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1.0  Preface 

1.1 Disclaimer 
The views expressed in this document do not represent the opinions of FHWA and do not 
constitute an endorsement, recommendation or specification by FHWA. The document is based 
solely on the work of RSG and the TRB Travel Forecasting Resource Destination Choice 
Modeling Charrette. 
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developed by the participants of the Travel Forecasting Resource Destination Choice Modeling 
Charrette before being revised, edited, and developed into this document. The members of the 
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 Eric Miller, PhD (University of Toronto) 
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 Jennifer Weeks (TRB) 
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2.0 Introduction 

2.1 The Problem of Trip Distribution in Space 
This How-to guide addresses one of the most challenging problems in travel modeling: trip 
distribution. Both common experience in practice as well as academic research have found that 
trip distribution models are the largest source of error in travel modeling systems. (Zhou and 
Kockelman, 2002). The struggle to model the spatial distribution of trips is clearly understandable. 
It results from two basic facts. The solution space of origin-destination (OD) flows is very large. 
Most OD matrices in practice range from 500,000 to 25,000,000 cells, each representing an OD 
pair. This huge set of dependent variables is modeled using only a very small number of 
explanatory variables such as the travel time between zones and population and employees per 
zone without any information about the quality or cost of goods and services provided by these 
various destinations or the relationships between the individuals or communities living and 
working in these areas. It is little wonder therefore that distribution models struggle to reproduce 
the complex patterns observed in reality. 

2.1.1 The Importance of the Problem 
Reproducing and predicting where travelers are going to and from is of critical importance to travel 
modeling and transportation planning. Without an accurate representation or prediction of these 
spatial travel patterns it is impossible to accurately predict many important things including drivers’ 
willingness-to-pay tolls (which depends on the length of their trip) or travelers’ likelihood of 
changing modes to take advantage of a new transit service. Looking to the future, accurate spatial 
modeling will also be critical to answering new questions such as the likely effectiveness of various 
types of restrictions on deadheading/zero occupant vehicle trips by autonomous vehicles. Thus, 
while understanding the spatial patterns of travel is not always of paramount interest in itself, it 
underlies and is foundational to the ability to understand and predict many issues of interest to 
transportation.  

2.2 Destination Choice Models 
Destination choice models are a type of trip distribution or spatial interaction model which are 
formulated as discrete choice models, typically logit models. This flexible and extensible 
formulation allows destination choice models to provide a better behavioral basis for trip 
distribution than the traditional gravity-based trip distribution models, by allowing for a wider range 
of explanatory variables. Although technically gravity models can be considered a subset or 
special case of destination choice models, the term “destination choice models” typically is used 
to identify more general models that incorporate additional variables beyond size/attractions, 
impedance/friction factors and constants. 

Destination choice models consistently reproduce observed travel patterns better than gravity 
models. Destination choice models perform better through the incorporation of additional 
variables and reflecting more complex statistical assumptions like spatial autocorrelation. 
(Bernardin et al., 2009) Logit-based destination choice models are therefore increasingly 
replacing gravity models for modeling the spatial distribution of trips in order to improve the overall 
travel model accuracy. 
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2.2.1 Increasing Use in Practice  
As recently as the beginning of 2014, a TMIP survey of transportation agencies around the country 
confirmed that the majority of travel models still use gravity models for distributing trips in space. 
However, the same survey also confirmed that the portion of agencies using destination choice 
models in place of gravity models is increasing and had roughly tripled in less than nine years 
since a previous survey. As of 2018, destination choice models are now used by almost all of the 
top twenty-five largest metropolitan areas in the country and in just under half of statewide models 
(e.g., Arizona, California, Idaho, Iowa, Maryland, Michigan, New Hampshire, Ohio, Oregon, 
Tennessee, Wisconsin) as well as an increasing number of small and mid-sized metropolitan 
areas (e.g., South Bend, Evansville, and Columbus, Indiana; Ann Arbor, Michigan; Burlington, 
Vermont; Knoxville, Nashville, and Chattanooga, Tennessee; Charlottesville, Virginia; Charleston, 
South Carolina; and Jacksonville, Florida). 

2.2.2 Improved Sensitivity to More Factors 
The gravity model often exhibits incorrect demand elasticities; in particular, the model may 
respond illogically to changes in levels of service where improved accessibility to a given 
destination may cause a disproportionate increase in total trips, and/or an increase in trips using 
the mode(s) whose accessibility did not change. In both cases, the results are undesirable and 
may lead to erroneous assessments of the impact of transit or highway improvements. 

Destination choice models overcome these gravity model limitations with more appropriate and 
sophisticated specifications of utility. Because the mathematical form of destination choice utility 
is very flexible, accounting for the uniqueness in the trip distribution pattern can be accomplished 
in intuitive ways. For example, modeling a natural barrier like a river in a gravity model usually 
requires K-factor (or explicit declaration), but, in a destination choice model, a term can be added 
to the utility equation, statistically estimated from observed data, and interpreted in terms of 
equivalent minutes of travel time. This latter approach is much more data-based and intuitive 
measure of the impact the river would have on a person's travel choice. In addition to 
psychological barriers like this, destination choice models frequently make use of traveler 
characteristics such as their income or their residence location as important explanatory variables. 
Walkability, availability and price of parking, accessibility and other variables can further improve 
the realism of destination choice models. Destination choice models can also incorporate effects 
such as spatial autocorrelation that simply cannot be incorporated in gravity models.  

2.2.3 Improved Explanatory Power and Limitations 
While a key advantage offered by destination choice models when compared to the more 
traditional gravity model is their ability to consider additional factors, at the same time it is also 
important to recognize destination choice models in practice today still struggle to explain the 
spatial distribution of personal travel. This is due in large measure to the importance of 
unobserved attributes such as the price and quality of goods and services provided at 
destinations. 

It is surprisingly challenging to assess the state-of-the-practice in terms of how well (or poorly) 
gravity models perform and destination choice models outperform them for several reasons. First, 
from the early years of travel modeling it became frequent practice to only evaluate trip distribution 
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models on the basis of how well they reproduce the observed trip length frequency distribution, 
rather than the actual observed OD patterns. While this is understandable at some level, given 
the limited observed OD data available at the time, it has led to the unfortunate situation that very 
few agencies or consultants developing distribution models even check or report a true goodness-
of-fit statistic for spatial distribution models.  

Moreover, there is a further technical difficulty that makes it difficult to compare spatial goodness-
of-fit statistics across models. The most common spatial goodness-of-fit statistics such as 
pseudo-r-squared (or rho-squared) or squared error measures, all are dependent on the 
number/size of zones used. If the whole region is considered as a single zone, any model can 
perfectly predict the destination zone of internal trips. If the whole region is only represented by 
two zones, any model should get at least half of the destinations correct. The more zones used 
to represent the modeled region, the lower the goodness-of-fit measure should be expected. 
However, this is misleading as a model with more zones may actually be much better at capturing 
spatial patterns than one with less. This can be verified by comparing the goodness-of-fit of two 
models of the same region using two different zone structures in which the more detailed one 
nests within the less. If the goodness-of-fit is calculated for each model using its own zone system, 
the more aggregate model may well have the higher goodness-of-fit statistic, but if both models 
are compared using a goodness-of-fit statistic based on the more aggregate zone system, very 
likely the more disaggregate model will demonstrate the better goodness-of-fit.  

For both these reasons it is somewhat difficult to make generalizations about the accuracy of 
spatial distribution models. However, some very rough generalizations can still be made based 
on the limited professional experience of the authors, with the caveat that they are dependent on 
the resolution of zone systems (so models with more zones should expect lower statistics than 
those with fewer). Assessing goodness-of-fit with rho-squared against the null model of observed 
household survey data, gravity models commonly explain only between ten and twenty percent 
of the observed variation in destinations; conventional destination choice models (without 
substantial fixed factors) often increase the explanatory power over gravity models of the same 
region by fifty to a hundred percent so they explain fifteen to forty percent of the observed variation 
in destinations. The struggle of destination choice models to explain observed OD patterns is still 
not surprising, given the importance of unobserved attributes such as the price and quality of 
goods and services provided at destinations. In many cases, a conventional destination choice 
model may have double the explanatory power of a gravity model, but, in the end, still explain 
less than half of the variation in the observed patterns. 

2.2.4 Big Data and Destination Choice Modeling  
Very recently, new data-driven modeling frameworks have allowed even more accurate 
representations of OD travel patterns. These approaches leverage new sources of passively 
collected, large sample location data (from mobile and in-vehicle devices). In one approach, 
conventional destination choice models have been incorporated in a larger pivot-point model 
framework. In another approach, this new information has been incorporated more directly within 
destination choice models using a constant rich, fixed factor utility specification. This new 
generation of destination choice models hold great promise for further improving the ability of 
models to represent and predict travel patterns. 
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2.3 Overview of this Guide 
This guidebook is oriented to the travel modeling practitioner who wishes to develop a solid 
understanding of destination choice models. Following this introductory section, the remainder of 
the guide is organized in six sections:  

 Data Sources for Destination Choice 

 Destination Choice Set Formation 

 Destination Choice Model Specification 

 Destination Choice Model Estimation  

 Destination Choice Model Implementation 

 Destination Choice Model Calibration and Validation 

Further theoretical discussions regarding destination choice modeling can be found in the 
appendices. 
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3.0 Data Sources 
While it is possible to represent the selection of trip destinations more rigorously, destination 
choice models tend to require more data and higher fidelity data than traditional gravity models. 
Two types of data that are relevant for destination choice models: observed choice data and 
explanatory data. Observed choice data describe origin-destination flows that have been 
observed in a survey, by counting, or by passive data collection. Explanatory data, on the other 
hand, refer to input data that describe either destinations or characteristics of the traveler who 
chooses the destination. 

3.1 Observed Choice Data 
Observed choice data describe actual chosen origin-destination pairs. At minimum, these data 
provide a tally of observed trips at the level of zone-to-zone, origin-destination pairs. In some 
cases, to support more complex model specifications, surveys provide entire tours or trip-chains 
together with information on the traveler and specifics of the destination, such as an observation 
of a high-income worker going from home to work, from work to a restaurant and the restaurant 
back home. Often, such data are stratified by trip purpose, mode, time of day and various socio-
demographic characteristics of the traveler.  

For more information on observed choice data, the reader may want to refer to another recent 
TMIP publication: Bridging Data Gaps: A TMIP Series on Understanding Origin-Destination Data. 
This four-volume series provides a valuable resource with more in-depth information on the 
various different sources of observed choice or OD data and issues related to their collection, 
processing, and use for modeling and analysis.  

3.1.1 Household Travel Surveys 
Up until now the most common source for observed choice data have been household travel 
surveys. Origins and destinations are collected at the address or latitude-longitude level and 
translated into TAZ for data analysis and modeling. Long-distance data commonly are provided 
at a coarser geography like counties or metropolitan areas. Surveys have the benefit that they 
tend to provide rich information on the socio-demographic characteristics of the traveler as well 
as the purpose of the trip, mode of travel, and other contextual information. In addition to individual 
trips, surveys also commonly allow the analyst to identify entire tours. However, due to cost and 
respondent burden, rich survey data only covers a small sample of all OD pairs constituting OD 
space.  

In larger regions, the sample size for a regional household travel survey is often between 0.4% to 
0.6% of the region’s households (e.g., 4,000 to 6,000 households for a region with 1 million 
households). Smaller regions are more likely to have modestly higher sample sizes as a 
percentage of the region’s households. Participating households often report all travel for an 
assigned period, typically one weekday—usually in the spring or the fall to avoid the “atypical” 
summer and winter vacation/holiday periods. More recently, surveys conducted by smartphone 
have typically been  

By way of example, a survey using traditional methods that obtains 5,000 households, with 2.5 
people per household and 4 trips per person-day, will result in around 50,000 individual trip 
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records. A typical MPO might have 2,000 traffic analysis zones (TAZs) in its travel demand model, 
producing 2,000 x 2,000, or 4 million possible origin-destination (OD) pairs. So, even if every 
survey trip was between a new OD pair, the survey would only cover 50,000/4,000,000, or 1.25% 
of all possible OD pairs. In reality, many MPOs include more than 2,000 TAZs and many survey 
trips are between the same OD pairs. As a result, the OD data from a household travel survey 
may often cover well below 1% of all possible OD pairs in a region. 

 

Figure 1. Cumulative number of unique trips as a multiple of Day 1 trips, based on SANDAG smartphone-based 
GPS travel survey data. 

Source: FHWA 

Additional days of data from smartphone surveys can help provide greater coverage to some 
extent, but it is still limited compared to fully passive data collection methods. Smartphone 
surveys, however, provide several other advantages as well. Use of smartphone apps for data 
collection improves accuracy of trip-end locations and time, provides data on routes used, 
increases willingness of younger travelers to participate, reduces respondent burden, and 
decreases trip under-reporting and other recall related problems. However, survey collection by 
smartphone must often be augmented by other response options such as online or phone since 
roughly two in ten adults (and a higher percentage of seniors) do not own smartphones. 
Smartphone apps can also be limited by different smartphone features, operating systems, and 
marketplaces.  
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Figure 2. Trip rates by age from Raleigh-Durham, NC, showing under-reporting in traditional surveys. 

       Source: FHWA 

3.1.2 U.S. Census Bureau Data 
The U.S. Census bureau provides two data products with information on observed choice data, 
but only for work commute trips. These products are often used as supplementary or secondary 
data sources used for validating and sometimes calibrating, but not estimating, destination choice 
models.  
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Figure 3. Comparison of work trip-length frequencies from LEHD and CTPP (source: Green et al., 2007). 

