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EXECUTIVE SUMMARY 

The Federal Aviation Administration (FAA) instrumented four concrete slabs of a taxiway at the 
John F. Kennedy International Airport (JFK) to collect pavement responses under aircraft and 
environmental loadings. Two types of data were collected: (1) static data to study curling in slabs 
(wet-freeze climatic region) and (2) dynamic data to study load-induced strain in slabs under multi-
gear aircraft such as Airbus (A)380, Boeing-777, or Boeing-747.  
 
The collected data were provided to the research team in a file format that could be visualized and 
processed only by using HBM’s InField field performance and analysis software. The research 
team developed preprocessing scripts that could transform the data into two file formats: 
Microsoft® Excel® and SQLite. This transformation inherently structured the data, which became 
more intuitive for pavement researchers and engineers to use. Additionally, malfunctioned sensors 
were identified and data were cleaned by detecting and removing anomalies. Approximately 250 
aircraft images were analyzed to extract the type and model of aircraft that produced the sensor 
measurements. The preprocessing step also included the development of a signal-processing 
algorithm that processed and compressed the signals under aircraft loading and extracted the peak 
responses. 
 
The collected data were used to develop two prediction models. The first model employed a 
Bayesian calibration framework to estimate the unknown material properties of concrete pavement 
slabs. The enhanced integrated climatic model (EICM) was used to produce temperature profiles 
based on meteorological inputs such as air temperature and humidity. The calibration framework 
searched for the material parameters that matched EICM’s calculations with field-temperature 
measurements. In addition to finding calibrated values for the material properties, the Bayesian 
calibration also produced the posterior distribution for each of the parameters. These posterior 
distributions served as a sensitivity analysis by reporting the significance of each parameter for 
temperature distribution.  
 
In addition, a model was developed to estimate pavement responses using the low-cost 
computation machine-learning (ML) algorithms developed as a surrogate to the finite element 
mechanistic approach. Both static and dynamic responses were predicted based on climatic data 
using a support-vector machine, one of the most commonly used ML algorithms. Explanatory 
variable analysis for ML development demonstrated the capability of ML approaches to consider 
variables omitted by mechanistic approaches, while providing prediction with high accuracy and 
low computational cost.  
 
For similar projects in the future, the research team recommends utilizing a design of experiment 
(DOE) in the data collection process. The DOE would lead to more comprehensive data sets that 
can cover all important aircraft types and climatic conditions in a more balanced and systematic 
way. Such comprehensive and balanced data sets can improve the generalizability of pavement 
data analytics and the performance of prediction models. It is suggested to incorporate two more 
variables into the database: wander and speed. In particular, the lateral position of aircraft with 
respect to the location of sensors (i.e., wander) is expected to have a significant impact on the 
extraction of peak responses and the accuracy of prediction models. 
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1.  INTRODUCTION 

The Federal Aviation Administration (FAA) has been proactively involved in many projects to 
advance pavement design, analysis, and rehabilitation procedures. In one project, four concrete 
slabs of a taxiway at John F. Kennedy International Airport (JFK) were instrumented to collect the 
pavement response under aircraft and environmental loading. Two types of data were collected: 
static data (pavement response to environmental loading) and dynamic data (pavement response 
to dynamic loading). 
 
Each pavement slab of the taxiway has 20-in.-thick concrete supported by two base layers. The 
first base layer is a 4-in.-thick, asphalt concrete (AC)-modified base; the second base layer is a 
6-in.-thick, dense-graded granular base. The cross section of the instrumented taxiway is presented 
in figure 1.   
 

 
 

Figure 1. Cross Section of the Instrumented Taxiway (AC = Asphalt Concrete) 

In total, 40 strain gauges, 8 pressure cells, and 6 thermocouples were installed. The instrumentation 
layout is given in figure 2. While the strain gauges labeled A were instrumented at the mid-depth 
of the slab, strain gauges labeled B were instrumented at the bottom of the slab. Furthermore, the 
temperature gauges were placed at three different depths: 10, 16, and 19 in. Also, pressure cells 
were embedded at the interface between the concrete slab and the asphalt-modified base. 
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Figure 2. Instrumentation Layout 

2.  DATA PREPROCESSING 

The collected sensor data was provided in a format that could be visualized and processed only by 
using the software program HBM’s InField field performance and analysis software. However, 
this software is not designed for data analysis. The raw data needed to be extracted to transfer them 
to more versatile environments (e.g., Microsoft® Excel® or SQLite) and restructure them to make 
them intuitive for researchers and engineers to use.  
 
Data preprocessing was performed by developing two scripts. The first script was developed using 
AutoHotkey, an open-source scripting language for Microsoft® Windows®, which allowed 
automating mouse and keyboard inputs. The script was used to emulate the human behavior of 
opening the Infield software, uploading the sensor data, and copying and pasting it to Excel files, 
along with the metadata, which was important for extracting the date and time of data collection. 
Because InField was crashing with attempts to copy data greater than some certain limit, the data 
had to be extracted in smaller groups (i.e., Excel files). The second script, which was developed 
using MATLAB, was employed to go through these small Excel files and merge them into a single 
file. After the Excel files were generated, they were also transferred to SQLite databases. 
Sections 2.1 and 2.2 explain how the databases were organized in both Excel and SQLite formats. 
 
2.1  STATIC-DATA FILE ORGANIZATION 

Static data were collected hourly at the beginning of each hour for 5 seconds (s) at 5 Hz when the 
pavement was not loaded by aircraft. The FAA provided 70 data files, which were compatible with 
InField. These files were organized and regrouped into 10 Excel and SQLite files, depending on 
the month of the year when the data were collected (e.g., April 2011 or July 2012). Four sheets 
that store information about the data collection process were inserted into each of the 10 Excel (or 
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SQLite) files. These sheets are called meta-sheets, because they store metadata. Table 1 provides 
the names of these four meta-sheets, along with their descriptions. 
 

Table 1. Names of Meta-Sheets and Their Descriptions 

Meta-Sheet Name Description Illustrative Data 
Initial_Date_Time Initial date and time of data collection at their 

corresponding time zone 
2011_4_16_10_Eastern 
(yy_mm_dd_hh_Time_Zone) 

End_Date_Time End date and time of data collection at their 
corresponding time zone 

2011_4_16_10_Eastern 
(yy_mm_dd_hh_Time_Zone) 

Gaps_in_Data Starting and ending date and time of the gaps 
in data 

None 

Missing_Sensors Missing sensor names SG_1B, SG_2B 
 
In addition to the four meta-sheets, there are other pages that keep the sensors’ data. The naming 
convention of these pages is in the format YY_MM_DD_HH_Time Zone, so the names can be 
parsed to extract the date and time of the data collection, along with the time zone. 
 
2.2  DYNAMIC-DATA FILE ORGANIZATION 

Unlike the static data, dynamic data were not collected continuously. The dynamic data were 
collected only when a plane was passing the instrumented slabs. Photographs of planes were taken 
to extract the model and gear configuration of the plane applying the load. 
 
There were approximately 75 data files in “.sie” format, which can be processed only by using 
Infield. These files were transferred to Excel and SQLite files by using the similar scripts explained 
in section 2.1. Each file (SQLite or Excel) has the data from five to nine runs (i.e., airplanes). 
 
