

Impact Testing of Inconel 718 for Material Impact Model Development

J. Michael Pereira, Duane M. Revilock, and Charles R. Ruggeri Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI Program provides access to the NASA Technical Report Server—Registered (NTRS Reg) and NASA Technical Report Server—Public (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., "quick-release" reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Fax your question to the NASA STI Information Desk at 757-864-6500
- Telephone the NASA STI Information Desk at 757-864-9658
- Write to: NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

Impact Testing of Inconel 718 for Material Impact Model Development

J. Michael Pereira, Duane M. Revilock, and Charles R. Ruggeri Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Acknowledgments

The authors would like to thank both Mr. Bill Emmerling (Federal Aviation Administration (FAA), retired) and Dr. Dan Cordasco (FAA) for providing the raw materials for this study and their technical support and advice.

This work was sponsored by the Advanced Air Vehicle Program at the NASA Glenn Research Center

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 703-605-6000

Contents

	,		
Non	nencl	ıture	1
1.0	Intro	duction	1
2.0	Met	nods	2
	2.1	Materials	2
	2.2	Small Panel Test Setup	3
		2.2.1 Projectiles	5
		2.2.2 Gas Gun	5
		2.2.3 Instrumentation	7
	2.3	Large Panel Test Setup	
		2.3.1 Test Specimens	
		2.3.2 Projectile	
		2.3.3 Instrumentation	
		2.3.4 Test Configuration	
3.0	Res	lts and Discussion	12
	3.1	Small Panel Impact Tests	
		Large Panel Impact Tests	
		cluding Remarks	
		A.—Material Certification Sheets.	
		B.—Heat Treatment Certification	
		C.—Small Panel Test Results	
		D.—Large Panel Test Results	
Refe	erenc		153
		List of Tables	
Tab	le I.–	Test Specimen Nominal and Measured Thicknesses	3
		Projectile Material and Dimensions for Different Specimen Thicknesses	
		—Small Panel Impact Test Results	
		—V ₅₀ Measurements for Different Panel Thicknesses	
		-Large Panel Impact Test Results	
		—Linear and angular position and velocity of the projectile local coordinate system at the	
		ipact	22
		List of Figures	
Figu	ıre 1.	—Small panel test specimen. Dimensions in inches.	3
Figu	ire 2.	—Test fixture assembly. Dimensions in inches. (a) Front view. (b) Side view. (c) Clamp sembly.	
		—Sample small panel projectile. Length and diameter vary depending on test specimen	
_		and material. Dimensions in inches.	5
		Large vacuum gas gun. Shown with 3-indiameter gun barrel	
_		Pressure vessel.	
_		—Sabots used to transport projectile down gun barrel. Posttest sabot shown in center	
_		Top view of vacuum chamber showing high-speed camera locations. PONTOS and ARA	
_		GOM	

Figure 8.—Points used to define laboratory coordinate system	8
Figure 9.—Large panel test setup showing orientation of projectile and test specimen	9
Figure 10.—Thin generic fan blade fragment. Dimensions in inches. (a) Side view. (b) Front view.	
(c) Top view. (d) View of model.	10
Figure 11.—Thick generic fan blade fragment. Dimensions in inches. (a) Side view. (b) Front view.	
(c) Top view. (d) View of model.	10
Figure 12.—Still image from high-speed movie of impact test taken directly before impact	11
Figure 13.—Projectile local coordinate system. Dimensions are in inches	
Figure 14.—Penetration results for 0.05-in. (nominal) small panels. (a) Penetration ($1 = yes$, $0 = no$).	
(b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent,	
V ₅₀ , was 607 ft/s	16
Figure 15.—Penetration results for 0.08-in. (nominal) small panels. (a) Penetration ($1 = yes$, $0 = no$).	
(b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent,	
V ₅₀ , was 672 ft/s	17
Figure 16.—Penetration results for 0.125-in. (nominal) small panels. (a) Penetration $(1 = yes, 0 = no)$.	
(b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent,	
V ₅₀ , was 655 ft/s	18
Figure 17.—Penetration results for 0.25-in. (nominal) small panels. (a) Probability of penetration.	
(b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent,	
V ₅₀ , was 812 ft/s	19
Figure 18.—Penetration results for 0.5-in. (nominal) small panels. (a) Probability of penetration.	
(b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent,	
V ₅₀ , was 640 ft/s	20
Figure A.1.—Material certification for test number G210041.	
Figure A.1.—Continued	
Figure A.1.—Continued	25
Figure A.1.—Continued	26
Figure A.1.—Concluded	27
Figure A.2.—Material certification for test number 3723546.	28
Figure A.2.—Continued	
Figure A.2.—Continued	30
Figure A.2.—Continued	31
Figure A.2.—Concluded.	32
Figure A.3.—Material Certification for test number 3723828.	33
Figure A.3.—Continued	34
Figure A.3.—Continued	35
Figure A.3.—Continued	36
Figure A.3.—Concluded.	37
Figure A.4.—Certificate of conformance.	38
Figure A.4.—Continued	39
Figure A.4.—Continued	
Figure A.4.—Continued	41
Figure A.4.—Continued	
Figure A.4.—Concluded	
Figure B.1.—Heat treatment certification	
Figure C.1.—DB232 posttest front view.	

Figure C.2.—DB232 posttest rear view	. 47
Figure C.3.—DB232 posttest front view closeup.	. 48
Figure C.4.—DB232 posttest rear view closeup	. 48
Figure C.5.—DB234 locations of digital image correlation (DIC) measurements	. 49
Figure C.6.—DB234 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	. 49
Figure C.7.—DB234 pretest front view	. 50
Figure C.8.—DB234 pretest rear view.	. 50
Figure C.9.—DB234 posttest front view closeup.	. 51
Figure C.10.—DB234 posttest rear view closeup	. 51
Figure C.11.—DB235 locations of digital image correlation (DIC) measurements	. 52
Figure C.12.—DB235 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	. 52
Figure C.13.—DB235 posttest front view closeup.	. 53
Figure C.14.—DB235 posttest rear view closeup	. 53
Figure C.15.—DB236 locations of digital image correlation (DIC) measurements	. 54
Figure C.16.—DB236 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	. 54
Figure C.17.—DB236 posttest front view closeup.	. 55
Figure C.18.—DB236 posttest rear view closeup	. 55
Figure C.19.—DB237 locations of digitial image correlation (DIC) measurements	. 56
Figure C.20.—DB237 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	. 56
Figure C.21.—DB237 posttest front view closeup.	
Figure C.22.—DB237 posttest rear view closeup	
Figure C.23.—DB238 posttest front view.	. 58
Figure C.24.—DB238 posttest rear view	. 58
Figure C.25.—DB238 posttest front view closeup.	. 59
Figure C.26.—DB238 posttest rear view closeup	
Figure C.27.—DB239 posttest front view.	
Figure C.28.—DB239 posttest rear view	60
Figure C.29.—DB239 posttest front view closeup.	. 61
Figure C.30.—DB239 posttest rear view closeup	. 61
Figure C.31.—DB240 posttest front view.	
Figure C.32.—DB240 posttest rear view	. 62
Figure C.33.—DB240 posttest front view closeup.	. 63
Figure C.34.—DB240 posttest rear view closeup	. 63
Figure C.35.—DB241 posttest front view.	. 64
Figure C.36.—DB241 posttest rear view	. 64
Figure C.37.—DB241 posttest front view closeup.	65
Figure C.38.—DB241 posttest rear view closeup	
Figure C.39.—DB242 locations of digital image correlation (DIC) measurements	
Figure C.40.—DB242 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	. 66
Figure C.41.—DB242 posttest front view closeup.	
Figure C.42.—DB242 posttest rear view closeup.	

Figure C.43.—DB243 locations of digital image correlation (DIC) measurements	68
Figure C.44.—DB243 out-of-plane displacement at time of maximum displacement. (a) Displacement	nt
versus length. (b) Displacement versus time. (c) Displacement Z	68
Figure C.45.—DB243 posttest front view closeup.	69
Figure C.46.—DB243 posttest rear view closeup	69
Figure C.47.—DB244 posttest front view.	70
Figure C.48.—DB244 posttest rear view	70
Figure C.49.—DB244 posttest front view closeup.	71
Figure C.50.—DB244 posttest rear view closeup	71
Figure C.51.—DB245 posttest front view.	72
Figure C.52.—DB245 posttest rear view	72
Figure C.53.—DB245 posttest front view closeup.	73
Figure C.54.—DB245 posttest rear view closeup	73
Figure C.55.—DB246 posttest front view.	74
Figure C.56.—DB246 posttest rear view	74
Figure C.57.—DB246 posttest front view closeup.	75
Figure C.58.—DB246 posttest rear view closeup	
Figure C.59.—DB247 locations of digital image correctation (DIC) measurements	
Figure C.60.—DB247 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure C.61.—DB247 posttest front view closeup.	
Figure C.62.—DB247 posttest rear view closeup	
Figure C.63.—DB248 posttest front view.	
Figure C.64.—DB248 posttest rear view	
Figure C.65.—DB248 posttest front view closeup.	
Figure C.66.—DB248 posttest rear view closeup	
Figure C.67.—DB249 posttest front view.	
Figure C.68.—DB249 posttest rear view	
Figure C.69.—DB249 posttest front view closeup.	
Figure C.70.—DB249 posttest rear view closeup.	
Figure C.71.—DB250 posttest front view.	
Figure C.72.—DB250 posttest rear view.	
Figure C.73.—DB250 posttest front view closeup.	
Figure C.74.—DB250 posttest rear view closeup.	
Figure C.75.—DB251 posttest front view	
Figure C.76.—DB251 posttest rear view.	
Figure C.77.—DB251 posttest front view closeup.	
Figure C.78.—DB251 posttest rear view closeup.	
Figure C.79.—DB252 pretest front view	
Figure C.80.—DB252 pretest from view.	
Figure C.81.—DB252 posttest front view closeup.	
Figure C.82.—DB252 posttest ront view closeup.	
Figure C.83.—DB253 posttest front view	
Figure C.84.—DB253 posttest rear view.	
•	
Figure C.85.—DB253 posttest front view closeup	
Figure C.ou.—DD233 dositest rear view closeud	89

Figure C.87.—DB254 posttest front view.	90
Figure C.88.—DB254 posttest rear view	90
Figure C.89.—DB254 posttest rear view closeup	91
Figure C.90.—DB255 posttest front view.	92
Figure C.91.—DB255 posttest rear view	92
Figure C.92.—DB255 posttest front view closeup	93
Figure C.93.—DB255 posttest rear view closeup	93
Figure C.94.—DB256 locations of digital image correlation (DIC) measurements	94
Figure C.95.—DB256 out-of-plane displacement at time of maximum displacement. (a) Displacem	nent
versus length. (b) Displacement versus time. (c) Displacement Z	94
Figure C.96.—DB257 locations of digital image correlation (DIC) measurements	95
Figure C.97.—DB257 out-of-plane displacement at time of maximum displacement. (a) Displacem	nent
versus length. (b) Displacement versus time. (c) Displacement Z	95
Figure C.98.—DB257 posttest front view closeup.	96
Figure C.99.—DB257 posttest rear view closeup	96
Figure C.100.—DB258 locations of digital image correlation (DIC) measurements	97
Figure C.101.—DB258 out-of-plane displacement at time of maximum displacement. (a) Displace	ment
versus length. (b) Displacement versus time. (c) Displacement Z	97
Figure C.102.—DB258 posttest front view closeup.	98
Figure C.103.—DB258 posttest rear view closeup	98
Figure C.104.—DB259 locations of digital image correlation (DIC) measurements	
Figure C.105.—DB259 out-of-plane displacement at time of maximum displacement. (a) Displace	ment
versus length. (b) Displacement versus time. (c) Displacement Z	99
Figure C.106.—DB259 posttest front view closeup.	100
Figure C.107.—DB259 posttest rear view closeup	100
Figure C.108.—DB260 locations of digital image correlation (DIC) measurements	101
Figure C.109.—DB260 out-of-plane displacement at time of maximum displacement. (a) Displace	ment
versus length. (b) Displacement versus time. (c) Displacement Z	101
Figure C.110.—DB260 posttest front view closeup.	102
Figure C.111.—DB260 posttest rear view closeup	
Figure C.112.—DB261 posttest front view.	103
Figure C.113.—DB261 posttest rear view	103
Figure C.114.—DB261 posttest front view closeup	104
Figure C.115.—DB261 posttest rear view closeup	
Figure C.116.—DB262 posttest front view.	
Figure C.117.—DB262 posttest rear view	105
Figure C.118.—DB262 posttest front view closeup.	106
Figure C.119.—DB262 posttest rear view closeup	106
Figure C.120.—DB263 posttest front view.	107
Figure C.121.—DB263 posttest rear view	
Figure C.122.—DB263 posttest front view closeup	
Figure C.123.—DB263 posttest rear view closeup	
Figure C.124.—DB264 locations of digital image correlation (DIC) measurements	
Figure C.125.—DB264 out-of-plane displacement at time of maximum displacement. (a) Displace	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure C.126.—DB264 posttest front view closeup.	

Figure C.127.—DB264 posttest rear view closeup	110
Figure C.128.—DB265 locations of digital image correlation (DIC) measurements	111
Figure C.129.—DB265 out-of-plane displacement at time of maximum displacement. (a) Dis	splacement
versus length. (b) Displacement versus time. (c) Displacement Z	111
Figure C.130.—DB265 posttest front view closeup.	
Figure C.131.—DB265 posttest rear view closeup	112
Figure C.132.—DB266 posttest front view.	113
Figure C.133.—DB266 posttest rear view	113
Figure C.134.—DB266 posttest front view closeup.	114
Figure C.135.—DB266 posttest rear view closeup	114
Figure C.136.—DB267 locations of digital image correlation (DIC) measurements	115
Figure C.137.—DB267 out-of-plane displacement at time of maximum displacement. (a) Dis	
versus length. (b) Displacement versus time. (c) Displacement Z	_
Figure C.138.—DB267 posttest front view closeup.	
Figure C.139.—DB267 posttest rear view closeup	
Figure C.140.—DB268 posttest front view.	
Figure C.141.—DB268 posttest rear view	
Figure C.142.—DB268 posttest front view closeup.	
Figure C.143.—DB268 posttest rear view closeup	
Figure C.144.—DB269 locations of digital image correlation (DIC) measurements	
Figure C.145.—DB269 out-of-plane displacement at time of maximum displacement. (a) Dis	
versus length. (b) Displacement versus time. (c) Displacement Z	_
Figure C.146.—DB269 posttest front view closeup.	
Figure C.147.—DB269 posttest rear view closeup	
Figure C.148.—DB270 locations of digital image correlation (DIC) measurements	
Figure C.149.—DB270 out-of-plane displacement at time of maximum displacement. (a) Dis	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure C.150.—DB270 posttest front view closeup.	
Figure C.151.—DB270 posttest rear view closeup	
Figure C.152.—DB271 locations of digital image correlation (DIC) measurements	
Figure C.153.—DB271 out-of-plane displacement at time of maximum displacement. (a) Dis	
versus length. (b) Displacement versus time. (c) Displacement Z	•
Figure C.154.—DB271 posttest front view closeup.	
Figure C.155.—DB271 posttest rear view closeup	
Figure C.156.—DB272 locations of digital image correlation (DIC) measurements	
Figure C.157.—DB272 out-of-plane displacement at time of maximum displacement. (a) Dis	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure C.158.—DB272 posttest front view closeup.	
Figure C.159.—DB272 posttest rear view closeup	
Figure D.1.—LG1110 locations of digital image correlation (DIC) measurements	
Figure D.2.—LG1110 out-of-plane displacement at time of maximum displacement. (a) Disp	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure D.3.—LG1110 posttest front view.	
Figure D.4.—LG1110 posttest rear view.	
Figure D.5.—LG1110 postest projectile top view	
Figure D.6.—LG1110 postest projectile bottom view	
1 1501 v 2.0.	

Figure D.7.—LG1111 locations of digital image correlation (DIC) measurements	. 130
Figure D.8.—LG1111 out-of-plane displacement at time of maximum displacement. (a) Displacemen	t
versus length. (b) Displacement versus time. (c) Displacement Z	. 130
Figure D.9.—LG1111 posttest displacements (a) Diplacement versus length. (b) Displacement Z	. 131
Figure D.10.—LG1111 posttest front view.	
Figure D.11.—LG1111 posttest projectile bottom view	. 132
Figure D.12.—LG1111 posttest projectile side view	. 132
Figure D.13.—LG1113 posttest front view.	. 133
Figure D.14.—LG1113 posttest rear view.	
Figure D.15.—LG1113 ejected material from panel.	. 134
Figure D.16.—LG1113 posttest projectile	. 134
Figure D.17.—LG1114 posttest front view.	. 135
Figure D.18.—LG1114 posttest rear view.	
Figure D.19.—LG1114 posttest projectile	
Figure D.20.—LG1115 posttest front view.	. 137
Figure D.21.—LG1115 posttest rear view.	. 137
Figure D.22.—LG1115 posttest projectile.	
Figure D.23.—LG1116 locations of digital image correlation (DIC) measurements	. 139
Figure D.24.—LG1116 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure D.25.—LG1116 posttest displacements. (a) Displacement versus length. (b) Displacement Z	
Figure D.26.—LG1116 posttest front view.	
Figure D.27.—LG1116 posttest top view.	
Figure D.28.—LG1116 posttest projectile side view	
Figure D.29.—LG1116 posttest projectile bottom view	
Figure D.30.—LG1125 posttest front view.	
Figure D.31.—LG1125 posttest rear view	
Figure D.32.—LG1125 posttest projectile	
Figure D.33.—LG1126 posttest front view.	
Figure D.34.—LG1126 posttest rear view.	
Figure D.35.—LG1126 posttest projectile	
Figure D.36.—LG1127 locations of digital image correlation (DIC) measurements	
Figure D.37.—LG1127 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure D.38.—LG1127 posttest displacements. (a) Displacement versus length. (b) Displacement Z	
Figure D.39.—LG1127 posttest front view.	
Figure D.40.—LG1127 posttest rear view	
Figure D.41.—LG1127 posttest projectile	
Figure D.42.—LG1128 locations of digital image correlation (DIC) measurements	
Figure D.43.—LG1128 out-of-plane displacement at time of maximum displacement. (a) Displacement	
versus length. (b) Displacement versus time. (c) Displacement Z	
Figure D.44.—LG1128 posttest displacements. (a) Displacement versus length. (b) Displacement Z	
Figure D.45.—LG1128 posttest front view.	
Figure D.46.—LG1128 posttest rear view	
Figure D.47.—LG1128 posttest projectile.	.152

Impact Testing of Inconel 718 for Material Impact Model Development

J. Michael Pereira, Duane M. Revilock, and Charles R. Ruggeri National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Summary

One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain-rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition, there is often a lack of quantitative measurements in impact tests to which the models can be compared.

To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data, and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the Federal Aviation Administration (FAA) William J. Hughes Technical Center. Unique features of this set of data are that all material property and impact test data are obtained using traceable material, the test methods and procedures are extensively documented, and all of the raw data is available. Four parallel efforts are currently underway. The Ohio State University conducts both measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles. The George Mason University conducts the development of improved numerical modeling techniques for deformation and failure. Glenn conducts the impact testing of flat panels and substructures.

This report describes impact testing performed on Inconel 718 sheet and plate samples of different thicknesses with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.

Nomenclature

DIC digital image correlation

FAA Federal Aviation Administration NGFBF NASA Generic Fan Blade Fragment

V₅₀ velocity at which the probability of penetration is 50 percent

1.0 Introduction

Numerical simulation of dynamic impact events has reached a level of maturity at which it is commonly used as a design tool for a wide variety of aerospace structures such as jet engine containment systems, fan blades, radomes, cowling wings, and empennages. However, current efforts require extensive testing in parallel with modeling and it is often necessary to adjust model parameters somewhat arbitrarily in order that the model fit the test results. Explicit transient finite element modeling of even the

simplest of problems, such as a regularly shaped projectile impacting a flat plate can result in widely varying results, depending on the material and failure models, available material properties, the contact models, the mesh density, and a number of different numerical parameters that must be specified in the computer codes.

One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain-rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition, there is often a lack of quantitative measurements from impact tests to which the models can be compared.

To alleviate some of these problems, a project is underway to develop a consistent set of material property and impact test data and failure analysis for a variety of materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the Federal Aviation Administration (FAA) William J. Hughes Technical Center. Unique features of this set of data are that all material property and impact test data are obtained using traceable material, the test methods and procedures are extensively documented, and all of the raw data is available. Four parallel efforts are currently underway: measurement of material deformation and failure response over a wide range of strain rates and temperatures; development of improved numerical modeling techniques for deformation and failure; ballistic impact testing of flat panels and substructures; and failure analysis of material property specimens and impact test articles.

This report describes impact testing conducted on Inconel 718 sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a generic jet engine fan blade fragment called the NASA Generic Fan Blade Fragment (NGFBF). The test program described in this report is similar to one conducted on Al 2024 and Ti-6Al-4V sheet and plate samples described in Reference 1. Procedures and results are reported in detail, and information about obtaining raw data is provided. The material properties of this material, measured over a range of temperatures and strain rates will be provided in a separate report.

2.0 Methods

Impact tests were conducted on precipitation-hardened Inconel 718 panels with two different areal dimensions, 24- by 24-in. large panel and 15- by 15-in. small panel. The smaller panels were impacted in a normal direction with cylindrical projectiles ranging in diameter from 0.375 to 0.75 in. The larger panels were impacted by the NGFBF as a simplified simulation of a blade impacting a containment structure in an oblique orientation. Different test setups were used for the two sets of impact tests, as described in the following sections. Strains and displacements were measured on the backside of the panels using digital image correlation (DIC) techniques, providing data useful for validating numerical impact models.