      

The Census Transportation Planning Products Program (CTPP) collects data on work trips as 
part of the Census’ American Communities Survey (ACS). CTPP is co-sponsored and hosted by 
the American Association of State Highway and Transportation Officials (AASHTO) in cooperation 
with the states. The dataset includes OD flows for various geographies from states and counties 
to block groups (or Census TAZs although these are being discontinued). The dataset also 
provides information on commuters like age, household structure, and income as well as the time 
of their commute and usual mode. Every year the ACS samples slightly over 1.5% of households, 
hence five-year ACS estimates are based on roughly a 7-8% sample. This number is much larger 
than any household survey, but still a modest sample compared the universe of administrative 
records used for the Census’s LEHD data product.  
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Figure 4. Screenshot of LEHD OnTheMap website visualization. 

           Source: US Census Bureau 

The Longitudinal Employer-Household Dynamics (LEHD) is a joint project of the U.S. Census 
Bureau, the U.S. Bureau of Labor Statistics, and state employment security agencies, published 
and hosted by the Census Bureau. LEHD additionally offers the LEHD Origin-Destination 
Employment Statistics (LODES). These data provide commuter flows at the resolution of census 
blocks. Flow data are available segmented by three age groups, three income groups, and 
multiple industrial classifications.  

The program uses administrative records from payroll taxes used for unemployment insurance 
and the quarterly census of employment and wages. Thus, the data is far more complete than 
any other dataset on commute flows. However, the data does not cover all workers; sole 
proprietors, railroad workers, and other special groups not covered by unemployment insurance 
are not included in the data. These exempt groups account from 5 to 20% of all workers in different 
regions and may be one reason for the under-representation of short commute trips in the LEHD 
data. The data also suffers from the “headquartering problem” where employers with multiple 
work sites may report all workers in one location. While the data is processed in attempt to 
address this, current methods have not been able to fully address this issue. This may also 
partially account for the under-estimation of short commute trips.  

A process of disclosure proofing is also applied in which noise is intentionally introduced in the 
data at low levels of geography in order to protect the confidentiality of workers and firms. While 
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the method is believed to protect data integrity at higher, more aggregate levels of geography, it 
introduces some error that can be difficult to correct for in some cases.  

3.1.3 Passively Collected Location Data 
In contrast to survey data, passively collected data do not ask people about their travel behavior 
explicitly but rather collect data passively through cellular phones, GPS devices, or other location-
revealing technologies. While these data in themselves do not provide traveler characteristics or 
contextual information on trips (e.g., mode, purpose), these data have proven to be powerful 
because of their magnitude of coverage. 

 

Figure 5. Passively collected truck GPS flows to/from Florida. 

                Source: ATRI 

While traditional surveys often cover roughly one percent of the population for one to seven days, 
it is not uncommon for passively collected data to cover ten percent of the population for a month 
or more. These larger samples result in more comprehensive coverage of origin-destination pairs. 
Whereas surveys often provide observations on 1% or less of OD pairs, passive data often 
provides observations on a quarter or a third of possible OD pairs. In a Tennessee household 
travel survey, for example, the survey covered over 10,000 households generating approximately 
40,000 origin-destination pairs in the statewide zone system, which is only 0.3 percent of all 
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possible origin-destination zone pairs in Tennessee. Cell phone data, on the other hand, was able 
to capture 26 percent of all origin-destination zone pairs. Many origin-destination pairs particularly 
between rural areas have no actual travel to observe. Hence, it is believed that cell phone data 
was able to capture the majority of origin-destination pairs that are actually traveled. The almost 
complete coverage has important benefits for the estimation of destination choice models. 

 

Figure 6. Systematic age bias in passive app data in Columbus, OH. 

       Source: FHWA 

The two main disadvantages of passive OD data are the lack of choice-maker/traveler 
characteristics and other contextual information and systematic bias in the way the convenience 
sample represents the actual universe of all travel. The lack of mode and purpose information are 
particularly problematic for most modeling. Also, although passive data provides large sample 
data, often including millions of trips, it is still only a sample, and because it is not a controlled 
random sample, it is not representative of all travelers or trips. Commercially available datasets 
include only travelers with certain devices, carriers, and/or apps installed. Seniors and low-income 
populations are known to be under-represented in many datasets. Moreover, short-distance trips 
or short-duration activities are often under-represented in the data because they require more 
frequent observations of position which are not always available due to several factors including 
battery management, device and app usage. Passive OD data must be expanded to correct for 
these biases in order to properly and accurately represent OD patterns for destination choice 
modeling, and due to the lack of explanatory variables, the data must be used together with other 
datasets to support destination choice model estimation.  

3.1.4 Traffic Counts 
Traffic counts also provide valuable, albeit incomplete, information on origin-destination flows. 
Traffic counts commonly are provided by the local transportation engineer or Metropolitan 
Planning Organization. For instance, traffic counts along screenlines can provide information on 
aggregate district-to-district flows and are commonly used for this reason in destination choice 
model validation.  
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Traffic counts can also be used directly in model estimation to estimate model parameters 
simultaneously with survey data. Traffic counts may be used to impute origin-destination flows. In 
origin-destination matrix estimation (ODME), sometimes also called synthetic matrix estimation 
(SME), a trip matrix is synthesized that matches traffic count data. 

ODME is a method to create a synthetic trip tables that resembles count data after assignment. 
(Willumsen, 1981) Such models often suffer from unexpectedly large differences in outcomes due 
to small changes in inputs (Aerde, 2003) as well as their inability to reconcile inconsistent or 
erroneous traffic counts. (Hazelton, 2003) As traffic counts do not distinguish trip purposes or user 
classes, ODME cannot provide trip tables by purpose or trip tables that distinguish travelers by 
socio-economic characteristics. Moreover, proper and responsible application of ODME reflects 
the importance of the initial seed distribution of OD patterns required by ODME and limits its 
distortion either through the formulation of the objective function for the optimization or the 
imposition of constraints. While in the past trip matrices generated with ODME flows were often 
only used if no other origin-destination data sources are available, the availability of good seed 
OD patterns from passive big data may now present a better foundation for ODME. 

3.1.5 Other Sources of OD Data 
The foregoing data sources are most commonly used for the estimation, calibration, and validation 
of destination choice models. However, OD data can occasionally also be provided by other data 
sources and used to support destination choice modeling in some contexts. Special surveys such 
as external cordon line surveys, visitor surveys, on-board transit ridership surveys, and roadside 
intercept surveys all can provide OD information that can be particularly valuable for special 
market segments in some areas. Establishment surveys can also provide valuable information 
although they typically only capture revealed choices of destinations without information on trips 
origins.  
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3.1.6 Visualization 
While OD data does not necessarily have to be visualized to support destination choice model 
estimation, visualizations can be helpful in cleaning and validating the data itself as well as 
calibrating and validating models based on it. While matrices can convey OD patterns for the 
technically or numerically oriented, visualizations are often helpful.  

 

Figure 7. Desire lines for Northeast Indiana. 
             Source: FHWA 
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Desire lines are perhaps the most common visualizations of OD patterns, particularly at more 
aggregate levels; however, they are still often not easy to understand for those who are not 
familiar with them. Chord diagrams are another helpful way for visualizing OD patterns which 
have been becoming more popular recently.  

 

Figure 8. Chord diagram illustrating OD patterns in Northeast Indiana. 

     Source: FHWA 

3.2 Explanatory Data  
In addition to observed choice data, destination choice models also need information on potential 
destinations, such as retail facilities, parks or hotels, and the corresponding impedance to or 
difficulty of getting there. Similarly, information about the travelers, such as age, sex or income, 
are relevant when estimating destination choice models. These data often are called explanatory 
data. 

3.2.1 Impedance Measures: Travel Time and Cost Data 
Destination choice model requires information on the impedances or difficulty getting between 
zones. The impedance is commonly calculated as travel time, travel distance, or travel costs. A 
weighted combination of these three variables called generalized cost is also often used as 
impedance in models. The relative weight on time and cost imply a value of time (VOT). Matrices 
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of shortest paths based on one of these impedance variables are a key input to destination choice 
models. In many cases, the variable used for finding shortest paths is the same as used in the 
destination choice model, but in some cases, a “skimmed” variable is used in the model, for 
instance, the travel time along the least generalized cost path.  

Travel time, itself, is often comprised of several components. Although in-vehicle travel time is 
often dominant, terminal times for automobile trips and access, wait, and transfer times for transit 
are often important. Especially for transit impedances, these variables are often weighted up in 
relation to in-vehicle time.  

Travel costs may include roadway tolls, parking, fuel costs, maintenance costs, and/or transit fare.  

Trip distance is usually measured along the least generalized cost path (rather than point-to-
point). In some cases, distance on higher and lower-class facilities is weighted differently to 
account for limited knowledge of lower class facilities or driver preference for design 
characteristics (e.g., wider lanes, faster speeds) of higher class facilities.  

Mode	Choice	Logsums	
The logsum or expected disutility of a mode choice model is sometimes also used as an 
impedance variable in destination choice models. This is done in order to make the models 
sensitive to impedances across several modes (as an alternative to weighted average 
impedances across modes or other “composite impedance” mechanisms). When this is done, 
under certain circumstances (which rarely actually obtain) the result is equivalent to a nested logit 
model of destination and mode choice. However, because mode choice is usually modeled after 
and conditional on destination choice when the data does not support this (Newman and 
Bernardin, 2010), the nesting parameter or coefficient on the mode choice logsum variable in the 
destination choice utility often must be asserted and constrained, and a second impedance 
variable such as distance used in order to produce a model that can replicate trip length 
frequencies. Given both the collinearity of these variables and since distance is often a component 
of the mode choice logsum, this is a potentially problematic utility specification that may result in 
unrealistic model sensitivity and responses to changes in travel time.  

Transformations	and	Other	Non‐linear	Techniques	
Logarithmic and sometimes other transformations (polynomial expansions) are often used to 
transform travel time, distance or generalized cost as an impedance variable. Using the log puts 
more emphasis on differences between destinations that are close. For example, if one grocery 
store is 6 minutes away and another one is 10 minutes away, the difference of 4 minutes may be 
important for the trip maker. On the other hand, a grocery store that is 30 minutes away is not 
perceived as being as much further away than another one that is 26 minutes away. Even though, 
the difference is the same, a difference of 4 minutes is perceived to be more relevant for short-
distance trips than for longer distance trips. The log-transformation nicely accounts for this 
perception. 

Spline variables are also sometimes used in which different (decreasing) marginal impedance is 
applied to increasing ranges of an impedance variable. While this captures and can also reflect 
the same effect of decreasing sensitivity to impedance at greater impedances, the discontinuities 
it introduces in the utility and log-likelihood functions are reason to prefer log-transformations.  
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Figure 9. Real-time travel time data. 

     Source: Indianapolis Traffic Report 

Online	Sources	for	Impedances	
Most commonly, impedances are skimmed from the network of a travel demand model. In some 
cases, however, such data are not available from the model, particularly when the model is still 
under development. Alternatively, these data may be acquired from data vendors and/or online 
(although users should be careful to observed terms of use for online resources). More commonly, 
online data sources are used for limited validation of travel times from model networks.  

3.2.2 Land Use, Employment, and Demographic Data 
Candidate destination zones are most commonly characterized using land use or socio-economic 
data such as the population and employment of the zones. Employment often is distinguished by 
industry sector like manufacturing, retail, and office. For example, shopping trips are mostly 
attracted by retail employment, while trips for visiting friends and family most frequently are 
attracted by population. An important limitation of these data is that categories tend to be relatively 
broad, part of necessity given the limited ability to forecast land use by detailed categories. Retail 
employment, for example, includes destinations as diverse as bakeries and car dealers, two very 
different retail facilities that in reality would attract very different trips. Further, is has been shown 
that larger facilities tend to attract more trips per employees than smaller facilities. Nevertheless, 
zonal land use data are the most common data source for modeling trip destinations. 

Zonal population data usually are derived from Census Data that are provided at the block group 
level. Population forecasts for future years are either developed manually (e.g., scenario planning) 
or forecasted using land use models. 

Zonal employment data commonly are developed from business registration data like the 
Quarterly Census of Employment and Wages (QCEW) or LODES. Clean-ups are necessary, 
because firms are commonly registered at their main site (or headquarters), and different 
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branches are not coded explicitly. Alternatively, commercial databases like InfoUSA, Dun & 
Bradstreet, or Woods & Poole have been used, but suffer from many similar problems as public 
employment registries. Using both a public and a proprietary dataset together, however, has been 
shown to result in much more complete and accurate estimate of employment since their errors 
are not highly correlated.  

3.2.3 Accessibility 
Accessibilities describe the ease of travel between a zone to all other destination zones. Rather 
than an additional independent source of data, they are generally computed by combining travel 
time/impedance data and employment/land use or POI data. Accessibilities can be used in the 
utility functions of destination choice models to capture many important phenomena including 
spatial auto-correlation, trip-chaining efficiencies, and differential willingness-to-travel.  

A special form of accessibilities is destination-mode choice logsums that combine travel times by 
various modes across destinations. Other multi-modal accessibilities can be produced by 
weighting mode-specific impedances by the share they are used by a particular user class, which 
allows to better represent the relevance of transit access for low-income households. 

 

Figure 10. Transit accessibility to Hospitals in Durham, NC. 

