change
- air transportation, Vol. 2(1):79–80
- motor vehicle emissions, Vol. 3(2):v

Cluster analysis, land-use and transportation sketch planning, Vol. 4(1):39–49

Colorado
time-use behavior model, Vol. 5(1):39
- truck flows, Vol. 1(1):69, 72

Commodities
- transportation as, Vol. 3(1):15–29

demographics of, Vol. 2(1):93–107
transit strikes, Vol. 1(3):43–51
travel time, costs of freeway incidents, Vol. 2(2):123–130

Commuting
time spent, Vol. 5(1):25–45

Congestion. See Traffic congestion
Connecticut
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72
Containerized cargo, Vol. 6(1):71-86
Content analysis, Vol. 1(2):65–73
Contextual stated preference methods, freight travel time and reliability, Vol. 3(3):83–89

Correlation
multiple serial correlation, transit investment, Vol. 2(2):113–121

Costs/cost-benefit analyses
accidents, Vol. 4(1):87–90
air transport statistics, Vol. 2(1):77–78, 83–84
disabled persons, rural vouchers, Vol. 2(1):68
environmental costs
air pollution, Vol. 4(1):91–92
impact on road construction, Vol. 2(1):45–60
freeway incidents, travel time, Vol. 2(2):123–131
freight travel time, Vol. 3(3):83–89
highway construction, Vol. 2(1):45–60
highway transportation in New Jersey, Vol. 4(1):81-103
motor vehicle license fees, Vol. 2(2):133–147
Northridge earthquake, Vol. 1(2):15–18, 19, 21, 37, 40, 44–46
parking pricing, Vol. 2(1):100–106
public transit, Vol. 2(2):113–121
social costs of motor vehicle use, Vol. 1(1):15–42
transit, multiple serial correlation, Vol. 2(2):113–121
vehicle operating costs, 86–87

Covariance matrix, and travel time budgets, Vol. 5(1):35
Crashes, Vol. 2(1):19–43. See also Accidents, Safety
annual mileage as determinant of truck accidents, Vol. 3(1):69, 71, 74
and demographics, Vol. 7(2/3):13–26
fatalities, Vol. 2(2):159–166; Vol. 7(2/3):13–26
effect of alcohol, Vol. 6(2/3):51–65
international statistics, Vol. 2(2):159–166
at intersections, Vol. 7(2/3):27–39
older drivers, Vol. 6(2/3):51–65
road characteristics in, Vol. 7(2/3):13–26
and speed, Vol. 7(2/3):13–26

CTPP. See Census Transportation Planning Package
Cuidad Juárez, Mexico, border economics, Vol. 7(1):7–21

D
Dallas-Fort Worth, TX, Vol. 6(1):17–32
Delaware, truck flows, Vol. 1(1):69, 71, 72
Demand
derived, Vol. 5(1):26

Demographic factors. See also Age
causes, Vol. 7(2/3):13–26
determinants of trucking safety, Vol. 3(1):69–79
disabled persons, rural vouchers, Vol. 2(1):61–70
equity in motor vehicle license fees, Vol. 2(2):133–147
motor vehicle ownership, Vol. 2(1):6–16
race as determinant of truck crashes, Vol. 3(1):69, 71–72
Denmark, crash statistics, Vol. 2(2):159–166
DIRECTIONS Travel Intelligence System, Vol. 5(2/3):85, 89
Disabled persons
vouchers for transit use, Vol. 2(1):61–69

Disaggregation. See Aggregation/disaggregation
Disasters
planning by trucking companies, Vol. 1(2):37–48
District of Columbia. See Washington, DC
Driver behavior and traffic flow, Vol. 5(1):3, 23
Driver experience as determinant of truck accidents, Vol. 3(1):69, 71, 73–74

E
Econometric analyses, Vol. 3(1):1–14
airline networks, Vol. 7(1):87–101
forecasting, Vol. 7(1):7–21, 87–101
highway safety and older drivers, Vol. 6(2/3):51–65
modeling impacts of bypasses on communities, Vol. 5(1):59
regional, Vol. 7(1):7–21
Economic factors. See also Capital investment in highways, Costs/cost-benefit analysis, Demand, Employment, Gross Domestic Product
costs of traffic congestion, Vol. 2(2):123–130
efficiency of European railways, Vol. 3(3):61–67
equity of vehicle license fees by household location, Vol. 2(2):140–143
equity of vehicle license fees by income, Vol. 2(2):135–140
impacts of bypasses on communities, Vol. 5(1):57–69
induced travel demand, Vol. 3(1):1–14
macroeconomic analysis of transportation investments, Vol. 1(3):43–51
motor vehicles
license fees, Vol. 2(2):133–147
social costs of owning, Vol. 1(1):15–42
price elasticities, Vol. 7(1):40
transportation in the Canadian economy, Vol. 6(2/3):29–49
Transportation Output Index, Vol. 6(2/3):1–27
Transportation Satellite Accounts, Vol. 5(2/3):1–18
urban transportation, Vol. 3(1):31–52
value of travel time, Vol. 2(2):123–130
Efficiency measures, European railways, Vol. 3(3):61–68
Elasticity
demand on tolled motorways, Vol. 6(2/3):91–108
parking prices, Vol. 2(1):1–3
price
airline, Vol. 7(1):96
public transportation in Spain, Vol. 7(1):40
El Paso, Texas, border economics, Vol. 7(1):7–21
EMFAC (Emission FACtor) model, Vol. 7(2/3):2–4
Emissions control. See Air pollution, Environment
Employment
and accessibility improvements, Vol. 4(2/3):49–66
and parking, Vol. 2(1):93–106
Northridge earthquake, Vol. 1(2):21, 23–33
Environment. See also Air pollution
air transportation, Vol. 2(1):79–80, 85–86
highway construction costs and regulation, Vol. 2(1):45–60
impact of environmental protection measures on road construction costs, Vol. 2(1):45–60
policy and regulations, Vol. 2(1):45–59
Europe
air transportation statistics, Vol. 2(1):71–92
international crash statistics, Vol. 2(2):159–166
railways, efficiency/output, Vol. 3(3):61–68
trade demand, Vol. 3(3):1–31
European Community, crash statistics, Vol. 2(2):159–166
European Road Safety Charter, Vol. 7(1):62
Exports, transportation of, Vol. 7(2/3):93–97
Extreme values, Vol. 7(2/3):41–52