2.1 Materials

Impact tests for both the small and large panels were conducted on precipitation-hardened Inconel 718 sheet and plate material of the thicknesses shown in Table I. The nominal thickness in the table is the thickness stated on the certification sheet and the actual thickness is based on averages of multiple measurements of the as-received material. The material certification sheets are given in Appendix A. For consistency, future reference to target thickness in this report refers to the nominal thickness of the material.

TABLE I.—TEST SPECIMEN NOMINAL AND MEASURED THICKNESSES

Thickness				Panels				
			Small			Large		
Nominal, in.	0.0500	0.08	0.125	0.250	0.50	0.0500	0.125	
Actual, in.	.0495	.08	.126	.263	.53	.0495	.126	

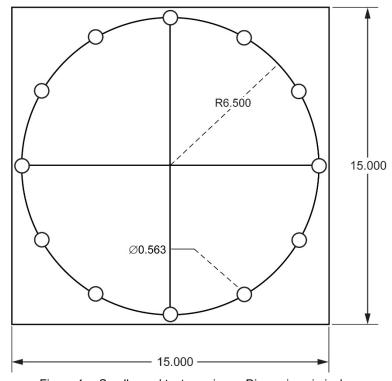


Figure 1.—Small panel test specimen. Dimensions in inches.

The sheet and plate material was received in the annealed condition and precipitation hardened according to the following schedule:

- 1. Heat to 1,325 °F (718 °C) and hold for 8 h in inert environment.
- 2. Furnace cool at 100 °F (55 °C) per hour to 1,150 °F (621 °C). Hold for 8 h.
- 3. Cool in air or argon.

The heat treatment resulted in a hardness of HRC 44 (certification sheet, Appendix B).

2.2 Small Panel Test Setup

A minimum of seven ballistic impact tests were conducted on each of the different thickness target panels shown in Table I. The test specimens were cut in squares, 15 in. on a side, with through holes for mounting bolts as shown in Figure 1. The through holes were 9/16 in. in diameter on a 13-in.-diameter bolthole circle. They were held in massive steel fixtures with a 10-in.-circular aperture as shown in Figure 2. The two parts of the fixture were 1.5-in.-thick steel.

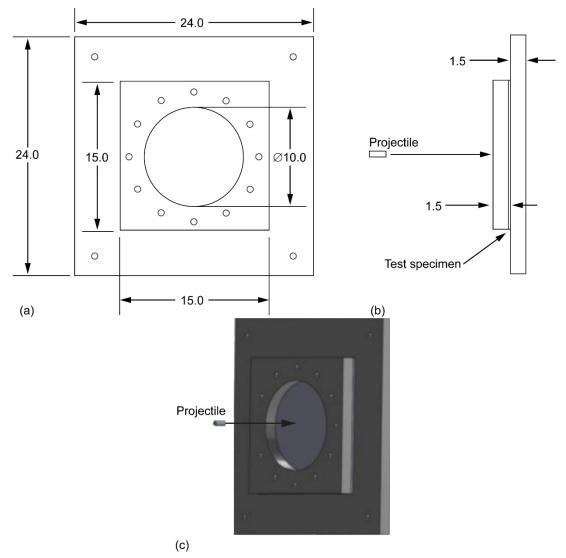


Figure 2.—Test fixture assembly. Dimensions in inches. (a) Front view. (b) Side view. (c) Clamp fixture assembly.

The projectiles were cylindrical with a large radius front face and impacted the plates in a normal orientation at the center of the plate. The only exception to this was with one of the 0.5-in. specimens, tests DB266 through DB268. These were conducted on the same panel at locations at least 3 in. away from each other. Conducting multiple tests on a single 0.5-in.-thick panel was considered acceptable as the damage in plates of this thickness was highly localized. The tests were designed such that the ballistic limit velocity for the particular combinations of projectiles and panels was in the range of 600 to 900 ft/s. This corresponds to the high-speed range of the center of mass of a typical uncontained engine fan blade fragment. The impact tests were conducted at speeds above and below the ballistic limit so that some projectiles penetrated and some did not.

TABLE II.—PROJECTILE MATERIAL AND DIMENSIONS FOR

Panel thickness,	Projectile material	Projectile length, in.	Projectile diameter, in.	Average mass,
0.05	S7 tool steel	0.75	0.375	11.2
0.08	S2 tool steel	.86	.5	21.2
0.125	S2 tool steel	.86	.5	21.2
0.25	S2 tool steel	1.0	.5	21.2
0.5	A2 tool steel	2.245	.75	126.4

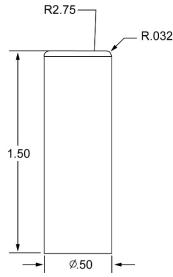


Figure 3.—Sample small panel projectile. Length and diameter vary depending on test specimen thickness and material. Dimensions in inches.

2.2.1 Projectiles

The projectiles used for the small panel testing were hardened tool steel cylindrical rods with varying length, diameter, and material as shown in Table II. They had a relatively large nose radius of 2.75 in., which allowed a slight deviation in the normal orientation of the projectile without a front edge impact (Figure 3). The edge of the front face was "broken" with a 1/32-in. radius. The projectiles were hardened to a minimum of Rockwell 55C.

2.2.2 Gas Gun

The cylindrical projectiles were accelerated with a helium-filled gas gun connected to a vacuum chamber, shown in Figure 4. The gun barrel had a length of 12 ft and a bore of 2.0 in. The pressure vessel was made up of sections as shown in Figure 5, with a total volume of 681 in³. The projectile was carried down the gun barrel supported by rigid foam in a cylindrical polycarbonate sabot shown in Figure 6. The gun barrel protruded into the vacuum chamber, which held the fixture for the specimens. The sabot was stopped at the end of the gun barrel by a stopper plate with a through hole large enough to allow the projectile to pass through. This stopper system was designed such that the bottom of the sabot, including the O-rings, remained in the gun barrel and formed a seal, which prevented the gas pressure behind the sabot from affecting the pressure in the vacuum chamber.

Figure 4.—Large vacuum gas gun. Shown with 3-in.-diameter gun barrel.

Figure 5.—Pressure vessel.

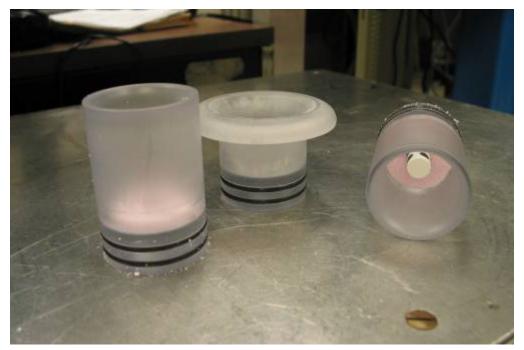


Figure 6.—Sabots used to transport projectile down gun barrel. Posttest sabot shown in center.

2.2.3 Instrumentation

Data acquired from the impact tests included measurements of the impact velocity, post-impact velocity (if penetration occurred), projectile orientation prior to impact, and full-field backside strain and displacement measurements using a DIC system. In addition, high-speed cameras provided qualitative observations of each test.

Seven high-speed digital cameras were used for each test. These cameras provided a side view of the front of the panel and two views of the rear of the panel (side and top) for post-impact velocity measurement. In addition, a calibrated pair of cameras located above and in front of the panel were used to measure impact velocity and projectile orientation, and a calibrated pair of cameras viewing the backside of the panel were used to compute the backside displacement and strain. The locations of these cameras are shown schematically in Figure 7.

The speed and orientation of the projectile were measured by tracking the position of markers on the projectile and the position of three fixed points, which defined the fixed laboratory coordinate system. The point tracking was accomplished with the use of a calibrated pair of high-speed cameras (Phantom V7.3, Vision Research, Inc.) and the PONTOS point tracking software system (GOM). The three fixed points were located on a metal plate mounted to the specimen fixture in a horizontal plane directly below the path of the projectile as shown in Figure 8. The three points defined a coordinate system with the x-axis pointing in the opposite direction of the direction of travel of the projectile, the z-axis vertically upward, and the y-axis in the horizontal plane and in a direction defined by the vector product of unit vectors in the z and x directions, respectively (Figure 8). The origin of the coordinate system was at point 1 shown in Figure 8. All positions reported for the projectile and the impact point were computed with respect to this coordinate system.

For tests in which the projectile penetrated the panel, the exit velocity of the projectile was measured using a second pair of calibrated Phantom V7.3 cameras and the PONTOS point tracking system.

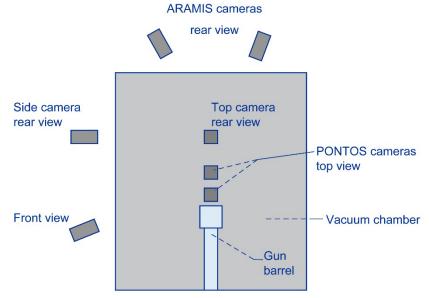


Figure 7.—Top view of vacuum chamber showing high-speed camera locations. PONTOS and ARAMIS made by GOM.

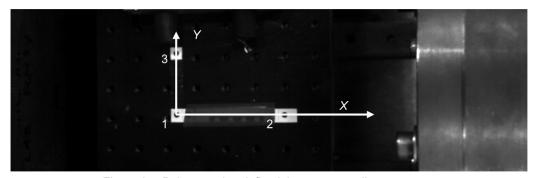


Figure 8.—Points used to define laboratory coordinate system.

Full-field displacement and strain measurements were obtained using a calibrated pair of high-speed digital cameras (Photron model SA1.1, Photron USA) and a DIC software package (ARAMIS, GOM). The cameras were located on the outside of the vacuum chamber and viewed the backside of the panel through two viewports. The distance from the cameras to the panel was approximately 36 in. and between the cameras was approximately 16 in. The cameras were set with a resolution of 256×216 pixels, an exposure of 5 μ s and a frame rate of 150,000 frames per second. The backside of each panel was painted with a random set of black dots on a white background as required by the ARAMIS software. From the images, the software computed the displacements in three directions at any point in the view for every recorded frame. In-plane strains on the back surface of the panel were computed from the displacements.

2.3 Large Panel Test Setup

Impact tests were conducted on large panels with two different thicknesses. These tests were designed to involve a more realistic projectile and non-normal impact orientation to provide data for validation of numerical models under conditions more complex than the small panel tests. It also is a better representative laboratory test for a turbine-engine blade release event. Since the release of an engine blade is tangential, as the blade is released the tip makes contact in such a way that it tends to bend, as opposed

to a blade exiting in a purely radial direction. This creates a moment and the blade rotates after initial contact, with the heavier root section often being the part of the blade that penetrates the engine case. This test is a simple rig test to try to more accurately represent this type of impact.

2.3.1 Test Specimens

The test specimens were 24-by 24-in. precipitation-hardened Inconel 718 with a nominal thicknesses of 0.125 in. These specimens were cut from the same sheet material as the small panel test specimens. Actual thicknesses are shown in Table I. The panels were held at a 45° angle in a square fixture with a 20-by 20-in. aperture as shown in Figure 9. The panels were through-bolted with twenty-four 0.5-in. bolts equally spaced around the sides, 1 in. from the edges, and they were mounted such that the rolling direction of the sheet was in the vertical direction.

Figure 9.—Large panel test setup showing orientation of projectile and test specimen.

2.3.2 Projectile

Two NGFBF projectiles were used for the large panel tests, designated thick and thin, as shown in Figure 10 and Figure 11. The two were similar in shape but differed in the thickness dimension. The projectiles were Ti-6Al-4V, AMS 4911, with nominal masses of 340 and 430 g for the thin and thick projectiles, respectively. The desired orientation of the projectile at impact was at a 45° angle from vertical such that the flat plane of the projectile was at a 90° angle to the plane of the test specimen. A still image from a high-speed video of an impact test, directly before impact is shown in Figure 12.

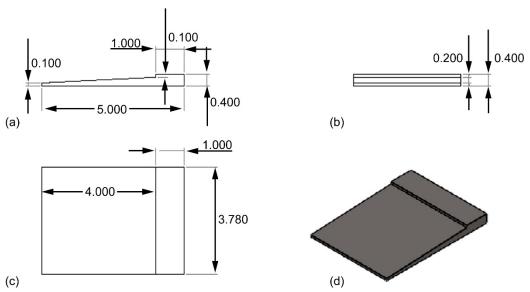


Figure 10.—Thin generic fan blade fragment. Dimensions in inches. (a) Side view. (b) Front view. (c) Top view. (d) View of model.

Figure 11.—Thick generic fan blade fragment. Dimensions in inches. (a) Side view. (b) Front view. (c) Top view. (d) View of model.

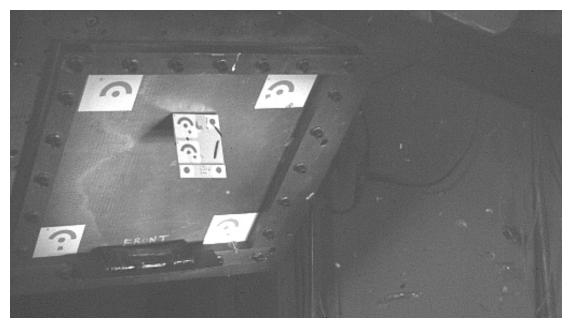


Figure 12.—Still image from high-speed movie of impact test taken directly before impact.

2.3.3 Instrumentation

Full field displacement data on the backside of the impacted panels were obtained using a pair of calibrated Phantom V7.3 high-speed cameras and a DIC system, similar to the small panel tests.

To measure the projectile linear and angular position and velocity, a pair of calibrated Photron SA-X2 cameras and the PONTOS point tracking software were used to track the position of individual markers on the projectile. These were used to establish the projectile coordinate system and calculate velocity and orientation relative to the fixed laboratory coordinate system.

The fixed laboratory coordinate system was specified with the origin at the center of the impact face of the test panel with the x direction in the direction of the axis of the gun barrel. The y direction was to the right when looking toward the test specimen from the gun barrel and the z direction was vertically downward.

The projectile coordinate system is shown in Figure 13. The origin of the coordinate system was located at a point on the root of the blade 0.5 in. from the bottom edge and 0.5 in. from the side, as shown in the figure. The y-axis of the coordinate system was pointed to the right, parallel to the bottom edge. The x-axis was parallel to the edge of the projectile and pointed from the origin to another point along the top face of the projectile located an absolute distance L from the origin.

To report the position, velocity, and orientation of the projectile, the position and velocity of the origin of the projectile local coordinate system are given with respect to the fixed laboratory coordinate system. The angular position and velocity are given as a set of Euler angles and angular velocities with respect to the moving coordinate system. The Euler angles are defined as a rotation about the fixed laboratory x-axis (roll), followed by a rotation about the once-rotated local y-axis (pitch), followed by a rotation about the twice-rotated local z-axis (yaw).

In addition to the above cameras, a Phantom V7.3 camera oriented normal to the path of the projectile from the side was used for a redundant velocity measurement, and a Phantom V7.3 camera viewing from above was used to measure the velocity of the projectile if it penetrated the panel.

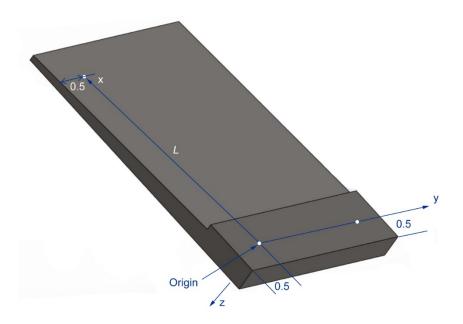


Figure 13.—Projectile local coordinate system. Dimensions are in inches.

For the tests on the 0.125-in. material, the backside DIC cameras were operating at a frame rate of 20,000 frames per second, an exposure of 4 μ s, and a resolution of 352 \times 368 pixels. The front-side photogrammetry cameras were operating at 60,000 frames per second with an exposure of 2.5 μ s and a resolution of 768 \times 256 pixels.

For the tests on the 0.05-in. material, the backside DIC cameras were operating at a frame rate of 20,000 frames per second, an exposure of 4 μ s and a resolution of 384 \times 344 pixels. The front-side photogrammetry cameras were operating at 40,000 frames per second with an exposure of 2.5 μ s and a resolution of 768 \times 392 pixels.

For all tests, the side camera was operating at a rate of 32,000 frames per second, an exposure of 10 μ s, and a resolution of 608 \times 96 pixels. The top camera was operating at a rate of 10,000 frames per second, an exposure of 25 μ s and a resolution of 400 \times 600 pixels.

2.3.4 Test Configuration

The desired orientation of the projectile at impact was 0° about the x-axis (roll), 45° about the projectile y-axis (pitch), and 0° about the (rotated) projectile z-axis (yaw). In this orientation, the angle between the projectile and the test panel was 90°. This orientation was not achieved exactly in all tests, but the actual orientations (Euler angles) were measured and recorded.

3.0 Results and Discussion

Fifty instrumented impact tests were conducted in total for the two different size test specimens. The following sections describe and discuss the test results.

3.1 Small Panel Impact Tests

A total of 40 small panel impact tests were conducted on five different specimen thicknesses. The tests were conducted at velocities that bracketed the penetration threshold velocity of the panel. The projectile size and mass were different for each panel size to maintain a penetration threshold in the 600 to 900 ft/s range. The results of the tests are summarized in Table III. In a number of instances, the size of the projectile was changed after the first test of a given specimen thickness. This occurred with the 0.05-and 0.08-in.-thick specimens.

Figure 14 through Figure 18 plot the penetration (0 or 1) against the projectile impact velocity. For tests on the 0.05-, 0.08-, and 0.125-in. specimens, there was no overlap in the results, meaning that the lowest velocity where penetration occurred was higher than the highest nonpenetrating test velocity. For the 0.25- and 0.5-in. specimens, there is some overlap. For cases in which there is an overlap, a logistic regression analysis was used to compute the probability of penetration and the velocity at which the probability of penetration is 50 percent, termed the V_{50} . For cases in which there is no overlap, it is not possible to compute the probability, so the V_{50} is assumed to be the average of the highest nonpenetrating velocity and the lowest penetrating velocity. The V_{50} of the different thickness panels is shown in Table IV.

TABLE III.—SMALL PANEL IMPACT TEST RESULTS

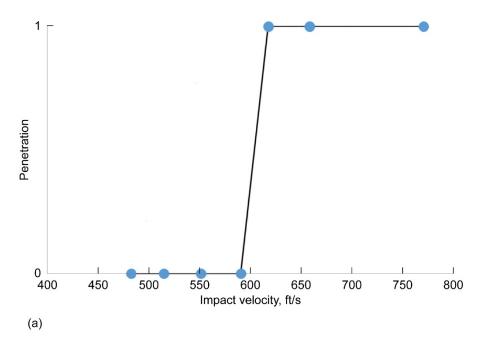

Test	Panel thickness,	Projectile				Impact k velocity		Exit velocity		Exit KE,	Penetrate	Comments
	in.	Dimensions, length × diameter, in.	Material	Mass,	ft/s	m/s	(KE), J	ft/s	m/s	J		
DB232	0.0495	1.00×0.375	S7	14.94	806.0	245.7	450.8	660.1	201.2	302.4	1	Penetrate
DB234	0.0495	0.75×0.375	S7	11.19	485.0	147.8	122.3	0.0	0.0	0.0	0	Did not penetrate; and no crack
DB235	0.0495	0.75×0.375	S7	11.20	517.0	157.6	139.1	0.0	0.0	0.0	0	Did not penetrate; and no crack
DB236	0.0495	0.75×0.375	S7	11.21	593.0	180.7	183.1	0.0	0.0	0.0	0	Did not penetrate but produced a crack
DB237	0.0495	0.75×0.375	S7	11.22	553.6	168.7	159.7	0.0	0.0	0.0	0	Did not penetrate; and through crack around perimeter of impact
DB238	0.0495	0.75×0.375	S7	11.21	660.5	201.3	227.2	248.8	75.8	32.2	1	Penetrated; and flap separated from panel
DB239	0.0495	0.75×0.375	S7	11.19	620.0	189.0	199.8	363.0	110.6	68.5	1	Penetrated; and clean hole in panel
DB240	0.0495	0.75×0.375	S7	11.22	773.0	235.6	311.4	621.0	189.3	201.0	1	Penetrated
DB241	0.0800	0.853×0.500	S2	21.16	763.0	232.6	572.2	515.0	157.0	260.7	1	Penetrated
DB242	0.0800	0.86×0.50	S2	21.16	632.0	192.6	392.6	0.0	0.0	0.0	0	Did not penetrate; and no crack
DB243	0.0800	0.86×0.50	S2	21.26	647.0	197.6	413.4	0.0	0.0	0.0	0	Did not penetrate; and no crack
DB244	0.0800	0.86×0.50	S2	21.20	694.1	211.6	474.4	146.2	44.6	21.0	1	Penetrated; and flap stayed connected to panel

TABLE III.—Continued.

