

Improving resilience of freight networks in West Tennessee

Prepared by:

Principal Investigator

Mihalis M. Golias, Ph.D. Associate Professor, Dept. of Civil Engineering, University of Memphis, 104C Engr. Sc. Bldg., 3815 Central Avenue, Memphis, TN 38152 Tel: 901-678-3048, Fax: 901-678-3026, Email: <u>mgkolias@memphis.edu</u>

Co-Principal Investigators

Sabya Mishra, Ph.D., P.E.

Assistant Professor, Dept. of Civil Engineering, University of Memphis, 112D Engr. Sc. Bldg., 3815 Central Avenue, Memphis, TN 38152 Tel: 901-678-5043, Fax: 901-678-3026, Email: <u>smishra3@memphis.edu</u>

Shahram Pezeshk, Ph.D., P.E.

Professor, Dept. of Civil Engineering, University of Memphis, 112D Engr. Sc. Bldg., 3815 Central Avenue, Memphis, TN 38152 Tel: 901-678-4727, Fax: 901-678-3026, Email: <u>spezeshk@memphis.edu</u>

Researchers

Karlis Pujats

Graduate Research Assistant, Dept. of Civil Engineering, University of Memphis 302 Engineering Administration Bldg., 3815 Central Avenue, Memphis, TN 38152 Email: kpufats@memphis.edu

Technical Report Documentation Page

	reclinical Report D		je	
1. Report No. RES2016-36	2. Government Accessio	n No. 3. R	ecipient's Catalog No.	
4. Title and Subtitle		5. R	eport Date	
Improving resilience of freight r	networks in West Ter		ptember 2018	
		6. P	erforming Organizatio	n Code
7. Author(s)		9 D	erforming Organizatio	n Poport No
Golias, M., Mishra, S., Pezeshk S., Puj	ats K.	0. F	enoming Organizatio	n Report No.
9. Performing Organization Name and University of Memphis	Address	10. \	Nork Unit No. (TRAIS)
3851 Central Avenue		11.	Contract or Grant No.	
Memphis, TN 38152				
12. Sponsoring Agency Name and Add Tennessee Department of Trai Long Range Planning Division		13.	Type of Report and Pe	eriod Covered
505 Deaderick St., Nashville, TN 37243-0344		14.5	Sponsoring Agency C	ode
15. Supplementary Notes				
16. Abstract				
This project developed models both long/medium range pre- a demand/supply of the passengu an important freight hub in the r Midwest region of the U.S. Deli vulnerability and resilience, a G links and routes, and a mathem maximize resilience of the pass TDOT, regional, and local publi processes.	nd post-disruption ne er and freight road ne nation's transportation verables include a re IS based tool and a natical based tool to is enger and/or freight	etwork conditions. T etwork of the greate on system and of sig eport on state of the mathematical mode identify investment network in TN. The improve their resp	his research used or Memphis metro onificant importance art and practice of el to identify vulne options to improve se products can h ective freight plan	d the politan area, ce to the of network erable freight e and be used by
17. Key Words		18. Distribution Statem	ent	
Improving resilience of freight networks in West Tennessee		No restriction. This public from the sp	onsoring agency	at the website
		https://www.tn.go home/longrange-re		pianning-
19. Security Classif. (of this report)	20. Security Classif	. (of this page)	21. No. of Pages	22. Price
Unclassified		lassified	167	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER

This research was funded through the State Research and Planning (SPR) Program by the Tennessee Department of Transportation and the Federal Highway Administration under RES #:2016-36, Research Project Title: Improving resilience of freight networks in West Tennessee.

This document is disseminated under the sponsorship of the Tennessee Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Tennessee and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the author(s) who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Tennessee Department of Transportation or the United States Department of Transportation.

EXECUTIVE SUMMARY

With freight networks acting as economic pipelines that distribute goods throughout a region, disruptions to the network can have widespread consequences. Thus, the vulnerability and resilience of freight networks are extremely important considerations. The complexity of these elements, multiple measures of performance (e.g., mobility can be measured in terms of speed, response time, evacuation time), interactions between them, and the interdependency of various types of networks (e.g., risk for loss of electric power increases vulnerability of the roadway network) necessitates simultaneous optimization of multiple objectives. Characterizing risks within a network can be complex and include time dependent (i.e., planning, tactical, operational, real time) and time changing objectives such as shortest routes, congestion and safety of a route, clearance time, total distance traveled, and link connectivity to multiple paths. Vulnerable routes in a network are best identified through engagement of multiple stakeholders with different roles, risk thresholds, and objectives.

Goals and Objectives: This project developed models and tools of freight network vulnerability and resilience that capture both long/medium range pre- and postdisruption network conditions. This research used the demand/supply of the passenger and freight road network of the greater Memphis metropolitan area, an important freight hub in the nation's transportation system and of significant importance to the Midwest region of the U.S. Deliverables include a report on state of the art and practice of network vulnerability and resilience, a GIS based tool to identify vulnerable freight links and routes, and a tool to identify investment options to improve and maximize resilience of the freight network in TN. These products can be used by TDOT, regional, and local public agencies to further improve their respective freight planning processes.

Research Outcomes: In this project a modeling framework, solution algorithms, and GIS-based tools that can assist decision makers in identifying and ranking vulnerable and critical links and paths of a transportation network for both passengers and freight was developed and implements in Memphis, TN. Numerical experiments performed,

4

using the Shelby County, TN FAF roadway network, showed that the network is extremely vulnerable to attacks and in cases of total capacity susceptible to failure. Attacks were concentrated around origins and destination with a high amount of demand and when the defender tried to protect these links, the attacker would simply shift attacks downstream on the same roadways and obtain the same outcome. One interesting result was that, if the attacker is intelligent, they will focus on a small number of links and increase the severity of the attack while attacks by unintelligent attackers will have no significant impact on the networks performance.

Implementation and Recommendations: The proposed methodology has been implemented as an ArcGIS toolbox (with an accompanying user manual) and can be used by TDOT engineers and planners as is to identify vulnerable links and path of a roadway network. The research team recommends the expansion of the hierarchical three-level game to allow for capital investment for protection and/or capacity increase of a subset of the vulnerable links. The research team also recommends the development of heuristic based traffic assignment algorithms that will improve the efficiency of the hierarchical three-level game solution.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	13
1.1 Project Scope	14
CHAPTER 2: LITERATURE REVIEW	15
2.1 Vulnerability/resilience of roadway networks	15
2.2 Network vulnerability/resilience and game theory	27
2.3 Solution algorithms	
CHAPTER 3: CRITICAL AND VULNERABLE LINK IDENTIFICATION	30
3.1 Traffic Assignment Algorithm	31
CHAPTER 4: CRITICAL AND VULNERABLE LINK RANKING	51
4.1 Mathematical model formulation	52
4.2 Numerical examples and results	53
CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH	96
5.1 Dissemination and Outreach	96
5.2 Future research	96
APPENDIX A: GIS TOOLBOX USER MANUAL	106
Net Conversion Tool	107
The Greedy Search Based Vulnerability Tool (GSB Tool)	112
The Random Search Heuristic Based Vulnerability Tool (RSH Tool)	136
K shortest path tool (KSP Tool)	

LIST OF TABLES

Table 2-1: List of Intentional Threats	.16
Table 2-2: List of Weather Events	.16
Table 2-3: List of Natural Disasters	. 17
Table 2-4: List of Humen Error Events	.17
Table 2-5: List of Generic Events	.17
Table 2-6: Link Performance Measures	20
Table 2-7: Network Performance Measures	.25
Table 2-8: Metaheuristic algorithms examples	29
Table A-10 GSB Tool Output Attribute Field Dictionary1	35
Table A-11 RSH Tool Output Attribute Field Dictionary for VHT and VMT Tables 1	59
Table A-12 RSH Tool Output Attribute Field Dictionary for Critical Link Sets	59
Table A-13 KSP Tool Output Attribute Field Dictionary 1	68

LIST OF FIGURES

Figure 3-1. Case 1: GSB Based Top 5 Critical Links	34
Figure 3-2. Case 2: GSB Based Top 10 Critical Links	34
Figure 3-3. Case 3: GSB Based Top 15 Critical Links	35
Figure 3-4. Case 4: GSB Based Top 20 Critical Links	35
Figure 3-5. Case 5: GSB Based Top 5 Critical Links	36
Figure 3-6. Case 6: GSB Based Top 10 Critical Links	36
Figure 3-7. Case 7: GSB Based Top 15 Critical Links	37
Figure 3-8. Case 8: GSB Based Top 20 Critical Links	37
Figure 3-9. Case 9: GSB Based Top 5 Critical Links	38
Figure 3-10. Case 10: GSB Based Top 10 Critical Links	38
Figure 3-11. Case 11: GSB Based Top 15 Critical Links	39
Figure 3-12. Case 12: GSB Based Top 20 Critical Links	39
Figure 3-13. Top 10 Links Based on Unweighted k Shortest Path	40
Figure 3-14. Top 10 Links Based on Demand Weighted k Shortest Path	40
Figure 3-15. Top 15 Links Based on Unweighted k Shortest Path	41
Figure 3-16. Top 15 Links Based on Demand Weighted k Shortest Path	41
Figure 3-17. Top 20 Links Based on Unweighted k Shortest Path.	42
Figure 3-18. Top 20 Links Based on Demand Weighted k Shortest Path	42
Figure 3-19. Top 5 Links Based on Unweighted k Shortest Path.	43
Figure 3-20. Top 5 Links Based on Demand Weighted k Shortest Path	43
Figure 3-21. RSH Top 5 Links Attacked: Case 1	44
Figure 3-22. RSH Top 10 Links Attacked: Case 2	
Figure 3-23. RSH Top 15 Links Attacked: Case 3	
Figure 3-24. RSH Top 20 Links Attacked: Case 4	46
Figure 3-25. RSH Top 20 Links Attacked: Case 5	
Figure 3-26. RSH Top 20 Links Attacked: Case 6	
Figure 3-27. RSH Top 20 Links Attacked: Case 7	47
Figure 3-28. RSH Top 20 Links Attacked: Case 4	
Figure 3-29. RSH Top 5 Links Attacked: Case 9	
Figure 3-30. RSH Top 10 Links Attacked: Case 10	
Figure 3-31. RSH Top 15 Links Attacked: Case 11	
Figure 3-32. RSH Top 20 Links Attacked: Case 12	
Figure 4-1. Shelby County, TN FAF4 Network.	54
Figure 4-2. Histogram of Link Probability of Attack for Case 1	58
Figure 4-3. Histogram of Link Probability of Attack for Case 2	58
Figure 4-4. Histogram of Link Probability of Attack for Case 3	
Figure 4-5. Histogram of Link Probability of Attack for Case 4	
Figure 4-6. Histogram of Link Probability of Attack for Case 5	
Figure 4-7. Histogram of Link Probability of Attack for Case 6	60

Figure 4-8. Histogram of Link Probability of Attack for Case 7	61
Figure 4-9. Histogram of Link Probability of Attack for Case 8	61
Figure 4-10. Histogram of Link Probability of Attack for Case 9	62
Figure 4-11. Histogram of Link Probability of Attack for Case 10.	62
Figure 4-12. Histogram of Link Probability of Attack for Case 11.	63
Figure 4-13. Histogram of Link Probability of Attack for Case 12.	63
Figure 4-14. Link Probability for Attack for Case 1	64
Figure 4-15. Link Probability for Attack for Case 2	64
Figure 4-16. Link Probability for Attack for Case 3	
Figure 4-17. Link Probability for Attack for Case 4.	65
Figure 4-18. Link Probability for Attack for Case 5.	66
Figure 4-19. Link Probability for Attack for Case 6	
Figure 4-20. Link Probability for Attack for Case 7	67
Figure 4-21. Link Probability for Attack for Case 8	67
Figure 4-22. Link Probability for Attack for Case 9	
Figure 4-23. Link Probability for Attack for Case 10.	68
Figure 4-24. Link Probability for Attack for Case 11.	
Figure 4-25. Link Probability for Attack for Case 12.	
Figure 4-26. Overall Link Probability for Attack	70
Figure 4-27. Critical Paths Between Top Five Affected Origin Destination Pairs and F	⁻irst
Ten Sets of Critical Links for Case 1	70
Figure 4-28. Critical Paths Between Top Five Affected Origin Destination Pairs and F	First
Ten Sets of Critical Links for Case 2.	71
Figure 4-29. Critical Paths Between Top Five Affected Origin Destination Pairs and F	⁻irst
Ten Sets of Critical Links for Case 3.	71
Figure 4-30. Critical Paths Between Top Five Affected Origin Destination Pairs and F	⁻irst
Ten Sets of Critical Links for Case 4.	72
Figure 4-31. Critical Paths Between Top Five Affected Origin Destination Pairs and F	-irst
Ten Sets of Critical Links for Case 5.	72
Figure 4-32. Critical Paths Between Top Five Affected Origin Destination Pairs and F	-irst
Ten Sets of Critical Links for Case 6.	73
Figure 4-33. Critical Paths Between Top Five Affected Origin Destination Pairs and F	⁻irst
Ten Sets of Critical Links for Case 7.	73
Figure 4-34. Critical Paths Between Top Five Affected Origin Destination Pairs and F	-irst
Ten Sets of Critical Links for Case 8.	74
Figure 4-35. Critical Paths Between Top Five Affected Origin Destination Pairs and F	-irst
Ten Sets of Critical Links for Case 9.	74
Figure 4-36. Critical Paths Between Top Five Affected Origin Destination Pairs and F	-irst
Ten Sets of Critical Links for Case 10.	75

Figure 4-37. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 11......75 Figure 4-38. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 12......76 Figure 4-39. Histogram of Link Probability of Attack for Case 1 (Truck Cost Based). ... 77 Figure 4-40. Histogram of Link Probability of Attack for Case 2 (Truck Cost Based). ... 77 Figure 4-41. Histogram of Link Probability of Attack for Case 3 (Truck Cost Based). ... 78 Figure 4-42. Histogram of Link Probability of Attack for Case 4 (Truck Cost Based). ... 78 Figure 4-43. Histogram of Link Probability of Attack for Case 5 (Truck Cost Based). ... 79 Figure 4-44. Histogram of Link Probability of Attack for Case 6 (Truck Cost Based). ... 79 Figure 4-45. Histogram of Link Probability of Attack for Case 7 (Truck Cost Based). ... 80 Figure 4-46. Histogram of Link Probability of Attack for Case 8 (Truck Cost Based). ... 80 Figure 4-47. Histogram of Link Probability of Attack for Case 9 (Truck Cost Based). ... 81 Figure 4-48. Histogram of Link Probability of Attack for Case 10 (Truck Cost Based). . 81 Figure 4-49. Histogram of Link Probability of Attack for Case 11 (Truck Cost Based). . 82 Figure 4-50. Histogram of Link Probability of Attack for Case 12 (Truck Cost Based). . 82 Figure 4-64. Truck Critical Paths Between Top Five Affected Origin Destination Pairs Figure 4-65. Truck Critical Paths Between Top Five Affected Origin Destination Pairs Figure 4-66. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 391 Figure 4-67. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 491 Figure 4-68. Truck Critical Paths Between Top Five Affected Origin Destination Pairs

Figure 4-69. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 6
Figure 4-70. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 7
Figure 4-71. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 8
Figure 4-72. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 9
Figure 4-73. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 10
Figure 4-74. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 11
Figure 4-75. Truck Critical Paths Between Top Five Affected Origin Destination Pairs
and First Ten Sets of Critical Links for Case 12
Figure A-1 Net Conversion Tool 107
Figure A-2 Input Transportation Network Shapefile (.shp)108
Figure A-3 Select the corresponding Input Network Attribute Fields
Figure A-4 Input Path to Output Table110
Figure A-5 Application Performance Task Window110
Figure A-6 Output Table 111
Figure A-7 Example input tables in form of (.csv)113
Figure A-8 Example input tables in form of (.dbf) 114
Figure A-9 GSB Tool 115
Figure A-10 Input Network 116
Figure A-11 Input Origin-Destination Matrix117
Figure A-12 Initialize New Traffic Assignment
Figure A-13 Select Type of Demand Used for Traffic Assignment 119
Figure A-14 Input User Defined Link IDs120
Figure A-15 Select Attributes
Figure A-16 Input Weights 122
Figure A-17 Normalize Weights 123
Figure A-18 Select # of Links 124
Figure A-19 Select the Percentage of Capacity Reduction (%) 125
Figure A-20 Select Reduce Capacity One Link at a Time 126
Figure A-21 Input Traffic Assignment Convergence Precision
Figure A-22 Input Top Vulnerable Links to be Plotted 128
Figure A-23 Output Folder Selection 129
Figure A-24 Application Performance Task Window
Figure A-25 GSB Plot
Figure A-26 Network Link Vulnerability Ranking Tool Output

Figure	A-27 Add Network in a Form of Shapefile	133
	A-28 Visualize the GSB Tool Output	
Figure	A-29 Example input tables in form of (.csv)	137
Figure	A-30 Example input tables in form of (.dbf)	138
Figure	A-31 RSH Tool	139
Figure	A-32 Input Network	140
Figure	A-33 Input Origin-Destination Matrix	141
Figure	A-34 Initialize New Traffic Assignment	142
Figure	A-35 Input User Defined Link IDs	143
Figure	A-36 Select Attributes	144
•	A-37 Input Weights	
	A-38 Normalize Weights	
Figure	A-39 Select # of Links	147
Figure	A-40 Select the Percentage of Capacity Reduction	148
Figure	A-41 Select the Percentage of Top Weighted Links Used in Shortest-Path	
	euristic (%)	
Figure	A-42 Input Number of the Top Critical Link Sets	150
Figure	A-43 Input Traffic Assignment Convergence Precision	151
-	A-44 Input Top Vulnerable Links to be Plotted	
	A-45 Input Output Folder	
	A-46 Application Performance Task Window	
Figure	A-47 RSH Plot	155
-	A-48 RSH Tool Output VHT	
-	A-49 RSH Tool Output Critical Link Sets	
Figure	A-50 Add Network in a form of Shapefile	157
	A-51 Visualize the RSH Tool Output	
	A-52 Example input tables in form of (.csv)	
Figure	A-53 Example input tables in form of (.dbf)	161
•	A-54 KSP Tool	
	A-55 Input Network	
	A-56 Input Origin-Destination Matrix	
-	A-57 Select k Shortest Paths	
	A-58 Input Output Folder	
-	A-59 Application Performance Task Window	
-	A-60 KSP Tool Output	
-	A-61 Add Network in a form of Shapefile	
Figure	A-62 Visualize the KSP Tool Output	167

CHAPTER 1: INTRODUCTION

Vulnerabilities of transportation networks have been widely studied in recent years and are gaining even more attention with the growing number of threats (e.g., climate change, man-made attacks). Research in this area can vary drastically (in mathematical formulations, assumptions made, objective functions used) due to the vague meaning and various interpretations of the term vulnerability. There are also other terms with definitions and interpretations akin to the term vulnerability like robustness, resiliency, and reliability. Transportation networks are open to a wide variety of threats that can be divided into two main categories: intentional and unintentional. The former are deliberate and intelligent attacks on a network with a clear goal of disrupting the network and attempt to exploit known vulnerabilities. Transportation networks are a common target of such attacks due to being economic pipelines crucial to the movement of people, goods, and services. The damage or destruction (partial or full loss of capacity of a link or path) of transportation infrastructure can have wide-spread detrimental effects, thus making a very desirable target for intentional attacks. Unintentional threats usually pertain to the consequences of human error, insufficient maintenance, or damage caused by acts of nature. Human errors like negligence and traffic accidents can have drastic consequences to the network's performance and ability to accommodate traffic. Weather events can also be detrimental to a network and can indirectly reduce capacity (i.e., lower travel speeds with lower densities due to increased driver reaction times). Natural disasters like earthquakes, volcanic activity, flooding, tsunamis, hurricanes, etc. have been responsible for billions of dollars of damage in the United States alone.

From 1980 to 2011, there have been 133 disasters designated as billion dollars disasters (total damages more than one billion dollars). Humans can also make choices that have unintended consequences to the performance of a roadway network as well. In the worst of cases, improper maintenance of the infrastructure (e.g., bridges) can lead to a complete loss of capacity (as was the case for the collapse of a bridge on I-35 W in Minnesota). Traffic accidents are much more common than infrastructure failure

13

with 10.8 million crashes occurring in the United States in 2009. In 2010, the economic cost of crashes totaled \$242 billion and if quality-of-life is considered the total value of societal harm was \$836 billion.

1.1 Project Scope

Transportation networks are by nature vulnerable to natural and man-made disasters (or incidents). The concept of vulnerability focuses on three elements: a) degree of loss and damage, b) degree of exposure, and c) degree of resilience. The complexity of each element and its components, the multiple measures of performance for each (e.g., mobility can be measured with speed, response time, evacuation time, etc. depending on the incident), interactions between them, and the interdependency of various physical and other types of networks (e.g., risk for loss of electric power increases vulnerability of the roadway network) necessitates simultaneous optimization of multiple objectives. The objective of this project is to develop models and tools of freight network vulnerability and resilience that capture both operational/real time and long/medium range pre- and post-disruption network conditions.

The rest of the report is organized as follows. The next chapter presents a brief summary the literature that has been published on the topic of transportation resilience to date. The third chapter presents the methodology and models that were developed to identify the critical and vulnerable links within a network. The fourth chapter presents the methodology and models developed to rank the critical and vulnerable links and paths within a network. The fifth chapter presents the ArcGIS toolbox that was developed as part of this research to support application of the models and solution algorithms developed as part of this project. The last chapter concludes the report and provides future research directions.

CHAPTER 2: LITERATURE REVIEW

This section of the report presents a summary of the literature on the following three areas: (1) vulnerability/resilience, (2) game theory frameworks, and (3) optimization algorithms. The vulnerability/resilience part of the literature review is divided into three sections structured around the three questions that (Kaplan and Garrick, 1981) associate with vulnerability. The game theory part of the literature review is divided into two sections. The first section is a general introduction to the application of game theory to various problems. The second section defines the players that exist in a transportation network and the research that has examined the actions of these players. The optimization part of the review will discuss the solution algorithms presented in the literature to solve problems of transportation link vulnerability/resilience estimation.

2.1 Vulnerability/resilience of roadway networks

Research on the vulnerability and resilience of systems in general (not only transportation networks), has been an area of increasing research. Unfortunately, due to various interpretations of the terms by researchers and practitioners the published articles can vary drastically. In addition, other terms relating to vulnerability and resilience (e.g., robustness, reliability) have been used interchangeably in the literature. According to (Kaplan and Garrick, 1981) to define vulnerability one must ask and answer the following questions: 1) What can happen, 2) How likely is it that the event will happen, and 3) What are the consequences?

With regards to the first question, and in the case of transportation networks, a wide variety of threats exist and can be grouped into two main categories based on the cause of the incident: i) intentional and ii) unintentional. Intentional threats, listed in Table 2-1, are attacks on a network with a clear goal of disrupting the operations. Such threats are considered as intelligent and, in most of the cases, attempt to exploit known vulnerabilities of the transportation network (e.g., a bridge that connects two major urban areas). Transportation networks are a common target of attacks due to being economic pipelines that are crucial to the movement of people, goods, and services from one place to another. The damage or destruction of transportation infrastructure

can have wide-spread detrimental effects, thus making a very desirable target for an attack.

Threat	Description
Terrorist Attack (Bricha and Nourelfath,	A terrorist attack is a very focused and
2013; Latora and Marchiori, 2005; Lu et	deliberate attack to damage or destroy an
al., 2005)	infrastructure
Construction (Clegg, 2007)	Partial or full road closures are very
	common occurrences when maintaining
	or improving roadways

Table 2-1: List of Intentional Threats

On the other hand, unintentional threats are the results of either human error or acts of nature. Human errors like negligence and traffic accidents can have drastic consequences to the operations of a network. The literature review distinguishes between weather events (rain, snow, etc.) and natural disasters (earthquake, hurricane, etc.) by considering that weather events occur often while natural disasters are rare. Extreme weather events can be classified as natural disasters because they present dangers that are on the same scale as other natural disasters. For example, excessive rainfall can cause flooding that can wash away roadways and excessive snowfall can prevent roadways from being used safely. Tables 2-2 through 2-5 summarize a list of weather, natural disaster, human related, and generic events that increase the vulnerability and reduce resilience of transportation networks.

 Table 2-2: List of Weather Events

Weather Event	Description
Rain (Golob and Recker, 2003)	Precipitation in the form of liquid water
Snow and Ice (Berdica and Mattsson, 2007; Dalziell and Nicholson, 2001)	Precipitation in the form of frozen water

Natural Hazard	Description
Earthquakes	The sudden release of energy in the Earth's crust that creates
(Abounacer et al.,	seismic waves
2014; Kim et al.,	
2012a, 2012b;	
LUATHEP et al.,	
2013a;	
Oppenheim, 1977;	
Poljansek et al.,	
2012; Wu and	
Duenas-Osorio,	
2013)	
Volcanic Activity	This can be an eruption or lava flow associated with an active
(Erik Jenelius,	volcano
2010)	
Sea Level Rise (Lu	The gradual rise of sea level over time (8 inches in the past
and Peng, 2011)	century)
Flooding	An overflow of water that submerges land that is typically dry
(Abounacer et al.,	
2014; LUATHEP	
et al., 2013a) Tsunamis	A app ways sourced by the displacement of a large volume of a
	A sea wave caused by the displacement of a large volume of a
(Abounacer et al., 2014)	body of water.
Hurricane (Sherali	A large tropical storm system with high-powered circular winds
et al., 1991)	A large tropical storm system with high-powered circular winds
Tornado (Smith	A funnel cloud of violently rotating winds
and Katz, 2013)	A runner cloud of violently rotating winds
Wildfires (Smith	A large, destructive fire that spreads quickly
and Katz, 2013)	A large, destructive life that spreads quickly
Blizzard (Smith	A severe snowstorm with high winds and low visibility
and Katz, 2013)	A severe showstorm with high winds and low visibility
and Raiz, 2013)	

Table 2-3: List of Natural Disasters

Table 2-4: List of Humen Error Events

Human Error	Description
Traffic Accidents	Traffic accidents can result in temporary partial or full road
(Elvik, 2000)	closures leading to unexpected delay in a network.
Improper	Improper maintenance can result in failures that can be
Maintenance (Xie and	catastrophic in some cases (Minnesota Bridge)
Levinson, 2011)	

Table 2-5: List of Generic Events

Event	Description
Full closure of one	Studies in this category focus on the effects generated by the

link (Berdica and Mattsson, 2007)	closure of a single roadway link
Full closure of multiple links (Jenelius and Mattsson, 2012)	Studies in this category focus on the effects generated by the closure of multiple roadway links
Partial closure of one link (Berdica and Mattsson, 2007)	Studies in this category focus on the effects of closing only part one link (lane closure)
Partial Closure of Multiple Links (Berdica and Mattsson, 2007)	Studies in this category focus on the effects of closing only part of multiple links (lane closures)
Increased Traffic Volume (Berdica and Mattsson, 2007)	Studies in this category focus on the performance of a network using higher than normal traffic volumes (future traffic growth)

With regards to the second question (i.e., how likely is that an event will happen) two measures have been commonly used in the literature to provide an answer: time periods of occurrence and probability of occurrence. The former measure is usually associated with weather events and earthquakes and can easily be converted to probabilities while the latter is case based and can vary greatly over time (e.g., the probability of an earthquake or a volcano eruption increases with time; the probability of an intentional attack on a network can fluctuate based on different geopolitical conditions). The authors would like to note that the quantity and accuracy of information available is key to determining the probability associated with a specific threat (intentional or otherwise) and decision makers have a very difficult task considering all the different threats and their probabilities while making a decision that will have consequences on the performance of a network.