Source: FHWA 
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3.2.4 Passively-Collected Point-of-Interest (POI) Data 
While land use data usually are based on census and business registration data, passively-
collected data are gathered from online data sources, such as Cuebiq, Facebook, Foursquare, 
Google or Twitter. Often, these data are called Location-Based/Social Network (LBSN) data. 
These companies provide Application Programming Interfaces (API) to download the location, 
type and size of various trip attractors. Trip attractors include, for example: 

 Restaurants and Bars 

 Hotels 

 Parks 

 Ski Resorts 

 Outdoor 

 Medical facilities 

 Grocery Stores 

The availability of categories depends on the LBSN site. Most LBSN websites allow downloading 
a small sample for free, while larger samples require a fee. 



How‐To: Model Destination Choice  

April 2018  21  

 

Original Map: © 2018 Google®. 

Figure 11. Car charging station POI data. 

3.2.5 Choice-Maker Data 
Choice makers often are stratified in different user groups. This classification may be done by 
income, household size, number of workers, number of cars, car sufficiency (usually defined as 
cars per worker), age of head of household, or any combination thereof. In essentially all cases, 
trip purposes further stratify destination choice modeling. 

In traditional aggregate trip-based models, the stratification in destination choice is constrained 
by the stratification defined in trip generation. Activity-based models, on the other hand, commonly 
work with synthetic populations, and therefore, allow defining any stratification of user groups that 
works best in destination choice.  

For estimation of destination choice models, choice-maker data generally is part of the observed 
choice data. Choice-maker data must be available from other sources for model applications but 
is generally available from Census data sources.  
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4.0 Destination Choice Set Formation 
Destination choice models often take the form of multinomial logit (MNL) discrete choice models. 
Discrete choice models predict the probability that a choice-maker will choose a particular 
alternative from among a set of discrete alternatives. This list of alternatives is known as a choice 
set. Choice set formation or definition is a critical step in the specification, estimation, and 
application of all discrete choice models, including destination choice. The misspecification of 
choice sets can have adverse effects on parameter estimates and resultant computations of 
predicted choice probabilities. (Thill, 1992) The accurate definition of the destination choice set 
has been an issue of much interest to the profession and a variety of approaches have been 
developed and adopted in research and practice. With many travel demand model systems 
comprising thousands of zones, destination choice sets can prove to be extremely large, posing 
challenges for computational efficiency. On the one hand, methodological and computational 
advances now allow the use of the universe of locations (all zones) as the destination choice set. 
On the other hand, it has been speculated that the use of universal set of destinations as the 
choice set may compromise the behavioral representativeness of destination choice models such 
that the impedance measure captures not only willingness-to-travel but also the perception or 
consideration of alternatives, which could potentially bias the model’s sensitivity. The analyst 
therefore needs to consider the pros and cons of alternative approaches when defining 
destination choice sets. 

4.1 Using the Universe of Alternatives 
Methodological and computational advances make it feasible to estimate discrete choice models 
with thousands of alternatives. In general, some consider it advisable to use the universe of 
destination choices when applying destination choice models in forecasting mode. For model 
estimation, sampling remains a popular approach for choice set formation, but the ability to use 
the universe of alternatives as the estimation choice set has proven increasingly appealing.  

Using the entire universe of alternatives eliminates pitfalls associated with sampling approaches. 
Sampling approaches involve the use of Monte Carlo drawing procedures, thus rendering the 
formation of the choice set dependent on and susceptible to the choice set sampling process. In 
turn, model parameters and standard errors are also susceptible to the choice set sampling 
process. The gains from a statistical perspective should be weighed against the behavioral 
representativeness of such an approach when making decisions regarding the specification and 
estimation of destination choice models. 

Theoretical behavioral basis for the use of the universe of alternatives together with psychological 
boundary terms and/or accessibility variables is grounded in both theory and research. These 
studies show how the availability/perception of alternatives in the choice set can be reflected 
implicitly by terms in the systematic utility function. (Cascetta and Papola, 2001) Psychological 
boundary terms and/or accessibility variables may play this role in destination choice models. 
(Fotheringham, 1991). 

4.2 Sampling Approaches 
In some cases, the multinomial logit (MNL) formulation for discrete models of destination choice 
makes it feasible to adopt sampling approaches without adversely affecting properties of 
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parameter estimates. Generalized extreme value (GEV) based discrete choice models possess 
the desirable feature of accommodating sampling of alternatives without any deleterious effects 
due to their Independence of Irrelevant Alternatives (IIA) property. However, many destination 
choice models are not strictly GEV and do not observe the IIA property due to the use of attraction 
constraints and/or accessibility variables and in this case, sampling of alternatives can lead to 
biased parameters. Even so, considering that individuals are unlikely to consider thousands of 
alternatives when making location choices, it is appealing to adopt sampling approaches that may 
be more behaviorally realistic (from the standpoint that individuals can possibly gather and 
process information only for a subset of alternatives when making location decisions). In sampling 
approaches, samples of 30, 50, or 100 locations are commonly chosen from the universe of 
(feasible) choices – together with the chosen alternative. Multinomial logit models of destination 
choice are estimated on these sampled subsets of destination choices. 

Two sampling approaches are commonly employed: random sampling and importance sampling. 
In random sampling approaches, the analyst selects a random sample of locations from the 
universe of (feasible) choices to constitute the consideration choice set. In this scheme, each 
alternative in the universe of (feasible) choices has an equal probability of being drawn into the 
consideration choice set. 

In importance sampling approaches, the choice set composition method recognizes that some 
destinations are likely to be considered more highly (and thus considered more important or 
desirable) than others. An importance function is defined for each zone based on size and 
distance variables (its probability in a gravity model). Using Monte Carlo simulation procedures, a 
number of destinations are sampled with replacement from the importance probability distribution. 
Appropriate sampling correction factors then need to be applied in estimation to retain desirable 
properties of the maximum likelihood estimator. 

4.3 Rule-Based Approaches 
Rule-based approaches are largely based on assumptions that the analyst makes about criteria 
that define the inclusion or exclusion of an elemental alternative in a destination choice set. This 
approach to location choice set formation has been used in location choice model estimation for 
the Puget Sound Regional Council activity-based travel demand model. (Bowman et al., 2015) 
When setting rules for destination choice set formation, the following specific criteria should be 
considered. 

4.3.1 Feasibility 
Based on information contained in observed choice data, the analyst may establish feasibility 
criteria for inclusion of an element in a choice set. For example, based on a cumulative trip length 
distribution for shopping trips in a travel survey data set, the analyst may specify a distance 
threshold beyond which shopping locations would be considered infeasible and therefore 
excluded from the ‘feasible’ choice set. For example, Bowman et al. adopted a distance threshold 
equal to 125% of the longest trip distance (for a specific trip purpose) reported in the travel survey 
used for model estimation. While such feasibility criteria are often data-driven, they ignore 
heterogeneity in choice set formation and assume that a one-size-fits-all rule can be applied to 
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the entire population. While a feasibility criterion may appear reasonable in the aggregate, it is 
unlikely to hold true in individual circumstances. 

4.3.2 Awareness 
As mentioned earlier, the universe of possible destinations can be very large. Individuals are not 
realistically able to consider and gather complete information on all possible destinations in the 
region. Given limited information gathering and processing capabilities of humans, and the 
possibility that individuals search until they are satisfied (satisficing rule), it is likely that individuals 
are aware of only a subset of alternatives as possible destinations and evaluate (in detail) only 
those alternatives that comprise the subset. Also, in many choice contexts, individuals may 
deliberately choose to narrow their search to a subset of alternatives, thus leading to the formation 
of an awareness set. It should be noted that awareness criteria can be combined with feasibility 
criteria to form a smaller subset of alternatives that constitute the intersection of these two sets of 
criteria. This smaller subset would then only include those alternatives that the individual 
considers feasible and is able to obtain full information to make an informed choice. In the 
absence of data about alternatives that individuals are aware of, it is difficult to establish robust 
awareness criteria for inclusion of alternatives in a choice set. 

4.3.3 Trip Type – Land Use Compatibility 
In most travel modeling contexts, it is possible to enhance feasibility criteria to consider the 
compatibility between trip type and land use characteristics. For example, one may choose to:  

 exclude zones that have no jobs (employment) as possible work locations; exclude zones 
that have no student (enrollment) as possible school locations;  

 exclude zones that have no retail employment as possible shopping locations;  

 and exclude zones that have no housing stock as possible residential locations.  

All these rules will reduce the size of the consideration choice set in location choice modeling.  

The application of these compatibility rules is equivalent to using size variables in the utility 
equations to control the consideration/feasibility of zones. Thus, even if they are included in a 
choice set, zones that have a ‘zero’ size on a specific variable would be eliminated from 
consideration as a feasible destination for a specific trip type. This criterion may also consider the 
time-of-day at which a trip is being pursued; for example, if a shopping trip is being undertaken 
late at night, then only those destinations where establishments are open and operating at the 
time of the trip/activity (and known to the individual) would be included in the consideration choice 
set. 

4.4 Time-Space Prism Approaches 
Time-space prisms represent activity spaces within which individuals may travel and pursue 
activities. The notion of a time-space prism is derived from the field of time geography (Miller, 
2009) and it has been used extensively in constructing activity-based travel demand model 
systems. The time-space prism constitutes a constrained action space that limits the range of 
destinations that an individual can visit.  
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The time-space prism is often defined by boundaries or anchors that describe places where an 
individual must be present by a certain time (or within a specific narrow time window). These 
spatial-temporal bounds define a prism, and the size of the prism is determined by the separation 
between the spatial-temporal boundaries and the speed of travel.  

 

Figure 12. Space-time prism (Miller and Bridwell, 2009). 

         Source: Miller, 2009 

Based on a knowledge of spatial-temporal constraints, the analyst can identify the feasible 
destination choice set as consisting of all possible locations that can be reached without violating 
a time-space prism constraint. The set of destinations that may be visited depends on the speed 
of travel; if the mode for a trip or tour is known a priori, then the speed of the mode can be used 
to determine prism size. If mode is determined after destination choice, then the set of reachable 
destinations may be identified based on the speed of the fastest available mode or an average 
speed of all feasible modes.  

Care must be exercised in the use of this approach to define destination choice sets. Time-space 
prism constraints can be fuzzy and difficult to define, especially in the absence of specific data 
collected by survey samples about spatial-temporal constraints. For individuals who do not have 
anchor activities (such as work or school), the prism can be extremely large – resulting in a large 
set of possible destinations that may be reached without violating prism constraints. However, it 
is unlikely that individuals will consider such large choice sets when making location decisions. 
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Time-space prism constraints can be further combined with feasibility and/or awareness criteria 
as well as land use availability criteria to identify a final subset of destinations that may be 
considered for a trip. 

4.5 The Modifiable Areal Unit Problem (MAUP) 
The Modifiable Areal Unit Problem (MAUP) arises due to the geographic aggregation of location 
alternatives into zones or similar aggregate spatial units. Locations are often individual point or 
parcel locations (such as an individual home, building, office, or store), and yet choice alternatives 
in spatial location models are represented as zonal aggregations of such locations. The definition 
and delineation of traffic analysis zones (TAZ) affects the magnitudes and properties of model 
parameter estimates.  

MAUP is thus a source of statistical bias that can significantly affect inference regarding the 
influence of various factors on destination choices (Fotheringham, 1991). The MAUP is an issue 
in destination choice modeling even though size terms used as explanatory variables in 
destination choice utility equations enter in log form, thus ensuring that choice probabilities 
change in direct proportion to the change in intensity of activities.  

Because of the MAUP, caution should be exercised in the application of destination choice models 
in forecasting mode. In particular, the zonal configuration used in model estimation should be 
retained in model application as well. Substantial changes to the zone system could invalidate a 
destination choice model and require re-calibration beginning with re-estimation. A destination 
choice model estimated on one zonal configuration should not be applied to a vastly different 
zonal configuration (destination choice models should not be transferred between metropolitan 
areas). While very minor or modest deviations in zonal configuration (e.g., a few zone splits) may 
be acceptable in application mode, such deviations should be kept to a minimum. The choice set 
should therefore consist of TAZ are defined with care, essentially minimizing spatial 
autocorrelation problems through the definition of disaggregate homogeneous zones. 

Within the mathematical formulation of the destination choice model, the implications of the MAUP 
on the size terms can be addressed from two perspectives: either the boundaries of the zones 
can be considered as artificial constructs of the model or the boundaries of the zones can be 
considered as meaningful (if limited) expression of spatial auto-correlation.  

In the first case, zone boundaries are meaningless, then the individual activity opportunities within 
a zone should be considered no more like each other than the opportunities in other zones; this 
is achieved mathematically by fixing the coefficient on the size log term in the utility function 
exactly equal to 1.0. If, on the other hand, the zonal boundaries are meaningful, that implies that 
there is greater similarity among the individual activity opportunities within a zone than there is 
between those activities and others outside the zone. In this case, the coefficient on the size log 
term in the utility function should be constrained to take on a value between 0 and 1, analogous 
to a nested logit model for activities. 

4.6 Disaggregate Representation and Allocation of Activity Locations 
With the adoption of increasingly disaggregate representation of space, the travel demand 
modeling profession is increasingly utilizing fine-grained units of geography to identify locations 
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and destinations. For example, activity locations can be represented as points (on network links) 
or individual parcels. More recently, activity-based models have been adopting the use of 
microanalysis zones (MAZ) as a unit of geography to represent destination and location choices 
at a fine-grained spatial resolution and better capture transit access and egress legs. 

