
DISCLAIMER 

This research was funded through the State Planning and Research (SPR) Program by the Tennessee 

Department of Transportation and the Federal Highway Administration under RES2013-45: Empirical 

Evaluation of the Accuracy of Technologies for Measuring Average Speed in Real Time. 

This document is disseminated under the sponsorship of the Tennessee Department of Transportation and 

the United States Department of Transportation in the interest of information exchange. The State of 

Tennessee and the United States Government assume no liability of its contents or use thereof. 

The contents of this report reflect the views of the author(s) who is(are) solely responsible for the facts 

and accuracy of the material presented. The contents do not necessarily reflect the official views of the 

Tennessee Department of Transportation or the United States Department of Transportation. 

 



Technical Report Documentation Page 

 

1. Report No. 

     RES2013-45 
2. Government Accession No. 

 
3. Recipient's Catalog No. 

 

4. Title and Subtitle 

 

Empirical Evaluation of the Accuracy of Technologies for Measuring 

Average Speed in Real Time 

 

 

5. Report Date 

     August 2017 

6.  Performing Organization Code 

 

7. Author(s) 

Hargrove, S., Lim, H., Han, L., Freeze, P.B. 
8. Performing Organization Report No. 

 

9. Performing Organization Name and Address 

University of Tennessee 

525 John Tickle Engineering Building 

851 Neyland Dr 

Knoxville, TN 37996 

10. Work Unit No. (TRAIS) 

 

11. Contract or Grant No. 

42B268 (FHWA) 

12. Sponsoring Agency Name and Address 

Tennessee Department of Transportation 

Research Office 

505 Deaderick Street, Suite 900 

Nashville, TN 37243 

13. Type of Report and Period Covered 

Research Report  

August 2013 to June 2016 

14. Sponsoring Agency Code 

 
15. Supplementary Notes 

   

 
16. Abstract 

 

      The determination of travel time conditions for traveler information plays an important role in setting driver 

trip expectation and informed route selection decisions.  The Tennessee Department of Transportation (TDOT) 

has the ability to compute expected travel time within the four (4) urban areas where corridors have been fully 

instrumented with SmartWay ITS field devices and associated communication.  However, TDOT currently lacks 

the ability to effectively provide this travel time information to travelers in corridors beyond the SmartWay 

program in many suburban corridors outside the urban areas.  Federal regulations require all state DOT’s to 

develop means to measure traffic speeds and calculate travel times for all maintained road networks by 2014.  

This study acquired and examined probe vehicle based real-time travel data and strategize a sustainable 

implementation plan to provide comprehensive travel time information to motorists in the years to come. 

      This is a continuation from a Tennessee Technical Assistance Program (TTAP) contract where a probe-

vehicle database from INRIX as well as ground truthing equipment from 3M had previously been acquired. A 

significant amount of the effort went to the analysis of the quality of the field data from sources including 

INRIX, ALPR, NAVTEQ, Bluetooth, Google Maps and TELVENT. 

17. Key Words 

 

TRAVEL TIME INFORMATION, TRAVEL 

TIME MEASUREMENT, ITS, INTELLIGENT 

TRANSPORTATION SYSTEMS 

18. Distribution Statement 

 

. 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of Pages 

10 
22. Price 

$110,237.36 

Form DOT F 1700.7 (8-72)  Reproduction of completed page authorized 



EXECUTIVE SUMMARY 
 
This is the final report of the project, which is a continuation from a TTAP contract where we had already 
acquired probe-vehicle database from INRIX as well as ground truthing equipment from 3M.  The final 
quarter saw continued activities on field data analysis.  Significant amount of the effort went to the analysis 
of the quality of the field data from sources including INRIX, ALPR, NAVTEQ, Bluetooth, Google Map, 
and TELVENT.  We were able to isolate the “time drifting” problem on some of the computers used in this 
study and corrected the problems with post-processing of the data.  A presentation was made to TDOT in 
July to report on the analysis results of the field sensor data.  The slides from the presentation are provided 
as an attachment to this report. 
 