Test	Panel thickness,	Projectile				oact ocity	Kinetic energy	Exit v	elocity	Exit KE,	Penetrate	Comments
	in.	Dimensions, length × diameter, in.	Material	Mass, g	ft/s	m/s	(KE), J	ft/s	m/s	J		
DB245	0.0800	0.86×0.50	S2	21.23	683.0	208.2	460.0	259.0	78.9	66.2	1	Penetrated; and flap separated from panel
DB246	0.0800	0.86×0.50	S2	21.23	653.3	199.1	420.9	0.0	0.0	0.0	0	Did not penetrate; and through crack at bottom
DB247	0.0800	0.86×0.50	S2	21.24	661.0	201.5	431.1	0.0	0.0	0.0	0	Did not penetrate; and crack around approximately half of perimeter at top
DB248	0.0800	0.86×0.50	S2	21.25	823.6	251.0	669.6	609.0	185.6	366.1	1	Fully penetrated; and plug velocity 697 ft/s
DB249	0.0800	0.86×0.50	S2	21.23	846.0	257.9	705.8	632.0	192.6	393.9	1	Fully penetrated
DB250	0.1260	0.86×0.50	S2	21.23	853.0	260.0	717.5	549.5	167.5	297.8	1	Fully penetrated; and plug velocity 652 ft/s
DB259	0.1270	0.86×0.50	S2	21.30	657.0	200.3	427.1	0.0	0.0	0.0	0	Did not penetrate; and through crack in part of perimeter
DB260	0.1270	0.86×0.50	S2	21.31	685.6	209.0	465.3	0.0	0.0	0.0	0	Did not penetrate; and crack around approximately half of perimeter
DB261	0.1270	0.86×0.50	S2	21.28	739.9	225.5	541.1	0.0	0.0	0.0	0	Perforation hole; and projectile did not penetrate. Plug ejected on backside
DB262	0.1270	0.86×0.50	S2	21.30	776.0	236.5	595.8	429.9	131.0	182.9	1	Penetrated
DB263	0.1270	0.86×0.50	S2	21.28	770.6	234.9	587.0	373.7	113.9	138.0	1	Penetrated
DB264	0.1270	0.86×0.50	S2	21.29	709.1	216.1	497.3	0.0	0.0	0.0	0	Did not penetrate; and created a flap
DB265	0.1270	0.86×0.50	S2	21.30	639.0	194.8	404.0	0.0	0.0	0.0	0	No penetration or cracking
DB251	0.2630	0.86×0.50	S2	21.27	861.0	262.4	732.4	0.0	0.0	0.0	0	Did not penetrate; and plug velocity 157 ft/s

 $TABLE\ III.—Concluded.$

Test	Panel thickness,	Projectile			Impact velocity		Kinetic energy	Exit velocity		Exit KE,	Penetrate	Comments
	in.	Dimensions, length × diameter, in.	Material	Mass, g	ft/s	m/s	(KE), J	ft/s	m/s	J		
DB252	0.2630	1.00×0.50	S2	24.57	867.3	264.4	858.5	170.7	52.0	33.3	1	Fully penetrated
DB253	0.2630	1.00×0.50	S2	24.52	822.0	250.5	769.6	N/A	0.0	0.0	0	Projectile was captured; and plug exited hole
DB254	0.2630	1.00×0.50	S2	24.57	761.0	232.0	661.0	123.5	37.6	17.4	1	Projectile fully penetrated panel
DB255	0.2630	1.00×0.50	S2	24.88	760.0	231.6	667.5	N/A	0.0	0.0	0	Projectile was captured
DB256	0.2630	1.00×0.50	S2	24.86	570.8	174.0	376.2	N/A	0.0	0.0	0	Did not penetrate; and no crack
DB257	0.2630	1.00×0.50	S2	24.80	652.2	198.8	490.0	N/A	0.0	0.0	0	Did not penetrate; and no crack
DB258	0.2630	1.00×0.50	S2	24.80	719.5	219.3	596.4	N/A	0.0	0.0	0	Did not penetrate; and through crack around most of perimeter
DB266	0.5300	2.245×0.750	A2	126.30	668.7	203.8	2,623.4	172.4	52.5	174.4	1	Penetrated; and plug exit velocity 216 ft/s
DB267	0.5300	2.245×0.750	A2	126.32	528.1	161.0	1,636.5	N/A	0.0	0.0	0	Did not penetrate; and created a dent but no visible crack
DB268	0.5300	2.245×0.750	A2	126.31	626.0	190.8	2,299.3	179.0	54.6	188.0	1	Penetrated; and plug exit velocity 220 ft/s
DB269	0.5300	2.245×0.750	A2	126.39	591.8	180.4	2,056.2	N/A	0.0	0.0	0	Did not penetrate; and no visible crack
DB270	0.5300	2.245×0.750	A2	126.39	602.9	183.8	2,134.0	N/A	0.0	0.0	0	Did not penetrate; and no visible crack
DB271	0.5300	2.245×0.750	A2	126.41	620.5	189.1	2,260.8	N/A	0.0	0.0	0	Did not penetrate; and no visible crack
DB272	0.5300	2.245×0.750	A2	126.47	642.0	195.7	2,421.3	N/A	0.0	0.0	0	Did not penetrate; and no visible crack

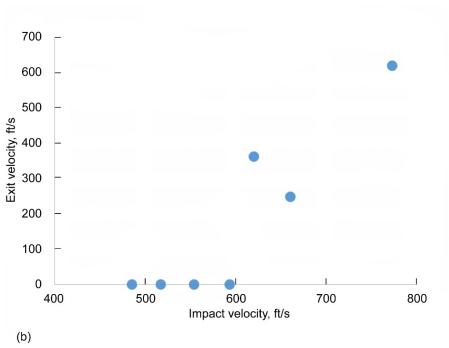
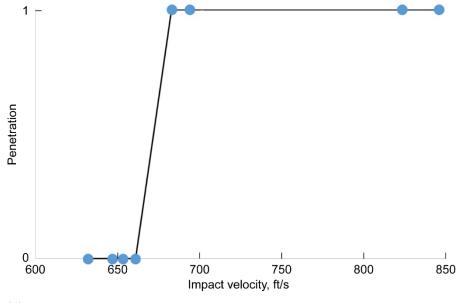



Figure 14.—Penetration results for 0.05-in. (nominal) small panels. (a) Penetration (1 = yes, 0 = no). (b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent, V_{50} , was 607 ft/s.

(a)

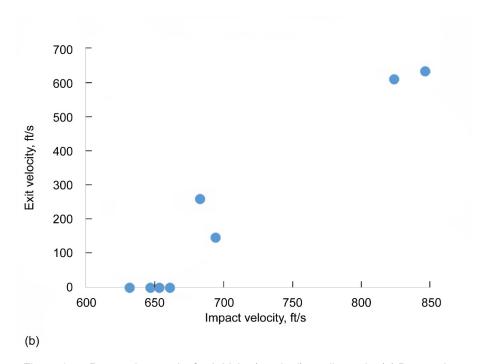
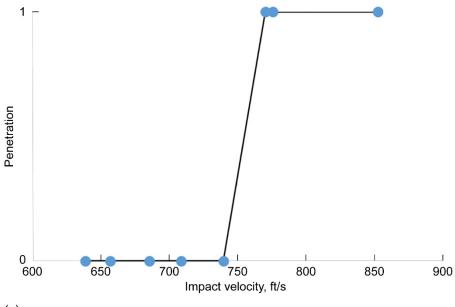



Figure 15.—Penetration results for 0.08-in. (nominal) small panels. (a) Penetration (1 = yes, 0 = no). (b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent, V_{50} , was 672 ft/s.

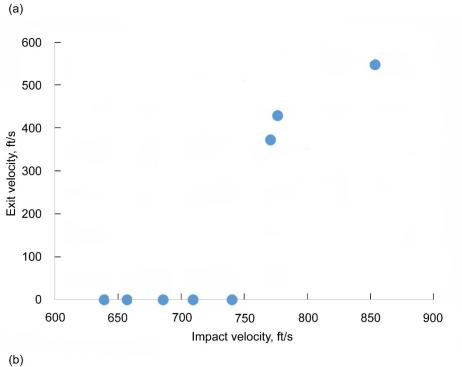


Figure 16.—Penetration results for 0.125-in. (nominal) small panels. (a) Penetration (1 = yes, 0 = no). (b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent, V_{50} , was 655 ft/s.

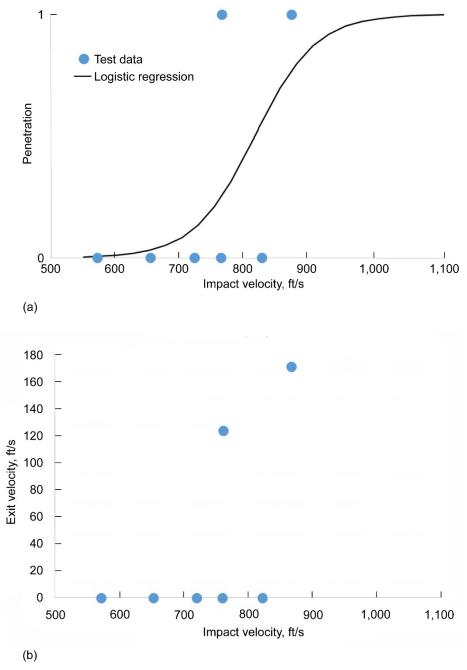


Figure 17.—Penetration results for 0.25-in. (nominal) small panels. (a) Probability of penetration. (b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent, V_{50} , was 812 ft/s.

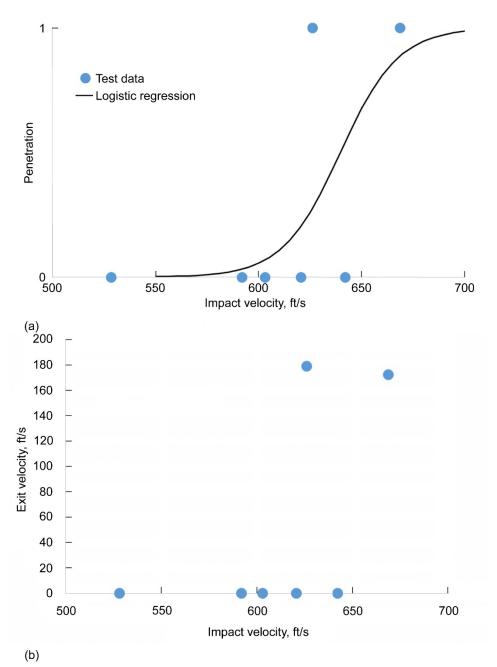


Figure 18.—Penetration results for 0.5-in. (nominal) small panels. (a) Probability of penetration. (b) Exit velocity versus impact velocity. Velocity at which probability of penetration is 50 percent V_{50} , was 640 ft/s.

TABLE IV.— V_{50} MEASUREMENTS FOR DIFFERENT PANEL THICKNESSES

DITTERENT TANEE THICKNESSES								
Panel thickness,	V ₅₀ ,							
in.	ft/s							
0.05	607							
0.08	672							
0.125	655							
0.25	812							
0.8	640							

Photographs and deformation response from the small panel tests are given in Appendix C.

TABLE V.—LARGE PANEL IMPACT TEST RESULTS

Test	Panel	Projectile Impact				velocity	Translational	Exit	Comments
	thickness,	,		of blade center		kinetic	Velocity		
	in.					nass	energy,	(ft/s)	
		Thickness	Material	Mass,	ft/s	m/s	J		
				g					
LG1110	0.08	Thin	Ti-6Al-4V	311	913	278.3	12,044	0	Did not penetrate
LG1111	0.08	Thin	Ti-6Al-4V	325	1,120	341.4	18,940	0	Did not penetrate
LG1113	0.08	Thick	Ti-6Al-4V	431	1,112	338.9	24,751	0	Complete perforation initiated at tip; large piece separated from panel; and blade fractured but did not completely penetrate the panel.
LG1114	0.08	Thick	Ti-6Al-4V	445	895	272.8	16,558	0	Complete perforation initiated at tip; large piece of panel ripped away but remained attached; and blade fractured but did not completely penetrate panel
LG1115	0.08	Thick	Ti-6Al-4V	444	720	219.5	10,696	0	Blade tumbled; did not penetrate or crack specimen; and incorrect blade orientation
LG1116	0.08	Thick	Ti-6Al-4V	445	741	225.9	11,354	0	Did not penetrate or crack specimen
LG1125	0.05	Thin	Ti-6Al-4V	328	634	193.2	6,122	176	Penetrated; tip impacted and slide down; and heavier root section penetrated
LG1126	0.05	Thin	Ti-6Al-4V	327	378	115.2	2,170	140	Penetrated; tip impacted and slide down; and heavier root section penetrated.
LG1127	0.05	Thin	Ti-6Al-4V	326	261	79.6	1,033	0	Did not penetrate
LG1128	0.05	Thin	Ti-6Al-4V	331	322	98.1	1,593	0	Did not penetrate

3.2 Large Panel Impact Tests

Six tests were conducted on the 0.08-in.-thick large Inconel 718 heat-treated panels, two with the thin projectile (Figure 10) and four with the thick projectile (Figure 11). Four tests were conducted on the 0.05-in.-thick large panels with the thin projectile (Figure 10). For the 0.08-in.-thick panels, neither of the tests with the thin projectile resulted in penetration. Two tests with the thick projectile resulted in full perforation of the panel but the projectile itself did not penetrate through the panel. It should be noted that the energy required to fully perforate the panel in test LG1114 was less than that of test LG1111, in which there was no perforation. This may be due to the fact that the thicker blade used in test LG1114 was less likely to bend, presenting a stiffer impact surface. While the projectiles in both tests, LG1113 and LG1114, completely fractured, there was less bending in the tip. For the 0.05-in.-thick panels, two tests resulted in penetration and the penetration velocity was bounded between 322 and 378 ft/s. The results for the large panel tests are summarized in Table V. The linear and angular positions and velocities of the blade local coordinate system origin differ from those of the center of mass shown in Table V. Photographs and deformation response from the large panel tests are presented in Appendix D.

TABLE VI.—LINEAR AND ANGULAR POSITION AND VELOCITY OF THE PROJECTILE LOCAL COORDINATE SYSTEM AT THE TIME OF IMPACT

[The projectile x-axis dimension refers to the dimension, *L*, given in Figure 13. Note in test LG1113, the photogrammetry cameras did not trigger so position and velocity data were not obtained.]

		Projec	ctile posit	ion and o	rientation			Projectile					
Test Number	X, in.	Y, in.	Z, in.	Roll, deg	Pitch, deg	Yaw, deg	X, ft/s	Y, ft/s	Z, ft/s	Roll, deg/s	Pitch, deg/s	Yaw, deg/s	x-axis dimension, L, in.
LG1110	-5.8	-1.0	0.4	-2.7	64.2	3.4	935.9	6.3	-9.0	-75.3	7,152.8	1,283.6	2.74
LG1111	-6.9	-1.2	-0.5	-1.5	58.0	-1.0	1,149.8	11.4	-17.8	198.7	7,216.8	-275.8	3.56
LG1113	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LG1114	-6.4	-0.8	0.1	-2.0	59.3	0.2	939.0	0.6	-20.5	-1,315.5	4,167.6	1,597.0	3.85
LG1116	-5.9	-1.6	0.9	0.8	66.5	-0.5	773.4	-39.2	-10.6	296.4	4,617.8	929.3	3.84
LG1125	-5.8	-1.4	-0.4	7.6	77.0	4.8	640.8	10.3	-8.3	64.5	6,566.8	511.1	4.02
LG1126	-6.1	-1.3	-0.2	-0.4	68.2	3.6	384.8	5.5	-4.6	-73.6	2,861.2	47.9	3.89
LG1127	-2.7	-1.1	-0.8	2.2	118.4	-5.8	264.7	3.7	-7.6	-146.8	4,241.9	-299.1	3.97
LG1128	-4.1	-1.2	-0.1	1.2	98.5	-3.1	327.2	4.4	-5.3	-63.8	4,317.0	-153.0	3.94

4.0 Concluding Remarks

This report provides results of instrumented impact tests on 15-in.-square Inconel 718 panels of different thicknesses impacted in a normal direction by a cylindrical projectile and 24-in.-square panels of the same materials impacted at a 45° angle by a more complex projectile having bladelike features. In the small panel tests, the thinner panels (0.05-, 0.08-, and 0.125-in.) had a well-defined ballistic threshold velocity while there was some overlap in the thicker panels (0.25- and 0.5-in.). These results are similar to those obtained in a previous study on Al 2024 and Ti-6Al-4V materials (Ref. 1). As in the previous study, it is postulated that irregular results obtained for the thicker materials may be due to a high sensitivity to frictional effects. The data provided in this report is useful for validation of numerical and empirical impact models for metals. Unique features of the data provided include extensive documentation of test procedures and results, traceable materials used for both material characterization and impact testing, and extensive instrumentation results. This report provides a set of data, which can be used for developing and validating computational and empirical high strain rate and impact deformation and failure models. Although it is impossible to report all data in a single report, they are archived and available through the authors.

Appendix A.—Material Certification Sheets

Material certification sheets for the various Inconel 718 sheet thicknesses are found in Figure A.1 to Figure A.4.

BLM 43

NOTICE OF PACKING LI		ATI Allegheny Ludlum	CERTIFICATE OF TEST
CUST. CAD. HO. L DATE 0.1.015.77.6 COPAN DISTRIBUTION SOLD TO UNITED PERFORMANCE 34.75 SYMMES ROAD HAMILTON	REPEAT CHUEN 181639- PRIME	NATE ORITY GOVT CONTHACT MA	15 BRACKENRIDGE PA 030667 TO INNCE METALS
(ASTM-E-139-06) (AMS : (ASTM-E-112-96 REAPPRO	EET C R COILS ANNEALED 2269F) (B50TF14-S22 CLA OVED 2004 E2) (E50TF133	SSES A & E) (AMS 5596K) (UN -S9 CLASS C) (S-1000 DATED	SS,RONALD,INC. 1/30/08 EXCEPTIONS TO UPM 718) IS N07718) (S-400 DTD 10/31/07) 1/2/08) (UPM-QRS-001) (F-14, F-17, ITS) (04/30/04 EXCEPTIONS TO B50TF14)
ITEM PCS DIMENSIONS W.	/G/L HEAT #	COIL # TEST # GF	ROSS TARE NET THEO TAG #/ CD SKID :
001A 1 36./.050/886 C CUST IDENTITY 2110 1 SKID			856 50 5806 184542 856 50 5806
TYPE HEAT/TEST HEAT 068449-01 TEST LOCATION HEAT 068449-01	.05 .08 .006 TC BN BN T1COB 1.02 .16 .001	.0002 .05 18.18 52.79 TC BN BN BN	ALMOCUCBTA
TEST LOCATION	YTELD TENSILE % EL PSI * PSI IN	ONG 2" % R/A HARDNESS BEND	GRAIN REVIEWED BY Q.C. SIZE Date 6/2-1/19 by TI
001A 3723546 TEST LOCATION	T 73000. 131000 48 TC TC TC TC * Y.S. BY 0.2% OFFSET	94.HRBW TC TC	9. 9. TC
ITEM TEST NO 001A 3723546	MELT INTER-GRA SOURCE ATTACK 10000	N MICROSTRUC MICROSTRUC OCC P&W E-44 AMS 5596 GRA IN FIG 1 PASS 10. OUT FIG 1 PASS 10.	IN SIZE GRAIN SIZE MACROETCH 9. PASS
TEST LOCATION PAGE 01 - CONTINUED C	TC	TC TC TC	TC TC 06/16/10 08:34:42
CONSIGNE - Meach Role - This contagning was found on majorithms and service of the contagning was found on responsibly bit less or demagn in supervisor by the control of the contagning and the control of the control	over 10 Material Salety Data Shuats for this product w year supplied to your Purchasing Department. For on and william shuars shown 794-294-88577 CAUTION Process.	WARRING WAR	166 Househout a room The above is a first copy of data on life. The majoriel and test to copy of data on life. The majoriel and test to copy of data on life. The majoriel and set of copy of the data of the copy

Figure A.1.—Material certification for test number G210041.

Figure A.1.—Continued.

Figure A.1.—Continued.

Figure A.1.—Continued.

NOTICE OF SHIPMENT/ PACKING LIST

TEST NO 3723546

CERTIFICATE OF TEST

AL G168-3 908

INVOLCE NO 30667 SHIP DATE 6/16/2010

SPECIFICATION		YIELD (PSI)	TENSILE (PS1)	ELONGATION IN 2"	HARDNESS	STRESS RUPTURE
B50TF14-S22 * HEAT TREAT ELEVATED TEMP STRESS RUPTURE	(1) (3) (2)	170000 145000	201000 162000	20 16	45HRC	20.2 HOURS DISCONTINUED
AMS 5596K * HEAT TREAT ELEVATED TEMP STRESS RUPTURE	(4) (3) (2)	180000 152000	205000 166000	19 12 23	46HRC	145.3 HOURS BROKE

GRAIN STRUCTURE: UNIFORM

LARGEST GRAIN SIZE: 9

- (1) HEAT TO 1750F +/- 25F (954C +/- 14C) AND HOLD FOR ONE HOUR. COOR TO ROOM TEMPERATURE. HEAT TO 1325F +/- 25F (718C +/- 14C) AND HOLD FOR EIGHT HOURS. FURNACE COOL TO 1150F +/- 25F (621C +/- 14C) FOR EIGHT HOURS. COOL TO ROOM TEMPERATURE.

* TRANSVERSE TEST-Y.S. BY 0.2% OFFSET METHOD

- (2) 1200F +/- 3F (649C +/- 2C), 100,000 PS1 (689 MPA).
 (3) HEAT TENSILE TO 1200F +/- 5F (649C +/- 3C), HOLD AT HEAT 20-30 MINUTES, TEST AT 1200F +/- 5F (649C +/-3C).
 (4) HEAT TO 1325F +/- 15F (718C +/- 8C), HOLD AT HEAT FOR 8 HOURS +/- .5 HOURS; COO, AT RATE OF 100F +/- 15F (38C +/- 8C) FOR 8 HOURS, AIR COOL.