F
FARS. See Fatality Analysis Reporting System
Fatalities
hazardous material shipments, Vol. 3(1):83–85
international accident statistics, Vol. 2(2):159–166
rail, Vol. 3(1):85–86
trucking, Vol. 3(1):70, 83–85, 87–89
Fatality Analysis Reporting System (FARS), Vol. 4(1):3
Federal-aid highways, impact of environmental protection statutes on costs, Vol. 2(1):45–60
Federal Test Procedure (emissions testing), Vol. 3(2):2, 16–17, 39–47, 57–58
Finland
crash statistics, Vol. 2(2):159–166
elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)
Florida
highway speeds, Vol. 7(2/3):71–86
measuring vehicle travel by visitors, Vol. 5(2/3):83–90
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72
Forecasting
accuracy, Vol. 7(1):51–57
air transportation supply and demand, Vol. 2(1):76–77, 82–83
Akaike’s Information Criterion (AIC), Vol. 7(1):3
Bayesian Information Criterion (BIC), Vol. 7(1):3
borderplex econometric forecasting, Vol. 7(1):7–21
construction of highway links, Vol. 6(2/3):81–89
definitions
accuracy, Vol. 7(1):3
calendar effects, Vol. 7(1):2
ex-ante forecasts, Vol. 7(1):3
ex-post forecasts, Vol. 7(1):3
fit, Vol. 7(1):3
hold-out samples, Vol. 7(1):2
information criteria, Vol. 7(1):3
Theil’s U, Vol. 7(1):3
econometric, Vol. 7(1):7–21
freight weight and value flows, Vol. 6(2/3):67–80
highway, Vol. 7(1):61–68
mobile source emissions, Vol. 6(1):17–32
road safety forecasting, Vol. 7(1):61–68
urban demand, Vol. 1(3):26–28, 37
Foreign countries. See specific country
France
freight demand and mode choice, Vol. 2(2):149–158
transit strikes, Vol. 1(3):43–51
travel demand, Vol. 3(3):1–31
Freeways.
See also Highways
Freight. See also Commodity Flow Survey, Trucks
comparison of long-haul and metropolitan trucking, Vol. 3(3):83–89
crossing borders, Vol. 7(2/3):93–97
econometric forecasting, Vol. 7(1):7–21
estimating weight and value flows, Vol. 6(2/3):67–80
flows, Vol. 7(1):23–37
planning, Vol. 7(1):23–37
rail, Vol. 4(1):75–79
shipper surveys, Vol. 3(3):83–89
Transportation Output Index, Vol. 6(2/3):1–27

G
Gasoline
emissions reductions, Vol. 3(2):7, 29–30
reformulated gasoline (RFG), Vol. 3(2):57–58
Geographic information systems (GIS), Vol. 6(1):59–69
used for evaluating neighborhood accessibility, Vol. 4(2/3):17, 29, 37, 38, 75–77
Georgia
Atlanta, parking, Vol. 2(1):93–107
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Ghana, travel demand, Vol. 3(3):1–31
Gibbs sampler, Vol. 7(2/3):59–70
GIS. See Geographic information systems
Great Britain
Planning Policy Guidance, Vol. 4(2/3):76
road safety forecasting, Vol. 7(1):61–68
travel demand, Vol. 3(3):1–31
Greece, crash statistics, Vol. 2(1):159–166
Government revenues, vehicle license fees, Vol. 2(2):133–147
Greenhouse gases. See Climate change

Great Domestic Product
transportation driven, Vol. 3(1):25–28
transportation related, Vol. 3(1):21–24
H
Handicapped persons. See Disabled persons
Hazardous materials, rail and truck shipment, Vol. 3(1):81–92
High-speed rail, value of time, Vol. 5(2/3):57–72
Highway Performance Monitoring System (HPMS), Vol. 6(1):60, 68
Highways
capacity, Vol. 5(1):25–45
congestion and delays, Vol. 2(2):123–130
construction of new links, Vol. 6(2/3):81–89
detours due to earthquake damage, Vol. 1(2):1–20
environmental regulation and costs, Vol. 2(1):45–60
impacts of bypasses on communities, Vol. 5(1):57–69
improvements, Vol. 1(3):65–79
induced travel demand, Vol. 3(1):1–14
inventory, Vol. 3(3):33–45
road construction and environmental statutes, Vol. 2(1):45–60
rural interstates, Vol. 7(2/3):71–86
speed limits, effect on number of fatal accidents, Vol. 4(1):1–26
trips, relationship to value of time data, Vol. 5(2/3):58–72
transportation costs, Vol. 4(1):81–103
HPMS. See Highway Performance Monitoring System

I
Idaho, truck flows, Vol. 1(1):69, 72
Illinois
commodity inflows, Vol. 7(1):35
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Imports, transportation of, Vol. 7(2/3):93–97
Income, and equity of vehicle license fees, Vol. 2(2):133–147
Indexes
Air Travel Price Index, Vol. 7(2/3):41–52
extreme values, Vol. 7(2/3):41–52
Fisher index, Vol. 7(2/3):41–52
Laspeyres index, Vol. 7(2/3):43–52
Paasche index, Vol. 7(2/3):43–52
Taylor series, Vol. 7(2/3):41–52
Törnqvist index, Vol. 7(2/3):41–52
India, travel demand, Vol. 3(3):1–31
Indiana
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Infrastructure
highway, Vol. 4(1):90–91, 100
funding improvements, Vol. 5(2):83
improvements and safety, Vol. 3(1):81, 83, 90–91
port, Vol. 6(1):71–86
predicting construction of highway links, Vol. 6(2/3): 81–89
use of air transport statistics, Vol. 2(1):78–79, 84–85
Injuries
hazardous materials, Vol. 3(1):85–86
international accident statistics, Vol. 2(2):159–166
input-output coefficient, Vol. 3(1):53–66
5(2/3):37-40, 43, 50; Vol. 7(2/3):53–70
Intermodal transportation, mode choice, Vol. 2(2):149–158
International perspectives, See also Europe, specific countries
crash statistics, Vol. 2(2):159–166
motor vehicle noise, Vol. 1(3):9
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):67, 69, 72
Ireland, crash statistics, Vol. 2(2):159–166
Italy, crash statistics, Vol. 2(2):159–166
ITS. See Intelligent transportation systems

