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1.0 Executive Summary  
The prevalence of mobile devices and the associated location positioning technologies that are 

needed to enable network connection at any time and any place have led to an explosion of 

studies that have used the resulting data (often big) for understanding travel patterns and to 

potentially guide policies. Such data are typically termed “passively solicited data.” These are 

different from the actively solicited data that result from a rigorously designed, probabilistic 

sampling process with a known target population. Instead, they are the secondary product of 

primary activities such as billing or operations (e.g., facilitating phone calls or use of mobile 

apps). Hence the passively solicited data underlying the data generation process are 

often unknown, uncontrolled, and non-probabilistic, raising questions regarding 

representativeness, accuracy, and stability of the estimates derived from such data. In the rest 

of the report, the term “big data” is used interchangeably with “passively solicited data”, i.e., the 

term “big data” refers specifically to “passively solicited data”.  

One of the major objectives of this research is to demonstrate the importance of knowing your 

big, passively solicited data before any application, especially in the context of generating origin 

and destination patterns. This study focused on understanding passively solicited data by 

developing a three-order analysis framework in which three groups of statistics were calculated. 

These statistics relate to the data themselves (zeroth order), single locations or trip ends (first 

order), and a pair of locations or trips (second order). Two types of passive data were analyzed: 

mobile phone data triggered primarily from phone calls with locations identified through cellular 

triangulation, and app-based data generated primarily from apps usage, with locations identified 

through a mix of positioning technologies including GPS and cellular triangulation. These two 

types of data reflect the evolution of technologies being used to generate such data. Within the 

two-month study period of the app-based data, an additional technology change in capturing the 

data occurred, resulting in a roughly 33 percent increase in the number of observations per 

device. This offered another opportunity to understand how the stability of the first- and second-

order properties (those relating to trip ends and trips) may be affected by changes in 

technologies used to generate the data. More specifically, the study sought to answer six 

specific questions (see Section 1.1 below) relating to the data themselves, their implications for 

deriving trip-related characteristics such as trip rates and origin-destination (OD) patterns, and 

how we should leverage different types of data—big and small.   

1.1 Research Questions and Findings 
1. What analysis framework and associated metrics can be used to capture various properties 

of the passively solicited data? 

As briefly noted earlier, a three-order analysis framework was proposed to capture the 

properties associated with the data themselves (zeroth order), single locations or trip ends (first 

order), and a pair of locations or trips (second order). This framework captures all related 

characteristics in a complete and logical way (for details, please refer to Table 1).   

2. What is our current understanding of passively solicited data through the proposed three-

order analysis framework? 
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The two most important zero-order properties of the data relate to how well the device is 

identified in spatial and temporal spaces. The spatial dimension is captured by “locational 

accuracy,” referring to the uncertainty involved in the positioning of the device (the smaller the 

better); its temporal dimension is captured by “temporal sparsity,” referring to the spread of the 

observations over a day (the more spread the better). From the mobile phone data to the 

app-based data, we observed a significant improvement in locational accuracy (the 85th 

percentiles for the mobile phone and apps data were 700 and 100 meters, respectively, as 

shown in Figure 42) because of the prevalent usage of GPS-based navigation apps. On the 

temporal dimension, improvement also occurred, although at a smaller magnitude; in 

comparison to locations in the mobile phone data, about 20 percent more location trajectories in 

the app-based data were revealed during the time period of 00:00 to 06:00 AM (see Figure 40). 

Additionally, two peaks (morning and afternoon) emerged in the apps data, as opposed to a 

single afternoon peak in the mobile phone data, although the two peaks were delayed in 

comparison to the traffic peaks in the region.  

Definitions 

Locational Accuracy: the uncertainty involved in the positioning of the device. The smaller it is, the 
higher locational accuracy is.  

Temporal Sparsity: the spread of the observations over a day. The more spread there is, the less 
sparse the data is on the temporal dimension.   

 

The zeroth-order properties have important implications for the first- and second-order 

characteristics. In particular, the temporal sparsity and location accuracy noted above were 

found to directly impact the accuracy of the identified activity locations, thus determining 

the activity (i.e., first order) and trip (i.e., second order) related characteristics. The technological 

improvement in capturing locations and the more dispersed app usage throughout a day (as 

compared to phone calls) allowed better capturing of home census tracts1 and trip rates. The 

change from mobile phone data to app-based data resulted in data that more closely resembled 

the household travel survey data for trip rates (3.23 from apps data vs 4.40 from PSRC travel 

survey data, compared to 1.78 from mobile phone data vs 3.89 from Buffalo travel survey data). 

And correlation with population density at the census tract level increased from 0.43 to 0.91. 

However, the verdict on other statistics, such as activity duration, departure time, and OD 

patterns, was much less clear. This indicates that more in-depth analysis among the zeroth- and 

first- and second-order statistics needs to be done to gain a systematic understanding about 

how the data properties affect our ability to derive trip-related characteristics.  

3. As the underlying data generation process changes, leading to changes in spatial and 

temporal properties as well as changes in trip-related metrics, how shall we interpret the 

resulting changes?  

Clearly, improvement in data quality, both in terms of locational accuracy (Figure 4) and 

temporal sparsity (Figure 12), benefited more accurate calculation of metrics such as home 

                                                           
1 For privacy issues, inferred home locations are presented at census tract level throughout the report. 
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census tracts and trip rates. But questions still remain: for frequency of observations, is more 

always better? Or is there a threshold after which the bias of under-estimation becomes 

that of over-estimation? Within the apps data, we also observed that when there was a 33 

percent increase in the number of observations per device and consequently an improvement in 

temporal sparsity, the average trip rate consequently increased from 3.11 to 3.47, edging closer 

to the 4.4 from the household travel survey. However, the difference was not apparent for other 

metrics such as activity duration, departure time, or trip length. We therefore conclude the 

following:  

1) When temporal sparsity is relatively low (which is the case for both mobile phone data 

and app-based data) and locational accuracy is low (which is the case for mobile phone 

data), improvement in both will likely move metrics closer to the ground truth.  

2) However, as temporal sparsity continues to increase, the marginal benefit decreases. 

Beyond a certain threshold, it is possible that the positive benefit may even become 

negative, as activities that mimic moving between places (e.g., shopping in a large store) 

may be mistaken as short trips. This speculation requires future investigation. 

3) Improvement in different metrics may vary, as shown by trip rate, activity duration, 

departure time, and trip length.  

4. Can we be more proactive in estimating trip-related metrics as the technologies and other 

circumstances underlying the data generation process change over time? 

The technologies used to generate those passively solicited data will inevitably change. 

Consequently, it will be worthwhile to ask whether we can be ahead of changes by being able to 

predict the consequences of the changes, i.e., how will a sudden increase in locational 

accuracy and temporal sparsity affect our estimates of trips? As shown in our answers to 

questions 2 and 3 above, this study demonstrated the inherent relationship between zeroth-

order properties of the data themselves and the first- and second-order characteristics of trip 

ends and trips. More in-depth analysis is required to gain a systematic understanding of the 

nature of these relationships, which would provide the predictive capability. 

5. How do we deal with the issue that those passively solicited data often lack ground truth?  

As noted by Chen et al. (2014, 2016), because of the uncontrolled data generation process 

associated with the passively solicited data, validation of the inferred statistics from the 

data is critically important. And yet, there are no ground truth data to be validated 

against for most of the trip-related metrics. Therefore, frequently household travel surveys 

are used for validation purposes. Although this represents a very important first step in the right 

direction, it is worth noting that the inferred results can have a great number of errors at the 

individual level, even though a high level of accuracy may be observed at the aggregate level. A 

number of approaches may be utilized to counter this lack of ground truth, including, for 

example, the use of simulation data (Chen et al., 2014), collection of small sample GPS/survey 

data, and using experiments and models to understand the effects of data properties (e.g., 

locational accuracy and temporal sparsity) on the metrics of interest (e.g., trip rate). Further 
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investigations are critically needed to validate the results generated from the passively solicited 

data. 

6. How do we make useful data via big and small data fusion? 

It is clear that there are advantages and disadvantages of big and small data, as well as 

different types of big and small data. In fact a unique aspect of big, passively solicited data is 

their continuous and dynamic nature, meaning that they are potentially available at any time and 

at any place. This is in stark contrast to the small travel survey data that are static, capturing 

travel patterns on a typical day once every 5 to 10 years2. The static nature and small sample 

size of travel survey data limit their usefulness for long-term (usually 20- to 30 years) demand 

forecasts, as well as for assessing many short-term and equally important policy and operations 

scenarios that arise from time to time.  

As an example, understanding anonymous travel patterns in corridor management is critical not 

only for operations purposes (e.g., evaluating the effectiveness of tolling and other control 

strategies such as ramp metering) but also for policy evaluation and adjustment (e.g., 

understanding how different users and communities are affected by the control strategies 

provides a basis for policy evaluation and adjustment).  Passively solicited data, because of 

their dynamic and continuous nature, can be leveraged to provide answers to these important 

questions. This is the case especially when the passively solicited data are integrated with other 

data, including, for example, household travel survey data, census data, flow data (e.g., travel 

volumes and speeds from loop detectors), and license plate data that are already collected by 

state or local departments of transportation (DOTs). This data fusion exercise will not only 

result in useful data that leverage the advantages of diverse data sets, but will also move us 

toward more rea- time, continuous management of our transportation facilities on the basis of 

the principles of efficiency, equity, and safety. The realization of this vision requires the 

development of sound data fusion frameworks and methodologies and their validation (beyond 

a simple combination of the datasets from different data sources), which are currently lacking.  

1.2 Recommendations 
The ubiquity of passively generated data promises to transform the landscape of transportation 

planning, from understanding travel patterns to transportation model development and policy 

evaluation. There has been an explosion of studies using the passively solicited data (often big) 

to tackle problems in transportation planning. Transportation agencies across the country 

increasingly find themselves having to make various decisions regarding the purchase and use 

of big data and their derived products. However, there is a dearth of information about the data 

themselves (such as data accuracy and representativeness). While every case is different and 

likely requires a unique evaluation on its own, we offer some general short-term and long-term 

recommendations based on the analysis conducted in this research.  

                                                           
2 Most travel surveys are conducted once every 10 years.  
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Ask Questions  

This study showed that it is critical to understand the data and their properties, as they directly 

affect variables of our interest, such as trip rates and OD patterns and the interpretation of 

analysis results. It is important to ask data providers questions about how the data were 

generated, what positioning technologies (or a combination of them) were used to locate the 

devices, what events triggered the recording of the data, and whether there are any reports 

available on the properties of the data (e.g., locational accuracy and temporal sparsity, among 

the zeroth-order metrics proposed in this study).  

Conduct Pilot Tests  

Ask for a sample data set from the provider so that analyses can be done on the sample data to 

further understanding of the data and their derived metrics. The three-order analysis framework 

proposed in this study can be used to calculate various characteristics. Results from the pilot 

tests can be compared with those from other studies (such as those from this study) for better 

understanding of consistency and stability.  

Create Benchmark Data Sets and Test Results on the basis of a Common Framework  

The use of those big, passively solicited data for transportation planning purposes is at its 

infancy stage. Data representativeness is of critical importance for various types of 

transportation studies. Therefore, a broad, systematic understanding of such data is urgently 

needed for such data to reach their full promise in transportation planning.  

Develop a common framework  

One way to achieve this is to establish a central inventory database in which various benchmark 

data sets can be created on which metrics can be calculated on the basis of a common 

framework. This will allow comparisons across different data sets in different geographies, 

enhancing our understanding of different applications.  

Reconciliation of various data sources 

While this report does not touch upon other important datasets that are often used in 

transportation planning applications (e.g., data on traffic flows and transit ridership data), it is 

important to recognize each dataset (big or small, emerging or conventional) captures a 

particular view of a transportation phenomenon at a particular scale (both temporally and 

spatially). In other words, not a single data set will have all the advantages that trump all other 

datasets, big or small. As an example, it is clear that the passively solicited data (often big), like 

the ones studied in this research (from mobile phones and apps), lack the rich behavioral and 

socio-demographic information that traditional small data sets (e.g., household travel survey 

data and census data) have. Without this information, it is impossible to answer critical 

questions related to geographical or socio-demographic equity. Therefore, any decision on 

which datasets to be used and how they may be reconciled together hinges upon knowing what 

particular transportation phenomenon to be captured and what datasets will help capture 
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aspects of the phenomenon of interest. In some cases, rigorous data fusion techniques will 

need to be developed in order to integrate various data sets together by leveraging their unique 

advantages. In other cases, individual datasets can be used to capture different aspects, which 

together form a complete story explaining a transportation phenomenon of interest.  

Investigate and understand the evolutionary nature of the big, passively solicited data 

and the impact of changes on their use  

It is of paramount importance that we recognize the evolving nature of the often big, passively 

solicited data. As demonstrated in our study, as technologies evolve, the nature of the data (as 

measured by properties such as the zeroth order ones) changes, too. And this can directly 

affect the estimation of trip-related characteristics. Technologies will continue to evolve. The 

advent of autonomous and connected vehicles, for instance, will provide a whole suite of new 

data related to the car, its driver and passengers, surrounding traffic, and the immediate 

environment. The new data will not only help us gain new insights into transportation planning, 

operations, and safety analyses, but will also raise new questions about the data themselves, 

their properties, and how they may affect the derived trip-related characteristics, analysis results 

ensuring representativeness, equity and fairness, and impacts on our policies  
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2.0 Introduction 

2.1 From Travel Survey Data to Passively Generated Emerging Data  
Since the 1950s, household travel surveys, as an important source for transportation planning 

applications, have gone through significant changes in survey instrumentation, methods of 

survey administration and sampling, and consequently response rates and sample sizes 

(Stopher, 1996). The earliest travel surveys were conducted via personal interviews, with a 

response rate of between 80 and 90 percent (Stopher, 1996), followed by mail-out and mail-

back surveys and telephone interviews via random digit dialing. The last two decades have 

witnessed a rise of web-based surveys or a combination of paper-, web-, and phone-based 

surveys. In recent years, the prevalence of smart mobile devices has prompted the 

development of smart phone-based travel survey applications (Cottrill et al., 2013; Fan et al., 

2013; Liao et al., 2017) . The response rates for travel surveys have dropped to about 25 

percent in the last decade (Stopher and Greaves, 2007),  with sampling rates ranging from less 

than 1 percent for large urbanized areas to less than 3 percent for small ones (Stopher and 

Greaves, 2007).  

Since travel surveys are actively solicited and rely entirely on self-reporting by respondents, it is 

widely recognized that short trips, trips made by non-motorized modes, and/or first- and last-

mile trips are often ignored (Wang et al., 2019). There is also increasing nonresponse, either 

because targeted households do not respond to an entire survey or to specific items in a survey. 

Related to the nonresponse issue is the non-representative concern (Wang et al., 2019). The 

fact that nearly all surveys capture only a tiny fraction of the population also adds to the non-

representative concern.  

The above concerns have greatly motivated interest in using passively solicited data to 

supplement or even replace household travel surveys (Chen et al., 2010). As defined by Chen 

et al (2016), passively solicited data are those generated by non-transportation-application 

related primary purposes (e.g., billing, app use) but that can be potentially used for 

transportation planning. Examples include mobile phone data, vehicle GPS data, app-based 

data, social media data, etc. All such data include spatial and temporal information, which forms 

the basis for identifying people’s mobility patterns; they differ significantly from travel surveys (or 

actively solicited data) in a number of aspects.3 Therefore, it is naturally expected that the 

resulting data will have unique characteristics that distinguish them from survey data. In fact, 

because different kinds of passively solicited data (e.g., mobile phone, vehicle GPS, app-based 

data) are generated through different processes, all likely possess their own characteristics.  

This report continues from a previous report by the authors (Chen et al., 2017) in which 

characteristics associated with mobile phone data and vehicle GPS data were investigated and 

compared with household travel survey counterparts. More specifically, we investigated the 

characteristics of an emerging passively solicited data set: app-based data. Unlike mobile 

                                                           
3 Since passively solicited data are not generated through probabilistic sampling plans, terms such as response rate 

and sample size are no longer meaningful. 
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phone or vehicle GPS data generated through a single-sourced positioning technology (cellular 

triangulation for the former and GPS for the latter), app-based data are multi-sourced, meaning 

that a combination of technologies (GPS, WiFi, cellular triangulation, Bluetooth, etc) are used to 

position the devices. This suggests that different methodologies must be used to extract travel 

patterns. The study also showed that the app-based data differed significantly in a number of 

ways from the mobile phone data and vehicle GPS data, as well as data from household travel 

surveys. 

The rest of this report is organized as follows. In Section 3, analysis of emerging data source 

collected via mobile apps (app-based data) is discussed. The app-based data were compared 

with travel survey data that were collected in the same study region and time. Discussions of the 

characteristics of the app-based data, as well as recommendations on their use, are provided. 