More sophisticated procedures in which synthetic populations generated at an aggregate 
geographic scale are further spatially sub-allocated to the parcel level have also been developed 
(Zhu, 2014). Such procedures employ iterative processes at multiple geographic scales to 
allocate households to individual parcels while controlling for known parcel capacity constraints 
and estimated conditional distributions of household attributes by building type. However, much 
of the detailed information upon which these procedures are based may not be capable of being 
forecast with accuracy.  
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5.0 Destination Choice Model Specification 
The most common specification of destination choice is as a multinomial logit (MNL) model. Singly 
constrained gravity models – which are commonly used in aggregate, trip-based models – can be 
shown to be a special case of a GEV multinomial choice model. More complex formulations are 
universal or mother logit models and do not observe the IIA property, nor are they any form of 
GEV model.  

Typically, zone-based destination choice models will incorporate a utility function that includes 
two categories of explanatory factors: qualitative factors (how good are the choices in a given 
destination zone), and quantitative factors (how many individual choices are in a zone). The usage 
of qualitative explanatory factors is common in virtually all choice models. For destination choice 
models, these commonly include impedance, accessibility, psychological boundaries, and other 
destination qualities, as well as traveler attributes. The quantitative factors, typically labeled as 
size terms or attractions, are an unusual feature of destination choice models, which arise 
because the "alternatives" represented in the model, often TAZs, are not actually the choices, but 
they represent a pool of choices. The actual choice is instead one particular activity point (job, 
store, theatre seat, etc.) within the zone. Due to this distinction, factors that represent the quantity 
(instead of quality) of choices in a zone need to be treated differently in the mathematical 
formulation, being included in log form.  

This section begins by specifying a simple gravity model as a destination choice model and then 
adds various terms to the utility function to develop a rich utility specification. While not all of these 
terms or factors may be relevant in all destination choice contexts, many are widely applicable.  

The following discussion assumes familiarity with the general formulation of MNL models shown 
below for reference, describing the probability (P) of a traveler or type of traveler (h) choosing a 
destination (j) given an origin (i). 

 

Figure 13. Equation. General formulation of MNL models. 

(For those interested in a good introductory text on topic with relevance to travel modeling, see 
Koppelman and Bhat’s Self Instructing Course in Mode Choice Modeling.) The destination choice 
problem is generally presented with reference to an individual decision-maker. However, the 
model is equally applicable to aggregate, zone-based formulations. This section describes the 
specification of the destination choice utility function in general terms. 

5.1 Size Terms/Attractions 
Destination choice models are usually represented with some level of aggregation of the 
alternatives. That is, the "alternatives" or destinations represented in the model, often TAZs, are 
not actually the choices, but they represent a pool of choices. For example, the destination choice 
model may express the choice of a work trip destination as TAZ 123, but in actuality the 
destination is one particular job among however many jobs there are within that TAZ; if there are 
more jobs in the TAZ, there are more actual sub-alternatives to choose within the modeled 
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alternative of TAZ 123. The aggregate choices in many ways are similar to a nested logit model, 
with the aggregations (zones) corresponding to the nests, except we only observe the choice at 
the nest level, not at the elemental alternative level. To incorporate this detail into the utility 
function for the destination choice model, we must provide a representation of the number of 
individual unique alternatives available within the zone.  

In general, when thinking about which variables and parameters are part of the size terms in the 
utility function, the questions to consider is whether the data represents how many opportunities 
there are (if so, it's a size term) or how good (or bad) the opportunities are (in which case, not a 
size term). The exact nature of the quantitative term will generally vary based on the trip purpose 
being modeled. For work trips, it is typical to include measures of employment, either in total or 
by industry type (the latter being preferred if disaggregate employment information for travelers 
is also available by industry type). For non-work purposes, it is typical to include only particular 
relevant industry categories (e.g. retail employment for shopping purposes, restaurant 
employment for meal purposes, etc.) and other socio-economic features of the zones as well (e.g. 
households or population for social purposes). In these cases, the size term is typically a linear 
combination of different types of employment or other variables, for example: 

 

Figure 14. Equation. Linear combination of different types of employment or other variables. 

In gravity models, the relative weights or  parameters are estimated independent of the 
calibration of an impedance function or friction factors. However, this sequential estimation can 

result in biased parameters and sensitivities. Therefore, the  parameters should either be 
asserted on a fundamental theoretical basis or estimated simultaneously with other destination 
choice model parameters.  

The aggregation of alternative destinations in zones has been shown to result to result in 
aggregation bias in model parameters (Ye et al., 2012), but is generally necessary both for 
computational tractability and due to fundamental data limitations.  

The size term always enters the utility function in log form. (See Size Terms in Aggregate Choice 
Models to understand the theory by which this can be derived.) The log formulation is necessary 
so that the choice probability of a destination is directly proportional to the number of opportunities 
at the destination. In other words, if the number of jobs at a destination doubles, all else equal, 
then the choice probability of this destination approximately doubles. If size or attractions were 
the only factor affecting destination choice (i.e., travelers did not care about distance, time, etc.), 
the systematic utility (V) of each destination (j) could be written as follows: 

 

Figure 15. Equation. Systematic utility of each destination. 

A corollary of the size term log specification is that the choice probabilities are invariant with 
respect to the scale of the size term. That is, the choice probabilities remain the same when the 
entire size term is multiplied by an arbitrary factor. For this reason, by convention one of the 
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variables in the size term is given a coefficient value of 1. (Daly, 2918) Doing so is optional in 
model application, but necessary when estimating the model, since otherwise the estimation 
problem is undetermined. 

5.2 Distance/Impedance Terms 
Perhaps the most fundamental terms in the utility function for destination choice models are 
measures of distance, travel time, or more generally, impedance. These terms represent the effort 
required to get to various alternative destinations from a known origin. Impedances commonly 
combine information on travel time, travel cost, and distance by various modes. (See 3.2.1 
Impedance Measures: Travel Time and Cost Data.)  

Incorporating the impedance (t) between origin (i) and destination (j) along with the size term, the 
systematic utility (V) of can be written: 

 

Figure 16. Equation. Systematic utility including impedance and size term. 

where the parameter  is the relative importance of travel impedance (t).  

In this formulation, equivalent to the singly constrained gravity model with an exponential 
impedance function, the utility (and therefore probability) of a destination depends on the 
impedance or spatial separation between the trip origin and the destination, and the size or 
attractions at the destination. This is the simplest representation of destination choice utility.  

Other types of impedance functions can be used, as well. Log transformations of the impedance 
variable are equivalent to the use of a power function impedance function in a gravity model, while 
the use of both the linear and log forms is equivalent to the use of a gamma function. (Daly, 1982)  

 

Figure 17. Equation. Systematic utility with more explanatory variables. 

The coefficient of the impedance variables () can be generic (i.e., the same for all decision-
makers), or it can vary for certain types of travelers (h). For example, it is often found that higher 
income workers tend to be willing to choose work locations that are farther from home than other 
workers, all else equal. This is represented in the utility function by a less negative coefficient on 
distance impedance for high income workers than the distance coefficient used for other workers. 

 

Figure 18. Equation. Systematic utility with more explanatory variables. 

Since trip-maker characteristics are the same for all destinations, the way to represent the effect 
of these variables on destination choice is to interact them with one of the impedance variables 
or by partially or fully segmenting the model. With full segmentation, there are two entirely 
separate utility functions; whereas, with partial segmentation, some terms of the utility are 
common to all choice-makers while others are specific to particular market segments. An example 
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of a partially segmented model is when the worker industry is known, and the size variable becomes 
a function of worker industry. An example of a fully segmented model is to specify different models 
(utility functions), one per household car sufficiency segment, in a trip-based model. 

5.3 Alternative Specific Constants 
Unlike for many other choice models, it is not common to incorporate alternative-specific 
constants for every destination zone. The use of constants results in some convenient 
mathematical properties. Most notably, for MNL models, the other parameters of the model will 
have unbiased estimators even in the presence of non-uniform sampling. Without constants, in 
contrast, parameter estimates may be biased. However, including a complete set of alternative-
specific constants can result in other complications: if the number of zonal alternatives 
approaches or exceeds the number of sampled destination observations, the model parameters 
will be over-determined and model estimation will simply fail.  

To update the original simple gravity specification, constants (c) for each zone or for certain 
groups of zones (or zone pairs) can be added: 

 

Figure 19. Equation. Systematic utility with alternative specific constants. 

The household survey data traditionally used to estimate destination choice models did not 
provide enough observations to support the inclusion of a full set of constants. Instead of 
employing a complete set of constants for every alternative, constants have commonly been used 
for just a partial set of alternatives. For example, the model could include a constant for 
destinations located in Central Business District areas, or for destinations that include a regional 
shopping mall. 

Now, however, the availability of large scale passive OD data sets can support the estimation of 
not only a full set of destination constants but also some OD constants (aggregate district-to-
district interaction terms). The use of constant rich utility specifications is therefore a new 
approach but has the dual advantage of substantially improving destination choice models’ 
goodness-of-fit and resulting in less biased parameter estimates and model sensitivities.  

5.4 Psychological Boundaries 
The utility function may also include disutility factors associated with crossing boundary lines, 
which may represent real geographic features (e.g. rivers, railroads, freeways, ridge lines, 
intervening rural areas) or socio-political boundaries (e.g. state lines, county lines, neighborhood 
boundaries, etc.). These psychological boundaries or barriers terms in the utility functions of 
destination choice models have important theoretical basis in cognitive or behavioral geography 
and are closely and importantly related to Lynch's concepts of Edges and Districts as elements 
of mental maps. The cognitive psychology literature has documented the effect of such 
boundaries in distorting the perception of spatial relationships such as distance. (For a good 
review of cognitive geography, see Mark et al., 1999.)  

Denoting a psychological boundary between origin (i) and destination (j) as b, the systematic utility 
becomes:  
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Figure 20. Equation. Systematic utility with psychological boundaries. 

These terms may be understood as playing an important and implicit role in the 
availability/perception of alternatives in destination choice sets (see Cascetta and Papola, 2001, 
for discussion of how the availability/perception of alternatives in the choice set can be reflected 
implicitly by terms in the systematic utility function). In this sense, these psychological boundary 
terms can be important and serve as a representation of the fuzzy boundaries of travelers' 
mental/cognitive maps which define their destination choice sets. The use of these terms may, 
therefore, complement the use of the universe of destinations as the choice set and perhaps 
complicate other schemes of choice set formation.  

5.5 Agglomeration effects and competing destinations 
In the utility functions described thus far, two destinations that are equidistant from the origin and 
have the same size (number of jobs, for example), will exhibit the same choice probability, all else 
equal. However, one of these destinations may be in a Central Business District, while the other 
may be in a suburb. The CBD destination may be more attractive because it more conveniently 
affords opportunities for conducting other activities, such as going out for lunch, shopping, 
recreation. In essence, part of the attractiveness of a destination lies in the accessibility that it 
provides to other activities. This effect can be introduced in a destination choice model by adding 
accessibility variables. Note that the accessibilities (A) are calculated from each destination zone 
(j) to attractions (S) all other destinations (k): 

 

Figure 21. Equation. Accessibility measurement. 

The impedance term embedded in the accessibility may or may not be the same as the impedance 

term in the upper level of the utility function. It is not unusual, for instance, for ’ to be more 

negative than the upper level decay parameter . 

Conversely, accessibility variables can help to differentiate between destinations that compete. 
An example of competing destinations is retail locations for incidental shopping. The use of 
accessibility variables to capture differential spatial competition among alternatives lead 
Fotheringham to formulate the Competing Destinations model, which was later shown to be a 
special case of a destination choice model and adapted to more general use in this context. (Bhat 
et al., 1998) Both of these effects can be incorporated in destination choice models through the 
careful specification of multiple accessibility variables such as accessibility to complements (AC

j) 
and accessibility to substitutes (AS

j). (Bernardin et al., 2009) 

 

Figure 22. Equation. Systematic utility with accessibility measurement. 
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Figure 23. Agglomeration (trip-chaining) and spatial competition (autocorrelation)  

effects captured by accessibility. 

         Source: FHWA 

5.6 Other Destination Qualities  
Other attributes of the various destinations can also be included in a destination choice model. 
Some examples of such variables sometimes included are  

 Walkability measures 

 Measures of the diversity of land uses 

 Parking costs (or a simple indicator for paid parking) 

 Miles of coastline/lakeshore 

These or other attributes of destinations can also be incorporated in destination choice models in 
a straightforward manner. Where N destination quality variables (x) are incorporated, the 
systematic utility can then be specified: 

 

Figure 24. Equation. Systematic utility with additional travel attributes. 

5.7 Equilibrium Constraints and Shadow Pricing 
It is sometimes desirable to apply a doubly-constrained model, as doing so reflects equilibrium 
conditions between supply and demand. Doubly-constrained means that the sum of predicted 
trips to each destination matches, or is at least proportional to, agreed-upon destination control 
totals. For example, it is desirable that a model that predicts usual school location for university 
students results in as many students selecting a school TAZ as the reported university enrollment 
at the TAZ. Similarly, it is desirable that the prediction of workers at their workplace is proportional 
to the number of jobs at each TAZ. A destination choice model is not guaranteed to be doubly-
constrained; the model may allocate more students to some schools than are enrolled in it, while 
allocating fewer than actual students to the other schools.  
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Figure 25. Equation. Systematic utility with shadow pricing constraints. 