The name of each data file includes the day that the dynamic data were collected. Each data file 
has multiple sheets (i.e., runs) that store the data collected by sensors under an aircraft loading. 
The name of each sheet refers to the date and time of data collection 
(YY_MM_DD_HH_MM_Time Zone). Additionally, each file has a sheet titled 
“missing_sensors,” which lists the sensors not working on the day of data collection.  
 
3.  DATA EXPLORATION 

3.1  STATIC DATA 

As shown in table 1, each data file has its own initial and end day and time. However, data 
collection was interrupted between initial and end dates because of various technical issues, such 
as solar-energy interruption due to weather conditions. Table 2 summarizes the static data by 
reporting the number of data points, the number of missing hours, and initial and end dates for the 
data collection. 
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Table 2. Static Data Summary 

Initial Date 
Initial 
Time End Date 

End 
Time Missing Sensors 

Number of 
Data Points 

Number of 
Missing 
Hours 

15-Apr-11 16:00 25-Apr-11 12:00 None 256 5 
4-May-11 13:00 27-May-11 7:00 None 269 278 
3-Jan-12 13:00 1-Feb-12 18:00 9 strain gauges 542 160 
1-Feb-12 20:00 21-Feb-12 19:00 9 strain gauges and 6 

temperature sensors 
467 13 

6-Mar-12 12:00 25-Mar-12 9:00 9 strain gauges 282 172 
2-Apr-12 9:00 22-May-12 20:00 9 strain gauges 940 272 
13-Jul-12 8:00 31-Jul-12 8:00 9 strain gauges 375 57 
13-Aug-12 7:00 11-Sep-12 9:00 9 strain gauges 535 163 
5-Dec-12 14:00 2-Jan-13 12:00 9 strain gauges 666 5 
31-Jan-13 15:00 3-Feb-13 13:00 9 strain gauges 71 0 

 
As mentioned, static data were collected hourly at the beginning of each hour for 5 s at 5 Hz. In 
other words, approximately 25 data points were collected for each hour. These data points, as 
expected, showed very little variance within 5 s because there was no loading. Therefore, their 
mean was calculated and considered as the data point that corresponds to a particular hour, so that 
the variation of measurements with respect to time could be analyzed. Figure 3 shows an example 
of the data collected by a thermocouple near the bottom of a slab. 
 

 
 

Figure 3. Example of Temperature Data Near the Bottom of a Slab 

Although thermocouples managed to collect data throughout the analysis period, some anomalies 
were observed in strain-gauge measurements. Figure 4 (a and b) shows the strain measurements 
with respect to time for the gauges SG_6A and SG_15B, respectively. As shown, after January 
2012, the gauges started exhibiting anomalies. Similarly, other gauges showed the same behavior. 
The plots for all the sensors are given in appendix A. 
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(a) (b) 
 

Figure 4. Anomalies for Strain Gauges SG_6A (a) and SG_15B (b) 

Table 3 shows the month and year when sensors started exhibiting anomalies. In table 3, T.E. 
indicates a sensor that collected data with no anomalies from beginning to end; F.B. indicates a 
sensor that did not collect any data from the beginning. 
 

Table 3. Sensors and Their Failure Dates 

Sensor Name Failure Date 
SG_1B T.E. 
SG_2B T.E. 
SG_3B January 2012 
SG_4B July 2011 
SG_5B F.B. 
SG_6B T.E. 
SG_7B F.B. 
SG_8B January 2012 
SG_9B July 2011 
SG_10B June 2011 
SG_11B T.E. 
SG_12B June 2011 
SG_13B F.B. 
SG_14B F.B. 
SG_15B T.E. 
SG_16B January 2012 
SG_17B T.E. 
SG_18B August 2011 
SG_19B T.E. 
SG_20B F.B. 

 
3.2  DYNAMIC DATA 

The dynamic data were collected under various aircraft loadings. Aircraft identification was based 
on photographs captured by a camera mounted on the data-acquisition system (DAS) cabinet. For 
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some images, the frame did not capture entire body of aircrafts due to mistiming of the shot. Such 
images could not be used to identify the type of aircraft (figure 5). 
 

 
 

Figure 5. Example of an Image That Lacks Enough Information to Identify the Aircraft 

An algorithm that consists of a set of rules was developed to identify aircraft from captured images. 
Because the majority of aircraft is either Airbus or Boeing, details about identifying other aircraft, 
such as the McDonnell Douglas DC-10 (MD-10), are omitted herein. The steps of the framework 
are listed below: 
 
1. Check the position of the engine: 

a. If the engine is located by the fin (i.e., vertical stabilizer), it cannot be an Airbus or 
a Boeing. Please note that some models of Bombardier or McDonnell Douglas also 
do not have an engine by the fin. However, those aircraft can easily be differentiated 
from a Boeing 737 and Airbus A320 by their characteristic features, such as a very 
pointed nose or the rectangular rear ending. 

b. If the engine is not located by the fin, go the Step 2. 
 

2. Check the type and number of gears: 
 

a. If an aircraft has two single gears, it is either a Boeing 737 or an Airbus A320. For 
further classification, go to step 4. 

b. If an aircraft has two tandem gears, it is either a Boeing 757, a Boeing 767, Boeing 
787, Airbus A350 or an Airbus A330. For further classification, go to step 5. 

c. If an aircraft has two tridem gears, it is a Boeing 777. 

d. If an aircraft has two tandem gears and a single gear, it is an Airbus A340. 

e. If an aircraft has two tandem gears and two tridem gears, it is an Airbus A380. 

f. If an aircraft has four tandem gears, it is a Boeing 747. 
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3. If the type of aircraft could not be identified in Step 2, proceed to step 4. 
  

4. If the candidate aircraft is determined to be a Boeing 737 or an Airbus A320 (Step 2a): 

a. If the aircraft has a dorsal fin, it is a Boeing 737. 

b. If the aircraft does not have a dorsal fin and has four doors in total (and two of these 
doors in the middle are next to each other), it is an Airbus A320. 

c. If the aircraft does not have a dorsal fin, has four doors in total, and none of the 
doors are adjacent to another, it is an Airbus A321. 

d. If the aircraft does not have a dorsal fin and has three doors, it is an Airbus A319. 
 

5. If the aircraft is determined to be a Boeing 757, a Boeing 767, Boeing 787, Airbus A350, 
or an Airbus A330 (Step 2b): 

a. If the bottom of the cockpit windows is not V-shaped, it is an Airbus A330. This is 
the main visual difference between Airbus and Boeing intermediate- and small-
sized aircraft. Please note that there was no picture for Airbus A350, therefore we 
could not develop any rule for this model. 

b. If the corner cockpit window has five edges, it is Boeing 787. 

c. The diameter of the body of Boeing 767 is much larger than that of a Boeing 757. 
Also, door and passenger configurations are different between these two aircraft 
models.  
 

6. At this stage, the aircraft model is either identified, or the candidate aircraft-type 
identification is reduced to a few models. In this step, the fleet of the airlines should be 
found online and compared with the candidate aircraft types. Generally, the comparison 
results in identifying the aircraft type.  

 
The overall result of aircraft image distributions is given in figure 6. 
 