BY CERTIFYING TO B50TF14-S22 CLASS E, WE HAVE CERTIFIED THAT THIS MATERIAL IS CAPABLE OF MEETING CLASS F, WHEN HEAT TREATED IN ACCORDANCE WITH THE CLASS F REQUIREMENTS OF PARAGRAPH 3.6.1. HEAT TREATED PROPERTIES REPORTED ON OUR CERTIFICATE OF TEST, INDICAÇUED BY (1) ADOVE, SHOW THE RESULTS AFTER SAMPLES WERE HEAT TREATED TO THE REQUIREMENT OF CLASS F. ACTUAL COLL WAS SUPPLIED IN THE MILL ANNEAUED CONDITION IN ACCORDANCE WITH CLASS E.

ELEVATED TEMPERATURE TENSILE TESTING WAS PERFORMED AT WESTMORELAND MECHANICAL TESTING & RESEARCH, INC.. YOUNGSTOWN, PA., CERTIFICATE #122335, EXPIRATION DATE 04/30/2010.

ISSUED BY ALDEGHENY LUDLUM - 06/16/2010 13:09

CARRIE MCFALL / QUALITY ASSURANCE DEPT

Mainted Stave, Qua Seque to the product the steel | to love discontinued and one product on an increase a love product of the steel | to love discontinued and one product on an increase a love | to love discontinued and one product on an increase a love | to love discontinued and a love product of the love of the CONSIGNE PROSENDS—PINAL PAGE
CONSIGNE PROSENDS—IN CONSIGNED WE TO
GETER THE ALL SCHOOL DAYS
OF CONSIGNED AND THE CONSIGNED WE TO
FOR THE CONSIGNED WITH THE CONSIGNED WE TO
FOR THE CONSIGNED WITH THE SERVICE OF THE CONSIGNED WE TO
FOR THE CONSIGNED WITH THE SERVICE WE TO
FOR THE CONSIGNED WE THEN THE SERVICE WE TO
FOR THE CONSIGNED THE SERVICE WE THEN THE THE THE SERVICE WE THEN
FOR THE SERVICE WE THEN THE SERVICE WE THEN THE THE SERVICE WE THEN
FOR THE SERVICE WE THEN THE SERVICE WE SERVICE W

Trung MF Fred A American Special Metals
Quality Assurance
Approved AC
Date A 2-2010

Figure A.1.—Concluded.

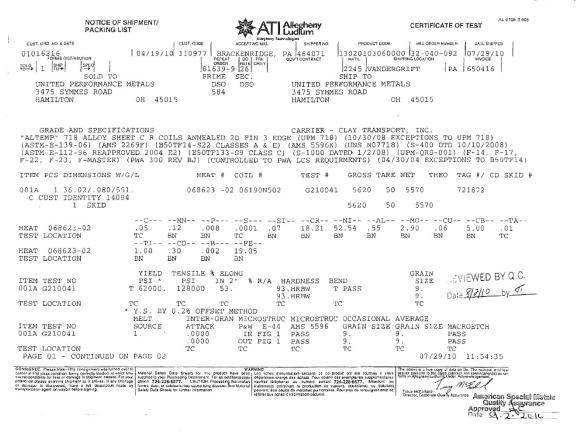


Figure A.2.—Material certification for test number 3723546.

NOTICE OF SHIPMENT/ PACKING LIST AL 6168-3 908 CERTIFICATE OF TEST | 04/19/10 | 110977 | BRACKENRIDGE, ORDER | OR PA 464071 130201.03060000 32-040-092 07/29/10 1/245 |VANDERGRII SHIP TO UNITED PERFORMANCE METALS 3475 SYMMES ROAD HAMILTON 2245 VANDERGRIFT PRIME SEC. DSO 584 Он 45015 OH 45015 GRADE AND SPECIFICATIONS

CARRIER - CLAY TRANSPORT, INC.

"ALTEMP" 718 ALLOY SHEET C R COILS ANNEALED 2D FIN 3 EDGE (UPM 718) (10/30/08 EXCEPTIONS TO UPM 718)

(ASTM-E-139-06) (AMS 2269F) (850TF14-S22 CLASSES A & E) (AMS 5596K) (UNS N07718) (5-400 DTD 10/10/2008)

(ASTM-E-112-96 REAPPROVED 2004 E2) (E50TF133-S9 CLASS C) (S-1000 DATED 1/2/08) (UPM-QRS-001) (F-14, F-17, F-22, F-23, F-MASTER) (PWA 300 REV BJ) (CONTROLLED TO PWA LCS REQUIRMENTS) (04/30/04 EXCEPTIONS TO B50TF14) P&W E-25 TRAN BEND ITEM TEST NO 001A G210041 TEST LOCATION TC
METALLOGRAPHIC MAGNIFICATION: 100X ETCHANT USED: HC1/CHROMIC ACID GRADE VERIFICATION WAS CARRIED OUT SPECTROSCOPICALLY INTERGRANULAR ATTACK MAGNIFICATION: 500X ALLEGHENY LUDLUM DOES NOT USE MERCURY IN THE TESTING OR PRODUCTION OF ITS PRODUCTS. TO THE BEST OF ALLEGHENY LUDLUMS KNOWLEDGE, UNDERSTANDING, AND BELIEF, THIS MATERIAL WAS NOT CONTAMINATED BY MERCURY WHILE IT WAS BEING PRODUCED IN OUR FACILITIES. NO WELDS/WELD REPAIRS PERFORMED. THE PRODUCT WAS SOLUTION HEAT-TREATED WITHIN THE RANGE 1725F - 1825F +/- 25F (941C - 996C +/- 14C) FOR A TIME COMMENSURATE WITH THICKNESS AND COOLED AT A RATE EQUIVALENT TO AIR OR FASTER. ALLEGHENY LUDLUM DOES NOT USE MERCURY IN THE TESTING OR PRODUCTION OF ITS PRODUCTS. PAGE 02 - CONTINUED ON PAGE 03 07/29/10 11:54:35 CONSIGNEE - Please Nove - This con American Special Wetals
Quality Assurance
Approved
Date 9: 2 2 010

Figure A.2.—Continued.

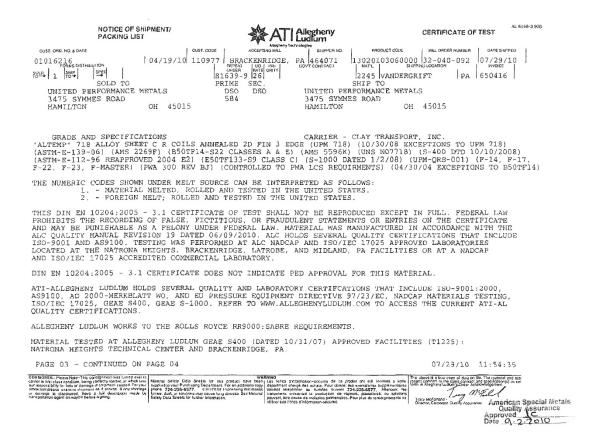


Figure A.2.—Continued.

Figure A.2.—Continued.

NOTICE OF SHIPMENT/ PACKING LIST TEST NO G210041

CERTIFICATE OF TEST

Trace Meshang Lucius States Assertance Salam Trace Mesanana Dinasa Osaba Assertance

INVOICE NO 650416 SHIP DATE 7/29/2010

AL 0105 3 91 9

SPECIFICATION		YIELD (PSI)	TENSILE (PSI)	ELONGATION IN 2"	HARDNESS	STRESS RUPTURE
BSOTF14-S22 * HEAT TREAT ELEVATED TEMP STRESS RUPTURE	(1) (3) (2)	169000 142000	201000 162000	19 20	47.HRC	20.2 HOURS DISCONTINUED
AMS 5596K *						
HEAT TREAT	(4)	174000	203000	20	48.HRC	
ELEVATED TEMP	(3)	143000	164000	19		
STRESS RUPTURE	(2)			13		98.9 HOURS BROKE

GRAIN STRUCTURE: UNIFORM

LARGEST GRAIN SIZE: 9

- * TRANSVERSE TEST-Y.S. BY 0.2% OFFSET METHOD
- (1) HEAT TO 1750F +/- 25F (954C +/- 14C) AND HOLD FOR ONE HOUR. COOL TO ROOM TEMPERATURE. HEAT TO 1325F +/- 25F (718C +/- 14C) AND HOLD FOR EIGHT HOURS. FURNACE COOL TO 1150F +/- 25F (621C +/- 14C) FOR EIGHT HOURS. COOL TO ROOM TEMPERATURE.

- (2) 1200F +/- 3F (649C +/- 2C), 100,000 PSI (689 MPA).

 (3) HEAT TENSILE TO 1200F +/- 5F (649C +/- 3C), HOLD AT HEAT 20-30 MINUTES, TEST AT 1200F +/- 5F (649C +/-3C).

 (4) HEAT TO 1325F +/- 15F (718C +/- 8C), HOLD AT HEAT FOR 8 HOURS +/- .5 HOURS; COOL AT RATE OF 100F +/- 15F (38C +/- 8C) PER HOUR, TO 1150F +/- 15F (621C +/- 8C); HOLD AT 1150F +/- 15F (621C +/- 8C) FOR 8 HOURS, AIR COOL.

BY CERTIFYING TO BSOTP14-S22 CLASS E, WE HAVE CERTIFIED THAT THIS MATERIAL IS CAPABLE OF MEMING CLASS F, NHEM HEAT TREATED IN ACCORDANCE WITH THE CLASS F REQUIREMENTS OF PARAGRAPH 3.6.1. HEAT TREATED PROPERTIES REPORTED ON OUR CERTIFICATE OF TEST, INDICATED BY (1) ABOVE, SHOW THE RESULTS AFTER SAMPLES WERE HEAT TREATED TO THE REQUIREMENT OF CLASS F. ACTUAL COIL WAS SUPPLIED IN THE MILL ANNEALED CONDITION IN ACCORDANCE WITH CLASS E.

ELEVATED TEMPERATURE TENSILE TESTING WAS PERFORMED AT WESTMORELAND MECHANICAL TESTING & RESEARCH, INC., YOUNGSTOWN, PA., A NADCAP CERTIFIED LABORATORY. American Special Metals Guality Assurance Approved Date Q. 2-2010

PAGE 05 - FINAL PAGE.

ISSUED BY ALLEGHENY LUDLUM - 07/29/2010 15:56 TERESA A.STUMPF - QUALITY ASSURANCE DEPT

Figure A.2.—Concluded.

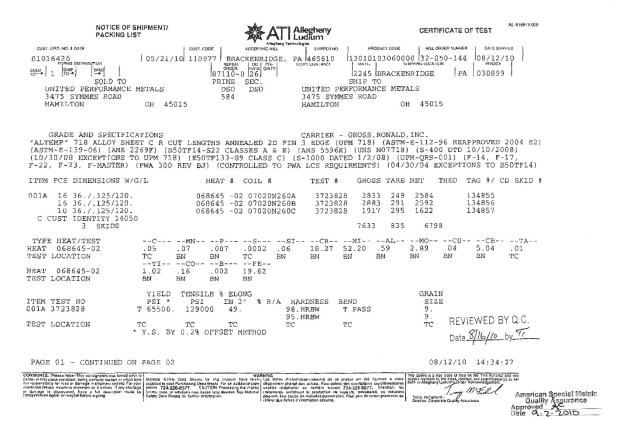


Figure A.3.—Material Certification for test number 3723828.

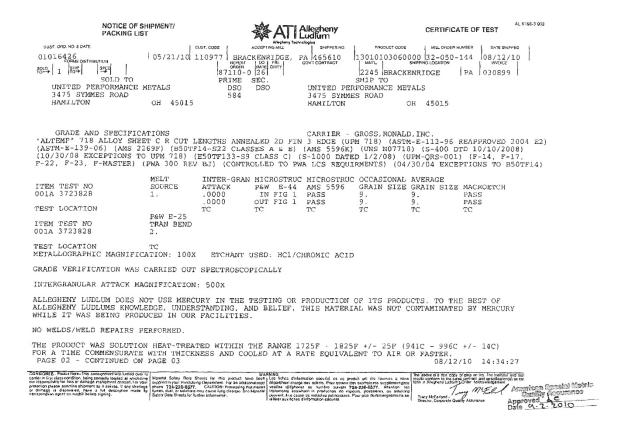


Figure A.3.—Continued.

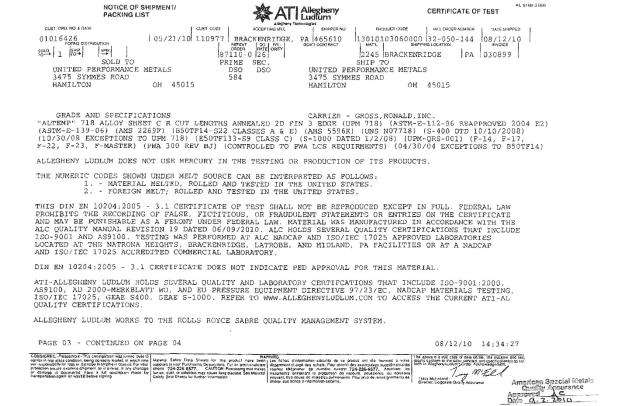


Figure A.3.—Continued.

Figure A.3.—Continued.

Try Mital

		CE OF SH			 ATIA	CERTIFICATE O	CERTIFICATE OF TEST			
TF.S	T NO 3723828				Allegheny Tectvool	ogie s		INVOICE NO SHIP DATE	30899 8/12/:	2010
	CIFICATION		YIELD (PSI)	TENSILE (PSI)	ELONGATION IN 2"	HARDNESS	STRESS RUPTURE	**		
E S	TRESS RUPTURE	(1) (3) (2)	168000 144000	201000 163000	20 17	46.HRC	20.5 HOURS DI	SCONTINUED		
H 15		(4) (3) (2)	179000 144000	206000 163000	18 16 12	47.HRC	109.5 HOURS E	BROKE		
GRA.	IN STRUCTURE:	UNIFO			LARGEST CRAIN	SIZE: 9				
(1) HEAT TO 1750F +/- 25F (954C +/- 14C) AND HOLD FOR ONE HOUR. COOL TO ROOM TEMPERATURE. HEAT TO 1325F +/- 25F (718C +/- 14C) AND HOLD FOR EIGHT HOURS. FURNACE COOL TO 1150F +/- 25F (621C +/- 14C) FOR EIGHT HOURS. COOL TO ROOM TEMPERATURE.										
(2) (3) (4)	(649C +/-3C). HEAT TO 1325E	TO 120 +/- 1 +/- 8C	OF +/- 5F OF (718C +) PER HOUR	(649C +/- 3C /- 8C), HOLD), HOLD AT HE AT HEAT FOR	8 HOURS +/-	INUTES, TEST AT 5 HOURS; COO DLD AT 1150F +/	L AT RATE OF	100F	

DY CERTIFYING TO 850TF14-S22 CLASS E, WE HAVE CERTIFIED THAT THIS MATERIAL IS CAPABLE OF MEETING CLASS F, WHEN HEAT TREATED IN ACCORDANCE WITH THE CLASS F REQUIREMENTS OF PARAGRAPH 3.6.1. HEAT TREATED PROPERTIES REPORTED ON OUR CERTIFICATE OF TEST, INDICATED BY (1) ABOVE, SHOW THE RESULTS AFTER SAMPLES WERE HEAT TREATED TO THE REQUIREMENT OF CLASS F. ACTUAL COIL WAS SUPPLIED IN THE MILL ANNEALED CONDITION IN ACCORDANCE WITH CLASS E.

ELEVATED TEMPERATURE TENSILE TESTING WAS PERFORMED AT WESTMORELAND MECHANICAL TESTING & RESEARCH, INC., YOUNGSTOWN, PA., A NADCAP CENTIFIED LABORATORY.

American special metals
Quality Apeurance
Approved AC
Date 9 2 2 510

PAGE 05 - FINAL PAGE.

ISSUED BY ALLECHENY LUDLUM - 08/12/2010 16:01 TERESA A. STUMPF - QUALITY ASSURANCE DEPT

CONSIGNEE Please Total-This consignment and forming control please in the Control of the Control

Meanus Safety Dos Sweets in this product learn the product of the following a large service of the following and the following a large service of the following a large service of the following a large service of the following and the following a large service of the following and the following a large service of the following and the following a large service of the following and the following a large service of the following

Figure A.3.—Concluded.

Allegheny Ludlum

500 Green Street CERTIFIED MATERIAL
Washington, PA 15301 TEST REPORT
CERTIFICATE OF CONFORMANCE

OUR ORDER NO. T74040 361748-01 MEMO NO. 05/26/2010 DATE BALESMAN NO

48182

PAGE 1 CONTINUE ON PAGE 2

32

Doto 8/30/10 By

ALTEMP 718 elou HRAF ASTM B670 02 AMS 5596 K GE B50TF14 S22 CLASS A & E TRACER # 2.4668; NACE MR0175; RR9000:SABRe; S1000E; S400E; UNS N07718 Matl ID Slip Sid Weight (1b) 209304 1909 Th 209365 Lot No Size(Inches) Pcs 068516L03 03 15012 AAA 068516L03 03 15012 AAB 234006 .5000 x 48.0000 x 260.0000 .5000 x 48.0000 x 258.0000 CO CR MO Heat CH 068516L03 .048 .083 .008 .0001 .072 52.60 18.32 2.87 .20 .034 .54 1.02 4.94 .0029 19.25 06B516L03 -010 Cond. Yield Tensile Red. of Area % Hardness Bend Corrosion Strength 62.8 KSI 167.7 KSI Lot No Strength Gauge Cond. Elong % Test Size 234006 .5000 TRANS ANNEAL 128.8 KSI 52.0 25.0 60.0 B091 C044 TRANS (A) 204.5 KSI TRANS (A&C) 140.2 KSI 160.8 KSI 166.1 KSI 200.2 KSI 28.0 TRANS C044 (B) TRANS (B&C) 129.3 KSI 156.0 KSI 234007 .5000 TRANS ANNEAL 64.0 KSI 130.8 KSI 51.0 B093 8 (A) (A&C) 163.9 KSI 139.8 KSI 202.2 KSI 164.9 KSI 26.0 TRANS 2043 TRANS TRANS (B) 172.5 KSI 204.6 KSI 24.0 C043 American Special Metals
Quality Assurance
Approved AC
Date Q. 2. 2010 REVIEWED BY O.C.

THIS CERTIFICATE OF TEST SHALL NOT BE REPRODUCED IN FULL WITHOUT THE WRITTEN APPROVAL OF THE COMPINY, THE RECORDING OF FALSE, FICTITIOUS, OR FRAUDLIENT STATES A FELONY UNDER FEDERAL LIAM TESTING WAS PERFORMED AT ALC MUCKAP AND ISODIC TYSES APPROVED LABORATIONESS LOCATED AT NATIONAL HIGHITS, BRACKENHOBEL, LITTOBE STORTED TO A FEDERAL LIAM TESTING THE STATE OF THE STAT

ALLEGHENY LUDULUM PERFORMS CHEMICAL ANALYSIS BY THE FOLLOWING TECHNIQUES. C, S BY COMBUSTION INFRARED. N, O, H BY INERT FUSION/THERMAL CONDUCTIVITY, MPI, P. SI, CR, NR, MQ, CU, CB, CO, V, BY WOXER, B BY OES, AL AND TI (>-0.10%)
BY WOXER OTHERMISE BY OES, PB, BI, AG BY GFAA

CERTIFICATE OF TEST STUDENCINT & OCCURSTRY STUTENCINT EXCEPT AS OTHERWISE NOTED. THIS MATERIAL HAS BEEN MANUFACTURED AND TESTED IN ACCORDANCE WITH THE LISTED SPECIFICATIONS AND RESULTS CONFORM TO THE SPECIFICATION AND ORDER REGI

Figure A.4.—Certificate of conformance.

Allegheny

Lot No

Washington, PA 15301 CERTIFIED MATERIAL TEST REPORT CERTIFICATE OF CONFORMANCE

PW0386770 Page 2 OUR ORDER NO. T74040 361748-01 MEMO NO. 05/26/2010 424 SALESMAN NO

48182

182

Lot No: Lot No: 234006 FINAL STRESS RUPTURE LOAD - (D) 130 KSI; (E) 130 KSI 234007 (D) STRESS RUPTURE - HRS BROKE 64.9 ELONG 8.0 234007 (E) STRESS RUPTURE - HRS BROKE 93.9 ELONG 7.0 234007 MICROSTRUCTURE UNIFORM 234007 FINAL STRESS RUPTURE LOAD (D) 130 KSI; (E) 130 KSI Lot No: Lot No: Lot No: MATERIAL WAS NOT WELD REPAIRED MATERIAL WAS PRODUCED WITHOUT KNUWN CURITION
DIN EN 10204:2005 3.1 CERTIFICATE
MATERIAL IS OF USA MELT AND MANUFACTURE
(A) SOLUTION TREATED & AGED PER GE B50TF14 (ABOVE REVISION) CLASSES B & F
(B) PRECIPITATION HARDENED PER AMS 5596 AND ASTM 8670 (ABOVE REVISIONS)
(C) HEAT TO 1200 DEG F, HOLD AT HEAT 20/30 MIN., TEST AT 1200F +/- 5F
(D) STRESS RUPTURE PER G.E. B50TF14 - 1200F, UPLDAD 5 KSI/8-10 HRS AFTER 23 HRS
(E) STRESS RUPTURE PER AMS 5596 & ASTM 8670; UPLDAD 5 KSI/8-10 HRS AFTER 48 HRS
NADCAP CERT #124317 ALLEGHENY LUDLUM BRACKENRIDGE, PA EXFIRES 10/31/2010
HEAT TREATED IN RANGE OF 1725-1825F AND CODLED AT RATE EQUAL TO AIR OR FASTER
INITIAL STRESS RUPTURE LOAD - 100 KSI
MECHANICAL & ELEVATED TEMP TESTS PERFORMED AT WMTR; CHEMICAL TESTING PERFORMED AT ALLEGHENY LUDLUM
American Special Metals
Challe Account of the Company of the Control of the Co MATERIAL WAS PRODUCED WITHOUT KNOWN CONTACT WITH MERCURY DIN EN 10204:2005 3.1 CERTIFICATE

CERTIFICATE OF TEST STATEMENT & CHEMISTERY STATEMENT EXCEPTING OTHERWISE NOTICE, THIS INACTERAL HAS BEEN IMMALFACTURED AND TESTED IN ACCORDANCE WITH THE LISTED SPECIFICATIONS AND RESULTS CONFORM TO THE SPECIFICATION AND ORDER REQUIREMENTS.