In order to enforce a double or attraction constraint, a special constant may be added to each 
alternative. (Daly, 1982) This constant is, in fact, the lagrangian multiplier corresponding to the 
relaxation of the equilibrium constraint. More commonly, these constants are called shadow 
prices, borrowing the terminology from economics, in which the term denotes as here an 
unobserved (non-monetary) component of cost beyond the observed cost that can be inferred by 
the market’s observed equilibrium. Ideally, these constants should be estimated simultaneously 
with other model parameters. However, this is often computationally challenging and not 
supported by statistical software, therefore, they are typically calculated in an iterative fashion: 

1. Apply the unconstrained model (i.e., model without shadow prices) 

2. Sum the model predictions for each destination, across all origins (i.e., the column sums 
of the origin/destination matrix) 

3. Compare the column sums to the destination control total (school enrollment, jobs, etc.) 

4. Calculate the natural log of the ratio of control destinations over predicted destinations 

5. Add this term to the utility function, apply the model again, and repeat the process until 
the shadow prices converge 

While modifying a singly-constrained model in this fashion is common practice, it is known that 
ignoring constraints when estimating destination choice models can lead to biased estimates. 
There is some danger, therefore, that incorporating shadow prices via model calibration, as 
described above, may not be sufficient to correct for a fundamental model parameter bias. The 
difficulty however lies in that standard logit estimation software cannot estimate models with 
constraints.  

5.8 Intrazonal Dummy Variables 
It is common practice to introduce a special binary indicator (dummy) variable to denote the 
diagonal of the impedance matrix where the origin and destination zones are the same. As 
intrazonal impedances are commonly estimated in a different manner than other, interzonal 
impedances, these terms are often necessary and are frequently adjusted in calibration.  

5.9 Traveler Characteristics 
The observant reader will have noticed that any of the qualitative parameters () have been 
subscripted with h, to denote that they may take on different values for different market segments. 
Automobile availability and income are the most commonly used traveler attributes which are 
used to segment destination choice models. However, other traveler characteristics can be used 
as well, and they can be used as interaction terms rather than for segmentation. The best example 
of this is residential accessibility. Residential accessibility is sometimes interacted with impedance 
on the theoretical basis that when people choose where to live they also choose how much they 
are willing to travel. This theory has been born out in robust parameter estimates for these 
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interaction terms. Given both the strong theory and empirical results, there is some reason to 
prefer this to segmentation by income.  

 

Figure 26. Equation. Systematic utility with income segmentation. 

            Source: FHWA 
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6.0 Destination Choice Model Estimation 
Once observed choices and explanatory variables from data are related by formulating a utility 
function, the challenge becomes estimating the parameters that quantify these relationships or 
how explanatory variables contribute to destination choice probabilities. Rather than a one-time 
effort, this is commonly an iterative process in which alternative specifications of the utility function 
are tested. The parameter estimation process is based in statistical/econometric theory and 
generally relies on maximum likelihood estimation (MLE) techniques. Specialized software or 
custom programming is generally required. Algorithmic approaches to MLE for destination choice 
models generally fall into two general families: gradient-based and metaheuristics. 

6.1 Gradient-Based Approaches 
The traditional approach for choice model parameter estimation is maximum likelihood estimation. 
This method is based on a probabilistic evaluation of the model given the observed 
explanatory/exogenous data, the proposed model structure, and any given set of model 
parameters. Model estimation is the process for finding the set of parameters that maximizes the 
model’s likelihood of the observed choices. In practice it is preferable to maximize the logarithm 
of the likelihood function instead; this transformation does not change the location of the maximum 
parameters, and the resulting calculations are simpler and more numerically stable. 

For regular MNL models that have a strictly linear-in-parameters utility function (i.e., for 
destination choice models with no parameters to estimate embedded inside size or accessibility 
terms or shadow prices), it is well known that the log of the likelihood function is both smooth and 
globally convex. This means that, for any initial guess at the model parameters, a gradient descent 
maximization algorithm will eventually converge to the global optimum. Put more simply, the 
analysis always gets the same result from parameter estimation and it is guaranteed to be correct. 
Moreover, because this kind of model is relatively common and simple to use, there are a variety 
of off-the-shelf computer programs that will be able to handle the parameter estimation efficiently. 

However, destination choice models typically are not simple MNL models with a strictly linear-in-
parameters utility function. Many times, for instance, the size term is parameterized inside its log 
function, which can potentially introduce non-convexity in the overall log likelihood function. This 
non-convexity can be addressed through a variety of techniques (some discussed below) 
although the computational effort typically increases greatly for achieving a reliable globally 
optimal solution for non-convex problems. 

6.2 Metaheuristics and Machine Learning 
While gradient-based methods are efficient for parameter estimation problems where the 
maximum likelihood function can be shown to be globally convex, many destination choice models 
do not meet this criterion. Two common reasons that destination choice models have non-convex 
likelihood functions is because they use accessibility variables in the utility function to reflect the 
jointness or inter-dependence of destination choices due to trip-chaining and/or because they 
include shadow prices or other constants to enforce a market equilibrium or attraction constraint. 
An example of a likelihood function with multiple optima for a destination choice model with an 
accessibility variable is shown in Figure 27. 
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Figure 27. Nonconvex likelihood function of a destination choice model  
with embedded accessibility parameters. 

       Source: FHWA 

The use of gradient-based methods to estimate parameters for models with non-convex likelihood 
functions can result in sub-optimal solutions. For example, if gradient-based methods were used 
to estimate the accessibility parameter for the model with the likelihood function illustrated above, 
assuming the starting parameter value was zero, the algorithm would find the local maxima close 
to zero, not the global maximum close to -2. One alternative that is sometimes proposed, is to 
use gradient-based algorithms with multiple parameter sets for starting points, but this approach 
is both labor and computationally intensive and quickly becomes increasingly complex as the 
number of parameters to be estimated increases. Alternatively, various meta-heuristics for non-
linear optimization and/or machine learning methods can be used for robust parameter estimation 
for models which are liable to multiple optima. Genetic algorithms have been applied for this task 
and more recently other machine learning methods such as boosted decision trees have also 
been reported. 

6.2.1 Genetic Algorithms 
A genetic algorithm begins by generating an initial population or set of solutions, each solution 
being a complete set of parameters. The algorithm then applies each candidate solution, often 
using the ultimate model application code. Another module evaluates the fitness of each solution, 
calculating its log likelihood by comparing the predicted probabilities from the model application 
to the observed data. Once the fitness of all the candidate solutions in the population has been 
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evaluated, the least fit solutions die or are removed from the population, the best solution is cloned 
to start the next generation’s population and the remaining members of the new population are 
created by either mating or randomly recombining two solutions from the parent population 
(whose probability of reproducing is a function of their fitness) or by mutating a single solution 
from the parent population (again, whose probability of being selected for mutation is a function 
of its fitness). The process iterates until no further progress can be made and a maximum 
likelihood solution is produced. 

The genetic programming approach has significant advantages and disadvantages compared to 
traditional analytic gradient-based methods. The key disadvantage is its computational intensity. 
It is computational expensive and take significantly long time to estimate model parameters. This 
is clearly a significant impediment to its widespread use. Better parallel processing may be able 
to significantly reduce the run time. 

Despite the run time, the genetic programming approach has several attractive advantages over 
traditional estimation methods. The method is robust to multiple optima which are possible for 
constrained or joint/conditional models. It obviates the need for sampling of alternatives common 
in destination choice model estimation, simplifying the estimation and improving the statistical 
efficiency of the estimator, making better use of limited survey data or full use of large passive 
datasets. It allows benefits from the use of inequality constraints on parameters which can be 
used to enforce that a parameter has the logical sign. It allows for otherwise non-linear-in-
parameters utility specifications, such as the estimation of embedded distance decay parameters 
in accessibility terms important for controlling for spatial autocorrelation and trip-chaining effects. 
It also greatly reduces the opportunity for inconsistencies between estimation and ultimate 
application of the model for forecasting when the application code is used in estimation. 
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7.0 Destination Choice Model Implementation 
Destination choice models can be implemented in various ways in different travel modeling 
frameworks. They can be applied disaggregately in activity-based models using Monte Carlo 
simulation or in aggregate trip-based models using matrices. In both contexts, there are important 
issues related to how destination choice models are integrated with the larger model system. Key 
issues include how various destination choices are related to each other, how choices of 
destination and mode are related to each other, and how the larger model system achieves an 
equilibrium between travel demand and supply, commonly through iterative feedback loops. 
Destination choice models can also be implemented in an incremental or pivoting framework. 

7.1 Aggregate vs Disaggregate 
Destination choice models can be applied disaggregately in activity-based models using Monte 
Carlo simulation or aggregately in trip-based models using matrices. In an aggregate model the 
destination choice selection probabilities are applied to all trips produced in a given TAZ at once, 
while in a disaggregate framework, a destination is predicted for individual trips, one at a time. 

7.1.1 Aggregate Applications 
The application of a destination choice model in an aggregate framework, such as in a trip-based 
model, follows the same practice as commonly used for mode choice models. Destination 
selection probabilities are calculated for each trip market segment, and then they are multiplied 
by the total trip productions predicted for the market segment. The selection probabilities are 
treated as “shares”, to be used in allocating the trips produced in an origin zone to all destination 
zones in proportion to the selection probabilities.  

In an aggregate framework, care must be taken to use a consistent trip segmentation from trip 
generation through mode choice, particularly when mode choice logsums are used in the 
destination choice utility. A good practice is to use the same trip segmentation in the destination 
and mode choice models, and to use a trip generation segmentation that can be easily collapsed 
into the destination choice segments. 

Given that most regional models have thousands of TAZs, the selection probabilities can be very 
small for the majority of TAZs. It is important to use adequate floating-point precision when 
applying these models to avoid introducing rounding and/or truncation errors. Aggregate 
applications of destination choice models can sometimes take advantage of optimized routines in 
travel modeling software packages for applying gravity models by reformulating the destination 
choice model as a gravity model with k factors where the k factor is calculated as the residual of 
the utility function beyond the impedance and size terms. 

Doubly-constraining a destination choice model in an aggregate framework is typically 
accomplished by the application of iterative-proportional fitting (IPF), with target destination 
controls that are proportional to the model attractions 

7.1.2 Disaggregate Applications 
The application of destination choice models in a disaggregate framework, such as an activity-
based model, requires applying Monte Carlo simulation to select a single TAZ as the trip or tour 
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destination, given selection probabilities. The use of Monte Carlo simulation is common in the 
implementation of other probabilistic models, such as those used to predict mode choice, auto 
ownership or tour frequency in activity-based models. 

In a disaggregate model the mode choice logsums used in the destination choice models are 
oftentimes referred to as “representative” logsums, because they omit certain decision-maker 
characteristics, in the interest of maintaining model run times within practical limits. For example, 
while the model system may use distributed values of time, the mode choice logsums may be 
computed only for a small number of value of time classes. Similarly, representative logsums may 
be used when the mode choice model includes explanatory variables such as age or household 
composition. 

It is also common in a disaggregate framework to use a sample of alternatives, rather than the 
entire destination choice set, when applying the model. This strategy is also used to control model 
run times, since resolving the destination choice probabilities over thousands of alternatives can 
be computationally onerous, although it is becoming less and less so. 

Doubly-constraining a destination choice model in a disaggregate framework is typically 
accomplished with shadow prices. Shadow prices need to be calculated iteratively, since there is 
no exact a priori formula that will result in a doubly-constrained model. 

7.2 System Integration Issues 
Key issues include how various destination choices are related to each other, how choices of 
destination and mode are related to each other, and how the larger model system achieves an 
equilibrium between travel demand and supply, commonly through iterative feedback loops. 

7.2.1 Inter-related Destination Choices 
In the context of daily travel, the choice of many destinations are made jointly or conditioned on 
the choice of other destinations. For example, the choice of where to get dinner on the way to 
home from university classes in the evening is strongly conditioned on not only the home location 
of the traveler but also their school location choice. Other destination choices are conditioned on 
other individual’s destination choices. For instance, when two friends decide to meet for lunch in 
the middle of their work days, the lunch destination is conditioned on both travelers’ work 
locations. Various frameworks can and have been used to reflect the conditioning or jointness of 
destination choices. These include the use of sequences or hierarchies of destination choices, 
the use of “rubber-banding” to calculate travel impedance in terms of diversion or marginal travel 
cost, and the use of accessibility variables to capture agglomeration or convenience effects of 
destinations. 

In traditional four-step travel models, all destination choices are assumed to be independent. This 
is reflected in the fact that gravity or destination choice models in this context are run in parallel 
and independently of each other. Both activity-based, hybrid, and advanced trip-based 
frameworks have developed different approaches to relaxing this assumption of independence. 
Each of these approaches in presented in summary below. 
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The	Activity‐Based	Simulation	Approach	
Although there is variation in the details of various activity-based simulation approaches, they 
generally all share some common characteristics, owing to their common descent from the 
approach developed for early activity-based models in Portland and San Francisco. The first is 
that long-term choices of mandatory activity locations such as work and school are modeled first 
and subsequent daily destination choices are conditioned on these. The second is that each tour 
is assumed to have a primary destination (which may be work or school or a location such as a 
retail store chosen that day), and intermediate stops locations are iteratively chosen by 
sequentially adding stops on the outbound or inbound half-tour on the way to or from the primary 
destination based on the marginal cost of adding that stop to the tour. This approach of using 
marginal travel costs for intermediate stop location choices is sometimes referred to as rubber-
banding and is illustrated in Figure 28.  

 

Figure 28. Sequential choice of intermediate stop locations with rubber-banding. 