Section 4 provides a summary of other data sources from emerging technologies and systems 

in transportation and their potential applications. These include data from connected and 

automated vehicles (CAVs) and new shared mobility services. With an understanding of these 

emerging data sources, Section 5 provides a discussion of the development of a data fusion 

framework, with a goal of producing better quality data and/or more complete data for given 

transportation planning or operational applications. 
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3.0 App-Based Data 
This section discusses the analysis of an emerging data source collected via mobile apps. The 

analysis followed the framework developed by the project team in the first phase of the project 

(Chen et al., 2017) to analyze data properties of different orders. (“Order” here refers to the 

number of activity locations, so that zeroth order properties refer to those related the data 

themselves with no activity location derived, and first and second orders refer to single- and 

two-activity location(s) (or trips), respectively.) More details of such properties for the zeroth, 

first, and second orders can be found in Table 1.4  

Table 1. An overview of the analysis framework. 

Order Properties Contents Variations 

Zeroth 
Order 

General description 
Time period/counts of 
observations/counts of unique 
IDs/spatial distribution of data 

N/A 

Zeroth 
Order 

Location accuracy 
Statistics of location accuracy of all 
data 

Distribution and 
cumulative distribution 

Zeroth 
Order 

Temporal distribution of 
observations 

Distribution of observations across 
one day/number of observations/ 
number of observations per ID 

Daily and weekly 
 

Zeroth 
Order 

Inter-day temporal 
sparsity 

Distribution of the number of days 
observed/distribution of life span of 
unique IDs 

N/A 

Zeroth 
Order 

Intra-day temporal 
sparsity 

The temporal resolution of a 
trajectory/number of trajectories 
revealing their locations across a 
day 

Daily and weekly 

First Order 
Comparison between 
inferred home census 
tracts and census data 

Spatial comparison and correlation 
analysis between inferred home 
census tracts and census data  

N/A 

First Order Activity duration 
Distribution of observed times at 
inferred activity locations 

N/A 

First Order 
Spatial distribution of trip 
ends 

Spatial distribution of extracted trip 
ends 

Weekdays vs 
weekends 

Second 
Order 

Trip rates 
Distribution of trip rates per day per 
anonymous user  

Daily variations 

Second 
Order 

Departure/arrival times 
Distribution of departure/arrival 
times of trips 

Time of the day; 
weekdays vs 

weekends 

Second 
Order 

Trip length/travel times 
Distribution of trip length/travel 
times 

Cumulative 
distribution; weekdays 

vs weekends 

Second 
Order 

Origin-destination 
demand 

Correlations between estimated OD 
demands and PSRC OD demands; 
spatial distribution of OD demands 

N/A 

 

                                                           
4 Note that the list of properties is not identical to that in the first phase of the project (Chen et al., 2017), as some 

properties were no longer applicable to the data sources analyzed in this project.  
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3.1 General Description (Zeroth Order) 
The app-based data analyzed in this study was provided by Cuebiq, location intelligence and 

measurement company that supplies software development kits (SDKs) to mobile app 

developers, providing a privacy-compliant path for anonymous users to opt in to share location 

data. The kits allow developers’ apps to use “Location-Based Services.” About 180 apps were 

included, with functions such as shopping, travel, and navigation. The data provider was said to 

collect app-based data from 61 million monthly active anonymous smartphone users (about 20 

percent of the U.S. population) who opted in to share location data. Each observation in the 

data set contained the device ID of an encrypted anonymous mobile device, a time stamp, a 

location record (in the form of a pair of latitude and longitude coordinates), and the associated 

location accuracy in meters. Table 2 gives a synthetic sample of the observations.  

The time interval between two consecutive observations varied, depending on the usage pattern 

of the mobile phone applications that contributed to data generation, as well as the data 

collection frequency set by the data provider. The location accuracy of observations varied as 

well, depending on the positioning technology used when the data were collected. This could 

range from a few meters when the GPS chip was on to more than 20 meters when apps 

recorded locations using Wi-Fi proximity, assisted GPS (AGPS), Bluetooth proximity, etc 

(Schewel, 2017). In the extreme case scenario, the accuracy could be hundreds or even 

thousands of meters off when observations were recorded using cellular towers.  

Table 2. A synthetic sample of app-based data 

Time stamp Device ID Latitude Longitude 
Location accuracy 

(meters) 

1491398264 4ab844ff98c206b8d7 47.9205809 -122.2535626 5 

1491403834 4ab844ff98c206b8d7 47.9229781 -122.2903396 25 

1491403961 4ab844ff98c206b8d7 47.9222743 -122.2998663 60 

1491412669 4ab844ff98c206b8d7 47.8994576 -122.2915348 60 

1491412963 4ab844ff98c206b8d7 47.8856073 -122.2908753 300 

1491413263 4ab844ff98c206b8d7 47.8850917 -122.2806468 1399 

 

The app-based data used in this report were collected between April 4, 2017, and June 5, 2017 

(63 days). These data were spread out within the Puget Sound region (PSR) among four 

counties: King, Kitsap, Pierce, and Snohomish. Figure 1 shows the spatial distribution of 

observations on a sample day (May 9, 2017). It can be observed that the majority of the 

observations were on the west side of this region (the Seattle area) because of its higher 

population density.  

Figure 2 provides a zoom-in view of the observations in the central PSR on a typical weekday 

during the evening peak (17:00 PM to 18:00 PM), showing clusters of observations along major 

highways. This suggests that observations during peak hours were closely linked to travel 

activities because of the way the data were collected; according to the data provider, 
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anonymous users’ locations were sampled more frequently when they were moving than when 

they were static.  

 

Figure 1. Map. Spatial distribution of observations 

Source: ©OpenStreetMap and contributors. 
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Figure 2. Map. A zoom-in view of the central PSR during the evening peak of a typical weekday  

Source: ©OpenStreetMap and contributors. 

 

Spanning 63 days, the data set contained 462,401 unique device IDs producing 563,038,663 

observations. This 462,401 number was equivalent to about 12.8 percent of the population in 

the Puget Sound region (3,798,902 persons), if each device were considered a resident. Note, 

however, that the underlying population of this data set would also contain many non-residents, 

such as those who visited or passed by the region, as well as those who carried multiple 

devices.  

Figure 3 shows the distribution of the time intervals between two consecutive observations (of 

one ID within a day). Observe that the majority of the observations (84 percent) had time 

intervals of less than 6 minutes.  
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Figure 3. Graph. Time interval distribution between two consecutive observations 

3.1.1 Location Accuracy 

As mentioned earlier, observations were generated by using various positioning technologies. 

Figure 4 shows the distribution of locational accuracies in the data set and Figure 5 is the 

cumulative distribution. One quarter of the observations had an accuracy of less than 5 meters; 

about 85 percent of the observations had an accuracy of less than 100 meters; 93 percent of 

the observations had an accuracy of less than 1,000 meters; and a small percentage of 

observations (about 2 percent) had an accuracy level exceeding 2,000 meters.    
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Figure 4. Graph. Distribution of location accuracy  

 

Figure 5. Graph. Cumulative distribution of location accuracy 
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3.1.2 Temporal Distribution of Observations 

 

Temporal Daily Distribution of Observations 

Figure 6 shows how observations were distributed over a day, with comparisons across different 

days of a week. Two peaks were observed (morning peak and evening peak) on weekdays, and 

one mid-day peak was seen on weekends. In addition, the morning peaks on weekdays were 

lower than the evening peaks, suggesting a lower level of apps usage in the morning. The 

distribution of observations for Fridays was higher after 10:00 AM than on weekdays.  

 

Figure 6. Graph. Distribution of observations within a day (the Week of April 17th) 

 

Temporal Weekly Distribution of Observations 

On average, there were more observations on weekdays than on weekends (Figure 7). Fridays 

had the most number of observations, while Sundays had the lowest, except for Memorial Day 

on May 29th.  

Figure 7 also shows that the number of daily observations suddenly increased on May 9, 2017. 

This may be attributed to the increase in the number of mobile apps from which data were 

collected. More discussion on this can be found in Section 3.4, May 9th Data Shift.  
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Figure 7. Graph. Weekly pattern of observations (Sundays are in open box) 

Location Frequency Update 

As shown in Figure 3, the time interval between two consecutive observations could be several 

seconds, hours, or even days, suggesting that the update frequencies of anonymous users’ 

locations were not uniform. How regularly anonymous users’ locations were updated within a 

day was then investigated. First, a day was evenly divided into multiple time intervals, each 30 

minutes. For each time interval, we then checked to see whether an ID/trajectory revealed its 

location at least once. Figure 8 shows the distribution of the presence of IDs/trajectories at 

different times of a day. These were called location updates.  

 

Weekdays shared similar patterns of having three peaks during a day: morning, noon, and 

evening. This suggests that on weekdays, the locations of the IDs were more likely to be 

revealed during these peak hours than during other times. More IDs were also observed on 

Fridays than on other weekdays. On the other hand, weekend days followed a unimodal 

distribution, peaking in the early afternoon.  

 

The location update patterns in Figure 8 are similar to the temporal distribution of observations 

shown in Figure 6. However, the comparison between the two figures does show one clear 

difference: the morning and evening peaks in Figure 8, with location updates, are less striking 

than those in Figure 6, with only observations, especially for the morning peak. This suggests 

that some anonymous users’ locations were updated at a high frequency during the morning 
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and evening peak periods, leading to the magnified peaks in Figure 6. As shown later in Section 

3.3.2, this phenomenon also affects the departure time distribution within a day. 

 

Figure 8. Graph. Percentage of trajectories with their locations revealed at a time of the day, 
comparing different days in a week. 

 

The evolving pattern of a holiday was also investigated (Memorial Day, May 29, 2017), as 

shown in Figure 9. The holiday temporal pattern was clearly different from the weekday one, 

showing a unimodal distribution that peaked around noon.  

 

Figure 9. Graph. Percentage of trajectories with their locations revealed at different times of a 
holiday.   
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3.1.3 Temporal Sparsity 

In comparison to actively solicited data (e.g., household survey data), passively generated data 

such as app-based data rely on anonymous users’ activity patterns and the update frequency of 

the data provider (that collects the data), and therefore they can be temporally sparse. 

Specifically, for the app-based data, observations are collected only when the apps are running. 

In this report, temporal sparsity was investigated via two measures: inter-day and intra-day 

sparsity, quantifying how an anonymous user’s observations were distributed across different 

days and across different times within a day.  

Inter-Day Temporal Sparsity 

Two factors potentially contributed to inter-day sparsity: 1) visitors or passersby may have 

appeared in the data set for only a short period of time (one day or a few days); and 2) residents 

in the region may not have continuously used the included apps or may have travel out of the 

region during the study period. Figure 10 shows the distribution of the life span of each 

anonymous user (ID), which was defined as the difference between the first and last day that an 

ID was observed. For example, an ID that had its first observation on May 1st and its last 

observation on May 3rd had a life span of three days. It can be observed that 33 percent of IDs 

had a life span of only one day, and 53 percent of IDs had a life span of less than one week. 

This implies that a significant fraction of anonymous users in the data set were either not 

residents or were residents who did not use their apps frequently. On the other hand, 10 percent 

of IDs had a life span for the entire study period (63 days).   

 

Figure 10. Graph. Inter-day sparsity (distribution of life span of unique IDs) 
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Figure 11 shows the distribution of the number of days observed for each ID. As seen in the 

figure, most of the IDs were observed for only a few days: 66 percent of IDs were observed 

fewer than seven days. Differences between the distribution of life spans and the number of 

observed days can also be observed, suggesting that most anonymous users did not use their 

apps continuously. For example, although 12 percent of IDs had a full life span (63 days), only 3 

percent of IDs had observations every day5. Additionally, while 12 percent of anonymous users 

were observed for two days, only half of them had a two-day life span. This means that the 

other half of anonymous users had a life span of longer than two days (e.g., an anonymous user 

may have had her first and last observation on May 1st and 3rd, but no observations on May 2nd, 

resulting in a three-days life span and two observation days).  

 

 

Figure 11. Graph. Inter-day sparsity (distribution of number of days observed)  

 

Intra-day Temporal Sparsity 

For the days with data observations, we further investigated how these observations were 

distributed within each day. Figure 3 shows that most time intervals (84% percent) between two 

                                                           
5 A spatial distribution of these users is provided in Appendix C.  
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consecutive observations were less than 6 minutes. However, this does not necessarily mean 

that anonymous users’ locations were being recorded continuously throughout the day. Instead, 

as shown in Figure 6, observations were likely to cluster during the morning and evening peak 

hours while being absent during other times.  

To capture the potential data sparsity within the day, a day was divided into 48 time-slots (30 

minutes for each slot). For trajectoryid (the sequence of observations of user i on day d), we 

defined its temporal resolution φid as the number of time slots in which this user was observed 

at least once (i.e., φid∊[1,48]). Note that only the days with observations were considered. Figure 

12 shows the distribution of φid, for all trajectories. Here, one user may have contributed more 

than one trajectory, depending on the number of days that he/she was observed. The median 

was 10 slots, indicating that half of the trajectories had no more than 5 hours, with their 

locations revealed on average within a day. Only 0.4 percent of trajectories had their locations 

observed at each time slot (i.e., every 30 minutes).  

 

Figure 12. Graph. Distribution of temporal resolution of all (daily) trajectories. 
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3.2 First-Order Properties 
In this section, the properties of stays identified from the data are further explored, including the 

time spent at stays (activity durations), their spatial distribution, and associated departure times. 

Passively generated for non-transportation purposes, app-based data need to be processed to 

identify stays6. In this study, the properties of extracted stays and trips were compared with 

those from a household travel survey data. The survey data were collected by the Puget Sound 

Regional Council (PSRC) during the same period that the app-based data were generated in 

the spring of 2017. The survey data contained 6,254 persons residing in 3,285 sampled 

households in the Puget Sound region (Michalowski, 2017).   

3.2.1 Identifying Home Census Tracts 

Since the PSRC household travel survey was a sample of residents only, the non-

residents in the app-data needed to be removed first for comparison. The home census 

tract for an anonymous user was defined as the census tract with the most frequent 

visits during the evening (22:00 PM to 6:00 AM the next day). In this study, this was 

defined as at least eight visits during the entire two-month study period, representing an 

average of at least one visit per week.  

Figure 13 shows that the spatial distribution of inferred home census tracts was similar to the 

population estimated by the American Community Survey (2015 American Community Survey). 

With a Pearson correlation coefficient of 0.91 at the census tract level, Figure 14 shows that the 

estimated density of home census tracts scaled well with the population represented by the 

census.  

                                                           
6 Details on how to identify stays and extract trips from the app-based data are provided in Appendix A.1 
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Figure 13. Map. Comparison between home census tracts inferred from the app-based data and 
the population from the census. (a) Inferred home density at census tract level and (b) Census 

population density. 

Source: ©ArcMap Desktop. 
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Figure 14. Graph. Correlation between inferred home census tracts and census population at 

census tract level.  

Among all the anonymous users in the app-based data, about 24 percent of them (110,889) had 

a home census tract inferred, equivalent to about 3 percent of the population in the Puget 

Sound region. This is much higher than the 0.21 percent sampling rate for the PSRC household 

travel survey. The sample sizes can be further compared at the census tract level. For each 

tract, the sample size of the app-based data was calculated as the ratio between the number of 

inferred residents and the population residing in that tract. Figure 15 compares the distribution 

of tract-level sampling rates for the app-based data with the distribution from the survey data. It 

shows that for most tracts, the sampling rates for the app-based data were larger than those of 

the survey data. More specifically, 84 percent of the sampling rates for the app-based data 

ranged between 1 percent and 5 percent. On the other hand, about 89 percent of the sampling 

rates for the survey data were less than 1 percent. Interestingly, the sampling rates for the app-

based data showed an extended triangle distribution.  
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Figure 15. Graph. Distribution of scaling factor  

3.2.2 Activity Duration 

Users’ trajectories are typically filled with travel activities on the road and stays at activity 

locations. Activity duration describes how long a subject stayed at certain place for an activity. 

Because of the temporal sparsity discussed above, as demonstrated in Figure 16, the observed 

arrival time from one activity location may not be the actual arrival time. This is also true for the 

observed departure time. Therefore, the observed activity duration, which is defined as the time 

difference between the observed departure and arrival time, could potentially be an inaccurate 

estimation of the actual activity duration (often the estimated duration is shorter than the actual 

duration (Figure 16)). For the same reason, the estimation of travel time is also not accurate 

(often an overestimation), as is shown in Section 3.3.3.  

 

 

Figure 16. Illustration. Activity duration and a demonstration of the biased estimation. 
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Figure 17 gives the distribution of activity durations inferred from the data and compared with 

those from the PSRC survey data. Both distributions showed a consistent decay for activity 

durations of less than 8 hours. Three observations can be made. First, short stays (of less than 

an hour) were more represented in the apps data than in the survey data. Second, stays of 

medium duration (between 3 and 6 hours) were also more pronounced in the apps data than in 

the survey. Third, stays of long duration (more than 8 hours) were more under-represented in 

the apps data than in the survey. Several factors may have been at play:   

1) Short trips (e.g., visiting a coffee shop) during a long stay (e.g., at a workplace) may 

have been under-reported in the survey data (Wolf et al., 2003).  

2) Signaling noise in the app-based data may have been falsely identified a single stay as 

multiple stays with movements between them.  

3) Underestimated activity duration may have been due to the lack of observations at true 

activity starting times and ending times (see Figure 16), which was especially the case 

for the third observation stated above.  