The final question (i.e., what are the consequences) is usually answered through the estimation of the impacts to the transportation network users. In most cases these impacts are averaged or combined (e.g., mean total travel time increase, total travel delay) as an event will not impact all users in the same manner. Combination can include weights to differentiate between the different groups of uses (e.g., passenger VS freight). There are two different types of measures used to evaluate transportation

networks: (1) link and (2) network measures. Link measures only reflect the characteristics or influence of a single link while network measures reflect the performance or characteristics of an entire network. Most of the network measures are an aggregation of a link measure for all links on the network.

Both measures can be divided into four subcategories: (1) mobility, (2) accessibility, (3) reliability, and (4) resilience. Mobility measures focus on how easy or difficult is to travel through the network. Accessibility refers to the connectivity of the network. Reliability, a derivative of mobility, refers to the fluctuations of mobility. Finally, resilience is usually a comparison of all three measures before and after an event. Tables 2-6 and 2-7 summarizes the link and network measures for each subcategory that have been found in the published literature. The first column provides the measure, the second column provides the formula used to estimate the measure, and the third column provides the definition of the variables used in column two. Table 2-7 has a fourth column that indicates the desired direction of optimization (if the measure is used as part of a decision-making support tool).

Measures	Function	Definitions
	Mobility	
Congestion Index (Zhang and Lomax, 2008)	$CI = \frac{t_c}{t_f}$	t_c is the travel time under congested traffic conditions t_f is the travel time under free- flow conditions
User Lost Time (YANG and QIAN, 2012)	$tt - t_f$	tt is the travel time t_f is the travel time under free-flow conditions
Travel Time (United States., 1964)	$S_a(v_a) = t_a \left(1 + 0.15 \left(\frac{v_a}{c_a}\right)^4\right)$	$S_a(v_a)$ is the average travel time for a vehicle on link <i>a</i> t_a is the free flow travel time on link <i>a</i> per unit of time v_a is the volume of traffic on link <i>a</i> per unit of time c_a is the capacity of link <i>a</i> per unit of time
Travel Distance (Berdica and Mattsson, 2007)	segment length	
Travel Speed (Berdica and Mattsson, 2007)	segment length tt	<i>tt</i> is the travel time
Travel Rate (Berdica, 2002; Pratt and Lomax, 1996)	$\frac{tt}{segment \ length} = \ (speed^{-1}) - 1$	<i>tt</i> is the travel time
Speed of Person Movement (Berdica, 2002; Pratt and Lomax, 1996)	Passenger vol. × average travel speed	
Corridor Mobility Index (Berdica, 2002; Pratt and Lomax, 1996)	Speed of Person Movement Standard Value	
	Accessibility	
Serviceability (Berdica, 2002)	Probability that link/route/network will be utilized during a given time period	
Accessibility (Chen et al., 2007; LUATHEP et al., 2013b;	Average travel time to locations or percentage of locations within a pre-specified time	

Table 2-6: Link Performance Measures

Luathep et al.,		
2011; Taylor et al., 2006)		
	Reliability	
Delay Rate (Berdica, 2002; Pratt and Lomax, 1996)	$(atr - dtr) = \frac{(att - dtt)}{length}$	<i>atr</i> is the actual travel rate <i>dtr</i> is the desired travel rate <i>att</i> is the actual travel time <i>dtt</i> is the desired travel time
Total Delay (Berdica, 2002; Pratt and Lomax, 1996)	$dr \times people \ vol. \times length$ = $(att - dtt)$ $\times people \ vol.$	<i>att</i> is the actual travel time <i>dtt</i> is the desired travel time
Relative Delay Rate (Berdica, 2002; Pratt and Lomax, 1996)	$\frac{dr}{dtr} = \frac{atr}{dtr} - 1$	<i>dr</i> is the delay rate <i>atr</i> is the actual travel rate <i>dtr</i> is the desired travel rate
Delay Ratio (Berdica, 2002; Pratt and Lomax, 1996)	$\frac{dr}{atr} = 1 - \frac{dtr}{atr}$	<i>dr</i> is the delay rate <i>atr</i> is the actual travel rate <i>dtr</i> is the desired travel rate
	Resilience	
Redundancy Importance -Flow (E. Jenelius, 2010)	$RI_{flow}(k;l) = (f_k^l - f_k^0)$	<i>l,k</i> are links f_k^0 is the base case flow on link <i>k</i> f_k^l is the flow on link <i>k</i> when link <i>l</i> is closed
Redundancy Importance- Impact (E. Jenelius, 2010)	$RI_{impact}(k;l) = \left(\Delta T_k^l - \Delta T^l\right)$	<i>L,k</i> are links ΔT^{l} is the base case ΔT_{k}^{l} is the total impact of closure of link <i>l</i> to link <i>k</i>
Robustness (Scott et al., 2006; Sullivan et al., 2010)	$q_{a} = c_{a} - c$ $c = \sum_{a}^{a} t_{a} x_{a}$ $c_{a} = \sum_{a}^{a} t_{a} x_{a} \delta_{a}$	q_a is the network robustness index c_a is the cost of removing link a c is the cost of the base case t_a is the travel time of link a x_a is the flow of link a δ_a is the presence of link a in the network (1 if present 0
Disruption Index	$D = \sum M^{r,s}$	the network (1 if present 0 otherwise) D_a is the disruption index of
(Murray-Tuite and Mahmassani, 2004)	$D_{a} = \sum_{\substack{r,s \\ m_{a}^{r,s} = \chi_{a}^{r,s} V_{a}^{r,s}}} M_{a}^{r,s}$ $\chi_{a}^{r,s} = \left(\frac{x_{a}^{r,s}}{q^{r,s}}\right)$	link <i>a</i> <i>r</i> is the origin index <i>s</i> is the destination index $M_a^{r,s}$ is the vulnerability index for link <i>a</i> evaluated for O-D

	ττ ^γ .S	flow from the o
	$V_a^{r,s}$	flow from r to s
	$\left(\begin{array}{c} 1.0 \ l j \ K^{1/2} > K^{1/2} \\ rs \end{array}\right)$	$\chi_a^{r,s}$ is the coefficient of $V_a^{r,s}$
	$= \begin{cases} 1.0 & if \ k^{r,s} > K^{r,s} \\ 1.0 - \sum_{i=1}^{k^{r,s}} g_j^{r,s} \frac{X_{a,j}}{x_a^{r,s}} & otherwise \end{cases}$	$V_a^{r,s}$ is the initial vulnerability
	$1.0 - \sum_{j} g_{j}^{r,s} \frac{\alpha_{j}}{\gamma^{r,s}}$ otherwise	index
		$x_a^{r,s}$ is the flow on link <i>a</i> from <i>r</i>
	$C_i^{r,s} \subset C_i^{r,s} \setminus (T_i^0)$	to s
	$g_{j}^{i,j} = \left(\frac{g_{j}}{\rho h_{i}}\right) \left(\frac{g_{j}}{\tau_{i}}\right)$	$q^{r,s}$ is the total demand from r
	(r,s)	to s
	$g_j^{r,s} = \left(\frac{C_j^{r,s}}{\rho h_j}\right) \left(\frac{T_j^0}{\tau_j}\right)$ $C_j^{r,s} = \min_{l \in L_j} c_l \left(\frac{\mathbf{x}_l^{r,s}}{\sum_{r',s'} \mathbf{x}_l^{r',s'}}\right)$	$k^{r,s}$ is the number of alternate
	$\sum_{i \in L_j} r_i \left(\sum_{r', s'} x_i^{r', s'} \right)$	paths needed to
		accommodate $x_a^{r,s}$
		$K^{r,s}$ is the total number of
		paths connecting <i>r</i> and <i>s</i>
		<i>j</i> is the path index
		$g_i^{r,s}$ is the utility of alternate
		path j
		$X_{a,j}$ is the amount of flow on a
		to be accommodated by
		alternate path <i>j</i>
		$C_i^{r,s}$ is the excess capacity on
		path <i>j</i> available to <i>r</i> ,s
		h_i is the bottleneck link of
		path <i>j</i>
		ρ_l is the maximum service
		rate of link I
		T_i^0 is the free flow path travel
		time for path <i>j</i>
		τ_i is the marginal path travel
		time
		<i>c</i> _l is the excess capacity of link <i>l</i>
		r',s' is an O-D pair with flow
		on link a
		L_i is the set of links on path j
Impact Area	$F_{\alpha}(G) - F(G)$	VUL_a^l is the impact area
Vulnerability	$VUL_{a}^{l} = \frac{E_{0}(G_{a}) - E_{a}(G_{a})}{E_{0}(G_{a})}$ $E(G) = \frac{\sum_{i} \sum_{rs} \frac{u_{i}^{rs} q_{rs}}{\pi_{i}^{rs}}}{\sum_{rs} q_{rs}}, \forall rs \in RS, \forall i$	vulnerability index
Index (Chen et	$E_0(G_a)$	/ is the traveler type
al., 2012)	$\sum_{i}\sum_{rs}\frac{u_i q_{rs}}{\sigma^{rs}}$	a is the link index
	$E(G) = \frac{n_i}{N}, \forall rs \in RS, \forall i$	$E_0(G_a)$ is the network
	$\sum_{rs} q_{rs}$	efficiency of impact area G_a
	$\in I$	under normal conditions
		$E_a(G_a)$ is the network
		efficiency of impact area G_a
		after the closure of link a
		<i>r</i> is the origin index

Importance-Cost Based (Jenelius et al., 2006)	$Importance_{net}^{dem}(k)$ $= \frac{\sum_{i} \sum_{j \neq i} x_{ij} (c_{ij}^{(k)} - c_{ij}^{(0)})}{\sum_{i} \sum_{j \neq i} x_{ij}}, k \in E^{nc}$	<i>s</i> is the destination index <i>I</i> is the traveler type q_{rs} is the mean travel demand between <i>r</i> and <i>s</i> u_i^{rs} is the proportion of type <i>I</i> travelers from <i>r</i> to <i>s</i> π_i^{rs} is the minimum travel time budget between <i>r</i> and <i>s</i> for type <i>I</i> travelers x_{ij} is the travel demand from node <i>i</i> to node <i>j</i> $c_{ij}^{(k)}$ is the cost of travel from node <i>i</i> to node <i>j</i> when link <i>k</i> is closed $c_{ij}^{(0)}$ is the cost of travel from node <i>i</i> to node <i>j</i> when no link is closed F^{nc} is the set of non-cut links
Importance - Demand Based (Jenelius et al., 2006)	$Importance_{net}^{uns}(k) = \frac{\sum_{i} \sum_{j \neq i} u_{ij}^{(k)}}{\sum_{i} \sum_{j \neq i} x_{ij}}, k$ $\in E$ $u_{ij}^{(k)} = \begin{cases} x_{ij} \text{ if } c_{ij}^{(k)} = \infty \\ 0 \text{ if } c_{ij}^{(k)} < \infty \end{cases}$	E^{nc} is the set of non-cut links x_{ij} is the travel demand fromnode <i>i</i> to node <i>j</i> $u_{ij}^{(k)}$ is the unsatisfied demandfrom node <i>i</i> to node <i>j</i> whenlink <i>k</i> is closed $c_{ij}^{(k)}$ is the cost of travel fromnode <i>i</i> to node <i>j</i> when link <i>k</i> isclosed <i>E</i> is the set of all links
Passenger Betweeness Centrality (Cats and Jenelius, n.d.)	$PBC(e) = \frac{\sum_{o \in S_{OD}} \sum_{d \in S_{OD}} E[N_{ode}(\sigma_0, t_s, \tau_s)]}{\sum_{o \in S_{OD}} \sum_{d \in S_{OD}} E[N_{od}(t_s, \tau_s)]}$	<i>e</i> is the link <i>o</i> is the origin <i>d</i> is the destination σ_0 is the baseline scenario t_s is the start time τ_s is the end time <i>N</i> is the number of passengers
Vulnerability Index (Dehghanisanij et al., 2013; Knoop et al., 2012; Tampere et al., 2007)	$I^{1} = \frac{q}{(1 - \frac{q}{C})}$ $I^{2} = \frac{1}{T_{b}}$ $I^{3} = I_{i}^{1} * \vartheta (q - 2500)$ $I^{4} = I^{1} \times q$ $I_{i}^{5} = I_{i}^{2} \times q_{i} \times \sum I_{j}^{1}$	I_i^n is the <i>n</i> th criteria for link <i>i</i> q_i is the flow on link <i>i</i> C_i is the capacity of link <i>i</i> C_i^b is the remaining capacity at blocking T_b is the time it takes for the tail of the queue to reach the upstream

	$I_i^6 = I_i^3 \times q_i \times \sum I_j^1$ $I_i^7 = \sum I_j^1$ $I^8 = \frac{q}{C}$ $I^9 = q_i - C_i^b$	junction
Network Robustness Index (Scott et al., 2006)	$NRI_{k} = \sum_{i} t'_{i} \times v'_{i} - \sum_{i} t_{i} \times v_{i}$	k Is the link blocked t'_i is the travel time of link <i>i</i> when link <i>k</i> is blocked v'_i is the traffic volume of link <i>i</i> when link <i>k</i> is blocked t_i is the travel time of link <i>i</i> when no links are blocked v_i is the traffic volume of link <i>i</i> when no links are blocked

Measures	Function	Definitions	Direction of Optimization	
Mobility				
Total Travel Time	$\sum_{i=1}^{n} tt_i * x_i$	tt_i is the travel time on link <i>i</i> x_i is the flow on link <i>i</i> <i>n</i> is the number of links	Minimize	
Total User Lost Time	$\sum_{i=1}^n (tt_i - tt_f) * x_i$	tt_i is the travel time on link <i>i</i> tt_f is the free flow travel time on link <i>i</i> x_i is the flow on link <i>i</i> <i>n</i> is the number of links	Minimize	
Average Travel Time (David L Alderson et al., 2011; Berdica and Mattsson, 2007)	$\frac{\sum_{i \in O, j \in D} t_{ij} x_{ij}}{\sum_{i \in O, j \in D} x_{ij}}$	t_{ij} is the travel time between node <i>i</i> and node <i>j</i> x_{ij} is the demand from node <i>i</i> to node <i>j</i>	Minimize	
Average Trip Length (Berdica and Mattsson, 2007)	$\frac{\sum_{i \in O, j \in D} d_{ij} x_{ij}}{\sum_{i \in O, j \in D} x_{ij}}$	d_{ij} is the travel distance between node <i>i</i> and node <i>j</i> x_{ij} is the demand from node <i>i</i> to node <i>j</i>	Minimize	
Average Travel Speed (Berdica and Mattsson, 2007)	$\frac{\sum_{i \in O, j \in D} s_{ij} x_{ij}}{\sum_{i \in O, j \in D} x_{ij}}$	s_{ij} is the travel speed between node <i>i</i> and node <i>j</i> x_{ij} is the demand from node <i>i</i> to node <i>j</i>	Minimize	
Congested Travel (Berdica, 2002; Pratt and Lomax, 1996)	∑(congested segment length × people vol.)		Minimize	
	Accessibility			
Percentage of Highway Operational (Zhang et al., 2010)	$L_t = \frac{L_o}{L_T} \times 100\%$	L_t is the percentage of total length of highway that is open in the network L_o is the total length	Maximize	

Table 2-7: Network Performance Measures

Percentage of Travel Speed Below Acceptable Speed (Zhang et al., 2010)	$T_u = \frac{T_U}{T_T} \times 100\%$	of highway that is open in the network L_T is the total length of highway in the network Acceptable travel speed = 0.85*speed limit T_u is the percentage of vehicles traveling under the acceptable travel speed T_U is the number of vehicles traveling under the acceptable travel speed T_U is the number of vehicles traveling under the acceptable travel speed T_T is the total number of vehicles in the network	Minimize
	Reliability		
L-M Network Efficiency Measure (Nagurney and Qiang, 2007)	$E(G) = \frac{1}{n(n-1)} \sum_{i \neq j \in G} \frac{1}{d_{ij}}$	<i>n</i> is the number of nodes in the network d_{ij} is the shortest path between node <i>i</i> and node <i>j</i>	Maximize
Network Efficiency Measure (Nagurney and Qiang, 2007)	$\varepsilon = \varepsilon(G, d) = \frac{\sum_{w \in W} \frac{d_w}{\lambda_w}}{n_W}$	λ_w is the cost on the shortest path for OD pair w d_w is the demand for OD pair w n_W is the number of OD pairs	Maximize
Network Efficiency (Chen et al., 2012)	$E(G) = \frac{\sum_{i} \sum_{rs} \frac{u_i^{rs} q_{rs}}{\pi_i^{rs}}}{\sum_{rs} q_{rs}}, \forall rs \in RS, \forall i \in I$	<i>r</i> is the origin index <i>s</i> is the destination index <i>i</i> is the traveler type q_{rs} is the mean travel demand between <i>r</i> and <i>s</i> u_i^{rs} is the proportion of type <i>i</i> travelers from <i>r</i> to <i>s</i> π_i^{rs} is the minimum travel time budget	Maximize

		between <i>r</i> and <i>s</i> for type <i>i</i> travelers	
	Resilience	•	
Fraction of Satisfied Demand (Miller-Hooks et al., 2012)	$ \propto = E\left(\frac{\sum_{w \in W} d_w}{\sum_{w \in W} D_w}\right) $ $ = \left(\frac{1}{\sum_{w \in W} D_w}\right) $ $ \cdot \left(\sum_{w \in W} d_w\right) $	d_w is the post- disaster demand D_w is the pre-disaster demand	Minimize

2.2 Network vulnerability/resilience and game theory

This subsection of the report summarizes the game theory frameworks that have been adopted by researchers and published in the literature to model network vulnerability. As it is well known, the field of game theory covers a wide variety of applications, but any type of application will consist of the following three components: i) communication between the players, ii) order of play, and iii) amount of information. The communication between the players can be considered as cooperative or non-cooperative and transportation networks typically fall into the latter category as players cannot make agreements with each other about how they will play the game although they can make safe assumptions as to the objective that the other player(s) is trying to optimize. The order of play can be simultaneous, where all players choose an action at the same time, or sequential, where each player chooses an action after/before another player. The amount of information that is available to the players can be considered as perfect or imperfect and refers to the knowledge of the actions of other players.

In the case of transportation networks, the use of sequential games has been primarily adopted to model the dynamics of the interactions between the decision maker, the user, and a possible network interruption event. For the purposes of this research we focus on one large area of interest commonly referred to as decision maker-user games. In this research we do not consider games of the attacker-defender (Bell et al., 2008) or defender-attacker-defender (David L. Alderson et al., 2011) type (although the former can be approximated by the framework used in this research if we consider that the attacker-defender game is a zero-sum game). The rational for not considering these

games is that the response of the user, which is critical in a transportation network is considered fixed (i.e., does not change with the choice of the defender or attacker) and is thus outside the scope of this research. One could estimate the response of the user for each possible feasible move of the defender and attacker but that would result in an intractable problem.

Decision maker-user games are two level hierarchical games that begin with the former player choosing an investment (or change) in the network. On the second level, the users see the network conditions and react by changing their choice of travel (including departure time, mode choice, and/or travel path choice). The user behavior is usually modeled as a traffic assignment problem and is used to evaluate the network performance. Note, that in most cases departure times and mode choice are not considered unless the decision maker is dealing with a real-time problem (e.g., evacuation). The complexity of these games lies in the estimation of the pay-off matrix which requires a significant number of traffic assignment problems to be solved. These types of models have been widely used (Farahani et al., 2013) in investment decision making (i.e., tolling systems, capital investment, operational changes) but can be easily used in estimating the vulnerability of a network and its resilience by adding capacity reduction as an option for the decision maker (i.e., how will a network behave if a subset of links is removed from the network).

2.3 Solution algorithms

It has been well recognized in the literature that modeling transportation networks with the objective or goal of identifying vulnerable links is a computationally intensive problem (see for example (Higgs et al., 2017, 2016; Poorzahedy and Rouhani, 2007a; Wang et al., 2015)). Most problem formulations resulted in NP-Complete or NP-Hard problems that require hybrid solutions algorithms where a traffic assignment algorithm is required to be executed multiple times (as also discussed in the previous subsection). Research that has been published to date (to the authors knowledge) in the areas of game theory and network vulnerability (and network design in general) resulted in the development and use of custom-made (meta)heuristic algorithms or the use of simulation to deal with the complexity issue and address uncertainty. Table 2-8 presents a review of metaheuristics approaches from the literature for these types of problem. Note, that even though the list in Table 2-8 is not exhaustive, the algorithms follow the typical (random) descent search that is very commonly used in optimization to address the issue of solving NP problems. Most algorithms developed and published in the literature adopt a sequential approach where at set of links (selected randomly or based on a set of a-priori criteria e.g., total volume, number of paths a link belongs to etc.) are selected and removed from the network (or their capacity is reduced) followed by the solution of a traffic assignment for the new network to estimate the various performance measures. In most of the cases, the traffic assignment is performed at the macroscopic level as doing so at the meso- or microscopic level becomes intractable. A description of the traffic assignment algorithms is beyond the scope of this research and we refer for more details for these solutions algorithms to (Barceló, 2010).

	Descent local	search (LS)	(Patriksson and Rockafellar, 2002)
ics	Simulated Annealing (SA)		(Parvaresh et al., 2014; Zhao and Zeng, 2006)
Simulated Annealing (Simulated Annealing (passed passed passed Tabu Search (TS)		(TS)	(Flisberg et al., 2009; Mouskos, 1991; Parvaresh et al., 2014; Poorzahedy and Rouhani, 2007a)
S	Evolutionary	Genetic Algorithms (GA)	(Cao et al., 2013; Mathew and Sharma, 2006; Sharma and Mathew, 2011)
Population-based metaheuristics	algorithms:	Evolutionary Strategies (ES)	(Dimitriou and Stathopoulos, 2009)
netah	Ant Colonies	(AC)	(Gallo et al., 2012; Yun-peng et al., n.d.)
ased r	Scatter Search (SS)		(Gallo et al., 2012, n.d.)
ion-ba	Particle Swarm Optimization (PSO)		(Karami and Guerrero-zapata, 2015)
opulat	Surrogate models		(de Araújo et al., 2015)
ă.	Hybrid meta-heuristics		(Miandoabchi et al., 2013; Poorzahedy and Rouhani, 2007b)

 Table 2-8: Metaheuristic algorithms examples

CHAPTER 3: CRITICAL AND VULNERABLE LINK IDENTIFICATION

In this task the research team developed and implemented a framework that can assist decision makers in identifying and ranking vulnerable and critical links of a transportation network. In this research we define a link as critical if a change in its capacity results in a high increase of total travel time for the whole network. On the other hand, a vulnerable link is defined as a link that will experience the highest increase in total travel time (as compared to a base case of normal operating conditions) when a critical link is compromised. This definition does not exclude a link of being both a critical and vulnerable link.

Given the complexity of the problem the research team developed three heuristic-based approaches to identify critical and vulnerable links on roadway transportation networks that can handle real life networks. The first two approaches are based on user response and traffic equilibrium principles (i.e., the network design problem) while the third one is based on the network topology and characteristics. All three approaches can be considered as surrogates to solving a full network design problem that is not practical (due to the complexity and solution time) for real life networks.

The first heuristic-based approach (from now on referred to as Greedy Search Based heuristic or GSB) ranks each link based on a weighted combination of user defined attributes (e.g., car flows, truck flows, capacity, Volume to Capacity (VC) Ratio etc.). Once the links have been ranked a User Equilibrium (U.E.) traffic assignment is performed with a reduced capacity (defined by the user) for the top *n* links (*n* is provided by the user) in isolation and/or in combination to evaluate the new state of the transportation network. This approach can be considered as a surrogate for an attacker that does not have the capability of formulating and solving the network design problem. It is thus safe to assume that such an attacker would target links with the highest flow and/or capacity. As we will see in the results presented in the next subsection, such lack of knowledge leads to ineffective attacks.

The second heuristic-based approach is based on assumption that the importance of link depends on the number of k-shortest path it belongs to. In this research parameter k is an input from the user and thus multiple link ranking can be identified for multiple values of k. More detail is provided in Appendix A where the GIS tools are described with accompanying examples. This approach can be considered as a surrogate for an attacker similar to that considered in the first heuristic but also has no knowledge on traffic data and/or network attributes that may affect traffic conditions. It is assumed that the attacker can obtain data for the network location (which is the basic information required for this heuristic) from open data sources (e.g., Google Maps, the freight analysis framework website etc.).

The third, and the final, heuristic-based approach assumes the presence of an intelligent attacker that has full knowledge of the network state (e.g., number of lanes, capacity, demand) and also the capability of formulating and solving a network design problem to identify which links should be compromised (i.e., capacity reduction), to maximize the total travel time experienced by all the users.