Figure A.4.—Continued.

	C	ERTIFICA	TIONUF	TESTS • R	APPORT	D'ESSAIS	CERTIFI	E . WEKI	KSZEUGN	S.C					CUST	ÚMER CO	OPY		43
Sales Order N Reference Comm Bestellungs N	ende Date D	e Entered le Commande lelldatura		Customer Re Reference Kundenbeste	Client flidaten		Rapp Zeva	ort No. Iort No Ials No		Page de l Page de l Auxili de	Selten]	HAYN	ES		Haynes International 1020 West Park Avenue			B4~ 43
580571001	0 0	3/18/10		T7408	32	1	20100	821006		1 Of	3	Ī	nternat				PO Box 9013 komo, Indiana, 4]
												0.25	0 x 48 x		ription - Descr	ription Predui	• Material Bethreib	nut	
												HA.	VNFS/D	718 AT	LOVP	LATE	- PLATE		
												Nad	cap CEF	RTIFICA	ATE NU	MBER	126994		
Specification + Sp-	cification + Sp	ezifikation					1		Quentity Order	4	Quantity Shipped	-GE#	19762, S	400 10/10	1/2008, S	1000 3/2	/2010, EN 10	204 3.1, AS9100	
							1	4	Bestellerneuge		Quantitie Expedier								
AMS 5596, K; ASTM-R-670,						ILE TESTE	ED CL. F.	4 PC			4 PC	*							
Heat Number								Chemica	I Analysis • /	Analyse Chi	nique • Ches	nische An	ilvie						
Pamera De Coulez Charge Nr 2180 0 9812	Al	0.003	0.051	(No-Ta)	0.27	Cr 18.10	0.05	Fe 18.90	0.21	Mo 3.09	Ni 52.90	P <0.005	S	Si	Ti	V	w		
2150 0 7612	0.55	0.003	0.031	5.17	0.27	18.10	0.05	18.50	0.21	3.09	52.90	<0.005	<0.002	0.08	0.92			BUTT END 102	
							1												
										1									
								1											
	O(N)	Ta	Zı	Bi	Se	La	C-NCM	Pb	Mg	Y	Ag	N	Ca	Al+Ti	Ni+Co	Ni+Mo			
2180 8 9812	5.160	<0.05															BUTT END *02		
Ì														1					
					1														
İ								-					1						
Certified By	Certifie Pa	ar e Besche	iniat Durc	h. tim Wh		L		<u> </u>	8/21/2010		-	L							
Certification :			migr Dure						0.2112010									1	
	n. L	l Qu	Æ																
1	- 01.		•										F	merical Qualit	Special	al Metal	5		
				,	1	PEARES	AS GRA	a.c.	/		1		65	proved	2.20	D.		1	
						Do40 _ 2	1 30 10	By	12										

Figure A.4.—Continued.

Sales Order P Reference Comm Bestellungs P 580571001	No Mande D Ne	Date E.	errd smaade tum	TIO	Cu	atomer Refe Reference Ch Independent T74082	ear			Report No. Rapport No Zevgnis Nr 2010082100	5	Pages of Page de Anzahl d 2 O	Pages r Selten	1 -	AY! ternat		_	CUSTOMER COPY Hisynes International 1020 West Park Avenue PO Box 9013 Kokomo, Indiana, 46902				
Tentile Test at	Room Ten	peratura	· Estai	De Trac	tion A Temp	Ambiante	Zagvertu	ch		Tensile Test	at Elevated Ter	mperature a Essa	De Traction A H	te.Temp.		+	Stress Rup	lure Temperature	· Essai A Charg	e De Roprure	Zeitstandv	trawch
Utampie Zaglepigane	Lin Elect 1% Seried	ol4	O.PN Y	A 0.7%	p. N Esong In N Allong EN N Dehaung	NA.	T	1	Toni Essai Versac'à	Ulterlase Zagiral plan	Line Glass A II	Varm Zagvernec 0.7% Yield 1% Lata Elam A 6 oer 0.3% Saviesky	% Eking in 2% % Allows EN	NRA NRA	1		Tor Essai Versach	Siress Constraints Spaneong	Hours Hours Stunden	% Elong In % Allong EN % Dehaung	NRA NRA	
31000 PSI 08000 PSI			53.500 79000		50 % 21 %	-	1)/		1200 °F	170000 PSI 166000 PSI		149000 F 138000 F		-	1)B) 1)C)	#	1200 °F 1200 °F	105000 PSI 105000 PSI			<u> </u>	1)B)*
06000 PSI			67000		21 %		i)C		1240													1,0
America Hardron were Rook glacks Harne	Dure	Hardseze the Vielki ert Fiserte	G	ron Sice	Predominaza. Grave Size	Grain S Gresseur D Korngro Recty, Graz	Grain		P&W Figure Number	IGA U		Correction Rate OFFicial Term	Ozidatica Ra	Torphos Avg	Charpy In	Tought		Ten Ensi Versuch	Constraints Spanning	Hours % E	ong in 14 mag 6N tenang	Dong (8) 5 Hrs
SHRBW	45 HR 43 HR		3)	6.5	6.5	100	0	6	1		1	NOT		Fr Lbs	R Un	F: Ub	Fi Ubs	Temp	eSI			
ertified By ertification	Certil Superv	ie Par e	Besc	heinl	d Durch:	Jim Whi	e		L_	8/21/20	010 1)	2758057101		1								
Jon	nu o	L.	(S	Æ	ò												Appa	erican Sa Quality Ad oved	eurance	als		

Figure A.4.—Continued.

	"CERTIFICATIO	ON OF TESTS . RAPPORT D'ESSAI	CUSTOMER COPY					
Sales Order No Reference Commande Bestellungs Nr 580571001-0	Date Enterpd Date De Commandr Sestelidatum 03/18/10	Customer Reference Reference Client Kundenbestolldstren T74082	Report No. Rapport No. Zengald Nr. 20100821006	Paper of Pages Page de Pages Annahl der Seiten 3 Of 3	HAYNES International	Haynes International 1020 West Park Avenue PO Box 9013		
All tests and inspectifies and inspectifies MATERIAL MATERIAL Material contention of the properties of the microstructure. As parface microstructure concamples tested to 6 samples tested to 6 samples tested to 6 lamples tested test	IS FREE FROM MI WAS MELTED AN WAS MELTED AN UPWA, 300 and IPW ceptable urul evaluation was tetenational, Inc. Kol Ipples with ESOTF13 SOTF14 CLB condit SOTF14 CLB condit nens are aged after fi 275805710 (4 PC) formed at Connectic ry Analysis for Heat "F; Step 11325 "F, "F; Step 11325 "F,	ommed and results meet specifications requires RECORY, CADMUM, AND ID MANUFACTURED IN THE UNITE WA LEGS as per MICL F+17: Capper performed at 500X magnification. como, In. 3 Class C. In and material supplied to CI. E. condition and material supplied to CI. A. condition and condition and condition and condition and co	on. con. c	(860)285-7481 Fax # (860)52 DIRECT RATIO (C5,Fe), X#	8-1516 RL LINFIT (CBTA,Co,Cu,Mr,Mo,Ni,)	Kokomo, Indiana, 46902		
Certification Sup-		igt Durch: Jim White	8/21/2010					

AMERICAN SPECIAL METALS, CORP.
CERTIFICATION OF COMPLIANCE
We certify that this material conforms to the applicable specifications as shown on this purchase order.
Customer TAN
Customer POP DEFACT-10-P-00240
ASM Work Order# 2010-H-12 1111
QUEEN PROPERTY OF THE CONTROL OF THE

Figure A.4.—Continued.

THE BATCH THE WAS ADDITIONAL PROPERTY OF A RECORD FROM THE PROPERTY OF THE PRO

500 Green Street CERTIFIED MATERIAL
Washington, PA 15301 TEST REPORT
CERTIFICATE OF CONFORMANCE

FW0386770 Page 3 T74040 OUR ORDER NO. YOUR ORDER NO. MEMO NO. 361748-01 05/26/2010 DATE 424

1182

NADCAP CERT #122335 WESTMORELAND MECHANICAL TESTING (WMTR) YOUNGSTOWN, PA EXPIRES 4/30/2010

48182

AMERICAN SPECIAL METALS, CORP.
CERTIFICATION OF COMPLIANCE
We certify that this material conforms to the applicable specifications as shown on this purchase order.
Customer FAA.
Customer FOH. DATRACT - 10 - P - 00240
ASM Work Order# 2010 - H 12 3\ldots
Oty. 9.5.2010

PAGE 3 FINAL PAGE

THIS CERTIFICATE OF TEST SHALL NOT BE REPHODUCED IN FULL WITHOUT THE WRITTEN APPROVAL OF THE COMPANY. THE RECORDING OF FALSE, FIGTITIOUS, OR FRANDULENT STATEMENTS OR ENTIRES ON THE CERTIFICATE MAY BE PUNISHED AS A FELORY WINDER FEDERAL WITH TESTING MAY PERFORMED AT ALL PROVIDED INFORMATION INCIDENT AND A PROVINCE OF THE STATEMENT OF THE PROVINCE OF THE STATEMENT OF THE STATEMEN

ALLEGHENY LUDLUM PERFORMS CHEMICAL ANALYSIS BY THE FOLLOWING TECHNIQUES; C, S BY COMBUSTIONINFRAGED, N. O., HBY INERT FUSION/THERMAL CONDUCTIVITY, MIN., P. S., CR, NI, MC, CU, CR, CQ, V, BY WIDLAR B BY GES., A. AND TI (---0.10%) BY WOXAR, OTHERMISE BY GES., PR. III, NO BY GY GIFA.

CERTIFICATE OF TEST STATEMENT & CHEMISTRY STATEMENT EXCEPT AS OTHERWISE NOTED, THIS INSTERNAL HAS BEEN MANUFACTURED AND TESTED IN ADDISONANCE WITH THE LISTED SPECIFICATIONS AND RESULTS COMPRISE TO THE SPECIFICATION AND ORDER REQUIREMENTS.

Figure A.4.—Concluded.

Appendix B.—Heat Treatment Certification

The following sheet certifies the material hardness after heat treatment.

The Euclid Heat Treating Company

Certification

Order No.: 337371

Date: 03/14/2013

Entry Date: 03/12/2013

Page: 1 of 1

NASA Glenn Research Center Cleveland

Purchase Order No.: 13-1114 Packing List No.: AERX2013D

Material: other

We are pleased to provide you with the following certification.

Age harden per Instructions (42 RC min)

Part Number / Part Name / Part Description **Pounds** Inconel 718 1584 Inconel 718 Mat'l Plates

Serial Numbers / Other Numbers: 1 Qty-1 Lot.

Subject material was age hardened per customer instructions. Samples show a resultant hardness of 44 Rc.

SUBJECT MATERIAL OF UNITED LIBRALTY greate Read Cashing).

ALL WORK is perforance situated to FLURITIES IN THE STATE OF METAL TREATING SERVICES FROM THE SELLER, UNDERSTANDS THAT EVEN A FER EMPLOYING ALL THE SOLDHIFTIGMETHOUS KNOWN THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE SOLDHIFTIGMETHOUS KNOWN THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE SOLDHIFTIGMETHOUS KNOWN THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE SOLDHIFTIGMETHOUS KNOWN THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE MACHING THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE MACHING THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE MACHING THE SELLER LINDARDS THAT EVEN A FER EMPLOYING ALL THE MACHING THE SELLER LINDARDS THAT EVEN A FEW EMPLOYERS AND THAT EVEN A FEW EMPLOYE

We hereby certify that these samples have been heat treated to the above specifications.

ruce Baker Quality Control Manager The Eyelid Heat Treating Company

1408 East 222 Street Cleveland OH 44117

Phone: (216) 481-8444

Fax: (216) 481-3473

Figure B.1.—Heat treatment certification.

Appendix C.—Small Panel Test Results

This section shows photographs of test specimens and digital image correlation (DIC) results for each of the small panel tests conducted. In certain tests, where there was full penetration, no DIC results are shown.

Test DB232

The DIC data was not obtained due to full penetration of projectile.

Figure C.1.—DB232 posttest front view.

Figure C.2.—DB232 posttest rear view.

Figure C.3.—DB232 posttest front view closeup.

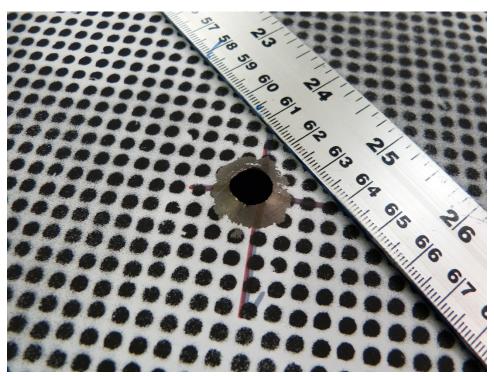


Figure C.4.—DB232 posttest rear view closeup.

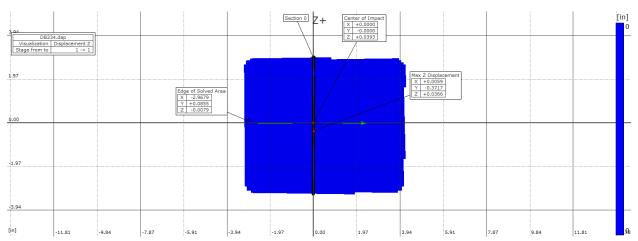


Figure C.5.—DB234 locations of digital image correlation (DIC) measurements.

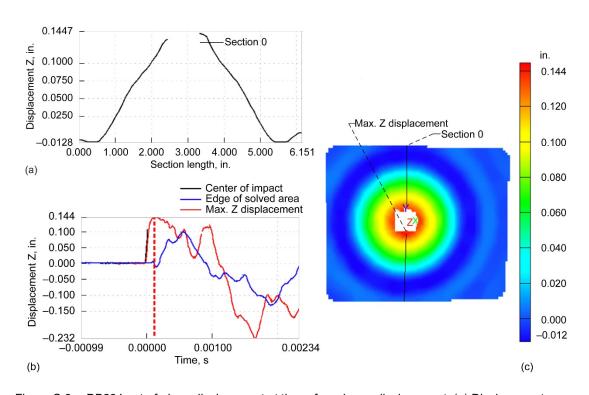


Figure C.6.—DB234 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.7.—DB234 pretest front view.

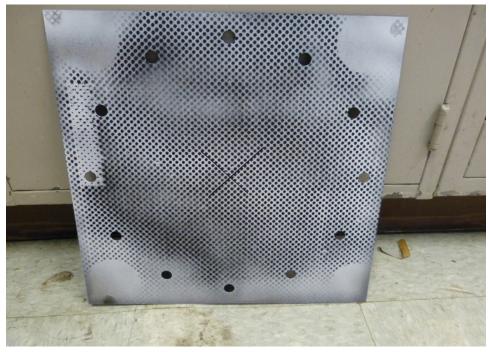


Figure C.8.—DB234 pretest rear view.

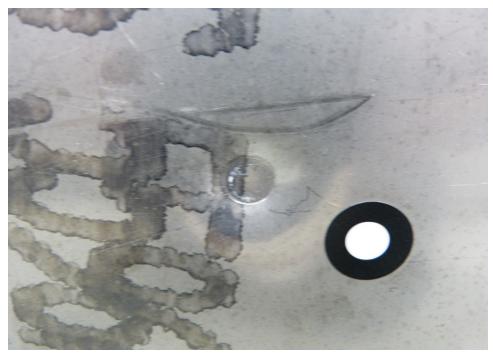


Figure C.9.—DB234 posttest front view closeup.

Figure C.10.—DB234 posttest rear view closeup.

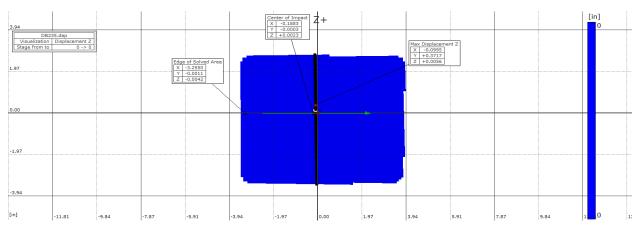


Figure C.11.—DB235 locations of digital image correlation (DIC) measurements.

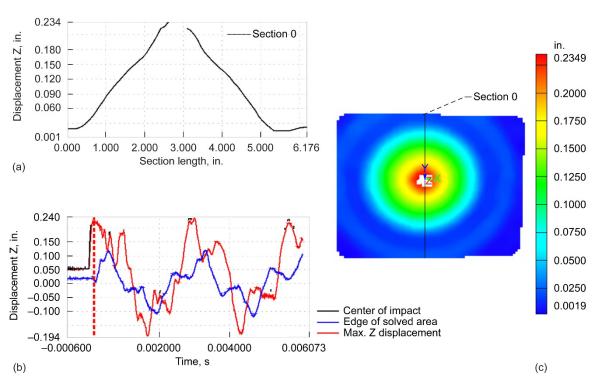


Figure C.12.—DB235 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

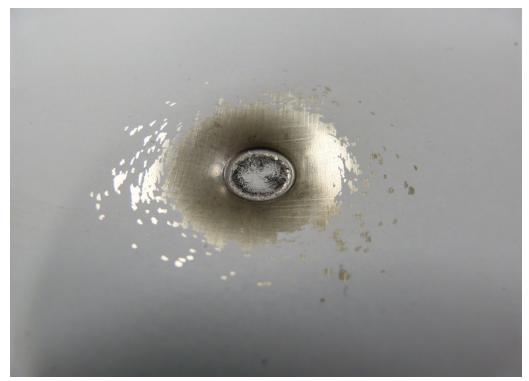


Figure C.13.—DB235 posttest front view closeup.

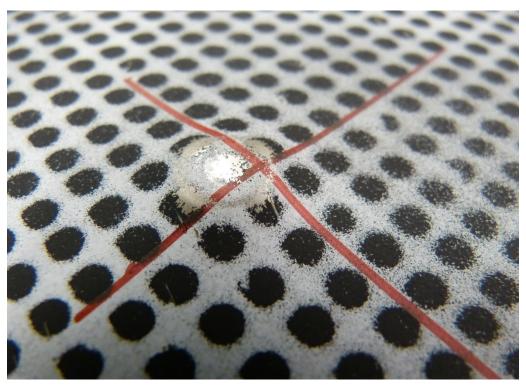


Figure C.14.—DB235 posttest rear view closeup.

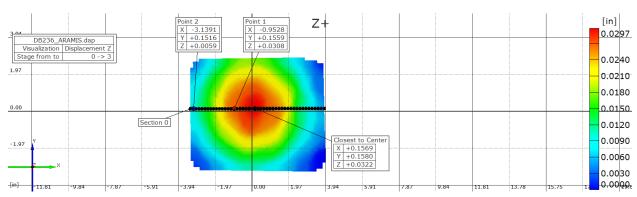


Figure C.15.—DB236 locations of digital image correlation (DIC) measurements.

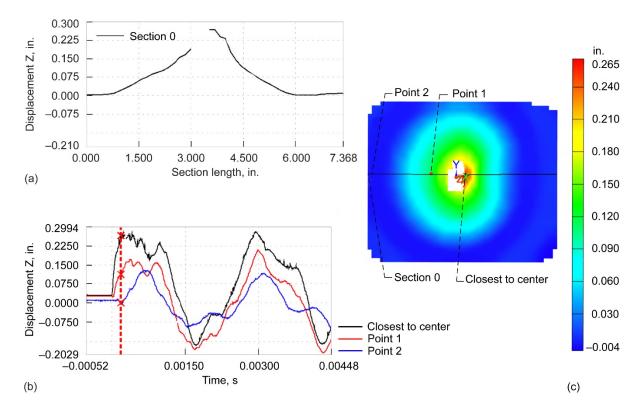


Figure C.16.—DB236 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.17.—DB236 posttest front view closeup.

Figure C.18.—DB236 posttest rear view closeup.

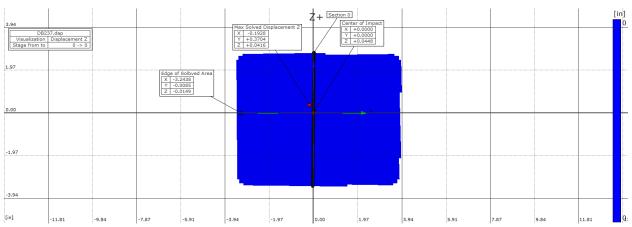


Figure C.19.—DB237 locations of digitial image correlation (DIC) measurements.

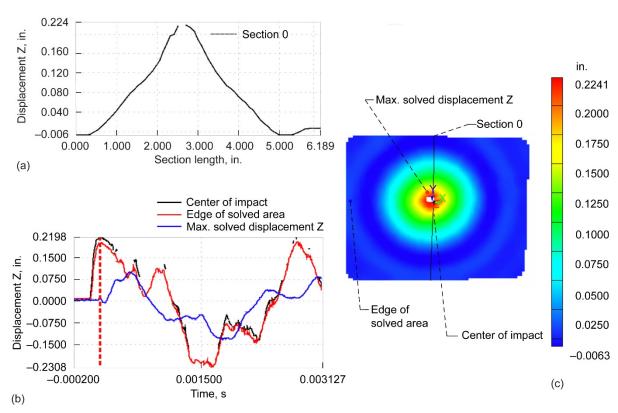


Figure C.20.—DB237 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.21.—DB237 posttest front view closeup.