The third factor also explains the reason why long trips (in terms of travel times) were over-

represented in app-based data (see Section 3.3.4, Figure 25). For the app-based data, no clear 

differences could be observed in the distribution of activity duration between weekdays and 

weekends. 

 
Figure 17. Graph. Activity duration observed from PSRC survey and app-based data  
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3.2.3 Spatial Distribution of Extracted Trip Ends 

this subsection shows the spatial distribution of the extracted trip ends. In this report, terms such 

as trip ends and stays are interchangeable, as we defined a trip as a pair of two consecutive 

stays. Figure 18 illustrates the spatial distributions of trip ends on a typical weekday morning, 

showing travel demands concentrated in city centers such as downtown Seattle, Tacoma, and 

Bellevue.  

 

 

Figure 18. Graph. Spatial distribution of trip ends on a weekday morning. 

Source: ©ArcMap Desktop. 
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Figure 19 illustrates the differences in trip ends between weekdays and weekends. More trip 

ends were observed in downtown Seattle, Bellevue, Everett and Tacoma on weekdays than on 

weekends (shown in red dots).  

 

Figure 19. Graph. Spatial distribution illustrating where more trip ends are observed on 
weekdays than that on weekends (in TAZ)  

Source: Esri, HERE, Delome, Mapmyindia, ©OpenStreetMap contributors.
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3.3 Second-Order Properties 
Once trip ends had been identified, their connections, or a trip, could be inferred. Furthermore, 

by deriving individual trips, the origin and destination could be established for each trip. They 

could then be aggregated to estimate the travel demand for a region. 

3.3.1 Distribution of Trip Rates 

Trip rate was defined as the number of trips a person conducts in a day. Figure 20 shows the 

trip rate distribution inferred from the app-based data in comparison to that from the PSRC 

survey data. It can be observed from the app-based data that 14 percent of users did not 

generate any trips while approximately 36 percent of users generated one to two trips per day. 

In comparison, the PSRC survey data showed that: 1) a trip rate of 2 was most frequently 

observed; and 2) 11.5 percent of user-days had zero trips and about 1.8 percent had one trip.  

The mean trip rate was 3.23 for the app-based data, less than the 4.4 estimate from the survey 

data. Those conducting a single or no trip in a day were overestimated by using the app-based 

data, while those conducting more than one trip were underestimated. This was likely due to the 

temporal sparsity issue of the app-based data as discussed in Section 3.1, as some of the trips 

were not captured in the data (i.e., missing trips). Short trips, whose trip ends were close in 

space, may also have been missed because of location uncertainty.  

 

Figure 20. Graph. Distribution of trip rates 

The average daily trip rates of the app-based data are shown in Figure 21. Consistent weekly 

patterns can be observed. 1) From Mondays to Thursdays, the average numbers of trips per 
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person-day were similar. 2) More trips were observed on Fridays. 3) Weekends had fewer 

numbers of trips, with Sunday having the least. Additionally, fewer trips were made on holidays 

(e.g., Memorial Day). 

 

Figure 21. Graph. Weekly trip rate pattern 

3.3.2 Trip Departure Times Distribution  

Figure 22 compares the distribution of departure times inferred from the app-based data and 

that obtained from the survey data. The PSRC distribution showed two peaks (8:00 to 10:00, 

16:00-18:00), corresponding to morning and afternoon peak commute periods. The distribution 

from the app-based data showed that both morning and evening peaks were greatly mitigated. 

On the other hand, the weekend distribution for the app-based data was single-peaked and 

extended into the afternoon. The arrival time distributions are not presented in this report, as 

they were similar to the departure time distributions. 
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Figure 22. Graph. Departure time distribution 

3.3.3 Trip Length and Travel Time  

Figure 23 shows the distributions of trip distances (in kilometers) for the app-based and PSRC 

survey data. The two are quite consistent with each other despite the much larger variance for 

the PSRC curve because of its small sample size. This figure again shows that there was more 

over-representation of short trips (of less than 500 meters) in the apps data than in the survey 

data. In addition to the reasons discussed previously (e.g., under-reporting of short-trips in the 

survey data; or some signaling noises in the apps data that may have been mistakenly identified 

as trips), the issue could also have been due to the fact that trip distances were calculated as 

Euclidean distances in this study, which typically are shorter than real-world trip distances in a 

road network (e.g., those recorded in the survey data).   

From the cumulative curve (Figure 24), it can be observed that about 70 percent of trips were 

shorter than 10 kilometers, while nearly 50 percent of trips were between 1 and 10 kilometers. 

Distributions on weekends are not presented, as they were not distinguishable from weekdays.   
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Figure 23. Graph. Distribution of travel distance  

 

 

Figure 24. Graph. Cumulative distribution of travel distance  
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Figure 25 shows the distribution of trip times. Short travel times (of less than 25 minutes) tended 

to be under-represented, and longer travel times (longer than 25 minutes) tended to be more 

over-represented in the apps data than in the survey data. The difference is more pronounced in 

Figure 26. This was consistent with the results of activity durations and trip rates, which can be 

explained by Figure 16. 

 

Figure 25. Graph. Distribution of travel times  
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Figure 26. Graph. Cumulative distribution of travel times  

3.3.4 Estimated travel demand 

When individual trips are aggregated to the zone level, then origin-destination patterns can be 

analyzed. Note that the OD trips observed directly in the app-based data were not comparable 

with the metropolitan planning organization (MPO) OD trips, as the latter attempts to capture all 

trips in a region, whereas the former represented only users who appeared in the data. 

Therefore, a scale-up OD estimation method was developed to estimate the OD demand for all 

trips from the app-based data (see Appendix B). The MPO OD matrix used in this research was 

obtained from SoundCast (2014 base year), which is a travel demand model built for the Puget 

Sound region. This OD matrix contained only the internal trips (trips completed within the PSR) 

by residents. 

Figure 27 shows the spatial distribution of trip origins estimated from the app-based data and 

SoundCast. The traffic analysis zones (TAZs) generating a large number of trips were 

concentrated in several specific areas: major university campuses (University of Washington), 

major airports (Sea-Tac International Airport), downtown areas (Seattle, Bellevue), and major 

high-tech campuses (South Lake Union – Amazon Campus). In comparison to the PSRC model 

results (Figure 27-b), a majority of zones with larger numbers of generated trips correlated with 

the app-based data estimation results, suggesting that the app-based data were able to capture 

regional travel demand to some degree. The spatial distribution of trip destinations was similar 

to that of trip origins and therefore is not presented in this report. 
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Figure 27. Map. Spatial distribution of trip origins. (a) Estimated results from app-based data, (b) 
SoundCast results 

Source: ©ArcMap Desktop  

The correlation between estimated values and SoundCast results at the TAZ level is shown in 

Figure 28. Overall, the linear regression between estimated trips and MPO model trips had an 

R-squared value of 0.5049, which is slightly lower than the results generated by vehicular GPS 

data (0.588) (Chen et al., 2017;). Similar observations were found from the correlation for the 

trips heading to TAZs and are therefore not presented in this report.  

Figure 29 shows the correlations between estimated OD demands and PSRC OD demands, 

which is lower (0.3636) than if only origins were compared (0.5049). This suggests that one 

should be cautious when directly using the app-based data for capturing a region’s origin-

destination travel patterns.  
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Figure 28. Graph. Correlations between estimated trip origins and MPO trip origins 

 

Figure 29. Graph. Correlations between estimated OD demands and PSRC OD demands 
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3.4 May 9th Data Shift 
As mentioned in Section 3.1.3, a sudden change in the data set occurred starting on May 9th. 

We called this phenomenon the “May 9th data shift.” One or more factors may have contributed 

to this phenomenon: (1) As the data were from various apps, the data provider may have 

obtained access to more apps on May 9th. (2) The number of available apps did not change, but 

the number of users contributing to the data may have increased. (3) Neither the number of 

apps nor the number of users may have changed, but apps may have enhanced their services 

by requesting the locations of their users more frequently. (4) Neither the number of apps nor 

the number of users may have changed, but usage patterns may have changed (i.e., users 

started using apps more frequently). The fourth possibility may be quickly dismissed, as it is 

unlikely that all users collectively changed their usage patterns within a day.  

Figure 30 shows the temporal evolution for the daily number of unique IDs. A slight 3 percent 

increase can be observed on May 9th, in comparison to the previous day, May 8th. The number 

of observations per ID by day is shown in Figure 31. In comparison to the previous day, the 

number of observations per ID increased by 33 percent and remained at this level for the rest of 

the study period. Figure 30 and Figure 31 together suggest that the increase in data size 

starting on May 9th was most likely attributed to the data provider obtaining more observations 

from each device. We later confirmed with the data provider that on May 9th, more app 

developers signed up for its SDK, resulting in more apps contributing to its data collection (per 

device). This indicates that the passively solicited data, such as the app data studied here, are 

dynamic and constantly changing. As a result, their data properties also need to be investigated 

periodically; see the discussion section for more details. 

 

Figure 30. Graph. Evolution of daily number of unique IDs (zeroth order) 



Promises of Data from Emerging Technologies for Transportation Applications:  
Puget Sound Region Council Case Study 
 
 
 

October 2018  50  

 

Figure 31. Graph. Evolution of daily number of observations per ID (zeroth order) 

Figure 32 shows the temporal evolution of location accuracy, using three statistics: the 1st, 2nd 

and 3rd quartile. While the 2nd quartile showed no change before or after May 9th, the 1st quartile 

decreased and the 3rd quartile increased. Because location accuracy is linked to the 

technologies used for data collection, the broader distribution also suggests an increased 

variety of the data in terms of location accuracy after May 9th. The implications are discussed in 

Section 3.5.  
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Figure 32. Graph. Evolution of location accuracy (zeroth order) 

Figure 33 shows reduced time intervals between two consecutive observations (i.e., denser 

observations) after May 9th. Conversely, Figure 34 shows the evolution of temporal sparsity, 

which is represented by the number of time slots (30 minutes for each slot) that had at least one 

observation. The slight increase in the temporal sparsity suggests that a significant 

increase in data size did not necessarily significantly reduce the temporal sparsity of the 

data. 
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Figure 33. Graph. Evolution of time interval (zeroth order)  

 

Figure 34. Graph. Evolution of temporal sparsity (zeroth order) 

The rest of this section describes more analyses conducted to examine how the increase in 

data size influenced first- and second-order properties. 
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As shown in Figure 35, no clear difference could be observed between activity durations (first-

order property) before and after May 9th. However, the mean trip rate (second-order property) 

increased from 3.11 before May 9th to 3.37 after May 9th, as shown in Figure 36. The figure also 

shows that after May 9th, the trip rate distribution showed a pattern more similar to the PSCR trip 

rate distribution, e.g., the percentage of higher trip rates increased, and the percentage of lower 

trip rates decreased. This could be due to the fact that some missing trips in the before data 

were now revealed in the after data with more observations. The improvements in trip rates after 

May 9th, however, was not significant, given the significant increase in the number of 

observations (per ID) in the after data set.  

 

Figure 35. Graph. Comparison of activity duration (first order) before and after May 9th 
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Figure 36. Graph. Comparison of trip rate (second order) before and after May 9th  

Figure 37, Figure 38, and Figure 39 compare the distributions of departure time, trip length, and 

travel time before and after May 9th, respectively. No major differences were identified except for 

a slight difference in the distribution of travel times. The distribution of travel times for after May 

9th was closer to that calculated from the PSRC survey data. Again, similar to the trip rate 

distribution in Figure 36, the improvement was fairly mariginal.  

In summary, we conclude that after May 9th, the  average oberservations per device increased 

substaintially (about 33 percent, which however led to either unchanged or only minor 

improvements iin properities (especially the first- and second-order properties). For this reason, 

the data properties presented in Sections 3.1 – 3.3 were calculated from the entire data set. 
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Figure 37. Graph. Comparison of departure time distributions (second order) before and after 

May 9th 

 
Figure 38. Graph. Comparison of cumulative distributions of trip length (second order) before 

and after May 9th 
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Figure 39. Graph. Comparison of cumulative distributions of travel time (second order) before 

and after May 9th 

 

3.5 Summary 
Connecting to our previous report (Chen et al., 2017), this section provides a summary of the 

major findings based on the five data sets (big and small) that we have analyzed. The five 

datasets included the following:  

 2002 mobile phone data for the Buffalo-Niagara region;  

 corresponding household travel survey data for the Buffalo-Niagara region;  

 app-based data for the Puget Sound region;  

 the corresponding Puget Sound household travel survey data; and  

 vehicular GPS data for part of the Seattle downtown area.  

Table 3 gives an overview of these data sets7. 

Table 3. Summary of datasets 

Datasets 
Study 
period 

Study area 
Number of 
samples 

Sampling rate 

                                                           
7 The vehicular GPS data were for a small area of the City of Seattle. The analysis results were not very applicable to 

travel patterns for the region. Therefore Table 3 does not include this data set.  
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App-based 
data 

April 4th-
June 5th 
2017 

Puget Sound Region 
(Washington State, 
US) 

462,401 unique 
IDs 

11.9% (# of people 
sampled divided by 
the population, 2015 
PSRC) 

Mobile phone 
data 

April 2014 
Buffalo-Niagara 
Region (New York 
State, US) 

933,508 users 

82.2% (# of people 
sampled divided by 
the population, 2010 
Census) 

2017 PSRC 
household 

travel survey 
data 

April-June 
2017 

Puget Sound Region 
(Washington State, 
US) 

3,277 households; 
6,235 persons 

0.16% (# of people 
sampled divided by 
the population, 2017 
PSRC) 

2002 Buffalo-
Niagara 
regional 

transportation 
survey data 

2002 
Buffalo-Niagara 
Region (New York 
State, US) 

2,779 households; 
6,636 persons 

0.59% (# of people 
sampled divided by 
the population, 2000 
Census) 

 

We can further summarize the characteristics of the five data sets (also see Table 4) as follows:  

 Big data: passively generated data from billing, app usage, and other primary purposes 

that can be used for transportation planning applications (Chen et al., 2016); large data 

size covers a significant portion of a population in a region.  

o Mobile phone data: traces generated as users make phone calls and 

send/receive text messages; single-sourced positioning technology relying on 

triangulation of cellular towers, with an accuracy level ranging from a few 

hundreds to thousands of meters (Calabrese et al., 2011; Chen et al., 2016; Iqbal 

et al., 2014). 

o Vehicle GPS data: traces generated as vehicles (trucks and passenger cars) 

equipped with GPS operate; single-sourced positioning technology relying on 

GPS, with an accuracy level of a few meters (Chen et al., 2017).  

o Apps data: traces generated as users use various apps on smart phones; multi-

sourced positioning technology relying on GPS, Wi-Fi, and cellular towers.  

 Small data: actively solicited from targeted participants through a probabilistic sampling 

process in a well-defined target population; small sample sizes ranging from 0.5 percent 

to 1 percent.  

o Buffalo-Niagara household travel survey data: respondents were asked to report 

all trips and associated attributes (origins and destinations in exact addresses or 

closest intersections, departure and arrival times, mode of transportation, travel 

times, etc.); single-source positioning technology relying on user-reported 

addresses that were then translated into geo-coordinates. 

o Puget Sound region household travel survey data: respondents were asked to 

report all trips and associated attributes (origins and destinations in exact 

addresses or closest intersections, departure and arrival times, mode of 
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transportation, travel times, etc.); single-source positioning technology relying on 

user-reported addresses that were then translated into geo-coordinates8.  

As the two small household travel survey data were similar in nature, we grouped them into one 

type, together with the three types of passively solicited data (often big). These four types are 

presented in Table 4, which summarizes their unique, key characteristics in pro and con 

categories.  

Table 4. Pros/cons of different data 

Data type Pros Cons 

App-based 

data 

Large size; higher observational 

frequency; mixed GPS, WiFi, Bluetooth, 

and cellular tower positioning; presence 

of trace information; inexpensive; 

continuous 

Non-probabilistic samples; missing 

trips/activities; no demographics 

information; unknown underlying 

population 

Mobile 

phone 

data 

Large size; presence of trace 

information; inexpensive; continuous 

Lower observational frequency; lower 

positioning accuracy; Non-probabilistic 

samples; missing trips/activities; no 

demographics information; unknown 

underlying population 

Vehicular 

GPS data 

Large size; higher observational 

frequency; high positioning accuracy; 

presence of trace information; 

continuous 

Non-probabilistic samples; missing 

trips/activities; no demographics 

information; unknown underlying 

population; only for vehicular travels 

Household 

travel 

survey 

data 

Probabilistic but small samples; 

designed to be representative; rich 

information on activity and travel 

patterns; with demographics and 

attitudinal information 

Lack of trace information on routes; 

Lack of information for non-residents; 

expensive; infrequent data collection; 

static information 

 

Clearly, small data are often collected via a rigorously designed sampling/collection process 

targeting a specific population. In other words, they are designed to be representative of the 

underlying population. Big data (or more precisely passively solicited data), however, are mostly 

the by-product of certain primary purposes, which usually do not follow any well-designed data 

collection process, and hence the collected data are often not representative. On the other 

                                                           
8 There was a separate, much smaller, GPS-only sample in which respondents were asked to download a GPS app 

onto their phones, and the app recorded all traces and interacted with respondents to verify trip-related attributes. At 

the time of the writing of this report, this sample had not yet been obtained and therefore was not included in this 

report. It may be analyzed in future phases.  
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hand, small data are often static (i.e., collected every 5 to 10 years), cover a tiny fraction of the 

underlying population, and lack trace information on routes, whereas big data surpass the small 

survey data with their volume and continuity, and can contain more complete information on 

short trips and routes that are often neglected in survey data. Another unique feature of big data 

is that they are good at showing “what happened” but not “why that happened,” whereas small 

data are behaviorally much richer and can help explain the fundamental reasons underlying 

observed travel phenomena. 