3.1 Traffic Assignment Algorithm

In this research the U.E. traffic assignment was performed using the Slope-based Path Shift-propensity Algorithm (SPSA) developed by (Kumar and Peeta, 2014). SPSA was proposed to devise a traffic assignment algorithm capable of generating a precise solution at moderate computational effort while maintaining simplicity of execution for practice. It is an iterative algorithm and its convergence is theoretically proven. It uses the concepts of the path shift-propensity factor and the sensitivity of path costs with respect to path flows in the flow update process. The path shift-propensity factor is defined as the difference between the cost of a path and the cost of the cheapest path for the related Origin-Destination (O-D) pair. The slope of the path flow. The SPSA algorithm starts with an all-or-nothing (AON) assignment or a warm start using a previously known approximate solution as initialization. If the initial solution does not satisfy the convergence criteria, then the SPSA flow update process is initiated. The SPSA equilibrates one O-D pair at a time in a sequential manner. The equilibration

process updates path flows to decrease the cost differences of paths with non-zero flows between an O-D pair. For this purpose, it divides the set of paths between an O-D pair into two subsets: a set of costlier paths and set of cheaper paths. Then flows are shifted from the set of costlier paths to the set of cheaper paths. It uses a line search to decide the optimal step size, which determines the extent of flow shifts along the move direction. The move direction is determined by the vector of path shift-propensity factors and the slopes of the path cost function. The sequential approach helps achieve faster convergence, but it may introduce an order bias leading to solution noise. This issue is tackled partially by updating the path sets simultaneously for all the O-D pairs before commencing the flow shifts for the O-D pairs at each iteration. In this sense SPSA combines merits of simultaneous and sequential approaches. The simultaneous path set update also helps to decrease the computational cost, especially for large-scale networks. Once an O-D pair is equilibrated using the SPSA flow update mechanism, then the next O-D pair in the sequence is brought into the equilibration process. Once all the O-D pairs are equilibrated, the convergence criterion is checked. If it is satisfied, the algorithm is terminated, else the next iteration is initiated. The convergence criterion adopted in this research is a relative gap (Rgap) of 1.0E-6. Rgap defines the distance of the solution from the optimum.

Here it is imperative to mention an important limitation from an implementation perspective arising due to non-uniqueness of the UE path flows. UE path flows are theoretically non-unique. Different solution algorithms can result in different path flows. Even multiple runs of the same solution algorithm with significantly different initialization can result in a new path flow solution. Changes in the UE path flow solution can affect the value of the third I.F. This issue can be handled by using a central solution in the UE solution space that is considered as representative of the entire solution space, for example by using a maximum entropy user equilibrium (MEUE) or entropy weighted user equilibrium (EWUE) solution for the UETAP (Kumar and Peeta, 2015). We have used SPSA for solving the UETAP for simplicity as the focus of the research is on demonstrating the proposed methodology. The issues arising due to non-uniqueness of the path flow solution of UETAP can be resolved by post-processing the SPSA solution (Kumar and Peeta, 2015; Rossi et al., 1989) or by switching SPSA with another solution

algorithm (e.g. TAPAS (Bar-Gera, 2010), SOLA (Florian and Morosan, 2014)). However, for simplicity, in this research, this issue has been dealt partially by using SPSA with a warm start. SPSA is initialized through a warm start using the path flow solution from the previous iteration to improve consistency between the solutions of two consecutive iterations.

Next, we present a sample of the results (figures 3-1 through 3-32) obtained from the all three heuristics to showcase the capabilities of the software produced and the methodology. Figures presented in this chapter show the top critical links identified by the first and third heuristics for twelve cases of capacity reduction and number of links attacked. (three different capacity reductions of 100%, 90% and 80% for any link that was compromised and four cases of different number of links that could be compromised i.e., 5, 10, 15 and 20 links). For the second heuristic the top 5, 10, 15, and 20 links based on the k-shortest path (demand weighted and unweighted) are presented. More figures can be produced by using the geodatabase that is available with this report. Note, that the links shown are the ones appearing at the top of the list. Other sets of links that can result in similar (or even the same) network conditions do exist. In Chapter 4, a model and methodology are presented to account for all the possible sets of links to be attacked and estimate the probability that a link will be attacked.

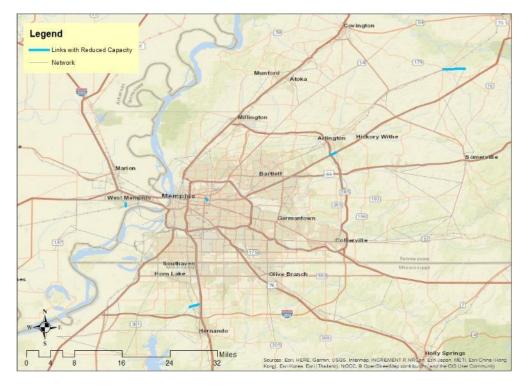


Figure 0-1. Case 1: GSB Based Top 5 Critical Links.

Figure 0-2. Case 2: GSB Based Top 10 Critical Links.

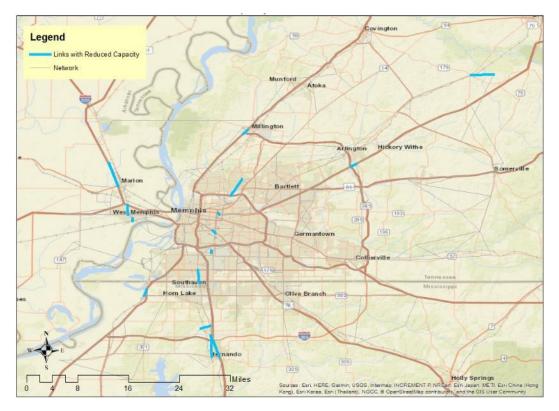


Figure 0-3. Case 3: GSB Based Top 15 Critical Links.

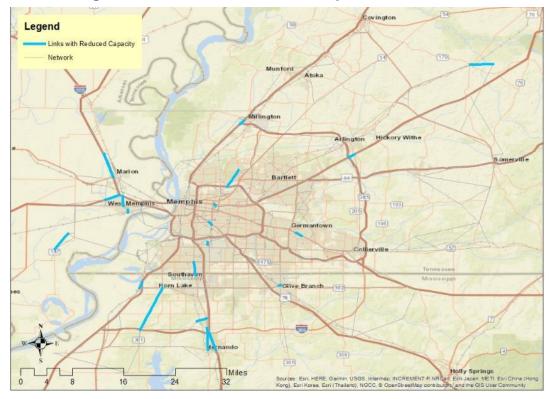


Figure 0-4. Case 4: GSB Based Top 20 Critical Links.

Figure 0-5. Case 5: GSB Based Top 5 Critical Links.

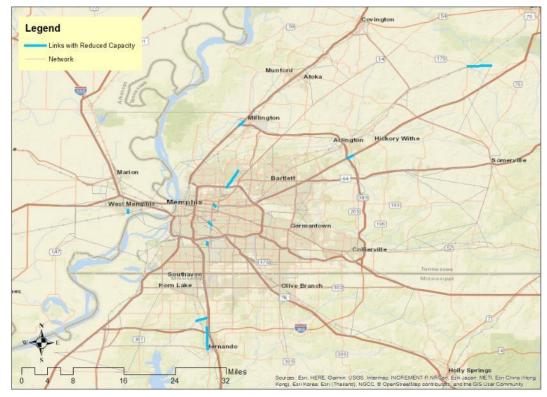


Figure 0-6. Case 6: GSB Based Top 10 Critical Links.

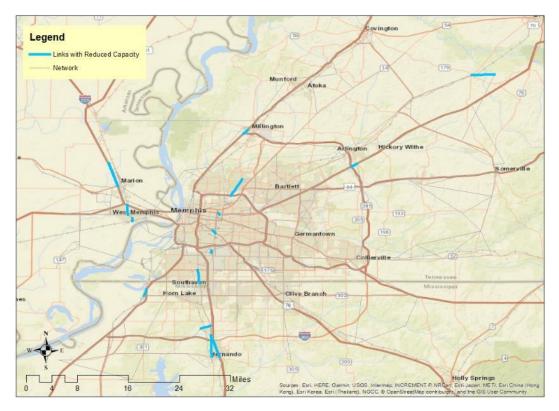


Figure 0-7. Case 7: GSB Based Top 15 Critical Links.

Figure 0-8. Case 8: GSB Based Top 20 Critical Links.

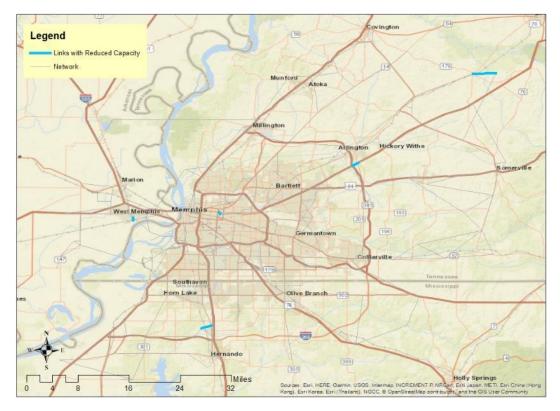


Figure 0-9. Case 9: GSB Based Top 5 Critical Links.

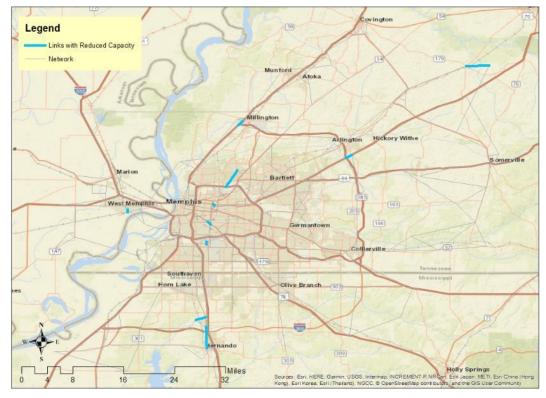


Figure 0-10. Case 10: GSB Based Top 10 Critical Links.

Figure 0-11. Case 11: GSB Based Top 15 Critical Links.

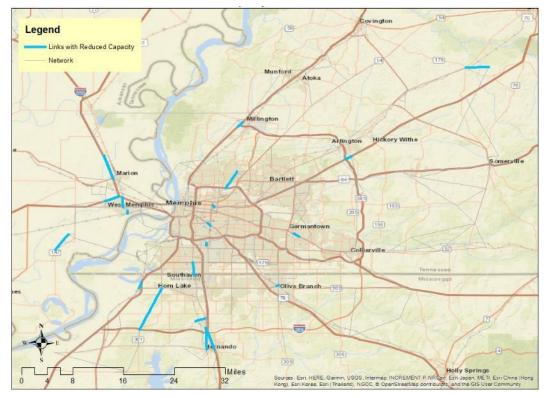


Figure 0-12. Case 12: GSB Based Top 20 Critical Links.

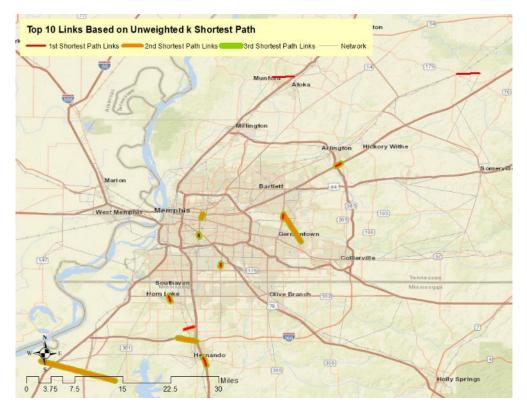


Figure 0-13. Top 10 Links Based on Unweighted k Shortest Path.

Figure 0-14. Top 10 Links Based on Demand Weighted k Shortest Path.

Figure 0-15. Top 15 Links Based on Unweighted k Shortest Path.

Figure 0-16. Top 15 Links Based on Demand Weighted k Shortest Path.

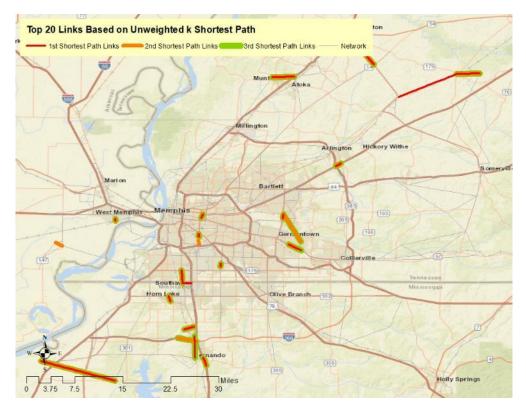


Figure 0-17. Top 20 Links Based on Unweighted k Shortest Path.

Figure 0-18. Top 20 Links Based on Demand Weighted k Shortest Path.



Figure 0-19. Top 5 Links Based on Unweighted k Shortest Path.

Figure 0-20. Top 5 Links Based on Demand Weighted k Shortest Path.

Figure 0-21. RSH Top 5 Links Attacked: Case 1.

Figure 0-22. RSH Top 10 Links Attacked: Case 2.

Figure 0-23. RSH Top 15 Links Attacked: Case 3.

Figure 0-24. RSH Top 20 Links Attacked: Case 4.

Figure 0-25. RSH Top 20 Links Attacked: Case 5.

Figure 0-26. RSH Top 20 Links Attacked: Case 6.

Figure 0-27. RSH Top 20 Links Attacked: Case 7.

Figure 0-28. RSH Top 20 Links Attacked: Case 4.

Figure 0-29. RSH Top 5 Links Attacked: Case 9.

Figure 0-30. RSH Top 10 Links Attacked: Case 10.

Figure 0-31. RSH Top 15 Links Attacked: Case 11.

Figure 0-32. RSH Top 20 Links Attacked: Case 12.

CHAPTER 4: CRITICAL AND VULNERABLE LINK RANKING

In this chapter we present the methodology developed to help decision makers with formulating an optimal investment plan to maximize network resilience against attacks on the network. The model presented in this section does not use any input from the tools developed in Chapter 3. Instead it uses a mathematical formulation (presented) next that utilizes a game theory framework to identify how many and which links need to be protected by the decision maker in case of an attacker presence. The model can be implemented by introducing knowledge about the attacker. For example, if the attacker is a natural event the links to be attacked can be links that are more likely to fail due to the event. In the case of a man-made attack, the defender may assume limited knowledge of the network by the attacker and consider as candidate links for attack specific functional class links (e.g., freeways or highways).

In this research, we assume that the decision maker can protect more links than the attacker can compromise. The proposed mathematical formulation assumes multiple objectives for both the decision maker and the attacker (Golias and Higgs, 2016) but only one is used in the numerical examples (the most common one). More details are provided in the numerical experiments and results section. Due to the complexity of the solution algorithm the mathematical model presented herein was not implemented in ArcGIS as is uses two software that require commercial licenses, to develop GUI (Graphical User Interface) and DLL (Dynamic Linked Libraries) that can be introduced into ArcGIS, that the research team do not possess. The research team invested a significant amount of effort in developing heuristic solution algorithms using freeware software, but the results were not promising, and a decision was made to use the commercial software. Next, we present the nomenclature, followed by the mathematical model and results.

Nomenclature

Variable

Meaning

0 Set of objective functionsM Set of modes

<i>x</i> _{am}	Traffic flow on link <i>a</i> by mode m
------------------------	---

- y_a Binary decision to either do nothing (0) or attack link a (1)
- z_a Binary decision to either do nothing (0) or defend link a (1)
- $G_i(x, y, z)$ Objective function $i \in O$ of the upper level player (defender)
- $F_j(x, y, z)$ Objective function $j \in O$ of the upper level player (defender)

c_a^D	Cost to defend link a
c_a^{IA}	Cost to attack link a
B^{D}	Number of links that can be defended
B^{IA}	Number of links that can be attacked
$t_a(x, y, z)$	The travel time function
q_{rsm}	The demand for travel from origin r to destination s by mode m
f_k^{rsm}	The traffic volume for path k between origin r to destination s by mode m
δ_a^{krs}	The binary path incidence for link a if it occurs on path k between origin r to destination s (1) or not (0)

4.1 Mathematical model formulation

The formulation for the multi-level multi-objective game theory framework is presented below.

$$\begin{split} \min_{x,y,z} \{G_i(x,y,z)\} & (1) \\ \text{s.t.} & \\ \sum_a z_a c_a^D \leq B^D & (2) \\ z_a &= \begin{cases} 1, if \ link \ a \ is \ protected \ by \ the \ defender & (3) \\ 0, otherwise & (3) \end{cases} \\ \text{s.t.} & \\ \max_{x,y} \{F_j(x,y,z)\} & (4) \\ \text{s.t.} & \\ \sum_a y_a c_a^{IA} \leq B^{IA} & (5) \\ y_a &= \begin{cases} 1, if \ link \ a \ is \ attacked \ by \ the \ attacker & (6) \\ 0, otherwise & (6) \\ 0, otherwise & (7) \end{cases} \end{split}$$

 $\sum_{k} f_{k}^{rsm} = q_{rsm} \qquad \forall r, s, m \tag{8}$

$$\begin{aligned} f_k^{rs} &\geq 0 & \forall k, r, s & (9) \\ x_{am} &= \sum_{k,r,s} \delta_a^{krs} f_k^{rsm} & \forall a, m & (10) \\ \delta_a^{krs} &= \begin{cases} 1, if \ link \ a \ is \ on \ path \ k & \\ 0, otherwise & \end{cases} \end{aligned}$$

In equation (1) the upper level player (i.e., defender) minimizes objective *i* within the constraints of the total number of links that can be defended (2). In equation (3) the decision of the upper level player is shown to be binary where 1 is protection of link *a* and 0 is no protection of link *a*. In equation (4), the second level player (i.e., attacker) maximizes its own objective function *j* (which can be the same as with the defender) within the constraints of the total number of links that can be attacked equation (5). In equation (6) the decision of the attacker is shown to be binary where 1 is an attack of link *a* and 0 is no attack on link *a*. The third and lower level player (i.e., network users) minimize the integral of the link travel times in equation (7) within constraints equation (8) and equation (9) which yields the user equilibrium. Constraint equation (8) ensures that the sum of the traffic flows on the paths between origin *r* and destination *s* is equal to the demand. Constraint equation (9) ensures that the traffic flows on the same as non-negative. The traffic flow on each link is defined in equation (10) as the sum of the path flows of paths that contain that link.

4.2 Numerical examples and results

For this research project the Shelby County, TN Freight Analysis Framework 4 (FAF4) network was used as a case study for the numerical examples. A snapshot of the network can be seen in Figure 4-1. Car and truck demand was estimated using the assigned flows provided by FAF4 through a well-known Origin Destination Matrix Estimation (ODME) procedure. The TransCAD software (https://www.caliper.com/) was used to implement the ODME procedure. As previously discussed, in this research we utilized the most common objective used by MPOs, SDOTs and in general transportation planners, engineers and modelers: i.e., the total travel time experienced by all users in the network. The developed models are flexible and can utilize various other objectives with some modifications to the formulation and solution algorithms (e.g., Vehicle Miles Travelled).

Figure 4-1. Shelby County, TN FAF4 Network.

The numerical experiments consisted of three different capacity reductions of 100%, 90% and 80% for any link that was compromised and four cases of different number of links that could be compromised i.e., 5, 10, 15 and 20 links. In total 12 different cases where tested and results are shown in table 4-1. The objective function of both the defender and the attacked were assumed to be equal to the total travel time of all users. The first column of Table 4-1 shows the ratio of the number of links protected to the number of links attacked. The remaining columns show the change of the total traveled time for the compromised network as compared to the base case network (i.e., the network where all links operate at their full capacity). For example, for the first instance and for Case 5, if the defender does not protect any links (i.e., NPL/NLA=0) then after an attack that reduces the capacity of five links by 10% the total travel time will increase by approximately 152%.

Results in Table 4-1 showcase that the network is extremely vulnerable for the four first instances where the attacker can compromise a link to the extreme (i.e., remove the link

completely from the network by reducing its capacity by 100%). For example, and for case 1, the defender would need to protect 50 links to obtain an operational network (that would still experience a 12% total travel time increase as compared to the base case network.

Another observation from the results shown in Table 4-1, is that for all instances and cases, the network performance decreases with the increase of the links attacked and capacity reduction. This trend is an indication of the accuracy of the model and solution accuracy and it is to be expected. Another interesting observation is that the change in the networks performance as compared to the base case does not always show a strong correlation as we introduce the defender. In other words, as we increase the ratio of the number of links protected to attacked, the network does not result in a worst or better state necessarily between the cases. There maybe two main reasons for these results: i) the solution algorithm was not able to find the global optimal solution (which in realistic cases would be infeasible due to the complexity of the problem), and ii) the well-known issue with transportation networks known as the Braess paradox where an increase in capacity results in a decrease of the networks performance. Unfortunately, there is little that can be done to address either of these two issues (at least with today's computational power and existing solution algorithms) for real life size networks like the one used in this research.

As part of this chapter, and from results obtained by the optimization model, the research team performed an analysis to identify the most critical links (i.e., links that will be attacked and need to be protected) and the vulnerable paths (i.e., paths with the highest cost increase) for the top five origin-destination pairs affected by an attack on the top ten most critical link sets. A summary of the results of this analysis is shown in figures 4-2 through 4. Figures 4-2 through 4-13 show the distribution of the link attack probability for each case. Figures 4-14 through 4-26 showcase the criticality of the links in the network by estimating the probability of an attack. Figures 4-27 through 4-75 showcase the most critical paths between the top five most affected origin-destination pairs. Results from the same analysis but considering only freight related travel times

55

(i.e., truck total travel time or truck cost) as the objective of the attacker are shown in Figures 4-39 through 4-75.

We observe that as we decrease the attack efficiency (i.e., the link capacity reduction) the probability of a link being attacked becomes normally distributed. In other words, the more effective the attack the more concentrated on fewer links it will be. On the other hand, ineffective attacks do not show any significant preference among the links. We also observe that the main difference between the total cost and truck only cost based solutions is a higher concentration of attacks, for the latter, when the attack effectiveness decreases (i.e. there is a significant number of links that will not be attacked for cases 7 through 12 when compared with the total cost case). This is to be expected as trucks use different routes than passenger vehicles and have a more concentrated origin-destination demand.

All the results from the analysis performed in Chapter 4 have been compiled in an ArcGIS map package and are available through this link: https://www.dropbox.com/s/hxk0fwcni3jeg00/REES_36_FinalMap.mpk?dl=0

	Capacity Reduction of Links Attacked =100%				Capacity Reduction of Links Attacked =50%				Capacity Reduction of Links Attacked =25%			
NLP/NLA		Case 2: 10 Links Attacked	Case 3: 15 Links Attacked	Case 4: 20 Links Attacked	Case 5: 5 Links Attacked	Case 6: 10 Links Attacked	Case 7: 15 Links Attacked	Case 8: 20 Links Attacked	Case 9: 5 Links Attacked	Case 10: 10 Links Attacked	Case 11: 15 Links Attacked	Case 12: 20 Links Attacked
0	NF	NF	NF	NF	152	268	268	288	17	17	18	20
1	NF	NF	NF	NF	23	41	164	33	3	7	7	7
2	NF	NF	NF	NF	17	10	41	19	3	3	4	5
3	NF	NF	NF	NF	1	7	22	8	2	3	3	4
4	NF	NF	NF	NF	1	7	10	8	2	3	3	3
5	NF	NF	NF	NF	1	6	8	7	2	2	2	3
6	NF	NF	NF	NF	1	5	7	4	2	2	2	2
7	NF	NF	NF	NF	1	4	5	4	1	2	2	2
8	NF	NF	NF	NF	1	3	4	3	1	2	2	2
9	NF	NF	NF	NF	1	3	2	2	1	2	2	2
10	12	NF	NF	NF	1	2	2	2	1	1	2	2
11	10	7	NF	4	1	2	2	2	1	1	1	1
12	10	4	11	4	1	2	2	2	1	1	1	1
13	5	4	6	4	1	2	2	2	1	1	1	1
14	4	4	4	3	1	2	2	2	1	1	1	1
15	4	3	4	3	1	2	2	1	1	1	1	1
16	3	3	3	3	1	2	2	1	1	1	1	1
17	3	3	2	2	0	2	2	1	1	1	1	1
18	2	3	2	2	0	1	1	1	1	1	1	1
19	2	2	2	2	0	1	1	1	1	1	1	0
20	2	2	2	0	0	1	1	0	1	1	1	0
21	2	2	2	0	0	1	1	0	0	1	1	0
22	2	2	2	0	0	1	1	0	0	1	1	0
23	2	2	2	0	0	1	1	0	0	1	1	0

Table 4-1 Vehicle Hours Travelled Change (%): Base Case VS Attacked/Protected Network

NPL/NLA: Ratio of number of links protected to number of links attacked, NF: Network Failed

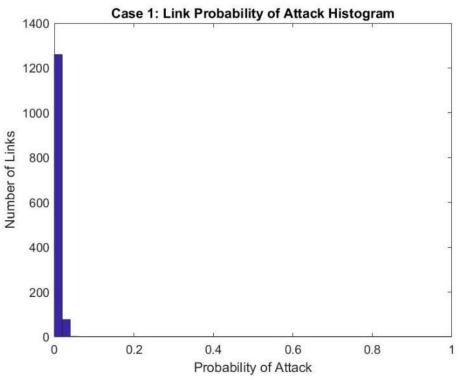


Figure 0-2. Histogram of Link Probability of Attack for Case 1.

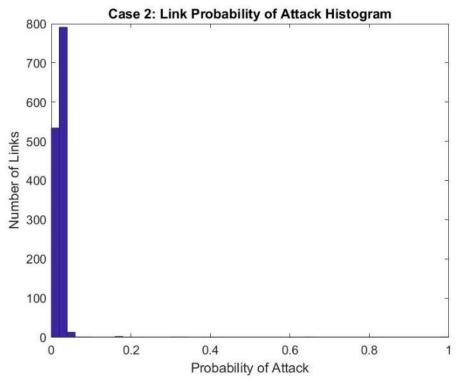


Figure 0-3. Histogram of Link Probability of Attack for Case 2.

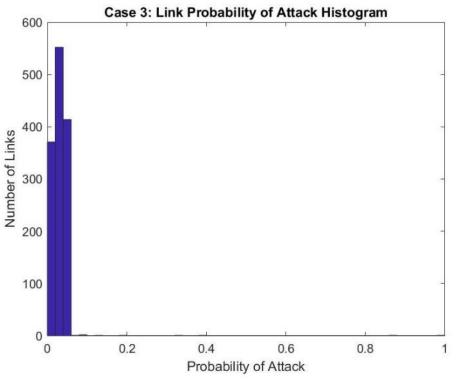


Figure 0-4. Histogram of Link Probability of Attack for Case 3.

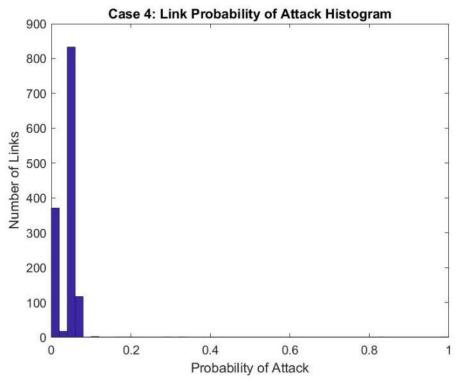


Figure 0-5. Histogram of Link Probability of Attack for Case 4.

