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ABSTRACT 
 
Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing 
technologies are becoming more prevalent in the transportation industry. Concurrently, transportation 
agencies are increasingly challenged with asset management, traffic operations, and safety assessments. 
The affordability of LiDAR technology continues to increase. Given this, there will be substantial 
challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. 
A proper understanding of the data size generated from this technology will help agencies in making 
decisions regarding storage, management, and transmission of the data. 
 
This study explored the point cloud data size generated from a 16-beam LiDAR sensor unit at different 
operating modes and driving speeds with a mobile platform in the highway environment. Two types of 
roadway (collector and arterial) with three different sections (travel lanes, right of way, and 
unfiltered/total) were considered in this study for data collection. Conservative projections show an 
estimated total data size ranging from 1 to 3.5 gigabytes for 10,000 vehicle-miles traveled using the 
selected LiDAR unit. AVs will likely use multiple and/or higher resolution units. This study also 
developed simple models for estimating data size based on LiDAR operating mode and collection period 
duration. 
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Executive Summary 
 
The uses of geospatial technologies for a wide variety of transportation applications have expanded 
rapidly in recent decades. As Light Detection and Ranging (LiDAR) technology has matured, it has 
brought groundbreaking change in the transportation industry for infrastructure management, safety 
assessment, and other uses with greater precision, resource efficiency, and flexibility. The potential 
applications of LiDAR are expected to expand with the continued advancement of sophisticated sensor 
technologies and development of autonomous vehicles. It is important to consider and understand the big 
data generated from this technology in the context of a growing autonomous vehicle fleet for effective 
field use and data management practices.  
 
This study explored the point cloud data size generated from a 16-beam LiDAR sensor unit in ASPRS 
recommended (. las) file format at different operating modes and driving speeds with a mobile platform in 
the highway environment. Two types of roadway (collector and arterial) with three different sections 
(travel lanes, right of way, and total) were considered for data collection in this study. In total, five 
different regression models were developed to project the data size generated from the sensor. 
Conservative projections show an estimated total data size ranging from approximately 1000 megabytes 
to approximately 3500 megabytes for 10,000 vehicle-miles traveled using the selected LiDAR unit. 
Autonomous vehicles will probably use multiple and/or higher resolution units. For transportation 
agencies to make appropriate decisions regarding future data management, it is imperative to provide 
proactive estimations of data size.  
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1. INTRODUCTION 
 
The purposes of this research were to understand the large-scale point cloud data size generated from a 
mobile LiDAR (Light Detection and Ranging) platform and to outline associated challenges and previous 
applications of LiDAR data in the transportation industry. The outcome of this research will help 
transportation agencies make decisions regarding data storage and management and understand the 
utilization of the big data generated from LiDAR in the context of a growing autonomous vehicle fleet. 
 
1.1 General Background 
 
The advent of autonomous vehicles (AVs) and connected-autonomous vehicles (CAVs) have brought 
about significant changes in the transportation system in recent years. The technology is expected to have 
an even greater impact as it develops further in the coming years. Autonomous vehicle technology has the 
potential to reduce many negative aspects of personal automobile use and is expected to pave the way 
toward certain benefits. According to the National Highway Traffic Safety Administration (2016), 94% of 
the car crashes are attributed to human error, such as driving too fast, distraction, or poor judgement. It is 
widely accepted that AVs have the potential for tremendous safety benefits since they can lessen or 
eliminate the impact of human error. With the widespread deployment of automated driving systems, an 
approximate annual social benefit of $800 billion dollars is expected for congestion mitigation, reduced 
road causalities, minimized energy consumption, and increased productivity caused by the reallocation of 
driving time (Montgomery, Mudge et al., 2018). 
 
The trend toward vehicle automation is escalating daily. At present, the majority of AV manufacturers are 
considering LiDAR as the fundamental sensing component of AVs. Mounted on an AV, LiDAR provides 
the means to gain a 3D representation of the surrounding environment with a 360-degree view. LiDAR 
has also become a mainstream technology for highway data collection. It can collect large-scale, dense 
data in the form of 3D point clouds for various transportation applications with greater flexibility, 
resource efficiency, and accuracy. Unlike traditional sensors, such as cameras, it can collect data in the 
dark with no impact on quality.  
 
The use of LiDAR technology has been growing in the transportation industry in recent decades. This 
emerging technology is most commonly used via three different platforms: mobile, airborne, and 
stationary. LiDAR measures the distance of the target objects from the reflection time of a light pulse. 
The mobile and airborne LiDAR units usually integrate an inertial measurement unit (IMU) and a global 
navigation satellite system (GNSS). The GNSS provides the locational information (x, y, and z) of the 
point clouds in a global frame while the IMU informs the orientation (roll, pitch, and yaw) of the 
platform. One of the major advantages of LiDAR is that, unlike traditional manual survey methods, it can 
produce a high-resolution 3D point cloud of the surveyed area within a fraction of the time, causing 
minimal disruption to the traffic operations. 
 
The direct ownership and application of LiDAR sensors has increased significantly among transportation 
agencies and organizations at the local, state, and national level. Although the demand for LiDAR is 
growing, it poses certain challenges and drawbacks in terms of applicability. One of the major challenges 
regarding the use of LiDAR technology is use and management of the big data generated from this sensor 
technology. It sends thousands of laser pulses per second. Having rotating mirrors, these 3D laser 
scanners can take millions of measurements over a scene in just a few seconds or minutes by Kemeny and 
Turner (2008). Tupas et al. (2016) indicated that “In LiDAR acquisition and processing operations, 
terabytes to petabytes of disk storage used is the norm.” An appropriate method to estimate the large-scale 
data size generated from the LiDAR technology is crucial for transportation agencies to understand the 
considerable data size and also to consider certain challenges and solutions.  
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1.2 Problem Statement and Scope 
 
Remote sensing technologies for highway asset inventory are undergoing rapid development. The 
possibility of acquiring 3D information over a large area, such as a roadway, with survey grade accuracy 
and decreased survey time is creating new opportunities for innovation and unique management of 
resources. Advanced Driver Assistance Systems (ADAS) based on LiDAR sensors is one of the most 
innovative and game-changing technologies for the operation of AVs. The use of mobile LiDAR for rapid 
data collection to make high resolution informative maps has made the decision-making process for 
transportation agencies quicker and easier. Extensive research is ongoing in the transportation industry to 
understand the application of LiDAR technology for various purposes. Since the current use of LiDAR 
technology is increasing rapidly, there is a need to evaluate potential challenges and opportunities 
associated with the application of this sensing technology. 
 
One of the most considerable disadvantages of the current LiDAR data collection process is that a 
significant amount of time and computing power is required to prepare raw data for possible analysis. 
Although LiDAR has become more affordable for average users, the effective process and extraction of 
useful information from the raw point clouds still poses a technical challenge (Chen, 2007). Cao et al. 
(2015) stated that due to the volume of the data, the computational and technical requirements to process, 
manage, and store the data can be significant. The processing and analysis of LiDAR data involves 
different software platforms, which may reduce data quality, be proprietary, and require varying levels of 
training to utilize. As the prevalence of this technology in the context of an autonomous vehicle fleet 
grows, transportation agencies will soon be faced with the challenges of technical complexities and high-
volume data size. The rapid increase of LiDAR applications has created the need for storage and online 
distribution of collected 3D cloud data (Kulawiak et al., 2019).  
 
Few studies have been conducted to understand the data size generated from LiDAR sensors at a large 
scale. This study was designed to demonstrate the potential data sizes of large-scale LiDAR data 
collection, possible uses of the collected data, and outline the related challenges and solutions for 
transportation agencies interested in collecting such data from a growing fleet of AVs. Different 
scenarios, such as the travel lanes, right of way, and total data, were considered to understand the data 
size. Linear regression models were developed to project the large-scale data size under the selected 
different scenarios. The model used data collected from different roads (arterial and collector), at different 
vehicle speeds and with different operating modes of the LiDAR sensor. The LiDAR operating mode 
(horizontal resolution and refresh rate), and duration of the sensor run time (related to vehicle speed) were 
considered as the explanatory variables to forecast the data size generated from this sensor. This research 
will help the transportation agencies to understand the possible data size they can expect from 
autonomous vehicles using LiDAR and the associated challenges with collecting data. Moreover, the 
outcome of this research will help agencies that are considering investments in the collection of LiDAR 
data to understand the benefits and challenges. 
 
1.3 Research Objective 
 
The main goal of this research was to understand the potential uses and challenges of large-scale LiDAR 
data from a growing fleet of AVs by transportation agencies. An extensive literature review was 
conducted to understand the existing applications of LiDAR technology in the transportation industry. 
Then, LiDAR data was collected from a real-world highway environment at different vehicle speeds and 
LiDAR operating modes in order to understand the possible data size generated from the sensor. 
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The specific objectives of this project were to: 
• Present a model developed to estimate the size of LiDAR data sets collected by an AV. 
• Summarize previous studies of LiDAR in the transportation industry  
• Outline the possible challenges and future research scope of using this type of sensor. 

 
1.4 Justification of the Research 
 
Transportation infrastructure plays a significant role in economic, health, societal, environmental, etc., 
aspects of life in the United States and across the globe. The high spatial resolution and mapping accuracy 
of LiDAR has made it popular for transportation planning and infrastructure asset inspection and 
maintenance. This sensor has also become popular in the AV industry for its affordability and reliability. 
AVs rely on their fundamental sensors to retrieve and process the information about their immediate 
surroundings, which informs their decision-making and actions. It is necessary for transportation agencies 
to understand the wide range of applications of this emerging technology and the corresponding 
opportunities. A method for estimating the large-scale LiDAR data size and related challenges will help 
transportation agencies make necessary decisions and policies. Results of this research will provide a 
baseline for future data management, data policies, and resource management. 
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2. LITERATURE REVIEW 
 
This chapter covers an extensive literature review regarding applications of LiDAR technology in the 
transportation industry to highlight the potential of the 3D point cloud data. Most of transportation 
agencies that use LiDAR use it for inventory and asset management purposes. However, with the 
emergence of the autonomous vehicle, the potential of this sensor technology is extended beyond asset 
management. The review outlines the algorithms used to extract information from the LiDAR data and 
the relevant challenges. 
 