The above differences between the big, passively solicited data and small data contribute to the 

overall properties of the data (i.e., zeroth order) and the travel-related metrics derived from the 

data (i.e., first and second order). Below we first summarize the similarities and differences 

across the data sets regarding the zeroth order. Again the results from the vehicular GPS data 

are not included here because of the limited study area. 

- Sampling rate. Both data sets (i.e., mobile phone data and app-based data) had a high 

sampling rate in comparison to the region’s population (e.g., 11.9 percent for app-based 

data and 82.2 percent for mobile phone data), while the sampling rates for the survey data 

were much smaller (0.16 percent for the PSRC travel survey and 0.59 percent for the 

Buffalo travel survey). Note that the “sampling rates” for these two datasets are not 

statistical sampling rates; rather, they should be interpreted as some form of “market 

penetration” of the devices. It is also important to note that the underlying populations for the 

big, passively solicited data are likely very different from the resident populations for 

household travel surveys: the vast majority of users in the two big datasets were observed 

only for very short periods, suggesting that they may not have been residents or may have 

been residents but not actively using their mobile phones or mobile apps.  

- Intra-day temporal sparsity. As shown in Figure 40, on weekdays, the app-based data had 

three small peaks within a day, whereas the mobile phone data showed two peaks. From 

midnight to early morning, the fraction of IDs in the app-based data was much larger than 

that of the mobile phone data. This is inherently related to the underlying data generation 

process: app-based data are derived from apps usage whereas mobile phone data are from 

phone calls and text messages. During the night and early morning, the number of phone 

calls and text messages largely subsided while app use was still substantial (around 25 

percent). In addition, one can observe that most usages in the app-based data and mobile 

phone data (either weekdays or weekend) occurred between 9:00 AM and 8:00 PM, 

whereas traffic usually has distinct early morning and afternoon peaks. This indicates that if 

the derived patterns from the mobile phone and the app-based data are used for travel 

pattern analysis, one needs to be cautious because mobile apps or mobile phone data show 

only device usage, not necessarily user travel intensity. It is clear that the temporal sparsity 

feature of the passively solicited data has direct impact on the accuracy of the activity 

locations (stays) derived from the data, and the resulting travel patterns estimated from the 

data (see Figure 16). 
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Figure 40. Graph. Fraction of IDs with their locations revealed at time of a day  

- Weekly pattern of the number of observations. Both the mobile phone and the app-based 

data sets showed a consistent weekly pattern, as shown in Figure 41, suggesting that both 

data sets were good candidates for weekly trend analysis. Generally, weekdays had more 

observations than weekends, and Sundays had the least.  In addition, the drops in phone 

calls were slightly more severe than those for app use. The drops of the two curves imply 

that on weekends people tended to make fewer phone calls, send fewer messages, and 

make less use of mobile apps.  
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Figure 41. Graph. Fraction of observations within the week  

- Location accuracy. The location accuracy of the app-based data was generally much higher 

than that of the mobile phone data, according to the cumulative distribution of data location 

accuracy (see Figure 42). For example, the 85th percentile of location accuracy for the app-

based data was 100 meters, while this statistic for the mobile phone data was about 700 

meters. From 700 to 2400 meters, the two curves increase at a similar rate, indicating that 

both data sets had similar distributions for data accuracy in the range of 700 to 2400. This is 

probably due to the fact that both data sets were the produce of similar positioning 

technology at this accuracy range (e.g., cellular tower technology).  

The overall properties of the big, passively solicited data, especially the temporal sparsity and 

location accuracy, largely determine how accurate the identified activity locations from the data 

can be in comparison to ground truth or certain benchmarks (e.g., those from travel surveys). As 

shown in Figure 16, because of temporal sparsity and inaccurate location information, certain 

activity locations may be missed or the arrival/departure times may be incorrectly identified. This 

leads to underestimation of activity durations and trip rates and overestimation of trip travel 

times. As for OD demands, because the big, passively solicited data are not expected to 

represent the underlying population well, the correlation between big data-derived OD demands 

and the benchmark OD demands are mediocre in most cases. More detailed comparisons 

regarding the first- and second-order properties are summarized as follows: 
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Figure 42. Graph. Cumulative distribution of data location accuracy  

- Activity duration. The app-based data set yielded about 48 percent of the durations of less 

than one hour, corresponding to about 40 percent from the PSRC travel survey. The reverse 

seemed to be true for the mobile phone data: about 32 percent of activities were identified 

from the mobile phone data lasting less than one hour, corresponding to 40 percent from the 

Buffalo travel survey. In addition, there seemed to be an over-estimation of activities lasting 

between 2 and 6 hours for the app-based data and an underestimation of activities lasting 

between 7 and 14 hours for the mobile phone data in comparison to their corresponding 

survey data. The deviations of activity durations estimated from app-based and mobile 

phone data sets may be attributed to several factors, including the temporal sparsity of the 

two data sets, representativeness issues of the data (i.e., only the data from specific 

population were collected), and the fact that the big, passively solicited data sources can 

help identify short trips (e.g., a trip to a coffee shop near the work place) that are typically 

not reported in travel survey data.  

 

- Home census tract correlation. Correlation between the number of inferred residents from 

both passively solicited data sets and the population statistics at the census tract level were 

0.91 for the app-based data and 0.43 for the mobile phone data. The higher correlation of 

app-based data demonstrates their better capability to infer home census tracts which is 

crucial for regional travel pattern analysis, than mobile phone data. The difference between 

the two may be due to the following two reasons: 1) the generally lower accuracy of mobile 

phone data makes it harder to correctly identify home census tract; and 2) app-based data is 

also temporally less sparse than mobile phone data. 
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- Trip rate. For both passively solicited data sets, the estimated trip rates were significantly 

lower than those obtained from survey data. For the app-based data, the estimated mean 

trip rates (per day) were 3.23 for weekdays in comparison to 4.40 from the PSRC survey 

data. For the mobile phone data, the estimated mean trip rates (per day) were about 1.78 for 

weekdays in comparison to 3.89 from the Buffalo travel survey data for weekdays. Both 

passively solicited data sets experienced under-estimation bias, although to a lesser degree 

for the app-based data. Note that although survey data are not “ground-truth,” they are 

believed to have less significant bias issues than passively solicited data because of their 

distinct, controlled data collection process. Hence they were used as a benchmark for 

comparison.  

 

- Departure time. Both surveys clearly showed three peaks in the morning at 8:00 AM, at 

noon, and in the afternoon between 3:00 and 5:00 PM, reflecting peaks in travel patterns 

(morning commute peaks, noon for lunch breaks, and afternoon commute peaks). For both 

big, passively solicited data sets, they were consistent with the surveys only in the afternoon 

peak. 

 

- Travel time. The cumulative percentage of trips from both surveys shared similar patterns in 

terms of travel times, as shown in Figure 43. For shorter travel times (0-100 minutes), the 

two survey curves grow much faster than those of the app-based data and mobile phone 

data, indicating that a much smaller percentage of users in the survey data had long travel 

times, or survey participants tended to ignore/forget shorter trips when participating in the 

survey, or both. Substantially more short-time trips were captured by the app-based data 

than by the mobile phone data. This finding is consistent with much the lower trip rate 

derived from the mobile phone data than the app-based data and the higher levels of 

temporal sparsity observed for the mobile phone data. 
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Figure 43. Graph. Cumulative distribution of travel times (four data sets) 

- Correlation between MPO OD and estimated OD. The correlation between the estimated 

OD of the app-based data (0.36) and the MPO OD was less than that for the mobile phone 

data (0.66) (Chen at al., 2017). Both are considered low, indicating that the estimated OD 

demands from passively solicited data do not sufficiently represent MPO demand matrices. 

Therefore, it is not advisable to use OD demand matrices developed directly from the big, 

passively solicited data sources. More research and investigations are needed to further 

study the data properties and develop more sophisticated OD estimation methods to 

produce better representative OD matrices from passively solicited data sources.   

3.6 Discussion 
Within the short, one-year period from the last study (Chen et al., 2017), during which mobile 

phone and vehicle GPS data were studied, to this study in which apps data were studied, the 

technologies used for data generation evolved in at least two aspects. First, the scope of user 

activities greatly expanded from just phone calls and text messages for mobile phone data to 

the use of many different apps for app-based data. Second, the positioning technology also 

evolved from being single-sourced (e.g., either cellular towers or GPS) for mobile phone or 

vehicle GPS data to multi-sourced (cellular towers, GPS, WiFi, and Bluetooth) for the apps data. 

Consequently, as shown in our last and this report, both spatial and temporal properties 

associated with the data, in particular, locational accuracy and temporal sparsity, improved. 
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Changes in these properties allowed us to connect to the underlying population better and to 

capture travel patterns in a more accurate and complete way, as reflected by the high 

correlation between inferred residents and the census population density (0.91 in Figure 14), an 

estimated average trip rate that was much closer to that of the household travel surveys (3.23 

from apps data vs 4.40 from PSRC travel survey data, in comparison to 1.78 from mobile phone 

data vs 3.89 from Buffalo travel survey data), and the identification of both morning and 

afternoon peaks in the apps data (although delayed) in comparison to a single afternoon peak 

shown in the mobile phone data. Despite these improvements, however, the analyses in this 

report also showed that significant discrepancies still exist in comparing the travel patterns (e.g., 

trip rates, OD demands, etc.) estimated from the big, passively solicited data (e.g., app-based 

data) and those from other, potentially more representative, data sources (such as survey data, 

as shown in Table 4).   

It is clear that the changes in the technologies used to generate the big, passively solicited data 

and consequently their associated spatial and temporal characteristics (zeroth order properties) 

have an important effect on a set of metrics we are interested in for planning purposes (first and 

second order properties). Consequently, four important questions arise, and they are discussed 

in the remainder of this section.   

As the underlying data generation process changes lead to changes in spatial and temporal 

properties, as well as changes in trip related metrics, how shall we interpret the resulting 

changes?  

As noted earlier, the change from mobile phone data to app-based data resulted in a closer 

resemblance to household travel survey data for trip rates (3.23 from apps data vs 4.40 from the 

PSRC travel survey data, in comparison to 1.78 from mobile phone data vs 3.89 from the 

Buffalo travel survey data). And correlation with population density at the census tract level 

increased from 0.43 to 0.91. Clearly, improvement in data quality both in terms of locational 

accuracy (Figure 4) and temporal sparsity (Figure 12), resulting in more accurate calculation of 

metrics such as home census tracts and trip rates. But questions still remain: for frequency of 

observations, is the higher the better? Or is there a threshold after which the bias of under-

estimation becomes that of over-estimation? In our discussion on the May 9th data shift (Section 

3.4), we showed that from before to after May 9th, there was a 33 percent increase in the 

number of observations per ID (Figure 31) and consequently an improvement in temporal 

sparsity (Figure 34). The average trip rate consequently increased from 3.11 to 3.47, edging 

closer to the 4.4 from the household travel survey data. However, the difference was not 

apparent for activity duration (Figure 35), departure time (Figure 37), or trip length (Figure 38) 

distributions9. Given these observations, we provide a few responses to the above question. 

First, when temporal sparsity is relatively low (which is the case for both mobile phone data and 

app-based data) and locational accuracy is low (which is the case for mobile phone data), 

improvements in both will draw metrics closer to the ground truth, and this is in particular the 

case for locational accuracy. Second, however, as temporal sparsity continues to increase, the 

                                                           
9 The cumulative distribution for trip length (Figure 39), however, also indicated that the curve after May 9th was 

closer to that of the PSRC survey data.  
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marginal benefit decreases. In fact, beyond a certain threshold, we expect the positive benefit 

can turn negative, although this will require future research. Third, improvements in different 

metrics may vary, as shown in trip rate, activity duration, departure time, and trip length.  

Reversely, one may also wonder about the likelihood that the improvement in trip rate 

estimation using data after May 9th (as compared to data before May 9th) was due to chance 

instead of increases in the number of observations and thus temporal sparsity. On the basis of 

what we learned from both the mobile phone data and the app-based data, it is extremely 

unlikely that the improvement observed in trip rate estimation was due to pure chance. From 

both data sets, we observed that first, under-estimation of trip rates is common in passively 

solicited data sets because of the temporal sparsity issue; and second, an initial increase in trip 

rate is present as temporal sparsity improves. It is worth noting that this assessment specifically 

applies to trip rate estimation, as the effects on other metrics are more complex. As shown in 

our analyses, increases in the number of observations appear to have little to no impacts on 

other metrics.   

Can we be more proactive in estimating trip-related metrics as the technologies and other 

circumstances underlying the passively solicited data generation process change over time? 

As evidenced from the sudden increase in the number of observations per ID after May 9th in 

the app-based data, the technologies used to generate the big, passively solicited data will 

inevitably change. Consequently, the associated data properties will change, as well as the 

estimated metrics we are interested in. While it is important to monitor how they may change 

over time, it is also an interesting question to ask whether we can be ahead of the changes by 

predicting the consequences of the changes, such as what we observed in the May 9th 

phenomenon. This question points to important future research directions that seek to establish 

linkages between zeroth order properties (data properties such as locational accuracy and 

temporal sparsity) and first- and second-order properties. Understanding the nature of these 

linkages will give us predictive capability. 

How do we deal with the issue that the passively solicited data lack ground truth?  

As noted in Chen et al. (2014, 2016), because of the uncontrolled data generation process 

associated with passively solicited data, validation of the inferred statistics from the data is 

critically important. And yet, there is no ground truth data for most of the trip-related metrics. 

Therefore, frequently household travel surveys are used for validation purposes. Although they 

represent a very important first step in the right direction, note that the inferred results at the 

individual level can have large errors even though a high level of accuracy is observed at 

the aggregate level. The paper by Chen et al ( 2016) discussed a number of ways to accomplish 

additional validation, including the use of simulation data (Chen et al., 2014), collection of small 

sample GPS/survey data, and using experiments and models to understand the effects of data 

properties (e.g., locational accuracy and temporal sparsity) on the metrics of interest (e.g., trip 

rate). Further investigations are critically needed for the validation of results generated by the 

passively solicited data sources. 

How can we make better data via integration of big and small data? 
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Besides being big, a very unique aspect of the big, passively solicited data is their continuous 

and dynamic nature, meaning that they are potentially available during any time and at any 

place. This is in stark contrast to the small travel survey data that are static, capturing travel 

patterns on a typical day once every 5 to 10 years10. The static nature of the travel survey data 

renders them only useful for long-term (usually 20 to 30 years) demand forecasts but nearly 

useless in assessing many short-term and equally important policy and operation scenarios that 

arise frequently from time to time. As an example, understanding user profiles and their 

associated travel patterns in corridor management is critical not only for operation purposes 

(e.g., evaluating the effectiveness of tolling and other control strategies such as ramp metering) 

but also for policy evaluation and adjustment (e.g., understanding how different users and 

communities are affected by the control strategies provides basis for policy evaluation and 

adjustment).  The big, passively solicited data, because of their dynamic and continuous nature, 

can be leveraged to provide answers to these important questions. This is the case especially 

when the passively solicited data are integrated with other data including, for example, 

household travel survey data, census data, flow data (e.g., travel volumes and speeds from loop 

detectors), and license plate data that are already collected by state or local DOTs. This data 

fusion exercise will not only result in better data that leverage the advantages of diverse data 

sets, but will also move us toward more real-time, continuous management of our transportation 

facilities based on the principles of efficiency, equity, and safety. The realization of this vision 

requires the development of data fusion frameworks and methodologies and their validation, 

which are currently nearly non-existent. In Section 5 of this report, a data fusion framework, 

including goal, objectives, and major considerations, is presented. Development and 

comprehensive testing of more specific, detailed data fusion methodologies are also highly 

recommended for future research. 

 

  

                                                           
10 Most travel surveys are conducted once every 10 years.  
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4.0 Other Emerging Data Sources and Applications  
This section provides a summary of other data sources from emerging technologies and 

systems in transportation, and their potential applications. These include data from connected 

and automated vehicles (CAVs) and new shared mobility services. Notice that these emerging 

technologies, as well as the data they provide and the applications they support, are currently 

under rapid development. This section aims to provide a brief discussion of the technologies, 

the data they can provide, and the applications they can support. A more comprehensive and 

detailed survey on these topics are beyond the scope of this project. 