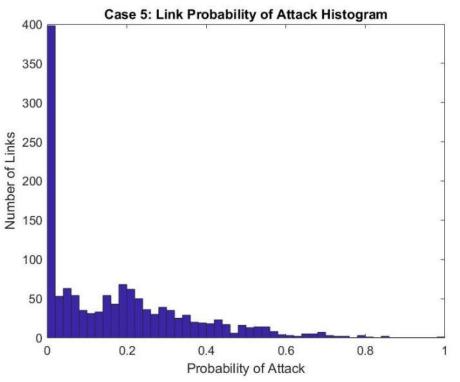


Figure 0-6. Histogram of Link Probability of Attack for Case 5.

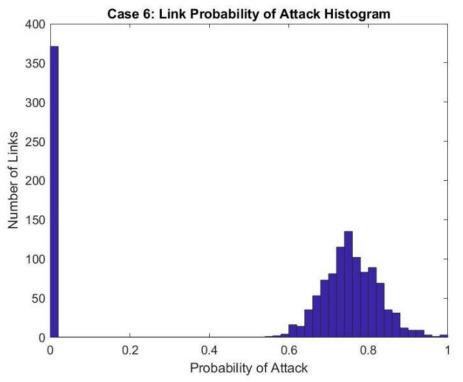


Figure 0-7. Histogram of Link Probability of Attack for Case 6.

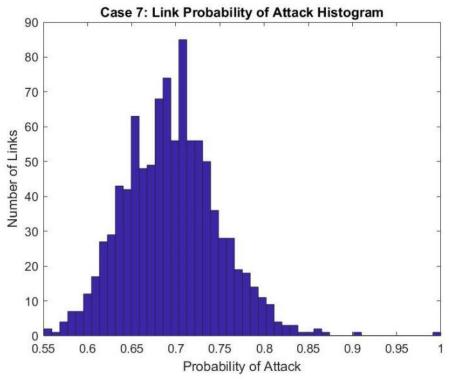


Figure 0-8. Histogram of Link Probability of Attack for Case 7.

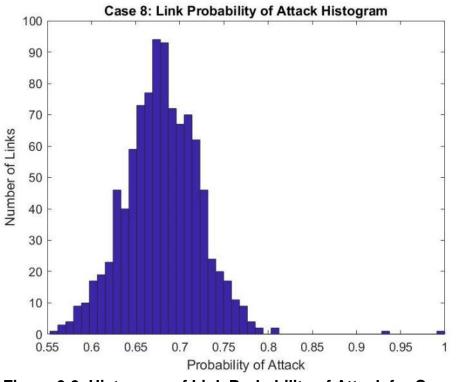


Figure 0-9. Histogram of Link Probability of Attack for Case 8.

4

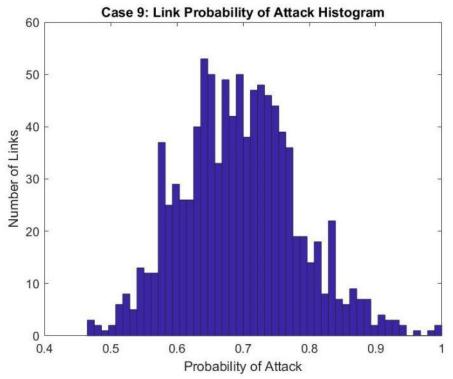


Figure 0-10. Histogram of Link Probability of Attack for Case 9.

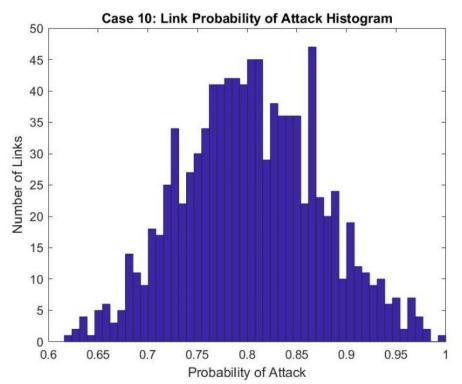


Figure 0-11. Histogram of Link Probability of Attack for Case 10.

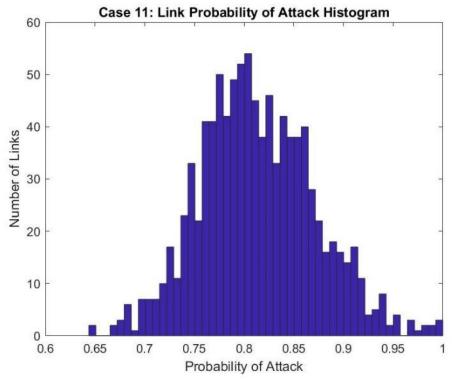


Figure 0-12. Histogram of Link Probability of Attack for Case 11.

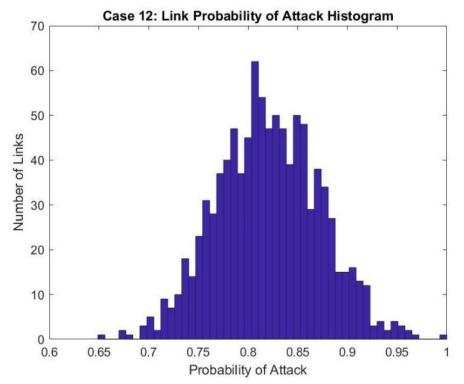


Figure 0-13. Histogram of Link Probability of Attack for Case 12.

Figure 0-14. Link Probability for Attack for Case 1.

Figure 0-15. Link Probability for Attack for Case 2.

Figure 0-16. Link Probability for Attack for Case 3.

Figure 0-17. Link Probability for Attack for Case 4.

Figure 0-18. Link Probability for Attack for Case 5.

Figure 0-19. Link Probability for Attack for Case 6.

Figure 0-20. Link Probability for Attack for Case 7.

Figure 0-21. Link Probability for Attack for Case 8.

Figure 0-22. Link Probability for Attack for Case 9.

Figure 0-23. Link Probability for Attack for Case 10.

Figure 0-24. Link Probability for Attack for Case 11.

Figure 0-25. Link Probability for Attack for Case 12.

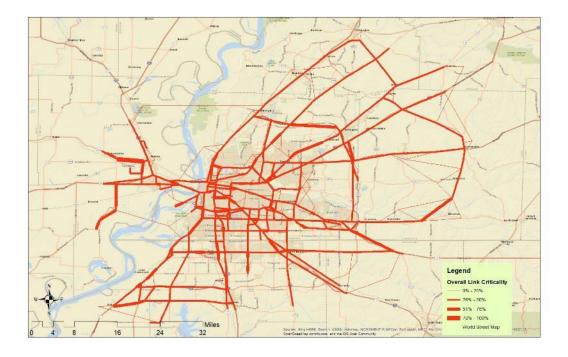


Figure 0-26. Overall Link Probability for Attack

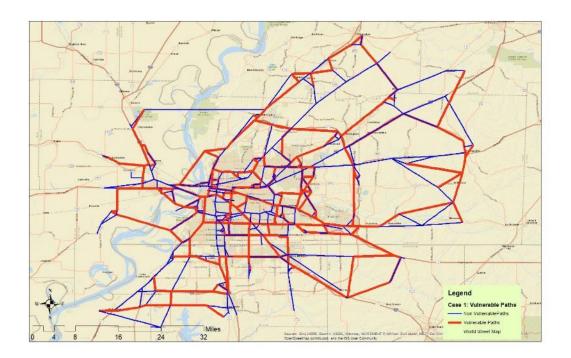


Figure 0-27. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 1.

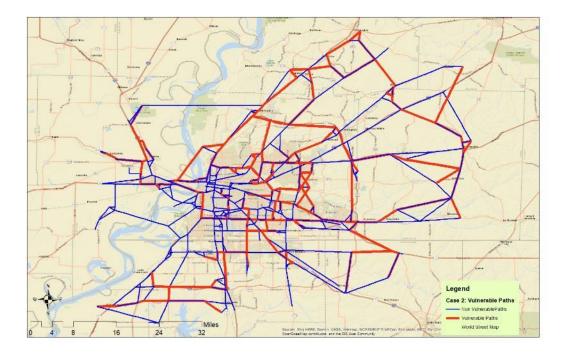


Figure 0-28. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 2.

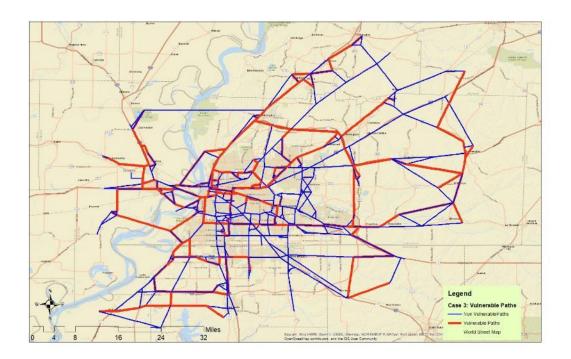


Figure 0-29. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 3.

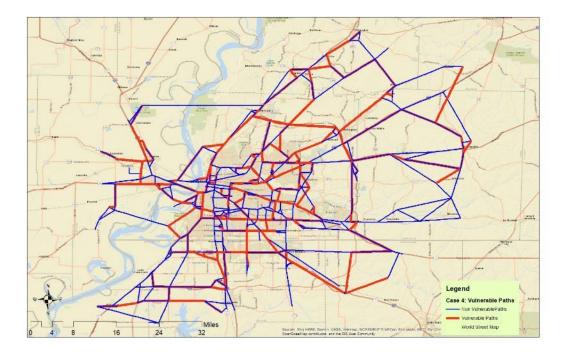


Figure 0-30. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 4.

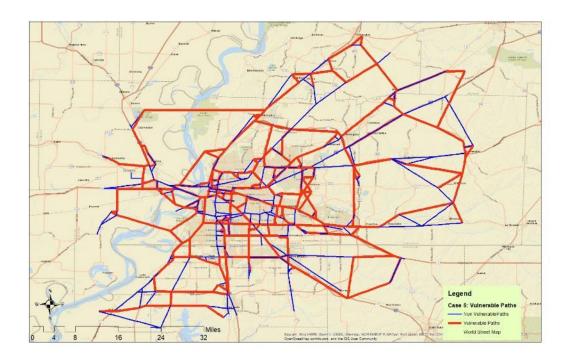


Figure 0-31. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 5.

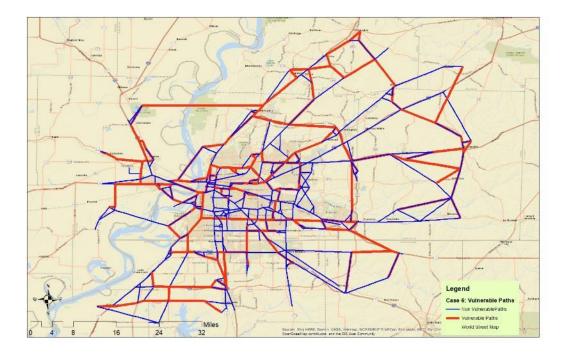


Figure 0-32. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 6.

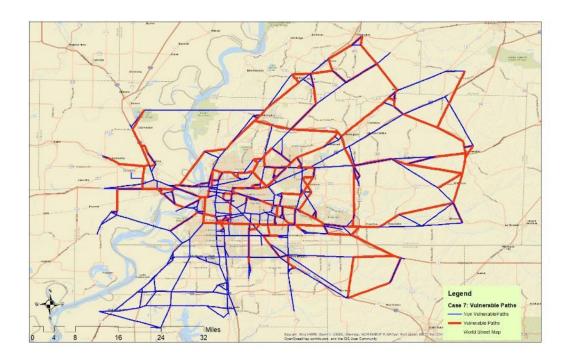


Figure 0-33. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 7.

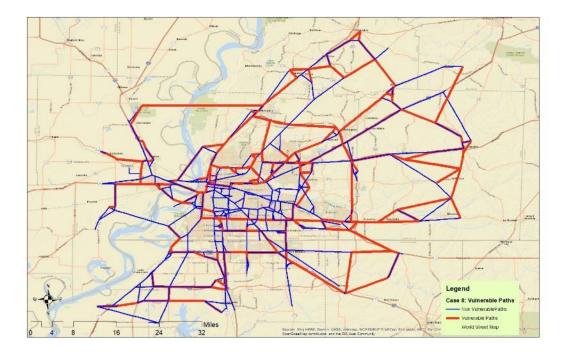


Figure 0-34. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 8.

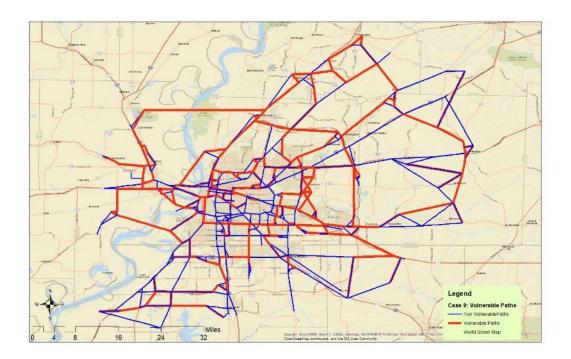


Figure 0-35. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 9.

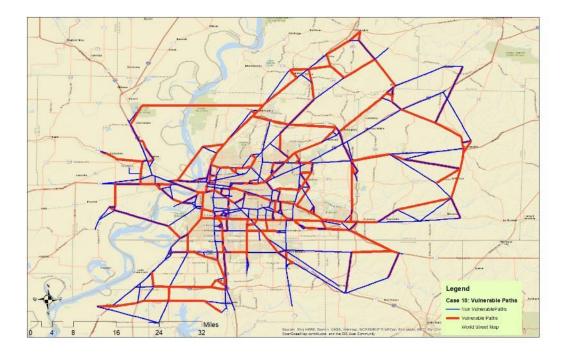


Figure 0-36. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 10.

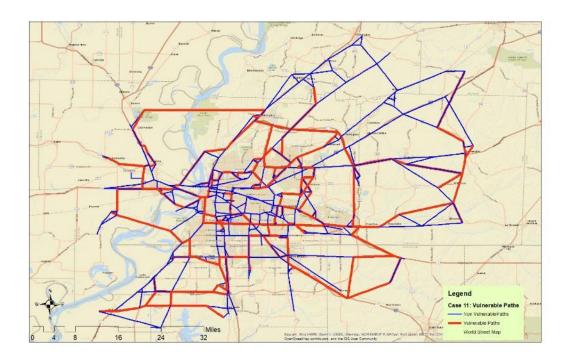


Figure 0-37. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 11.



Figure 0-38. Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 12

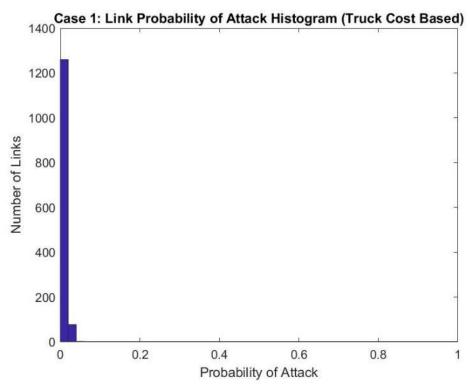


Figure 0-39. Histogram of Link Probability of Attack for Case 1 (Truck Cost Based).

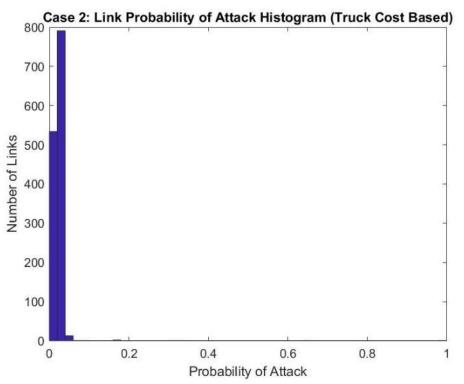


Figure 0-40. Histogram of Link Probability of Attack for Case 2 (Truck Cost Based).

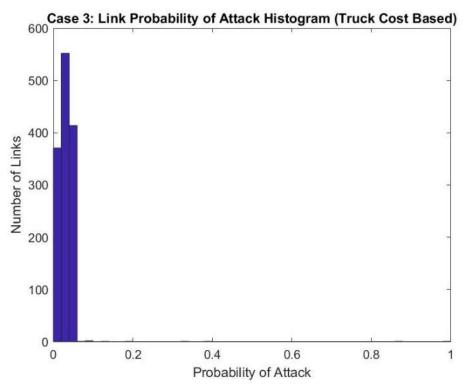


Figure 0-41. Histogram of Link Probability of Attack for Case 3 (Truck Cost Based).

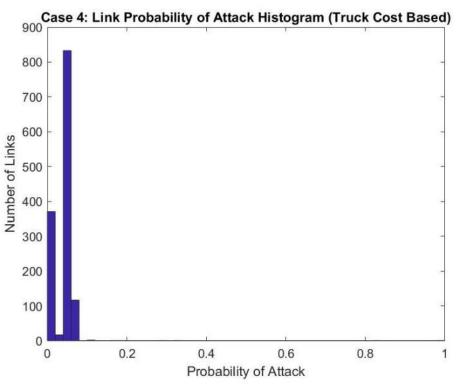


Figure 0-42. Histogram of Link Probability of Attack for Case 4 (Truck Cost Based).

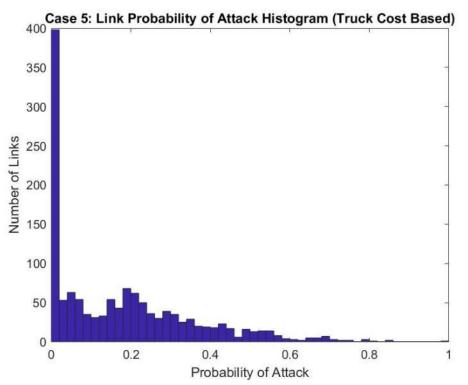


Figure 0-43. Histogram of Link Probability of Attack for Case 5 (Truck Cost Based).

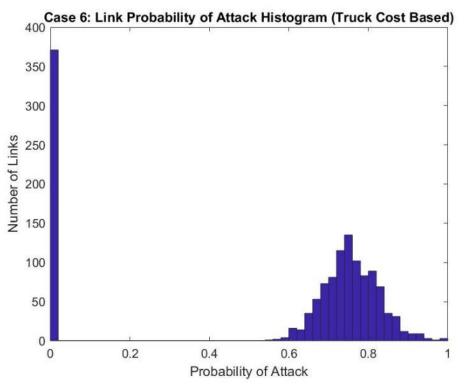


Figure 0-44. Histogram of Link Probability of Attack for Case 6 (Truck Cost Based).

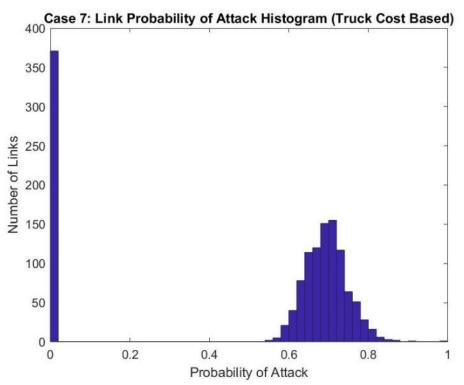


Figure 0-45. Histogram of Link Probability of Attack for Case 7 (Truck Cost Based).

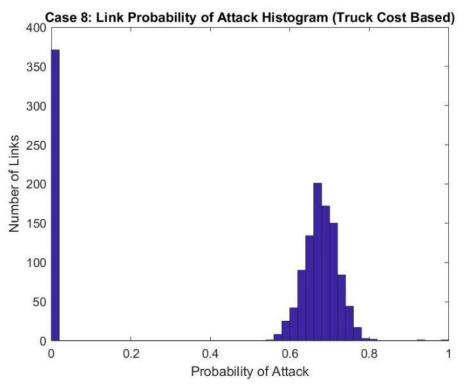


Figure 0-46. Histogram of Link Probability of Attack for Case 8 (Truck Cost Based).

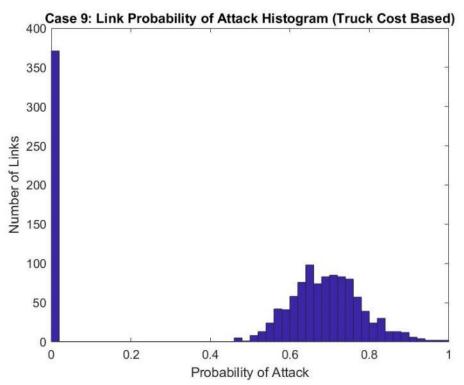


Figure 0-47. Histogram of Link Probability of Attack for Case 9 (Truck Cost Based).

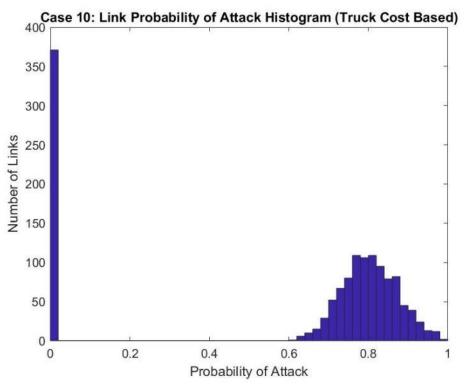


Figure 0-48. Histogram of Link Probability of Attack for Case 10 (Truck Cost Based).

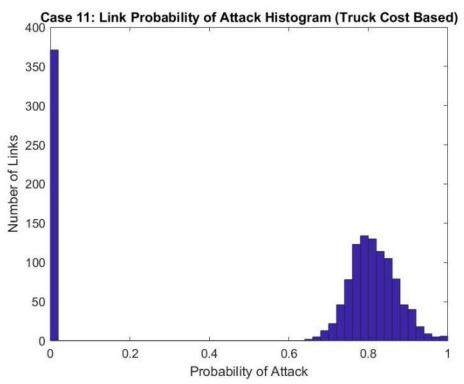


Figure 0-49. Histogram of Link Probability of Attack for Case 11 (Truck Cost Based).

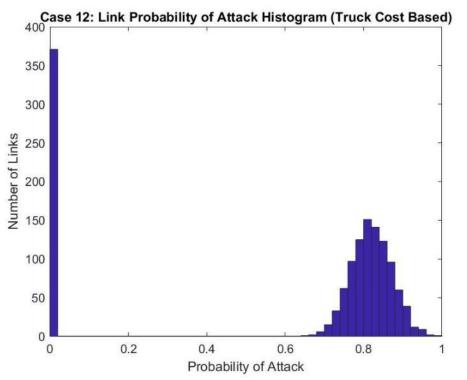


Figure 0-50. Histogram of Link Probability of Attack for Case 12 (Truck Cost Based).

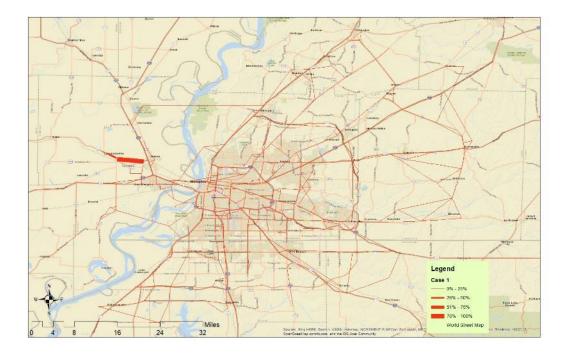


Figure 0-51. Link Probability for Attack for Case 1 (Truck Cost Based).

Figure 0-52. Link Probability for Attack for Case 2 (Truck Cost Based)

Figure 0-53. Link Probability for Attack for Case 3 (Truck Cost Based)

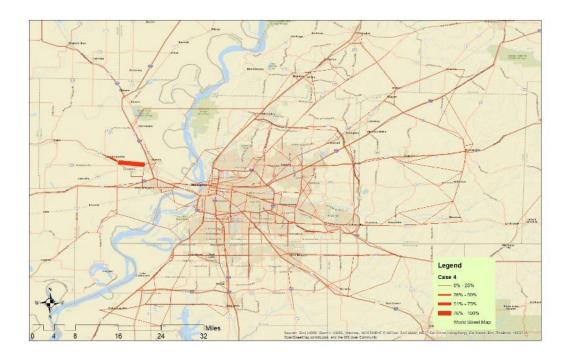


Figure 0-54. Link Probability for Attack for Case 4 (Truck Cost Based)

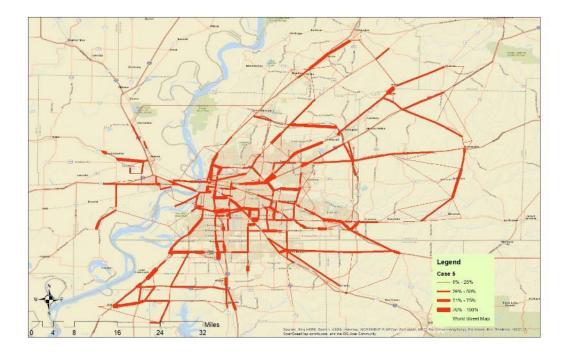


Figure 0-55. Link Probability for Attack for Case 5 (Truck Cost Based)

Figure 0-56. Link Probability for Attack for Case 6 (Truck Cost Based)

Figure 0-57. Link Probability for Attack for Case 7 (Truck Cost Based)

Figure 0-58. Link Probability for Attack for Case 8 (Truck Cost Based)

Figure 0-59. Link Probability for Attack for Case 9 (Truck Cost Based)

Figure 0-60. Link Probability for Attack for Case 10 (Truck Cost Based)

Figure 0-61. Link Probability for Attack for Case 11 (Truck Cost Based)

Figure 0-62. Link Probability for Attack for Case 12 (Truck Cost Based)

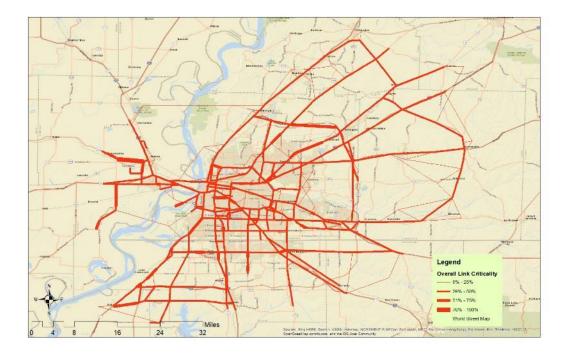


Figure 0-63. Overall Link Probability for Attack (Truck Cost Based).