2.1 Road Sign Detection 
 
Road signs or traffic signs provide important information to road users. They are mainly erected at the 
side or above the road. These signs usually use shapes, colors, words, or different symbols to deliver 
certain message to users. As per state and federal regulations, the vast majority of road signs are covered 
with reflective material to reflect light in all directions to be more visible to users and readable during 
nighttime to increase traffic safety. A LiDAR sensor can be used to detect the road signs by extracting 
reflection intensity information about the reflective objects. 
 
Chen, Kohlmeyer et al. (2009) used mobile LiDAR data to automatically detect traffic signs. After 
significant filtering of the data, a threshold value was used to extract point clusters with high point density 
and a random sample consensus (RANSAC) algorithm was applied to geometrically fit a plane to each 
point cluster. The authors declared an approximate success of 98% of this method to detect traffic signs. 
Yang, Fang et al. (2012) proposed a method by using mobile LiDAR for the automated extraction of road 
markings. In this method, inverse distance weighted (IDW) interpolation and discrete discriminant 
analysis (DDA) were used to develop a georeferenced feature image of the point clouds representing the 
road surface. Later, filtering was done based on the intensity and elevation to reduce false candidates, 
such as pedestrians and cars. Finally, the progressive probabilistic Hough transform (PPHT) operator was 
applied by using the semantic knowledge (shape, pattern) to extract road markings from the segmented 
points. Landa and Prochazka (2014) used intensity information from LiDAR data to extract and detect 
road signs. A threshold intensity value of the raw cloud data was considered to cluster the selected points 
based on the Euclidean distance between two points. The cluster was then filtered based on height, 
elevation, and point density. The authors reported that this method is only applicable for a single sign 
extraction with a 93% success rate while attributing the missing road signs to low density in point cloud 
data.  
 
Wu, Wen et al. (2015) developed a method using the principal component analysis (PCA) and intensity 
filtering for traffic sign detection and visibility evaluation from mobile LiDAR data. The 3D point clouds 
were projected onto corresponding 2D images. The vector-based formula was applied by using the geo-
referenced relation between the points and the image to extract spatial-related features of the traffic signs 
and image features. Finally, the extracted image and spatial related features were combined to evaluate 
visibility. It was reported that the average deviation between the calculated results and subjective 
evaluation were under 5%. Li, Shinohara et al. (2016) proposed an automatic method to detect and 
recognize road signs using images and 3D point clouds acquired by a mobile mapping system (MMS). An 
object-based image analysis approach was used to classify road signs from the high-resolution raster 
image acquired by a camera mounted on MMS, where the point cloud was projected for matching laser 
points with pixel. Then, false positive (over detection) candidates were filtered out. Later, a template 
matching method followed by shape normalization was used to recognize and cluster the road signs from 
the false negatives (false classification). Field tests of this method showed an estimated accuracy of 
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98.4% to detect and recognize road signs. The authors mentioned the efficacy of this method under the 
challenging conditions, such as discoloration, deformation, and partial occlusions.  
 
Wen, Li et al. (2016) proposed a method using an algorithm based on identifying linear structure (traffic 
sign pole), terrain, and intensity filtering for detecting and recognizing traffic sign using LiDAR point 
clouds and imagery. After filtering the road surface and boundary, the traffic sign position and placement 
inspection were conducted by analyzing the geo-spatial relationship between the traffic sign and the road 
elements. An image-based traffic sign recognition (TSR) was implemented to obtain the traffic sign type. 
The authors reported the experimental results of Mobile Laser Scanning (MLS) point clouds and images 
showed a detection precision of 91.63% and 92.61%, respectively. The results also showed a precision of 
96.32% for traffic sign type recognition. Soilán, Riveiro et al. (2016) proposed a method for the 
automated detection and recognition of vertical traffic signs from a combination of 3D point clouds and 
imagery data integrated by MMS techniques. After preprocessing and filtering, a density-based cluster 
method, density-based spatial clustering of applications with noise (DBSCAN), was applied to cluster 
high intensity points, which were further filtered to separate traffic signs from poles, facades, and walls. 
After syncing and projecting the 3D point clouds on a 2D color image generated by the vehicle camera, a 
hierarchical approach was applied to recognize the meaning of the traffic sign. According to the authors, 
the recall result of this proposed method showed an approximate success rate of 98% to detect traffic 
signs. This method was suitable for identifying the geometric and semantic properties of traffic signs in 
urban and highway environments. Gargoum and El-Basyouny (2017) used DBSCAN on filtered data to 
separate and cluster traffic signs from other high reflective objects, such as license plates. This approach 
was tested on three different highways and the results demonstrated a success rate of 93%–100%. 
However, the authors reported this algorithm worked better on highways without overhead signs. 
 
2.2 Traffic Monitoring 
 
Traffic monitoring is the study of traffic conditions on a road network. It is important for transportation 
planners and engineers to ensure sustainable movement of traffic in a road network. LiDAR can easily 
detect, classify, and track the movement of the vehicles. The produced scans of the LiDAR give the upper 
and side contours of the vehicles. The profiles of vehicles can be affected by weather conditions like rain 
and snow. LiDAR surveys help to accurately and cost effectively collect traffic data for ensuring traffic 
safety and operation. 
 
Toth et al. (2004) used georeferenced airborne LiDAR data to compute traffic flow by extracting vehicle 
information along with road surface modeling. After extracting and smoothing the road boundary, a 
simple adaptive parallel height thresholding scheme was applied to extract and cluster vehicle candidate 
points. The candidate vehicle clusters were further filtered and classified by testing a variety of parameter 
combinations and, based on the average length of the vehicles, the velocity of the vehicles was 
approximated. Finally, the computed vehicle locations, categories, and estimated velocities were used to 
define average vehicle density and velocity as parameters to estimate traffic flow. Yao, et al. (2008) made 
a comparison among stationary, mobile, and airborne LiDAR data applications to derive traffic 
monitoring information with a focus on urban areas. In this study, an airborne laser scanning (ALS) 
simulator was used to address the motion artifact of the moving vehicle in the laser data. It was found the 
ALS data had a greater advantage in terms of extracting 3D objects. After masking out vegetation and 
human-made objects, the remaining points in the dataset were transformed to generate a vehicle height 
model (VHM) following normalized digital surface models (nDSM). Nashashibi and Bargeton (2008) 
presented a detection and tracking of moving objects (DATMO) approach for the detection, tracking, and 
classification of multiple vehicles using mobile LiDAR. In this approach, data segmentation was 
performed by using the Ramer algorithm following heuristic rules. A bicycle model was used following a 
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Kalman filter to estimate different parameters of the detected surrounding vehicles and track them. The 
authors reported the proposed method was validated over hundreds of miles. Patlins, et al. (2010) 
explored the use of LiDAR technology with trams as a distance measuring sensor from obstacles. A 
control algorithm was developed where the LiDAR provided signal as input to calculate tram braking 
path. The study recommended placing signal receptors on the right of tram’s headlight. It was found that 
the reflection time of the LiDAR beam from an obstacle is negligible compared to the time of tram 
braking.  
 
2.3 Pavement Condition Assessment 
 
Pavement condition and performance plays a critical role in the successful operation of the highway 
network. Up-to-date data on pavement condition are collected by the local and state agencies as a part of 
the pavement management system (PMS) for decision making and to perform necessary maintenance. 
The cost of pavement surveying largely depends on the applied methods and survey frequency. LiDAR is 
preferred for easy collection of highly accurate 3D geospatial information regarding the pavement 
condition for ensuring flexible, cost-effective, continuous monitoring, and maintenance. 
 
Hernández and Marcotegui (2009) proposed the use of a quasi-flat zone algorithm and a region adjacency 
graph (RAG) representation to automatically filter artifacts and detect pavement from mobile LiDAR 
data. Later, the pavement segmentation was carried out by projecting the range image onto the filtered 
point clouds. The final output of this method was a contour image of the ground foot print. Tsai and Li 
(2012) attempted to evaluate the feasibility of using mobile LiDAR to detect pavement cracks by 
employing a dynamic-optimization-based crack segmentation method under different lighting and poor 
intensity contrast conditions. Ouyang and Xu (2013) used 3D pavement images generated from a 
modified 3D camera and mobile LiDAR data to detect and obtain pavement crack measurements. The 
non-uniform rational B-spline (NURBS) surface approximation and Haar transform were applied to a 
pavement image to locate crack regions and orientations for performing fine crack detections. Finally, 
alligator cracking (interconnected longitudinal and transverse cracks) was identified by analyzing the 
crack densities from longitudinal and transverse crack histograms. The authors reported the difference in 
the total crack length between the multiple runs for both ways were smaller than 2% at a given speed. 
 