4.1 Data from Connected Vehicles 
Connected vehicles (CVs) are vehicles that can communicate (i.e., send and receive messages) 

with the surrounding environment, including other vehicles (defined as vehicle to vehicle (V2V) 

communication), infrastructures (defined as vehicle to infrastructure (V2I) communication), 

pedestrians (defined as vehicle to pedestrian (V2P) communication), and other entities (defined 

as vehicle to everything (V2X) communication). In 2011, the USDOT published the performance 

goals of the CV system (Campolo and Molinaro, 2013) based on the results from pilot 

deployment tests. The report showed that CV systems could save 1083 lives annually (Lee and 

Lim, 2012), and reduce up to 27 percent of time delays (Vinel, 2012) and 20 percent of gas 

emissions by deploying just two safety applications. These findings indicate that CV systems 

could be an effective solution for safety, mobility, and environmental problems in the current 

transportation system. 

To enable CV, multiple communication technologies have been applied, such as dedicated 

short-range communications (DSRC), cellular networks (i.e., 3G/4G/5G), Wi-Fi, and radar. 

Figure 44 provides an illustration of the DSRC architecture, supported by a number of IEEE and 

SAE standards. The top layer, i.e., the Application Layer, concerns CV data and related 

applications. In particular, two SAE standards (J2735 and J2945.1) define the message 

sublayer of CV, which are the data items transmitted between vehicles and the surrounding 

environment (other vehicles, infrastructure, pedestrians, etc.). Safety and other applications can 

then be built on the CV data sets. For other communication technologies, the Application Layer, 

especially the message sublayer, remains the same. In the following, important CV message 

sets are introduced with some sample data provided. CV-related applications are be discussed. 
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Figure 44 Graph. Layered architecture of dedicated short-range communications (DSRC)  

4.1.1 CV Data 

Table 5 lists all the messages (15 messages in total) defined in SAE J2735_201603 (i.e., the 

latest version of J2735) (Dedicated Short Range Communications (DSRC) Message Set 

Dictionary, 2016). Every message shown in Table 5 can provide data for one major application 

area in the CV system. Additionally, the combination of messages can provide more 

information. For example, Basic Safety Message (BSM) and Map Data provide vehicle status 

information and road network information separately. However, the combination of BSM and 

Map Data can offer services such as left-turn assistance.  

The table clearly shows that, in comparison to other “passively solicited data” from mobile 

devices (such as cellular data, GPS data, or app-based data), CV data provide much richer 

information about not only the location and speeds of individual vehicles (or other users such as 

pedestrians if V2X data are available), but also vehicle status (such as emissions), road maps, 

infrastructure data (such as signal timing), and hazards information, among others. As a result, 

a much wider range of applications can be supported by CV data, as presented in Section 0. 

More importantly, the data generation process of the CV data is much clearer and transparent to 

users than that of other passively solicited data sources, leading to a better understanding of the 

CV data. However, some of the important issues identified for passively solicited data (Section 3 

of this report or the report by Chen et al. (2017)), such as representativeness of the underlying 

population, may also apply to CV data and thus need to be properly investigated and 

addressed. This will be especially true during the transition process of CV technology, when the 

penetration of CV-enabled vehicles will be low and which may take one or a few decades to 

complete (Lin, 2015). 
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In this subsection, to further show the detailed CV data set, two CV message sets, BSM and 

signal phase and timing (SPaT) data are presented. Some sample data are provided in the 

appendices. 

Table 5.Messages defined in SAE J2735_201603 (Dedicated Short Range Communications 

(DSRC) Message Set Dictionary, 2016) 

Message set 

Order # Message set Description 

1 
Basic Safety 
Message (BSM) 

Exchange safety data regarding vehicle state 

2 Map Data (MAP) Convey many types of geo-road information 

3 
Signal Phase and 
Timing (SPaT) 

Convey current status of one/more signalized intersections 

4 
Common Safety 
Request (CSR) 

Provides a means: a veh participating in the exchange of BSM can 
unicast to other vehs for additional information  

5 
Emergency Vehicle 
Alert (EVA) 

Broadcast emergency veh related warning message to surrounding 
vehs 

6 
Intersection Collision 
Avoidance (CICAS-
V) 

Limited to stop signs and traffic signal violations 

7 NMEA corrections 
Encapsulate NMEA 183 style differential corrections for GPS/GNSS 
radio navigation signals 

8 
Probe Data 
Management (PDM) 

The type of data collected and sent by OBUs to the local RSU 

9 
Probe Vehicle Data 
(PVD) 

Exchange status about a vehicle with other DSRC devices to allow 
the collection of information about typical vehicle traveling behaviors 
along a segment of road. 

10 
Road Side Alert 
(RSA) 

Send alerts for nearby hazard to travelers 

11 RTCM corrections 
Encapsulate RTCM differential corrections for GPS and other radio 
navigation signals 

12 
Signal Status 
Message (SSM) 

Relate the current status of the signal and the collection of 
pending/active preemption/priority requests acknowledged by the 
controller. 

13 
Traveler Information 
(TIM) 

Send various types of information (advisory and road sign types) to 
equipped devices 

14 
Personal Safety 
Message (PSM) 

Broadcast safety data regarding the kinematic state of various types 
of Vulnerable Road Users (VRU) 

15 Test Message 
Provide expandable messages for local and regional deployment 
use. 

Source: www.sae.org 

 

Basic Safety Message 

BSMs are transmitted between infrastructure and vehicles at high frequency (typically 10 Hz), 

which allows safety critical applications such as collision avoidance. Table 6 (Araniti et al., 2013) 

shows the data format of the core BSM defined in SAE J2735 with brief descriptions of each 

data element (the extension BSM (Xu et al., 2017) is a supplement of the core BSM, which will 

not be discussed in the report). Appendix A.4.1 shows the sample data of core BSMs collected 

by the University of Michigan’s Transportation Research Institute (UMTRI) in 2012. 
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Table 6. Data frame of core Basic Safety Message (BSM)  

Field Name Units Description 

FileID None 
Reference number to locate the source of the data in its original 
file 

TxDevice None ID (number) of the device transmitting the BSM 

Gentime milliseconds 
A more secure form of Epoch time, which is influenced by 
1609.2 of the IEEE 1609 family of standards-related network 
management and security 

TxRandom None 
Randomly assigned ID to mask the device ID of the transmitting 
device for security purposes 

MsgCount None Message ID that gets incremented by one with each BSM 

DSecond Deciseconds Time in deciseconds since ignition started 

Latitude Degrees Current latitude of the vehicle 

Longitude Degrees Current longitude of the vehicle 

Elevation Meters Current elevation of the vehicle according to its GPS 

Speed m/sec Vehicle speed 

Heading Degrees Vehicle heading/direction 

Ax m/sec2 Longitudinal acceleration 

Ay m/sec2 Lateral acceleration 

Az m/sec2 “Vertical” acceleration 

Yawrate Deg/sec Vehicle yaw rate 

PathCount None 
Number, between 1 and 23, representing a group of points that 
communicate a vehicle’s position and motion. Each group of 
points is of non-uniform size. 

RadiusOfCurve Centimeter 

Estimation of the radius of a curve being negotiated, which is 
derived from a number of systems and sensors. Positive and 
negative values reflect right and left turns, respectively, and +/- 
32767 for straight paths. 

Confidence Percent 

Signals the accuracy and non-steady state and steady state of 
curvature estimate. In steady state (straight roadways or curves 
with the constant radius of curvature), a high confidence value is 
reported. 

Source: data.transportation.gov 

 
Signal Phase and Timing Data 

A SPaT message is a bidirectional transmission message between infrastructure (traffic signals in this 

case) and vehicles. Traffic signals send this message to surrounding vehicles to inform them about the 

status of signal phasing and timing. Such information can help vehicles estimate travel times and select 

the most efficient routes. Meanwhile, vehicles can also send messages to nearby infrastructure (traffic 

signals in particular) to report their travel velocities and positions, which can assist a signal to detect 

traffic flow status within the neighborhood of the signal. As a result, signal systems can take actions on 

the basis of this given information to adjust their timing plan to improve the flow of traffic and reduce 

congestion. The data format of SPaT, defined in J2735_201603 (Dedicated Short Range Communications 

(DSRC) Message Set Dictionary, 2016), is shown in Table 7 (Araniti et al., 2013), with brief descriptions of 

each data element. Appendix 0 provides some SPaT sample data.   
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Table 7. Data format of SPaT Messages 

Field Name Description 

Name Name of the intersection; to be used only in debugging 

ID 

A globally unique value set, consisting of a region ID and 
intersection ID assignment. Provides unique mapping to 
the intersection MAP in question, which provides complete 
location and approach/move/lane data 

Revision  

Status General status of the controllers 

Moy 
Minute of current UTC year, used only with messages to 
be archived 

Timestamp 
The mSec point in the current UTC minute that the 
message was constructed 

EnabledLanes 
A list of lanes where the Revocable bit has been set which 
are now active and therefore part of the current 
intersection 

States 
State name for the movements, to be used only in 
debugging 

ManeuverAssistList 

MovementName  

SignalGroup 
An index used to map the differences between the internal 
state machine of one or more signal controllers 

State-time-
speed 

Consisting of ets of movement data 

AssistList Flow or traffic for the lanes and maneuvers in question 

ConnectionID 
The common connectionID used by all lanes to which -- 
this data applies 

QueuelLength Unit = 1 meter, 0 = no queue 

WaitOnStop 
If "true", the vehicles on this specific connecting -- 
maneuver have to stop on the stop-line and not enter the 
collision area 

PedBicycleDetct 
True if ANY ped or bicycles are detected crossing -- the 
above lanes 

Source: Data.gov 

4.1.2 Applications 

In the last decade, a few dozen CV-related applications have been developed. In particular, the 

USDOT sponsored the CV Pilot Deployment Program that grouped the applications into six 

categories: Safety Applications (both V2I safety and V2V safety), Agency Data, Environmental 

Applications, Dynamic Mobility Applications, Road Weather, and Smart Roadside ( ITS.GOV, 

2018), as shown in   
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Table 8.  
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Table 8. The applications selected by the USDOT to utilize in a CV Pilot Program  

V2I Safety Environment Mobility 

Red Light Violation Warning 
(RLVW) 

Eco-Approach and Departure 
at Signalized intersection 

Advanced Traveler Information 
System 

Curve Speed Warning Eco-Traffic Signal Timing 
Intelligent Traffic  Signal System (I-
SIG) 

Stop Sign Gap Assist Eco-Traffic Signal Priority Signal Priority (transit, freight) 

Spot Weather Impact 
Warning 

Connected Eco-Driving 
Mobile Accessible Pedestrian Signal 
System (PED_SIG) 

Reduced Speed/Work Zone 
Warning 

Wireless 
Inductive/Resonance 
Charging 

Emergency Vehicle Preemption 
(PREEMPT) 

Pedestrian in Signalized 
Crosswalk 

Eco-Lanes Management 
Dynamic Speed Harmonization (SPD-
HARM) 

Warning(Transit) Eco-Speed Harmonization Queue Warning (Q-WARN) 

V2V Safety 
Eco-cooperative Adaptive 
Cruise Control 

Cooperative Adaptive Cruise Control 
(CACC) 

Emergency Electronic Brake 
Lights (EEBL) 

Eco-Traveler Information Incident Scene Pre-Arrival Staging 

Forward Collision 
Warning(FCW) 

Eco-Ramp Metering 
Guidance for Emergency Responders 
(RESP-STG) 

Intersection Movement Assist 
LOW Emissions Zone 
Management 

Incident Scene Work Zone Alerts for 
Dryers and Workers (INC-ZONE) 

Left Turn Assist(LTA) 
AFV Charging/Fueling 
Information 

Emergency Communications and 
Evacuation (EVAC) 

Blind Spot/Lane Change 
Warning (BSW/LCW) 

ECO-Smart Parking Connection Protection (T-CONNECT) 

Do Not Pass Warning 
(DNPW) 

Dynamic Eco-Routing (light 
vehicle, transit, freight) 

Dynamic Transit operations (T-DISP) 

Vehicle Turning Right in Front 
of Bus Warning (Transit) 

ECO-ICM Decision Support 
System 

Dynamic Ridesharing (D-RIDE) 

Agency Data Road Weather Freight-Specific Dynamic Travel 

Probe-based Pavement 
Maintenance 

Motorist Advisories and 
Warnings (MAW) 

Planning and Performance 

Probe-enabled Traffic 
Monitoring 

Enhanced MDSS Drayage Optimization 

Vehicle Classification-based 
Traffic Studies 

Vehicle Data Translator 
(VDT) 

Smart Roadside 

CV-enabled Turning 
Movement & Intersection 
Analysis 

Weather Response Traffic  Wireless Inspection 

CV-enabled Origin-
Destination  

Information (WxTINFO) Smart Truck Parking 

Work Zone Traveler 
Information 

  

Source: www.its.dot.gov 
Most of the applications in   
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Table 8 have been tested in the real world (e.g., using CV testbeds) or in simulation studies, 

with their benefits and lessons learned summarized. The most noticeable study was probably 

the Safety Pilot Deployment Program by UMTRI, sponsored by the USDOT (Safety Pilot: Model 

Deployment, 2012). Both V2V and V2I applications were tested and demonstrated by the Safety 

Pilot Deployment Program. To illustrate, we briefly summarize two V2V applications, including 

Intersection Movement Assistance (IMA) and Forward Collision Warning (FCW), and one V2I 

application on Red Light Violation Warning (RLVW). IMA is meant to warn a driver not to enter 

an intersection when high risks are detected by the sensors on his/her vehicle. For example, if a 

red light violation suddenly occurred at the intersection, the IMA feature would alert the driver of 

the danger via V2V communications. FCW is designed to detect risks and alert drivers to avoid 

possible collisions with front vehicles through appropriate actions. FCW warns drivers or takes 

automatic emergency actions when impending rear-end collisions are detected by the sensors 

from the rear vehicle. RLVW is a V2I application that enables a CV when it approaches a 

signalized intersection to receive information from the infrastructure regarding the geometry of 

the intersection and the signal timing. Along with the vehicle information of speed and 

acceleration, it is feasible to determine the likelihood with which the vehicle will run into a red 

light when it enters the intersection. If the violation seems highly likely to occur, then a warning 

can be provided to the driver (CVRIA, 2016).  

To help resolve the specific safety, mobility, and environment issues of agencies, the US DOT 

ITS Joint Program Office introduced the basic steps for the selection and implementation of CV 

application (USDOT, 2015). There are three main steps in general to select and implement a 

CV application, as illustrated in the figure below, which are also briefly explained in this report. 

 
Figure 45. Graph. Process to select applications  

Source: CV102: Participant Workbook Sept 2015 

Step 1: Identify Local Needs 

This step addresses the problems and challenges in the local transportation system that an 

agency manages. It could range from extreme weather condition, emission concerns for certain 

areas in the city, to heavy congestion on a corridor, or intersection safety. For instance, a road 

section with sharp turns might require CV applications to help reduce the probability of car 

accidents.  

Step 2: Set Performance Goals 

After needs and issues have been identified, the purpose of step 2 is to set measurable goals 

for quantifying the target improvement the agency aims to achieve. Below are some examples 

of performance goals. 

 Reduce crashes by 10 percent; injuries by 20 percent; and fatalities by 30 percent 



Promises of Data from Emerging Technologies for Transportation Applications:  
Puget Sound Region Council Case Study 
 
 
 

October 2018  76  

 Reduce pedestrian-vehicle conflicts by 50 percent 

 Ensure that transit vehicles are on schedule 90 percent of the time 

 Increase peak period output by 8 percent 

 Reduce emissions by 20 percent 

 Reduce fuel costs associated with operating a transit fleet by 10 percent. 

For specific agencies and issues, some or all of the above performance goals may apply with 

proper modifications, or additional performance goals may need to be developed. 

Step 3: Select Applications 

Step 3 is to select a specific CV application or a combination of CV applications from the list in 

Table 5 to meet the performance goals identified in Step 2 for solving the issues identified in 

Step 1. The selection process analyzes the issues each CV application aims to address, 

compares them with the local issues identified in Step 1, and identifies/compares the benefits of 

the selected applications to determine whether the performance goals identified in Step 2 can 

be satisfied. This process is expected to be interactive with Step 1 and Step 2, and iterative, 

with possible revisions and refinements to the local needs in Step 1 and the performance goals 

in Step 2 before the selection of the set of CV applications can be finalized. 

4.2 Data from Automated Vehicles 
Wikipedia defines automation as “the technology by which a process or procedure is performed 

without human assistance.” Automated vehicles (AV) are one subcategory of automated 

technology, as “self-governing” vehicles can navigate themselves through inputs of information 

collected from their surrounding environments without any human assistance (Xu et al., 2017). 

However, because of current technological limitations, scientists cannot completely automate 

vehicles. To officially measure the degree of automation in vehicles, SAE published J3016 to 

standardize the levels of driving automation and specify the definition of each level 

(“J3016_201806,”), as shown in  

Table 9. NHSTA also defines similar levels of automation (NHTSA, 2017). 

Table 9. Levels of driving automation (NHSTA & SAE) 

Level 
(NHTSA/SAE) 

Name (SAE) Definition (NHTSA) Definition (SAE) 

0 
No driving 
automation 

Zero autonomy; the driver 
performs all driving tasks 

The performance by the driver of the 
entire DDT, even when enhanced by 
active safety systems.  