SYNOPSIS OF THE PROBLEM BEING RESEARCHED 
 
The determination of travel time conditions for traveler information plays an important role in setting 
driver trip expectation and informed route selection decisions.  The Tennessee Department of 
Transportation (TDOT) has the ability to compute expected travel time within the four (4) urban areas 
where corridors have been fully instrumented with SmartWay ITS field devices and associated 
communication.  However, TDOT currently lacks the ability to effectively provide this travel time 
information to travelers in corridors beyond the SmartWay program in many suburban corridors outside 
the urban areas.  Federal regulations requires all state DOT’s to develop means to measure traffic speeds and 
calculate travel times for all maintained road networks by 2014.  This study will acquire and examine probe 
vehicle based real-time travel data and strategize a sustainable implementation plan to provide 
comprehensive travel time information to motorists in the years to come. 
 
PROJECT OBJECTIVES 
 

• Acquire and examine probe vehicle based real-time travel data; 
• Strategize a sustainable plan for TDOT to acquire travel time information; and  
• Strategize a sustainable implementation plan for TDOT to provide comprehensive travel time 

information to motorists in years to come. 
 
ACTIVITIES THIS QUARTER 
 

• Project completed. 
 
 

SCHEDULE AND BUDGET 
 
Task 1. Travel Time Database Acquisition 
Task 2. Alternative Database Assessment 
Task 3. Exploration of On-Line Database Extraction 
Task 4. Travel Time Ground Truthing 
Task 5. Preliminary Data Quality Assessment 
Task 6. Reports and Recommendations 
 
We are 100% done with the tasks with the expenditures is also at 100% for Phase I. 
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A federal mandate challenges states to acquire and to disseminate reli-
able travel time–speed information with limited sensor infrastructure 
and resources; the mandate also opens the opportunity to look beyond 
traditional sensor technologies. Some of these new and promising travel 
data technologies include various deployments and combinations of 
GPS, probe vehicles, cellular devices, Bluetooth devices, radio frequency 
identification, automated license plate recognition (LPR), and even social 
media. To take on this challenge, the objective of this study was to provide 
several key considerations for evaluation of travel speed data for general 
cases. The key items included obtaining reliable ground truth data, trans-
forming and comparing data sets, and evaluating data accuracy. Along 
with the explanation of these considerations, the results of a case study 
are provided to help illuminate the issues. The case study, which was 
performed in the vicinity of downtown Nashville, Tennessee, along Inter-
state 40 and Interstate 65 evaluated real-time travel time–speed data 
from Bluetooth sensors, from probes supplied by two major vendors, 
and from remote traffic microwave sensors. These data were compared 
with ground truth data from an LPR-based vehicle tracking system as 
well as video footage collected simultaneously. The paper discusses the 
reliability of ground truth, the advantages and shortcomings of different 
technologies, the evaluation of data accuracy methodologies, and future 
research directions.

Recognizing the need to provide better travel time information to the 
general public, FHWA ruled that all states must have an established 
real-time information program for traffic and travel conditions to cover 
all Interstate system highways in the Safe, Accountable, Flexible, Effi-
cient Transportation Equity Act: A Legacy for Users under the heading 
congestion relief that requires the secretary of transportation to imple-
ment a real-time management information program (1). This federal 
mandate challenges the states to acquire and to disseminate reliable 
travel time–speed information with limited sensor infrastructure and 
resources; it also opens up the opportunity to look beyond the tradi-
tional sensor technologies. Some of these new and promising travel 
data technologies include various deployments and combinations of 

GPS, probe vehicles, cellular devices, Bluetooth devices, radio fre-
quency identification, automated license plate recognition (LPR), and 
even social media.

Mining and extracting useful travel time–speed data from these 
newly repurposed data sources, which were not originally created for 
travel time–speed measurement originally, are not simple tasks (2–6). 
In addition, private vendors who market these data are unwilling to 
disclose the algorithms used in the processing, filtering, aggrega-
tion, imputation, and other data-smoothing processes. This unwill-
ingness makes evaluating the myriad of evolving and maturing 
travel time–speed technologies a real challenge.