            Source: FHWA 

Two key ways that various activity-based model formulations differ is in their approach to choice 
set formation and the use of accessibility variables in the utility function (whether logsums of other 
destination choices or proxies thereof). The disaggregate simulation framework of activity-based 
models conceptually allows the explicit representation of space time constraints to define the 
feasible choice set. However, these constraints can be binding or fuzzy to various degrees and 
computationally challenging to implement. Therefore, they are sometimes represented through 
the use of simpler, more easily computed proxy variables, for instance, giving some indication of 
“time pressure” based on general information about the daily activity pattern and/or tour. Some 
destination choice models (generally non-mandatory tour primary destination choices) include 
accessibility variables to indicate the convenience of the primary destination to potential 
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intermediate or secondary stop locations, but precise utility formulations vary considerably, for 
instance whether accessibility variables are calculated for specific individuals, etc.  

Through these various techniques, the activity-based approach can incorporate the jointness of 
destination choices, particularly for destinations on the same tour, including space-time 
constraints to with some degree of explicitness. Moreover, the approach has some behavioral 
plausibility in terms of schedule formation, particularly for mandatory tours. However, the 
assumption that all tours have a “primary” destination which anchors the tours and on which the 
other location choices are conditional (but not necessarily the converse) is a strong assumption 
that is not necessarily supported for many non-mandatory tours. For this reason, there is some 
variation in the heuristics used to identify a tour’s primary destination, some of which place more 
importance on duration of activity, others on distance from the home/work anchor, and others on 
an asserted hierarchy of activity purposes. The approach of building tours sequentially, adding 
one stop location at a time, also basically requires a simulation framework and fundamentally 
limits the applicability of the approach to aggregate modeling frameworks because the size of the 
matrices requires grows exponentially with the number of stops.  

The	Hybrid	Approach	
An alternative approach for aggregate tour-based or hybrid models was developed for a model 
for the Knoxville region (Bernardin, 2008; Bernardin and Conger, 2010) and has subsequently 
been applied in roughly half a dozen other locations. In order to facilitate aggregate modeling and 
avoid the requirement of simulation and the variation it introduces, the approach is designed to 
evade the dimensional explosion of the solution space by partitioning the problem into two location 
choices, regardless of the number of stops on a tour. In the first stage, all stop locations (of a 
particular purpose, for a particular market segment) are chosen jointly based on their distance 
from the anchor location (home) and their accessibility to each other. In the second stage, each 
chosen destination for a trip is assigned an origin from which it is visited, with the constraint that 
the number of trips to each location must equal the number of trips from that location over the 
course of the day.  

 

Figure 29. Stop location and sequence choices.  

Source: FHWA 
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This approach can represent the jointness of destination choices including agglomeration effects 
in stop location choice (Bernardin et al., 2009), and avoids the requirement of identifying a primary 
destination for all tours but can only capture space-time constraints implicitly. Moreover, the 
second stage choice of origin or stop sequence can be challenging to interpret and is difficult to 
implement efficiently. For that reason, the following approach was developed.  

The	Advanced	Trip‐Based	Approach	
A third alternative framework for representing the conditional nature of destination choices has 
also been applied in aggregate trip-based models (Bernardin and Chen, 2016) in more than a half 
dozen states. The approach does not require a tour-based framework, but rather uses the 
traditional trip-based framework, simply shifting the choice of destinations for non-home-based 
trips to after and conditional on the choice of home-based trips.  

 
Figure 30. Conditional non-home-based destination choice models. 

           Source: FHWA 

This approach does not require any modification to existing home-based trip component models, 
and all choices remain easily interpretable. Like the hybrid approach, it can capture agglomeration 
effects in destination choices, but cannot explicitly represent space-time constraints. It has not 
been mathematically proven to result in trips consistent with tours with the same rigor as the 
hybrid approach, but it has been demonstrated to result in more consistent destination (and mode) 
choices in practical applications. The figure below illustrates how the advanced trip-based 
approach produces non-home-based-work trip locations consistent with home-based work 
locations for a new residential development in the far south of the Salt Lake City region in contrast 
with the traditional four-step model which predicts new non-home-based work trips in the far north 
of the region even though it predicts no new home-based work trips there.  
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Figure 31. Salt Lake City example from TMIP How-to: Model Non-Home-Based Trips. 

         Source: FHWA 

7.2.2 Destination and Mode Choice 
Travelers' choices of destination and mode are importantly related. In the four-step model, mode 
choice was originally formulated as conditional on destination choice, being applied as the third 
step after the second step of trip distribution. This approach has the advantage of allowing mode 
choice models to be formulated using actual travel times between origins and destinations as 
level-of-service variables. Moreover, this formulation of mode choice models conditional on 
destination choice has been institutionalized in various guidelines for model development and 
application (such as for FTA grant applications). 

Building on this approach, efforts to link mode and destination choice have most commonly 
involved the use of mode choice logsums as a multimodal impedance variable in destination 
choice models. In theory, if properly specified, this approach results in the destination-mode 
choice model system taking the mathematical form of a nested logit model. Such models can be 
estimated simultaneously as a single model, but the explosion of alternatives in this framework 
typically makes simultaneous estimation computationally intensive if not intractable.  

More commonly, the models are estimated sequentially, with the results of the mode choice model 
being used in the destination choice model estimation. This approach has been shown to be a 
form of limited information maximum likelihood and while unbiased is statistically inefficient 
compared to full information maximum likelihood estimation. 

However, this widespread approach commonly leads to problems such as the inability to predict 
realistic trip length frequency distributions without the use of other, highly correlated explanatory 
variables such as distance and the inability to estimate valid parameters for the mode choice 
logsum variable in the destination choice model such that this parameter is often asserted in 
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practice. Some have interpreted these problems as an indication that the traditionally assumed 
choice hierarchy is incorrect and formulated alternative joint mode and destination choice models 
with the reverse hierarchy. In the reverse hierarchy destination choice is conditional on mode 
choice and destination choice logsums are used as explanatory variables in mode choice. 

 

Figure 32. Traditional and reverse mode and destination choice hierarchy. 

                  Source: FHWA 

The traditional hierarchy implies that mode choices are more elastic (or more likely to change in 
response to shocks such as changes in travel times or fares) than destination choices. While this 
assumption is reasonable in certain travel markets or for certain market segments such as choice 
riders with personal vehicles available as an alternative, in many circumstances particularly in the 
United States, it may be more reasonable to assume that destinations are more elastic than 
modes. Transit captive destination choice set may be determined by local bus service, for 
instance, in many cases. The assertion of the traditional choice hierarchy, by enforcing this 
hierarchy of elasticities, may be a cause of optimism bias in transit forecasts. 

7.2.3 System Equilibrium and Feedback 
Originally, trip distribution models were applied using impedance measures based on free-flow or 
uncongested travel times. In this case the travel times on which the spatial distribution of trips is 
based are generally inconsistent with the travel times predicted by assignment in the larger model 
system. Combined distribution models were formulated and the practice of “feedback” developed 
to address this problem, especially to support emissions modeling which requires realistic travel 
times or speeds. In the context of travel forecasting, feedback generally refers to iterating the 
entire or several steps of the travel demand-network modeling system. At minimum, it generally 
means the feedback of travel times from assignment to distribution or destination choice. It was 
eventually recognized and proved that feedback models are equivalent to and can be formulated 
as combined distribution-assignment models. 

The feedback process is common and can be required under certain air quality conformity 
conditions. Although incorporating some form of system feedback is now quite common, there is 
little consistency in the details of how this feedback is implemented. Feedback can and has been 
implemented by feeding back trip tables or flow matrices, travel time or skim matrices, link flows 
or link travel times. Averaging can be done using the method of successive averages (MSA) or 
fixed factor methods. There are even more different criteria in use to measure the convergence 
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of feedback loops or combined model systems. A key development in recent years regarding 
feedback methods was the recognition that “naïve” feedback without any averaging of flows or 
travel times across iterations may not converge. 

7.3 Data Driven Applications 
There are generally two methods for using travel demand models together with passive origin-
destination (OD) data or incorporating this data in travel demand models. The first approach uses 
travel demand models (usually of more traditional, aggregate designs) to pivot from OD matrices 
developed from passive data and traffic counts. The second approach instead uses these OD 
matrices to develop fixed factors or constants which are incorporated into the travel model; this 
approach is more attractive for activity-based demand simulation models although it can also be 
applied with aggregate trip-based travel models. The following sections describe and discuss 
these two similar and related but alternative approaches. 

7.3.1 Pivot-Point Methods 
The most common approach to using travel demand models together with an independently data-
derived trip matrix is to apply the change in OD travel patterns predicted by a model to the data-
driven OD matrix. 

This approach typically uses rules or a weighting scheme to combine additive pivoting and 
multiplicative pivoting. Additive pivoting works by subtracting the modeled OD matrix for the base 
case from the modeled OD matrix for the alternative and adding this difference to the data-derived 
OD matrix. Multiplicative pivoting works by dividing the modeled OD matrix for the alternative by 
the modeled OD matrix for the base case and multiplying the data-derived OD matrix by this 
growth factor. Multiplicative pivoting is generally preferred for normal, moderate growth or 
changes, but can produce poor forecasts in some cases, particularly when there are very few or 
no trips for an OD pair in one or more of the matrices. Rules or weighting based on the absolute 
number of trips are therefore commonly used to select or combine the two basic pivoting methods. 

Pivot-point methods have the clear advantage of requiring relatively little or no modification to an 
existing travel demand model and hence relatively little effort to apply. However, when 
incorporated in a model rather than used for an individual forecast, they can require careful 
management and updating of an input file for the base-case modeled OD matrix. This has little 
impact on the application of the model for routine forecasting, but it can complicate updates to the 
model, including zone splits. 

Pivot-point methods also are attractive because they are straightforward and easy to understand 
in concept. Many professionals are already familiar with pivot-point methods from their use to 
pivot individual traffic counts to produce facility-specific forecasts.  

Pivoting on ODs rather than highway network link volumes is less familiar to many in the United 
States, but it has long been common in Europe and Australia and is quickly growing in use in the 
United States in response to the advent of big OD data. Pivot-point modeling can substantially 
improve forecasts by removing the error in a travel demand model’s base-case OD matrix. This 
error is known to be the largest source of error in traffic modeling. Thus, pivot-point methods 
promise substantially improved accuracy in forecasting. However, pivot-point methods have no 
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effect on the sensitivity of the travel model or resulting forecast to changes in travel time, tolls, 
land use, or other factors. 

This can be viewed in either a positive or negative light. On the one hand, the independence of 
the model’s sensitivity to the approach can alleviate any concerns related to overfitting or over-
specification. On the other hand, this same independence of the model’s sensitivity to the 
approach also means that the information in the big OD data does not necessarily improve the 
sensitivity of the travel model or resulting forecast to changes in travel time, tolls, land use, or 
other factors. The large amount of error in base-case models suggests the strong possibility of 
under-specification errors in existing or traditional models which may translate into over-sensitivity 
of models to travel times, tolls, land-use variables, and other factors, and pivot-point methods do 
not help to address this issue. 

While the inability of pivot-point methods to address underspecification errors affecting model 
sensitivities is an important theoretical concern, one of the main drawbacks of pivot-point 
approaches in practice is the inability of applying the approach at the level of disaggregate 
demand in demand simulation models such as activity-based models or supply chain simulation 
models. The fixed-factor approach presented in the following section offers an alternative method 
that can be applied to disaggregate demand simulation models as well as traditional aggregate 
models. In summary, pivot-point approaches may not be theoretically ideal or practical for use 
with activity-based or supply chain simulation models, but they are easy to apply with many travel 
models and can substantially reduce error. 

Fixed-factor or constant rich approaches involve a deeper integration of big OD data into a travel 
model. As such, they generally require more effort, but they can also potentially yield greater 
benefits than pivot-point methods and are applicable to activity-based or supply chain simulation 
models as well as more traditional aggregate trip-based models. 

7.3.2 Fixed-Factor/Constant Rich Methods 
The fixed-factor approach works by incorporating a set of constants into the spatial (gravity, 
destination, or activity location choice) model components of a travel demand modeling system. 
These factors are estimated in a statistically rigorous way to allow the model to reproduce 
expanded big OD data with minimal error. Fixed factors or constants can be specific to individual 
or groups of origins or destinations or OD pairings.  

These constants are importantly different than traditional k factors sometimes used in gravity 
models in that they can be systematically statistically estimated from a sound support of big OD 
data; whereas, k factors were developed in an ad hoc fashion based on survey or traffic count 
data that often could not actually support them. Despite this important distinction, some historical 
abuses of k factors still make some professionals hesitant or fearful of constant rich approaches. 
Individuals with a classical statistical background may also have a hesitancy due to fears of over-
specification errors. However, while errors and abuse are possible in any statistical modeling, and 
some level of caution is always an important component in good judgment, in the new context of 
the availability of passive data, conscientious professionals should reconsider constant rich 
approaches in an open and unbiased way. The emergence of a new generation of constant rich 
approaches is driven by a real change in the context of the data and analysis methods available, 



How‐To: Model Destination Choice  

April 2018  48  

the evaluation of which is should not be overly burdened by data-poor and poorly structured use 
of k factors that bear little resemblance to contemporary methods. In addition to passive data, 
machine learning analysis methods are another new factor driving contemporary constant rich 
approaches that are also worthy of further consideration. Machine learning also provides a 
perspective that is more concerned with under-specification errors than over-specification errors, 
which may be helpful in balancing certain schools of classical statistical thought. 

 
Figure 33. Destination choice models with fixed factors vs. passive cell phone-based ODs in Chattanooga. 