1 
Driver 
assistance 

Vehicle is controlled by the 
driver, but some driving assist 
features may be included in 
the vehicle design 

The sustained and ODD-specific 
execution by a driving automation 
system of either the lateral or the 
longitudinal vehicle motion control 
subtask of the DDT (but not both 
simultaneously) with the expectation 
that the driver performs the 
remainder of the DDT 
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2 

Partial 
driving 
automation 

Vehicle has combined 
automated functions, like 
acceleration and steering, but 
the driver must remain 
engaged with the driving task 
and monitor the environment 
at all times 

The sustained and ODD-specific 
execution by a driving automation 
system of both the lateral and 
longitudinal vehicle motion control 
subtasks of the DDT with the 
expectation that the driver completes 
the OEDR subtask and supervises 
the driving automation system.  

3 

Conditional 
driving 
automation 

Driver is a necessity, but is not 
required to monitor the 
environment. The driver must 
be ready to take control of the 
vehicle at all times with notice. 

The sustained and ODD-specific 
performance by an ADS of the entire 
DDT with the expectation that the 
DDT fallback-ready user is receptive 
to ADS-issued requests to intervene, 
as well as to DDT performance 
relevant system failures in other 
vehicle systems, and will respond 
appropriately.  

4 
High driving 
automation 

The vehicle is capable of 
performing all driving functions 
under certain conditions. The 
driver may have the option to 
control the vehicle. 

The sustained and ODD-specific 
performance by an ADS of the entire 
DDT and DDT fallback without any 
expectation that a user will respond 
to a request to intervene.  

5 
Full driving 
Automation 

The vehicle is capable of 
performing all driving functions 
under all conditions. The 
driver may have the option to 
control the vehicle. 

The sustained and unconditional 
(i.e., not ODD specific) performance 
by an ADS of the entire DDT and 
DDT fallback without any expectation 
that a user will respond to a request 
to intervene. 

Source: www.sae.org 
 
Presently, the technologies for AVs are under rapid development. Many industry leaders such 

as Google (Waymo), Uber, Tesla, GM, and Ford are working on AV technologies, testing, and 

use cases. They are collecting huge amounts of data, which are however rarely shared with 

researchers or the public. Furthermore, different from CV data, no data standards have been 

developed for AV data. A current project, “IEEE Standard: WG2040 - Standard for Connected, 

Automated and Intelligent Vehicles: Overview and Architecture Working Group” (Campolo and 

Molinaro, 2013), may touch on AV data standards issues. Before such standards are officially 

released, one might expect that AV data may be similar to CV data as discussed above 

(possibly with additional data such as Lidar data and video data); if this is the case, then the AV-

related applications and potential issues may also be similar to those of CV data. However, 

such expectations can only be proved true (or wrong) when official AV data standards and 

applications are released.  

The only data set that is currently available for AVs is the AV-related accident database, which 

is released as requested by government agencies for safety reasons. For example, some AV 

accident data are publicly available as requested by Caltrans (California Department of 

Transportation) (CA-DMV, 2019). Table 10 shows the main data fields used when describing 

accidents involving AVs (Lee and Lim, 2012). Appendix 0 shows a sample of the accident data 

from one accident report. 
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Table 10. Autonomous vehicle accident data format 

Variables Description 

Time Accurate time of the accident happened 

Date The date when the accident happened 

Brand The brand of the vehicle  

Location The location where the accident happened 

Speed The velocity of the vehicle when the accident happened 

Accident Type The type of accident 

Police Called Whether the vehicle called the police 

Injured Injuries from the accident 

Responsibility Was the accident caused by human interaction 

State The State to which the testbed belong 

Note Some notes for the accident 

Source: Lee and Lim, 2012 

4.3 Data from New Shared Mobility Services 
This section summarizes some of the currently available data sources related to new shared 

mobility services, including data from ridesourcing and bike-sharing. The summary here does 

not mean to be exhaustive but provides some examples with formats and samples of the 

available data sets from these services. 

First, the term of shared mobility, which can be traced back to the 1990s in North America, 

includes various forms of bike-sharing, carsharing, ridesharing (carpooling and vanpooling), and 

ridesourcing services. It is known as an innovative transportation strategy for users to have 

short-term access to transportation services as needed (FHWA, 2016). The emerging forms of 

these services (i.e., new shared mobility services) are featured in app-based platforms, 

matching users and services to satisfy “on-demand” requests (e.g., the use of bikes or cars or 

ride services). In practice, there are several other terminologies defined for ridesourcing—the 

use of a platform to “source” rides from a driver pool (Shaheen et al., 2017)—such as 

transportation network company (TNC), e-hailing, ridehailing, e-booking, etc. To avoid 

confusion, in this report, the term “ridesourcing” is used, which is also recommended by the 

recent SAE standards on emerging shared mobility services (Shared and Digital Mobility 

Committee, 2018).  

There is also some confusion regarding the differences between ridesourcing and ridesharing. 

Conceptually, ridesourcing is distinct from ridesharing. Ridesharing indicates that drivers are 

travelers who share similar origins/destinations with their riders for a common purpose of 

conserving resources, saving money, or saving time. Ridesourcing, on the other hand, is a for-

hire commercial service and operates much like taxi services. 

The use of app-based platforms help generate massive data sets related to new shared mobility 

services, including at least two types: those related to the requests of services (also called 

“order data”) and those related to the locations and movements of service vehicles or bikes 

(also called “trajectory data”). Because of the privacy concerns of users/drivers and the 

protection of their competitive advantages, new shared mobility providers have not been very 
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enthusiastic about sharing their data. Therefore, available shared mobility data are quite limited 

at the current stage. In the following, we summarize the available data as those provided 

directly by the service providers (e.g., Uber, Lyft, Didi) and those via public data sharing 

platforms (e.g., Kaggle, GitHub). 

4.3.1 Lyft Data 

Instead of building a user interface for data sharing, Lyft established an application 

programming interface (API) for users so that they can request and receive Lyft data, including 

the operation area, geographic information (latitude and longitude), and the possible time 

durations for a selected trip (shown in Figure 46).To successfully operate Lyft API, users need 

to acquire a key by signing into the Lyft Developer platform and are also required to have basic 

programming capabilities (e.g., Java Script, Python).  

To request data from Lyft API, users need to provide a csv file with needed information (e.g., 

pick-up locations, origins and destination) to the API and to develop a script to obtain the data 

they need. For instance, to request data for pick-up locations, including ride type, pick-up time 

estimate and nearby drivers, the input should be the latitude and longitude of the pick-up 

location.   

 

Figure 46. Lyft API 

Source: ©mapbox 

4.3.2 Uber Data  

In contrast, with consistent feedback from cities to use aggregated data for urban planners, 

Uber launched Uber Movement in 2017. Regarded as a planning tool, the initial goal of Uber 

Movement is to share historical traffic flow data (anonymized) for urban design to increase the 

efficiency of urban traffic. The data covered several cities across the world, including North 

America, Central and South America, Europe, Africa, Asia, Australia and New Zealand (e.g., 

Seattle, Bogota, London, Nairobi Mumbai, Sydney, Taipei, etc.). The user interface is similar to 

Figure 47. Uber Movement user interface  
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Figure 47. Uber Movement user interface  

Source: https://movement.uber.com/ 

There are three main types of data sets in general from Uber Movement for users to download: 

FILTERED DATA, ALL DATA, and GEO BOUNDARIES (Uber Movement, 2018). 

To request the FILTERED DATA, as the name implies, a user needs to indicate where and 

when the data they would like to request by selecting the city, zone type (census tracts, traffic 

analysis zones), the date-time range (covering day of week: from Monday to Sunday, and time 

of day: daily average, AM peak, midday, PM peak, evening and early morning), and the origin 

and destination.  

When the selection step has been completed, three data sets can be downloaded (sample data 

are shown in Appendix A.5.1): 

1) Origin to all destinations: The data set includes the aggregated mean and range of travel 

time from the starting zone to all other zones. 

2) Daily time series: Based upon the selected origin zone and destination zone, the data 

set covers mean and range of travel times for: all day, AM peak, midday, PM peak, 

evening and early morning. 

3) Chart data: On the basis of the selected origin zone and destination zone, the data set 

includes aggregated mean and range of travel times for ‘day of week’ and ‘time of day’. 

The ALL DATA category covers the arithmetic mean, geometric mean, and standard deviation 

for aggregated travel times over the selected data-range between each OD zone pair in the city. 
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As of recently, the data can be downloaded from the first quarter in 2016 to the first quarter in 

2018. The following data set files will be generated: 

● Hourly Aggregate (all days) 

● Hourly Aggregate (weekdays only) 

● Hourly Aggregate (weekends only) 

● Weekly Aggregate 

● Monthly Aggregate (all days) 

● Monthly Aggregate (weekdays only) 

● Monthly Aggregate (weekends only). 

The data formats for all the data files are very similar, as shown in Table 11 (Data Sample 

displayed in Appendix A.5.2).  

Table 11. Data format  

Field Type Description 

sourceid String Origin zone ID 

dsid String Destination zone ID 

month/hod Number 
Month of a year/Hours of 
a day 

mean_travel_time Seconds 
(Arithmetic) Mean travel 
time 

standard_deviation_travel_time Seconds 
(Arithmetic) Standard 
deviation of travel time 

geometric_mean_travel_time Seconds 
Geometric mean travel 
time 

geometric_standard_deviation_of 
_travel_time 

Seconds 
Geometric standard 
deviation of travel time 

Source: movement.uber.com 
 

For GEO BOUNDARIES, a file with JavaScript Object Notation (JSON) format (JSON File), 

including geometric boundaries information for tract zones (with ID number addressed for each 

zone), is provided. The data can be viewed in GIS software packages (e.g., ArcGIS, QGIS).  

It is clear that the data currently from Uber Movement are aggregated at the TAZ or census tract 

level to provide information of travel times and total demand, while individual order or trajectory 

data are not included. Such data would be useful for certain urban planning applications that do 

not require detailed individual vehicle information. 

4.3.3 DiDi Data 

DiDi Chuxing is a China-based ridesourcing service provider (DiDi, 2018). The GAIA Initiative 

(The Gaia Initiative, 2018) is the data sharing platform for DiDi, which aims to advance 

transportation research and promote the application of scientific research, and to strengthen the 

ties among industry, government agencies, and university researchers. Unlike Uber data, which 

require no application for users to obtain access for data, DiDi data are only accessible for 

academic research and require an application for access.  
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Currently, four data sets are available on the GAIA website, which are from two major cities in 

China: Xi’an and Chengdu during the month October and November of 2016. Generally, there 

are two types of data from the GAIA Initiative for each city: route (trajectory) data and ride 

request (order) data. The trajectory data format is shown in Table 12 (sample data are provided 

in Table 20 of DiDi Data in the appendices). The measurement interval of the track points is 

about 2 to 4 seconds. 

 
Table 12. Data format (Trajectory Data) 

Field Type Comment 

Driver ID String Anonymized 

Order ID String Anonymized 

Time Stamp String Unix timestamp, in seconds 

Longitude String GCJ-02 Coordinate System 

Latitude String GCJ-02 Coordinate System 

Note: The origin-destination data are only provided within a small areas in the city. Hence, they fail to 
reflect city-wide supply and demand. 

Source: outreach.didichuxing.com 
 

The format of Didi’s order data is shown in Table 13. In comparison to the trajectory data, the 

order data are only accessible for the city of Chengdu for November 2016. The data cover the 

GPS information (latitude and longitude) of pick-up and drop-off locations, order IDs, and ride 

start/end times. The sample data can be viewed in Table 21 in the appendices. 

Table 13.Data format (Order Data) 

Field Type Comment 

Order ID String Anonymized 

Ride Start Time String Unix timestamp, in seconds 

Ride Stop Time String Unix timestamp, in seconds 

Pick-up Longitude String GCJ-02 Coordinate System 

Pick-up Latitude String GCJ-02 Coordinate System 

Drop-off Longitude String GCJ-02 Coordinate System 

Drop-off Latitude String GCJ-02 Coordinate System 

Source: outreach.didichuxing.com 

4.3.4 Public Open Data Sets 

Kaggle Data 

Known as the ‘AirBnB’ for data scientists, Kaggle is the largest community of data scientists and 

machine learners around the world, offering a crowd-sourced platform for data training, 

challenge, and competition. Ridesourcing and bike-sharing are the two main categories of 

shared mobility data that can be found in Kaggle. There are also ridesourcing data for Lyft and 

Uber services; however, only origins (with timestamps and GPS information) for each trip are 

provided, which appears to be more limited than what Uber and Lyft provide directly and 

therefore are not discussed in this report.  
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Various data resources for bike-sharing can be found in Kaggle. This project selected bike-

sharing data as an example to show the data format Kaggle provides. The data source selected 

here was the Capital Bikeshare program in Washington, D.C. The format of the chosen data set 

in Kaggle is shown below, with the sample data displayed in Appendix A.5.4. 

 
Table 14. Data format (Bike Sharing Demand | Kaggle) 

 
 

Type Comment 

datetime String Hourly date + timestamp 

season  Number 
1 = spring, 2= summer, 3 = fall, 
4 = winter 

workingday String 
Whether the day is neither a 
weekend nor holiday 

weather String 

1: clear, few clouds, partly 
cloudy  
2: mist + cloudy, mist + broken 
clouds, mist + few clouds, mist 
3: light snow, light rain + 
thunderstorm clouds, light rain + 
scattered clouds 
4: heavy rain + ice pallets + 
thunderstorm + mist, snow + fog 

temp Number Temperature in Celsius 

atemp Number 
‘feels like’ temperature in 
Celsius 

humidity Number Relative humidity 

womdspeed Number Wind speed 

count Number 
Number of non-registered user 
rentals initiated 

registered Number 
Number of registered user 
rentals initiated 

count Number Number of total rentals 

Source: www.kaggle.com 

GitHub Data 

GitHub (Intro of GitHub) is known as a website and cloud-based service assisting developers in 

storing and managing their code, as well as tracking and controlling changes, with version 

control as a connected principle. GitHub has a summarized, currently available bike-sharing 

data set as well. As the format of the bike-sharing data provided in GitHub is very similar to that 

in Kaggle, details of the data format and sample data are not listed here. Bike-sharing data from 

eleven different countries around the world, including the U.S. and Australia, are available from 

GitHub (Bike sharing, 2018).  

4.3.5 Applications 

With the emergence and rapid development of new shared mobility services, a large amount of 

data have been generated, bringing tremendous potential to many areas, including 
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transportation applications. This section briefly summarizes a few examples of how new shared 

mobility data can be applied to transportation applications. 

First, the data from shared mobility can help transportation researchers and policy makers to 

better explore and understand urban travel/traffic patterns. The increasing availability of data in 

urban traffic networks will increase the possibility to examine traffic flow patterns on a large-

scale roadway network, as well as to observe the evolution of regional travel patterns through 

data mining (Ma et al., 2015). For example, Alexander and González (2018) assessed the 

impact of ride-sharing on city-wide congestion using the mobile data by extracting average daily 

OD trips from mobile phone records and estimating the proportion of the non-auto and auto 

travelers among the trips. Altshuler et al. (2017) proposed a dynamic travel network approach 

for modeling and estimating potential ridesharing utilization over time. They concluded that the 

significant volatility of the utilization of ridesharing over time indicated the reliability of estimating 

the impacts of ride-sharing with dynamic network analysis. Li et al. (2017)  conducted a 

different-in-different analysis to explore the impact of Uber on urban congestion. There is no 

doubt that applying ‘passively solicited data’ from shared mobility to explore and understand 

larger-scale traffic network patterns (e.g., city-wide congestion patterns) has the potential to 

initiate a revolution in urban mobility planning. 

Second, instead of using data to reveal traffic network flow and travel patterns, with diverse 

shared mobility appearing in daily transportation, some scholars have begun research to obtain 

a deeper understanding of travel and choice behavior in terms of ridesoursing, bikesharing, etc. 

Shaheen et al, compared the variance in usage patterns between ridesourcing and taxis and 

found that younger users were inclined to choose ride-sourcing. They used survey data to 

examine the motivation and behavior of casual carpoolers in San Francisco to understand how 

user characteristics (e.g., demographic information, users’ attitudes toward carpooling services) 

affected their choices in comparison to taxis. Zhang et al. (2018) applied 5-months of trip data 

from bike-sharing users in Zhongshan, China, to understand their travel behaviors. They 

identified that most bike trips are part of a trip chain of multiple trips. With a sound 

understanding of travel behavior in choosing shared mobility options, a more comprehensive 

view can be obtained for urban planners and designers to develop more efficient multimodal 

transportation network systems, including transit and new shared mobility modes.    

Third, traffic signal control, which has mainly relied on manually collected data from traffic 

counts and/or sensor data from infrastructures (e.g., video cameras, loop detectors, radar 

detectors), may have the ability to be revolutionized by the large amount of shared mobility data. 