J
Japan

K
Kansas
impacts of bypasses on communities, Vol. 5(1):59
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):67, 69, 72
Kentucky
Medicaid transit service, Vol. 5(2/3):73–81
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):69, 72
Korea, trip time in the NW-SE corridor, Vol. 5(2/3):57–72

L
Labor markets and accessibility modeling, Vol. 4(2/3):54, 57, 63–64
Land-use planning
creating land-use scenarios, Vol. 4(1):39–49
policy creation, Vol. 6(1):1–16
Least squares estimation
demand elasticity on tolled motorways, Vol. 6(2/3):99–102
effects of alcohol and speed on older drivers, Vol. 6(2/3): 51–65
motor vehicle crash analysis, Vol. 6(1):40–55
time travel budgets, Vol. 5(1):35
Lebanon, urban congestion, air pollution, Vol. 3(2):85–102
Legislation, federal
Clean Air Act, Vol. 3(2):2–3, 5
Department of Transportation Act, Vol. 2(1):47–48
Highway Safety Act, Vol. 3(3):71
Intermodal Surface Transportation Efficiency Act, Vol.
3(3):71
Motor Carrier Acts, Vol. 3(1):71–72, 84
various, Vol. 2(1):48
Licenses and licensing
vehicle license fees, Vol. 2(2):133–147
Light trucks. See also Trucks/trucking
accidents risks, Vol. 2(1):27, 36–43
emissions, Vol. 3(2):49–63
ownership and use, Vol. 3(3):47–60
Linear captivity models, to determine demand elasticities,
Vol. 5(1):27
Logit models, to determine demand elasticities, Vol.
5(1):27
Logit models
freight travel time and reliability, Vol. 3(3):83-89
parking and travel behavior, Vol. 2(1):95
vehicle type by driver, Vol. 3(3):56–58
Loglinear models, Vol. 4(1):75–79
Long-term memory model, forecasting traffic flows, Vol.
5(1):51
Louisiana
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Luxembourg, crash statistics, Vol. 2(2):159–166

M
Macroeconomic analysis of transportation investments,
Vol. 1(3):43–51
Malaysia, motorcycle crashes, Vol. 7(2/3):27–39
Maintenance and repair, pollutant emissions, Vol. 3(2):6, 16, 92
Markov Chain Monte Carlo, Vol. 7(2/3):59–70
Maryland
induced travel demand, Vol. 3(1):1–14
study of road capacity and VMT, Vol. 5(1):28
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Mass transit. See Transit
Massachusetts
commodity inflows, Vol. 7(1):31
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
MEASURE (Mobile Emissions Assessment System for Urban and Regional Evaluation), Vol. 3(2):49–63
Meta-analyses
railway efficiency/output, Europe, Vol. 3(3):61–68
travel demand, country comparisons, Vol. 3(3):1–31
Mexico
border economics, Vol. 7(1):7–21
Michigan
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):39
Mileage. See also Vehicle-miles of travel as a determinant of truck accidents, Vol. 3(1):69, 71, 74
Minivans. See Light trucks
Minneapolis-St. Paul, MN
compensation of highway links, Vol. 6(2/3):81–89
Minnesota
impacts of bypasses on communities, Vol. 5(1):558
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72
Mississippi
time-use behavior model, Vol. 5(1):39
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Missouri
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Mobile mapping system, Vol. 3(3):33–46
MOBILE (Mobile Source Emission Factor Model), Vol. 7(2/3):2
MOBILE6 (Mobile Source Emission Factor Model) vehicle emissions model, Vol. 3(2):39–47
Mobility
induced travel demand, Vol. 3(1):1–14
international travel demand, Vol. 3(3):1–31
during transit strikes, Vol. 1(3):43–51
models, Vol. 3(3):55–57
travel budgets, Vol. 3(3):1–31
Models
accessibility, Vol. 1(3):71–72;
analysis of covariance vehicle emissions (ANCOVA), Vol. 3(2):49–63
Bayesian network model for crashes, Vol. 7(2/3):13–26
binomial logit, Vol. 6(2/3):87–88
binomial regression, person-trips, Vol. 3(3):51–53
borderplex, Vol. 7(1):7–21
forecasting traffic flows, Vol. 5(1):52, 54, 55
 crashes, Vol. 6(1):33–57
disaggregated choice, Vol. 1(1):1
dynamic congestion, Vol. 4(2/3):6–8
Dynamic Harmonic Regression, Vol. 7(1):43, 49–59
Dynamic Transfer Function Causal Model, Vol. 7(1):43–49
econometric, Vol. 7(1):87–101
impacts of bypasses on communities, Vol. 5(1):561
emissions, Vol. 3(2):65–84
emissions control deterioration, Vol. 3(2):39–47
fixed-effect
induced travel demand, Vol. 3(1):6–9, 11
general noise cost, motor vehicle use, Vol. 1(3):1–24
generalized linear model, Vol. 7(2/3):27–39
gravity, Vol. 7(1):24
input-output, Vol. 7(1):23–37
freight, Vol. 3(1):53–66
origin-destination matrices, Vol. 5(2/3):47
linear captivity, to determine demand elasticities, Vol. 5(1):27
linear logit, to determine demand elasticities, Vol. 5(1):27
linear regression, speed limits and fatal highway crashes, Vol. 4(1):2
linear trend, speed limits and fatal highway crashes, Vol. 4(1):3
logit, parking and travel behavior, Vol. 2(1):95
long-term memory, forecasting traffic flows, Vol. 5(1):51
MOBILE (Mobile Source Emission Factor Model), Vol. 6(1):17–32
MOBILE6 (Mobile Source Emissions Factor Model) vehicle emissions, Vol. 3(2):39–47; Vol. 6(1):17–32
modal emissions, Vol. 3(2):31
mode choice, Vol. 3(3):53–54
motor vehicle ownership, Vol. 3(3):53–54
multinomial logit, Vol. 2(2):152–153
containerized cargo shippers’ behavior, Vol. 6(1):74–80
freight travel time and reliability, Vol. 3(3):83–89
mode choice, Vol. 3(3):55–57
MVEI7G vehicle emissions, Vol. 3(2):85–101
naive, forecasting traffic flows, Vol. 5(1):51–52
network assignment model, Vol. 5(2/3):57–72
nonlinear cost model, Vol. 6(2/3):81–89
nonlinear, for neural networks, Vol. 5(1):52
path-based accessibility, Vol. 4(2/3):79–90
prediction, Vol. 7(2/3):27–39
probit
ordered, to study demand elasticity, Vol. 6(2/3):102–103
ordered, to study vehicle occupancy, Vol. 3(3):53–55
random-effects
highway construction costs, Vol. 2(1):50–57
regression
trucking safety, Vol. 3(1):75
seemingly unrelated regression estimation (SURE)
time series, Vol. 7(2/3):13–26
space-time, Vol. 6(1):33–57
statistical modeling of arrival and departure times, Vol. 5(1):71–82
structural, Vol. 7(1):8–21
traffic crashes, Vol. 7(2/3):13–26
traffic simulation, Vol. 5(1):1, 16
transformation in urban areas, Vol. 3(1):31–52
trips per vehicle, Vol. 3(3):51–52
use of light-duty and passenger cars, Vol. 33:47–60
validation of, Vol. 5(1):1–2
vehicle emissions, Vol. 3(2):29–38
vehicle emissions with MEASURE (Mobile Emissions Assessment System for Urban and Regional Evaluation), Vol. 3(2):49–63
vehicle-miles of travel, Vol. 3(3):50–51
vehicle occupancy, Vol. 3(3):51–52
vehicle ownership, Vol. 3(3):57–59
weighted least squares model of vehicle-miles of travel, Vol. 3(3):50
Montana, truck flows, Vol. 1(1):69, 72
Monte Carlo simulation
model of commuters’ activities, Vol. 5(2/3):19, 31, 33
roadway traffic crashes, Vol. 6(1):39–57
Motorcycles
license fees, California, Vol. 2(2):133–147
noise pollution, Vol. 1(3):10–11
Motor vehicles. See also Passenger cars, Trucks/trucking
automatic vehicle identification, Vol. 7(2/3):53–70
Vol. 7(2/3):13–26
cost models, Vol. 3(3):53–54
coverage, and occupancy models, Vol. 3(3):53–54
occupancy models, Vol. 3(3):53–54
operating costs, Vol. 4(1):86–87
Nationwide Personal Transportation Survey, Vol.
1(1):1–17
operating costs, Vol. 4(1):86–87
nationwide personal transportation survey, Vol.
2(1):1–17
nationwide personal transportation survey (NPTS), Vol.
1(3):43–51
nationwide personal transportation survey (NPTS), United States, Vol.
2(1):1–17; Vol. 2(2):134–146,
noise pollution, Vol. 1(3):10–11
Nevada
hazardous materials shipments, Vol. 3(1):82
truck flows, Vol. 1(1):68, 69, 72
Nebraska
hazardous materials shipments, Vol. 3(1):82
truck flows, Vol. 1(1):68, 69, 72
Netherlands
- crash statistics, Vol. 2(2):159–166
- elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)
- travel demand, Vol. 3(3):1–31
- travel surveys of arrival and departure times, Vol. 5(1):71–82