 
 

Figure 6. Overall Aircraft Distribution 
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The aircraft model distribution within Airbus and Boeing is given in figure 7. The aircraft models 
on the x-axis are ranked based on their size, ranging from small to large. It should be noted that 
almost all models have a couple of different versions. In this study, all versions are grouped under 
the name of the model. For example, Boeing 777-200 and Boeing 777-200ER are grouped under 
Boeing 777. 
 

  
 

Figure 7. Aircraft Model Distribution Within Airbus and Boeing Fleets 

3.3  SIGNAL PROCESSING 

Collected dynamic data can be interpreted as a signal that is essentially a time-series showing 
variation when a plane travels over the sensors. With that interpretation, it was required to develop 
signal-processing algorithms to extract the responses to each airplane. Literature suggests that such 
signal-processing algorithms have been developed and used in many pavement-instrumentation 
projects. 
 
In this study, there was a unique challenge in development of signal-processing algorithms. Two 
variables, speed and wander (i.e., lateral position of vehicles with respect to the sensors), that 
simplify extracting the peak responses were unknown. However, these variables were generally 
known and controlled in other studies. A signal-processing framework that addresses these 
challenges is outlined in the following sections of the report. It should be noted that the framework 
not only extracts peak responses but also trims the part of the signal that does not carry information. 
As a result of this trimming, the size of the signal is reduced, thus leading to a reduction in data 
storage. 
 
3.3.1  Signal Filtering 

Noise reduction in the signal was an issue in the development of the signal-processing framework. 
Generally, as suggested by subject matter literature, low-pass filters, such as the moving average, 
have been used to address this issue. However, for this study, these filters did not work well, as 
they may cause a loss of information by trimming the “peaks” of the signal. For example, when a 
gear passes over sensors, the signal appears as a spike, which can be masked by an averaging filter. 
 
This study employed a technique called “Savitzky-Golay” (Orfanidis, 1995). This filtering 
technique outperforms conventional averaging filters by preserving the high-frequency component 
of the signals. It essentially fits the user-defined degree of polynomial to the part of the data 
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extracted by a sliding window. The length of the window is also user defined. The degree of 
polynomial and the window length were selected as 2 and 21, respectively. 
 
3.3.2  Signal Compression 

It was observed that the signals may have parts either at the beginning (before the gear passes over 
the sensor) or at the end (after the gear leaves the sensor) not affected by aircraft loading. These 
parts may be disregarded to reduce the size of the signal and the amount of space required to store 
the signal. The first step for signal compression is to identify the lower and upper envelopes for 
each signal (figure 8). The envelopes are found by fitting spline functions for the signal local 
maxima and minima. The difference between the two envelopes is calculated at each data point. 
Starting from both ends of the signal, the data points are removed until the difference between the 
envelopes is greater than 0.5 microstrains. The point beyond which the difference becomes more 
than 0.5 microstrains is called the trimming point. For this particular signal, approximately 50% 
reduction was obtained, as presented in figure 9. Figure 9 also demonstrates omitted data points 
and trimming points. 
 

 
 

Figure 8. Upper and Lower Envelopes for a Signal 

The aforementioned compression algorithm was applied to all signals. The reduction distribution 
is plotted in figure 9. As shown in the histogram, while some signals were reduced by 80%, some 
signals could not be compressed. On average, the signals were compressed by 37.8%. 
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Figure 9. Signal Compression Results 

3.3.3  Sensor Response Identification 

The first step for extracting the response of a sensor due to gear loading is to identify the peaks of 
the signal. The peaks were identified utilizing a MATLAB function called “findpeaks.” Spurious 
peaks in the signal can be eliminated by applying a threshold for the prominence of peaks. The 
prominence of the peaks can be defined as a “measure of a peak showing how much the peak 
stands out due to its intrinsic height and its location relative to other peaks” (MATLAB, 2016). 
Peaks with small prominence could represent noises in the signal and may be removed. In this 
study, 0.5 microstrains was selected as the threshold for the prominence. 
 
The second step is computing a reference point, i.e., the strain measurement when the aircraft is 
far away from the sensor. The reference point is calculated by taking the average of the points 
removed in the previous step. Afterwards, the final response under the gear loading is computed 
as the difference between the reference point and peaks. 
 
Figure 10 demonstrates a calculation of the response with respect to the reference points. Trimming 
points 1 and 2 are explained in section 3.3.2. Later, the reference points are computed by taking 
the mean of the points removed. If there are two reference points, as in figure 10, the average is 
assumed to be the final reference point. Finally, the actual response is the distance between the 
peak point and the final reference point. In figure 10, two responses (one tension from Peak 1 and 
one compression from Peak 2) were extracted as 21.22 and 15.42 microstrains, respectively. It 
should be noted that the number of peaks in the signal and the type of responses (e.g., tension or 
compression) depend on the position of the sensor with respect to the gears and the number of 
axles in the gears (e.g., single, tandem, or tridem). Instead of having multiple peaks as a result of 
multi-gear loading, the maximum response was considered to be the response from that aircraft. 
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Figure 10. Peak Extraction From a Signal 

3.3.4  Overall Results 

Seven sensors collected data over the entire period. The signal-processing algorithm explained in 
section 3.3 was applied on these seven sensors to extract the maximum tensile strain at the bottom 
of the concrete slab for each aircraft. The results are presented in tables 4 to 10 for each sensor. In 
these tables, the second column (Number of Data) presents the number of data points (i.e., number 
of aircraft passes under which the dynamic data were collected). However, some passes did not 
produce any response due to deviation from the sensor location (figure 11). The number of passes 
with no response (NR) is given in the third column of the tables 4 through 10 (Number of NR). In 
some cases, data were not available, indicated by NA in the table. 
 

 
 

Figure 11. Signal Sample With No Response 
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Table 4. Maximum Tensile Strain Measured by SG_1B 

Aircraft Type 
Number of 

Data 
Number of 

NR Maximum Minimum Mean 
Standard 
Deviation 

Boeing 777 34 3 39.88 0.96 9.26 10.31 
MD 83 1 0 7.31 7.31 7.31 NA 
A320 25 4 26.58 1.22 4.01 5.95 
Boeing 747 20 2 40.36 1.49 18.15 12.56 
Boeing 757 51 6 31.93 1.34 4.45 5.02 
Boeing 737 31 7 30.62 2.12 7.52 6.73 
MD-10 3 1 2.27 2.27 2.27 NA 
Boeing 767 26 2 11.38 1.71 4.09 2.83 
A319 5 0 4.82 1.06 2.73 1.66 
A330 4 0 13.32 2.05 7.68 7.97 
Embraer 190 1 0 2.90 2.90 2.90 NA 
MD DC-8 1 1 NA NA NA NA 
A340 3 0 22.06 11.07 16.56 7.78 
A380 6 0 41.46 2.32 16.57 14.70 
Bombardier CRJ-900 1 0 8.24 8.24 8.24 NA 
MD-88 1 0 2.51 2.51 2.51 NA 
MD-11F 1 1 NA NA NA NA 