Křemen et al. (2014) evaluated the use of static 3D terrestrial laser scanning point clouds (total station) to 
assess the pavement roughness by comparing it with test field checking points. A digital terrain model 
(DTM) was created from the laser scanning points and compared with the elevation of the test field 
checking points. The paper concluded that the accuracy of 3D laser scanning point clouds is sufficient for 
situations where standard deviation in elevation must be 5 mm or less. Guan et al. (2015) used mobile 
laser scanning data to propose an automated pavement crack detection method. This method used iterative 
tensor volting (ITV), inverse distance weighted (IDW) interpolation, and morphological thinning to 
extract pavement cracks from the noisy geographic reference file (GRF) images. This method was 
basically focused on extracting the type and location of pavement cracks, not the width. The authors 
reported that the proposed method is applicable for pavement cracks with low contrast, low signal-to-
noise ratio, and bad continuity. Kumar and Angelats (2017) proposed an automated algorithm to detect 
road roughness from mobile LiDAR point clouds. This process involved extensive filtering, point 
thinning processing, and interpolation to generate an intensity raster surface. Morphological and multi-
level ostu thresholding operations were applied to detect road roughness within candidate regions. 
Finally, the candidate regions were clustered based on spatial density and standard deviation of elevation 
to remove the outliers belonging to normal road surfaces or nearby vehicles for detecting roughness along 
the road surface.  
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2.4 Geometric Data Extraction and Assessment 
 
The geometric design of roads mainly deals with the dimensions and layout of the physical elements of 
the roadway, following different standards and constraints. The geometric data of a highway is mainly 
composed of three parts: horizontal alignment, vertical alignment, and cross section. 3D point clouds can 
be used for the geometric assessment of the highway due to its high data accuracy and density. 
 
Cremean and Murray (2006) developed a clothoid model to construct and recursively estimate the planar 
road geometry on extracted road features from single-axis LiDAR range measurements in off-highway 
environments. Tsai, et al. (2013) proposed a method for cross slope measurement using mobile LiDAR 
technology. After processing the raw point cloud data, a region of interest (ROI) process was performed 
on the data to extract the rectangular regions within a single lane between the pavement markings. The 
width of the ROI was defined by the distance between the pavement markings, and the length was 
determined by the interval of ROI. After performing linear regression on the extracted point clouds from 
each ROI, the slope of the regression was used to measure the cross-slope. Dawkins (2014) used an 
augmented state Kalman filter (ASKF) to estimate the off-road terrain profile as unknown inputs to the 7-
degrees of freedom full suspension model. Later, mobile LiDAR was used to collect off-road terrain 
profiles and validate the model. The paper reported that the method is more effective for capturing low 
frequency content of the terrain profile. Ai and Tsai (2016) proposed a method for automated sidewalk 
and curb ramp assessment using 3D mobile LiDAR and image processing. The sidewalk points were 
extracted from the raw point clouds using the lateral and elevation offset. The author suggested use of a 
threshold of 7.3 m (24 ft) for lateral offset and 0.6 m (2 ft) for elevation offset for a good balance between 
reliability and efficiency. Cross section segmentation, k-nearest neighbor (k-NN), and a B-spline 
algorithm were introduced to smoothly connect different segmentation points to detect the sidewalks. A 
deformable part model (DPM) was applied to detect and extract all curb ramp candidates from the data 
using video log images. Later, an interactive tool was employed to further filter the data and detect the 
curb ramps. Gargoum, et al. (2018) recommended the use of LiDAR data to automatically assess the 
vertical clearance on the highway. After extensive filtering, the k-Nearest Neighbor (k-NN) search 
algorithm and DBSCAN clustering algorithm were used to divide point clouds into bridge and non-bridge 
groups using histogram analysis. This method demonstrated a satisfactory performance for network-level 
assessment of vertical clearance. Mekker, et al. (2018) explored the integration of connected vehicle data 
and LiDAR technology for identifying and diagnosing geometry-related capacity problems in recurring 
work zones considering safety and time efficiency. The connected vehicle data, reported as space mean 
speed every minute for segments of an average 0.88 miles in length, was used to identify recurring 
bottleneck locations. Then, by connecting the speed data with the geospatial LiDAR data collected in the 
selected work zone, it was found that the lane width and/or taper length of selected sites did not follow the 
recommended design, resulting in recurring traffic congestion.  
 
2.5 Embankment Stability Monitoring 
 
Embankment stability is an important element of highway maintenance for ensuring safety. It is 
considered under the design process from the beginning until implementation of the project. It is mainly 
influenced by the imposed load, loading pattern, and the condition of the slope. The detailed and accurate 
information acquired from a LiDAR sensor can be used to assess, characterize, and map the condition of 
an embankment.  
 
Lato, et al. (2009) examined the integral use of multiple LiDAR sensors (static, mobile, terrestrial, and 
airborne) to monitor the geotechnical hazard for linear transport corridors. The authors concluded that the 
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fusion of data from multiple LIDAR sensors can be used to detect small rock block release (sub 15 cm). 
The paper recommended using LiDAR data for geomechanical structural feature identification and 
kinematic analysis, rock fall path identification, and differential monitoring of rock movement or failure 
over time. However, it was found that the mobile terrestrial LiDAR can be more efficient compared to 
static terrestrial LiDAR in terms of coverage, rate of acquisition, dynamic collection, and integration with 
corridor operation. Đapo, et al. (2011) used a terrestrial laser 3D scanner to understand the load 
inefficiency in the rehabilitation project of a railway bridge, "Sava Jakuševac," in Croatia. After filtering 
the raw point cloud data, the required elements, including columns and load bearing parts of the structure, 
were taken from the scanned data. It was found that the irregularity of the track on the bridge was caused 
by an uneven subsidence of column S6.  
 
2.6 Lane Marking and Road Edge Extraction 
 
Lane marking and road edge detection are important for safe driving. The road edge is the boundary 
between the road surface and the non-road surface. The lane marking conveys messages to road users 
regarding the purpose of different parts of the road and where they can legally operate their vehicle. Road 
edge and lane detection are also necessary for the safe operation of autonomous vehicles. Conventional 
digital maps with road-level resolution are not sufficient for autonomous vehicles to understand their 
surroundings. To resolve this issue, LiDAR-based road edge and lane marking detection systems, mainly 
based on elevation and reflectivity are becoming popular among transportation agencies and vehicle 
manufacturers for its higher accuracy and detailed information.  
 
Hu, et al. (2004) used high resolution optical imagery and airborne LiDAR data to extract a grid-
structured urban road network. An iterative Hough transform algorithm and morphological operation 
were employed on the segmented point clouds to extract candidate road markings and parking areas. The 
segmented road marking and parking area candidates were verified from shape analysis and vehicle clue 
detection of the LiDAR data and high-resolution imagery. Finally, the topology analysis was used to form 
the road network from the verified roads and parking areas. Ogawa and Takagi (2006) used mobile 
LiDAR data to detect the lane. After filtering raw point clouds, a Kalman filter and auto correlation 
function were applied considering four lane parameters (width, offset, yaw angle, and curvature) to 
recognize the lane markings from the candidates. The paper mentioned this method was more suitable for 
roads with highly reflective lane markings. Jaakkola, et al. (2008) applied an image processing algorithm 
to intensity and height images to automatically filter road markings and curbstone points, modelling the 
road surface as a triangulated irregular network (TIN) from mobile mapping. The clustering of the road 
markings and curbstones was done by segmentation using thresholding and applying morphological 
operations on the raster image of intensity and elevation. Field tests of this method showed an overall 
accuracy of 80.6%, 92.3% and 79.7%, respectively, for classifying lines, crosswalks, and curbstones. 
Chen, et al. (2009) used mobile LiDAR to detect the 3D lane markings from point clouds. First, the road 
surface was detected by height filtering. Hough transform clustering and RANSAC fitting were then 
employed to extract the 3D lane markings from the candidate points. However, the authors did not report 
the success rate of this method to detect lane markings. Zhu and Mordohai (2009) used height and 
intensity information from LiDAR data to extract the road network. Region segmentation following a 
normalized cut algorithm (Ncut) and edge detection were performed to generate hypothesis-based road 
boundaries and interior features. A minimum cover algorithm was employed to find the salient regions 
that best suited the 2D map and automatically selected the road widths. Finally, the road regions were 
transformed back to 3D points and roads were extracted. Zhang (2010) proposed a method to identify 
road regions and road edges using LiDAR point clouds. After elevation filtering, the false alarm 
mitigation module was performed following a minimum threshold road width to further filter and validate 
potential road region candidates. Finally, the identified 3D road edge points were further projected and 
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validated on a 2D ground plane to detect the curb. The author stated in the experimental study that the 
proposed algorithm detected most road points, road curb points, and road edge points correctly with a 
false alarm rate of 0.83% and a missing rate of 0.55% per scan. Kumar, et al. (2010) used a gradient 
vector flow (GVF) snake model for the automated extraction of road edges from mobile LiDAR and 
vehicle trajectory data. The snake model derived its energy from the LiDAR point clouds before the snake 
contour was developed using the trajectory data. The computation process of these energy terms used 
surface slope, LiDAR intensity, and the qualitative measurement of the elasticity and rigidity terms. The 
authors reported that the tested result of this method was satisfactory in terms of detecting the difference 
between the slope values of curbs and planar road surface. Wang, et al. (2012) proposed an automatic 
algorithm to extract the road surface and boundary based on trajectory information from mobile LiDAR 
data. The road boundary and surface were determined by applying a hypothesis testing method based on 
the local altitude variance of a particular segment. A mean height threshold filter value was used to 
exclude altitude abnormal points (cars, pedestrians) from the road surface and boundary. Kang, et al. 
(2012) proposed a method using the probabilistic interacting multiple model (IMM) to detect road 
boundaries from LiDAR point cloud measurements. This approach involved multiple Kalman filters to 
track the intersection points between a LiDAR scanned surface and a curb. Experimental results were 
promising for curb detection and the authors reported the performance of this method increased when the 
GPS measurement is unreliable. Hata and Wolf (2014) used mobile LiDAR data to develop a road 
marking detector system following the Otsu thresholding method. After detecting the road curbs with a 
given threshold following a ring compression method, a deterministic calibration was performed on the 
LiDAR intensity information to ensure similar intensity values for asphalt and road markings within the 
road. The Otsu thresholding method was applied on this calibrated intensity information to develop a 
bimodal intensity histogram with one mode grouping asphalt intensities and another grouping road 
marking intensity. The authors reported that by adding road markings onto the curb maps the error level 
of lateral localization was reduced by 53.56% with an average lateral error of 0.3119. The study stated 
that the proposed method was capable of detecting different types of road markings, including crosswalks, 
continuous lines, and dashed lines. Liu and Lim (2014) developed a method for extracting roads from 
airborne LiDAR point clouds and associative vector data. After separating and refining the candidate road 
points, a fitting was used to transform road points into polylines. The paper stated that the experimental 
results of this method demonstrated satisfactory performance for road extraction from airborne LiDAR 
data for structured and unstructured lanes. Guan, et al. (2015) proposed a method for rapid and accurate 
road marking inventory using mobile LiDAR data. After filtering the road surface, a modified inverse 
distance weight (IDW) interpolation method was used to interpolate the road surface into a 2-D 
georeferenced feature (GRF) images. After dividing the GRF image into sub-images, a weighted 
neighboring difference histogram (WNDH)-based dynamic thresholding and multiscale tensor voting 
(MSTV) were used to segment and extract road markings from the noisy, corrupted images. The author 
concluded that the proposed method to detect and extract road markings was more suitable for a 
subtropical, urban environment.  
 