To take on this challenge, this study aimed to provide several 
key considerations for evaluation of travel speed data for general 
cases. The key items included obtaining reliable ground truth data, 
transforming and comparing data sets, and evaluating data accuracy. 
Along with an explanation of these considerations, the paper provides 
the results of a case study to help illuminate the issues.

STUDY SITES AND DATA COLLECTION

The primary consideration for study site selection is the availability 
of all data sources within a roadway segment of a traffic manage-
ment center (TMC) where significant variance in traffic speeds–travel 
times is commonly observed. To this end, a stretch of I-40E–I-65S 
near downtown Nashville, Tennessee, from Demonbreun Street to 
12th Avenue was selected (Figure 1). Data collection stations (A, B, 
and C) were deployed on the overpasses above the Interstate, which 
has three lanes until the addition of a fourth lane from the second on- 
ramp. Just beyond Station C, the Interstate splits into I-40 and I-65, 
with two lanes going to each. During the data collection period, the 
segment from A to C saw the deployment of six LPR cameras (two for 
each station), three Bluetooth sensors mounted on light poles near each 
overpass, two remote traffic microwave sensors (RTMSs), and probe 
vehicles from two data providers, each covering two TMC sections.

Traffic Data Sources for Comparison

Although previous studies have evaluated some private data provid-
ers, reassessment of those providers is still critical, largely because the 
performance of these types of data can vary significantly in relation 
to factors connected to deployment of local technology (7–11). Two 
prominent private data providers (DP1 and DP2) were subsequently 
selected to supply aggregated real-time minute-by-minute travel 
time–speed data. (The authors were concerned about the quality of 
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these data because neither provider was willing to disclose the data 
aggregation process or to provide the raw data.)

In addition to the data from private providers, Bluetooth technology 
and the Tennessee Department of Transportation’s existing RTMS 
sensors were also evaluated. Bluetooth sensors have become a com-
mon tool for collecting traffic data for their cost-effectiveness, ease 
of setup, and the minimal knowledge of the technology required for 
operation (7, 12–15). By matching media access control addresses 
captured at two locations by using postprocessing software, road 
speeds and travel times were derived.

RTMS sensors provide lane-by-lane volume, occupancy, speed, 
and vehicle classification for a cross section of a roadway. Over time, 
an RTMS sensor may become less accurate at capturing traffic data 
because of any or all of the following reasons: moving of the sensors, 
damage from natural elements, and inconsistent maintenance. Table 1 
compares the data providers and the roadside technologies.

GROUND TRUTH

To assess the accuracy of the aforementioned travel time–speed data, 
the ideal would be to track every vehicle in the study area during the 
entire duration of data collection without subsampling, subaggrega-
tion, or any kind of omission. This ideal, however, is not attainable 
in an automated and sustained manner over time. The literature 
on methodologies of collecting ground truth data (16–19) identified 
probe vehicles (20, 21), Bluetooth (7, 13–15, 22, 23), LPR technology 
(24–28), and radio frequency identification (29, 30). Some desirable 
features of a ground-truthing methodology include

Individual data points;
Large enough sample size;
Backup data to validate ground truth data, such as video records;
High accuracy of time measurements;

Study location

LPR station location

FIGURE 1  Study site.

TABLE 1  Summary of Selected Traffic Data Technologies and Providers

Variable

Traffic Data Technologies

Bluetooth DP1 DP2 RTMS

Data type Time, signal strength Speed, travel time Speed, travel time Volume, occupancy, speed, 
vehicle classification

Aggregation and time 
resolution

Each MAC address, all 
lanes

60 s, all lanes 60 s, all lanes 30 s, per lane 

Data source Cellular and in-vehicle 
Bluetooth devices

State installed sensors, probe 
vehicles, GPS, cell phone

State installed sensors, 
probe vehicles, GPS

Roadside detectors 

Accuracy checks 
performed

Postcollection processing 
with filters

Independently verified in 
large-scale testing

Data checks prior to map 
matching

Postcollection processing with 
filters

NOTE: MAC = media access control.
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High accuracy of distance measurements;
Lane-by-lane travel speeds; and
Exact length (start and end locations) of the target segment.