Figure C.22.—DB237 posttest rear view closeup.

The DIC data was not obtained due to full penetration of projectile.

Figure C.23.—DB238 posttest front view.

Figure C.24.—DB238 posttest rear view.

Figure C.25.—DB238 posttest front view closeup.

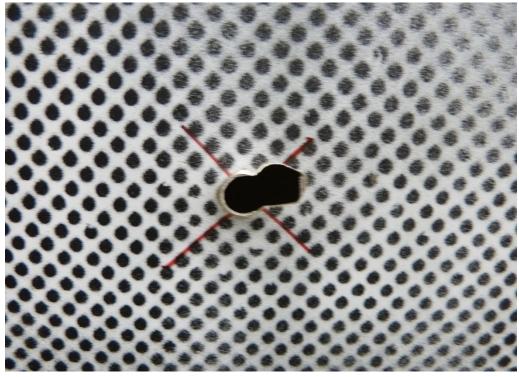


Figure C.26.—DB238 posttest rear view closeup.

The DIC data was not obtained due to full penetration of projectile.

Figure C.27.—DB239 posttest front view.

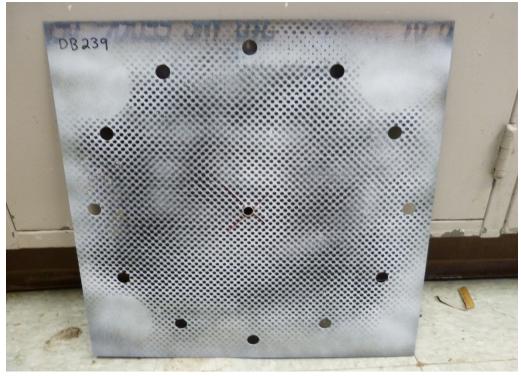


Figure C.28.—DB239 posttest rear view.

Figure C.29.—DB239 posttest front view closeup.

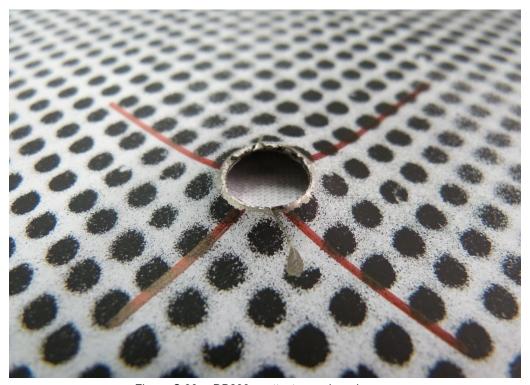


Figure C.30.—DB239 posttest rear view closeup.

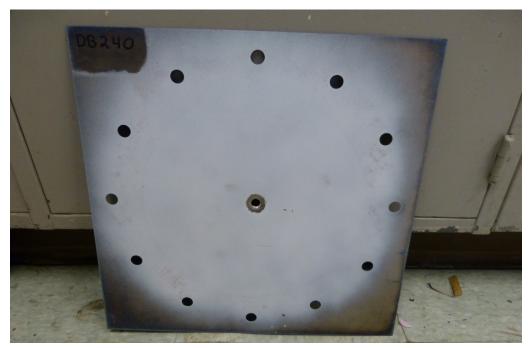


Figure C.31.—DB240 posttest front view.

Figure C.32.—DB240 posttest rear view.



Figure C.33.—DB240 posttest front view closeup.

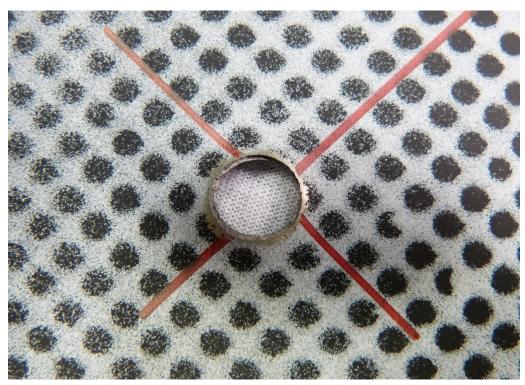


Figure C.34.—DB240 posttest rear view closeup.

Figure C.35.—DB241 posttest front view.

Figure C.36.—DB241 posttest rear view.



Figure C.37.—DB241 posttest front view closeup.

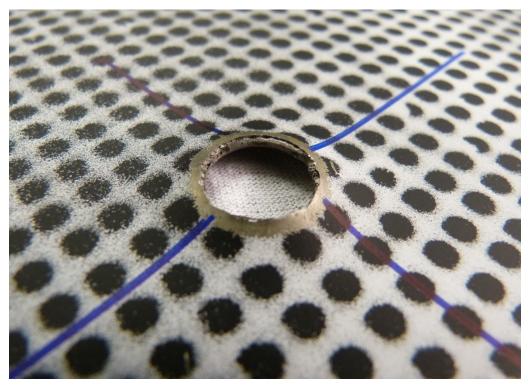


Figure C.38.—DB241 posttest rear view closeup.

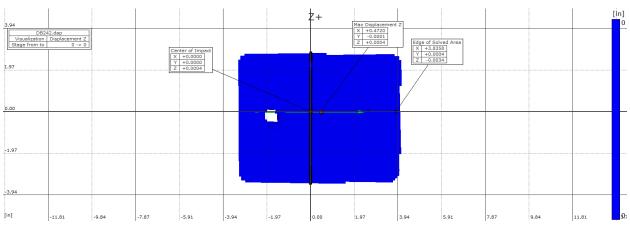


Figure C.39.—DB242 locations of digital image correlation (DIC) measurements.

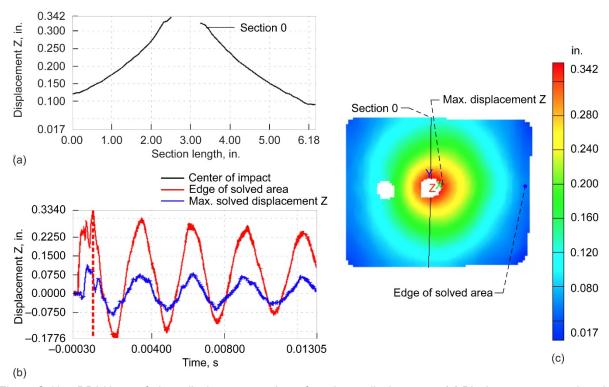


Figure C.40.—DB242 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.41.—DB242 posttest front view closeup.

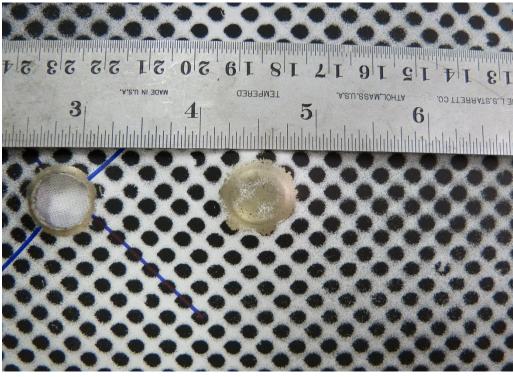


Figure C.42.—DB242 posttest rear view closeup.

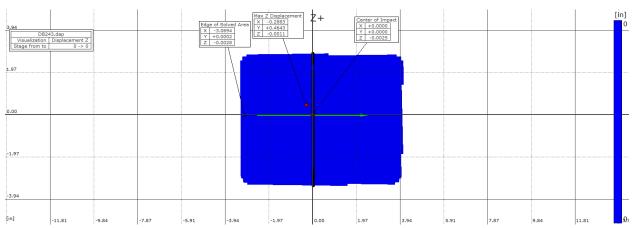


Figure C.43.—DB243 locations of digital image correlation (DIC) measurements

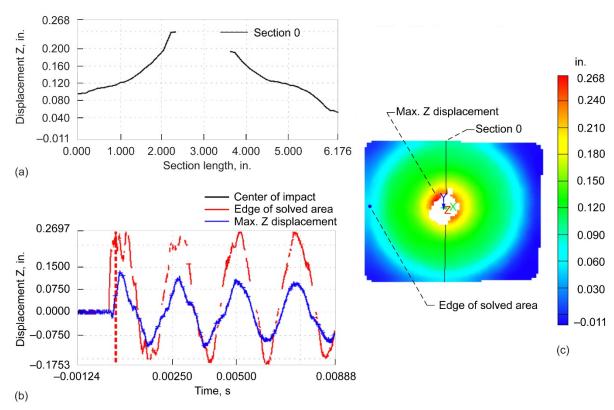


Figure C.44.—DB243 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

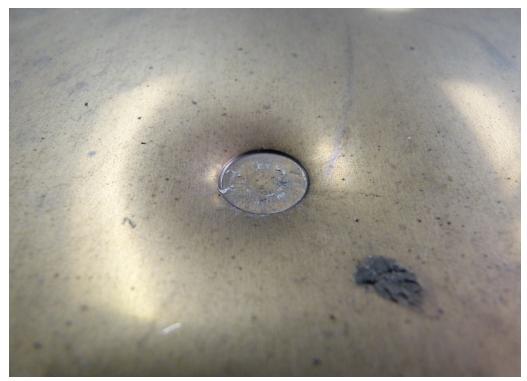


Figure C.45.—DB243 posttest front view closeup.

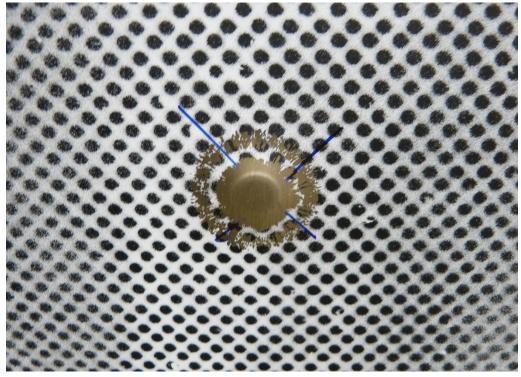


Figure C.46.—DB243 posttest rear view closeup.

Figure C.47.—DB244 posttest front view.

Figure C.48.—DB244 posttest rear view.

Figure C.49.—DB244 posttest front view closeup.

Figure C.50.—DB244 posttest rear view closeup.

Figure C.51.—DB245 posttest front view.

Figure C.52.—DB245 posttest rear view.

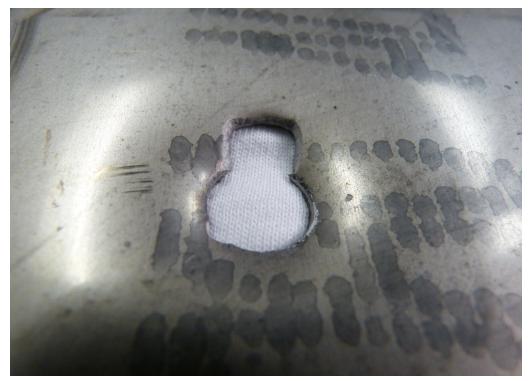


Figure C.53.—DB245 posttest front view closeup.

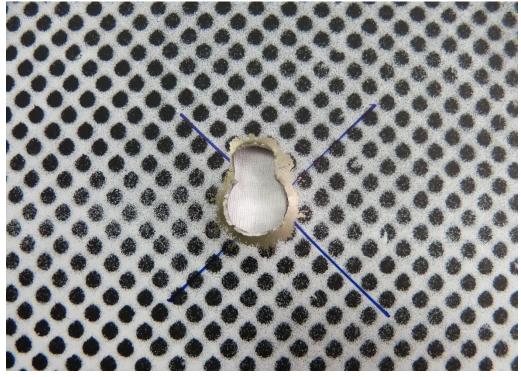


Figure C.54.—DB245 posttest rear view closeup.

Figure C.55.—DB246 posttest front view.



Figure C.56.—DB246 posttest rear view.

Figure C.57.—DB246 posttest front view closeup.

Figure C.58.—DB246 posttest rear view closeup.

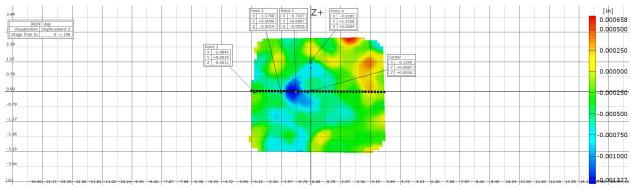


Figure C.59.—DB247 locations of digital image correctation (DIC) measurements.

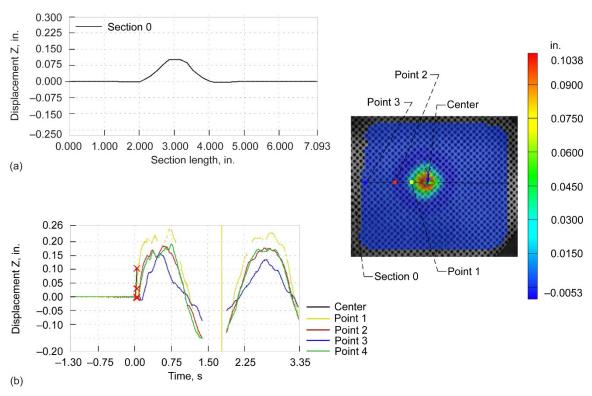


Figure C.60.—DB247 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

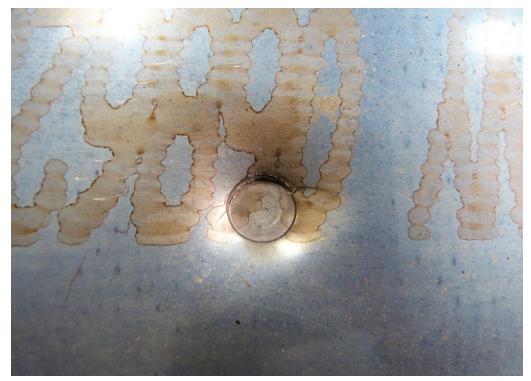


Figure C.61.—DB247 posttest front view closeup.

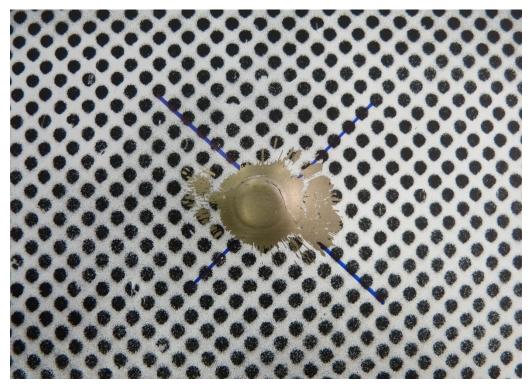


Figure C.62.—DB247 posttest rear view closeup.

Figure C.63.—DB248 posttest front view.

Figure C.64.—DB248 posttest rear view.

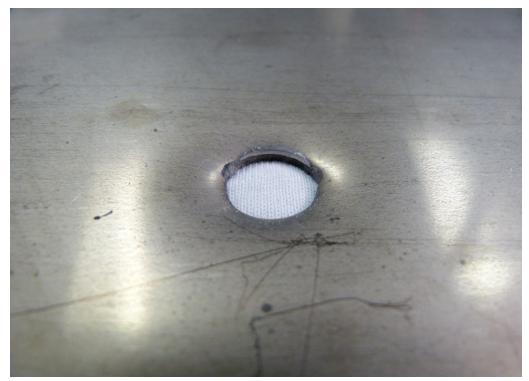


Figure C.65.—DB248 posttest front view closeup.

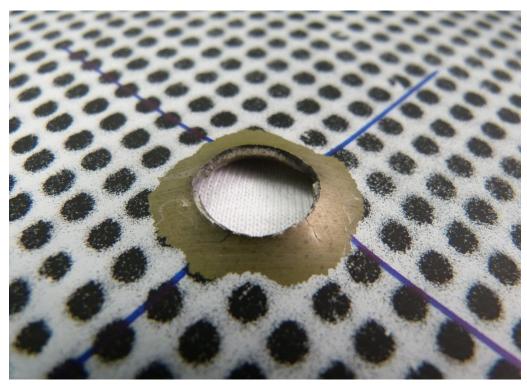


Figure C.66.—DB248 posttest rear view closeup.

Figure C.67.—DB249 posttest front view.

Figure C.68.—DB249 posttest rear view.

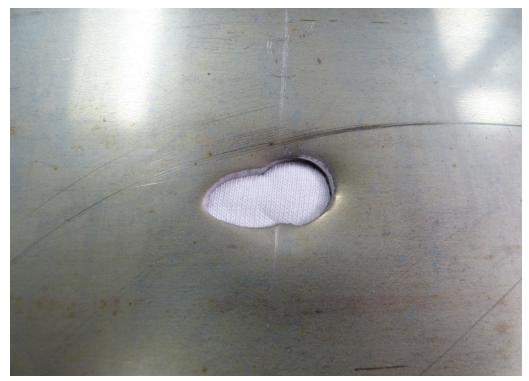


Figure C.69.—DB249 posttest front view closeup.

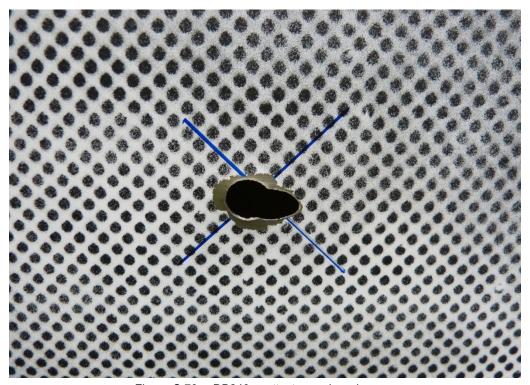


Figure C.70.—DB249 posttest rear view closeup.

Figure C.71.—DB250 posttest front view.

Figure C.72.—DB250 posttest rear view.

Figure C.73.—DB250 posttest front view closeup.

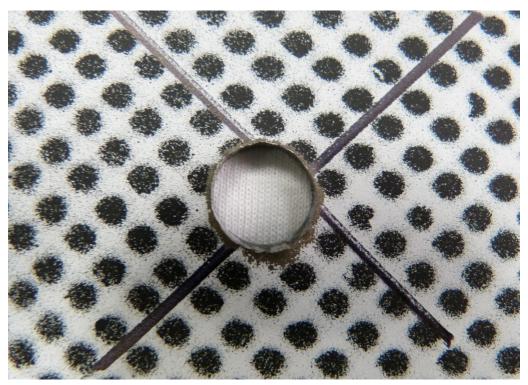


Figure C.74.—DB250 posttest rear view closeup.

Figure C.75.—DB251 posttest front view.

Figure C.76.—DB251 posttest rear view.

Figure C.77.—DB251 posttest front view closeup.

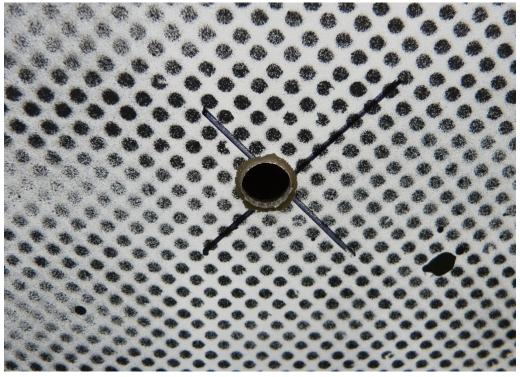


Figure C.78.—DB251 posttest rear view closeup.

Figure C.79.—DB252 pretest front view.

Figure C.80.—DB252 posttest rear view.

Figure C.81.—DB252 posttest front view closeup.

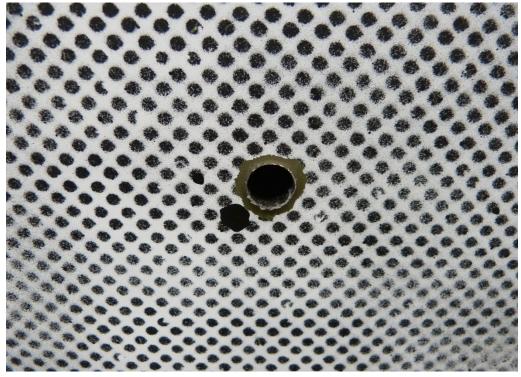


Figure C.82.—DB252 posttest rear view closeup.

The DIC data was not obtained due to projectile being captured.

Figure C.83.—DB253 posttest front view.

Figure C.84.—DB253 posttest rear view.

Figure C.85.—DB253 posttest front view closeup.

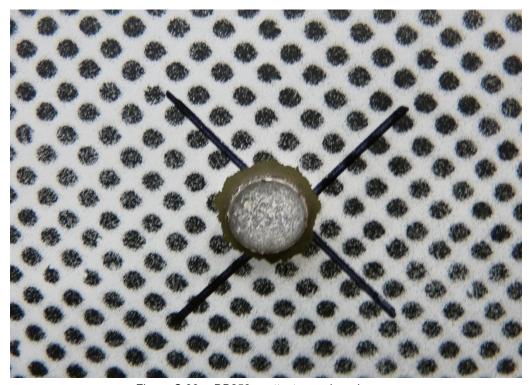


Figure C.86.—DB253 posttest rear view closeup.



Figure C.87.—DB254 posttest front view.

Figure C.88.—DB254 posttest rear view.