New Jersey
- truck flows, Vol. 1(1):69, 72

New Mexico, truck flows, Vol. 1(1):68, 69, 72

New York
- commodity inflows, Vol. 7(1):32
- JFK International Airport, air cargo, Vol. 7(2/3):93–97
- South Bronx, accessibility to jobs, Vol. 4(2/3):49–66
- truck flows, Vol. 1(1):69, 71, 72

New Zealand, crash statistics, Vol. 2(2):159–166

Noise costs
- air transportation, Vol. 2(1):79, 85

- direction of change, Vol. 5(1):53
- rank correlation, Vol. 5(1), 53
- signs test, Vol. 5(1):52
- Wilcoxon test on location, Vol. 5(1):52–53, 54
- Wilcoxon test on variance, Vol. 5(1):53

North American Free Trade Agreement (NAFTA), Vol. 7(1):9, 18

North Carolina
- induced travel demand, Vol. 3(1):1–14
- study of road capacity and VMT, Vol. 5(1):28
- truck flows, Vol. 1(1):69, 72

- buses, Vol. 1(2):4, 7, 11
- businesses

- detours due to damage by the earthquake, Vol. 1(2):1–20
- goods movement after the earthquake, Vol. 1(2):37–48

- reconstruction after the earthquake, Vol. 1(2):1–20

- impact on urban areas, Vol. 1(2), 1–73
- media coverage, Vol. 1(2):63–73
- trucks and trucking, Vol. 1(2):37–48, 57, 58

Norway
- travel demand, Vol. 3(3):1–31
- elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)

NPTS. See Nationwide Personal Transportation Survey

Ohio
- commodity inflows, Vol. 7(1):34
- truck flows, Vol. 1(1):69, 72

Oklahoma
- truck flows, Vol. 1(1):69, 72

On-time performance of long-haul and metropolitan freight, Vol. 3(3):83–89

Opportunities approach (accessibility modeling), Vol. 4(2/3):33–34

Oregon
- truck flows, Vol. 1(1):69, 72

estimating freight weight and value flows, Vol. 6(2/3):67–80

Ozone layer and air transportation, Vol. 2(1):79–80

Passenger cars. See also Motor vehicles
- ownership and use, Vol. 3(3):47–60

P

- Atlanta, parking management, Vol. 2(1):93–107
- generation, Vol. 6(1):1–16
- light trucks and passenger cars, Vol. 3(3):57
- Northridge earthquake, Vol. 1(2):19
- subsidies, Vol. 2(1):103–104