For this study, LPR technology was employed to track individual 
vehicles at the three stations (A, B, and C) to provide a surrogate of 
ground truth. LPR was chosen over other vehicle tracking technolo-
gies because the technology’s small detection window results in a 
relatively small travel time error, especially at higher speeds (31). 
LPR technology also affords a more comprehensive appreciation of 
the traffic flow by tracking vehicles within the road lanes, allowing 
discernment of the speed gradient of subflows in fast and slow lanes 
that is associated with lane-changing activities.

The LPR-based vehicle-tracking functionality required for ground 
truth employs a pair of mobile LPR units to cover all lanes at each sta-
tion (six cameras total). License plate information is acquired by each 
LPR unit and then matched automatically by means of a self-learning 
text-mining algorithm developed by Oliveira-Neto et al. (32–34). The 
algorithm uses a moving time window and weighted edit distance 
technique to achieve significant matching performance (98% match-
ing rate with less than 1% false positives). The segment travel time for 
each matched plate, and hence vehicle, is then evident.

Sensitivity of Measurement Accuracy

By definition, “speed” is the change in distance over time. To evaluate 
speed data, being able to measure both time and distance accurately 

is desirable. Figure 2 shows the contour plots of the range of speed 
errors of ±15 mph to illustrate how errors in time and distance mea-
surement affect the error in speed, for different true speed, time, and 
distance. The densities of these contour lines of speed errors indicate 
the sensitivity of the resultant speed to the measurement errors in time 
and distance. Denser contours indicate a greater error in speed with 
the same amount of error in space–time measurement. For instance, 
to result in an average speed of 30 ± 5 mph when the true distance is 
2,640 ft, the errors in time and distance measurements must be within 
Range a in Figure 2.

Sample Size of Ground Truth Data

Suppose two technologies, x and y, for which the standard errors 
of measurements are σx and σy, and their sample sizes at each time 
period are nX

_ and nY
_, respectively. For calculation of the standard 

errors of average of samples at each period, σX
_ and σY, Equation 1 

is well known:

σ = σ σ = σ = α × σ
n n n
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FIGURE 2  Contour plots of measurement error in speed for various distances, speeds, and periods: (a) 5,280 ft at 60 mph for 60 s,  
(b) 2,640 ft at 60 mph for 30 s, (c) 1,760 mph at 60 mph for 20 s, (d) 5,280 ft at 30 mph for 120 s, (e) 2,640 ft at 30 mph for 60 s  
(with Range a showing average speed of 30 6 5 mph), (f) 1,760 ft at 30 mph for 40 s, (g) 5,280 ft at 20 mph for 180 s, (h) 2,640 ft at  
20 mph for 90 s, and (i) 1,760 ft at 20 mph for 60 s.
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≥ α ×n nY X (3)

Now a condition to use y is obtained, as follows:

≥ α ×n nY X (4)2
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n
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≥
σ
σ

⎛
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⎞
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(5)
2

Equation 5 means that the condition of using technology y as 
ground truth data, in relation to measurement error and sample size, 
requires the proportion of the sample size for the technology y over 
that for technology x to be larger than the square of the proportion of 
standard error of technology y over the standard error of technol-
ogy x when the data are evaluated at the aggregated level (i.e., aver-
age of each period). For instance, if the standard error of technology y 
is twice that of x (α = 2), then the required sample size of y is, at 
least, four times that of x. However, as discussed earlier, the decision 
on which technology to use for the ground truth data is much more 
complex. Furthermore, if one wants to evaluate travel speed data at 
the individual data point level, then the measurement error might be 
much more important than the sample size.

Although Equation 5 might be more appropriate for evaluating 
aggregated data, the relationship can also be used to reduce the 
measurement error of individual data points by employing multiple 
devices at the same location.

To get the sample size of a population, a technology with a high 
accuracy of collecting traffic counts, besides the ground truth data for 
travel speed, can be used. In this study, RTMS was used to compare 
count data with LPR and Bluetooth. RTMS had high accuracy pre-

dominantly in traffic counts (35), while RTMS speed results varied in 
relation to the mounting location (36).