Source: FHWA 

Fixed-factor methods can be developed in two importantly different ways. First, a sequential 
estimation approach in which the factors are estimated after and independently of other model 
parameters is like pivot-point methods in that it does not affect model sensitivities for good or ill, 
and it is easier to apply. This method has been successfully applied in practice (for instance, in 
Chattanooga, see Figure 33). Second, simultaneous estimation of fixed factors together with other 
model parameters requires more effort, but it also offers the potential for better results by 
addressing likely under-specification errors and potential model over-sensitivities. Over-
specification errors are still possible, though this is less of an issue with passive data. 
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8.0 Destination Choice Model Calibration and Validation 
In practice, destination choice models can rarely be applied for forecasting exactly as they are 
estimated. Calibration adjustments are commonly required for several reasons. Sometimes 
application of the model to application data sets produce results that differ in some important ways 
from the results when the model is applied to the estimation data sets. In some cases, such 
differences can be caused or exacerbated by inconsistencies between the model estimation and 
application (such as different sources for explanatory variables like income or travel time or the 
omission of constraints in estimation). Careful and thoughtful adjustments in keeping with good 
professional judgment can be required to ensure the applied model demonstrates both 
reasonable ability to replicate observed travel patterns (from both estimation data and in some 
cases, other independent data sources for validation) and reasonable response properties or 
elasticities to key variables. 

8.1 Validation 
Validation refers to the comparison of model results to independent observed data not used in 
parameter estimation to assess if a calibrated model reasonably represents the actual system. 
Initial comparison of the results from the application of the estimated model with independent 
validation data rarely confirms the validity of the model as estimated. The resulting process of 
adjusting the model specification and/or model parameters to achieve validation is referred to as 
calibration. Good professional judgment is required to balance the desire to achieve good fit 
between model results and validation data with the danger of distorting model sensitivities to 
change. 

8.1.1 Comparison of Predicted and Observed OD Matrices 
The results of a destination choice model can be validated against OD matrices that are estimated 
or observed based on independent real-world data not used in model estimation. Since 
destination choice models are typically estimated from household survey data, the most 
commonly used sources of validation data are traffic counts, Census journey-to-work data, and 
more recently, passive OD data.  

Traffic counts can be used to validate destination choice models in several ways. Traffic counts 
along screenlines can be compared to the results of assigning the modeled OD matrix to a 
network, or in some cases, directly to aggregate district-to-district flows. Traffic counts can also 
be used to estimate OD matrices using origin-destination matrix estimation (ODME) routines. A 
comparison of model predicted OD matrices and ODME generated OD matrices can in some 
cases provide key insights on the validity and performance of the destination choice model, but 
only if the ODME process is used judiciously with good seed OD data and reasonable constraints 
on the perturbation of the seed.  

Passively collected data from mobile or in-vehicle devices are also now being used to infer OD 
matrices which can be used to validate destination choice models. In practice, traffic counts and 
passive OD data can and are often combined by using passive OD data as the seed for ODME 
or using traffic counts in some other way to expand passive OD data. Combining data from 
multiple sources (e.g., network sensors, count stations, smartphone traces, and GPS-
enabled/connected devices or vehicles) may offer considerable promise in further enhancing the 
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profession’s ability to derive accurate OD matrices that reflect ground truth on spatial-temporal 
patterns of mobility. Comparisons between model implied OD matrices and real-world OD 
matrices by time of day period can also be valuable in ensuring that the temporal distribution of 
travel is also being captured accurately in the model system. There are many ways to measure 
the distance (extent of similarity or dissimilarity) between two matrices (see the discussion of 
calibration measures below). Although it is desirable for model predicted OD matrices to replicate 
ground truth conditions closely, care must be exercised in the extent to which model parameters 
and constants are adjusted to match observed conditions. Analysts should exercise caution to 
avoid over-fitting to ground truth conditions lest the adjustments in model parameters or constants 
result in a model that replicates current conditions accurately at the expense of offering robust 
forecasts in future years under alternative scenarios. 

8.1.2 Sensitivity Analysis 
As travel demand models are largely used for forecasting and predicting travel demand under 
alternative built environment and socio-economic/demographic scenarios, it is important to check 
the reasonableness of a model with respect to its predictive ability. While the ability to replicate 
ground truth conditions in the base year may be a necessary condition for validation, it is not 
necessarily a sufficient condition. To be certain of validity of the model under a wide variety of 
application scenarios, the model should ideally be dynamically validated using sensitivity tests. 
For a series of scenarios defined by changes in system conditions, the destination choice model 
should be applied and resulting changes in spatial patterns of travel demand should be examined 
for their reasonableness, degree of change/sensitivity, and predictive accuracy. In some 
instances, there may be real-world data (such as that available before-and-after an infrastructure 
improvement or a major land use change) and the predictive accuracy of the model can be 
compared against such longitudinal data. The possibility of such before-and-after comparisons is 
increasingly feasible given the new availability of cost effective passive OD data. Alternatively, 
the changes in spatial patterns of travel predicted by the model can be checked for 
reasonableness based on local knowledge of travel demand and its elasticity with respect to 
changes in system conditions. In some cases, there may also be statistics (measures of elasticity 
or change) published in the literature; such published sources may offer a basis to confirm the 
general validity of predictions output by a destination choice model. An example of such a 
publication is the TCRP 95 Report series that documents Traveler Response to System Changes. 

8.2 Calibration and Validation Measures 
A variety of measures can be used to evaluate the validity of destination choice models. 
Comparisons to trip length frequency distributions remain the most common approaches although 
it has been demonstrated that models can easily be over-calibrated to reproduce trip length 
frequency distributions at the expense of their ability to accurately reproduce actual spatial 
interaction patterns. (Ye et al., 2012) Evaluation of the validity of destination choice models should 
therefore be based on actual comparisons of the predicted versus actual observed OD flows 
whenever possible. These comparisons frequently take the form of comparisons of district-to-
district summaries of more detailed zonal OD flows, such as comparison of modeled county level 
commute flows to CTPP estimates. However, it is also possible to calculate a correlation 
coefficient or other goodness-of-fit measures depending on the type of data available. It is 
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important to be aware, however, that spatial goodness-of-fit statistics are dependent on spatial 
aggregation or the zone system used, such that, for instance, district level statistics will appear 
better than zone level statistics and zone level statistics appear better than parcel level statistics 
comparing the same model to the same observed data. This is consistent with a general 
understanding of forecasting: given some observations about any given person, it is relatively 
easy to predict what city they work in, harder to predict the neighborhood, and quite difficult to 
accurately predict the exact building where they work. 

8.2.1 Trip Length Frequency Distribution 
As noted above, comparisons of trip length frequency distributions (TLFD) are the most common 
validation checks performed for destination choice models and are generally considered a 
minimum requirement for documenting model validity in practice. Poor fit of the modeled TLFD to 
an observed TLFD clearly indicates that the model is not reproducing observed OD patterns. 
However, the converse is not true - good agreement between modeled and observed TLFDs does 
not guarantee that the model is reproducing observed OD patterns. There are many OD patterns 
with the same TLFD some of which can bear little resemblance to each other at all. Moreover, as 
is also noted above, over-fitting modeled TLFD to observed TLFD can actually degrade their 
replication of the observed OD patterns as measured by more robust goodness-of-fit measures. 
(Ye et al., 2012) Therefore, while TLFD checks are generally recommended as a minimum 
standard of validation checking for destination choice models, whenever possible they should 
also be accompanied by evaluation of other calibration measures. 

The trip length frequency distribution (TLFD) is calculated as the percentage of trips falling into 
certain ranges of distance (or duration), say 0-1 mile, 1-2 mile, 2-3 miles, etc. Figure 34 shows an 
example comparison of modeled and observed TLFDs. 
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Figure 34. Example comparison of modeled and observed trip length frequency distributions. 

             Source: FHWA 

TLFD checks are usually performed separately for each trip purpose and/or market segment. For 
work trips, Census journey-to-work data (CTPP and/or LODES) are often used as a validation 
data source for observed trip lengths, in addition to the data from household travel survey. For 
non-work trips, model TLFD is usually compared with household travel survey data. It is important 
to keep in mind that TLFDs from travel survey data can be lumpy due to limited sample size, and 
in such cases, the model TLFD should be smoother than the survey TLFD. Caution should be 
used in comparing modeled TLFD to TLFD observed in passive data sources since these data 
are susceptible to systematic bias with respect to trip lengths which must be carefully corrected 
using appropriate expansion techniques in order to support valid comparisons. 

In addition to visual comparison of TLFDs through graphs, these comparisons are sometimes 
quantified using metrics such as average trip lengths and/or coincidence ratios. The coincidence 
ratio measures the area under both TLFDs, as defined below: 

 

Figure 35. Equation. Coincidence ratio. 

CR = Coincidence Ratio 

PMt = Proportion of modeled distribution in interval T 

Pot = Proportion of observed distribution in interval T 

∑ min
∑ max
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T = Histogram interval for time, distance, or other impedance measure 

Based on this definition, the coincidence ratio is defined on the range from 0 to 1 with 1 indicating 
identical distributions and values closer to 1 generally being more desirable within reason 
(although values very close to 1 may indicate over-fitting). 

8.2.2 Intrazonal Trip Percentages 
Intrazonal trips are trips with both origin and destination in the same zone and constitute the 
diagonal of the OD matrix. Comparison of the modeled and observed percentage of intrazonal 
trips are an important calibration check for destination choice models. Attention to intrazonal trips 
is important because in model applications, intrazonal impedances or travel times are generally 
calculated by a different method than interzonal impedance or travel times and both this fact and 
sometimes differences in the nature of very short trips can lead to unreasonably high or low shares 
of intrazonal trips. Some agencies have used criteria such as that regionwide modeled intrazonal 
percentages should be within three percent of observed intrazonal percentages. These criteria 
may not be reasonable for all applications but large deviations between modeled and observed 
intrazonal percentages generally indicate the need for a calibration adjustment. 

8.2.3 Goodness of Fit Statistics 
Formal goodness-of-fit statistics such as log likelihoods and rho-squared (or pseudo-r-squared) 
statistics are commonly used in the estimation of destination choice models to compare the 
model's predictions to observed patterns in the estimation data. These statistics are particularly 
valuable because they can summarize in a single measure the agreement of modeled and 
observed overall OD patterns - and distinguish, for instance, between different patterns with the 
same TLFD. Good goodness-of-fit statistics can therefore provide a much greater level of 
confidence in the validity of a destination choice model than traditional TLFD comparisons. 

However, as noted above, it is important to keep in mind that spatial goodness-of-fit statistics are 
dependent on spatial aggregation or the zone system used, such that, for instance, district level 
statistics will appear better than zone level statistics and zone level statistics appear better than 
parcel level statistics comparing the same model to the same observed data. Bearing this is mind, 
it is difficult to formulate general criteria for goodness-of-fit statistics what constitutes a good value 
differs with the resolution of the zone system. Moreover, even though the scale does vary with 
the geographic resolution of the zones used, some generalizations can still be made. For 
example, aggregate destination choice models at the level of metropolitan traffic analysis zones 
commonly have rho-squared statistics in the range of 0.15 to 0.45. 

While the variation of these statistics with zone sizes does limit the usefulness of these statistics 
for the establishment of validation guidelines or comparisons between different models, 
goodness-of-fit statistics can provide very valuable information about how much of the observed 
variation in OD patterns is explained or reproduced by the model. In particular, the rho-squared 
statistic can be understood in this way as the portion of the observed variation in destination 
choices at the level of the zones used explained by the model. 
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As valuable as they are, in practice these goodness-of-fit statistics are rarely re-calculated after 
estimation in the process of calibration. Wider use of formal goodness-of-fit statistics as a 
calibration measure could be an important advance to the state of the practice. 

The most common formal goodness-of-fit statistic for destination choice models is the adjusted 
rho-squared statistic. The adjusted rho-squared is derived by comparing the log-likelihood of the 
model versus the observed data to the log-likelihood of a uniform discrete distribution versus the 
observed data. For this reason, rho-squared is sometimes also referred to as pseudo-r-squared 
because it can be thought of as analogous to or an extension of the common r2 used as a 
standardized goodness-of-fit measure for regression models derived from the sum of squared 
errors. Both statistics are measured on the range of 0 to 1 with higher values indicating greater 
model explanatory power and goodness-of-fit to observed data. The formula for the adjusted rho-
squared is given below: 

 

Figure 36. Equation. Adjusted rho-squared. 

In turn, the log-likelihood of a probability distribution versus a set of discrete observations 
(weighted trips by mode in this case) is defined as follows: 

 

Figure 37. Equation. Log-likelihood of a distribution. 

Although formal goodness-of-fit statistics are often calculated using disaggregate data in the 
context of parameter estimation and are thought of in this context, they can be calculated in 
aggregate modeling contexts as well. Although it is not common to think of trip matrices as 
probability distributions, they can be easily understood and interpreted this way. Model trip tables 
can be easily converted into probability distributions by dividing each cell by the grand sum of the 
matrix (or of all matrices). A uniform probability distribution is simply a matrix (or matrices) of 
constants equal to the inverse of the dimensions of the distribution (number of zones x number of 
zones x modes). 