Passenger cars. See also Motor vehicles
Path-based accessibility (accessibility modeling), Vol. 4(2/3): 79–91
Pennsylvania
 commodity inflows, Vol. 7(1):33
 time-use behavior model, Vol. 5(1):39
 truck flows, Vol. 1(1):69, 72
Physically handicapped persons. See disabled persons
Pickup trucks. See Light trucks
PIERS Database. See Port Import Export Reporting Service
Planning and policy
 creating land-use scenarios, Vol. 4(1):39–49
Police accident reports
Policy
 environmental policy, Vol. 2(1):45–59
 use of surveys and models in policy formation, Vol. 3(1):31–52
Pollution. See Air pollution
Port Import Export Reporting Service (PIERS), Vol. 6(2/3): 73–79
Portland, Oregon, sidewalk inventory, Vol. 4(2/3):74–75
Ports (air, land, and water), Vol. 7(2/3):93–97
Portugal, crash statistics, Vol. 2(2):159–166
Probit estimation, determinants of safety in trucking industry, Vol. 3(1):69–79
Probit models
 motor vehicle trip occupancy, Vol. 3(3):54–55
Productivity analysis
 transportation projects, Vol. 1(3):65–78
 use of air transport statistics, Vol. 2(1):77–78, 83–84
 commuting during transit strikes, France, Vol. 1(3):43–51
 costs, Vol. 2(2):113–121
 fares, Vol. 7(1):40
 forecasts, Vol. 7(1):39–59
 services to Medicaid recipients, Vol. 5(2/3):73–81
 strikes, Vol. 1(3):43–51
 timetables, Vol. 5(1):79
 travel demand, country comparisons, Vol. 3(3):1–31
 urban transportation, Australia, Vol. 3(1):31–52
 voucher programs for physically handicapped persons in rural areas, Vol. 2(1):61–69
Regression models
 binomial
 person-trips, Vol. 3(3):51–53
 of person-trips per vehicle, Vol. 3(3):51–53
Remote sensing (emissions testing), Vol. 3(2):3–4
RFG. See Reformulated gasoline
Rhode Island, truck flows, Vol. 1(1):69, 72
Road construction
 affects of additional capacity on travel demand, Vol. 5(1):25–45
 impact of environmental protection statutes, Vol. 2(1):45–60
Rough set analysis
Rural areas
 transit services to Medicaid recipients, Vol. 5(2/3):73–81
 transit vouchers for persons with disabilities, Vol. 2(1):61–69
Safety. See also Accidents, Crashes
 aviation, Vol. 2(1):79, 85
 determinants of truck crashes, Vol. 3(1):69–79
 forecasting
 highway, Vol. 7(1):61–68
 road, Vol. 7(1):61–68
 hazardous materials, rail and truck shipments, Vol. 3(1):81–92
 highway safety and older drivers, Vol. 6(2/3):51–65
 modeling traffic crashes, Vol. 7(2/3):13–26
 motorcycle crashes in Malaysia, Vol. 7(2/3):27–39

R
Railways, Vol. 7(1):79–84
 Car Waybill Sample, Vol. 4(1):76, 79
 efficiency/output of European railways, Vol. 3(3):61–68

S
Safety. See also Accidents, Crashes
 aviation, Vol. 2(1):79, 85
rail, Vol. 3(1):81–92
traffic, Vol. 6(1):33–57
truck, Vol. 3(1):69–79, 81–92

Sampling
freight travel time and reliability, Vol. 3(3):86, 88
motor vehicle emissions, Vol. 3(2):1, 9–10, 28, 42, 55
random sampling for traffic counting, Vol. 6(1):59–69
travel demand, country comparisons, Vol. 3(3):6
unregistered vehicles, Vol. 7(2/3):3–6
San Diego, increased roadway capacity, Vol. 5(1):27
San Francisco
increased roadway capacity, Vol. 5(1):27
San Francisco Bay Area Rapid Transit
customer satisfaction among riders, Vol. 4(2/3):71
School bus ridership, Vol. 4(1):v
Seaports, international cargo, Vol. 7(2/3):93–97
Seemingly unrelated regression estimation (SURE) model,
Sensitivity analysis
air quality, Vol. 3(2):96
motor vehicle noise costs, Vol. 1(3):16–19
Serial correlation analysis, Vol. 2(2):113–121
Simultaneity bias, induced travel demand, Vol. 3(1):1–14
Singapore, travel demand, Vol. 3(3):1–31
Sleep as a determinant of truck accidents, Vol. 3(1):69, 71, 74
Slovenia, motor vehicle accidents, Vol. 7(2/3):13–26
Social cost analysis, motor vehicle use (U.S.), Vol. 1(1):15–42
Social factors
disabled persons, rural vouchers, Vol. 2(1):61–70
motor vehicle use costs, Vol. 1(1) 15–42; Vol. 1(3):1–24
Socioeconomic status. See also Educational attainment
disabled persons, rural vouchers, Vol. 2(1):61–70
induced travel demand, Mid-Atlantic, Vol. 3(3):7–13
light trucks and passenger cars, Vol. 3(3):47–60
motor vehicle emissions, Vol. 3(2):6
travel demand, country comparisons, Vol. 3(3):1–31
vehicle license fees, Vol. 2(2):135–137
South Carolina
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
South Dakota, truck flows, Vol. 1(1):67, 69, 72
Southwest Airlines effect, Vol. 7(1):87–101
Space-time prisms
accessibility within the transportation network, Vol. 4(2/3):1–14
Spain
crash statistics, Vol. 2(2):159–166
demand elasticity on tolled motorways, Vol. 6(2/3):91–108
Speed and speed limits. See also Traffic congestion and older drivers, Vol. 6(2/3):51–65
effect on motor vehicle crashes, Vol. 6(1):37–38, 51
hazardous materials shipments, Vol. 3(1):69, 78, 80, 88, 90
in relation to funding, Vol. 3(3):69, 70–71
minimum and maximum speeds, Vol. 7(2/3):71–86
monitoring in traffic management, Vol. 3(3):69–80
noise level and, Vol. 1(3):6, 10, 11, 19–20
personal transportation surveys, Vol. 1(3):58
on rural interstates, Vol. 7(2/3):71–86
travel demand management program, Vol. 3(3):69–81
travel demand, country comparisons, Vol. 3(3):8–9, 27
travel speed and time, Vol. 5(1):25, 33
truck drivers, Vol. 3(1):69, 78, 81, 88, 90
Sport utility vehicles. See Light trucks
Statistical significance, Vol. 6(1):1–16
Strikes
commuter impacts, Vol. 1(2):43–51
Supply and demand. See also Sampling
air transportation, Vol. 2(1):76–77, 82–83
final demand of transportation, Vol. 3(1):15, 19–21
freight demand and mode choice, Vol. 2(2):149–158
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14
investment, macroeconomic analyses, Vol. 1(3):72
railways, European, efficiency/output, Vol. 3(3):61–68
travel demand, country comparisons, Vol. 3(3):1–31
Vol. 3(1):53, 56–58
light trucks and passenger cars, Vol. 3(3):47–60
motor vehicle ownership and use, Vol. 2(1):1–17
urban transport, Australia, Vol. 3(1):31, 39, 42–51
SURE. See Seemingly unrelated regression estimation model
Surveys
in personal transportation surveys, Vol. 2(1):1–17
space-time accessibility, Vol. 4(2/3):1–14
tavel time budgets, Vol. 3(3):1–31
Travel demand
based on commuters' activities, Vol. 5(2/3):19–20, 34
country comparisons, Vol. 3(3):1–31
economic impact of transportation, Vol. 3(1):15–30
induced travel demand, Vol. 3(1):1–14
international perspective, Vol. 3(3):1–31
Trip
duration, Vol. 6(1):17–32
generation, Vol. 6(1):1–16
accident risk analyses, Vol. 1(1) 75–92; Vol. 2(1) 20, 26; Vol. 3(1):69–79, 36–43
determinants of accidents, Vol. 3(1):69–79
disaster planning, Vol. 1(2):37–48
estimating truck traffic, Vol. 3(1):53–66
freight demand and mode choice, Vol. 2(1):149–158
hazardous materials shipments, Vol. 3(1):81–92
light trucks
accidents, Vol. 2(1):27, 36–43
emissions, Vol. 3(2):49–63
ownership and use, Vol. 3(3):47–60
long-haul freight, Vol. 3(3):83–89
metropolitan freight, Vol. 3(3):83–89
safety, Vol. 3(1):69–79
surveys of Los Angeles area trucking companies, Vol. 1(2):37–48