Liu and Lim (2016) proposed a method to extract roads from fused airborne LiDAR data and aerial 
imagery. An edge-clustering algorithm and k-nearest-neighbors (KNN) clustering were applied to filter 
candidate road points. After filtering the cluster, local IDW interpolation and curve fitting was applied to 
the road segments in order to obtain road centerlines. The authors reported that the quantified 
completeness and correctness of five test results of this method to extract roads were 82.6% and 87.4%, 
89.2% and 91.2%, 80.7% and 87.6%, 84.2% and 90.4%, and 79.5% and 89.5%, respectively. This paper 
stated that the application of this method to extract roads was hindered for dense vegetation areas, curved 
roads, and traffic islands. Li, et al. (2016) proposed an automated road centerline extraction method using 
LiDAR data. After filtering ground points, the adaptive mean shift cluster algorithm was applied to 
cluster the road center points into linear points. The principal component analysis, least squares multiple 
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lines fitting, and a hierarchical grouping method were employed to connect primitives of road centerlines 
into continuous road lines to develop a road network. The authors reported that the experimental result of 
the proposed method demonstrated the same level of performance in less time compared to other methods 
like the mean shift algorithm, Tensor voting, and Hough transform. Ghallabi, et al. (2018) proposed a lane 
marking detection method for localization within an HD map using a multilayer LiDAR system. After 
filtering the road points and projecting them on a 2D intensity image, a Hough transform algorithm was 
employed on the resulting image to detect lane markings from the high reflectivity road points. After one 
more filter, the proposed method was validated by localizing the vehicle in a map with lane-level 
information and absolute accuracy of 2 cm. The authors reported this method was capable of providing a 
lane-level localization with 22-cm cross-track accuracy.  
 
2.7 Roadside Objects Detection 
 
The detection of roadside objects is important for operation of autonomous vehicle systems to ensure 
obstacle avoidance and for safety audit purposes. The improvement of the traffic safety and efficiency 
requires detailed level information about objects located with the road and along the roadside. LiDAR 
technology can be used to address this issue as it can provide real-time, high-resolution 3D point cloud 
data containing information about the location and shape of the objects. 
 
Shamayleh and Khattak (2003) conducted an experiment to examine the accuracy of LiDAR data for the 
collection of roadway inventory information by comparing with the ground truth information. The 
LiDAR data was transformed into a triangulated irregular network (TIN) by incorporating the height 
information and overlaid with the corresponding aerial image. Later, related analyses were performed in 
the ArcGIS environment to obtain the values of selected elements of roadway inventory. To validate the 
accuracy of this data, a set of ground points were selected for field survey based on an empirical method. 
After conducting a comparison with the ground data, very minor differences were found between the 
LiDAR and field data. Lam, et al. (2010) developed a method to extract 3D road data from mobile, 
ground-based LiDAR point clouds. This approach modeled the road as a dynamic system of connected 
planes by plane fitting local 3D point data and using Kalman filtering to globally extract these planes. 
Afterwards, bounding boxes were projected from each extracted road patch to localize objects, such as 
lamp posts, power line posts, and road signs. These localized urban scenes were filtered from vegetation 
by using RANSAC followed by least squares fitting.  
 
Kwan & Ransberger (2010) explored the use and analysis of LiDAR data to detect obstructions in the 
transportation network during emergency response in New Orleans, LA, before and after Hurricane 
Katrina. First, DEM was developed for all the pre- and post-storm LiDAR data along the network links. 
The change in elevation between the pre- and post-storm LiDAR data were used to identify obstructions. 
Lin and Hyyppä (2010) developed a method for the automated detection of culverts in mobile laser, 
scanning point clouds. A digital terrain model (DTM) was developed from point clouds to remove the 
shadow influence. Then, possible locations of the culverts were coarsely located after searching the blank 
zones. Later, topological plot segmentation and an intensity filter were employed to detect real culverts. 
The geometric parameters of the culverts were calculated from the selected schematic components. The 
authors reported that the proposed method was tested to detect two pedestrian culverts, and the results 
showed an estimated error of lengths and widths compared to the real ones of less than 9% and 16%, 
respectively. This paper recommended the consideration of water reflectance for future culvert detection. 
Pu, et al. (2011) used mobile laser scanning (MLS) point cloud data to develop a knowledge-based feature 
recognition theory. The on-ground points were extracted via filtering and a hybrid model was applied to 
recognize the features. Later, based on certain geometric characteristics of the features and topological 
relationships with other features, on-ground objects were clustered into more detailed groups like traffic 
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signs, trees, poles, building walls, and barriers. The authors reported an overall accuracy of 86% to 
recognize poles using this method.  
 
Jeong and Lee (2016) proposed a method to classify different road objects from mobile LiDAR point 
clouds. This method involved the development of a training data set from the raw point clouds. Later, the 
geometric features of the data were extracted using a Fast Point Feature Histogram (FPFH). Finally, 
geometric features were used to develop a classification model by employing support vector machines 
(SVM). The authors reported an overall accuracy of 98% to classify the objects and a prediction accuracy 
of 91%. Yang, et al. (2016) proposed a method to extract multiple types of road features from mobile 
LiDAR data to produce High Accuracy Driving Maps (HADMs) in a highway environment. The 
Hernández and Marcotegui method were applied to group the points into ground and non-ground points. 
After detecting and extracting the road surface from the ground points, the non-ground points were 
classified into individual object candidates by pointwise classification, multi-rule segmentation, and 
adjacent segments merging. Finally, the support vector machine (SVM) approach was implemented with 
one versus one classification to classify the features into different classes, such as trees, street lamps, 
traffic signs, buildings, etc. Quantitative evaluations of this method demonstrated good performance in 
extracting road features with an average precision and recall of 90.6% and 91.2%, respectively. However, 
the results also showed that the proposed method’s precision and recall vary largely with point densities, 
positional accuracies, and signal-to-noise ratios of the point cloud data. 
 
Ordóñez, et al. (2017) developed a method to detect and classify pole-like objects from mobile laser 
scanning point clouds by employing a heuristic segmentation algorithm, linear discriminant analysis 
(LDA), and SVM. Experimental tests of this method showed an overall success rate of 90% to detect 
different types of pole-like objects in an urban environment. Zheng, et al. (2017) proposed a method for 
automatic recognition and extraction of street lighting poles from mobile LiDAR data. After filtering out 
the ground points, the remaining points were grouped into ground and non-ground objects. Graph cut-
based segmentation and a Gaussian-mixture model (GMM) based method were used to model the clusters 
of the non-ground objects and the street lighting poles were recognized through matching the clusters 
with a database of sample street lighting pole models. Experimental results showed that this method 
achieved an overall performance of 90% in terms of true positive rate. 
 
Hůlková, et al. (2018) employed a raster image processing technique to make rough classifications of the 
highway environment using mobile laser scanning. The proposed method required the prior knowledge of 
the terrain of the study area. In this approach, the raw point clouds were divided into voxels and matrix 
using point information, such as class, height, and intensity. These were then projected onto a horizontal 
plane to create a raster image. An image processing technique that included segmentation, filtering, and 
object-oriented classification was applied repeatedly on the raster image to classify it according to 10 pre-
selected classes of highway environment. The outcome of this method was compared with a semi-
automatic classification method using the Terra Scan software, where the classification was inspected by 
a human expert and later improved manually if needed. This paper reported an overall classification 
accuracy of 94.5% of the presented method. However, the authors mentioned that the proposed method 
misclassified tree trunks to the poles class and long vehicles to the crash barriers class.  
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2.8 Sight Distance Assessment 
 
Sight distance is one of the fundamental components of highway design. It is the length of road surface 
that driver can see at a point along a roadway. Provided sight distance is important to ensure adequate 
stopping distance at a specified driving speed. If the available sight distance is less than what is required 
for a driver action, then the risk of a crash is significantly increased. There are four types of sight distance 
considered in roadway design: intersection sight distance, stopping sight distance, passing sight distance, 
and decision sight distance. The traditional methods applied for sight distance assessment are often time 
consuming, cost- and labor-intensive, and require interference with traffic operations to ensure worker 
safety. Nowadays, many transportation agencies use LiDAR technology for sight distance analysis 
considering its efficiency over conventional methods.  
 