Table 2 contains a brief overview of the sizes of the samples taken 
during field data collection, October 18, 2013, from approximately 
7:00 a.m. to 6:00 p.m. As Table 2 shows, LPR technology, with the 
advanced algorithm introduced by Oliveira-Neto et al., was able to 
capture 15% to 20% of the RTMS volume, while Bluetooth captured 
less than 5% (32, 33).

Importance of Lane-by-Lane Speed Data

With two LPR cameras installed in each location, four flows were 
captured for one segment. In Figure 3, Lanes 2 and 3 mainly rep-
resent the faster traffic flow compared with Lane 1. LPR permits a 
thorough investigation of the traffic flow by tracking vehicles within 
the road lanes.

The afternoon peak has two clearly separate flows along the same 
roadway. The first flow, Lanes 2, 3 → Lanes 2, 3 and Lanes 2, 3 → 
Lane 2, is recovering to uncongested flow conditions, while the other 
traffic flow remains congested.

TRANSFORMATION OF DATA

Before the evaluation process, several data composition and quality 
control techniques were implemented to verify the validity of the 
ground truth data collected and of all the other data sources. This 
step was completed by determining a procedure for comparing 
the ground truth data to the collected-data source, establishing 
appropriate periods, and eliminating outliers.

TABLE 2  Summary of Sample Size and Percentage of RTMS for Roadside Technology Data Set

Roadway 
Section

Data Source Sample Size Percentage of RTMS

LPRa LPRb Bluetooth RTMS LPRa/RTMS LPRb/RTMS Bluetooth/RTMSc

A to C 2,758 4,811 1,958 — d d d

A to B 3,431 6,835 — 43,980 8% 15.5% 4.5%

B to C 4,885 8,671 — 43,208 11% 20.1% 4.5%

NOTE: Cells with dashes are the segments in which speed data were not collected for the designated data source.
aLPR data that match perfectly at each station.
bLPR data after self-learning matching algorithm applied.
cBluetooth/RTMS was calculated using the total sample size for Sections A to C.
dRTMS data were not available.

Lane 1 → Lane 2
Lane 1 → Lane 3
Lanes 2, 3 → Lane 2
Lanes 2, 3 → Lane 3
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FIGURE 3  Example of lane-by-lane travel speed data.
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Individual Data Points Versus  
Aggregated Level of Data

The resolution of traffic affects calculation of measurements and 
even decision making (6). Figure 4 illustrates the two considered 
methods assessed to evaluate the travel speeds of collected-data 
sources against the ground truth. The first method assigns all data to 
a specific period (e.g., 1 or 5 min) and calculates average speed for 
each period. The second method keeps their original resolutions. In 
Figure 4, all ground truth is represented in black, and the data source 
being compared is in red.

Averaging data by Method 1 establishes a simpler way to calculate 
deviations between more than two data sources because the paired 
comparison analysis will be based on single values for each period of 
each data source. However, this method may produce incorrect results, 
which could be significantly different from the original data set. These 
differences would be severe issues if clearly different traffic flows 
exist in the largely defined period.

Because LPR technology can observe individual vehicles, this 
study chose Method 2 to compare travel speeds of each vehicle cap-
tured with LPR with all other data sources. For data sources with 
accessible raw data, such as Bluetooth and RTMS, the 5-min moving 
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average was calculated on the basis of the time at which each data 
point was identified.

Moving Average of Travel Speeds

Moving average of traffic data captured by the roadside technology 
was calculated to compare with the travel speeds of the ground truth’s 
individual vehicles. The term “moving” is used because every time a 
new observation becomes available for the time series, it replaces the 
oldest observation in the equation, and a new average is computed. As 
a result, the average changes or moves as new observations become 
available.

To represent the moving average of travel speed, the first question 
to be answered is how to group them, in other words, whether the 
moving average should be calculated on a fixed number of vehicles 
(i.e., fixing ni in Equation 6), fixed periods, or some other ways. Fix-
ing the number of vehicles may involve data points far from the time 
that one wants to calculate the moving average, which, in the case of 
traffic conditions, can also be significantly different.