Figure 0-64. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 1

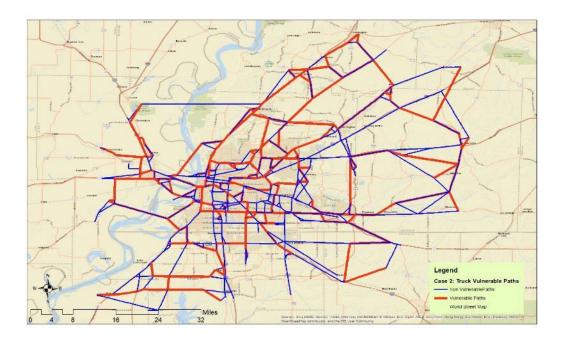


Figure 0-65. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 2

Figure 0-66. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 3

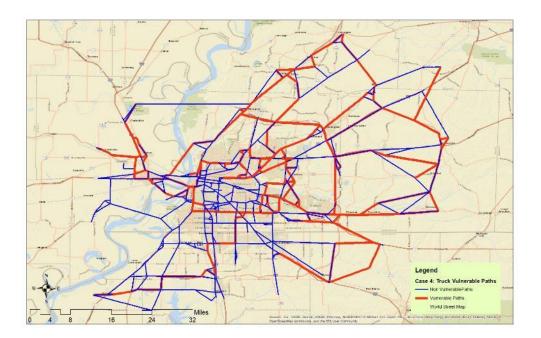


Figure 0-67. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 4

Figure 0-68. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 5

Figure 0-69. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 6

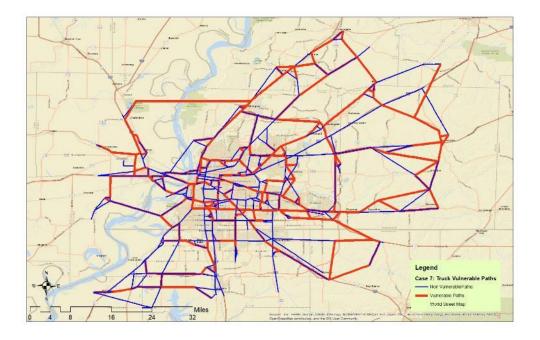


Figure 0-70. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 7

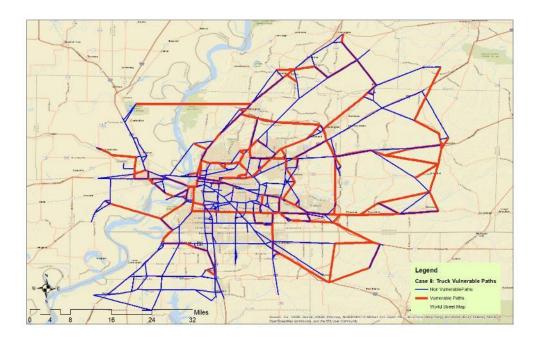


Figure 0-71. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 8

Figure 0-72. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 9



Figure 0-73. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 10

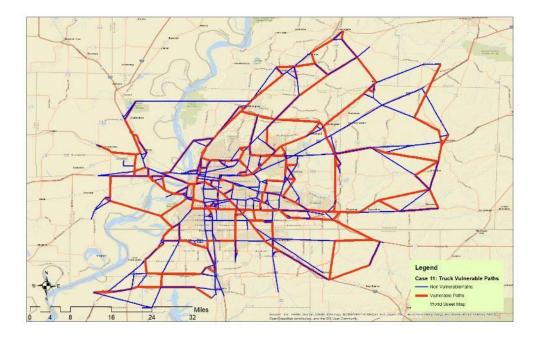


Figure 0-74. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 11

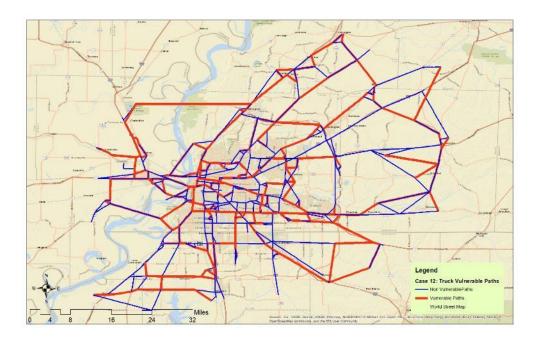


Figure 0-75. Truck Critical Paths Between Top Five Affected Origin Destination Pairs and First Ten Sets of Critical Links for Case 12

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH

In this project a modeling framework, solution algorithms, and GIS-based tools that can assist decision makers in identifying and ranking vulnerable and critical links and paths of a transportation network for both passengers and freight was developed and implements in Memphis, TN. The developed tools and framework can be used to account for different type of attackers possessing high to low intelligence and tools to identify links to compromise. A number of numerical experiments that were performed showed that the transportation network is extremely vulnerable to attacks and in cases of total capacity loss the network will fail most of the times. Additional insights drawn from this research showed that the attacks concentrated around origins and destination with a high amount of demand in a way that would effectively isolate that origin or destination (i.e., a bridge) and this concentration of attacks spanned all the cases evaluated (when the capacity reduction was high). Also, in the cases where the defender would try to protect the links around the origins and destinations, the attacker would simply shift attacks downstream on the same roadways and still establish the desired isolation of the origin or destination. One interesting result, that can help in the decision making and in the implementation of link protection plans, was that the (intelligent) attacker's focus on a small number of links increases with the severity of the attack and that attacks by unintelligent attackers will, most likely, have no significant impact on the networks performance.

5.1 Dissemination and Outreach

The research team is in the process of scheduling presentations of the project outcomes to the State and Regional Level Freight Advisory Committees in Tennessee, MPOs in Tennessee, and the Tennessee Model Users Group. The research team will also submit results from the projects to academic journals and conferences for consideration for publication and presentation.

5.2 Future research

There are several avenues of future research that can improve upon the work presented herein. These research avenues involve the expansion of the hierarchical three-level game proposed in this research by introducing a combination of sets of links with capital investment that protect and/or increase capacity. These links can further be allowed to be attacked with a decreased capacity reduction as compared to the case where no protection or capacity increase has occurred by the defender. Other improvements that could be implemented include the use of different traffic assignment algorithms and the development of an ArcGIS tool that would implement the models and procedures presented in Chapter 4.

REFERENCES

- Abounacer, R., Rekik, M., Renaud, J., 2014. An exact solution approach for multiobjective location–transportation problem for disaster response. Computers & Operations Research 41, 83–93.
- Alderson, David L, Brown, G.G., Carlyle, W.M., Wood, R.K., 2011. Solving defenderattacker-defender models for infrastructure defense. DTIC Document.
- Alderson, David L., Brown, G.G., Carlyle, W.M., Wood, R.K., 2011. Solving Defender-Attacker-Defender Models for Infrastructure Defense, in: 12th INFORMS Computing Society Conference. Presented at the Operations Resaerch, Computing, and Homeland Defense, INFORMS, pp. 28–49. https://doi.org/10.1287/ics.2011.0047
- Barceló, J. (Ed.), 2010. Fundamentals of traffic simulation, International series in operations research & management science. Springer, New York.
- Bar-Gera, H., 2010. Traffic assignment by paired alternative segments. Transportation Research Part B: Methodological 44, 1022–1046. https://doi.org/10.1016/j.trb.2009.11.004
- Bell, M.G., Kanturska, U., Schmocker, J.-D., Fonzone, A., 2008. Attacker-defender models and road network vulnerability. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 1893–1906. https://doi.org/10.1098/rsta.2008.0019
- Berdica, K., 2002. An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy 9, 117–127.
- Berdica, K., Mattsson, L.-G., 2007. Vulnerability: a model-based case study of the road network in Stockholm, in: Critical Infrastructure. Springer, pp. 81–106.
- Bricha, N., Nourelfath, M., 2013. Critical supply network protection against intentional attacks: A game-theoretical model. Reliability Engineering & System Safety 119, 1–10. https://doi.org/10.1016/j.ress.2013.05.001
- Cao, J.X., Li, X.X., Wang, Z.Y., Wu, J., 2013. The Robust Model of Continuous Transportation Network Design Problem with Demand and Cost Uncertainties. Procedia - Social and Behavioral Sciences 96, 970–980. https://doi.org/10.1016/j.sbspro.2013.08.111

- Cats, O., Jenelius, E., n.d. Planning for the unexpected: The value of reserve capacity for public transport network robustness. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2015.02.013
- Chen, A., Yang, C., Kongsomsaksakul, S., Lee, M., 2007. Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Networks and Spatial Economics 7, 241–256.
- Chen, B.Y., Lam, W.H., Sumalee, A., Li, Q., Li, Z.-C., 2012. Vulnerability analysis for large-scale and congested road networks with demand uncertainty. Transportation Research Part A: Policy and Practice 46, 501–516.
- Clegg, R., 2007. Empirical studies on road traffic response to capacity reduction. Transportation and traffic theory 155–178.
- Dalziell, E., Nicholson, A., 2001. Risk and impact of natural hazards on a road network. Journal of transportation engineering 127, 159–166.
- de Araújo, D.R.B., Bastos-Filho, C.J. a., Martins-Filho, J.F., 2015. An evolutionary approach with surrogate models and network science concepts to design optical networks. Engineering Applications of Artificial Intelligence 43, 67–80. https://doi.org/10.1016/j.engappai.2015.04.004
- Dehghanisanij, M., Flintsch, G.W., McNeil, S., 2013. Vulnerability analysis of degrading roadway networks, in: TRB 2013 Annual Meeting, Transportation Research Board.
- Dimitriou, L., Stathopoulos, A., 2009. Optimal co-evolutionary strategies for the competitive maritime network design problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5484 LNCS, 818–827. https://doi.org/10.1007/978-3-642-01129-0_92
- Elvik, R., 2000. How much do road accidents cost the national economy? Accident Analysis & Prevention 32, 849–851.
- Farahani, R.Z., Miandoabchi, E., Szeto, W.Y., Rashidi, H., 2013. A review of urban transportation network design problems. European Journal of Operational Research 229, 281–302. https://doi.org/10.1016/j.ejor.2013.01.001

- Flisberg, P., Lidén, B., Rönnqvist, M., 2009. A hybrid method based on linear programming and tabu search for routing of logging trucks. Computers & Operations Research 36, 1122–1144. https://doi.org/10.1016/j.cor.2007.12.012
- Florian, M., Morosan, C.D., 2014. On uniqueness and proportionality in multi-class equilibrium assignment. Transportation Research Part B: Methodological 70, 173–185. https://doi.org/10.1016/j.trb.2014.06.011
- Gallo, M., Acierno, L.D., Montella, B., n.d. Compendium of Papers A meta-heuristic algorithm for solving the road network design problem in regional contexts.
- Gallo, M., D'Acierno, L., Montella, B., 2012. A Meta-heuristic Algorithm for Solving the Road Network Design Problem in Regional Contexts. Procedia - Social and Behavioral Sciences 54, 84–95. https://doi.org/10.1016/j.sbspro.2012.09.728

Golias, M.M., Higgs, B., 2016. Discovering the Vulnerable Physical Routes in a Network.

- Golob, T.F., Recker, W.W., 2003. Relationships among urban freeway accidents, traffic flow, weather, and lighting conditions. Journal of Transportation Engineering 129, 342–353.
- Higgs, B., Golias, M.M., Mishra, S., 2017. Multi-Level Multi-Objective Vulnerability Assessment of Transportation Networks. Presented at the 96th Annual Meeting of the TRB, Washington, DC.
- Higgs, B., Naimi, A., Golias, M.M., Mishra, S., 2016. An innovative approach to solve the network design problem concerning intelligent vulnerabilities. Presented at the Annual Meeting of the TRB, Washington, DC.
- Jenelius, Erik, 2010. Large-scale road network vulnerability analysis.
- Jenelius, E., 2010. Redundancy importance: Links as rerouting alternatives during road network disruptions. 1st Conference on Evacuation Modeling and Management 3, 129–137. https://doi.org/10.1016/j.proeng.2010.07.013
- Jenelius, E., Mattsson, L.-G., 2012. Road network vulnerability analysis of areacovering disruptions: A grid-based approach with case study. Transportation Research Part A: Policy and Practice, Network vulnerability in large-scale transport networks 46, 746–760. https://doi.org/10.1016/j.tra.2012.02.003
- Jenelius, E., Petersen, T., Mattsson, L.-G., 2006. Road network vulnerability: Identifying important links and exposed regions. Transportation Research A 40, 537–560.

- Kaplan, S., Garrick, B.J., 1981. On The Quantitative Definition of Risk. Risk Analysis 1, 11–27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
- Karami, A., Guerrero-zapata, M., 2015. Neurocomputing A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking. Neurocomputing 151, 1262–1282. https://doi.org/10.1016/j.neucom.2014.11.003
- Kim, Y., Kang, W.-H., Song, J., 2012a. Assessment of seismic risk and importance measures of interdependent networks using a non simulation-based method. Journal of Earthquake Engineering 16, 777–794. https://doi.org/10.1080/13632469.2012.661121
- Kim, Y., Kang, W.-H., Song, J., 2012b. Assessment of seismic risk and importance measures of interdependent networks using a non simulation-based method. Journal of Earthquake Engineering 16, 777–794. https://doi.org/10.1080/13632469.2012.661121
- Knoop, V.L., Snelder, M., van Zuylen, H.J., Hoogendoorn, S.P., 2012. Link-level vulnerability indicators for real-world networks. Transportation Research Part A: Policy and Practice 46, 843–854.
- Kumar, A., Peeta, S., 2015. Entropy weighted average method for the determination of a single representative path flow solution for the static user equilibrium traffic assignment problem. Transportation Research Part B: Methodological 71, 213– 229. https://doi.org/10.1016/j.trb.2014.11.002
- Kumar, A., Peeta, S., 2014. SLOPE-BASED PATH SHIFT PROPENSITY ALGORITHM FOR THE STATIC TRAFFIC ASSIGNMENT PROBLEM. INTERNATIONAL JOURNAL FOR TRAFFIC AND TRANSPORT ENGINEERING 4, 297–319. https://doi.org/10.7708/ijtte.2014.4(3).05
- Latora, V., Marchiori, M., 2005. Vulnerability and protection of infrastructure networks. Physical Review E 71, 015103.
- Lu, Q., George, B., Shekhar, S., 2005. Capacity Constrained Routing Algorithms for Evacuation Planning: A Summary of Results, in: Medeiros, C.B., Egenhofer, M.J., Bertino, E. (Eds.), Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 291–307.

- Lu, Q.-C., Peng, Z.-R., 2011. Vulnerability Analysis of Transportation Network Under Scenarios of Sea Level Rise. Transportation Research Record: Journal of the Transportation Research Board 2263, 174–181.
- Luathep, P., Sumalee, A., Ho, H.W., Kurauchi, F., 2011. Large-scale road network vulnerability analysis: a sensitivity analysis based approach. Transportation 38, 799–817. https://doi.org/10.1007/s11116-011-9350-0
- LUATHEP, P., SUWANNO, P., TANEERANANON, P., 2013a. Identification of Critical Locations in Road Networks due to Disasters. Presented at the Proceedings of the Eastern Asia Society for Transportation Studies.
- LUATHEP, P., SUWANNO, P., TANEERANANON, P., 2013b. Identification of Critical Locations in Road Networks due to Disasters. Presented at the Proceedings of the Eastern Asia Society for Transportation Studies.
- Mathew, T. V., Sharma, S., 2006. Continuous Network Design with Emission Pricing as a Bi-Level Optimization Problem. Applications of Advanced Technology in Transportation 804–809. https://doi.org/10.1061/40799(213)129
- Miandoabchi, E., Daneshzand, F., Szeto, W.Y., Zanjirani Farahani, R., 2013. Multiobjective discrete urban road network design. Computers & Operations Research 40, 2429–2449. https://doi.org/10.1016/j.cor.2013.03.016
- Miller-Hooks, E., Zhang, X., Faturechi, R., 2012. Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research 39, 1633– 1643.
- Mouskos, K.C., 1991. A Tabu-based Heuristic Search Strategy to Solve a Discrete Transportation Equilibrium Network Design Problem.
- Murray-Tuite, P.M., Mahmassani, H.S., 2004. Methodology for determining vulnerable links in a transportation network. Transportation Research Record 88–96.
- Nagurney, A., Qiang, Q., 2007. A transportation network efficiency measure that captures flows, behavior, and costs with applications to network component importance identification and vulnerability, in: Proceedings of the POMS 18th Annual Conference, Dallas, Texas, USA, May.

- Oppenheim, I.J., 1977. Vulnerability of Transportation and Water Systems to Seismic Hazard Methodology for Hazard Cost Evaluation, in: The Current State of Knowledge of Lifeline Earthquake Engineering. ASCE, pp. 394–409.
- Parvaresh, F., Husseini, S.M.M., Golpayegany, S.A.H., Karimi, B., 2014. Hub network design problem in the presence of disruptions. Journal of Intelligent Manufacturing 25, 755–774. https://doi.org/10.1007/s10845-012-0717-7
- Patriksson, M., Rockafellar, R.T., 2002. A Mathematical Model and Descent Algorithm for Bilevel Traffic Management. Transportation Science 36, 271–291. https://doi.org/10.1287/trsc.36.3.271.7826
- Poljansek, K., Bono, F., Gutierrez, E., 2012. Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks. Earthq. Eng. Struct. Dyn. 41, 61–79. https://doi.org/10.1002/eqe.1118
- Poorzahedy, H., Rouhani, O.M., 2007a. Hybrid meta-heuristic algorithms for solving network design problem. European Journal of Operational Research 182, 578– 596. https://doi.org/10.1016/j.ejor.2006.07.038
- Poorzahedy, H., Rouhani, O.M., 2007b. Hybrid meta-heuristic algorithms for solving network design problem. European Journal of Operational Research 182, 578– 596. https://doi.org/10.1016/j.ejor.2006.07.038
- Pratt, R., Lomax, T., 1996. Performance measures for multimodal transportation systems. Transportation Research Record: Journal of the Transportation Research Board 85–93.
- Rossi, T.F., McNeil, S., Hendrickson, C., 1989. Entropy Model for Consistent Impact-Fee Assessment. Journal of Urban Planning and Development 115, 51–63. https://doi.org/10.1061/(ASCE)0733-9488(1989)115:2(51)
- Scott, D.M., Novak, D.C., Aultman-Hall, L., Guo, F., 2006. Network Robustness Index: A new method for identifying critical links and evaluating the performance of transportation networks. Journal of Transport Geography 14, 215–227. https://doi.org/10.1016/j.jtrangeo.2005.10.003
- Sharma, S., Mathew, T. V, 2011. Multiobjective network design for emission and traveltime trade-off for a sustainable large urban transportation network. Environment

and Planning B: Planning and Design 38, 520–538. https://doi.org/10.1068/b37018

- Sherali, H.D., Carter, T.B., Hobeika, A.G., 1991. A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions. Transportation Research Part B: Methodological 25, 439–452.
- Smith, A.B., Katz, R.W., 2013. US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Natural hazards 67, 387–410.
- Sullivan, J.L., Novak, D.C., Aultman-Hall, L., Scott, D.M., 2010. Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach. Transportation Research Part A: Policy and Practice 44, 323–336. https://doi.org/10.1016/j.tra.2010.02.003
- Tampere, C.M., Stada, J., Immers, B., Peetermans, E., Organe, K., 2007. Methodology for identifying vulnerable sections in a national road network. Transportation Research Record: Journal of the Transportation Research Board 2012, 1–10.
- Taylor, M.A., Sekhar, S.V., D'Este, G.M., 2006. Application of accessibility based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics 6, 267–291.
- United States., 1964. Traffic assignment manual for application with a large, high speed computer. U.S. Dept. of Commerce, Bureau of Public Roads, Office of Planning, Urban Planning Division; for sale by the Superintendent of Documents, U.S. Govt. Print. Off., Washington.
- Wang, Z., Chan, A.P.C., Yuan, J., Xia, B., Skitmore, M., Li, Q., 2015. Recent Advances in Modeling the Vulnerability of Transportation Networks. Journal of Infrastructure Systems 21, 06014002. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000232
- Wu, J., Duenas-Osorio, L., 2013. Calibration and validation of a seismic damage propagation model for interdependent infrastructure systems. Earthquake Spectra 29, 1021–1041. https://doi.org/10.1193/1.4000160
- Xie, F., Levinson, D., 2011. Evaluating the effects of the I-35W bridge collapse on roadusers in the twin cities metropolitan region. Transportation Planning and Technology 34, 691–703. https://doi.org/10.1080/03081060.2011.602850

- YANG, L., QIAN, D., 2012. Vulnerability Analysis of Road Networks. Journal of Transportation Systems Engineering and Information Technology 12, 105–110. https://doi.org/10.1016/S1570-6672(11)60188-8
- Yun-peng, W., Yu-qin, F., Wen-xiang, L.I., Fulcher, W.C., Zhang, L., n.d. Road network vulnerability analysis based on improved ant colony algorithm 1–11.
- Zhang, L., Wen, Y., Huang, Z., Jin, M., 2010. Framework of Calculating the Measures of Resilience (MOR) for Intermodal Transportation Systems.
- Zhang, M., Lomax, T., 2008. Estimating Congestion Index at the Link Level with TransCAD GIS, in: Plan, Build, and Manage Transportation Infrastructure in China. ASCE, pp. 7–17.
- Zhao, F., Zeng, X., 2006. Simulated Annealing–Genetic Algorithm for Transit Network Optimization. Journal of Computing in Civil Engineering 20, 57–68. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:1(57)

APPENDIX A: GIS TOOLBOX USER MANUAL

The research team developed an ArcGIS toolbox that implements the three heuristicbased approaches described in section 2. This section contains the user manual of the ArcGIS toolbox with examples using the Freight Analysis Framework network for Shelby County, TN. The toolbox and the example data can be downloaded from: https://www.dropbox.com/s/zmvn27tvpcpimug/REES%20Software.zip?dl=0

NET CONVERSION TOOL

Description

This tool will convert TransCAD transportation network exported as ESRI Shape to the required input format of the GSB, RSH and KSP Tool input parameter Network.

Example Input Files

• Network Shapefile.shp – Transportation Network exported from TransCAD as ESRI Shape

STEP 1

Open newly added REES Tools toolbox and launch Net Conversion Tool (see Figure A-1)

💐 Net Conversior	n Tool						- 0	×
Network						^	Net Conversion Tool	^
Network Fields					<i>≥</i>		This tool will create the required input format of the GSB, RSH, and KSP Tools.	
Field	Bi-Directional	AB-Direction	BA-Direction	^	+			
Pointer					×			
Pointee					•			
FFTT					1			
Capacity					Ŧ			
Alpha								
Beta				~				
<				>				
 Output Table 					_	5		
					2	*		Ť
	ОК	Cancel Env	/ironments	< <h< td=""><td>ide Help</td><td></td><td>Tool Help</td><td></td></h<>	ide Help		Tool Help	

Figure A-1 Net Conversion Tool

STEP 2

Input path to transportation network (.shp) into the tool first input parameter Network (see Figure A-2).

letwork Network_Shapefile.shp					a 🔿	Network	
	le, srip				7	Input transportation network shapefile (.sh))
etwork Fields							
				`			
Field	Bi-Directional	AB-Direction	BA-Direction	^ -	•		
Direction							
Pointer				×			
Pointee				1			
FFTT							
Capacity				1			
Alpha							
Beta				×			
< .				>			
utput Table							
				6	3		
					<u> </u>		

Figure A-2 Input Transportation Network Shapefile (.shp)

STEP 3

Select the input network attribute fields to the corresponding table fields and their direction in input parameter Network Fields (see Figure A-3).

(Direction [Denoted as: Bi-Directional = 0, AB-Direction = 1, BA-Direction = -1], Pointer (link begin node ID) and Pointee (link end node ID) are required fields for the tool to be executed, for the other fields if no corresponding fields will be selected the fields will be assigned with null values, except Alpha and Beta fields, where default values of 0.15 and 4 will be selected.)

letwork					_	\wedge	Network Fields	
Network_Shapefile	e.shp				2		Select the input network attribute fields to	
letwork Fields					~		the corresponding table fields and their direction	
Field	Bi-Directional	AB-Direction	BA-Direction	^	+		(If no corresponding fields will be selected the fields will be assigned with null values,	
Pointer	bare	FROM ID			×		except Alpha and Beta fields, where default values of 0.15 and 4 will be selected.)	
Pointee		_	TO_ID		1		values of 0.15 and 4 will be selected.)	
FFTT		AB_AFFTIME	BA_AFFTIME					
Capacity		AB_PMCAP	BA_PMCAP		Ŧ			
Alpha								
Beta								
Length	LENGTH							
Car_Flow		AB_CARFLOW	BA_CARFLOW					
Truck_Flow		AB_TRKFLOW	BA_TRKFLOW					
Total_Flow		AB_VEHFLOW	BA_VEHFLOW					
π		AB_PKTIME	BA_PKTIME					
Connector	CC			~				
<			>	·				
Output Table								
					1			
					_			
						\sim		

Figure A-3 Select the corresponding Input Network Attribute Fields

In toolbox Output Table parameter input output folder path where processed files will be exported (see Figure A-4).

etwork					_ ^	Output Table	/
Network_Shapefi	le.shp				3	Select output folder where processed files	
etwork Fields						will be outputted	
					~		
Field	Bi-Directional	AB-Direction	BA-Direction	<u>^</u>	-		
Direction	DIR						
Pointer		FROM_ID		- 3	۲		
Pointee		_	TO_ID		•		
FFTT		AB_AFFTIME	BA_AFFTIME				
Capacity		AB_PMCAP	BA_PMCAP		L		
Alpha							
Beta				×			
<				>			
utput Table					_		
Output Folder We	twork.dbf			E C	3		
					\sim		

Figure A-4 Input Path to Output Table

Once all required parameters are inputted, press OK to execute the application. The ArcGIS application invokes a task completion window, which reports status of each task (see Figure A-5). Also, processed table (see Figure A-6) in (.dbf) format will be imported to ArcMap display.