U
Uniform Vehicle Code, Vol. 7(2/3):72
United Kingdom
crash statistics, Vol. 2(2):159–166
elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)
Urban areas
air pollution at intersections, Vol. 3(2):85–101
earthquakes, Vol. 1(2), 1–73
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14
speed monitoring, Vol. 3(3):72–81
transportation models, Vol. 3(1):31–52
Utah
land-use scenarios and transportation sketch planning, Wasatch Front, Vol 4(1):39–49
truck flows, Vol. 1(1):68, 69, 72
Utility-based surplus approach (accessibility modeling), Vol. 4(2/3):35

V
Vans. See Light trucks
Vehicle license fees. See Motor vehicles
Vehicle-miles of travel (VMT), Vol. 3(1):1–14
general, Vol. 3(1):74–75, 78
hazardous materials, Vol. 3(1):87
households and businesses, Vol. 5(2/3):1–18
Mid-Atlantic, Vol. 3(1):1–14
light trucks and passenger cars, Vol. 3(3):47–60
measuring vehicle travel by visitors, Vol. 5(2/3):83–90
models, Vol. 3(3):50–51
motor vehicle ownership and use, 11, 17, Vol. 2(1):3–7
noise, Vol. 1(3):5–6, 19
railways, European, efficiency/output, Vol. 3(3):61–68
social costs, Vol. 1(1):19, 27
speed and speed limits, Vol. 3(3):69–81
travel demand, Vol. 3(3):1–31 (passim)
truck accidents on freeway ramps, Vol. 1(1):76, 77, 80, 83, 84–88
truck traffic estimates, Vol. 1(3):90
Vehicle occupancy models, Vol. 3(3):53–54
Vehicle ownership
household, Vol. 2(1):1–17
equity of vehicle license fees by income, Vol. 2(2):135–140
equity of vehicle license fees by location, Vol. 2(2):140–143
light trucks and passenger cars, Vol. 3(3):47–60
models, Vol. 3(3):57–59
Virginia
study of road capacity and VMT, Vol. 5(1):28
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
VMT. See Vehicle-miles of travel

W
Washington (state)
commodity inflows, Vol. 7(1):37
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72
Washington, DC
study of road capacity and VMT, Vol. 5(1):28
truck accidents on freeway ramps, 75–92
truck flows, Vol. 1(1):64, 69, 72

Water pollution, motor vehicle use, Vol. 1(1):26, 30, 36, 37, 38

Water transportation
containerized cargo, Vol. 6(1):71–86
international freight, Vol. 7(2/3):93–97
vessel types, Vol. 7(2/3):97

West Germany, travel demand, Vol. 3(3):1–31

West Virginia, truck flows, Vol. 1(1):69, 72
Wetlands, transportation’s effects on, Vol. 2(1):48–50, 57
Wisconsin
impacts of bypasses on communities, Vol. 5(1):58
truck trips, Vol. 3(1):53–67
truck flows, Vol. 1(1):69, 72
Wyoming, truck flows, Vol. 1(1):68m 69, 72

Z
Zoning, parking management, Vol. 2(1):93–107
AUTHOR INDEX (Volumes 1–6)

A
Armoogum, Jimmy
personal transportation surveys, Vol. 1(3):53–64
Arnold, Eugene D. Jr.
parking and trip generation, discussion of article, Vol. 6(1):13–14
Aultman-Hall, Lisa
GIS-based random sampling for local road traffic counts, Vol. 6(1):59–69
Awad, Wael

B
Bachman, William
motor vehicle emissions, Vol. 3(2):65–84
Balkin, Sandy
Banks, David
introductory statement, Vol. 3(1):v–vi
Baradaran, Siamak
Barth, Matthew
motor vehicle emissions, Vol. 3(2):29–38
Barin, Bekir
Berechman, Joseph
Berglund, Svante
path-based accessibility, Vol. 4(2/3):79–91
Bernier, Brad
disabled persons, rural vouchers, Vol. 2(1):61–70
Bhat, Chandra R.
trip duration modeling for mobile source emissions forecasting, Vol. 6(1):17–32
Blincoe, Lawrence J.
motor vehicle crash risk, Vol. 2(1):19–43
Blum, Ulrich
Boarnet, Marlon G.
Bowling, Sarah T.
GIS-based random sampling for local road traffic counts, Vol. 6(1):59–69
Butts, Carl H.
parking and trip generation, discussion of article, Vol. 6(1):13–14
Button, Kenneth

C
Calzada, Christian
freight demand and mode choice, Vol. 2(2):149–158
Cantos, Pedro
railways, European, efficiency/output, Vol. 3(3):61–68
Chang, Gang-Len
intercity trip time using a network assignment model, Vol. 5(2/3):57–72
Chang, Iljoon
intercity trip time using a network assignment model, Vol. 5(2/3):57–72
Chen, Duanjie
household-provided transportation in the Transportation Satellite Accounts, Vol. 5(2/3):1–18
Chen, Haibo
Chin, Shih-Miao
Chu, Xuehao
measuring vehicle travel by visitors, Vol. 5(2/3):83–90
Clark, Stephen D.
Clifton, Kelly J.
Coiburn, Timothy
introductory statement, Vol. 3(2):v–ix
Cohen, Harry
freeway incidents, travel time, Vol. 2(2):123–131
Coindet, Jean-Paul
transportation strikes, Vol. 1(3):43–51