To group the data points properly, they are assumed to be in 
almost the same traffic condition. For this grouping issue, by con-
sidering the changes of traffic conditions, a better way, such as a 
moving average based on flexible periods, may be possible; how-
ever, defining the boundary of changes to traffic conditions is quite 
difficult. Thus, in this study, the discussion is focused on a moving 
average of fixed periods.

Determining the appropriate time interval is very important; thus, 
having a realistic moving average is crucial. To achieve one, several 
trials examining different time intervals were implemented. In Fig-
ure 5, the moving average of speed data with different time intervals 
are compared with the raw data. As Figure 6, a through f, shows, the 
error increases as the time interval increases. However, the mov-
ing average speeds fluctuate considerably if the time interval used 
is too small. Thus, the decision on the time interval should be made 
with consideration of many factors, including the objectives of the 
evaluations.

In this case study, period i was selected on the basis of the time 
stamp of each vehicle identified in the ground truth data, including 

2½-min intervals before and after the identified time stamp. After all 
vehicles within the 5-min range of period i were selected, the space 
mean speed was calculated. The moving average of time period i is 
defined as shown in Equation 6:

v
n

v

i
i

ikk

ni

∑
=

=

1
(6)

1

where

 v
_

i = space mean speed at period i,
 ni = number of vehicles at period i, and
 vik = travel speed of kth vehicle at period i.

Conversion of Data from Travel Speed  
to Travel Time

Along with travel speed, travel time is a standard measure of free-
way service quality (37). Travel time information is an indispens-
able part of travel information systems (38). If the travel data to be 
evaluated are mainly used for providing travel time information, the 
conversion of speed data to travel time, which is an inverse of speed, 
must be considered. Equations 7 through 10 explain how an error in 
speed can affect the error in travel time.

Let T be the true travel time and T* be the observed travel time 
due to an error in speed ΔV.

T
D

V
T

D

V V
= =

+ Δ
* (7)

The error in travel time, ΔT, can be calculated as shown in  
Equation 8:

Δ = − =
+ Δ
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T D
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V V V
(9)

( )
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−Δ
+ Δ

⎛
⎝⎜

⎞
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i

In addition, ΔT/T is

Δ = −Δ
+ Δ

T

T

V

V V
(10)

As Equations 9 and 10 show, the error in travel time (ΔT) gets larger 
as the true speed (V) gets smaller.

In Figure 7, this increase in the error in travel time becomes 
more severe as the speed decreases. For instance, when a speed 
of 15 mph is observed as 10 mph with a segment length of 1 mi, 
the travel time will be overestimated by 2 min (true travel time 
being 4 min).

Figure 8 illustrates the difference between using travel time and 
travel speed as an evaluation target. As the figure shows, the variations 
in travel times are much higher at low speeds. During the afternoon 
peak, the range of the 90% confidence interval for travel time is about 
200 s, which is more than 10 times that during the off peak, while the 
difference of 90% confidence interval for travel speed between the 
afternoon peak and off peak is relatively much smaller. Because of this 
variation, the evaluation of travel speed data, which is also used for 
travel time information, may require additional scrutiny.

Elimination of Outliers

Elimination of outliers, like changing the length of a period, can affect 
the quality and integrity of a data set. Researchers would prefer to 
have all data, outliers or not, before any elimination decision is made. 
However, many technologies eliminate data deemed outliers by their 
own algorithms before researchers even receive the data. In the case 
of Bluetooth data, proprietary software determines the travel speed 
but, in the same process, also determines and eliminates all outliers. 
The basic concept is that any data point beyond three standard devia-
tions from the mean is categorized as an outlier. These elimination 
algorithms should be studied so that the quality of the data is not 
inadvertently compromised under certain scenarios.

In the matching procedure of the LPR observations, a method 
selects certain candidates on the basis of a time window, which is 
defined by the mean and standard deviation of travel time at each 
period and thus eliminates outliers.