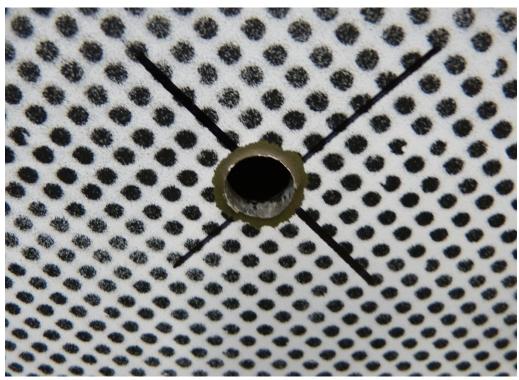


Figure C.89.—DB254 posttest rear view closeup.

The DIC data was not obtained due to projectile being captured.

Figure C.90.—DB255 posttest front view.

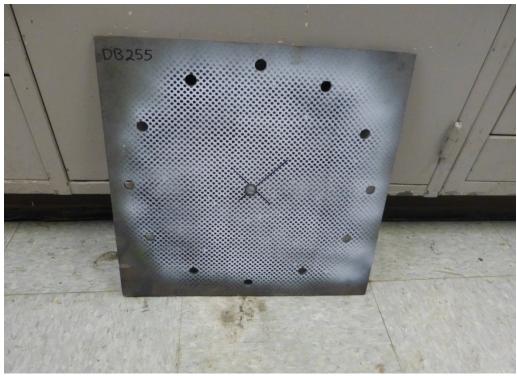


Figure C.91.—DB255 posttest rear view.

Figure C.92.—DB255 posttest front view closeup.

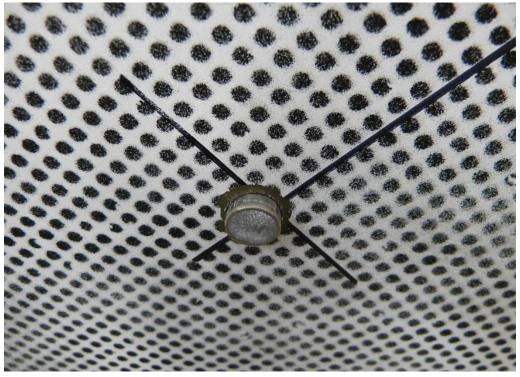


Figure C.93.—DB255 posttest rear view closeup.

No pretest or posttest pictures were taken of sample DB256.

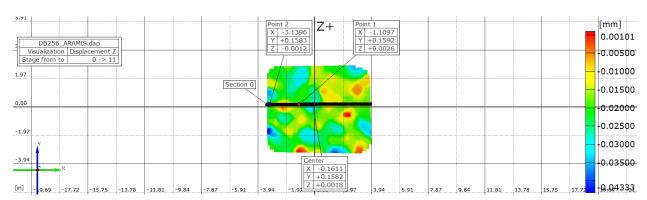


Figure C.94.—DB256 locations of digital image correlation (DIC) measurements.

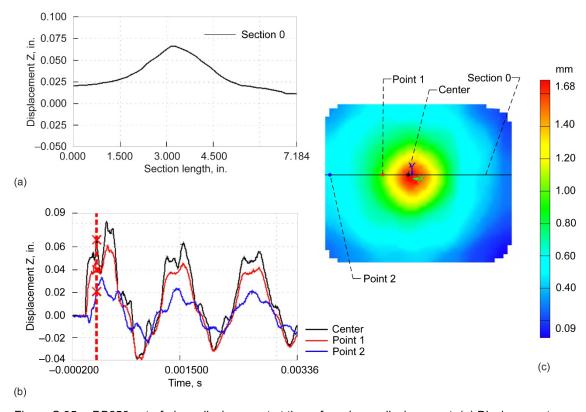


Figure C.95.—DB256 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

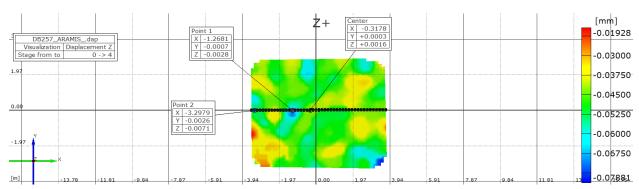


Figure C.96.—DB257 locations of digital image correlation (DIC) measurements.

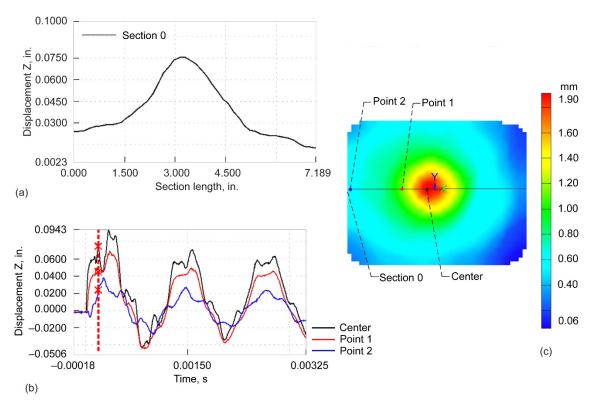


Figure C.97.—DB257 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.98.—DB257 posttest front view closeup.

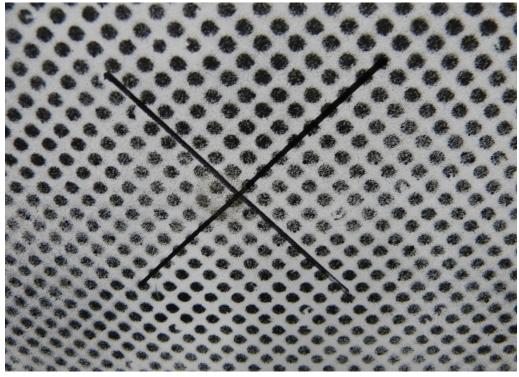


Figure C.99.—DB257 posttest rear view closeup.

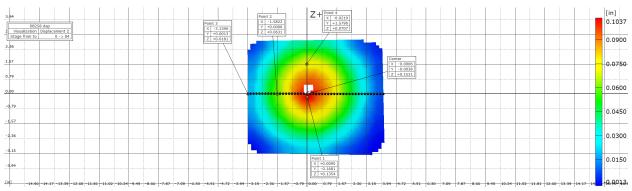


Figure C.100.—DB258 locations of digital image correlation (DIC) measurements.

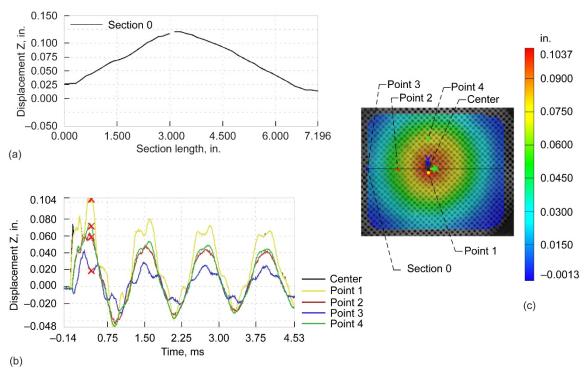


Figure C.101.—DB258 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.102.—DB258 posttest front view closeup.

Figure C.103.—DB258 posttest rear view closeup.

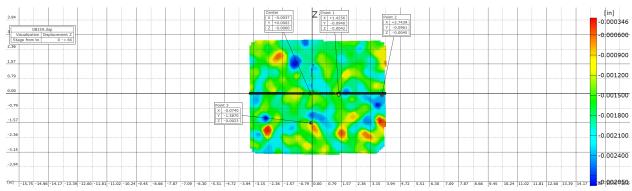


Figure C.104.—DB259 locations of digital image correlation (DIC) measurements.

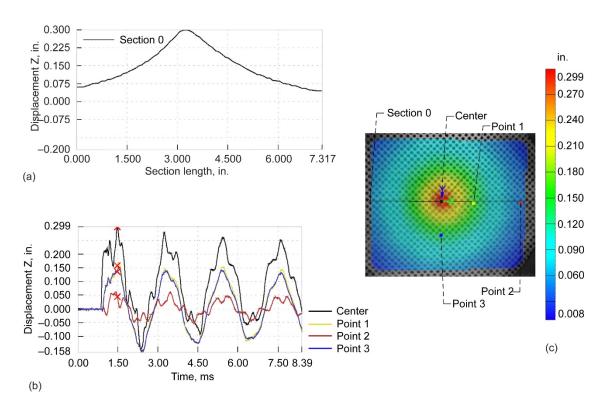


Figure C.105.—DB259 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.106.—DB259 posttest front view closeup.

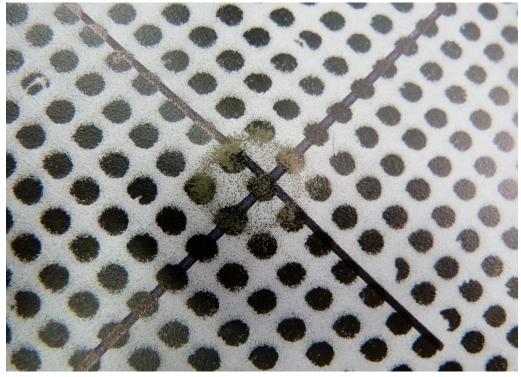


Figure C.107.—DB259 posttest rear view closeup.

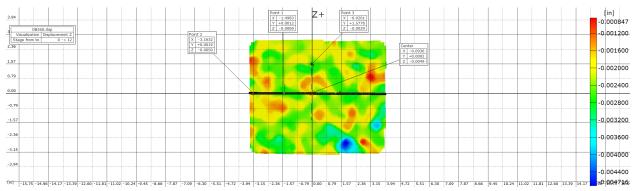


Figure C.108.—DB260 locations of digital image correlation (DIC) measurements.

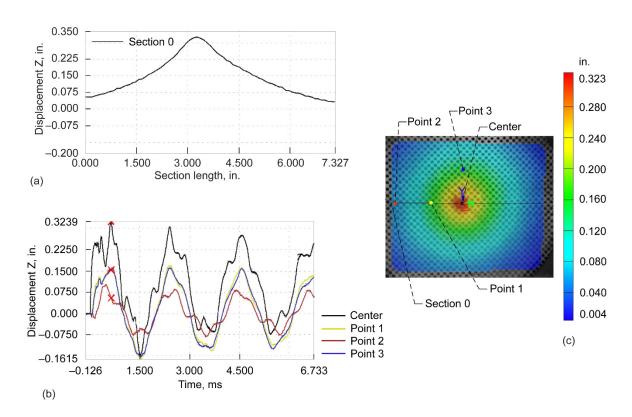


Figure C.109.—DB260 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.110.—DB260 posttest front view closeup.

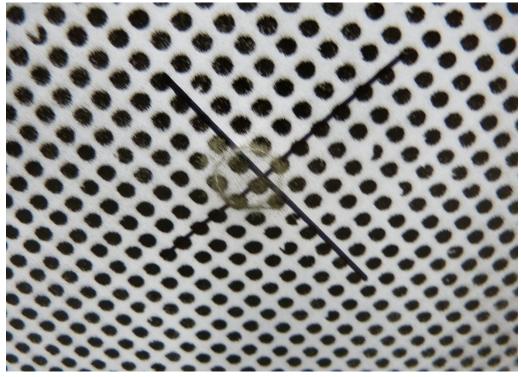


Figure C.111.—DB260 posttest rear view closeup.

The DIC data was not obtained due to perferation of specimen.

Figure C.112.—DB261 posttest front view.

Figure C.113.—DB261 posttest rear view.

Figure C.114.—DB261 posttest front view closeup.

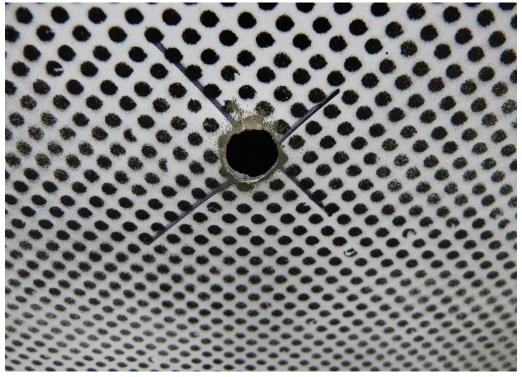


Figure C.115.—DB261 posttest rear view closeup.

Figure C.116.—DB262 posttest front view.

Figure C.117.—DB262 posttest rear view.

Figure C.118.—DB262 posttest front view closeup.

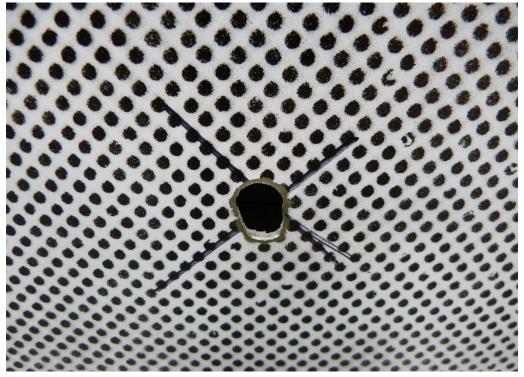


Figure C.119.—DB262 posttest rear view closeup.

Figure C.120.—DB263 posttest front view.

Figure C.121.—DB263 posttest rear view.



Figure C.122.—DB263 posttest front view closeup.



Figure C.123.—DB263 posttest rear view closeup.

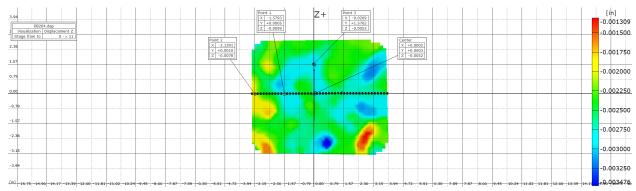


Figure C.124.—DB264 locations of digital image correlation (DIC) measurements.

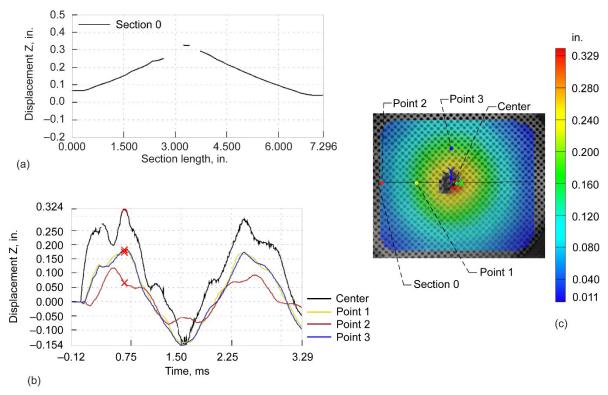


Figure C.125.—DB264 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.126.—DB264 posttest front view closeup.

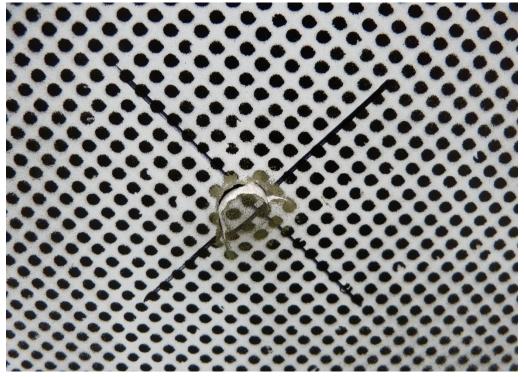


Figure C.127.—DB264 posttest rear view closeup.

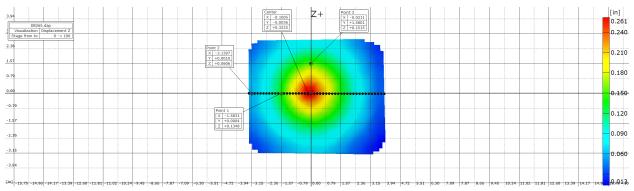


Figure C.128.—DB265 locations of digital image correlation (DIC) measurements.

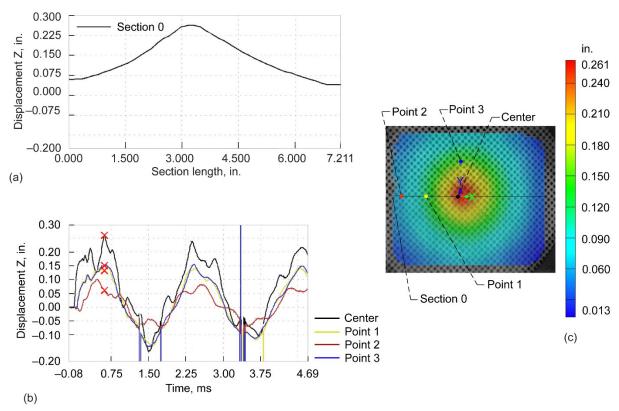


Figure C.129.—DB265 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.130.—DB265 posttest front view closeup.

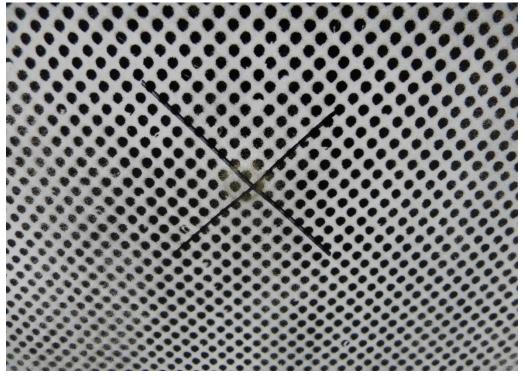


Figure C.131.—DB265 posttest rear view closeup.

Figure C.132.—DB266 posttest front view.

Figure C.133.—DB266 posttest rear view.

Figure C.134.—DB266 posttest front view closeup.

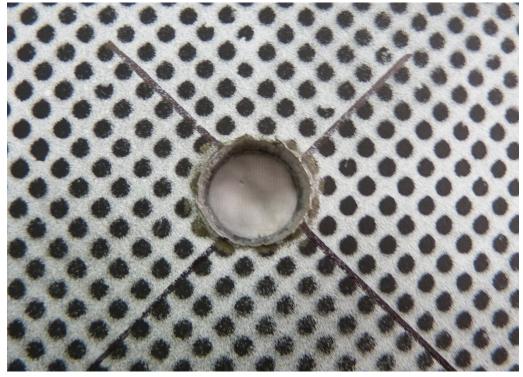


Figure C.135.—DB266 posttest rear view closeup.

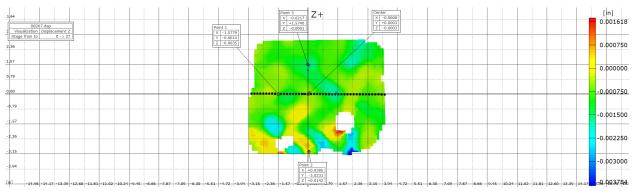


Figure C.136.—DB267 locations of digital image correlation (DIC) measurements.

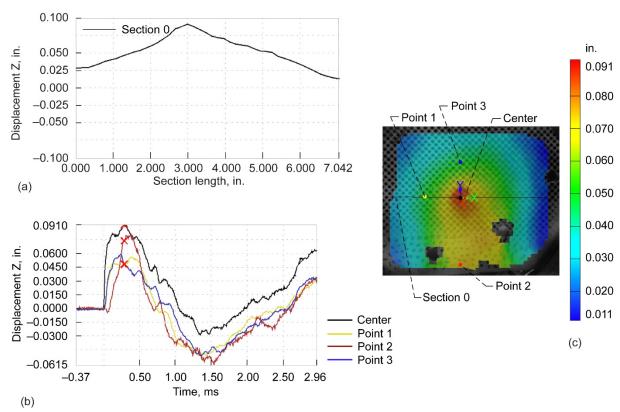


Figure C.137.—DB267 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.138.—DB267 posttest front view closeup.

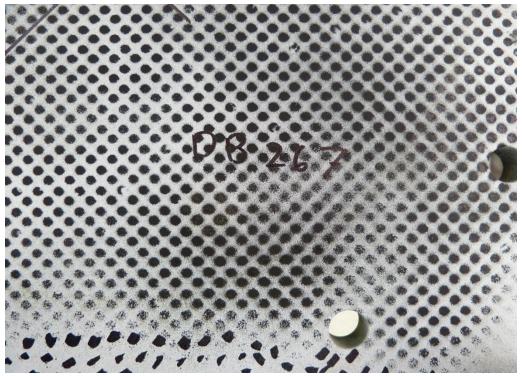


Figure C.139.—DB267 posttest rear view closeup.

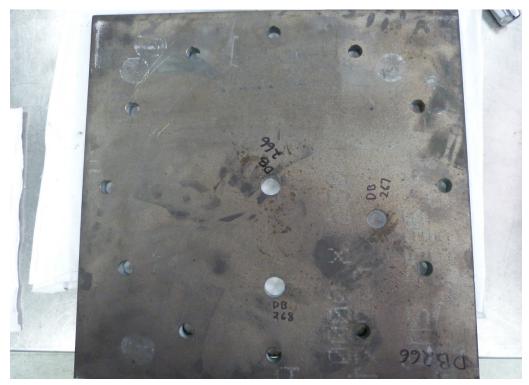


Figure C.140.—DB268 posttest front view.

Figure C.141.—DB268 posttest rear view.

Figure C.142.—DB268 posttest front view closeup.

Figure C.143.—DB268 posttest rear view closeup.

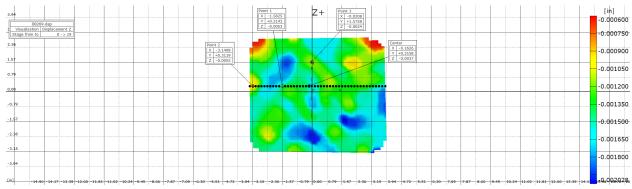


Figure C.144.—DB269 locations of digital image correlation (DIC) measurements.