De Santos Berbel, et al. (2008) developed ArcGIS add-in software to calculate the available sight distance 
on roads using LiDAR data. As input, DSM was preferred over DEM and the trajectories followed by a 
vehicle along the road in each direction were considered. The authors recommended combining the sight 
distance information with traffic flow data, speed maps, crash data, and alignment consistency 
information to conduct traffic safety studies. Castro, et al. (2011) applied geographic information system 
(GIS) tools to estimate the available sight distance from vehicle trajectory and LiDAR data. This method 
involved the development of a digital terrain model (DTM) and viewshed analysis using ArcMap tools to 
find all visible points from the position of the observer (driver). All the visible points were transformed 
into a raster polygon and intersected with the vehicle trajectory obtained from GPS data. The available 
distance between the observer and the closest intersection was considered as the available sight distance. 
de Santos-Berbel, et al. (2014) used mobile and airborne LiDAR data to estimate the difference between 
sight distance derived from a digital surface model (aka triangulated irregular network) and a digital 
terrain model (bare surface). Probabilistic tests (Kolmogorov Smirnov and Mann Whitney Wilcoxon) 
were used to measure any differences in sight distance outputs using the two surface models. The paper 
recommended the use of a DSM model derived from mobile LiDAR data to estimate available sight 
distance because of its denser point clouds leading to a high-resolution model. 
 
  



 
 

13 
 

3. METHODOLOGY 
 
3.1 Introduction 
 
This chapter summarizes the equipment’s used in this study, the point cloud data collection, and data 
processing. The data collection section covers basic information related to the software used to collect the 
data and information about the selected road segments for this study. The data processing section outlines 
the process of storing and converting the point cloud data from the rosbag file to American Society for 
Photogrammetry and Remote Sensing (ASPRS) recommended las file format. 
 
3.2 Equipment Used 
 
The point cloud data were collected with an Ouster LiDAR (OS1-16) unit, which has 16 channels or 
beams. The LiDAR unit has a range of 105 m (344.488 ft) with 80% reflectivity and a sampling rate of 
327,680 points/sec. There are five available operating modes for this LiDAR unit used in this study: 
512x10, 512x20, 1024x10, 1024x20, and 2048x10. The first value refers to the horizontal resolution, 
which is the number of times per rotation that each of the 16 beams is emitted. The second value is the 
rotation rate in hertz. The size of the data per second of recording depends on the mode because the first 
number determines how many vertical columns there are in one rotation’s point cloud and the second 
number determines how many times per second the LiDAR completes a full rotation. For each mode, the 
maximum number of points per second recorded in the initial data file is the horizontal resolution times, 
the rotation rate times 64 for Ouster units. Since a 16-beam Ouster sensor was used for this study, at 
maximum, only 16 of the 64 points in a column in the data file were valid (i.e. x, y, and z values were 
non-zero). For example, the operating mode of 512x10 for the 16-beam unit would generate a maximum 
of 327,680 points per second, with 81,920 non-zero points at max. For 1024x20, the maximum number of 
points is 327,680 non-zero points per second, which is four times more than the 512x10 mode.  
 
Ouster LiDAR operates in an 850 nm band and, unlike other sensors, this system returns only one 
measurement for every emitted pulse. The IMU and GNSS data were collected using an Inertial Sense 
μINS sensor kit. The purpose of using the IMU was to obtain the trajectory of the vehicle at locations 
with no GPS connection and at a higher frequent rate compared to GPS. The update rate of the three 
sensors (INS, GPS, and LiDAR) used for data collections were 4 milliseconds, 200 milliseconds, and 10 
milliseconds. To process the collected data, an onboard AI computing device (NVIDIA Jetson TX2) was 
used. A 2019 Subaru Outback model vehicle was used as the mobile platform to collect the data (Figure 
3.1). 
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Figure 3.1  Mobile LiDAR unit setup used for data collection 
 
3.3 Data Collection Procedure 
 
In this study, to understand the point cloud data size generated from the mobile LiDAR, three different 
road segments were selected (Figure 3.2). Data was collected from the selected segments at different 
vehicle speeds and available operating modes of the selected LiDAR unit. On survey days, the weather 
was sunny with a temperature of 85-90°F. The selected segments were operating under normal traffic 
conditions with no restrictions on vehicular traffic. During the data collection period, because of active 
traffic, a small change in duration(s) took place to cover the same distance at a constant speed with 
different LiDAR modes, which may have caused a minor effect on the data size. Additionally, scattered 
sunlight noise may have had a possible impact on the data collection process by interrupting the signals 
returning to the sensor. Intense sunlight mainly causes errors by making it difficult to differentiate 
between the LiDAR pulse and the photon of the sun. 
 
The GPS, INS, and the LiDAR data were collected in the form of ROS (Robot Operating System) 
messages and then stored in the rosbag file format. The coordinates of the point clouds and the INS unit 
were stored in the local coordinate system, East, North, and Up (ENU), while the coordinates of the GPS 
were stored in the word geographic coordinate system (WGS-1984). An external hard drive was used to 
store the data due to storage capacity limitations of the NVIDIA Jetson TX2. Table 3.1 lists the roadway 
segments (in Logan, UT), vehicle speeds, and LiDAR operating modes used for data collection in this 
study. 
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Figure 3.2  Data collection map 
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Table 3.1  Data Collection Road Segments, Speeds, and Operational Settings 

Road 
Segment 

Starting 
Point 

Ending 
Point Total Lanes Length (mi) 

Vehicle 
Speed 
(MPH) 

Operating 
Mode 

N 1200 E E 850 N E 1400 N 2 0.71 

25 

512x10 
512x20 

1024x10 
1024x20 
2048x10 

30 

512x10 
512x20 

1024x10 
1024x20 
2048x10 

35 

512x10 
512x20 

1024x10 
1024x20 
2048x10 

E 1400 N N 1200 E N 800 E 2* 0.48 40 

512x10 
512x20 

1024x10 
1024x20 
2048x10 

UT-165 E 1200 S E 1700 S 4* 0.5 

45 

512x10 
512x20 

1024x10 
1024x20 
2048x10 

50 

512x10 
512x20 

1024x10 
1024x20 
2048x10 

*Includes a 12-ft two-way-left-turn lane. 
 
To understand data sizes for the travel lanes only and the right of way only, a buffer was made following 
the Cache County, UT, standards for arterial and collector roads. Right of way (ROW) represents the area 
of land along and around a roadway that is owned, operated, and maintained by the owner of the road. 
Most assets within this boundary fall under jurisdiction of the owner, which is often a local or state 
transportation agency. The travel lanes are the areas of the roadway where motorized vehicles operate, not 
including parking lanes, bike lanes, shoulders, etc. Figure 3.3 represents a generic roadway cross-section, 
including the right of way and travel lanes. The dimensions in this figure are not the same as those used in 
this study. Figure 3.4 demonstrates visually how the point cloud is impacted by the implementation of the 
right-of-way and travel lane buffers, based on both vehicle trajectory and the centerline. 
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In this study, the width of a travel lane and the right of way for arterial roads are 12 feet and 100 feet, 
respectively. The values are 11 feet and 80 feet, respectively, for collector roads. The buffer was made 
based on the vehicle trajectory developed by the INS. However, due to the technical movement of the 
vehicle on the road, an equal buffer zone for both sides of the road were not possible to make. That’s why 
the buffer zone may have covered more area for one side of the road than the other side for the original 
vehicle trajectory. 

 
Figure 3.3  Cross section design of a typical highway 
 

 
(a) Total 

 

 
(b) Right-of-way with buffer based on centerline 
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(c) Travel lanes with buffer based on centerline 

 
Figure 3.4  Point cloud data collection sample from an active highway 
 
In order to generate an equal buffer zone for the both sides of the road, the centerline of the road was 
considered as the vehicle trajectory and relevant data for the selected segments was estimated. The 
LAStools platform was used to convert the shape file into the las file format, which is a binary file 
recommended by the ASPRS to store LiDAR data. The LAS version 1.4 was used to save the point cloud 
data. At the initial collection stage, there were many attributes recorded for each point, but only 4 
attributes were included (x, y, z, and the intensity) in the final las file. Finally, to comprehend the data 
size for the selected segments, the relevant individual las files for each roadway segment and each LiDAR 
mode were combined into one single file. 
 
For an example of the raw data, Figure 3.5 shows a sample snapshot of the LiDAR unit’s view as the 
vehicle traverses a grocery store parking lot. From top to bottom, the image includes ambient, intensity, 
range, and point cloud views. It is a simple depiction of the point cloud in one instant during a drive. This 
may be what an autonomous vehicle “sees” as the passenger travels to the store. Figure 3.6 depicts a 
compiled point cloud map from a drive around a parking lot lasting approximately five minutes. Figure 
3.7 shows a sample point cloud from one of the data collection roadway segments, with some road 
features called out. For mobile LiDAR platforms, this represents the most common first step in data 
processing. Table 3.2 provides an example of the raw point cloud data directly generated from the sensor 
unit. 
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Figure 3.5  Stream LiDAR view at a grocery store parking lot 
 

 
Figure 3.6  Sample point cloud map generated at a parking lot 
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Figure 3.7  Sample point cloud map generated on a road 
 
Table 3.2  Point Cloud Data Sample 

X (m) Y (m) Z (m) Intensity t (ms) Reflectivity Ring Noise Range 
(mm) 

31.721 0.544 -2.795 38 0 4140 42 302 32845 
24.038 -1.349 -2.480 77 0 4426 44 396 24203 
19.911 0.330 -2.438 157 0 6272 46 480 20062 
16.488 -0.939 -2.315 23 0 642 48 93 16637 
13.874 0.225 -2.220 45 0 889 50 114 14052 
11.591 -0.667 -2.062 19 0 263 52 126 11792 
10.181 0.161 -2.017 18 0 197 54 79 10380 
9.033 -0.632 -1.963 41 0 354 56 77 9259 
8.123 0.124 -1.925 37 0 260 58 75 8349 
7.245 -0.434 -1.862 47 0 266 60 70 7493 
6.611 0.099 -1.833 50 0 236 62 108 6861 

33.966 -2.004 -2.249 40 49040 4692 40 420 34099 
33.129 0.459 -2.830 33 49040 3687 42 306 33253 
24.057 -1.424 -2.482 71 49040 4143 44 394 24227 

 
  



 
 

21 
 

4. DATA ANALYSIS 
 
4.1 Introduction 
 
The increased availability of 3D point cloud data has created new challenges in the transportation industry 
regarding the analysis and incorporation of this informative big data into different decision-making 
processes rather than using it only for visualization purposes. The use of big data resulting from LiDAR 
technology is gaining popularity as the development of AVs continues. LiDAR sends millions of pulses 
per second to survey the objects within its range. Guan et al. (2013) stated that LiDAR data usually 
contains tens or hundreds of points per square meter. Therefore, the processing of LiDAR data is highly 
computational and data intensive even for a small area. Tomljenovic and Rousell (2014) stated that an 
area of 0.2 square miles can generate a point cloud from 500 GB to 3 TB depending on the selected point 
cloud density. The point cloud density depends on the scanning capacity of the sensor. Vehicle speed, 
scanning speed, and system measurement rate all influence the resolution of the collected data according 
to Guan et al. (2016). Besides the storage, processing, and computation of the LiDAR data for a large-
scale area poses a significant challenge. 
 