Table 5. Maximum Tensile Strain Measured by SG_2B 

Aircraft Type 
Number 
of Data 

Number 
of NR Maximum Minimum Mean 

Standard 
Deviation 

Boeing 777 34 5 15.65 1.45 5.57 4.02 
MD 83 1 0 0.30 0.30 0.30 NA 
A320 25 6 11.64 2.61 8.54 2.83 
Boeing 747 20 5 12.04 0.99 5.33 3.94 
Boeing 757 51 7 13.77 0.23 9.05 3.23 
Boeing 737 31 6 14.61 0.35 6.17 3.79 
MD-10 3 1 8.31 0.48 4.40 5.54 
Boeing 767 26 3 14.11 0.55 5.75 4.10 
A319 5 0 10.90 7.17 9.43 1.67 
A330 4 1 10.14 10.14 10.14 NA 
Embraer 190 1 0 10.47 10.47 10.47 NA 
MD DC-8 1 1 NA NA NA NA 
A340 3 1 2.11 2.11 2.11 NA 
A380 6 1 15.12 0.89 7.02 5.66 
Bombardier CRJ-900 1 0 3.46 3.46 3.46 NA 
MD-88 1 0 9.23 9.23 9.23 NA 
MD-11F 1 1 NA NA NA NA 
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Table 6. Maximum Tensile Strain Measured by SG_6B 

Aircraft Type 
Number 
of Data 

Number 
of NR Maximum Minimum Mean 

Standard 
Deviation 

Boeing 777 34 3 34.10 1.03 8.00 8.64 
MD 83 1 0 5.59 5.59 5.59 NA 
A320 25 7 5.99 0.28 2.05 1.61 
Boeing 747 20 2 34.80 0.55 15.75 10.62 
Boeing 757 51 7 26.89 0.95 3.95 5.09 
Boeing 737 31 8 20.80 2.16 8.17 6.17 
MD-10 3 1 2.06 1.01 1.53 0.74 
Boeing 767 26 2 9.41 0.26 3.08 2.78 
A319 5 0 3.21 3.21 3.21 NA 
A330 4 0 11.23 1.12 5.17 5.34 
Embraer 190 1 0 1.95 1.95 1.95 NA 
MD DC-8 1 1 NA NA NA NA 
A340 3 0 20.46 0.66 10.49 9.90 
A380 6 0 34.68 1.53 14.79 13.19 
Bombardier CRJ-900 1 0 NA NA NA NA 
MD-88 1 0 1.64 1.64 1.64 NA 
MD-11F 1 1 NA NA NA NA 

Table 7. Maximum Tensile Strain Measured by SG_11B 

Aircraft Type 
Number of 

Data 
Number 
of NR Maximum Minimum Mean 

Standard 
Deviation 

Boeing 777 34 3 29.98 1.46 7.70 7.04 
MD 83 1 0 5.11 5.11 5.11 NA 
A320 25 6 5.34 1.24 2.52 1.22 
Boeing 747 20 2 29.92 1.62 14.44 9.35 
Boeing 757 51 9 28.99 0.91 4.29 5.96 
Boeing 737 31 6 20.73 1.25 6.27 5.29 
MD-10 3 2 2.75 2.75 2.75 NA 
Boeing 767 26 4 9.11 1.19 3.58 2.68 
A319 5 0 2.14 1.75 1.94 0.28 
A330 4 0 12.64 1.44 5.83 5.98 
Embraer 190 1 0 1.72 1.72 1.72 NA 
MD DC-8 1 1 NA NA NA NA 
A340 3 1 20.44 9.31 14.87 7.86 
A380 6 1 31.22 3.87 13.69 12.25 
Bombardier CRJ-900 1 0 3.25 3.25 3.25 NA 
MD-88 1 0 2.34 2.34 2.34 NA 
MD-11F 1 1 NA NA NA NA 
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Table 8. Maximum Tensile Strain Measured by SG_15B 

Aircraft Type 
Number of 

Data 
Number 
of NR Maximum Minimum Mean 

Standard 
Deviation 

Boeing 777 34 4 0.25 0.12 0.18 0.09 
MD 83 1 1 NA NA NA NA 
A320 25 7 0.25 0.21 0.23 0.03 
Boeing 747 20 4 0.52 0.34 0.40 0.10 
Boeing 757 51 9 0.66 0.20 0.42 0.13 
Boeing 737 31 9 0.91 0.26 0.43 0.22 
MD-10 3 2 NA NA NA NA 
Boeing 767 26 3 0.44 0.33 0.39 0.08 
A319 5 0 NA NA NA NA 
A330 4 1 NA NA NA NA 
Embraer 190 1 0 NA NA NA NA 
MD DC-8 1 1 NA NA NA NA 
A340 3 1 NA NA NA NA 
A380 6 1 0.40 0.40 0.40 NA 
Bombardier CRJ-900 1 0 NA NA NA NA 
MD-88 1 0 NA NA NA NA 
MD-11F 1 0 0.17 0.17 0.17 NA 

Table 9. Maximum Tensile Strain Measured by SG_17B 

Aircraft Type 
Number of 

Data 
Number 
of NR Maximum Minimum Mean 

Standard 
Deviation 

Boeing 777 34 3 34.30 2.07 10.41 8.62 
MD 83 1 0 0.48 0.48 0.48 NA 
A320 25 8 25.65 0.29 13.12 7.16 
Boeing 747 20 2 29.69 0.87 9.04 6.99 
Boeing 757 51 7 34.02 0.33 16.40 8.67 
Boeing 737 31 7 19.28 0.42 10.21 6.23 
MD-10 3 2 14.19 14.19 14.19 NA 
Boeing 767 26 4 30.19 1.47 14.55 8.49 
A319 5 1 15.99 0.22 9.45 8.22 
A330 4 0 17.42 17.42 17.42 NA 
Embraer 190 1 0 21.50 21.50 21.50 NA 
MD DC-8 1 0 0.98 0.98 0.98 NA 
A340 3 1 NA NA NA NA 
A380 6 1 29.11 5.10 17.41 10.51 
Bombardier CRJ-900 1 0 3.60 3.60 3.60 NA 
MD-88 1 0 17.59 17.59 17.59 NA 
MD-11F 1 1 NA NA NA NA 
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Table 10. Maximum Tensile Strain Measured by SG_19B 

Aircraft Type 
Number of 

Data 
Number 
of NR Maximum Minimum Mean 

Standard 
Deviation 

Boeing 777 34 7 10.91 0.59 4.76 5.44 
MD 83 1 0 0.51 0.51 0.51 NA 
A320 25 7 4.92 0.20 1.23 1.65 
Boeing 747 20 4 16.20 0.56 5.76 6.46 
Boeing 757 51 13 9.46 0.02 1.88 2.47 
Boeing 737 31 10 17.66 0.37 2.25 4.50 
MD-10 3 2 NA NA NA NA 
Boeing 767 26 10 2.15 0.40 0.89 0.74 
A319 5 1 0.75 0.40 0.58 0.25 
A330 4 1 0.66 0.66 0.66 NA 
Embraer 190 1 0 NA NA NA NA 
MD DC-8 1 0 0.08 0.08 0.08 NA 
A340 3 2 NA NA NA NA 
A380 6 2 0.53 0.53 0.53 NA 
Bombardier CRJ-900 1 0 NA NA NA NA 
MD-88 1 0 1.02 1.02 1.02 NA 
MD-11F 1 0 0.57 0.57 0.57 NA 

 
4.  BAYESIAN CALIBRATION 

After the collected data were cleaned, organized, and explored, they could be used for many 
purposes. In this part of the project, the data set was used for two main purposes: (1) determining 
the unknown material parameters using a Bayesian calibration framework; and (2) developing a 
machine-learning (ML) model to predict responses of airfield pavement. This section summarizes 
the Bayesian calibration, and section 5 explains the prediction model development. 
 