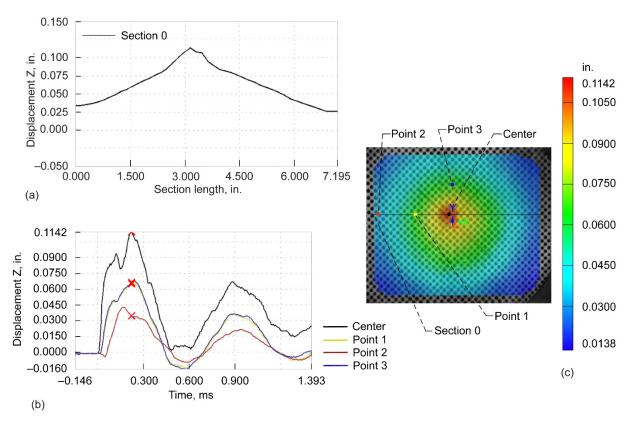


Figure C.145.—DB269 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.146.—DB269 posttest front view closeup.

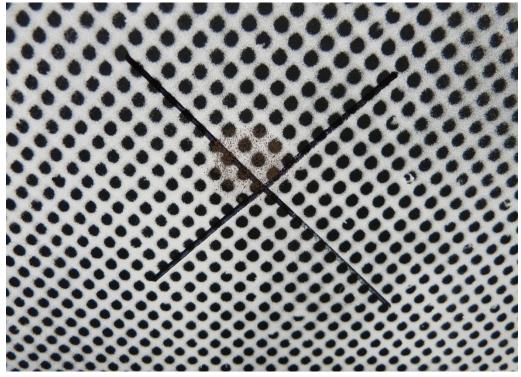


Figure C.147.—DB269 posttest rear view closeup.

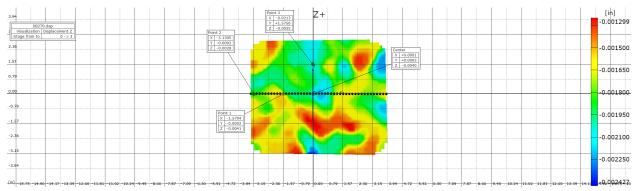


Figure C.148.—DB270 locations of digital image correlation (DIC) measurements.

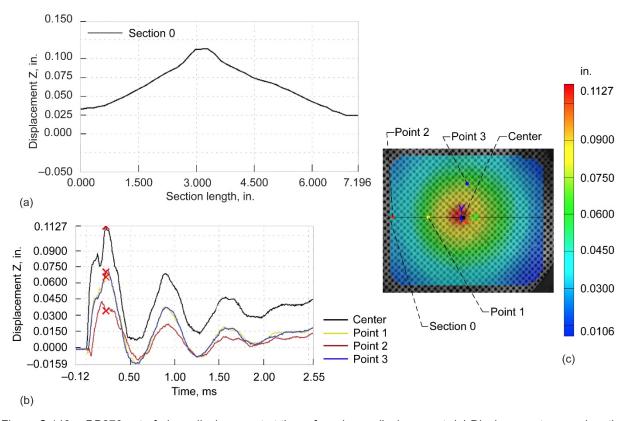


Figure C.149.—DB270 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.150.—DB270 posttest front view closeup.

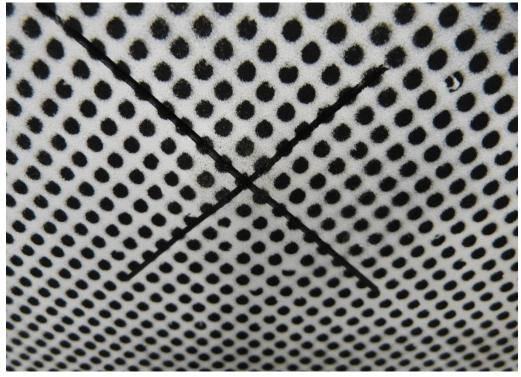


Figure C.151.—DB270 posttest rear view closeup.

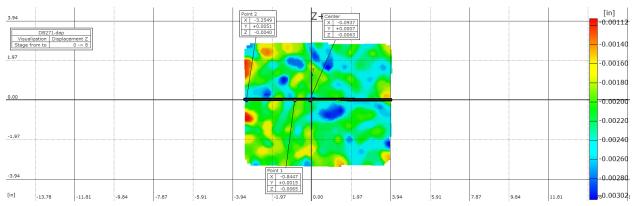


Figure C.152.—DB271 locations of digital image correlation (DIC) measurements.

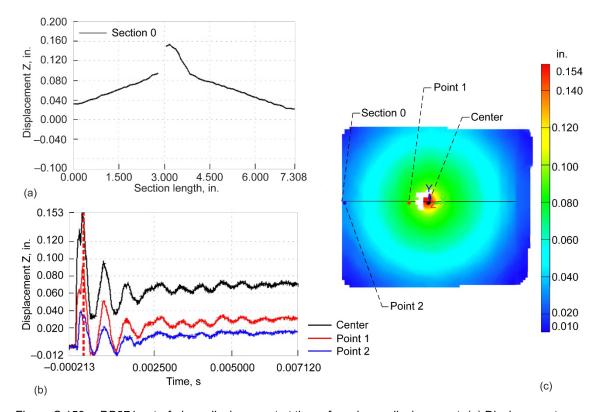


Figure C.153.—DB271 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.154.—DB271 posttest front view closeup.

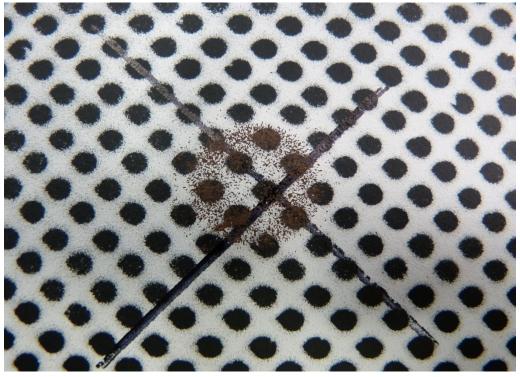


Figure C.155.—DB271 posttest rear view closeup.

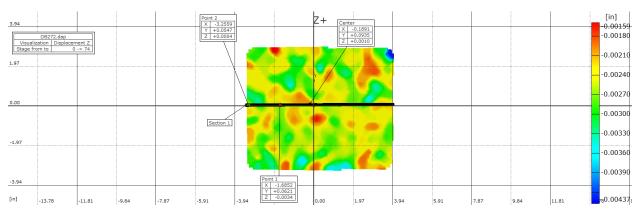


Figure C.156.—DB272 locations of digital image correlation (DIC) measurements.

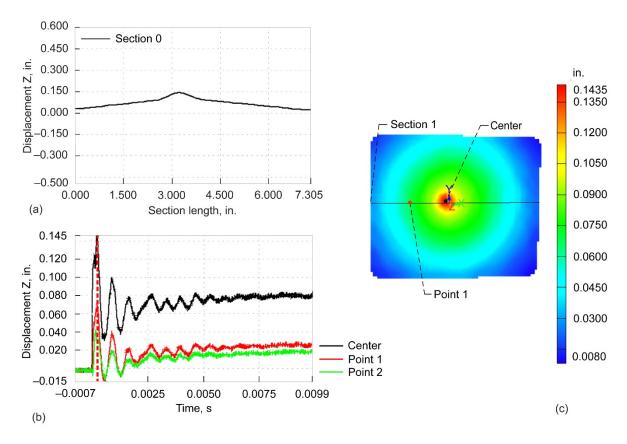


Figure C.157.—DB272 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure C.158.—DB272 posttest front view closeup.

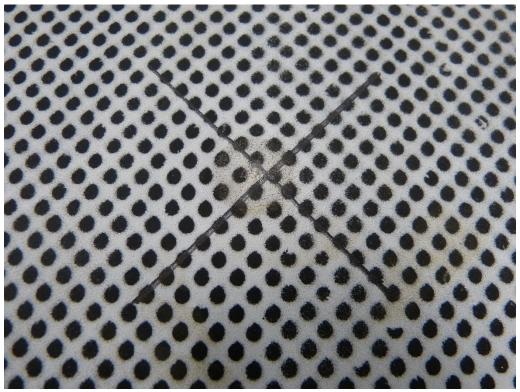


Figure C.159.—DB272 posttest rear view closeup.

Appendix D.—Large Panel Test Results

This section shows photographs of test specimens and digital image correlation (DIC) results for each of the large panel tests conducted. In certain tests, where there was full penetration, no DIC results are shown.

Test LG1110

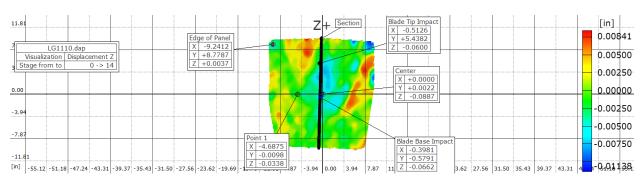


Figure D.1.—LG1110 locations of digital image correlation (DIC) measurements.

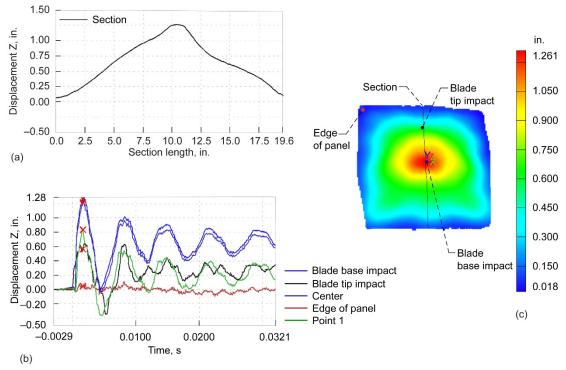


Figure D.2.—LG1110 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

Figure D.3.—LG1110 posttest front view.

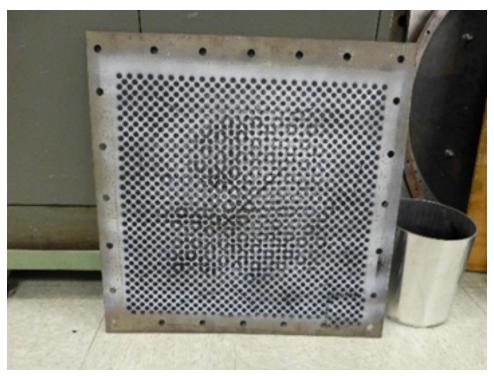


Figure D.4.—LG1110 posttest rear view.

Figure D.5.—LG1110 posttest projectile top view.

Figure D.6.—LG1110 posttest projectile bottom view.

Test LG1111

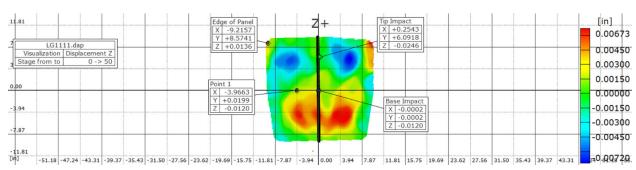


Figure D.7.—LG1111 locations of digital image correlation (DIC) measurements.

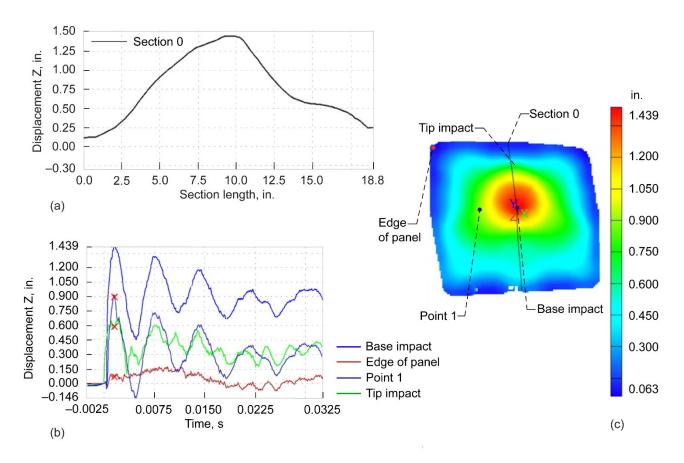


Figure D.8.—LG1111 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

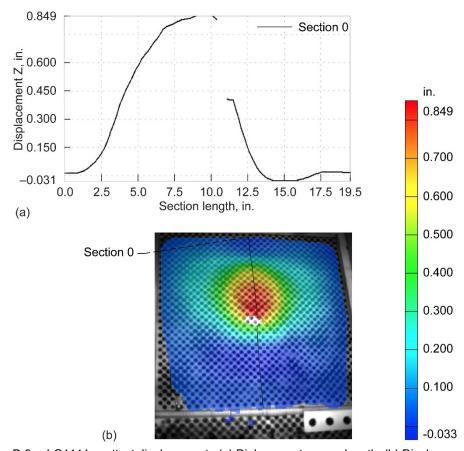


Figure D.9.—LG1111 posttest displacements (a) Diplacement versus length. (b) Displacement Z.



Figure D.10.—LG1111 posttest front view.

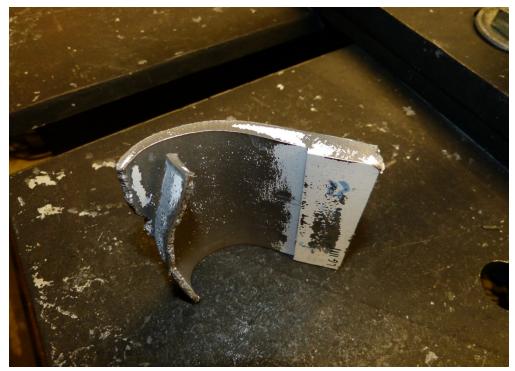


Figure D.11.—LG1111 posttest projectile bottom view.

Figure D.12.—LG1111 posttest projectile side view.

Figure D.13.—LG1113 posttest front view.

Figure D.14.—LG1113 posttest rear view.

Figure D.15.—LG1113 ejected material from panel.

Figure D.16.—LG1113 posttest projectile.

Figure D.17.—LG1114 posttest front view.

Figure D.18.—LG1114 posttest rear view.

Figure D.19.—LG1114 posttest projectile.

No DIC data available due to improper impact location.

Figure D.20.—LG1115 posttest front view.

Figure D.21.—LG1115 posttest rear view.

Figure D.22.—LG1115 posttest projectile.

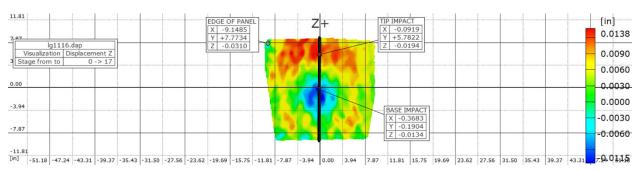


Figure D.23.—LG1116 locations of digital image correlation (DIC) measurements.

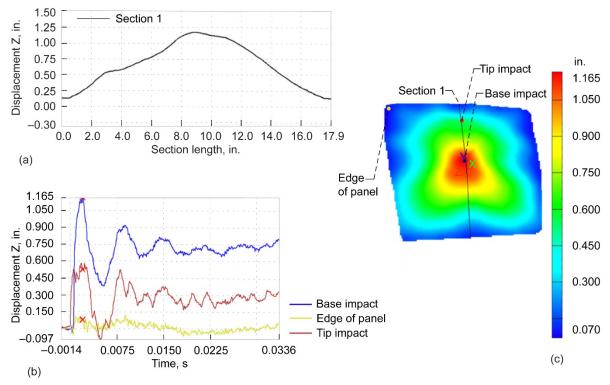


Figure D.24.—LG1116 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

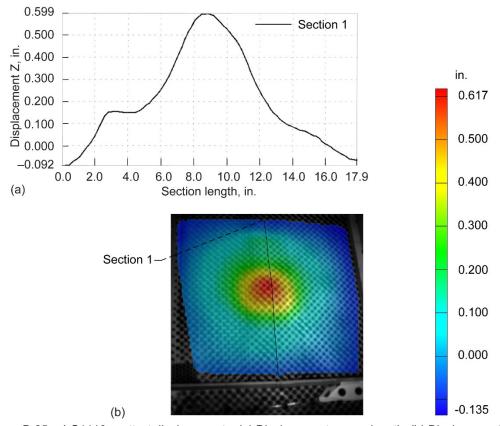


Figure D.25.—LG1116 posttest displacements. (a) Displacement versus length. (b) Displacement Z.

Figure D.26.—LG1116 posttest front view.

Figure D.27.—LG1116 posttest top view.

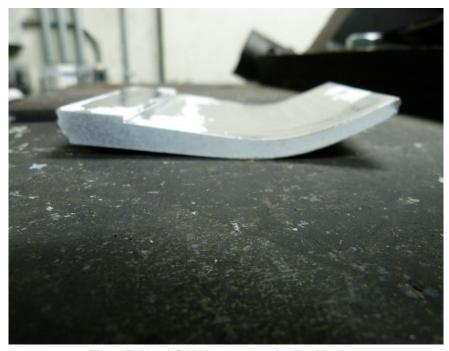


Figure D.28.—LG1116 posttest projectile side view.

Figure D.29.—LG1116 posttest projectile bottom view.

Figure D.30.—LG1125 posttest front view.

Figure D.31.—LG1125 posttest rear view.

Figure D.32.—LG1125 posttest projectile.

Figure D.33.—LG1126 posttest front view.

Figure D.34.—LG1126 posttest rear view.

Figure D.35.—LG1126 posttest projectile.

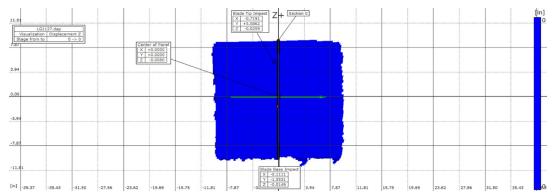


Figure D.36.—LG1127 locations of digital image correlation (DIC) measurements.

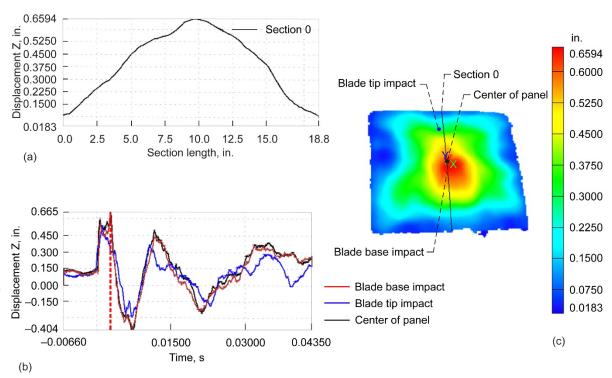


Figure D.37.—LG1127 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

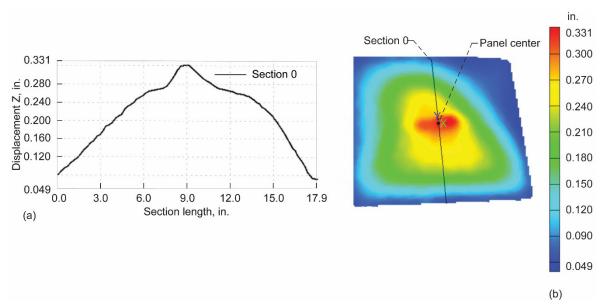


Figure D.38.—LG1127 posttest displacements. (a) Displacement versus length. (b) Displacement Z.

Figure D.39.—LG1127 posttest front view.

Figure D.40.—LG1127 posttest rear view.

Figure D.41.—LG1127 posttest projectile.

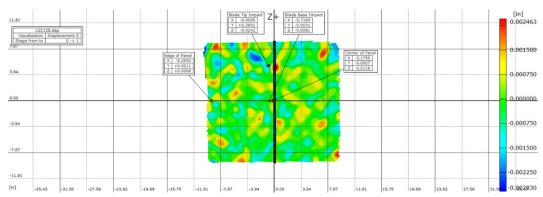


Figure D.42.—LG1128 locations of digital image correlation (DIC) measurements.

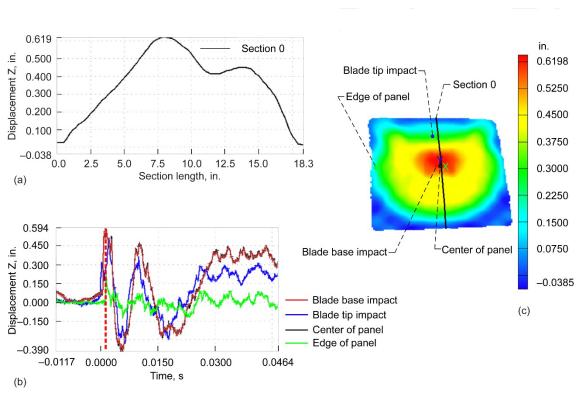


Figure D.43.—LG1128 out-of-plane displacement at time of maximum displacement. (a) Displacement versus length. (b) Displacement versus time. (c) Displacement Z.

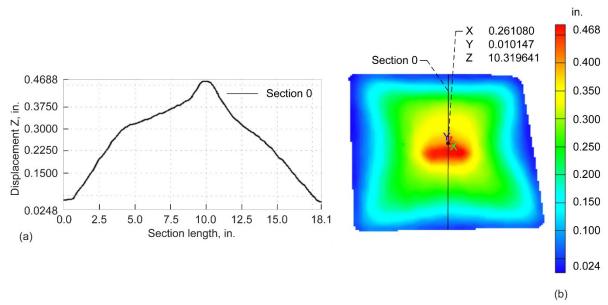


Figure D.44.—LG1128 posttest displacements. (a) Displacement versus length. (b) Displacement Z.

Figure D.45.—LG1128 posttest front view.

Figure D.46.—LG1128 posttest rear view.

Figure D.47.—LG1128 posttest projectile.

Reference

Ι.	Pereira, J.M., et al.: Impact Testing of Aluminum 2024 and Titanium 6AI-4V for Material Model
	Development. NASA/TM—2013-217869 (DOT/FAA/TC-12/58), 2014. http://ntrs.nasa.gov