Net Conversion Tool	2
Completed	Close
Close this dialog when completed successfully	<< Details
Executing: Conversion_Tool "D:\Desktop\REES Software\Inpu Conversion Tool Input\Network_Shapefile.shp" "Direction I ' ';Pointer ' 'FROM_ID ';Pointee ' ' ' TO ID;FFTT AB_AFFTIME BA_AFFTIME;Capacity ' 'AB_PMCAP BA_PMCAP;Alpu ' ';Beta ' ' ' ';Length ' ' ' ';Car_Flow ' ';Truck_Flow ' ' ' ' ';Total_Flow ' ' ' ';TT ' ' ';Connector ' ' ' ' '" C:\Users\kpufats\Documents\ArcG: \Network.dbf	DIR ' ''' ha ''' '''
Start Time: Mon Aug 13 15:17:36 2018 Running script Conversion_Tool Completed script Conversion_Tool	~

Figure A-5 Application Performance Task Window

N	etwork														;
	OID	Edge	Pointer	Pointee	FFTT	Capacity	Alpha	Beta	Length	Car_Flow	Truck_Flow	Total_Flow	TT	Connector	^
▶	0	1	332761	332886	2.59158	3953.300971	0.15	4	2.567685	9388.449217	1841.200848	11229.650065	0	0	1
	1	2	1002518	332971	4.789769	40000	0.15	4	2.197628	1759.76305	0	1759.76305	0	1	1
	2	3	1002518	333184	4.789769	40000	0.15	4	4.215873	4866.279561	1383.315105	6249.594665	0	1	1
	3	4	332817	333286	6.12815	3063.550015	0.15	4	4.678201	5.838744	0	5.838744	0	0	
	4	5	2004157	332761	4.624162	40000	0.15	4	2.970565	2000.36132	138.722257	2139.083578	0	1	1
	5	6	332817	332761	1.00086	3063.550015	0.15	4	0.764052	717.936625	41.909628	759.846254	0	0	1
	6	7	334809	334787	0.818759	2088.769535	0.15	4	0.240831	3830	0	3830	0.818839	0	1
	7	8	2004985	334609	0.819589	974.855054	0.15	4	0.23898	910	0	910	0.819593	0	1
	8	9	363190	363366	4.340041	1573.076839	0.15	4	3.799525	2358.540768	86.459232	2445	4.340099	0	
	9	10	360017	362484	4.100412	3953.300971	0.15	4	4.062604	8683.055147	354.545053	9037.600199	0	0	
1	• •		1 ► H	 (() out of 188	26 Selected)									

Figure A-6 Output Table

THE GREEDY SEARCH BASED VULNERABILITY TOOL (GSB TOOL)

Description

The Greedy Search Based Vulnerability Tool (GSB Tool) has two options to identify the most critical links on a transportation network. The first option involves user providing a table in a form of (.csv) or (.dbf) of Edge IDs and their corresponding percentage of capacity reduction, following input the tool will reduce the capacity of user provided links and run a traffic assignment. The second option involves user selecting field attributes and inputting weights, following input the tool will rank weighted attributes and reduce the capacity (selected by user) for the number of links (selected by user) and finally run a traffic assignment.

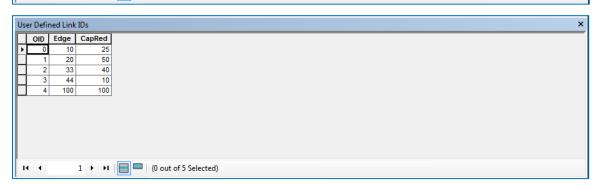
Example Input Files

Following tables were used in executing GSB Tool example in format of (.csv) (see Figure A-7) and (.dbf) (see Figure A-8).

- Network.csv Transportation network with the following order of field attributes: Link ID for one direction, From Node, To Node, Free Flow Travel Time, Capacity, Alpha, Beta, Length, Car Flow, Truck Flow, Total Flow, Travel Time, and Connector (0 No, 1 yes).
- Origin-Destination Matrix.csv Origin-Destination Matrix with the following order of field attributes: From Node, To Node, Car Demand, Truck Demand, and Total Demand.
- User Defined Link IDs.csv User defined Link ID table with the following order of field attributes: Link ID for one direction and percentage of capacity reduction.

1	A	В	С	D	E	F	G	н	1.1	J	K	L	M	N
1	1	141379	142406	0.041364	3337	0.15	4	0.047706	0	0	0	0.041364	0	
2	2	142406	142414	0.027632	3337	0.15	4	0.031869	0	0	0	0.027632	0	
3	3	142414	142422	0.086236	3337	0.15	4	0.099459	0	0	0	0.086236	0	
4	4	142422	142430	0.077587	3337	0.15	4	0.089483	0	0	0	0.077587	0	
5	5	142430	126024	0.010867	3337	0.15	4	0.012533	0	0	0	0.010867	0	
6	6	142446	142454	0.06596	3337	0.15	4	0.076074	2491.711	393.9045	2885.616	0.077615	0	
7	7	126024	142446	0.017417	3337	0.15	4	0.020088	2491.711	393.9045	2885.616	0.020495	0	
8	8	142454	142462	0.085637	3337	0.15	4	0.098768	2491.711	393.9045	2885.616	0.100769	0	
9	9	142462	126032	0.085654	3284	0.15	4	0.098788	2491.711	393.9045	2885.616	0.10179	0	
10	10	126024	142478	1.026567	2063	0.15	4	0.732285	0	0	0	1.026567	0	
4 4	► H Net	work ⁄ 🤢	/											► []

	А	В	С	D	E	F	G	Н	1	J	K	L	M	N	
4	5896	19560	152.7698	31.66175	184.4315										
5	5896	23577	26.571	5.930025	32.50103										
6	5896	25532	239.4124	34.91333	274.3257										
7	5896	25596	73.28497	3.473618	76.75859										
8	5896	28439	55.42994	6.288477	61.71842										
9	5896	33668	36.96075	3.216468	40.17722										
10	5896	39108	77.42817	5.138063	82.56623										
11	5896	39140	70.98827	4.681057	75.66932										
12	5896	45640	86.48406	15.7084	102.1925										
13	5896	45712	59.30251	4.452708	63.75521										
	A	В	C	D	E	F	G	H		J	K	L	M	N	15
			0	0	-						12				
1															
-	6	100													f
_	23	100													ſ
3															
3 4	23	100													
3 4 5	23	100													
3 4 5 6	23	100													
3 4 5 6 7	23	100													
3 4 5 6 7 8	23	100													
3 4 5 6 7 8 9	23	100													
2 3 4 5 7 8 9 10	23	100													


Figure A-7 Example input tables in form of (.csv)

I	OID	Edge	Pointer	Pointee	FFTT	Capacity	Alpha	Beta	Length	Car_Flow	Truck_Flow	Total_Flow	TT	Connector
	0	1	141379	142406	0.041364	3337	0.15	4	0.047706	0	0	0	0.249593	0
ſ	1	2	142406	142414	0.027632	3337	0.15	4	0.031869	0	0	0	0.717664	0
	2	3	142414	142422	0.086236	3337	0.15	4	0.099459	0	0	0	0.095184	0
ĺ	3	4	142422	142430	0.077587	3337	0.15	4	0.089483	0	0	0	0.12022	0
Ì	4	5	142430	126024	0.010867	3337	0.15	4	0.012533	0	0	0	0.069962	0
Ì	5	6	142446	142454	0.06596	3337	0.15	4	0.076074	2888.440965	401.908496	3290.349461	0.510468	0
I	6	7	126024	142446	0.017417	3337	0.15	4	0.020088	2888.440965	401.908496	3290.349461	0.019867	0
ĺ	7	8	142454	142462	0.085637	3337	0.15	4	0.098768	2888.440965	401.908496	3290.349461	0.350355	0
ľ	8	9	142462	126032	0.085654	3284	0.15	4	0.098788	2888.440965	401.908496	3290.349461	0.158653	0
T	9	10	126024	142478	1.026567	2063	0.15	4	0.732285	0	0	0	3.416619	0

×

Origin-Destination Matrix
 OID
 Pointer
 Pointee
 Car_Flow
 Truck_Flow
 Total_Flow

 ▶
 0
 5896
 5896
 0
 0
 0
 5896 6072 216.375015 124.732246 341.107261 1 844.064148 71.881973 5896 13777 915.946121 2 5896 19560 152.769791 31.661749 184.43154 Г 3 5896 23577 26.571001 5.930025 32.501026 Г 4 F 5896 25532 239.412354 34.91333 274.325684 5 6 5896 25596 73.284973 3.473618 76.758591 5896 28439 55.429943 6.288477 61.71842 7 8 5896 33668 36.960754 3.216468 40.177222 5896 39108 77.428169 5.138063 82.566232 9 F 10 5896 39140 70.988266 4.681057 75.669323 1 → → I | 📄 🔲 | (0 out of 1936 Selected) 14 4

Figure A-8 Example input tables in form of (.dbf)

Open newly added REES Tools toolbox and launch GSB Tool (see Figure A-9)

💐 GSB Tool					-		×
Network		^	GSB	Tool			~
Origin-Destination Matrix (Demand)			Tool (C	reedy Search Bas SSB Tool) will ider Inks on a transp	ntify the	most	
Initialize New Traffic Assignment (op	tional)		when or reduce	capacity on variou	s links i	s	
Traffic Assignment Demand							
Combined OD		\sim					
 User Defined Link IDs (optional) 							
		<u> 6</u>					
 Weighted Attributes (optional) 							
		~					
Attribute	Weight	+					
		~					
		×					
		1					
		+					
<		>					
Normalize (optional)		-					
# of Links (optional)							
		~					
Percentage of Capacity Reduction (%)	(optional)						
refeetinge of capacity recadedor (10)	(op donal)	~					
Reduce Capacity One Link at a Tim	e (optional)						
Traffic Assignment Convergence Precis	on						
		0.01					
Top Vulnerable Links to be Plotted							
		5					
 Select Output Folder 							
		2					
			/				0
							-
OK	Cancel Environments	<< Hide Help	Too	ol Help			

Figure A-9 GSB Tool

Input path to transportation network file in a form of (.csv) or (.dbf) into the tool first input parameter Network (see Figure A-10).

GSB Tool				-		×
Network Network.csv • Origin-Destination Matrix (Demand)			Network Input transporta (.csv) or (.dbf)	tion network fil	e in form	of
Initialize New Traffic Assignment (o Traffic Assignment Demand Combined OD User Defined Link IDs (optional) Weighted Attributes (optional)	ptional)					
		\sim				
Attribute	Weight					
Percentage of Capacity Reduction (%)	(ontional)	~				
reitentage of Capacity Reduction (%)	((upuunai)	\sim				
Reduce Capacity One Link at a Tir	ne (optional)					
Traffic Assignment Convergence Preci	sion	0.01				
Top Vulnerable Links to be Plotted Select Output Folder		5				>
ОК	Cancel Environments <<	Hide Help	Tool Help]		

Figure A-10 Input Network

Input path to Origin-Destination Matrix (Demand) file in a form of (.csv) or (.dbf) into the tool second input parameter Origin-Destination Matrix (Demand) (see Figure A-11).

Latt	GSB Tool					_		\times
	Network Network.csv Origin-Destination Matrix (Demand)			^	Origin-Destinatio (Demand)			^
	Origin-Destination Matrix.csv Initialize New Traffic Assignment (opt Traffic Assignment Demand Combined OD User Defined Link IDs (optional) Weighted Attributes (optional)	ional)			file in form of (.csv) or		. ,	
		1	~					
	Attribute	Weight	+ ×					
			1					
			Ŧ					
	Normalize (optional)	>						
	# of Links (optional)		~					
	Percentage of Capacity Reduction (%)	(optional)	~					
	Reduce Capacity One Link at a Time	e (optional)						
	Traffic Assignment Convergence Precisio	n	0.01					
•	Top Vulnerable Links to be Plotted Select Output Folder		5					
				$^{\prime}$				\sim
	ОК С	ancel Environments << H	lide Help		Tool Help			

Figure A-11 Input Origin-Destination Matrix

STEP 4 (Optional)

Select option to Initialize New Traffic Assignment if user wishes use a new traffic assignment initialized by the Greedy Search Based Vulnerability Tool (see Figure A-12).

💐 GSB Tool		_		×
Network Network.csv Origin-Destination Matrix (Demand) Origin-Destination Matrix.csv		Initialize New Traffic Assignment (optional) Check to initialize new traffic a	assignmen	t
	~ 2			
Attribute Weight				
< Normalize (optional)	•			
# of Links (optional) Percentage of Capacity Reduction (%) (optional)	~			
Reduce Capacity One Link at a Time (optional)	×			
Top Vulnerable Links to be Plotted Select Output Folder	0.01			<
OK Cancel Environments	<< Hide Help	Tool Help		

Figure A-12 Initialize New Traffic Assignment

Select the type of traffic assignment demand used for traffic assignment in input parameter Traffic Assignment Demand (see Figure A-13).

(A default selection of Combined OD will be set as input parameter.)

(Combined OD – First assigns traffic using passenger demand, then uses calculated passenger travel time as input to free flow travel time to assign traffic using truck demand, finally the calculated travel time using passenger demand is returned as output travel time.)

Latt	GSB Tool				- 0	×
	Network				Traffic Assignment Demand	~
	Network.csv		2			
	Origin-Destination Matrix (Demand)				Select type of demand used for traffic	
	Origin-Destination Matrix.csv		2		assignment	
	Initialize New Traffic Assignment (op	tional)			(Default: Combined OD)	
	Traffic Assignment Demand					
	Combined OD		\sim			
•	Truck OD					
	Passenger OD Combined OD		_			
•	Weighted Attributes (optional)					
ľ			~			
		1				
	Attribute	Weight	+			
			~			
			×			
			1			
			+			
			_			
	<		>			
	Normalize (optional)					
	# of Links (optional)					
			~			
	Percentage of Capacity Reduction (%)	(optional)				
			~			
	Reduce Capacity One Link at a Tim	e (optional)				
	Traffic Assignment Convergence Precis	ion				
			0.01			
	Top Vulnerable Links to be Plotted					
			5			
•	Select Output Folder					
			2			
				\vee		~
	ОК	Cancel Environments <	< Hide Help		Tool Help	

Figure A-13 Select Type of Demand Used for Traffic Assignment

STEP 6 (Option I)

Input path to User Defined Link IDs file in a form of (.csv) or (.dbf) into the input parameter User Defined Link IDs (see Figure A-14).

🥞 GSB Tool		- 🗆 X	
Network		User Defined Link IDs (optional)	~
Network.csv			
Origin-Destination Matrix (Demand)		Input table of link IDs with percentage of	
Origin-Destination Matrix.csv		capacity reduction	
Initialize New Traffic Assignment (optional)			
Traffic Assignment Demand			
Combined OD V			
User Defined Link IDs (optional)			
User Defined Link IDs.csv			
Weighted Attributes (optional)			
\sim			
Attribute Weight +			
Attribute			
×			
1			
t			
< >			
Normalize (optional)			
# of Links (optional)			
Percentage of Capacity Reduction (%) (optional)			
Reduce Capacity One Link at a Time (optional)			
Traffic Assignment Convergence Precision			
0.01			
Top Vulnerable Links to be Plotted			
5			
 Select Output Folder 			
	\sim		~
OK Cancel Environments << Hide Help		Tool Help	

Figure A-14 Input User Defined Link IDs

STEP 6.1 (Option II)

Select attributes from input parameter Weighted Attributes drop down list (see Figure A-15).

Latt	GSB Tool			- 0	×
	Network	1	~	Weighted Attributes (optional)	^
	Network.csv	6		Select attributes and input weights to	
	Origin-Destination Matrix (Demand) Origin-Destination Matrix.csv	1		rank weighted network links	
	Initialize New Traffic Assignment (optional)				
	Traffic Assignment Demand Combined OD	~			
۱.	User Defined Link IDs (optional)	Ť			
		2			
•	Weighted Attributes (optional)				
		\sim			
	Free Flow TT Capacity	- 1			
	Alpha Beta				
	Length Car Flow				
	Truck Flow				
	Total Flow	T			
	< >				
	Normalize (optional)	1			
	# of Links (optional)				
	# of Links (optional)	\sim			
	Percentage of Capacity Reduction (%) (optional)				
		\sim			
	Reduce Capacity One Link at a Time (optional)				
	Traffic Assignment Convergence Precision				
		0.01			
	Top Vulnerable Links to be Plotted	5			
•	Select Output Folder				
		1			
			\sim		\sim
				I	
	OK Cancel Environments << H	ide Help		Tool Help	

Figure A-15 Select Attributes

STEP 6.2 (Option II)

Input weights for selected field attributes in input parameter Weighted Attributes (see Figure A-16).

💐 GSB Tool			- C	X
Network		^	Weighted Attributes (optional)	~
Network.csv		6		
Origin-Destination Matrix (Demand)			Select attributes and input weights to rank weighted network links	¢
Origin-Destination Matrix.csv		6	Weighted Hetwork links	
🗹 Initialize New Traffic Assignment (opt	ional)			
Traffic Assignment Demand				
Combined OD		~		
User Defined Link IDs (optional)				
		1		
Weighted Attributes (optional)				
		~		
Attribute	Weight	+		
Car Flow	1			
Truck Flow	1	×		
	-	+		
		+		
<	>			
Normalize (optional)		-		
# of Links (optional)		~		
 Percentage of Capacity Reduction (%) (optional)			
		~		
Reduce Capacity One Link at a Time	(optional)	1		
Traffic Assignment Convergence Precisio	'n	0.01		
Top Vulnerable Links to be Plotted				
		5		
 Select Output Folder 				
		2		
		~		~
OK	Cancel Environments <<	Jida Hala	Taal Hala	
ÖK	Cancel Environments << I	Hide Help	Tool Help	

Figure A-16 Input Weights

STEP 6.3 (Option II) (Optional)

Select option Normalize to normalize user inputted weights (see Figure A-17).

🛐 GSB Tool				_	×
Network			Normalize (optional)		~
Network.csv		6	Normalize weights		
Origin-Destination Matrix (Dema	nd)		Normalize weights		
Origin-Destination Matrix.csv		2			
✓ Initialize New Traffic Assignment	nent (optional)				
Traffic Assignment Demand					
Combined OD		~			
User Defined Link IDs (optional)					
		6			
Weighted Attributes (optional)					
		~			
Attribute	Weight	+			
Car Flow	0.5	×			
Truck Flow	0.5				
		1			
		↓			
<		>			
Normalize (optional)					
# of Links (optional)		~			
		~			
 Percentage of Capacity Reduction 	on (%) (optional)	~			
_		Ť			
Reduce Capacity One Link a	at a Time (optional)				
Traffic Assignment Convergence	Precision				
		0.01			
Top Vulnerable Links to be Plotte	ed				
		5			
Select Output Folder					
		2			
		\checkmark			~
			1		
OK	Cancel Environments	<< Hide Help	Tool Help		

Figure A-17 Normalize Weights

Select the number of top ranked links used to reduce capacity in input parameter # of Links (see Figure A-18).

💐 GSB Tool			- 0	×
Network		^	# of Links (optional)	~
Network.csv		6	Select number of links for capacity reductio	
Origin-Destination Matrix (Dema	nd)		Select number of links for capacity reductio	
Origin-Destination Matrix.csv		2		
🗹 Initialize New Traffic Assignm	ient (optional)			
Traffic Assignment Demand				
Combined OD		\sim		
User Defined Link IDs (optional)		<u>a</u>		
Weighted Attributes (optional)				
		~		
Attribute	Weight	+		
Car Flow	0.5			
Truck Flow	0.5	×		
		1		
		↓		
<		>		
Normalize (optional)		-		
# of Links (optional)		~		
• 1				
2 3				
4 5				
10 15				
20 25				
23		5		
 Select Output Folder 				
		2		
		~		\sim
OK	Cancel Environments	<< Hide Help	Tool Help	

Figure A-18 Select # of Links

STEP 8 (Option II)

Select the percentage used to reduce capacity for the top ranked links in input parameter Percentage of Capacity Reduction (%) (see Figure A-19).

GSB Tool			- 0	×
Network Network.csv Origin-Destination Matrix (Dem. Origin-Destination Matrix.csv Initialize New Traffic Assign			Percentage of Capacity Reduction (%) (optional) Select percentage of capacity reduction	~
Traffic Assignment Demand Combined OD User Defined Link IDs (optional) Weighted Attributes (optional))	~ 2		
Attribute Car Flow Truck Flow	Weight 0.5 0.5	+ × 1		
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduct	ion (%) (optional)	>		
Select Output Folder Select Output Folder		0.01 5		
OF	Cancel Environments	· · ·	Tool Help	~

Figure A-19 Select the Percentage of Capacity Reduction (%)

Select option Reduce Capacity One Link at a Time to process files by reducing capacity for a single link (see Figure A-20)

💐 GSB Tool				_	×
Network Network.csv Origin-Destination Matrix (Deman Origin-Destination Matrix.csv Initialize New Traffic Assignment Traffic Assignment Demand Combined OD User Defined Link IDs (optional)			Reduce Capacity One (optional) Check to reduce the capacity		
Weighted Attributes (optional)					
Attribute Car Flow Truck Flow	Weight 0.5 0.5	+ × +			
< The second sec		>			
Percentage of Capacity Reductio	t a Time (optional)	~			
Traffic Assignment Convergence		0.01 5			
		~			\sim
ОК	Cancel Environments	<< Hide Help	Tool Help		

Figure A-20 Select Reduce Capacity One Link at a Time

Input Traffic Assignment Convergence Precision (see Figure A-21).

			Traffic Assignment Convergence
Network.csv		6	Precision
Origin-Destination Matrix (De	mand)		
Origin-Destination Matrix.cs	v	2	Input precision for traffic assignment convergence
Initialize New Traffic Assig	nment (optional)		
	()		(Default: 0.01)
Traffic Assignment Demand Combined OD		~	
User Defined Link IDs (option	al)		
		1	
Weighted Attributes (optiona	n		
incigrice menodes (optione	<u> </u>	~	
Attribute	Weight	+	
Car Flow Truck Flow	0.5	×	
Truck Flow	0.5		
		1	
		Ŧ	
<		>	
		-	
Normalize (optional)			
# of Links (optional)			
# of Links (optional) 3		~	
# of Links (optional) 3 Percentage of Capacity Redu	ction (%) (optional)		
# of Links (optional) 3 Percentage of Capacity Redu 50 %		~ ~	
# of Links (optional) 3 Percentage of Capacity Redu			
# of Links (optional) 3 Percentage of Capacity Redu 50 %	ık at a Time (optional)	~	
# of Links (optional) 3 Percentage of Capacity Redu 50 % C Reduce Capacity One Lin Traffic Assignment Converge	ik at a Time (optional) nce Precision		
# of Links (optional) 3 Percentage of Capacity Redu 50 % C Reduce Capacity One Lin	ik at a Time (optional) nce Precision	0.01	
# of Links (optional) 3 Percentage of Capacity Redu 50 % Parcentage Capacity One Lin Traffic Assignment Converge Top Vulnerable Links to be Plo	ik at a Time (optional) nce Precision	~	
# of Links (optional) 3 Percentage of Capacity Redu 50 % C Reduce Capacity One Lin Traffic Assignment Converge	ik at a Time (optional) nce Precision	0.01	
# of Links (optional) 3 Percentage of Capacity Redu 50 % Parcentage Capacity One Lin Traffic Assignment Converge Top Vulnerable Links to be Plo	ik at a Time (optional) nce Precision	0.01	
# of Links (optional) 3 Percentage of Capacity Redu 50 % Parcentage Capacity One Lin Traffic Assignment Converge Top Vulnerable Links to be Plo	ik at a Time (optional) nce Precision	0.01	

(A default value of 0.01 will be set as input parameter.)

Figure A-21 Input Traffic Assignment Convergence Precision

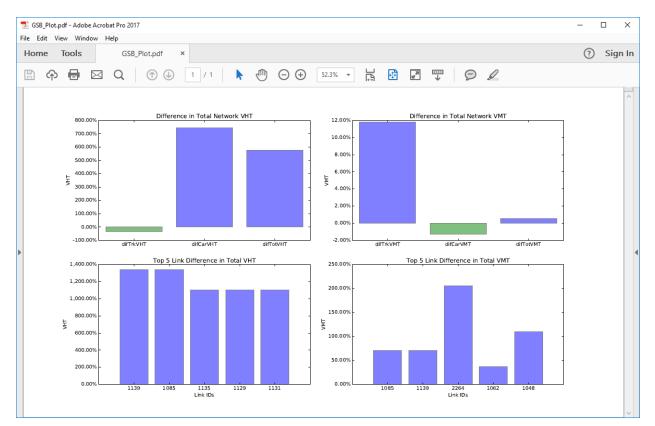
Input the number of top vulnerable links (links that are most sensitive to changes in network) used to plot the difference in vehicle hours traveled (VHT) and vehicle miles traveled (VMT) in input parameter Top Vulnerable Links to be Plotted (see Figure A-22).

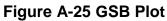
			The Mala and I all the table to be The State
Network			Top Vulnerable Links to be Plotted
Network.csv		6	Input number of top vulnerable links to be plotted
Origin-Destination Matrix (Den	-		input number of top vulnerable links to be plotted
Origin-Destination Matrix.csv	/	2	(Default: 5)
Initialize New Traffic Assign	nment (optional)		
Traffic Assignment Demand			
Combined OD		~	
User Defined Link IDs (optiona	al)		
		📂	
Weighted Attributes (optional)	~	
Attribute	Weight	-	
Car Flow	0.5	×	
Truck Flow	0.5		
		1	
		↓	
<		>	
< ✓ Normalize (optional)		>	
Normalize (optional)		>	
		>	
Vormalize (optional) # of Links (optional)	ction (%) (optional)		
Vormalize (optional) # of Links (optional)	ction (%) (optional)		
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduct 50 %		~	
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduct 50 % Reduce Capacity One Link	k at a Time (optional)	~	
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduct 50 %	k at a Time (optional)		
Normalize (optional) To f Links (optional) Percentage of Capacity Reduce 50 % Reduce Capacity One Link Traffic Assignment Convergen	k at a Time (optional) nce Precision	~	
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduct 50 % Reduce Capacity One Link	k at a Time (optional) nce Precision		
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduc 50 % Reduce Capacity One Linl Traffic Assignment Convergen Top Vulnerable Links to be Plo	k at a Time (optional) nce Precision		
Normalize (optional) To f Links (optional) Percentage of Capacity Reduce 50 % Reduce Capacity One Link Traffic Assignment Convergen	k at a Time (optional) nce Precision		
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduc 50 % Reduce Capacity One Linl Traffic Assignment Convergen Top Vulnerable Links to be Plo	k at a Time (optional) nce Precision		
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduc 50 % Reduce Capacity One Linl Traffic Assignment Convergen Top Vulnerable Links to be Plo	k at a Time (optional) nce Precision		
Normalize (optional) # of Links (optional) 3 Percentage of Capacity Reduc 50 % Reduce Capacity One Linl Traffic Assignment Convergen Top Vulnerable Links to be Plo	k at a Time (optional) nce Precision		

(A default value of 5 will be set as input parameter.)