To detect unknown material properties, an analytical model that can be assumed as an underlying 
function is needed. In this study, the model selected was the enhanced integrated climatic model 
(EICM), which is explained in detail in section 4.1. EICM can be simply defined as a function that 
takes material properties of a pavement and outputs a temperature profile through the depth of a 
pavement. It should be noted that in the calibration process, the selection of an analytical model is 
arbitrary. For example, a finite-element (FE) model that returns pavement structural responses 
could also be used. EICM was selected because of its low computation cost and numerical 
convenience in implementation. 
 
After determining EICM as the analytical model, the next step was to find the input for EICM (i.e., 
material properties) that matched the field measurements. The search for parameters is called the 
calibration process, which is defined by Cesario and Davis (1984, p.1) as “the process of fine-
tuning a model until the model simulates field conditions for a specified time horizon (such as 
maximum-hour conditions) to an established degree of accuracy.” 
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Conventional calibration techniques model the calibration as a deterministic optimization problem 
that minimizes the residual (i.e., the difference between the output of the function and the field 
measurements) over the parameters. However, with the increasing interest in and appreciation of 
statistics, probabilistic calibration methods, such as Bayesian calibration, have been gaining 
popularity over the last decade. Bayesian calibration has two main advantages compared to other 
calibration techniques: the ability to incorporate any prior knowledge regarding the parameters to 
be calibrated and the ability to provide better accuracy on noisy data sets (Pavlak et al., 2013). 
 
Because of those advantages, Bayesian calibration can be employed in various domains in 
engineering. For example, Wang and Sheen (2015) utilized Bayesian calibration for improving the 
performance of combustion kinetic simulations; Sen at al. (2017) used Bayesian calibration to 
estimate the source of emission in plate structures; Duputel et al. (2014) exploited a Bayesian 
approach for calibrating high-fidelity, deterministic earthquake simulations; and Au et al. (2003) 
developed a risk assessment framework under dynamic loading using Bayesian calibration. 
Additionally, a Bayesian approach has been used in railway engineering (Prajabat and Ray-
Chaudhuri, 2017), structural health monitoring (Lam et al., 2017), and hydrological engineering 
(Zhang et al., 2013). 
 
In the literature, a few software programs are suggested that implement EICM to predict 
temperature. ILLI-THERM (Sen and Roesler, 2018) is implementation software that is claimed to 
be a numerically improved version of other existing software. It requires many user-defined inputs 
that can be grouped into four categories: (1) numerical inputs such as number of elements and 
initial temperature, (2) structural inputs such as number of layers and thicknesses, (3) material 
properties such as thermal conductivity of concrete, and (4) climatic inputs such as hourly 
temperature and precipitation. The purpose of this study was to calibrate material-related input 
utilizing a Bayesian approach based on observational temperature data from JFK in New York. 
Once the calibration process is completed and unknown material properties are found, they can be 
used for other mechanistic models, such as FE modelling. 

4.1  THE EICM AND ILLI-THERM TOOLS 

EICM is a one-dimensional model that simulates heat and moisture flow within pavement structure 
(figure 12). The EICM, currently used in the Mechanistic-Empirical Design Guide (NCHRP, 2004) 
to incorporate the effects of climates and environments, has three components: a climate-materials 
structure (CMS) model developed at the University of Illinois; a frost-heave and settlement model 
developed at the U.S. Army Cold Regions and Research and Engineering Laboratory; and an 
infiltration drainage (ID) model developed at the Texas Transportation Institute, Texas A&M 
University (Zapata et al., 2007). 
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Figure 12. Schematic Representation of Heat-Transfer Model of Pavement (Han et al., 2011) 

Since its development in 1993 (Lytton et al., 1993), the EICM has been modified a number of 
times (Larson and Dempsey, 1997; Witczak et al., 2000). One of the most recent improvements to 
EICM was by Sen and Roesler (2018), producing a software program called ILLI-THERM. ILLI-
THERM essentially works on the same algorithms as EICM, except it does not consider the ID 
model. It can be considered a numerically improved version of the EICM. ILLI-THERM computes 
temperature within pavement structure by using CMS and Cold Regions and Research and 
Engineering Laboratory (CRREL) models, applying the boundary conditions given in equation 1.  
 

 𝑄𝑄∗ + 𝑄𝑄𝐹𝐹 = 𝑄𝑄𝐻𝐻 + 𝑄𝑄𝐸𝐸 + 𝛥𝛥𝑄𝑄𝑠𝑠 (1)  

 
where: 

𝑄𝑄𝐸𝐸 is the latent heat at the surface of the pavement and equal to zero for impervious layers. 
𝑄𝑄𝐹𝐹 is the anthropogenic heat that is considered as zero in ILLI-THERM. 
𝑄𝑄𝐻𝐻 is the sensible heat flux from the pavement. 
𝛥𝛥𝑄𝑄𝑠𝑠 is the heat stored inside the pavement. 
𝑄𝑄∗ is the incoming radiation absorbed by the pavement, calculated using equation 2. 

 
 𝑄𝑄∗ = (1 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∗ 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 (2)  

where: 
𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 is the incoming shortwave solar radiation. 
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 is the longwave radiation emitted by the sky. 

 
4.2  BAYESIAN CALIBRATION AND MARKOV CHAIN MONTE CARLO 

In Bayesian calibration, the purpose is to find the distribution of the parameter(s) conditioned on 
the data. This distribution is called posterior and is represented as follows: 
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 𝜋𝜋(𝛼𝛼|𝑑𝑑) (3)  

 
In equation 3, α is a parameter that needs to be calibrated; d stands for the data (i.e., observation). 
Applying simple Bayesian rules twice, the above equation can be written as equation 4.  
 

 𝜋𝜋(𝛼𝛼|𝑑𝑑) =
𝜋𝜋(𝛼𝛼,𝑑𝑑)
𝜋𝜋(𝑑𝑑)

=
𝜋𝜋(𝑑𝑑|𝛼𝛼)𝜋𝜋(𝛼𝛼)

𝜋𝜋(𝑑𝑑)
 (4)  

 
In equation 4, 𝜋𝜋(𝛼𝛼) is called prior distribution, which incorporates any prior knowledge about the 
parameter, 𝜋𝜋(𝑑𝑑|𝛼𝛼) is called likelihood and calculated based on assumed distribution, and 𝜋𝜋(𝑑𝑑) is 
called evidence, which is actually a normalizing constant; therefore, it is generally ignored; and 
equality in equation 4 becomes proportionality, as given in equation 5.  
 

 𝜋𝜋(𝛼𝛼|𝑑𝑑) ∝ 𝜋𝜋(𝑑𝑑|𝛼𝛼)𝜋𝜋(𝛼𝛼) (5)  

 
To get a distribution for posterior (i.e., left-hand side of equation 5), a group of samples has to be 
generated from multiplication of prior and likelihood (i.e., right-hand side of equation 5). Because 
this multiplication generally does not have a closed form, a Markov chain Monte Carlo (MCMC) 
technique is used to generate samples. 
 