4.2 Regression Model Development 
 
In this study, the collected data detailed in the previous chapter were extrapolated for large-scale 
estimation and consideration by public agencies. A linear regression model was developed for the purpose 
of extrapolation. In the model, the data size was considered as the dependent variable. The duration of the 
data collection period (X, in seconds), the duration of the LiDAR to complete a single rotation (Z, in 
milliseconds), and the number of columns in the point cloud data (Y) are considered as the explanatory 
variables. The following equations estimate the data size for the different sections (travel lanes, right-of-
way, and total) as discussed in Section 3.4 and shown in Figure 3.3. Table 4.1 shows the input data used 
for estimating the linear regression models. 
 
𝐷𝐷𝑇𝑇𝑇𝑇,𝑣𝑣𝑣𝑣ℎ = −23.240 + 0.344𝑋𝑋 + 0.061𝑌𝑌 + 1.714𝑍𝑍  with R2 = 0.825   Eq. 4.1 
𝐷𝐷𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐 = −55.460 + 0.936𝑋𝑋 + 0.052𝑌𝑌 + 1.988𝑍𝑍  with R2 = 0.570   Eq. 4.2 
𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅,𝑣𝑣𝑣𝑣ℎ = −119.021 + 1.899𝑋𝑋 + 0.100𝑌𝑌 + 3.853𝑍𝑍  with R2 = 0.691   Eq. 4.3 
𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅,𝑐𝑐𝑐𝑐 = −302.634 + 4.611𝑋𝑋 + 0.141𝑌𝑌 + 6.390𝑍𝑍  with R2 = 0.671   Eq. 4.4 
𝐷𝐷 = −380.913 + 5.774𝑋𝑋 + 0.179𝑌𝑌_8.192𝑍𝑍   with R2 = 0.663   Eq. 4.5 
 
Where: 
 
𝐷𝐷𝑇𝑇𝑇𝑇,𝑣𝑣𝑣𝑣ℎ = total data falling within the travel lanes buffer based on the vehicle trajectory (MB) 
𝐷𝐷𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐 = total data falling within the travel lanes buffer based on the centerline (MB) 
𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅,𝑣𝑣𝑣𝑣ℎ = total data falling within the right-of-way buffer based on the vehicle trajectory (MB) 
𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅,𝑐𝑐𝑐𝑐 = total data falling within the right-of-way buffer based on the centerline (MB) 
𝐷𝐷 = total data (MB) 
𝑋𝑋 = duration of the data collection period (s) 
𝑌𝑌 = number of columns in the point cloud data (a.k.a. sampling rate per rotation) 
𝑍𝑍 = duration of a complete, single rotation of the LiDAR (ms) 
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Table 4.1  Regression Model Data Input 

D (MB) 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅,𝑣𝑣𝑣𝑣ℎ 
(MB) 

𝐷𝐷𝑇𝑇𝑇𝑇,𝑣𝑣𝑣𝑣ℎ 
(MB) 

𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅,𝑐𝑐𝑐𝑐 
(MB) 

𝐷𝐷𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐 
(MB) 

Time, 
X, (s) 

Number of 
Columns, Y 

Refresh 
Rate, Z 

(ms) 
264.000 115.000 54.000 213.786 64.653 122.0 512 10 
480.000 205.000 98.264 381.098 117.649 111.0 1024 20 
508.000 215.000 103.584 399.688 124.018 117.0 512 10 
875.000 372.000 178.860 691.554 214.145 101.0 1024 20 
842.000 357.000 175.390 663.668 210.000 97.0 2048 10 
183.820 80.000 37.626 148.721 45.048 85.0 512 10 
384.000 161.000 77.926 299.301 93.299 88.0 1024 20 
367.650 156.000 75.250 290.006 90.095 85.0 512 10 
761.253 323.000 155.853 600.462 186.600 88.0 1024 20 
718.000 305.000 147.000 567.000 176.000 83.0 2048 10 
90.000 70.300 19.670 71.968 22.909 78.0 512 10 

163.000 128.000 35.000 131.037 40.764 71.0 1024 20 
155.346 122.317 32.780 125.219 38.179 68.0 512 10 
338.107 266.220 70.000 272.537 81.529 74.0 1024 20 
374.660 295.000 76.500 302.000 89.100 82.0 2048 10 
106.300 70.600 33.500 80.399 40.400 51.2 512 10 
174.000 115.276 56.000 131.277 67.534 41.8 1024 20 
184.364 122.446 59.280 139.442 71.489 44.4 512 10 
254.123 169.000 162.000 192.458 94.450 30.6 1024 20 
365.000 242.500 234.000 276.161 135.000 43.9 2048 10 
48.070 39.600 30.480 37.201 26.055 40.1 512 10 
88.000 72.490 55.800 68.100 47.700 36.7 1024 20 
84.350 79.000 61.188 72.392 54.000 40.0 512 10 

155.240 137.500 103.000 126.000 90.200 36.8 1024 20 
171.272 152.000 114.000 139.280 99.750 40.6 2048 10 
39.640 31.710 21.000 30.254 18.480 32.9 512 10 
81.940 66.000 46.000 63.000 40.480 34.0 1024 20 
76.300 63.200 48.900 60.300 42.600 31.5 512 10 

175.369 145.300 105.000 134.694 79.159 36.2 1024 20 
164.070 137.000 102.000 127.000 76.900 37.9 2048 10 

 
4.3 Graphical Analysis 
 
Figure 4.1 represents the projected data sizes in megabytes based on the measured data sizes for six 
different scenarios: unfiltered total, (Figure 4.1a), filtered total (Figure 4.1b), right-of-way with the actual 
vehicle trajectory (Figure 4.1c), travel lanes with the actual vehicle trajectory (Figure 4.1d), right-of-way 
with the centerline (Figure 4.1e), and travel lanes with the centerline (Figure 4.1f). The markers represent 
measured data sizes from the data collection runs detailed in Chapter 3. The lines represent projections of 
data size for other speeds using exponential functions. Exponential functions were used instead of other 
trendline types with higher R-squared values because the data size per mile cannot be negative. Also, as 
speeds approach zero, the data size per mile will theoretically approach infinity. The data sizes by speed 
are normalized for distance traveled. As can be expected, data sizes at low speeds are much higher than at 
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higher speeds. Agencies can expect that for a single vehicle, total data sizes collected for low-speed roads 
will be larger and have greater point density than for high-speed roads.  
 

 
(a) Unfiltered total (including “zero” points) 

 

 
(b) Total 
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(c) Right-of-way with buffer based on actual vehicle trajectory 

 

 
(d) Travel lanes with buffer based on actual vehicle trajectory 
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(e)  Right-of-way with buffer based on centerline 

 

 
(a) Travel lanes with buffer based on centerline 

 
Figure 4.1  Measured and projected data size by speed and LiDAR mode 
 
Figure 4.1a is different than the remaining figures of this section as it resembles the raw data size 
generated directly from the sensor without any filtering or file format conversion. For the travel lanes 
scenario, at 80 mph with the lowest operating mode (512x10) of the selected LiDAR, close to 125 
MB/mile of data is expected for centerline trajectory while for actual trajectory approximately 75 
MB/mile of data can be expected. With the highest operating mode, a little more than 300 MB/mile can 
be expected for the centerline trajectory and around 360 MB/mile for the actual trajectory. As for the total 
scenario, at 80 MPH with the lowest LiDAR operating mode (512x10), close to 800 MB/mile can be 
expected while with the highest operating mode (2048x10) more than 4300 MB/mile can be expected. 
The range of the LiDAR data size that can be expected for the right-of-way scenario with actual vehicle 
trajectory is from 300 MB/mile to 900+ MB/mile for a vehicle travelling at 80 mph. However, in terms of 
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the centerline trajectory, the range of the data is from 750 MB/mile to about 3500 MB/mile. Graphs such 
as these can provide transportation agencies with a range of conservative to liberal outlooks regarding 
data size expectations. However, it is important to note that these estimations are based on limited runs in 
a variable environment. The R-squared value in these graphs are not consistent because of the dynamic 
environment of the study area. This issue is particularly apparent with the travel lanes data extrapolation, 
since only a small slice of the data is considered, which also happens to have the most variation due to the 
presence (or lack thereof) of other vehicles. To get more accurate and reliable data size estimations, 
multiple runs in different environment can help. However, given the limitations of this study, a single run 
for each LiDAR mode for any particular road segment was conducted. 
 