Figure A-22 Input Top Vulnerable Links to be Plotted

In toolbox Select Output Folder parameter input output folder path where processed files will be exported after toolbox analysis (see Figure A-23).


💐 GSB Tool				_		×
Network		^	Select Output Folder			~
Network.csv		2	Calast autout falder utbara n	second f	النبير مما	ha
Origin-Destination Matrix (Deman	d)		Select output folder where pr outputted	ocessed ii	ies wiii	be
Origin-Destination Matrix.csv		2				
Initialize New Traffic Assignme	ent (optional)					
Traffic Assignment Demand						
Combined OD		~				
User Defined Link IDs (optional)						
		6				
Weighted Attributes (optional)						
		~				
Attribute	Weight	+				
Car Flow	0.5					
Truck Flow	0.5	×				
		1				
		Ŧ				
<		>				
Normalize (optional)						
# of Links (optional) 3		~				
Percentage of Capacity Reduction	n (%) (ontional)					
50 %		~				
Reduce Capacity One Link at	a Time (ontional)					
Traffic Assignment Convergence	Precision	0.01				
Top Vulnerable Links to be Plotted	4	0.01				
		5				
 Select Output Folder 						
Output Folder		6				
		~				\sim
	Consul Emi	2 2 1 6 de 11 4	Testush			
OK	Cancel Environments	<< Hide Help	Tool Help			


Figure A-23 Output Folder Selection

Once all required parameters are inputted, press OK to execute the application. The ArcGIS application invokes a task completion window, which reports status of each task (see Figure A-24). In addition, graph with the top vulnerable link differences in VMT and VHT will appear on a screen (see Figure A-25) in pdf format and the processed table (see Figure A-26) in (.dbf) format will be imported to ArcMap Display.

GSB Tool		x
Completed	Close	
	<< Detai	ils
Close this dialog when completed successfully		
Initializing Traffic Assignment		^
Network Initialized using Slope-Based Path Shift-Propens	sity	
Algorithm (SPSA)		
Reducing network capacity		
Loading network for: Car Flow		
Network Loaded with: Car Flow		
Loading network for: Truck Flow		
Network Loaded with: Truck Flow		
Completed script Vulnerability_Tool		\mathbf{v}

Figure A-24 Application Performance Task Window

DID Ed	lge Pointe	Pointee	FFTT	Capacity	Alpha	Beta	Length	Car_F	low	Truck_F	low	Total_Flo	w	TT	Connector	
848 849	45800	45856	0.23705	6 8169	0.15	4	4 0.23863	6 13321.7	65797	3835.64	1072	17157.40	6869	0.488542	0	1
770 177	1 23401	19784	0.13938	1 4024	0.15	4	4 0.1403	1 11607.7	18267	3559.89	97741	15167.61	6008	1.586987	0	
045 204	6 45792	45784	0.19732	6 8169	0.15	4	4 0.19864	2 12948.8	84339	3303.67	6863	16252.56	1202	0.384192	0	
0 1	141379	142406	0.04136	4 3337	0.15	4	4 0.04770	6	0		0		0	0.041364	0	
1 2	142406	142414	0.02763	2 3337	0.15	4	4 0.03186	9	0		0		0	0.027632	0	L N
2 3	142414	142422	0.08623			4	4 0.09945	-	0		0			0.086236	0	
3 4	142422	142430	0.07758			4	4 0.08948	-	0		0		-	0.077587	0	
4 5	142430	126024	0.01086				4 0.01253		0		0			0.010867	0	+
56	142446	142454	0.0659				4 0.07607	_		401.90		2811.83		0.068651	0	4
6 7	126024	142446	0.01741				4 0.02008			401.90		2811.83		0.018128	0	+
78	142454	142462	0.08563	7 3337	0.15	4	4 0.09876	8 2409.9	24037	401.90	8496	2811.83	2533	0.089131	0	
			1			. 1										
				newTrkFlow	newCarF		newTT	difTrkFl		newTrkV		ewTrkVM1		fTrkVHT	difTrkVMT	
	0.001766	0	1	0		0	0		0		0		0	(<u> </u>
	0.001589	0	1	0		0	0		0		0		0	(
	0.001618	0	1	0		0	0		0		0		0	(
	0	3337	0	0		0	0.041364		0		0		0	(
_	0	3337	0	0		0	0.027632		0		0		0			
	0	3337 3337	0	0		0	0.086236		0		0		0	(N
-	0	3337	0	0		0	0.0110867		0		0		0			
-	0.000252	3337	0	401.908496	2542.41	-	0.069294		0	27.849	-	30.57478	-	0.258427	-	
-	0.000252	3337	0	401.908496	2542.41		0.018297		0	7.35		8.07353	_	0.067923		_
	0.000252	3337	0	401.908496	2542.41		0.089965		0	36.157		39.69569	_	0.335192		_
	difCarFlow	newCarVI	IT new	CarVMT dif	CarVHT	difC	arVMT	difTT	new	/TotFlow	new	TotVHT	newT	otVMT	difTotVHT	difTotVMT
ľ		0	0	0	0		0	0		0		0		0	0	(
Ì		0	0	0	0		0	0		0		0		0	0	
Ì		0	0	0	0		0	0		0		0		0	0	
Ĩ		0	0	0	0		0	0		0		0		0	0	
		0	0	0	0		0	0		0		0		0	0	
		0	0	0	0		0	0		0		0		0	0	
Ĩ		0	0	0	0		0	0		0		0		0	0	
Ĩ		0	0	0	0		0	0		0		0		0	0	
	132.48834	7 176.173	924 19	93.41148	10.730229	10	.078919	0.000643	2	944.32088	20	4.023771	223.	986267	10.988656	10.07891
T	132.48834			51.07198	2.831416		2.661426	0.000169		944.32088		3.872239		145518	2.899339	2.66142
1	132,48834	7 228.72	140 05	1.108986	13.929191	4.2	.085609	0.000834	2	944.32088	26	4.885828	200	804684	14.264383	13.08560

Figure A-26 Network Link Vulnerability Ranking Tool Output

User then can add a network in format of shapefile (see Figure A-27) and join the Greedy Search Based Vulnerability Tool output using field attribute Edge (*Note: User will have add new join field and convert the Edge data attribute field to short integer data type*) and visualize the tool outputs (see Figure A-28).

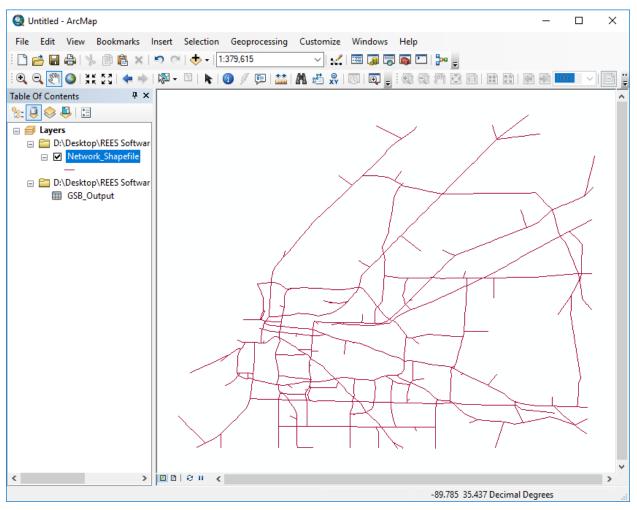


Figure A-27 Add Network in a Form of Shapefile

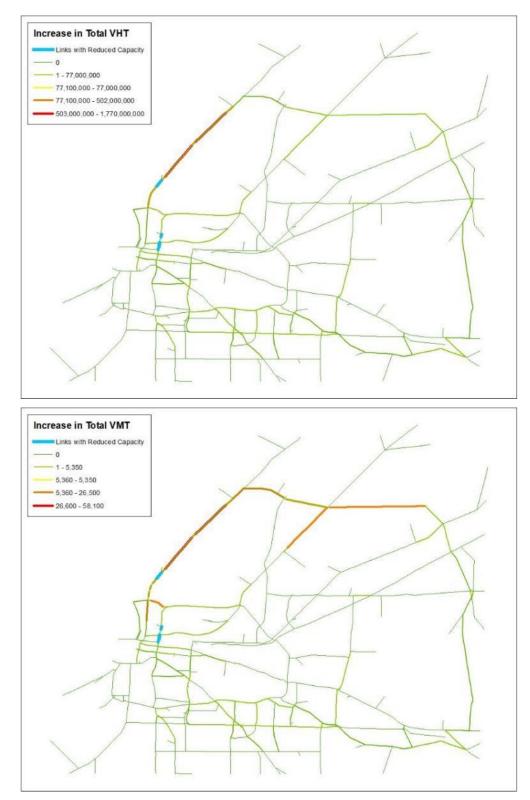


Figure A-28 Visualize the GSB Tool Output

Field Attribute	Description
Weights	Weighted attribute ratio
newTrkFlow	New truck flow
newCarFlow	New car flow
newTT	New travel time
difTrkFlow	Difference in truck flow
newTrkVHT	New truck vehicle hours traveled (VHT)
newTrkVMT	New truck vehicle miles traveled (VMT)
difTrkVHT	Difference in truck vehicle hours traveled (VHT)
difTrkVMT	Difference in truck vehicle miles traveled (VMT)
difCarFlow	Difference in car flow
newCarVHT	New car vehicle hours traveled (VHT)
newCarVMT	New car vehicle miles traveled (VMT)
difCarVHT	Difference in car vehicle hours traveled (VHT)
difCarVMT	Difference in car vehicle miles traveled (VMT)
difTT	Difference in travel time
newTotFlow	New total flow
newTotVHT	New total vehicle hours traveled (VHT)
newTotVMT	New total vehicle miles traveled (VMT)
difTotVHT	Difference in total vehicle hours traveled (VHT)
difTotVMT	Difference in total vehicle miles traveled (VMT)

 Table A-9 GSB Tool Output Attribute Field Dictionary

THE RANDOM SEARCH HEURISTIC BASED VULNERABILITY TOOL (RSH TOOL)

Description

The Random Search Heuristic Based Vulnerability Tool (RSH Tool) has two options to identify the most critical links on a transportation network using Combined OD* traffic assignment demand. The first option involves of user providing a table in a form of (.csv) or (.dbf) of Edge IDs and their corresponding percentage of capacity reduction, following input the tool will randomly select number (selected by user) of user provided links, reduce the capacity and run shortest-path algorithm. Next, tool will rank the critical link sets by the total network cost increase and select the top (selected by user) critical link sets, after that for every instance of the top critical link set tool will reduce capacity and run a traffic assignment. Finally, networks where the instance of the critical link set provided the highest increase in total vehicle hours travelled (VHT) and total vehicle miles traveled (VMT) are outputted. The second option involves user selecting field attributes and inputting weights, following input the tool will rank links by first the product of weights and total volume to capacity ratio (v/c) then by total volume to capacity ratio (v/c) and finally by weighted attributes and will select the top weighted links by a percentage (selected by user), reduce the capacity by percentage (selected by user) and run shortest-path algorithm Next, tool will rank the critical link sets by the total network cost increase and select the top (selected by user) critical link sets, after that for every instance of the top critical link set tool will reduce the capacity and run a traffic assignment. Finally, networks where the instance of the critical link set provided the highest increase in total vehicle hours travelled (VHT) and total vehicle miles traveled (VMT) and table containing the top critical link sets with calculated total network costs are outputted.

*(Combined OD – First assigns traffic using passenger demand, then uses calculated passenger travel time as input to free flow travel time to assign traffic using truck demand, finally the calculated travel time using passenger demand is returned as output travel time.)

Example Input Files

Following tables were used in executing RSH Tool example in format of (.csv) (see Figure A-29) and (.dbf) (see Figure A-30).

- Network.csv Transportation network with the following order of field attributes: Link ID for one direction, From Node, To Node, Free Flow Travel Time, Capacity, Alpha, Beta, Length, Car Flow, Truck Flow, Total Flow, Travel Time, and Connector (0 No, 1 yes).
- Origin-Destination Matrix.csv Origin-Destination Matrix with the following order of field attributes: From Node, To Node, Car Demand, Truck Demand, and Total Demand.
- User Defined Link IDs.csv User defined Link ID table with the following order of field attributes: Link ID for one direction and percentage of capacity reduction.

1	A	В	С	D	E	F	G	н	1.1	J	K	L	M	N	
1	1	141379	142406	0.041364	3337	0.15	4	0.047706	0	0	0	0.041364	0		
2	2	142406	142414	0.027632	3337	0.15	4	0.031869	0	0	0	0.027632	0		
3	3	142414	142422	0.086236	3337	0.15	4	0.099459	0	0	0	0.086236	0		
4	4	142422	142430	0.077587	3337	0.15	4	0.089483	0	0	0	0.077587	0		
5	5	142430	126024	0.010867	3337	0.15	4	0.012533	0	0	0	0.010867	0		
6	6	142446	142454	0.06596	3337	0.15	4	0.076074	2491.711	393.9045	2885.616	0.077615	0		
7	7	126024	142446	0.017417	3337	0.15	4	0.020088	2491.711	393.9045	2885.616	0.020495	0		
В	8	142454	142462	0.085637	3337	0.15	4	0.098768	2491.711	393.9045	2885.616	0.100769	0		
9	9	142462	126032	0.085654	3284	0.15	4	0.098788	2491.711	393.9045	2885.616	0.10179	0		
10	10	126024	142478	1.026567	2063	0.15	4	0.732285	0	0	0	1.026567	0		
• • •	► H Netv	work 🤇 🕲	1/						1						Ū
4	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	
1	5896	19560	152.7698	31.66175	184.4315										1
5	5896	23577	26.571	5.930025	32.50103										
5	5896	25532	239.4124	34.91333	274.3257										
7	5896	25596	73.28497	3.473618	76.75859										
3	5896	28439	55.42994	6.288477	61.71842										
9	5896	33668	36.96075	3.216468	40.17722										
0	5896	39108	77.42817	5.138063	82.56623										
1	5896	39140	70.98827	4.681057	75.66932										
2	5896	45640	86.48406	15.7084	102.1925										
3	5896	45712	59.30251	4.452708	63.75521										
•	► H Orig	in-Destina	ation Matri	ix / 🞾 /					1		1	1		•	6
1	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	
	6	100													
2	23	100													
	64	100													
L															
5															
5															
7															
3															
•															
0															
	h hi tiron	Dofined	Link IDs /	¢1 /					14		1			•	Ē

Figure A-29 Example input tables in form of (.csv)

Ĺ	OID	Edge	Pointer	Pointee	FFTT	Capacity	Alpha	Beta	Length	Car_Flow	Truck_Flow	Total_Flow	TT	Connector
	0	1	141379	142406	0.041364	3337	0.15	4	0.047706	0	0	0	0.249593	0
	1	2	142406	142414	0.027632	3337	0.15	4	0.031869	0	0	0	0.717664	0
	2	3	142414	142422	0.086236	3337	0.15	4	0.099459	0	0	0	0.095184	0
I	3	4	142422	142430	0.077587	3337	0.15	4	0.089483	0	0	0	0.12022	0
I	4	5	142430	126024	0.010867	3337	0.15	4	0.012533	0	0	0	0.069962	0
I	5	6	142446	142454	0.06596	3337	0.15	4	0.076074	2888.440965	401.908496	3290.349461	0.510468	0
I	6	7	126024	142446	0.017417	3337	0.15	4	0.020088	2888.440965	401.908496	3290.349461	0.019867	0
I	7	8	142454	142462	0.085637	3337	0.15	4	0.098768	2888.440965	401.908496	3290.349461	0.350355	0
Ì	8	9	142462	126032	0.085654	3284	0.15	4	0.098788	2888.440965	401.908496	3290.349461	0.158653	0
Ť	9	10	126024	142478	1.026567	2063	0.15	4	0.732285	0	0	0	3.416619	0

× Origin-Destination Matrix Â OID Pointer Pointee Car_Flow Truck_Flow Total_Flow 5896 5896 ┣ 0 0 0 0 5896 6072 216.375015 124.732246 341.107261 5896 13777 844.064148 71.881973 915.946121 2 3 5896 19560 152.769791 31.661749 184.43154 5896 23577 26.571001 5.930025 32.501026 4 5 5896 25532 239.412354 34.91333 274.325684 5896 25596 73.284973 3.473618 76.758591 Г 6 55.429943 61.71842 5896 28439 6.288477 7 Γ 5896 33668 36.960754 3.216468 40.177222 8 5896 77.428169 5.138063 82.566232 39108 Г 9 39140 75.669323 5896 70.988266 4.681057 Г 10 1 🕨 🔰 🔲 🗐 (0 out of 1936 Selected) 14 4

Us	er Defi	ned Link	IDs	
É	OID	Edge	CapRed	
E	0	10	25]
	1	20	50	
⊢	2		40	
	3	44	10	
	4	100	100	
	4 4		1 + H	(0 out of 5 Selected)

Figure A-30 Example input tables in form of (.dbf)

Open newly added REES Tools toolbox and launch RSH Tool (see Figure A-31)

Latt	RSH Tool				_		×
•	Network		_	RSH Tool			~
•	Origin-Destination Matrix (Demand)			The Random Sea Vulnerability Tool the most critical	(RSH Tool)	will identif	
	Initialize New Traffic Assignment (op	tional)		network when ca reduced.			
•	User Defined Link IDs (optional)		1				
•	Weighted Attributes (optional)						
	Attribute	Weight	+				
			×				
			1				
			Ŧ				
	<		>				
	Nomalize (optional)						
•	# of Links		~				
	Percentage of Capacity Reduction (%)	(optional)	~				
	Percentage of Top Weighted Links used	in Shortest-Path Heuristic (%) (opti	onal)				
	Top Critical Links Sets		5				
	Traffic Assignment Convergence Precisi	on	0.01				
	Top Vulnerable Links to be Plotted		5				
•	Select Output Folder						
							~
	ОК	Cancel Environments <	< Hide Help	Tool Help			

Figure A-31 RSH Tool

Input path to transportation network file in a form of (.csv) or (.dbf) into the tool first input parameter Network (see Figure A-32).

💐 RSH Tool				_		×
Network Network.csv Origin-Destination Matrix (Demand)	Network.csv			twork file	in form	of
Initialize New Traffic Assignment (or User Defined Link IDs (optional)						
Attribute	Weight	 + × + × + 				
 Normalize (optional) # of Links 		>				
Percentage of Capacity Reduction (%) Percentage of Top Weighted Links use Top Critical Links Sets		onal)				
Traffic Assignment Convergence Precis	ion	5 0.01 5				
Select Output Folder						~
ОК	Cancel Environments <	< Hide Help	Tool Help			

Figure A-32 Input Network

Input path to Origin-Destination Matrix (Demand) file in a form of (.csv) or (.dbf) into the tool second input parameter Origin-Destination Matrix (Demand) (see Figure A-33).

Latt	RSH Tool					_	×	
	Network Network.csv Origin-Destination Matrix (Demand) Origin-Destination Matrix.csv	tional)		^	Origin-Destination (Demand) Input Origin-Destination file in form of (.csv) or (.	Matrix (~	
•	User Defined Link IDs (optional)		1					
•	Weighted Attributes (optional)							
	Attribute	Weight >	+ × ↑					
•	Normalize (optional)							
	Percentage of Capacity Reduction (%) Percentage of Top Weighted Links used Top Critical Links Sets Traffic Assignment Convergence Precisi Top Vulnerable Links to be Plotted Select Output Folder	in Shortest-Path Heuristic (%) (optiona	> 0 5 0.01 5	<				
	ОК	Cancel Environments << H	lide Help		Tool Help			

Figure A-33 Input Origin-Destination Matrix

STEP 4 (Optional)

Select option to Initialize New Traffic Assignment if user wishes to use a new traffic assignment initialized by Random Search Heuristic Based Vulnerability Tool (see Figure A-34).

Latt	RSH Tool					_		×
	Network Network.csv Origin-Destination Matrix (Demand) Origin-Destination Matrix.csv Initialize New Traffic Assignment (op	tional)) 🖻		Initialize New Traffic Assignment (option Check to initialize new tra	al)	signment	~
•	User Defined Link IDs (optional)		1 🖻					
•	Weighted Attributes (optional)							
	Attribute Normalize (optional)	Weight	+ × +					
	# of Links Percentage of Capacity Reduction (%) Percentage of Top Weighted Links used		~ i) ~					
	Top Critical Links Sets Traffic Assignment Convergence Precis Top Vulnerable Links to be Plotted Select Output Folder	ion	5 0.01 5	2				>
	OK	Cancel Environments <<	Hide Help]	Tool Help			

Figure A-34 Initialize New Traffic Assignment

STEP 5 (Option I)

Input path to User Defined Link IDs file in a form of (.csv) or (.dbf) into the input parameter User Defined Link IDs (see Figure A-35).

💐 RSH Tool					-		×
Network				User Defined	Link IDs	(optiona	d) 🔍
Network.csv		1		Input table of link			
Origin-Destination Matrix (Demand)				capacity reduction		incentage of	
Origin-Destination Matrix.csv] 🖻					
☑ Initialize New Traffic Assignment (op	tional)						
User Defined Link IDs (optional)							
User Defined Link IDs.csv		6					
Weighted Attributes (optional)							
		~					
Attribute	Weight	+					
		×					
		1					
		Ŧ					
<	>						
Normalize (optional)]					
# of Links		~					
Percentage of Capacity Reduction (%)	(optional)	-					
		\sim					
Percentage of Top Weighted Links used	d in Shortest-Path Heuristic (%) (optiona	I)					
Top Critical Links Sets		~					
		5					
Traffic Assignment Convergence Precisi	ion						
		0.01					
Top Vulnerable Links to be Plotted		5					
 Select Output Folder 		5					
		1					
			\sim				\sim
OK	Cancel Environments << H	lide Help		Tool Help			

Figure A-35 Input User Defined Link IDs

STEP 5.1 (Option II)

Select attributes from input parameter Weighted Attributes drop down list (see Figure A-36).

💐 RSH Tool				- 0	Х
Network		~	Weighted Att	tributes (optional	
Network.csv		2			
Origin-Destination Matrix (Demand)			Select attributes rank weighted ne	and input weights to	
Origin-Destination Matrix.csv		e 🔁	rank weighted he	Stwork links	
🗹 Initialize New Traffic Assignment (d	ptional)				
User Defined Link IDs (optional)					
		2			
Weighted Attributes (optional)					
		~			
Attribute	Weight	+			
Car Flow		×			
		1			
		+			
		•			
<		>			
Normalize (optional)					
# of Links		~			
 Percentage of Capacity Reduction (%) (optional)				
		~			
Percentage of Top Weighted Links use	ed in Shortest-Path Heuristic (%)				
Top Critical Links Sets		~			
		5			
Traffic Assignment Convergence Prec	sion				
		0.01			
Top Vulnerable Links to be Plotted		5			
 Select Output Folder 		5			
		6			
					\sim
ОК	Cancel Environments	<< Hide Help	Tool Help		
UK	cancer environments	<< nide neip	roornep		

Figure A-36 Select Attributes

STEP 5.2 (Option II)

Input weights for selected field attributes in input parameter Weighted Attributes (see Figure A-37).

RSH Tool			- 0	\times
Network		~	Weighted Attributes (optional)	~
Network.csv		2		
Origin-Destination Matrix ((Demand)		Select attributes and input weights to rank weighted network links	
Origin-Destination Matrix	.CSV	2	Tank weighted network links	
✓ Initialize New Traffic As	ssignment (optional)			
User Defined Link IDs (opti	ional)			
		2		
Weighted Attributes (optio	onal)			
		~		
Attribute	Weight	+		
Car Flow	1			
Truck Flow	0.5	×		
		1		
		↓		
<		>		
Normalize (optional)				
# of Links				
# OF LINKS		~		
Percentage of Capacity Re	eduction (%) (optional)			
		~		
 Percentage of Top Weight 	ed Links used in Shortest-Path Heuristic (%) (option	onal)		
Top Critical Links Sets		-		
		5		
Traffic Assignment Conver	gence Precision	0.01		
Top Vulnerable Links to be	Plattad	0.01		
Top vumerable Links to be	Fioted	5		
 Select Output Folder 				
		6		
		~		\sim
			,	
OK	C Cancel Environments <	< Hide Help	Tool Help	

Figure A-37 Input Weights

STEP 5.3 (Option II) (Optional)

Select option Normalize to normalize user inputted weights (see Figure A-38).

(International International I	RSH Tool					_	×
	Network			~	Normalize (optio	nal)	~
	Network.csv		2				
	Origin-Destination Matrix (Demand)				Normalize weights		
	Origin-Destination Matrix.csv		1				
	Initialize New Traffic Assignment (op	otional)					
	User Defined Link IDs (optional)						
			1				
	Weighted Attributes (optional)						
			\sim				
	Attribute	Weight	+				
	Car Flow	0.67					
	Truck Flow	0.33	×				
			1				
			Ŧ				
	<	2	•				
	Normalize (optional)						
•	# of Links						
			~				
•	Percentage of Capacity Reduction (%)	(optional)					
	n i franciski kolo		~				
*	Percentage of Top Weighted Links user	a in Shortest-Path Heuristic (%) (option					
	Top Critical Links Sets						
			5				
	Traffic Assignment Convergence Precis	sion					
			0.01				
	Top Vulnerable Links to be Plotted		5				
۱.	Select Output Folder		5				
ľ			1				
				\sim			\sim
	OK	Cancel Environments <<	Hide Help)	Tool Help		

Figure A-38 Normalize Weights

Select the number of top ranked links used to reduce capacity in input parameter *#* of Links (see Figure A-39).

.

RSH Tool				_		×
Network Network.csv			# of Links	_	_	^
Origin-Destination Matrix (Demand) Origin-Destination Matrix.csv)		Select number of links reduction	for capac	rity	
☐ Initialize New Traffic Assignmen	t (optional)					
User Defined Link IDs (optional)		-*				
Weighted Attributes (optional)		Ē				
Attribute Car Flow	Weight 0.67	+				
Truck Flow	0.33	×				
		1				
		•				
<	>					
Normalize (optional)						
• # of Links		~				
• 1 2						
 1 2 3 4 5 						
10 15						
20 25 Hame Assignment Convergence Fi						
		0.01				
Top Vulnerable Links to be Plotted		5				
 Select Output Folder 						
						\sim
OK	Cancel Environments <<	Hide Help	Tool Help			

Figure A-39 Select # of Links

STEP 7 (Option II)

Select the percentage used to reduce capacity for the top ranked links in input parameter Percentage of Capacity Reduction (%) (see Figure A-40).