MCMC starts with assuming a proposal distribution. Although there is no condition on selecting 
the proposal distribution, it is generally selected as a normal distribution. MCMC generates the 
samples iteratively by following the pseudocode given in algorithm 1, as shown in figure 13. 
 

 
 

Figure 13. Pseudocode for MCMC 
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After samples are generated, posterior distribution is approximated using kernel-density 
estimation. Then, maximum a posteriori (MAP) estimation is conducted to find the calibrated 
parameter that maximizes the posterior distribution function for each input. 

4.3  IMPLEMENTATION 

This section presents details about implementation, along with the assumptions made. It should be 
noted that the scripts for the study were implemented in the MATLAB computer language. 
 
4.3.1  Input and Prior Selection 

ILLI-THERM requires material properties to predict temperature within the pavement. The 
number of inputs changes depending on the material type of a layer. For example, while ILLI-
THERM requires 6 inputs for a concrete slab, it needs 16 inputs to proceed for base layers. Because 
the taxiway has 1 concrete layer supported by 2 base layers and a subgrade (soil) (figure 1), ILLI-
THERM requires 54 inputs to proceed. However, based on the sensitivity analysis conducted, it 
was observed that material properties for the two bottom layers had negligible significant effects 
on temperature prediction within the concrete. Therefore, these 2 layers were omitted, and only 
the concrete layer at the top and the base layer underneath it were considered in the calibration 
process, which resulted in calibrating 22 material parameters (16 from the base layer and 6 from 
the concrete). 
 
Table 11 lists all 22 material parameters used in this study. This table also shows the default values 
for each material parameter in the software, which can be interpreted as typical values. The priors 
were selected as uniform distributions bounded by 50% of the default values. For example, the 
prior for unit weight of concrete is a uniform distribution between 75 and 225 lb/ft3. 
 

Table 11. All Material Parameters Used for Bayesian Calibration With Default Values 

Input Default Input Default 
Unit Weight of Concrete (𝑙𝑙𝑙𝑙/𝑓𝑓𝑡𝑡3) 150 Modulus of Base (psi) 32,000 
Thermal Conductivity of Concrete 1.25 Saturated Permeability of Base (in./s) 313.94 
Heat Capacity of Concrete 
 (𝐵𝐵𝐵𝐵𝐵𝐵/(𝐹𝐹 ∗ 𝑙𝑙𝑙𝑙)) 

0.28 Fredlund a of Base 7.26 

Convection Coefficient 
 (𝐵𝐵𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∗ 𝑓𝑓𝑓𝑓 ∗ 𝐹𝐹)) 

3.0 Fredlund b of Base 1.33 

Emissivity 0.93 Fredlund c of Base 0.82 
Absorptivity 0.7 Fredlund hr of Base 117.4 
Unit Weight of Base (𝑙𝑙𝑙𝑙/𝑓𝑓𝑡𝑡3) 127.2 Plasticity Index of Base 1.0 
Thermal Conductivity of Base 0.23 D60 (mm) of Base (%) 10.82 
Heat Capacity of Base (𝐵𝐵𝐵𝐵𝐵𝐵/(𝐹𝐹 ∗ 𝑙𝑙𝑙𝑙)) 0.17 Passing #200 of Base (%) 8.7 
Porosity of Base (𝑙𝑙𝑙𝑙/𝑓𝑓𝑡𝑡3) 0.24 Passing #4 of Base (%) 44.7 
Frozen Modulus of Base (psi) 32,000 Initial Water Content of Base (ft) 15.09 
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4.3.2  Likelihood Selection and Computation 

The selection of likelihood depends on the assumption of noise. In this study, one of the most 
common assumptions is followed: Noise is additive and follows a zero-mean Gaussian distribution 
with a known variance. In other words, the difference between the temperature data and predictions 
by ILLI-THERM is assumed to have a Gaussian distribution with a zero mean and known variance. 
Following this assumption, likelihood is computed as follows: 
 

 𝜋𝜋(𝒅𝒅|𝜶𝜶) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

1
2�

(𝒅𝒅−𝒚𝒚)−0
𝜎𝜎 �

2

 (6)  

 
In equation 6, d and y are vectors that keep temperature data (i.e., observations) and temperature 
predictions by ILLI-THERM, respectively. The length of the vectors is 11,808 (3 x 3,936; 3 is 
number of sensors, and 3,936 is number of hours of data available). In this equation, 𝛼𝛼 is written 
in boldface because it is also a vector, whose length is 22. 
 
In this study, it is assumed that uncertainty in the measurements is independent. Using this 
assumption, equation 6 for all data points can be rewritten as follows: 
 

 𝜋𝜋(𝑑𝑑1,𝑑𝑑2, . . . |𝜶𝜶) = �
11808

𝑖𝑖=1

1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2�

(𝑑𝑑𝑖𝑖−𝑦𝑦𝑖𝑖)−0
𝜎𝜎 �

2

 (7)  

 
The final step is to determine the standard deviation for the likelihood, which is generally 
measurement errors reported by the manufacturer of the sensors. Because the brand of the 
temperature sensor for the instrumentation is unknown, an online search was conducted to find 
reported measurement error for a similar sensor. Based on Vaisala (2017), 0.5°F was used as the 
standard deviation. 
 
4.3.3  Proposal Selection and Adaptive Metropolis 

Proposal distribution was assumed to be a Gaussian distribution. The mean for the proposal 
distribution is the last accepted sample (i.e., x_a in figure 13). However, the covariance matrix of 
the distribution is not known and has significant effects on the performance of the MCMC. 
 
This study implements an adaptive Metropolis algorithm for determining the covariance matrix. 
This algorithm starts with the initial covariance matrix for the proposal distribution and updates it 
based on previous samples in the chain, based on equation 8.  
 

 𝜎𝜎 =
2.382

𝑑𝑑
𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥0, 𝑥𝑥1, . . . , 𝑥𝑥𝑘𝑘−1) + 𝜀𝜀𝐼𝐼𝑑𝑑  (8)  

 
In equation 8, d is the dimensions of the problem, which is 22 for this study; 𝜀𝜀 is a small number 
that is generated using the “eps” command in MATLAB. 𝐼𝐼𝑑𝑑 is a dxd identity matrix (22x22 for 
this study). 
 



 

21 

The selection of k in equation 8 determines when to update the covariance matrix. If there is one 
or a few samples accepted, the values in covariance become so small that it causes acceptance of 
highly correlated samples. To prevent this, updating of the covariance matrix is started if more 
than 10 samples are accepted. In this study, k was selected as 100. 
 
4.4  RESULTS AND DISCUSSION 

In this study, 10,000 MCMC simulations were conducted, resulting in 507 accepted samples 
(5.07% acceptance rate). Each simulation took around 30 s (approximately 3.47 days in total). 
 