The projected total data sizes depicted in Figure 4.2 were developed considering vehicle-miles traveled 
(VMT) at 45 mph. The blue line represents the data size that can be expected for the lowest operating 
LiDAR mode, while the red line depicts the data size for the highest operating mode of the selected 
LiDAR sensor.  
 

 
 

(a) Total 
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(b) Right-of-way with buffer based on actual vehicle trajectory 

 

 
(c) Travel lanes with buffer based on actual vehicle trajectory 
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(d) Right-of-way with buffer based on centerline 

 

 
(e) Travel lanes with buffer based on centerline 

 
Figure 4.2  Projected data size by vehicle miles traveled 
 
In the case of data generated from the selected LiDAR unit, the total dataset produced with 10000 VMT is 
expected to range from approximately 1000 MB (512x10 mode) to more than 3200 MB (2048x10 mode). 
For 10000 VMT within the right-of-way along the centerline trajectory, the data size ranges from 
approximately 500 MB to 2750 MB. It is notable that for the right-of-way the data generated from the 
original trajectory is more than the data size considering the road centerline for a vehicle travelling at 45 
MPH. 
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Figure 4.3 and Figure 4.4, based on the vehicle trajectory and centerline, respectively, represent the 
distribution of the collected data size in megabytes from the selected highway segments for each 
particular speed. The blue segment represents the data portion which is outside of the right-of-way. The 
orange segment represents the data portion outside of the travel lanes but within the right-of-way (using a 
buffer of 100 feet for the arterial and 80 feet for the collectors). The gray segment represents the data 
portion within the travel lanes (using a buffer of 60 ft for the arterials (45 and 55 miles/hr), 36 ft for the 
40 miles/hr collector road, and 24 ft for the other collector road (25, 30, and 35 miles/hr).  
 

 
(a) 25 mph 

 

 
(b) 30 mph 



 
 

30 
 

 
(c) 35 mph 

 

 
(d) 40 mph 
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(e) 45 MPH 

 

 
(f) 55 MPH 

 
Figure 4.3  Data size distribution at different speeds and operating modes with buffers based on actual 

vehicle trajectory 
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(a) 25 MPH 

 

 
(b) 30 MPH 
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(c) 35 MPH 

 

 
(d) 40 MPH 
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(e) 45 MPH 

 

 
(f) 55 MPH 

 
Figure 4.4  Data size distribution at different speeds and operating modes with buffers based on 

centerline 
 
As expected, distribution of data points within the travel lanes and right-of-way are fairly consistent 
regardless of speed and operating mode except the 40 miles/hr (actual trajectory). Data size for the right-
of-way is higher in 35 miles/hr compared to all the speeds for both the actual and the centerline trajectory. 
The proportion within the right-of-way on the collector roads had more variation due to the higher 
frequency of objects along the selected roads. The collector roads had greater variety and frequency of 
landscaping, signage, and on-street parking compared to the arterial.  
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The number of points per mile measured in individual test runs (Figure 4.5) varied with the frequency of 
reflective objects within the range of the LiDAR unit. As expected, the number of points increased based 
on the operating mode of the LiDAR unit. However, the point density still varied within each LiDAR 
mode because of the dynamics of the mobile platform’s speed and the environment from which the data 
were collected. The highest number of points were produced in the 2048X10 mode at 25 miles/hr, while 
the lowest number of points were produced in the 512X10 mode at 55 miles/hr. In general, it can be 
expected that the number of points in a point cloud data set mainly depends on the speed of the platform, 
the environment and the scanning capacity and speed of the sensor. 
 

 
(a) Total 

 

 
(b) Right-of-way buffer based on actual vehicle trajectory 
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(c) Travel lanes buffer based on actual vehicle trajectory 

 

 
(d) Right-of-way buffer based on centerline 
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(e) Travel lanes buffer based on centerline 

 
Figure 4.5  Number of points per mile 
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5. DISCUSSION 
 
5.1 Introduction 
 
Diverse applications of LiDAR data have changed the transportation field in recent decades. These 
applications are expected to continue to grow with the development of the technology and autonomous 
vehicles. Implication of the size of the data collected during this study is discussed here to provide an 
understanding about the possible data size that one can expect from a mobile platform from a similar 
study environment. Apart from this, it also provides a broader overview on the existing challenges for 
LiDAR data application in the transportation industry.  
 
5.2 Mobile LiDAR Data Uses in Transportation 
 
In this study, mobile LiDAR refers to the collection of 3D point data from a mobile platform. Mobile 
LiDAR combines multiple sensors synchronized on a mobile platform to generate detail-oriented 
georeferenced 3D point cloud data. In recent years, it has become a common and effective method for 
infrastructure mapping and monitoring among transportation agencies because of its affordability and 
efficiency. Mobile LiDAR is a primary data collection tool in the geospatial development industry. This 
technology can produce high resolution images of features at a standard speed with survey grade accuracy 
without disrupting the normal traffic flow on the highway. This advantage of mobile LiDAR significantly 
reduces the cost and time associated with data collection compared to other conventional methods. 
Mobile LIDAR systems provide a dense, geospatial dataset as a 3D virtual world that can be explored 
from a variety of viewpoints across a transportation agency. Although MLS reduces the duration of the 
data collection phase, it requires significant time and resources to extract meaningful information and 
even more time for developing 3D models (Sairam, et. al. 2016). 
 
Mobile LiDAR has increased safety benefits given that all data collection tasks are performed inside the 
vehicle. It also mitigates impacts to traffic flow given that it does not require roadway closures. With 
proper processing, mobile LiDAR data can be used for various purposes such as traffic monitoring or 
crash analysis (Figure 5.1). Traffic monitoring is an effective way to assess and enhance traffic 
performance on a road network. Considerably few studies have been conducted on this issue with LiDAR. 
Most previous studies focused on highway asset management, object detection, and object classification. 
LiDAR has also gained popularity in terms of structural monitoring of assets such as culverts or 
embankments. For feature extraction from LiDAR data, identification of reflective objects (i.e., signs) has 
naturally received more attention than identification of non-reflective (and often non-standardized) 
objects. There has also been a lack of research in the area of mobile LiDAR assessment of highway 
design elements such as cross section, vertical and horizontal alignment, and clearance. A review report 
by NCHRP stated that there was a lack of knowledge in terms of extracting information from LiDAR 
(Olsen et al. 2013). 
 
5.3 Challenges of Using LiDAR 
 
Being the eye for an autonomous vehicle, LiDAR technology is an essential component of ADAS. 
However, there are some core challenges associated with the usage of this technology. High-performance 
spatial indexing is needed for quick data access while working with LiDAR since it is common to have 
projected data sizes of 1 TB or more (Liu et al. 2016). Olsen et al. (2013) stated that the complexity of 
LiDAR data and lacking availability of processing software presents challenges to the end users of the 
data. Often, studies use only a limited portion of the data as the end product. 
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 Zhang et al. (2017) determined that volume of the data and the computational and technical requirements 
to process, manage, and store the point cloud can pose a great challenge. According to Nashashibi and 
Bargeton (2008), point cloud processing usually requires working between multiple software packages 
where information can be lost during import and export stages of the process. The technicality to operate 
and collect data with LiDAR is complex compared to traditional survey methods, as it often must be 
integrated and synchronized with other sensors like GPS and IMU. A mobile LiDAR platform has to 
move at a certain speed in an active highway environment while collecting data simultaneously. However, 
because of this speed, potential target objects are missed, and the resulting measurements are not 
collected. Lovas et al. (2004) stated that with airborne LiDAR, the ability to detect small features is 
affected by the altitude, orientation, and quality of the unit. For any platform, target objects may be 
obscured by other objects in the foreground. Spoof signals can cause trouble to the users by producing 
incorrect information, which may produce nonexistent objects in the LiDAR data processing algorithm. In 
the case of use by an autonomous vehicle, this error could cause a crash. 
 
The perception and range of LiDAR is limited, which also poses a significant challenge to work in a 
dynamic environment. In addition, the atmospheric scattering and attenuation caused by weather 
phenomena, such as sun reflection, dust, rain, snow, fog, and clouds, affect the quality of data collected 
by the LiDAR sensor. Weather like fog, snow, or rain can degrade the performance of the LiDAR sensor 
by 25% (Asvadi et al. 2018). Shamayleh and Khattak (2003) stated that rain droplets may reduce the 
signal intensity reflected from a target, and back-scatter from the rain may cause a false positive 
detection. Emitted laser beams may provide echoes that do not correspond to real obstacles by 
illuminating snowflakes (Yang et al. 2012). Also, it is often unreasonable or infeasible to shut down 
traffic operations on a section of a highway while collecting data. Moving or impermanent objects, such 
as vehicles or pedestrians, affect the data by introducing what may be unwanted noise for many users. 
Since slower driving speeds result in denser point clouds, it's challenging to use a mobile platform on 
higher-speed roadways while balancing operator safety and data density. As the technology continues to 
grow, it is expected that some of these challenges will be mitigated by increased reliability and robustness 
of the sensors, decreased cost of those sensors, and increased usability of processing software and 
hardware. 
 
5.4 Data Size Implications 
 
This study shows data sizes that one can expect from a single-beam LiDAR unit on a mobile platform in 
the highway environment. For the selected roads, the collector road segments have two lanes while the 
arterial road segments have four lanes. The raw data size generated from the sensor ranged from a little 
over 0.5 GB to approximately 5.6 GB. The data size mainly increases with the mode of the LiDAR unit 
and the duration of data collection. After processing the raw data and transforming into LAS file format, 
the size of the data shrinks significantly. This represents an excellent demonstration about the LiDAR 
data management for the transport agencies. The regression models developed to estimate large-scale data 
provide a great scope for transportation agencies or policymakers to consider when addressing the unique 
challenges and uses associated with the upcoming autonomous vehicle fleet data management. This 
model is important for transportation agencies since it will help to understand the data generated from the 
sensor and will give a baseline to comprehend probable data size.  
 