Often, determining the criteria of outlier elimination has no strong 
evidence. The common method is to set up the statistical boundary (i.e., 
confidence interval), with the extreme values outside of the boundaries 
being treated as outliers. However, those boundaries may be asymmetric, 
and some of those unusual data points may not be outliers. 

One advantage of LPR is that the validation is available as long as 
the data are stored because the images of license plates are captured. 
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FIGURE 6  Visualization of impact on moving average speed for various time intervals: (a) 1 min, (b) 5 min, (c) 10 min, (d) 15 min,  
(e) 30 min, and (f) 60 min.
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Thus, if researchers visually investigate whether the extreme values 
are outliers, they might be able to construct a statistical model (such 
as a probit or logit model) to determine outliers.

EVALUATION OF DATA ACCURACY

With an increased demand for measuring travel data quality, multiple 
studies have been performed to examine the evaluation process  
(11, 16, 18, 20, 39, 40). One of the well-known comparisons of 
travel speed data technology was completed by the I-95 coalition 
by performing 5-min space mean speed validation across four states 
(11). While taking into account the past evaluation methods, the 
following section discusses the significance of the measurements 
chosen here, including visual investigation (using travel speed over 
time, confidence intervals, and histograms) and the calculation of 
RMSE for travel speeds and times.

Measurements of Errors

Makridakis and Hibon thoroughly examined the measurements of 
errors for evaluating data or methods with a statistical and practical 
view (41). They concluded that, for general cases, mean square error 
(MSE) is the most appropriate measurement for selecting a forecast-
ing model, and mean absolute percentage error is most appropriate for 
evaluating the error of single series. Table 3 shows how the measure-
ments are used for practitioners and academics from Makridakis and 
Hibon and includes a ranking of the importance for evaluation of travel 
speed data, which is the subjective views of the current authors (41).

MSE is “useful when we are concerned about large errors whose 
negative consequences are proportionately much bigger [sic] than 
equivalent smaller ones (e.g., a large error of 100 vs. two smaller 
ones of 50 each)” (41). Thus, using MSE rather than MAE means 
that larger errors of travel speed are accounted for more than an 
equivalent amount of smaller errors.

RMSE is the square root of MSE yields and has the advantage of 
using the same units as the quantity being estimated. The RMSE is 
defined as shown in Equation 11:

X G

N

e

N

i i i∑ ∑( )
=

−
=RMSE (11)

2 2

where

 Xi = obtained data from other sources at period i,
 Gi = ground truth data at period i,
 ei = difference (error) at period i, and
 N = number of observations used in computing RMSE.

CONCLUSION AND DISCUSSION

One of this study’s goals was to establish an initial framework for 
determining LPR as a viable ground truth option aside from the key 
considerations that must be accounted for while evaluating travel 
speed data sets. To address practical issues along with theoretical 
aspects, the study investigated multiple data sources to evaluate data 
accuracy as compared to LPR (ground truth).

By using LPR technology, which admittedly may not be an ultimate 
solution for obtaining the ground truth, the user can obtain lane-by-
lane speed data, relatively high accuracy of time and distance measure-
ments, and identification of each vehicle traveling over the length 
of roadway. With LPR ground truth collected in accordance with 
other data sources—namely, RTMS, Bluetooth, and probe vehicle 
data from private providers—thorough and reliable evaluations 
become possible.

To proceed with future evaluations of real-time traffic data, a 
longer period of study at multiple sites involving more technologies 
would be desirable. The increase in data would allow a more sub-
stantial analysis of additional metrics that could be used to describe 
patterns and trends further. In addition, more investigation of ground 
truth, such as a required range of measurement error and sample size, 
should be a key part of future studies.

Additional research is required to evaluate the benefit and poten-
tial of fusing RTMS and Bluetooth types of roadside data with those 
from probe vehicles and cellular services. Because most state agen-
cies have already invested in RTMS type technologies, some degree 
of fusion of RTMS with other technologies may be an economical 
option. If the difference between two data sources has a consistent 
pattern, those multiple data sources could possibly be calibrated to 
achieve higher accuracy and thereby become reliable data sources 
for evaluation.
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