For example, DiDi Chuxing, the largest ridesourcing service provider in China, has been 

working on ways to use transportation passively solicited data analytics and artificial intelligence 

(3 ways Didi’s big data is improving China’s traffic · TechNode, 2017) to solve global 

transportation and urban and environmental challenges. One of their focus areas is to optimize 

urban traffic signals by using ridesourcing data, especially the trajectory data from ridesourcing 

vehicles. Different from conventional detector data, trajectory data from ridesourcing vehicles 

serve as a low-cost, continuous, and reliable data source, which can help greatly improve 

conventional, detector-based signal control methods (Zheng et al., 2018). Over the last two 

years, their trajectory-based traffic signal control and optimization algorithms have been applied 
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to hundreds of signalized intersections in a number of Chinese cities, leading to reduced 

congestion and improved travel times. Such trajectory-based traffic signal timing optimization 

methods can also be co-developed with connected/automated vehicles (Li and Ban, 2018) to 

help build a more intelligent, efficient, and sustainable transportation system.  

Fourth, apart from just addressing traffic mobility issues, shared mobility data can also be 

applied to improve roadway safety. For instance, the SIN (safety in numbers), mentioned by 

Jacobsen (2003), explored correlations among collision accidents with walkers and cyclists. 

Such research results can be combined with bikesharing and ridesharing data to explore their 

impacts on road safety. For example, Fishman and Schepers (2016) examined the influence of 

bikesharing programs on cycling safety with a combination of injury data, ridership data, and 

crash data. They concluded that bikesharing users are associated with fewer bicycle crashes 

(fatal/injury) than are private riding cyclists (using their own bikes). Morrison et al (2018) 

explored the correlation between ridesharing and motor vehicle crashes by using time-series 

analysis in four U.S. cities (Portland, Las Vegas, Reno, and San Antonio), considering time-

sequential impacts from the usage of Uber and Lyft. They found that ridesharing may increase 

the total number of crashes; however, it may also reduce vehicle accidents due to drunk driving.  

In summary, data from new shared mobility services will be helpful and useful for understanding 

the traffic/travel patterns of road networks and travel behaviors, and for improving traffic control 

and traffic safety. With more research efforts conducted using data from new shared mobility 

services, a more comprehensive view and understanding of the transportation system can be 

obtained, which will help establish a more efficient, intelligent, and sustainable transportation 

ecosystem. 
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5.0 Development of A Data Fusion Framework 
The analysis results of the app-based data in this report, as well as the results based on mobile 

phone data and GPS data in the team’s previous research (Chen et al., 2017), clearly 

demonstrate that big, passively solicited data, despite their great value for travel pattern 

analysis, do have their own issues, most noticeably uncertainty in the data generation process 

and related representativeness issues with respect to the underlying population. Indeed, both 

big data and small data have their unique characteristics, and therefore advantages and 

limitations, as summarized in Table 4 and briefly discussed earlier in this report. Table 15 

presents more details about the characteristics of various types of big data and small data, 

further illustrating the values and pros/cons of different data sources.  

More importantly, different datasets may complement each other. For example, small data (such 

as travel surveys) are often static (i.e., collected once a few years), whereas passively solicited 

data are mostly dynamic (able to be collected almost continuously); most passively solicited 

data show just traces of devices (or people), whereas small data often contain much richer 

information (such as the demographics of the underlying population). Therefore, it would be 

more beneficial to properly integrate big data and small data from different sources to create 

data with better quality (e.g., to alleviate bias issues). At the same time, different types of data 

may also have commonalities that can serve as the basis to link data sets for data fusion. Figure 

48 shows the commonalities and differences among big (passively solicited) data, small data 

(travel surveys in particular), and traditional flow data (e.g., from loop detectors). The figure 

shows the general relationships among different categories of data, while more specific 

commonalities and differences should be identified when actual data sets are encountered. 

 

Figure 48 Graph. Integration of big data and small data 

SES, Attributes, 
detailed trip-level 
characteristics  

Common variables 
    - Home  
    - Work 
    - Travel patterns  
    - BE 

Common measures 
- Observed flow / usage of 
facilities 
- Travel times 
- Other flow measures 

Continuous/Longitudinal 
travel patterns 

Total flow / usage 
of facilities 

Traditional traffic flow data 

Household Survey 
(small data) 

Big Data 
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Table 15. Characteristics of different data sets 

Datasets Level  Variables Modes Properties Types  

  Locations SES 
Trip/ 

activity 
BE  Locational 

accuracy 
Temporal 
patterns 

 

Small 
data: HHS 

Person-
level 

Yes Yes Yes Yes All N/A N/A 
Cross-

sectional/ 
panel 

Big data: 
mobile 
phone 

Person-
level 

Yes No No No All Coarse Sparse Continuous  

Big data: 
app-based 

Person-
level 

Yes No No No All 

Mixed 
(coarse and 

fine-
grained) 

Less 
sparse, 

clustered 
on 

roadways 

Continuous  

Big data: 
probe 
vehicle 

Vehicle-
level 

Yes No No No 
Vehicle 

only 
Fine-

grained 
Dense Continuous 

Big data: 
CAVs 

Vehicle-
level 

Yes No No No 
Vehicle 

only 
Fine-

grained 
Dense Continuous 

Traditional 
flow data 

Aggr. 
level 

Yes No No No All Mixed Dense Continuous 
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In this section, a preliminary data fusion framework is proposed to combine big data and small 

data. The proposed framework is preliminary because it contains only the goal, objectives, basic 

principles, and important considerations for data fusion. Ways to develop more specific data 

fusion methods will requires more in-depth investigation, which will be left for future research. 

5.1 Goal and Objectives of Data Fusion 
The main goal of data fusion is to produce better quality data and/or more complete data for 

given transportation planning or operational applications. Specific objectives of data fusion may 

be as follows:   

 Improved data quality: Data from a single source may be subject to errors and/or biases, 

which can often be corrected or alleviated by merging data from multiple sources. 

 Filling data gaps: Single-sourced data often have limited spatial coverage or observation 

periods (e.g., travel surveys conducted only for a few months), or the collected data are 

restricted for certain populations (e.g., vehicular GPS data are only for vehicles, while 

transit smart card data are only for transit users). Combining data from multiple sources 

can help provide data with more complete coverage (spatially, temporarily, or the user 

population). 

 Validation: Data from different sources can help validate each other. This is particularly 

so when “ground truth” data are not available or are difficult to obtain. For example, 

travel surveys may be used to validate the trip-related analysis results from app-based 

data, as illustrated in Section 3. 

 Analysis: Data fusion may help analysts better understand and interpret analysis results 

(given a lack of ground-truth data). 

5.2 Principles of Developing Data Fusion Methods 
There are a few considerations in developing data fusion methods. First, data fusion method 

should be developed on the basis of the target application. There is rarely a pure data fusion 

method without considering any application, since the purpose of data fusion is to provide better 

data for certain application. This application-centric view is important since in some cases, it is 

possible that a simple combination of the datasets from different sources may be sufficient (e.g., 

by providing data for different aspects of the problem), in which case a rigorous data fusion 

method (as we propose here) may not be necessary. 

Second, according to the specific application, key performance measures should be defined to 

assess the performance/success of the application. For example, travel time and reliability may 

be used for a tolling project of a key urban corridor, while the percentage of single occupancy 

vehicle (SOV) travelers may be used for a project of adding a new transit line.  

Third, proper data quality metrics should also be defined to help quantify the quality of each 

data source. The metrics may be defined to measure the data quality in terms of accuracy, 

timeliness, spatial/temporal coverage, representativeness, etc. Depending on the objectives and 

performance measures of the specific application, different data quality metrics may need to be 
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defined for the same data source. The application, performance measures, and data quality 

metrics can together establish certain data standards that can help assess the data needs of the 

given application and its associated data requirement.  

The fourth step is to analyze the properties of each data source (especially emerging passively 

solicited data sources) to have an in-depth understanding of the properties of the data, their 

pros and cons, and the quality of the data based on the defined data quality metrics. For 

example, for regional travel pattern analysis using passively solicited data, one may apply the 

analysis framework in Section 3 to analyze the properties of each passively solicited data 

source. This step is critical to develop proper data fusion methods that can leverage the 

advantages of all data sources, while at the same time controlling their limitations to acceptable 

levels.  

Furthermore, the following aspects may also be useful when data fusion methods are 

developed: 

 Understanding use profiles, such as where people live and work and where they come 

and go, can be extremely important for some applications. 

 To address bias issues, synthetic data may be helpful (Rodriguez et al., 2018), and in 

certain cases, more rigorous bias modeling and correction methods (Zagheni and 

Weber, 2015) need to be developed to address data biases more effectively 

 Validation of the data fusion methods is important. For this, ground truth data (or 

benchmark data if ground truth data are not available) are crucial for validation 

purposes. Here benchmark data can be understood as data sources that are known to 

have relatively higher quality in certain aspect (e.g., location accuracy, 

representativeness, etc.). 

 The field of transportation has been extensively studied in the past, resulting in well-

established theories and models (collectively referred to as “transportation knowledge” in 

this report). Data, big or small, are not expected to fundamentally change most of such 

knowledge; rather they should reflect the knowledge (or help reveal new knowledge in 

certain cases). Data fusion methods therefore should adequately consider both data and 

proper knowledge of the application. On the one hand, to deal with massive, often 

heterogeneous data sources, data-driven methods are crucial, including machine 

learning algorithms and especially recent deep learning based methods. On the other 

hand, to respect established knowledge in transportation, suitable models may also 

need to be integrated with data driven methods. Such data-driven, model-based 

methods can be important alternatives for developing transportation data fusion methods 

in the future. 

 Ultimately, data fusion is just one way to address data related issues and to improve 

data quality. It is certainly not the only way, and in some cases, may not even be the 

best way. Therefore, understanding the data and application is of paramount 

importance to whether and how to develop data fusion methods.  
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Appendixes 

A.1 Appendix A—Extracting Trips from the App-based Data 
We develop a ‘Divide, Conquer and Integrate’ (DCI) framework to extract trips from app-based 

data. In this appendix, we describe three steps of the DCI framework to extract trips from the 

app-based data: (1) Partition the data into data sets each of which contains smaller variance in 

spatiotemporal properties; (2) Extract trips from each data set independently by applying 

methods in accordance with the characteristics of the data set; (3) Combine trips extracted from 

all data sets by designing and applying a novel algorithm.  

A.1.1 Partition data into low-variance sets 

A stay is usually identified if the device does not move (e.g., more than 5 meters for GPS data 

and 1000 meters for cellular data) in a certain amount of time (e.g., 5 minutes).  However, the 

variations embedded in a multi-sourced data suggest the definition of stays shall be variable as 

well: given the bimodal distribution of location accuracy in the app-based data, there exists no 

universal spatial constraint to define a stay. This can be illustrated in Figure 49, where one 

individual visited three places (l0, l1 and l2). Observations recorded at l2 have worse location 

accuracy than those at l0 and l1 and therefore appear dispersed in space. To identify the stay at 

l2, one may want to define a stay as the device does not move farther than R1 within, for 

example, 5 minutes. However, if the same definition is applied to l0 and l1, the two stays could 

be mistaken as one when R1>2R0.    

 
Figure 49. Graph. Illustration of variable definitions for stay identification 

 

The data is partitioned such that each partition has small variance, based on which methods 

can be developed and applied to each data set. We observe that the app-based data is 

dominated by observations of high location accuracy, which appears similar to the GPS data 

and could be handled by a GPS-data-based method. Therefore, we partition the app-based data 

into two sets: one set contains observations with location accuracy no worse than a threshold p 

and the other set takes the remaining observations. In our study, we use p=100 meters which 

follows the distribution of location accuracy. 

A.1.2 Extract trips from each data set independently 

The partition step results in two data sets. The first one is similar to GPS data that can be 

processed using GPS-data-based methods. The second one contains observations with 
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location accuracy distributing around 1000 meters, which resembles cellular data. This 

observation is consistent with the data generation process, where cellular towers were used to 

locate a device when other technologies were not available. We thus propose to address the 

second data set using methods that are developed for cellular data. For clarity, hereafter, we 

refer to the first data set as the “GPS data set” and the second one as the “cellular data set”. In 

the following sections, the two data sets are processed independently to extract trips. 

Extract trips from the GPS set 

A commonly-used trace-segmentation method (Hariharan and Toyama, 2004; Ye et al., 2009) is 

applied to extract stays from the GPS set. For each trajectory of one user {d1(t1; lng1, lat1), d2(t2; 

lng2, lat2), …, di(ti; lngi, lati)} (t1 ≤ t2<…≤ ti), we extract stays by scanning through the trajectory 

and segmenting it into multiple sequences of observations with two parameters: signal roaming 

distance ∆𝑙𝑟𝑜𝑎𝑚 and the stay duration ∆𝑡𝑑𝑢𝑟. A stay is extracted as a sequence of observations 

{dm(tm; lngm, latm), dm+1(tm+1; lngm+1, latm+1), …, dn(tn; lngn, latn)} (t1 ≤ tm≤ tm+1<…< tn≤ ti) 

satisfying both parameters: the distance between any two observations in the sequence should 

be shorter than ∆𝑙𝑟𝑜𝑎𝑚 and the duration (i.e. the time difference between the last and the first 

observation of this sequence tn – tm) must be no less than ∆𝑡𝑑𝑢𝑟. This can be achieved by 

following the algorithm proposed in (Hariharan and Toyama, 2004). In our study, we use 200 

meters and five minutes as ∆𝑙𝑟𝑜𝑎𝑚 and ∆𝑡𝑑𝑢𝑟, respectively. This five-minute threshold follows 

the rule used in many household travel surveys to define what counts an activity (Transportation 

Research Board, 2005) and is used as an appropriate threshold for an activity location in the 

activity based modeling context (Yin et al., 2017). ∆𝑙𝑟𝑜𝑎𝑚 is set as 200 meters such that a 

displacement of 200 meters in five minutes corresponds to half of average walking speed 0.7 

m/s, which is commonly used to distinguish between a stay and a movement (Bernardin, 2017). 

We replace locations in the sequence with their centroid (lngc, latc). Then, a sequence of 

observations representing a stay is simplified as sc(tm, tm+1, …, tn; lngc, latc).  

We notice that stays representing multiple visits at a single place (e.g., one building) at different 

time are essentially unique in the form of longitude and latitude coordinates (Figure 50b).  This 

prevents analyzing travelers’ mobility patterns such as regular returns to certain places (e.g., 

home, workplaces). Therefore, after the stay identification, we find those common stays that 

represent multiple visits to a single place. We achieve this by ignoring the temporal scale of 

stays and aggregating those close in space via an agglomerative clustering algorithm (Jiang et 

al., 2013). Specifically, we put together all stays identified in one user’s trajectories, aggregate 

those close in space into one cluster and replace locations of those stays (i.e. their centroids) 

with the centroid of the cluster (Figure 50c). Then, a stay sc(tm, tm+1, …, tn; lngc, latc) is modified 

as scc(tm, tm+1, …, tn; lngcc, latcc; rcc), where the location (lngcc, latcc) is the centroid of the cluster 

where sc belongs. And rcc records the radii of the cluster (the longest distance from the centroid 

to any stays in the cluster) as the locational uncertainty of scc. The data structure scc(tm, tm+1, …, 

tn; lngcc, latcc; rcc)will be useful in the last step of our DCI framework. In the study, we apply the 

agglomerative clustering starting from each stay as individual cluster and set 200 meters (the 

same as the previous definition of roaming distance ∆𝑙𝑟𝑜𝑎𝑚) as the criterion to stop the 

algorithm. Figure 50 illustrates the process identifying stays from the GPS data set, where one 
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common stay visited on two days, which is identified by aggregating two stays that are found in 

two trajectories. 

 

 

 

Figure 50. Illustration. Illustration of identifying stays from the GPS data set. (a) Raw GPS 
trajectories of two days; (b) Processed trajectories with identified stays; (c) Processed 

trajectories with a common stay being identified.  

Source: ©Google 

Extract trips from the cellular set 

Given the low location accuracy and sampling frequency of the cellular data set, the trace-

segmentation method that is designed for GPS data is not suitable. A framework developed by 

Wang and Chen (2018) for cellular data is applied in the study. The framework addresses the 

locational uncertainty and temporal sparsity of the cellular data with a revised incremental 

clustering method, which takes advantage of the longitudinal nature of the data. Following the 

method, we put together all cellular observations belonging to one user as a list d and the list is 

clustered without regarding their time ordering:   

1) starting from an observation d0, one new cluster C0 is created and d0 is the center;  

2) each observation that has not been clustered will be checked and the one within a 

distance Rc to the center of C0 is clustered into C0 and the center of C0 is 

correspondingly updated;  

3) if no observation could be aggregated in the current cluster, one new cluster is created 

containing a non-clustered observation.  

This procedure repeats itself until all observations in d are clustered. This clustering returns a 

set of clusters, each of which contains observations that are close in space. Then, we come 

back to the time-ordered trajectories where temporal information is used such that a stay is 

identified as a sequence of observations within the same cluster and with duration exceeds a 

given threshold Tc (set as five minutes following the one for GPS data). Similarly, a stay is 

represented by sk(ti, ti+1, …, tj; lngc, latc; rc), where (lngc, latc) and rc are the centroid and the radii 

of the cluster containing the sequence of observations, respectively. Through aggregating 

observations that are close in space but may be far away in time (e.g., several days), this 

method is able to identify common stays visited on multiple days. The spatial constraint Rc in the 
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algorithm is set as 1000 meters following the data characteristic observed in Figure 4, which is 

also used in previous studies on cellular data (Wang and Chen, 2018; Widhalm et al., 2015). 