Among the selected vehicle speeds, the 25, 30, 35, and 40 mph data were collected from collector road 
segments. The 45 and 55 mph data were collected from the arterial segment. The buffer zone widths of 
the arterial roads for the right-of-way and travel lanes were larger compared to the collector road, per 
Cache County (2013) design standards. The buffer zone has a relative impact over the point cloud data 
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size collected under different speeds since the objects of each side of the buffer zone varied. In terms of 
the data distribution, it was found that the right-of-way section of the roadway contained approximately 
75–86% of the collected data for the collector and arterial roadways with centerline trajectory. When 
considering the buffers from the centerline trajectory, it can be noted that as the speed of the vehicle 
increased, the data size within the right-of-way area decreased slightly. For the 35 miles/hr, data size 
remained consistent for all the LiDAR modes. The data size in the travel lanes area increased with the 
vehicle speed for the centerline trajectory. Data sizes within the travel lanes section for all the modes in 
the 25 and 30 miles/hr runs were consistent. One possible reason for this may be that the highway 
environment might have remained the same while collecting data for these two different speeds. While 
considering the actual trajectory, out of the total data size approximately 40–94% of the total data size had 
fallen in the right of the way section. This greater level of variation might be a result of the asymmetric 
distribution of the objects falling within both sides of the LiDAR. For the travel lanes, the opposite 
scenario occurs, with the data size mostly increasing with the vehicle speed. One reason may be that the 
higher speed roads have more travel lanes compared to the lower speed roads. One can expect a data size 
of 20–65% from the travel lanes with actual trajectory. 
 
However, for the actual trajectory, the data sizes for the 25 and 30 miles/hr in terms of the right of way 
are nearly the same. Yet there was a significant increase from 30 to 35 miles/hr in this case. There is an 
asymmetry in the data size for the 40 miles/hr in terms of the 1024X20 and the 2048X10 mode. The 
highest data size can be observed for the 35 miles/hr. The data for the right of way always increased with 
the speed except for the 40 miles. One reason can be because of the number of features available within 
the right of way section during that particular run. One possible option to verify the data size for the 
selected vehicle speed and the LiDAR unit would be to run multiple times and also to compare the data 
size with different LiDAR units. This may help to understand and verify the data size generated from this 
study.  
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6. CONCLUSIONS 
 
6.1 Overview 
 
This demonstrated the possible data size that transportation agencies can expect from a mobile LiDAR 
platform in an active highway environment. To make conservative projections about LiDAR data size 
certain variables like LiDAR mode, vehicle speed, duration of the data collection period was considered 
in this study. Apart from this, the remaining objectives of this work were to summarize the existing 
applications of this technology in the transportation field, different challenges, and possible future 
research to explore. 
 
The first chapter of this study provided a basic introduction on how LiDAR works and other sensors 
including INS and GPS. It also covered the scope of this project and expected outcome with proper 
justification. Chapter 2 introduced the uses of LiDAR data for different transportation applications while 
highlighting algorithms used to extract information. Chapter 2 also covered the common limitations of the 
existing tools and techniques used for related applications. Chapter 3 provided a technical overview of the 
equipment and methodology used for data collection, including data processing and storage in the 
selected file format. 
 
Chapter 4 discussed the development of the regression model to understand the large-scale data size for 
selected scenarios. Chapter 5 discussed the mobile LiDAR uses in transportation in a broader term and 
challenges associated with the data collection, processing, and storage. Implications of the projected data 
size for the transportation industry were also discussed.  
 
6.2 Key Findings 
 
Overall, it can be said that the size of the LiDAR data mainly depends on the duration of the runtime and 
the selected mode to collect the data. The following are the key findings of this research:  
 

• The size of the data decreases significantly compared to the raw data after saving it in the ASPRS 
recommended (.las) file format. Processing, filtering, and conversion to (.las) file format shrunk 
the data size from over a gigabyte down to a few megabytes.  

• The weather has a possible impact on the data size. Weather like rain, snow, and sunlight affect 
the laser beam reflected from the LiDAR sensor while the beam returns to the sensor after heating 
the target object. This is due to the reflective property of the light. 

• In an active highway environment, the data size will vary, particularly in the right of ways and the 
travel lanes. 

• For the selected roadway types (arterial and collector), the right-of-way and the travel lanes 
sections contain approximately 75%–86% and 25%–65%, respectively, of the collected data for 
the centerline trajectory. 

• For actual vehicle trajectory, there was greater variability in the data size right of the way section. 
This is most likely due to asymmetric overlap of buffer zone with the roadway.  

• In general, as vehicle speed increases, the data density, or data size per mile, will decrease. 
However, due to the limited data size within the travel lanes, the relationship between vehicle 
speed and data size per mile is not statistically significant in this study. 
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6.3 Future Research 
 
LiDAR technology has been in continuous development for the past few decades. Constant technological 
progress combined with substantial reductions in data acquisition cost has made it possible to apply this 
technology more frequently and at a larger scale. Although several studies have explored the use of 
LiDAR for transportation applications, there are still opportunities for further research. 
 
LiDAR can be used for surveillance and monitoring because of its high accuracy, resolution, and dense 
scanning capacity. However, in order to avoid occlusion in a dense traffic environment, multiple runs are 
necessary in potential future studies in this area.  
 
Currently, highway asset inventory with LiDAR depends on the reflectivity and shape of the target 
objects. Future research may consider the detection, identification, and evaluation of damaged, old, or 
non-standard assets. Similarly, Gargoum and El Basyouny (2019) stated that there is a lack of research in 
the extraction of cross-sectional road elements and their attributes, such as vertical and lateral clearances. 
There is also an opportunity to explore the performance of LiDAR to detect objects in areas covered with 
vegetation. Previous studies on lane marking, curb, or pavement edge detection mainly focused on short 
and straight segments. Future research should explore its implication for network-level data collection. 
This technology could also be used as a part of the quality control process and as-built assessment for 
construction. 
 
Automated extraction of features from LiDAR data to minimize the analysis time should be emphasized, 
since object detection is important for the development of a smart transportation system. Algorithm 
standardization could improve the differentiation between ground and non-ground objects in raw point 
clouds. In addition, standardization and availability of non-proprietary processing methods would ease the 
usability of the point cloud data. A potential study could compare the data quality and processing times of 
proprietary vs. freely available data processing platforms. Improvements in work zone layout, 
management, and quality control can be made by using 3D point cloud data given the amount of 
information that can be driven from this 3D data.  
 
An important aspect for future research is to compare the performance of LiDAR with other sensing 
technologies. At present, there are various LiDAR sensors with a large variety of specifications and price 
points. A potential study could assess the capabilities of these sensors in terms of detecting distanced 
objects from a mobile platform. Additionally, comparisons should be made between solid state and 
spinning mirror LiDAR sensors. Considering the nature of the data acquired by this technology, there is 
potential for it to be used to create models for structures. The impact of different environmental 
conditions, such as lighting, precipitation, air quality, etc. on LiDAR data accuracy should also be 
assessed to understand the performance of this sensing technology under non-ideal conditions, 
particularly in the context of autonomous vehicle performance. 
 
To reduce the severity and frequency of crashes, there is ongoing research and development of the use of 
LiDAR and other sensing technologies in AVs and CAVs. Unfortunately, much of this research is 
theoretical or proprietary. LiDAR has the potential to expedite traffic incident management and safety 
analysis if the technology can be simplified for use by individuals with limited training and if processing 
times can be reduced. With the 3D scanning capacity of the sensor, it is possible to detect moving objects. 
Therefore, it is possible to explore the detection of pedestrians, bicyclists, and other vehicles. LiDAR 
sensors could be integrated with other vehicle telematics technology to better understand traffic flow and 
safety implications of advanced vehicle technologies. For example, if upstream congestion could be 
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detected and communicated, vehicle and/or driver responses and performance may be assessed in greater 
detail than ever. 
 
6.4  Limitations and Challenges of this Study 
 
One of the major limitations of this study was that only one run was performed to estimate the data size 
from each of the selected roads, speeds, and LiDAR modes. Since data were collected from the mobile 
platform, it is highly likely that the data size would vary from run to run for the same road segment. 
Additionally, the commercial GPS used for this study was not precise, leading to some positional 
distortion in the features surrounding the vehicle in the point cloud. It was challenging to calibrate and 
sync the timestamp of all the sensors correctly to extract the features surrounding the LiDAR with respect 
to the actual vehicle location. In particular, while collecting data during the winter, snowfall further 
impacted the accuracy of the GPS. It is expected that many features that were actively present in the study 
area might not have been captured by the sensor due to its configuration and the speed of the vehicle. 
Another challenge involved with collecting and storing real time LiDAR data was the configuration and 
storage capacity of the computer used for the study. Given the scope of this study, it was not possible to 
compare the data size generated from the selected LiDAR unit with other units. 
 
This study used only one single beam LiDAR sensor unit and the lowest speed while collecting data was 
25 miles/hr. Even at this speed, it was quite difficult to capture the features in a detailed manner. As the 
speed of the vehicle increased, the data density greatly decreased, which increased the difficulty of 
recognizing objects in the point cloud. However, cost limitations inhibited ability of the researchers to 
utilize more and high-quality LiDAR units that would be expected to be used on AVs. Another major 
challenge and limitation of this study was maintenance of a constant speed during the data collection 
period since it was an active highway. Constant speed was necessary for ease in data processing and 
analysis but is not representative of real-word vehicle/driver performance. In some runs, there was some 
data distortion for inconsistent vehicle speed. 
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