D
Davis, Bill
Davis, Gary
Deaton, Michael L.
vehicle emissions, ANCOVA analysis, Vol. 3(2):49–64
Delucchi, Mark A.
social costs of motor vehicle use, Vol. 1(1):15–42
Dill, Jennifer
vehicle license fees, Vol. 2(2):133–147
Dixon, Michael P.
Doi, Masayuki
containerized cargo shippers’ choices in China, Vol. 6(1):71–86

E
El-Fadel, Mustasem
urban congestion, air pollution, Vol. 3(2):85–102
Enns, Phil
light-duty truck emissions, Vol. 3(2):39–47

F
Fang, Bingsong
economic importance of transportation, Vol. 3(1):15–30
household-provided transportation in the Transportation Satellite Accounts, Vol. 5(2/3):1–18
Ferguson, Erik
Atlanta, parking management, Vol. 2(1):93–107
congestion, demand management, and mobility

Fomunung, Ignatius
motor vehicle emissions, Vol. 3(2):65–84

Fontaine, Michael D.
speed limit increases and fatal interstate crashes,
discussion of article, Vol. 4(1):16–21

Fulton, Lewis M.
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14

G
Gajewski, Byron J.
37–56

Gangrade, Sachin
modeling commuters’ activity schedules, Vol. 5(2/3):
19–36

Giuliano, Genevieve
Northridge earthquake, impacts on transit and highway

Goldman, Todd
vehicle license fees, Vol. 2(2):133–147

Golob, Jacqueline
Northridge earthquake, impacts on transit and highway

Gordon, Peter
Northridge earthquake, transport-related impacts,

Gould, Jane
Northridge earthquake, transportation and the media,
Vol. 1(2):65–73

Grant-Muller, Susan M.

Greene, David
letter from the Editor, Vol. 1(3):v
letter from the Editor, Vol. 2(1):v

Grossardt, Ted
Kentucky’s new Medicaid transit service, Vol. 5(2/3):
73–81

Guensler, Randall
motor vehicle emissions, Vol. 3(2):65–84

H
Han, Xiaoli
economic importance of transportation, Vol. 3(1):
15–30
household-provided transportation in the Transportation

Handy, Susan L.
evaluating neighborhood accessibility, Vol. 4(2/3):
67–78

Harris, Britton
accessibility concepts and applications, Vol. 4(2/3):
15–30

Harris, Jeff
transportation in the Canadian economy, Vol. 6(2/3):
29–49

Harvey, Andrew
speed limit increases and fatal interstate crashes,

Henderson, Dennis K.

Hensher, David A.
urban transport, data and modeling, Vol. 3(1):31–52

Hopson, Janet

Hsu, Shi-Ling

Hummer, Joseph E.
roadway inventory data acquisition, Vol. 3(3):33–46

Hwang, Ho-Ling

I
Itoh, Hidekazu
containerized cargo shippers’ choices in China,
Vol. 6(1):71–86

J
Janson, Bruce

Jiang, Fei
freight demand and mode choice, Vol. 2(2):149–158

Johnson, Paul
freight demand and mode choice, Vol. 2(2):149–158

Jorgenson, Darren L.
speed of vehicles in traffic management, Vol. 3(3):
69–81

K
Kanchi, Seshasai
road capacity and allocation of time, Vol. 5(1):25–45

Karamalaputi, Ramachandra
predicting construction of new highway links, Vol. 6
(2/3):81–89

Karimi, Hassan A.
roadway inventory data acquisition, Vol. 3(3):33–46

Karlaftis, Matthew G.
speed of vehicles in traffic management, Vol. 3(3):
69–81
transit costs, multiple serial correlation, Vol. 2(2):
113–121

Khattak, Aemal J.
roadway inventory data acquisition, Vol. 3(3):33–46

King, Jenny

Knipling, Ronald R.
motor vehicle crash risk, Vol. 2(1):19–43

Kockelman, Kara Maria
impacts of bypasses on small- and medium-sized com-
munities, Vol. 5(1):57–69
light-duty trucks and passenger car use, Vol. 3(3):47–60

Kononov, Jake

L
Lahiri, Kajal
monthly output index for the U.S. transportation sec-
tor, Vol. 6(2/3):1–27

Lakshmanan, T.R.

Ledolter, Johannes
speed limit increases and fatal interstate crashes,
discussion of article, Vol. 4(1):13–16
Lee, Herbert
train waybill data models and statistics, Vol. 4(1): 75–79

Levinson, David M.
predicting construction of new highway links,
Vol. 6(2/3):81–89
road capacity and allocation of time, Vol. 5(1):25–45

Limanond, Thirayoot
chase car data, vehicle emissions, Vol. 3(2):15–28

Liu, Guo Xin

M
Madre, Jean-Loup
personal transportation surveys, Vol. 1(3):53–64

Mallick, Bani K.
traffic crash mapping, Vol. 6(1):33–57

Marchand, Scott
Kentucky’s new Medicaid transit service, Vol. 5(2/3): 73–81

Matas, Anna
demand elasticity on tolled motorways, Vol. 6(2/3): 91–108

McCarthy, Patrick
transit costs, multiple serial correlation, Vol. 2(2): 113–121
effects of alcohol and highway speed policies on motor vehicle crashes, older drivers, Vol. 6(2/3):51–65

McCullough, Robert G.

McDorman, Maureen
Kentucky’s new Medicaid transit service, Vol. 5(2/3): 73–81

Meszler, Daniel J.
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14

Metaxatos, Paul
origin-destination highway freight weight and value flows, Vol. 6(2/3):67–80

Miaou, Shaw-Pin
traffic crash mapping, Vol. 6(1):33–57

Miller, Harvey J.
measuring space-time accessibility, Vol. 4(2/3):1–14

Mokhtarian, Patricia L.