In 10,000 simulations, ILLI-THERM crashed 29 times, i.e., it did not converge and produce any 
results. Moreover, samples drawn from the Gaussian proposal distribution were rejected 6,348 
times because they fell out of the range of uniform prior distributions. In other words, more than 
half the time, the samples were omitted without running ILLI-THERM. In the authors’ opinion, 
this is not effective. Therefore, in the future, the authors suggest using, proposal distributions with 
bounded support in the case of having prior distributions with bounded support. Sections 4.4.1 – 
4.4.3 discuss the results. 
 
4.4.1  Convergence of MCMC 

Figure 14 shows the mean and variance convergence plots for the mean of the unit weight of 
concrete. As shown, the chain has not yet fully converged. This observation holds for the other 
inputs as well. However, based on the trend (figure 14(a)), it can be said that the chain will 
converge for the high number of simulations. 
 

  
 

(a) (b) 
  

Figure 14. Mean and Variance Convergence Plots for the Mean of Unit Weight of Concrete 

4.4.2  Posterior Distribution and MAP Estimation 

For brevity, posterior distributions for only six concrete-related inputs (figure 15) are given in this 
section (the others are given appendix B). Moreover, table 12 gives the default values, MAP 
estimations, and percent difference between the two. 
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Posterior distribution showed spike-like behavior for emissivity, heat capacity, and absorptivity 
(figure 15). Based on this observation, it can be noted that the performance of ILLI-THERM is 
very sensitive to those inputs; and ILLI-THERM users should have more certain information about 
these inputs. For example, the difference between default values and MAP estimation for 
absorptivity is computed as -2.60 %. 
 
 

 

 
 

Figure 15. Posterior Distribution for Concrete-Related Inputs 

Table 12. Input Values After MAP Estimation 

Input Name Default Values MAP Estimation Difference (%) 
Unit Weight of Concrete 150 202.45 34.97 
Thermal Conductivity of Concrete 1.25 1.20 -4.01 
Heat Capacity of Concrete 0.28 0.14 -49.47 
Unit Weight of Base 127.2 177.31 39.40 
Thermal Conductivity of Base 0.23 0.33 42.95 
Heat Capacity of Base 0.17 0.18 3.35 
Porosity of Base 0.24 0.21 -13.13 
Frozen Modulus of Base 32,000 21,707.36 -32.16 
Modulus of Base 32,000 38,592.91 20.60 
Saturated Permeability of Base 313.94 178.10 -43.27 
Fredlund a of Base 7.26 6.22 -14.37 
Fredlund b of Base 1.33 1.98 48.60 
Fredlund c of Base 0.82 0.92 11.93 
Fredlund hr of Base 117.4 143.30 22.06 
Plasticity Index of Base 1 0.94 -6.06 
D60 (mm) of Base 10.82 7.71 -28.77 
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Table 12. Input Values After MAP Estimation (Continued) 
 

Input Name Default Values MAP Estimation Difference (%) 
Passing #200 of Base 8.7 12.49 43.56 
Passing #4 of Base 44.7 22.59 -49.47 
Initial Water Content of Base 15.08 12.66 -16.06 
Convection Coefficient 3 1.59 -46.90 
Emissivity 0.93 0.53 -42.84 
Absorptivity 0.7 0.68 -2.60 
 
4.4.3  Calibration Results 

ILLI-THERM was conducted using MAP estimation to quantify the improvement due to Bayesian 
calibration. Figure 16 gives prediction results by ILLI-THERM before and after calibration. It is 
evident that Bayesian calibration improved the accuracy of ILLI-THERM by decreasing the root 
mean square error (RMSE) by 19 %. 
 

  
 

Figure 16. Calibration Results 

As shown in figure 16, the calibration process increased the accuracy of temperature prediction by 
19%. Additionally, it produced optimized values for unknown material properties, along with 
posterior distributions. The width of the posterior distributions indicated the significance of the 
parameters. For example, emissivity (figure 15) was found to be one of the most significant 
parameters due to its spike-like distribution. Furthermore, the optimized values produced can be 
used for various purposes. For example, they were used as input to develop a FE model (Al-Qadi 
& Hernandez, 2021).  
 
5.  PREDICTION MODEL DEVELOPMENT 

Although the instrumentation data primarily were collected to advance understanding of pavement 
behavior, such comprehensive data can also be leveraged for other research objectives. For 
example, as previously mentioned, the data can be used to determine unknown material 
parameters. Another use of the data is to develop ML-based models to predict pavement responses, 
without having to use computationally costly, mechanistic approaches. 
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Accurate computation of structural responses (e.g., stress, strain, and deformation fields) plays a 
crucial role in the airport pavement design procedures—to predict pavement performance over the 
design life realistically. The state-of-the-art airport pavement design frameworks use mechanistic 
approaches, e.g., linear elastic theory or FE analysis, to simulate pavement behavior under aircraft 
loading. These approaches have to be built on assumptions that simplify or neglect variables in 
pavement-gear interaction that are too complicated to be represented in mechanistic equations. 
Although recent research findings have shown that FE analysis can be extended to include many 
variables omitted by conventional pavement analysis approaches, it becomes too computationally 
expensive to adopt in the airport pavement design frameworks.  
 
With improvements in data storage and collection, ML is gaining momentum as a potential 
behavior prediction method in the field of engineering. ML may be defined as the development of 
algorithms that iteratively learn from data and produce reliable, repeatable decisions and results. 
Its ability to capture complicated relations in the data makes it a promising candidate to address 
challenging cases in engineering that would be difficult to solve with traditional mechanistic 
approaches. Additionally, unlike mechanistic approaches, it provides computational efficiency 
because it does not require rebuilding the model (i.e., training) every time different inputs are 
introduced. Therefore, ML models were developed to compute pavement responses with low 
computational time.  
 
A support-vector machine (SVM) was employed to develop ML-based models to compute 
temperature, curling strain (due to environmental loading) within the pavement, and bending strain 
at the bottom of concrete slabs under Boeing 777 loading. The spacing of installed sensors allows 
for measurement of responses for this type of aircraft gear geometry. Although data from the 
Airbus A380 could be captured, the data were limited (only eight data points were available) for 
model development. 
 
5.1  VARIABLE SELECTION 

Before developing ML-based models, it is important to identify nonsignificant parameters and 
omit them to improve the performance of the learners. Several techniques are suggested in 
literature for selecting an optimal set of variables to minimize the total error of a regression model. 
This study utilizes the forward stepwise regression technique, which finds the best one-variable 
model that produces the highest testing accuracy. Afterward, the number of variables in the model 
keep increasing until a reduction in testing accuracy is observed, i.e., optimal model complexity is 
reached. The framework of forward stepwise regression is demonstrated in figure 17. 
Conventionally, linear regression is used in the stepwise regression. However, in this report, the 
authors use the SVM with linear kernel. The results of variable selection for temperature prediction 
and strain prediction are given in the sections 5.1.1 and 5.1.2. 
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Figure 17. Framework for Forward Stepwise Regression 

5.1.1  Temperature Prediction 

Figure 18 shows the results of stepwise regression for temperature prediction. It can be clearly 
seen that the results conform to bias–variance trade-off. Although training accuracy always 
increases as the number of variables increases (i.e., mean square error (MSE) is decreasing), testing 
accuracy starts to decrease for the models with more than seven variables. The optimal variable 
set was found to be the air temperature, direction and speed of wind, dew-point temperature, station 
pressure, cloud ceiling, and maximum temperature. 
 