A.1.3 Integrating trips extracted from all data sets 

We design an algorithm to integrate trips from the two data sets by referring to concepts of 

space-time relationships analyses in Geographic Information System(GIS) (Longley et al., 

2005). Each data set is treat as a layer and identified stays as features in the layer. The time 

and location information (i.e. centroid and radius) of each stay act as the temporal and spatial 

attributes, respectively. Then, features (i.e., stays) from multiple layers (i.e., data sets) are 

combined by measuring their spatiotemporal relationship based on their temporal and spatial 

attributes.  

For the app-based data, we use the predominant GPS data set as the basis. Then, for each of 

the cellular stay, we check its relationship with the processed GPS trajectory (observations of 

the same user on the same day), and decide how to combine it into the GPS trajectory. In the 

following, we define the temporal and spatial relationship, respectively.  

The temporal relationship is defined in three categories: 

1) Temporally separate: given a cellular stay a(ta1, t a2, …, tai; lnga, lata; ra) and time-ordered 

GPS stays {…, b(tb1, tb2, …, tbj; lngb, latb; rb), c(tc1, tc2, …, tck; lngc, latc; rc), …} that are 

neighbors of a in time, we say a is temporally separate with GPS stays if 𝑡𝑎1 > 𝑡𝑏𝑗 and 

𝑡𝑎𝑖 < 𝑡𝑐1 (Figure 51a). 

2) Temporally contained: given a cellular stay a(ta1, t a2, …, tai; lnga, lata; ra), if there exists a 

GPS stay b(tb1, tb2, …, tbj; lngb, latb; rb) such that 𝑡𝑏1 < 𝑡𝑎1 < 𝑡𝑎𝑖 < 𝑡𝑏𝑗, we say a is 

temporally contained in b (Figure 51b). 

3) Temporally intersected: given a cellular stay a(ta1, t a2, …, tai; lnga, lata; ra), if it satisfies 

neither 1) nor 2), we say a is temporally intersected with GPS stays (Figure 51c). 

 

Figure 51. Illustration. Demonstration of the spatiotemporal relationship. (a) Temporally 
separate and spatially contiguous; (b) Temporally contained (c) Temporally intersected (cutting 

off ta3 turns a into 𝑎′ which is temporally separate with b). 

For the spatial relationship, we check whether the cellular stay is spatially contiguous with GPS 

stays or not. Here, two stays are defined spatially contiguous if the difference of their location 

uncertainty is greater than their spatial distance. Figure 52 gives an example where the stay a is 
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spatially contiguous with b, as the difference between their uncertainty radius (i.e. 𝑟𝑎 − 𝑟𝑏) is 

greater than the distance between centroids of the two stays 𝐷𝑎𝑏.  

 

Figure 52. Illustration. Definition of spatially contiguous. 

Following these definitions, the spatiotemporal relationship of each cellular stay with GPS stays 

is decided, based on which decision of the integration is made. For a cellular stay a(ta1, t a2, …, 

tai; lnga, lata; ra): 

i) If it is temporally separate with its neighboring GPS stays b and c, a would either be a 

visit to a new place, or be the same visit at b or c but with a coarser location 

representation. This depends on whether a is spatially contiguous with b or c. If not, a is 

added as a new stay; otherwise, a is combined with b or c by replacing the location of a 

with that of b or c, depending on which one a is spatially contiguous with. Figure 51a 

gives an example where a is temporally separate and spatially contiguous with b.  

ii) If it is temporally contained in one GPS stay b, similarly, we check whether it is spatially 

contiguous with b or not. If yes, a is discarded; otherwise, a is inserted as a new stay 

and b could be split into two stays.  

iii) If it is temporally intersected with one (or more) GPS stay b, the intersected time period 

of a is cut off (Figure 51c), resulting into either a temporal separate or contained case. 

Then procedure i) or ii) is followed. The underlying logic of the cutoff is that, for the 

intersected time period, we use location information in b rather that in a, as locations in b 

have better accuracy and are more reliable. As illustrated in Figure 51c, the cutoff 

modifies a to 𝑎′, which is temporally separate with b. Therefore, we follow procedure i) to 

combine the new cellular stay 𝑎′ into GPS trajectory.   

The relation-checking and integration process repeats itself until all cellular stays are processed. 

Since the duration of some stays would change during the integration, we scan through each 

combined trajectory to update the duration of stays.  

 

A.2 Appendix B—OD Estimation Method for App-Based Data 
The zone-level observed trips from app-based data are usually not a good representation of the 

actual trips by the entire population due to at least two reasons: 1) the app-based dataset was 

not probabilistically-sampled so that it would not represent the pattern of the entire population 

well; and 2) because of the passively-solicited data generation process and data sparsity, app-

based data may not capture all travels generated by the population; in other words, missing trips 

always exist for such datasets. 
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Admitting such issues in the dataset, one could still conduct a preliminary exploration on the OD 

estimation from the app-based data using the zone-level population data as a critical input. The 

steps of the OD estimation process based on the app-based data are briefly described below. 

1) Aggregate residents into the TAZ level 

Residents refer to the users whose home census tracts can be identified from app-based data 

due to frequent visits during night times. For the entire period, the total residents for each TAZ 

will be counted and added it as a new attribute associated with TAZs. 

2) Calculate the scaling factors associated with each TAZ 

The residents identified from the app-based data are samples from the entire population of each 

TAZ. The scaling factors can be calculated by the following equation: 

𝛼𝑖 =
𝑃𝑖

𝑟𝑖
 

Where 𝛼𝑖 denotes the scaling factor of TAZ i, and 𝑃𝑖, 𝑟𝑖 correspond to the population and 

number of residents of TAZ i, respectively. All residents associated with TAZ i own the same 

scaling factor, equaling to 𝛼𝑖. 

3) Generate OD matrix 

Select the weekday trips generated by residents from the entire trip file. Multiply the trip with 

corresponding scaling factors and then assign it into OD matrix. 

𝑂𝐷(𝑎,𝑏) = ∑ 𝑇𝑟𝑖𝑝(𝑖,𝑎,𝑏) ∗ 𝛼𝑖

𝑖

 

 

Where 𝑂𝐷 is a matrix with the dimension of 3,700*3,700 (3700 is the total number of TAZs in 

the Puget Sound Region); 𝑎 and 𝑏 denote the trip origin and destination TAZ; and 𝑇𝑟𝑖𝑝(𝑖,𝑎,𝑏) 

denotes the number of observed trips between TAZ pair (a, b) as well as generated by the user 

associated with TAZ i. Divide the OD matrix by the total number of weekdays involved, the daily 

OD demand matrix can be derived.  

A.3 Appendix C—Home Distribution of Anonymous Users Observed 
Every Day 

In the Section 3, we show that some IDs have every day observed and some IDs have a long 

life span. In this appendix, we provide more information on these IDs. Figure 53 gives a spatial 

distribution of home census tracts of IDs observed everyday (8,758 IDs). The distribution is 

compared with the population from the census. The comparison yields a correlation coefficient 

of 0.93 (Figure 54).    
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Similarly, Figure 55 gives a spatial distribution) of home census tracts of IDs with life span of 63 

days (41,640 users). The distribution is also compared with the population from the census. The 

correlation coefficient is 0.98 (Figure 56).    

       

Figure 53. Map. Comparison between home census tracts of IDs observed everyday (8,758 IDs) 
and the population from the census. (a) Home density of IDs observed every day and (b) 

Census population density. 

Source: ArcMap Desktop. 
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Figure 54. Graph. Correlation between home census tracts of IDs observed every day and 
census population (both at census tract level). 
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Figure 55. Map. Comparison between home census tracts of anonymous users with life span of 
63 days (41,640 IDs) and the population from the census. (a) Home density of IDs with life span 

of 63 days presented at census tract level and (b) Census population density. 

Source: ArcMap Desktop. 
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Figure 56. Comparison of home census tracts of IDs with life span of 63 days (41,640 IDs) at 
census tract level 
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A.4 Appendix D—CV data 

A.4.1 Sample Data of BSM 

FileId TxDevice Gentime TxRandom MsgCount DSecond 

13963 10 278,802,340,808,876.00 0 76 14700 

13963 10 278,802,340,908,860.00 0 77 14800 

13963 10 278,802,341,008,885.00 0 78 14900 

13963 10 278,802,341,108,882.00 0 79 15000 

13963 10 278,802,341,208,958.00 0 80 15100 

13963 10 278,802,341,309,002.00 0 81 15200 

13963 10 278,802,341,408,935.00 0 82 15300 

13963 10 278,802,341,508,966.00 0 83 15400 

13963 10 278,802,341,608,941.00 0 84 15500 

13963 10 278,802,341,708,937.00 0 85 15600 

 

Latitude Longitude Elevation Speed Heading Ax Ay Az 

42.29717 -83.7013 239.4 0.86 9.9375 -1.07 0.01 -10 

42.29717 -83.7013 239.4 0.72 9.9375 -1.15 0.01 -10 

42.29717 -83.7013 239.4 0.66 9.9375 -1.07 0.01 -10 

42.29717 -83.7013 239.4 0.52 9.9375 -1.07 0.01 -10 

42.29717 -83.7013 239.4 0.46 9.9375 -0.91 0.01 -10 

42.29718 -83.7013 239.3 0.38 9.9375 -0.68 0.01 -10 

42.29718 -83.7013 239.3 0.3 9.9375 -0.52 0.01 -10 

42.29718 -83.7013 239.3 0 9.9375 -0.45 0.01 -10 

42.29718 -83.7013 239.3 0.14 9.9375 -0.29 0.01 -10 

42.29718 -83.7013 239.3 0 9.9375 -0.45 0.01 -10 
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Yawrate PathCount RadiusOfCurve Confidence 

-0.6 11 3276.7 100 

-1.1 11 3276.7 100 

-0.5 11 3276.7 100 

-0.5 11 3276.7 100 

-0.69 11 3276.7 100 

-0.3 11 3276.7 100 

-0.1 11 3276.7 100 

-0.3 11 3276.7 100 

0 11 3276.7 100 

-0.1 11 3276.7 100 

Source: data.transportation.gov 

A.4.2 Sample Data of SPAT 

MovementId SPATID Current State Min Timeremaining Max Timeremaining 

3680586804 3040841724 0x04 362 1018 

3680586824 3040841724 0x04 67 293 

3680586845 3040841724 0x04 208 948 

3680586848 3040841732 0x04 361 1017 

3680586869 3040841724 0x01 147 643 

3680586872 3040841732 0x04 66 292 

3680586890 3040841724 0x40 208 704 

3680586894 3040841732 0x04 207 947 

3680586917 3040841724 0x40 656 1201 

3680586918 3040841732 0x01 146 642 
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YellowState YellowTime Pedestrian Detect Vehicle Pedestrian Count LaneSet 

NULL 0 0 0 0x01010504 

NULL 0 0 0 0x02010701 

NULL 0 0 0 0x03010904 

NULL 0 0 0 0x01010504 

0x02 36 0 0 0x04010B01 

NULL 0 0 0 0x02010701 

NULL 0 0 0 0x06020A02 

NULL 0 0 0 0x03010904 

NULL 0 0 0 0x0802 

0x02 36 0 0 0x04010B01 

Source: Data.gov 

A.4.3 Sample data of AV accident 

Time Date Brand Location Speed Type 
Police 
Called 

Injure
d 

21:27 1/8/18 GM Intersection 0-20 mph 
Side-impact 
collision 

No No 

9:34 12/7/17 GM Road Section 0-20mph 
Sideswipe 
collisions 

Yes Yes 

22:05 11/13/17 GM Intersection 0-20 mph 
Sideswipe 
collisions 

No No 

AM 8/11/17 Navya Road Section 0-20 mph 
Sideswipe 
collisions 

No No 

21:09 10/26/17 GM Road Section 0-20 mph Rear-end collision No No 

9:16 10/20/17 GM Intersection NA 
Sideswipe 
collisions 

No No 

16:06 10/18/17 GM Intersection 0-20 mph Rear-end collision No No 
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Responsibility State Note 

No CA With pedestrian 

No CA With motorcycle 

No CA  

No NE  

No CA  

No CA 
Go through the 
intersection 

No CA  

Source: Lee and Lim, 2012 
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Figure 57. Sample accident report of AV (1)  
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Figure 58. Sample accident report of AV (2)  
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Figure 59. Sample accident report of AV (3) 

Source: DMV 
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A.5 Appendix E—Shared Mobility Data 

A.5.1 Uber Movement FILTERED DATA 

Table 16. Origin to All Destination 
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259 CT 75 1 CT 220.06 

1/1/2018 - 
1/31/2018, 
Every day, 
Daily Average 1570 1309 1882 

259 CT 75 6 CT 322.10 

1/1/2018 - 
1/31/2018, 
Every day, 
Daily Average 1614 1357 1919 

259 CT 75 9 CT 323.13 

1/1/2018 - 
1/31/2018, 
Every day, 
Daily Average 1339 1106 1619 

CT: Census Tract 

Source: movement.uber.com 
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Table 17. Daily time series (evening selected) 
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Table 18. Chart data (day of week, from 1/1/2018-1/31/2018) 
D

a
y
 o

f 
W

e
e

k
 

O
ri

g
in

 M
o

v
e
m

e
n

t 
ID

 

O
ri

g
in

 D
is

p
la

y
 

N
a
m

e
 

D
e
s
ti

n
a
ti

o
n

 

M
o

v
e
m

e
n

t 
ID

 

D
e
s
ti

n
a
ti

o
n

 D
is

p
la

y
 

N
a
m

e
 

D
a
te

 R
a
n

g
e

 

M
e
a
n

 T
ra

v
e
l 
T

im
e

 

(S
e
c
o

n
d

s
) 

R
a
n

g
e
 -

 L
o

w
e
r 

B
o

u
n

d
 T

ra
v
e

l 
T

im
e
 

(S
e
c
o

n
d

s
) 

R
a
n

g
e
 -

 U
p

p
e

r 

B
o

u
n

d
 T

ra
v
e

l 
T

im
e
 

(S
e
c
o

n
d

s
) 

M
o
n
d

a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 145 72 295 

T
u
e
s
d
a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 134 67 266 

W
e
d

n
e
s
d
a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 127 60 265 

T
h
u
rs

d
a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 155 76 313 

F
ri
d
a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 178 93 342 

S
a
tu

rd
a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 219 105 458 

S
u
n

d
a
y
 

259 
CT 
75 259 CT 75 

Daily 
Average 175 80 383 

CT: Census Tract 

Source: movement.uber.com 
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A.5.2 Uber Movement ALL DATA 

Table 19. ALL DATA (month aggregate) 

sourceid dstid month 
mean_tra
vel_time 

standard_
deviation_t
ravel_time 

geometric_m
ean_travel_ti
me 

geometric_s
tandard_dev
iation_travel
_time 

755 647 3 715.64 383.47 642.25 1.59 

755 685 1 1974.41 701.39 1883.32 1.33 

746 775 1 1303.87 509.32 1233.46 1.37 

Source: movement.uber.com
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A.5.3 DiDi Data 

Table 20. Raw data of trajectory data from DiDi (city of Xi’an, China, 2016/10/30) 

Driver ID Order ID Time Stamp Latitude Longitude 

44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787824 108.91585 34.26921 

44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787809 108.91379 34.26921 

44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787839 108.91792 34.26921 

44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787827 108.91626 34.26921 

44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787806 108.91346 34.26922 

Source: outreach.didichuxing.com 
 

Table 21. Raw data of order data from DiDi (city of Chengdu, China) 

Order ID 
Ride Start 
Time 

Ride Stop 
Time 

Pick-up 
Longitude 

Pick-up 
Latitude 

Drop-off 
Longitude 

Drop-off 
Latitude 

mGJrlls.gxjjuafoswAysnom-pwapu8o 1478366285 1478367137 104.07247 30.65341 104.05063 30.69255 

nJIhjrf9ttgum5cqowyFjkfk7nmooubq 1478368539 1478369574 104.07502 30.65362 104.0136 30.67191 

nJIhjrf9ttgum5cqowyFjkfk7nmooubq 1478368539 1478369574 104.07502 30.65362 104.0136 30.67191 

uJzhsmp4vBlur4jBpsFHfuiibgmcqnal 1478408628 1478410668 104.112023 30.663959 104.05845 30.64366 

qBJrrth1ipmtt7qBtACHfjnq9utekpcm 1478410438 1478412181 104.06401 30.63531 104.04377 30.71717 

uBHklop4mykqy_gwouJFtpio6jAluw0d 1478403399 1478405156 104.127065 30.673683 104.07005 30.64377 

Source: outreach.didichuxing.com 
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A.5.4 Kaggle Data 

Table 22. Bike sharing demand 
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2011/1/1 
0:00 1 0 0 1 9.84 14.395 81 0 3 13 16 

2011/1/1 
1:00 1 0 0 1 9.02 13.635 80 0 8 32 40 

2011/1/1 
2:00 1 0 0 1 9.02 13.635 80 0 5 27 32 

Source: www.kaggle.com 
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