8.2.4 Aggregate District-to-District Flows 
Interpreting a direct comparison of OD flow matrices is not possible (without the use of goodness-
of-fit statistics) at the level of traffic analysis zones when these number in the hundreds or 
thousands, and even if it were, great care would need to be taken in considering the precision of 
the observed data at this level of resolution. However, by grouping zones into more aggregate 
districts, meaningful and valuable comparisons can be made between modeled OD flows between 
a dozen or so districts. Such checks are a best practice in destination choice model validation. 
They are most commonly used to compare county-level journey-to-work flows from the model to 
Census data but can also be used to compare modeled flows for other trip types to household 
survey or passive data. While less comprehensive and rigorous than formal goodness-of-fit 
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statistics, aggregate OD flow comparisons can provide valuable insights into what aspects of 
observed OD patterns a destination choice model does and does not capture and sometimes 
thereby suggest improvements to the model specification or specific calibration adjustments.  

The same information can also be presented visually using scatterplots. The example below 
compares a home-based work destination choice model to Census journey-to-work data from two 
different time periods. 

 

Figure 38. Scatterplot comparing county-to-county journey-to-work flows from CTPP and a statewide model. 

Source: FHWA 

In some cases, especially such as statewide models, the use of a log-log scale can be helpful for 
examining the fit of the model at different scales or orders of magnitude. 

8.2.5 Screenline Counts 
Traffic counts along a screenline or cutline can be used to validate destination choice models in 
several ways. When a screenline partitions the model zone system into two distinct districts, a 
direct comparison can be made to aggregate district-to-district flows in the OD matrix. In other 
cases, the modeled OD matrix can be assigned to the model network and modeled network flows 
can be compared against screenline counts. In this context, it is important to keep in mind that if 
the model results do not reproduce screenline counts that this can be the result of problems either 
with the destination choice model or with the network assignment procedures. 
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8.3 Calibration Strategies 
The objective of model calibration is to ensure that the estimated model, when applied to the 
entire region, reproduces the aggregate regional travel patterns, as observed in the OD data that 
was the source for model estimation, as well as in other, independent OD data sources. There 
are many reasons why the estimated model, when first applied, fails to reproduce the observed 
travel patterns: 

 There may be errors upstream of the distribution model, for example in the level of service 
matrices, mode choice logsums, trip productions, home locations, employment estimates, 
and other model inputs. 

 There may be an error in the model application software. 

 The model may have been estimated with a very small sample of OD records, such that 
many OD flows may be missing or under/over-represented. 

 Some key characteristic of the travel market may have been missed in the model 
estimation. 

 The model estimation may have resulted in insignificant parameters for some variables 
that are nonetheless important to retain in the final model. 

 Accessibility variables and other techniques used to represent agglomeration and 
destination constraints may not fully capture the effect on the constraints on the estimated 
parameters. 

It is incumbent upon the model developer to identify the most appropriate corrective action 
– adequate software testing, verification of all model inputs, re-estimation with additional 
explanatory variables and/or exploring market segmentation. However even after such steps 
have been taken, it is oftentimes necessary to adjust the estimated model parameters to improve 
the fit of the model to the observed aggregate data. Possible calibration actions include adjusting 
the coefficients of the impedance terms, adjusting the coefficient for intrazonal trips and other 
possible indicator variables, and adjusting the size term coefficients. The calculation of shadow 
prices for usual work and school location models is generally considered a model calibration step. 
The flexibility of the model structure allows for accounting for systematic differences that may 
emerge when the model is applied, and that may lead to additional utility function terms. Finally, 
when sampling is used to construct the destination choice set, sometimes adjusting the sampling 
utility function can lead to a better model fit. 
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Appendix A Theoretical Foundations of Destination Choice 
Three primary theoretical starting points for developing destination choice models dominate 
current practice:  

 Gravity models 

 Entropy maximization (also known as information minimization) models 

 Random utility models 

These three modeling approaches are, under appropriate assumptions, mathematically 
equivalent, and so are special cases of what can be generally called spatial interaction models. 
All these models attempt to address the same problem, as illustrated in Figure 39, in which spatial 
interactions (usually trips) between locations in space (typically traffic zones) are to be predicted, 
given limited, more macro, information concerning these interactions, such as the number of trips 
originating in each zone and/or the number of trips destined to each zone. For more of the 
mathematical development of these theories and demonstration of their equivalence, the reader 
is referred to the TFResource.org page on this topic.  

 
Figure 39. The spatial interaction problem. 

        Source: FHWA 

8.4 Gravity Models 
Gravity models have been in use by geographers, market researchers, transportation modelers 
and many others for well over a hundred years. The starting point for these models, as the name 
implies, is Newton’s Law of Gravity which states that the gravitational force (or interaction) 
between the bodies is proportional to their masses (size) and inversely related to the distance 
between them: bigger bodies closer together have a greater interaction.  
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Gravity models of human spatial interaction adopt the same assumption: the amount of interaction 
between two locations (usually represented by trips, but could also be flows of money, 
information, etc.) is proportional to the “size” (“attractiveness”) of the two locations and the extent 
of their physical separation (measured in distance or travel time).  

8.5 Entropy Maximization Models 
While it is intuitively plausible that should trips go to “bigger” (more attractive) destinations as well 
as to destinations that are closer to, rather than farther from, the trip origin, gravity models have 
always been criticized for their apparently ad hoc derivation: why should human interactions 
necessarily follow the same “law” as gravitational bodies? Beginning with Alan Wilson’s seminal 
paper in 1967, a sound statistical theory underlying gravity models was developed. Wilson 
showed that the statistically most likely trip matrix is given by maximizing the entropy function 
which results in precisely the doubly constrained gravity model.  

In other words, the “ad hoc” gravity model, “properly specified” is the statistically most likely model 
of a trip OD matrix, given known constraints. This provides very strong theoretical support for 
“gravity-like” spatial interaction models. Other important points to note include: A specific entropy 
model specification is determined by the choice of constraints imposed on the model. Arbitrarily 
complex specifications can be generated, providing that an appropriate constraint set can be 
specified. In particular, the impedance functional form derives from the constraint(s) written 
concerning transportation level-of-service variables. In the classic example, imposing the 
constraint that the predicted system-wide average travel should equal the observed average time 
in the base data yields a negative exponential impedance function. If instead, one wrote a 
constraint in which the predicted average of log of travel time equals the observed average value, 
then the resulting impedance function would take the form of a negative power function. 

8.6 Random Utility Models 
By far the most common type of destination choice model used in practice is some form of random 
utility model, usually a multinomial logit model or a nested logit model (e.g., a nested destination-
mode choice model). Random utility (discrete choice) models are used throughout travel demand 
modeling given their strong theoretical foundations in microeconomic theory and their practical 
and efficient analytical function forms. Logit destination choice models are widely used for a 
variety of reasons including:  

 Flexibility in specifying the utility function (any relevant variable can be readily included). 

 Readily available parameter estimation software. 

 Familiarity with the method. 

 Computational efficiency. 

 Support for both disaggregate (person-level) and aggregate (trip flows) formulations. 

8.7 Mathematical Equivalence of Gravity, Entropy and Logit Models  
It is commonplace in the literature to state that “destination choice” (i.e., disaggregate logit) 
models are superior in performance to “gravity models”. This, however, is a somewhat misleading 
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statement in that it reflects the common practice in terms of how “gravity” and “logit” models are 
typically implemented, rather than fundamental differences in the mathematics of the two 
approaches. In practice, “gravity” models are often aggregate (based on O-D flows instead of 
individual trips) and very simply specified in terms of both attraction/size variables and 
impendence functions (including sometimes the use of distance rather than travel times). “Logit” 
models, on the other hand, are usually disaggregate (based on individual trips) and can have an 
extensive set of explanatory attraction variables in the utility function. Given this typically more 
extensive set of explanatory variables, it is not surprising that such “logit” models outperform the 
more simply specified “gravity” models.  

But, as Daly (1982), first observed, gravity models can be shown to be a special case of nested 
logit models where the nests are degenerate, aggregate alternatives. Similarly, Anas (1983) 
observed, “gravity” models as derived through entropy maximization can be formulated at the 
disaggregate (individual trip) level as well and can incorporate any number of explanatory 
variables. In particular, any linear-in-the-parameters utility function typically used in logit 
destination choice models can be replicated in an entropy model. Further, if consistently defined 
at the same level of aggregation, the same set of explanatory variables and the same base data 
are used for parameter estimation, then it can be shown that the estimated parameters for the 
two models will be identical. Thus, logit and entropy (gravity) models are, in fact, not different 
models but are mathematically the same model.  

This mathematical equivalency with entropy models only holds for multinomial logit models, not 
for random utility models in general. The ability to theoretically derive logit models from two very 
different starting points, one behavioral (people choose alternatives so as to maximize their 
personal utility) and one statistical (deriving most likely choice probabilities given known 
constraints on these probabilities), however, is striking and arguably reinforces the case for use 
of logit models in applications where the underlying assumptions of the model (e.g., statistical 
independence of the alternatives) holds.  

8.8 Other Destination Choice Model Formulations 
Historically, other approaches to destination choice models have been developed, including 
intervening opportunities models and competing destinations models. In general, these 
approaches tend to be computationally more intensive without generating improved fits to 
observed data than more conventional methods and so are rarely used in current practice. Brief 
descriptions of these methods are provided here for historical documentation.  

8.8.1 Intervening Opportunities Models 
The intervening opportunities model was first proposed by Stouffer (1940) and extended by 
Schneider (1960) and Golding and Davidson (1970). Most recently, a version of the model has 
been resurrected by McArdle et al. (2012) who motivates the model from the theory of radiation 
in physics. Stouffer’s original model hypothesized that the number of OD trips is proportional to 
the number of opportunities at destination zone and inversely proportional to the number of 
intervening opportunities between the origin and destination. For a detailed discussion of 
intervening opportunities models, see Hutchinson (1974).  
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8.8.2 Competing Destinations Models 
Competing destinations models (Fotheringham, 1983) have received a fair amount of attention in 
the geography literature. They have been used in practice by at least one transportation planning 
agency. Fotheringham’s technique, which introduces an accessibility measure, has now become 
a common practice in destination choice modeling (following Bhat et al., 1998).  

8.8.3 Machine Learning  
Although they are not known to have been applied in practice, both decision trees (Thill and 
Wheeler, 2000) and neural networks (Tillema et al., 2005; Fischer and Reismann, 2010) have 
been proposed and explored as possibly applicable to destination choice. 
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Appendix B Size Terms in Aggregate Choice Models 
Sometimes, a discrete choice is made from a very large pool of possible choices. In these 
circumstances, it may be useful to aggregate choices together, and represent a set of choices as 
a single meta-choice. This is particularly common in destination choice models, where the 
individual possible destinations are aggregated together as traffic analysis zones.  

The aggregate choice in many ways represents a nested logit model, with the aggregations 
corresponding to the nests, except we only observe the choice at the nest level, not at the 
elemental alternative level.  

8.9 Basic Aggregate Models 
To start with, we can make some assumptions:  

1. The individual elemental alternatives within each zone or aggregate are homogeneous. 
That is, each such alternative has the same systematic utility, Vi=βXi 

2. The particular locations of the zonal or aggregation boundaries are arbitrary and have no 
systematic meaning themselves. 

3. The number of individual elemental alternatives within each zone or aggregate is directly 
observable. 

Using these assumptions, we can derive a reasonably simple aggregate/zonal choice model.  

The usual form of the nested logit model calculates the probability of an alternative as Pnest Palt|nest.  

In the case of aggregate choices, we do not observe the choice, but only the nest, so we only 
care about Pnest. The nested formula for that term is  

 

Figure 40. Equation. Probability of nest. 

with  

 

Figure 41. Equation. Utility of nest. 

Using assumption 2, we know that μnest must be 1, as we want the aggregation nesting structure 
to collapse to a multinomial logit model. Further, our first assumption is that all the Vi are equal, 
so the terms inside the summation can collapse together, leaving  

 

Figure 42. Equation. Utility of nest. 

∑ ∈

 

∈

. 
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with Nnest as the number of discrete elemental alternatives inside the nest or size variable.  

Under the assumptions we laid out above, estimating an aggregate model is actually quite simple. 
We can simply define a variable for each aggregate alternative that has a value of ln(Nnest), and 
including it in an MNL model, with a beta coefficient constrained to be equal to 1.  

One thing to be careful of in these models: the log likelihood at “zeros” model should include the 
parameter on log(Nnest) equal to 1, not 0. This is because this is not a parameter we are estimating 
in the model, it is a direct function of the structure of aggregation, which we have imposed 
externally.  

In application, however, sometimes we want to relax some of the assumptions we outlined above, 
which can introduce some complications.  

8.1 Relaxation of Arbitrary Boundaries Assumption 
Relaxing the assumption of arbitrary boundaries puts μnest back into the equation for Vnest:  

 

Figure 43. Equation. Utility of nest. 

The logsum parameter thus appears as a coefficient on log(Nnest). This may or may not be a good 
idea for transportation models. In an intra-urban model, if the boundaries of zones are at the TAZ 
level, which are small sectors drawn only for modelling purposes, relaxing this assumption 
probably doesn’t make sense. If the boundaries are aligned with political boundaries (counties, 
towns) that have differing taxing, administration, or other policies, it might be OK to relax this 
assumption. In a long-distance travel model, if the boundaries are aligned with metropolitan areas, 
then it is certainly reasonable to relax the arbitrary bounds assumption.  

Relaxing this constraint doesn’t require any special methods beyond the standard MNL tools. All 
that is necessary is to relax the constraint on the parameter attached to ln(Nnest), so that it no 
longer must exactly equal 1.0. Of course, we still need to ensure that the estimated parameter is 
in the interval (0,1]. Also, for the log likelihood at “zeros” model we should still consider the default 
value of the parameter on ln(Nnest) equal to 1, not 0.  

⁄  
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