Monaco, Kristen
trucking safety, Vol. 3(1):69–79

Morey, Jennifer E.
chase car data, vehicle emissions, Vol. 3(2):15–28

Morris, Max D.
traffic operations and management, computer simulation models, discussion of article, Vol. 5(1):18–22

Murphy, James
social costs of motor vehicle use, Vol. 1(1):15–42

N
Nair, Harikesh S.
trip duration modeling for mobile source emissions forecasting, Vol. 6(1):17–32

Najm, Majdi Abou
urban congestion, air pollution, Vol. 3(2):85–102

Niemier, Debbie A.
chase car data, vehicle emissions, Vol. 3(2):15–28

Nijkamp, Peter

Noland, Robert B.
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14

O
O’Connell, Lenahan
Kentucky’s new Medicaid transit service, Vol. 5(2/3): 73–81

Ord, J. Keith

Ozbay, Kaan

P
Paaswell, Robert

Park, Byungkyu (Brian)

Pastor, José-M.
railways, European, efficiency/output, Vol. 3(3):61–68

Pendyala, Ram M.

Pepping, Gerard

Pickrell, Don
motor vehicle ownership and use, Vol. 2(1):1–17

Pinkerton, Brian

Polzin, Steven E.
measuring vehicle travel by visitors, Vol. 5(2/3):83–90

Qu, Tongbin Teresa
speed limit increases and fatal interstate crashes, discussion of article, Vol. 4(1):16–21

R
Ramjerdi, Farideh

Raymond, José-Luis
demand elasticity on tolled motorways, Vol. 6(2/3): 91–108

Richardson, Harry W.

Rietveld, Piet
travel surveys, rounding of arrival and departure times, Vol. 5(1):71–82

Rilett, Laurence R.

traffic operations and management, computer simulation models, discussion of article, Vol. 5(1):16–17

Robles, Juan
Rockliffe, Nigel
freight travel time and reliability, Vol. 3(3):83–89

Rouphail, Nagui M.

S

Sacks, Jerome

Saito, Mitsuru
creating land-use scenarios, Vol. 4(1):39–49

Saricks, Christopher L.
hazardous shipments, highways and railroads, Vol. 3(1):81–92

Sbayti, Hayssam
urban congestion, air pollution, Vol. 3(2):85–102

Schmitz, Paul
motor vehicle ownership and use, Vol. 2(1):1–17

Schmitz, Rolf

Schulz, Daniel
motor vehicle emissions, Vol. 3(2):29–38

Seekins, Tom
disabled persons, rural vouchers, Vol. 2(1):61–70

Sen, Ashish
introduction to issue, Vol. 4(2/3):v

Serrano, Lorenzo
railways, European, efficiency/output, Vol. 3(3):61–68

Sharma, Satish C.

Shoup, Donald C.
parking and trip generation, Vol. 6(1):1–12, 15–16 (rejoinder)

Singer, Brett C.
vehicle emissions, analysis of, Vol. 3(2):1–14

Siria, Bruce
Kentucky’s new Medicaid transit service, Vol. 5(2/3):73–81

Sloboda, Brian W.
household-provided transportation in the Transportation Satellite Accounts, Vol. 5(2/3):1–18

Slott, Robert
vehicle emissions, analysis of, Vol. 3(2):1–14

Smith, Joshua
creating land-use scenarios, Vol. 4(1):39–49

Smith, V. Kerry
highway construction costs and environmental regulation, Vol. 2(1):45–60

Song, Joon Jin
traffic crash mapping, Vol. 6(1):33–57

Soromin, José A.
truck trips, commodity flows and input-output, Vol. 3(1):53–67

Southworth, Frank
freeway incidents, travel time, Vol. 2(2):123–131

Spiegelman, Clifford H.

speed limit increases and fatal interstate crashes, discussion of article, Vol. 4(1):16–21

traffic operations and management, computer simulation models, discussion of article, Vol. 5(1):16–17

Sriniivasan, Sivaramakrishnan

Stekler, Herman
monthly output index for the U.S. transportation sector, Vol. 6(2/3):1–27

Stokes, Charles J.
urban transit ridership, Letter to the Editor, Vol. 4(1):v

T

Tessmer, Joseph M.
international crash statistics, Vol. 2(2):159–166

Thakuriah, Piyushimita (Vonu)
introduction to issue, Vol. 4(2/3):v

Thomas, John V.
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14

Thomas, Scott

Thoresen, Thorolf
freight travel time and reliability, Vol. 3(3):83–89

Tiwari, Piyush
containerized cargo shippers’ choices in China, Vol. 6(1):71–86

Tompkins, Melanie M.
hazardous shipments, highways and railroads, Vol. 3(1):81–92

Trezz, Fredrick
investment, macroeconomic analyses, Vol. 1(3):65–79

Tsolkakis, Dimitris
freight travel time and reliability, Vol. 3(3):83–89

V

Viele, Kert
train waybill data models and statistics, Vol. 4(1):75–79

Von Haeften, Roger H.
highway construction costs and environmental regulation, Vol. 2(1):45–60

Wachs, Martin
vehicle license fees, Vol. 2(2):133–147

Wang, Jing-Shiarn
motor vehicle crash risk, Vol. 2(1):19–43

Washington, Simon
motor vehicle emissions, Vol. 3(2):65–84

Weisbrod, Glen
investment, macroeconomic analyses, Vol. 1(3):65–79

Wells, John V.
letter from the Editor-in-Chief, Vol. 5(2/3):v

Wenzel, Tom
vehicle emissions, analysis of, Vol. 3(2):1–14

Wigan, Marcus
freight travel time and reliability, Vol. 3(3):83–89

Williams, Emily
trucking safety, Vol. 3(1):69–79

Willson, Richard

Winebrake, James J.
vehicle emissions, ANCOVA analysis, Vol. 3(2):49–64
Wu, Yi-Hwa
measuring space-time accessibility, Vol. 4(2/3):1–14

Younglove, Theodore
motor vehicle emissions, Vol. 3(2):29–38

Y
Yang, Shimin
Yao, Wenxiong
monthly output index for the U.S. transportation sector, Vol. 6(2/3):1–27
Young, Peg
monthly output index for the U.S. transportation sector, Vol. 6(2/3):1–27

Z
Zhao, Yong
light truck and passenger car use, Vol. 3(3):47–60
Zhu, Wei
highway construction costs and environmental regulation, Vol. 2(1):45–60
Zimmerman, Karl
speed limit increases and fatal interstate crashes, discussion of article, Vol. 4(1):16–21