As previously mentioned, the mechanistic approach used to predict temperature within pavement 
is called the EICM. The ML-based model developed shares six of its seven inputs with EICM. 
However, the station pressure, which is found to be a significant variable for temperature 
prediction, is not considered by EICM. 
 

 
 

Figure 18. Variable Selection Results for Temperature Prediction 
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5.1.2  Curling-Strain Prediction 

The results of variable selection for strain prediction are shown figure 19. The variable set that 
minimizes the total error was found to be air temperature, dew point temperature, station pressure, 
pavement temperature read by three thermocouples, and age of the concrete. 
 

 
 

Figure 19. Variable Selection Results for Strain Prediction 

Age of the concrete is the product of feature engineering, which can be defined as the process of 
using domain knowledge (of the date) to create features (variables) to improve the performance of 
ML algorithms. There is a clear pattern in strain measurements with respect to time as 
demonstrated in figure 20. Although this trend can be attributed to the creep effect of the concrete 
slab, other reasons may also be considered. It should be noted that age of the concrete is not 
considered by conventional concrete pavement design and analysis approaches; however, it 
appears to be a significant variable in ML-based prediction models.  
 

  
 

Figure 20. Demonstration of Time Effect on Strain Measurements 

5.2  MODEL RESULTS 

The data sets were randomly divided into three parts: training (80%), validation (10%), and testing 
(10%). The training dataset was used to compute SVM model parameters. Additionally, similar to 
the majority of ML algorithms, SVM also has the supposed hyperparameters that are essentially 
user inputs, such as kernel type and cost coefficient. A cross-validation step was conducted to 
select the hyperparameters that maximized the accuracy of the trained model in the validation 
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dataset. Finally, accuracy of the trained model with tuned hyperparameters is evaluated by the 
testing dataset. 
 
Table 13 shows accuracy results for temperature prediction. As previously mentioned, the data are 
randomly split into various parts. To eliminate the effect of randomness, the splitting was done 10 
times. Therefore, the results are presented with statistical measure. As shown, the MSE of the 
models for almost all the sensors is around 2.4°F with a coefficient of determination (R2) value of 
0.97.  

Table 13. Results for Temperature Predictions 

Temperature  Training Testing 

Sensor 
Depth 
(in.) Statistics R2 

MSE 
(F) R2 

MSE 
(F) 

T_1A 10 Mean 0.983 0.917 0.953 2.295 
Std 0.001 0.014 0.005 0.086 

T_1B 15 Mean 0.979 0.966 0.945 2.390 
Std 0.001 0.017 0.003 0.059 

T_1C 19 Mean 0.976 0.986 0.939 2.404 
Std 0.000 0.016 0.006 0.111 

T_2A 10 Mean 0.984 0.874 0.955 2.276 
Std 0.000 0.002 0.004 0.102 

T_2B 15 Mean 0.979 0.972 0.945 2.374 
Std 0.001 0.015 0.006 0.100 

T_2C 19 Mean 0.977 0.970 0.941 2.373 
Std 0.001 0.019 0.007 0.115 

 
Figure 21 shows the results for curling-strain prediction for various sensors (average of 10 runs) 
in terms of MSE and R2, (a) and (b) respectively. The label of the sensor is given on the x-axis. As 
shown, MSE for the testing dataset is around a couple of microstrains; and the R2 values are around 
0.98. The strain gauges that failed after instrumentation were omitted. 
 

 
 

Figure 21. Strain-Prediction Results in Terms of MSE (a) and R2 (b) 

The ML-based models for the Boeing 777 were developed based on 35 data points. An important 
implication associated with a “small” dataset is the sensitivity of the model performance to data 
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splitting. In other words, performance of the models can significantly change depending on which 
data points the models are trained and tested on. To overcome this problem and report the true 
performance of models, random splitting was repeated 1,000 times.  
 
Figure 22 presents the MSE of the prediction models (average of 1,000 runs) for Boeing 777 
loading and shows that the SVM-based, ML-based models could predict the responses with an 
MSE range of 1.5 to 7 microstrains. The strain gauges placed at the mid-depth of the slab were not 
considered in the prediction models because they were close to the neutral axis of the slab, where 
the bending strains approach zero. Furthermore, the strain gauges that failed after instrumentation 
were omitted. 
 
Two important variables are missing in the data set that might hinder the performance of the 
models. The first one is traffic wander, which is the lateral position of the gear with respect to 
sensor locations. The significance of wander on pavement responses has been highlighted by 
several studies, including that by Al-Qadi and Wang (2009). The second variable is speed. 
Although aircraft speed on the taxiway is expected to have a marginal effect on pavement 
responses, such information could be useful when extracting the peak response from the signal. 
Incorporating these two variables into data collection would improve the efficiency of ML-based 
models.  
 

 
 

Figure 22. Prediction Results 

6.  SUMMARY AND CONCLUSIONS 

Having an efficient airport pavement network is crucial to support growing aviation mobility and 
freight demands in the United States. Therefore, the FAA has conducted a number of airport 
pavement instrumentation projects to further advance the pavement design, analysis, and 
rehabilitation procedures. In one such project, four concrete slabs at a taxiway in John F. Kennedy 
International Airport (JFK) were instrumented to collect pavement response under aircraft and 
environmental loading. 
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This report presented the pavement data analytics for the collected sensor data. The data analytics 
started with the preprocessing step that transformed the data to the into Microsoft® Excel® and 
SQLite formats in an organized and structured way. Afterward, anomalies and outliers in the 
sensor data were detected and removed. The aircraft types were identified from the images taken 
by a camera mounted on the data-acquisition system (DAS) cabinet and added to database. 
Additionally, a signal-processing algorithm was developed to process and compress the signals 
under aircraft loading.  
 
Two prediction models were presented in this report. The first model estimated the unknown 
material properties of concrete pavement slabs using Bayesian calibration framework. The 
calibration framework determined the material properties that matched the enhanced integrated 
climatic model’s (EICM) temperature calculations with the field observations. The Bayesian 
calibration also produced the posterior distribution for each of the parameters, which can be used 
to infer the significance of each parameter for temperature distribution within the concrete 
pavement.  
 
The second prediction model computed the pavement response using a ML algorithm called SVM. 
This model was developed based on the meteorological data collected at JFK. The pavement 
responses were predicted with a low computational time and higher accuracy. The results showed 
the potential, as more instrumentation data from future projects are collected, of using ML for 
future pavement design guidelines to incorporate various material properties and pavement 
structures. 
 
In the future, the research team recommends using DOE approaches to systematize the data 
collection to have balanced representation of all the important variables in the database. Such a 
database will significantly improve the generalizability of pavement data analytics and the 
performance of prediction models. Additionally, the lateral position of gear loading and speed of 
aircrafts should be added to the database. 
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APPENDIX A—DATA PLOTS FOR ALL SENSORS 

The plots in this appendix show the collected strain and temperature static data with respect to the 
time. The sensors that malfunctioned during the entire data collection period are not included. 
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APPENDIX B—ALL POSTERIOR DISTRIBUTIONS 

The plots in this appendix show the posterior distribution of the inputs of the enhanced integrated 
climatic model (EICM) software that were calibrated using the Bayesian calibration technique. 
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