Latt	RSH Tool					_	×
	Network Network.csv Origin-Destination Matrix (Demand)		e	^	Percentage of Cap Reduction (%) (op Select percentage of ca	tional)	^
	Origin-Destination Matrix.csv		6				
	☑ Initialize New Traffic Assignment (op	tional)					
	User Defined Link IDs (optional)						
			B				
	Weighted Attributes (optional)		~				
	Attribute	Weight	+				
	Car Flow	0.67					
	Truck Flow	0.33	×				
			1				
			Ŧ				
			-				
	<	>					
	Normalize (optional)						
	# of Links						
	5	/ v. B	~				
	Percentage of Capacity Reduction (%) 75 %	(optional)	~				
•	25 % 50 %						
	75 % 100 %		_				
	100 %		5				
	Traffic Assignment Convergence Precisi	on	0.01				
	Top Vulnerable Links to be Plotted		0.01				
			5				
•	Select Output Folder		2				
				\sim			\sim
					I		
	OK (Cancel Environments << H	ide Help		Tool Help		

Figure A-40 Select the Percentage of Capacity Reduction

Select the percentage of top weighted links used in shortest-path heuristic (see Figure A-41).

letwork		^	Percentage of Top Weighted	
Network.csv		2	Links used in Shortest-Path	
Drigin-Destination Matrix (De	mand)		Heuristic (%) (optional)	
Origin-Destination Matrix.cs	e e e e e e e e e e e e e e e e e e e	2		
Initialize New Traffic Assig	anment (optional)		Select percentage of the top weighted links used in shortest-path heuristic	
Jser Defined Link IDs (option				
iser Defined Link IDS (option	ai)	PÅ.		
	D			
Veighted Attributes (optiona	a)	~		
Attribute	Weight	+		
Car Flow	0.67	×		
Truck Flow	0.33			
		1		
		Ŧ		
<		>		
< Normalize (optional)		>		
Normalize (optional)		>		
Normalize (optional)		•		
✓ Normalize (optional) ¢ of Links 5	uction (%) (optional)			
✓ Normalize (optional) ¢ of Links 5	uction (%) (optional)			
Vormalize (optional) # of Links 5 Percentage of Capacity Redu 100 %	uction (%) (optional) Links used in Shortest-Path Heuristic (%)	~ ~		
Normalize (optional) e of Links 5 fercentage of Capacity Redu 100 % recentage of Top Weighted		~ ~		
Normalize (optional) = of Links = of Capacity Redu = recentage of Capacity Redu = recentage of Top Weighted = 1 %		<pre>v (optional)</pre>		
Normalize (optional) e of Links 5 tercentage of Capacity Redu 100 % tercentage of Top Weighted 1 % 2 % 3 %		<pre>v (optional)</pre>		
Nomalize (optional) e of Links 5 5 recrentage of Capacity Redu 100 % recrentage of Top Weighted 1 % 2 % 3 % 4 %		<pre>v (optional)</pre>		
Normalize (optional) # of Links 5 Vercentage of Capacity Redu 100 % Percentage of Top Weighted 1 % 2 % 3 % 4 % 5 %		<pre>v (optional)</pre>		
Normalize (optional) ef Links 5 for Links 5 for Links for Links 5 for Links for Links for Capacity Redu 100 % 2 % 2 % 2 % 2 % 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		<pre>v (optional)</pre>		
Normalize (optional) # of Links 5 Vercentage of Capacity Reduction 100 % vercentage of Top Weighted 1 % 2 % 3 % 4 % 5 % 10 % 15 % 20 %		<pre>v (optional)</pre>		
Normalize (optional) ef Links 5 for Capacity Redu 100 % 2 % 2 % 2 % 2 % 7 7 7 7 7 7 7 7 7 7 7 7 7 7		(optional)		
Normalize (optional) # of Links 5 Vercentage of Capacity Reduction 100 % vercentage of Top Weighted 1 % 2 % 3 % 4 % 5 % 10 % 15 % 20 %		<pre>v (optional)</pre>		
Normalize (optional) # of Links 5 Vercentage of Capacity Reduction 100 % vercentage of Top Weighted 1 % 2 % 3 % 4 % 5 % 10 % 15 % 20 %		(optional)		
Normalize (optional) # of Links 5 Vercentage of Capacity Reduction 100 % vercentage of Top Weighted 1 % 2 % 3 % 4 % 5 % 10 % 15 % 20 %		(optional)		

Figure A-41 Select the Percentage of Top Weighted Links Used in Shortest-Path

Heuristic (%)

Input number of the top critical link sets used for applying traffic assignment in input parameter Top Critical Link Sets (see Figure A-42).

🛐 RSH Tool			— [o x	
Network		^	Top Critical Links Sets	,	~
Network.csv	-	2	Input number of the top critical link	s sets	
Origin-Destination Matrix (Dema Origin-Destination Matrix.csv	and)	6	used for applying traffic assignment		
✓ Initialize New Traffic Assignr					
User Defined Link IDs (optional)		r -			
Weighted Attributes (optional)					
		\sim			
Attribute	Weight	+			
Car Flow	0.67				
Truck Flow	0.33	×			
		1			
		Ŧ			
<		>			
Normalize (optional)					
# of Links					
5		~			
Percentage of Capacity Reducti	ion (%) (optional)				
100 %		~			
Percentage of Top Weighted Lir 2 %	nks used in Shortest-Path Heuristic (%) (opti	ional)			
Top Critical Links Sets					
		5			
Traffic Assignment Convergence	e Precision	0.01			
Top Vulnerable Links to be Plotte	ed	0.01			
		5			
 Select Output Folder 					
		× ×			
ОК	Cancel Environments <	<< Hide Help	Tool Help		

Figure A-42 Input Number of the Top Critical Link Sets

Input Traffic Assignment Convergence Precision (see Figure A-43).

(A default value of 0.01 will be set as input parameter.)

💐 RSH Tool			- □ >	×
Network Network.csv Origin-Destination Matrix (Dem	and)		Traffic Assignment Convergence Precision	^
Origin-Destination Matrix.csv		2	Input precision for traffic assignment convergence	
🗹 Initialize New Traffic Assign	ment (optional)		(Default: 0.01)	
User Defined Link IDs (optional)	r i i i i i i i i i i i i i i i i i i i		
Weighted Attributes (optional)				
		~		
Attribute	Weight	+		
Car Flow Truck Flow	0.67	×		
Truck How	0.55	1		
		Ŧ		
<		>		
Normalize (optional)				
# of Links				
5		~		
Percentage of Capacity Reduc	tion (%) (optional)			
	inks used in Shortest-Path Heuristic (%) (op	-		
2 %		~		
Top Critical Links Sets		5		
Traffic Assignment Convergen	ce Precision			
		0.01		
Top Vulnerable Links to be Plot	ted	5		
 Select Output Folder 				
		2		
		~		\sim
ОК	Cancel Environments	<< Hide Help	Tool Help	

Figure A-43 Input Traffic Assignment Convergence Precision

Input the number of top vulnerable links used to plot the difference in vehicle hours traveled (VHT) and vehicle miles traveled (VMT) in input parameter Top Vulnerable Links to be Plotted (see Figure A-44).

(A default value of 5 will be set as input parameter.)

etwork			Top Vulnerable Links to be
Network.csv			Plotted
rigin-Destination Matrix (D	emand)		
Origin-Destination Matrix.	SV	2	Input number of top vulnerable links to be plotted
Initialize New Traffic Ass	ignment (ontional)		1.
_			(Default: 5)
ser Defined Link IDs (optio	nai)	r h	
eighted Attributes (option	-0		
reighted Attributes (option	ay	~	
Attribute	Weight	+	
Car Flow Truck Flow	0.67	×	
Hackfield	0.00	1	
		+	
<		>	
		>	
Normalize (optional)		>	
Normalize (optional)		>	
Onmalize (optional) of Links 5 ercentage of Capacity Rec	uction (%) (optional)		
Normalize (optional) of Links s ercentage of Capacity Rec 100 %		~	
Nomalize (optional) of Links cercentage of Capacity Rec 100 % ercentage of Top Weighte	luction (%) (optional) d Links used in Shortest-Path Heuristic (%)	v) (optional)	
Normalize (optional) of Links 5 ercentage of Capacity Rec 100 % ercentage of Top Weighte 2 %		~	
Normalize (optional) of Links 5 ercentage of Capacity Rec 100 % ercentage of Top Weighte 2 %		v) (optional)	
Normalize (optional) of Links cercentage of Capacity Rec 100 % cercentage of Top Weighte 2 % op Critical Links Sets	d Links used in Shortest-Path Heuristic (%) (optional) > 5	
Normalize (optional) of Links 5 ercentage of Capacity Rec 100 % ercentage of Top Weighte 2 % op Critical Links Sets affic Assignment Converg	d Links used in Shortest-Path Heuristic (% ence Precision	> >) (optional) >	
ONomalize (optional) of Links 5 ercentage of Capacity Rec 100 %	d Links used in Shortest-Path Heuristic (% ence Precision	> (optional) > 5 0.01	
Normalize (optional) of Links 5 ercentage of Capacity Rec 100 % ercentage of Top Weighte 2 % op Critical Links Sets raffic Assignment Converg op Vulnerable Links to be F	d Links used in Shortest-Path Heuristic (% ence Precision) (optional) > 5	
Normalize (optional) of Links 5 ercentage of Capacity Rec 100 % ercentage of Top Weighte 2 % op Critical Links Sets raffic Assignment Converg	d Links used in Shortest-Path Heuristic (% ence Precision	> (optional) > 5 0.01	

Figure A-44 Input Top Vulnerable Links to be Plotted

In toolbox Select Output Folder parameter input output folder path where processed files will be exported after toolbox analysis (see A-45).

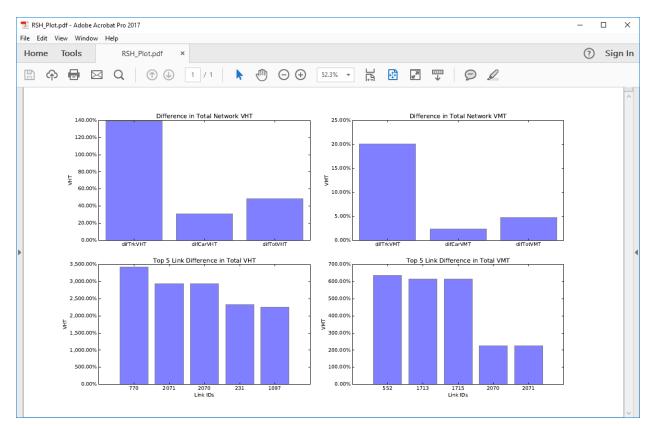

🛐 RSH Tool			_		×
Network		~	Select Output Folder		~
Network.csv		2			
Origin-Destination Matrix (Dem	and)		Select output folder where pr	ocessed files	3
Origin-Destination Matrix.csv		2	will be outputted		
Initialize New Traffic Assign	ment (ontional)				
User Defined Link IDs (optional					
User Denned Link 1DS (optional)	1			
Weighted Attributes (optional)					
		~			
Attribute	Weight	+			
Car Flow	0.67				
Truck Flow	0.33	×			
		1			
		↓			
<		>			
Normalize (optional)					
# of Links					
5		~			
Percentage of Capacity Reduc	tion (%) (optional)				
100 %		~			
	inks used in Shortest-Path Heuristic (%) (o				
2 %		\sim			
Top Critical Links Sets		5			
Traffic Assignment Convergen	re Precision	5			
Tranic Assignment Convergen		0.01			
Top Vulnerable Links to be Plot	ted				
		5			
Select Output Folder					
Output Folder					
		~			~
		a strate to be	, 		
OK	Cancel Environments	<< Hide Help	Tool Help		

Figure A-45 Input Output Folder

Once all required parameters are inputted, press OK to execute the application. The ArcGIS application invokes a task completion window, which reports status of each task (see Figure A-46). In addition, graph with the top vulnerable link differences in VMT and VHT will appear on a screen (see Figure A-47) in pdf format and the processed tables (see **A-48** and Figure A-49) in (.dbf) format will be imported to ArcMap Display.

RSH Tool	x
Completed	Close
	<< Details
Close this dialog when completed successfully	
Loading network for: Truck Flow	^
Network Loaded with: Truck Flow	
Begin Iteration: 5 from Total of 5	
Reducing network capacity	
Loading network for: Car Flow	
Network Loaded with: Car Flow	
Loading network for: Truck Flow	
Network Loaded with: Truck Flow	
Outputting Most Vulnerable Networks	
Completed script Heuristics_Tool	~

Figure A-46 Application Performance Task Window

848 849 45800 45856 0.237056 8169 0.15 4 0.230636 13321765797 3835.641072 1715.7406689 0.48542 0 0770 1771 23401 19784 0.13331 4024 0.15 4 0.14031 11607.718267 3559.897741 15167.616008 1.58887 0 0 1 141379 142406 0.041384 3337 0.15 4 0.047766 0 0 0 0.041384 0 1 1412414 142422 0.068236 3337 0.15 4 0.099459 0 0 0 0.027632 0 3 4 142422 142422 10408236 0 0 0 0.0027637 0 3 4 142422 142430 0.077587 3337 0.15 4 0.0707674 2409 24037 401.908496 2811.832533 0.080851 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th></th><th>ID</th><th>Edge</th><th>Pointe</th><th>r Pointee</th><th>FFTT</th><th>Capacity</th><th>Alpha</th><th>Beta</th><th>Length</th><th>Car_Flow</th><th>Truck_Flow</th><th>v Total_Fl</th><th>ow TT</th><th>Connector</th><th></th></t<>		ID	Edge	Pointe	r Pointee	FFTT	Capacity	Alpha	Beta	Length	Car_Flow	Truck_Flow	v Total_Fl	ow TT	Connector	
2046 45792 45784 0.197328 8169 0.15 4 0.198642 12948.884339 3303.676863 16252.561202 0.384192 0 0 1 141379 142406 0.041384 3337 0.15 4 0.04706 0 0 0 0.041364 0 2 142406 142414 0.027632 3337 0.15 4 0.031869 0 0 0 0.027632 0 3 142414 142422 0.086236 3337 0.15 4 0.099459 0 0 0 0.00086236 0 3 4 142422 142430 0.077587 3337 0.15 4 0.012533 0 0 0 0.010867 0 4 5 142430 162542 142454 0.01867 3337 0.15 4 0.02088 2409.924037 401.908496 2811.832533 0.068651 0 6 7 126024 142454 0.085637 3337 0.15 4 0.020082 2409.924037 401.9084	8	848 8	49	45800	45856	0.23705	6 8169	0.15	4	0.238636	13321.765797	3835.6410	72 17157.40	6869 0.488542	0	
0 1 141379 142406 0.041364 3337 0.15 4 0.047706 0 0 0.041364 0 1 2 142406 142414 0.027632 3337 0.15 4 0.03869 0 0 0.027632 0 2 3 142414 142422 0.086236 0 0 0 0.086236 0 3 4 142422 142430 0.077587 0337 0.15 4 0.099459 0 0 0 0.086236 0 4 5 142420 142420 0.00687 3337 0.15 4 0.012533 0 0 0 0.010867 0 5 6 142446 142454 0.06596 3337 0.15 4 0.07077 401.90496 2811.832533 0.08851 0 7 8 142454 142462 0.07171 3337 0.15 4 0.098768 2409.924037 401.90496 2811.832533 0.089131 0 6 7 142462	17	770 1	771	23401	19784	0.13938	1 4024	0.15	4	0.14031	11607.718267	3559.8977	41 15167.61	6008 1.586987	0	
1 2 142406 142414 0.027632 3337 0.15 4 0.031869 0 0 0 0.027632 0 2 3 142414 142422 0.086236 3337 0.15 4 0.099459 0 0 0 0.086236 0 3 4 142422 142430 0.077587 3337 0.15 4 0.019843 0 0 0 0.0008673 0 4 5 142434 142454 0.06596 3337 0.15 4 0.020823 2409.924037 401.908496 2811.832533 0.068651 0 6 7 126024 142462 0.085637 3337 0.15 4 0.02088 2409.924037 401.908496 2811.832533 0.08131 0 7 8 142454 142462 0.085637 3337 0.15 4 0.02088 2409.924037 401.908496 2811.832533 0.08131 0 7 8 142454 142462 0.085637 3337 0.15 4 0.020863	20	045 2	046	45792	45784	0.19732	6 8169	0.15	4	0.198642	12948.884339	3303.6768	63 16252.56	1202 0.384192	0	
2 3 142414 142422 0.086236 3337 0.15 4 0.099459 0 0 0 0.086236 0 3 4 142422 142430 0.077587 3337 0.15 4 0.099483 0 0 0 0.077587 0 4 5 142420 142420 0.00867 3337 0.15 4 0.012533 0 0 0 0.010867 0 6 142440 142454 0.005673 3337 0.15 4 0.07674 2409.924037 401.908496 2811.832533 0.068851 0 6 7 126024 142454 0.05637 3337 0.15 4 0.02088 2409.924037 401.908496 2811.832533 0.089131 0 7 8 142454 142462 0.085637 3337 0.15 4 0.098768 2409.924037 401.908496 2811.832533 0.089131 0 7 8 142454 142462 0.085637 3337 0.15 4 0.098768 2	_	0 1	÷	141379	142406	0.04136	4 3337	0.15	4	0.047706	0		0	0 0.041364	0	
3 4 142422 142430 0.077587 3337 0.15 4 0.089483 0 0 0 0.010867 0 4 5 142430 126024 0.010667 3337 0.15 4 0.012533 0 0 0 0.010867 0 5 6 142446 1424454 0.06596 3337 0.15 4 0.02088 2409.924037 401.908496 2811.832533 0.086651 0 6 7 126024 142246 0.017173 3337 0.15 4 0.020088 2409.924037 401.908496 2811.832533 0.089131 0 6 142454 10.0206537 3337 0.15 4 0.020088 2409.924037 401.908496 2811.832533 0.089131 0 7 6 142454 10.0206537 3337 0.15 4 0.098768 2409.924037 401.908496 2811.832533 0.089131 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td>1 2</td> <td>í.</td> <td>142406</td> <td>142414</td> <td>0.02763</td> <td>2 3337</td> <td>0.15</td> <td>4</td> <td>0.031869</td> <td>C</td> <td></td> <td>0</td> <td>0 0.027632</td> <td>0</td> <td>N N</td>		1 2	í.	142406	142414	0.02763	2 3337	0.15	4	0.031869	C		0	0 0.027632	0	N N
4 5 142430 126024 0.010867 3337 0.15 4 0.012533 0 0 0 0.010867 0 5 6 142446 142454 0.06596 3337 0.15 4 0.076074 2409.924037 401.908496 2811.832533 0.068651 0 6 7 126024 142464 0.017417 3337 0.15 4 0.020088 2409.924037 401.908496 2811.832533 0.018128 0 7 8 142454 142462 0.086637 3337 0.15 4 0.098768 2409.924037 401.908496 2811.832533 0.089131 0 4 0 > H Image: Colored Colo		2 3		142414	142422	0.08623	6 3337	0.15	4	0.099459	0		0	0 0.086236	0	
5 6 142446 142454 0.06596 3337 0.15 4 0.076074 2409.924037 401.908496 2811.832533 0.068651 0 6 7 126024 142446 0.017417 3337 0.15 4 0.020088 2409.924037 401.908496 2811.832533 0.018128 0 7 8 142454 142462 0.085637 3337 0.15 4 0.098768 2409.924037 401.908496 2811.832533 0.088611 0 4 0 H Image: Control of the		3 4		142422	142430	0.07758	7 3337	0.15	4	0.089483	0		0	0 0.077587	0	
6 7 126024 142446 0.017417 3337 0.15 4 0.02088 2409.924037 401.908496 2811.832533 0.018128 0 7 8 142454 142462 0.085637 3337 0.15 4 0.098768 2409.924037 401.908496 2811.832533 0.089131 0 4 0 > H Image: Construction of the construct		4 5		142430	126024	0.01086	7 3337	0.15	4	0.012533	0		0	0 0.010867	0	
7 8 142454 142462 0.085637 3337 0.15 4 0.098768 2409.924037 401.908496 2811.832533 0.089131 0 4 0 H Image: Control of the second se		5 6	0	142446	142454	0.0659	6 3337	0.15	4	0.076074	2409.924037	401.9084	96 2811.83	2533 0.068651	0	
Weights RedCap Selected newTrkFlow newTr difTrkFlow newTrkVHT difTrkVHT difTrkVMT 0.001766 0 1 0 0 0 0 0 0 0 0 0.001766 0 1 0		6 7		126024	142446	0.01741	7 3337	0.15	4	0.020088	2409.924037	401.9084	96 2811.83	2533 0.018128	0	
Weights RedCap Selected newTrkFlow newTr difTrkFlow newTrkVHT difTrkVHT difTrk		78		142454	142462	0.08563	7 3337	0.15	4	0.098768	2409.924037	401.9084	96 2811.83	2533 0.089131	0	
0.001589 0 1 0<								newCarFl								
0.001618 0 1 0<						1	2.50			127.0						
0 3337 0 0 0.041364 0 <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>10.5.0</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></th<>				-			10.5.0		-				-			
0 3337 0 0 0.027632 0 0 0 0 0 0 3337 0 0 0 0.086236 0			0.				1070							-	64 (J.C.	
0 3337 0 0 0 0.886236 0 <th< td=""><td>4</td><td></td><td></td><td></td><td></td><td>107.0</td><td>10.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td>S.4.</td><td></td><td></td></th<>	4					107.0	10.00							S.4.		
0 3337 0 0 0.077587 0 0 0 0 0 0 3337 0 0 0 0.010867 0	N			0	3337	0	0									
0 3337 0 0 0 0.010867 0 <th< td=""><td>4 C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.00</td><td>the second s</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4 C								1.00	the second s						
0.000252 3337 0 401.908496 2542.412384 0.069294 0 27.849847 30.574787 0.258427 0 0.000252 3337 0 401.908496 2542.412384 0.018297 0 7.35372 8.073538 0.067923 0									0	0.086236	0	(0	0 0	
0.000252 3337 0 401.908496 2542.412384 0.018297 0 7.35372 8.073538 0.067923 0				0	3337	0	0		0	0.086236	0	(0	0 0	0 0	
				0	3337 3337	0	0 0	2542 442	0	0.086236 0.077587 0.010867	0 0 0	()))	0 0	0 0 0 0 0 0	
0.00222 3337 0 401.500436 2542.412304 0.005303 0 30.157636 33.035036 0.335152 0	V			0 0 000252	3337 3337 3337	0 0 0	0 0 401.908496		0 0 0 2384	0.086236 0.077587 0.010867 0.069294	0 0 0 0	27.849847	30.57478	0 0 0 0 87 0.25842	0 0 0 0 0 0 7 0	
	V		0.	0 000252 000252	3337 3337 3337 3337 3337	0 0 0 0	0 0 401.908496 401.908496	2542.412	0 0 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297	0 0 0 0 0	27.849847 7.35372	30.57478 8.07353	0 0 0 0 0 0 87 0.25842 88 0.06792	0 0 0 0 0 0 7 0 3 0	
	V		0.	0 000252 000252	3337 3337 3337 3337 3337	0 0 0 0	0 0 401.908496 401.908496	2542.412	0 0 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297	0 0 0 0 0	27.849847 7.35372	30.57478 8.07353	0 0 0 0 0 0 87 0.25842 88 0.06792	0 0 0 0 0 0 7 0 3 0	
	V		0.	0 000252 000252	3337 3337 3337 3337 3337	0 0 0 0	0 0 401.908496 401.908496	2542.412	0 0 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297	0 0 0 0 0	27.849847 7.35372	30.57478 8.07353	0 0 0 0 0 0 87 0.25842 88 0.06792	0 0 0 0 0 0 7 0 3 0	
difCarFlow newCarVHT newCarVMT difCarVHT difCarVMT difTarVMT newTotFlow newTotVHT newTotVMT difTotVHT difTotVMT			0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 3337	0 0 0 0 /HT new	0 401.908496 401.908496 401.908496 CarVMT diff	2542.412 2542.412 CarVHT	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965	0 0 0 0 0 0 0 0 0	((27.84984) 7.35372 36.157690 70tFlow n	30.57478 8.07353 39.69569 ewTotVHT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 7 0 3 0 2 0 0	difTotVMT
	V		0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 3337 0 0	0 0 0 0 /HT new	0 0 401.908496 401.908496 401.908496 CarVMT diff 0	2542.412 2542.412 CarVHT 0	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965 rVMT 0	0 0 0 0 0 0 0 0 0	(0) 27.849841 7.35372 36.157690 7TotFlow n 0	30.57478 8.07353 39.69565 ewTotVHT 0	0 0 0 0 0 0 37 0.25842 88 0.06792 88 0.335192 newTotVMT 0 0	0 0 0 0 0 0 7 0 2 0 diffotVHT 0	difTotVMT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 3337 0 0 0	0 0 0 0 0 /HT new(0 0	0 0 401.908496 401.908496 401.908496 CarVMT diff 0 0	2542.412 2542.412 CarVHT 0 0	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965 vvmt 0 0	0 0 0 0 0 0 0 0	(0) 27.84984) 7.3537 36.157696 /TotFlow n 0 0	ewTotVHT 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 7 0 0 3 0 0 2 0 0 difTotVHT 0 0 0	difTotVMT 0
0 0			0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 0 0 0 0	0 0 0 0 0 /HT new 0 0 0	0 0 401.908496 401.908496 401.908496 CarVMT difC 0 0 0	2542.412 2542.412 CarVHT 0 0 0	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965 rVMT 0 0 0	0 0 0 0 0 0 0 0 0	/TotFlow n 0 0 0 0 0 0	30.57478 8.07353 39.69569 ewTotVHT 0 0 0	0 0 0 0 0 0 17 0.25842 18 0.06792 18 0.33519 19 0 10 0 0 0 0 0	0 0 0 0 0 0 7 0 0 3 0 2 0 0 difTotVHT 0 0 0 0 0	difTotVMT
0 0			0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 3337 0 0 0 0	0 0 0 0 0 0 /HT new 0 0 0 0	0 0 401.908496 401.908496 401.908496 CarVMT difC 0 0 0 0	2542.412 2542.412 CarVHT 0 0 0 0	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.07587 0.07587 0.010867 0.010807 0.010807 0.010807 0.010807 0.010807 0.010807 0.000800 0.000800 0.000800 0.000800 0.000800 0.000800 0.000800 0.00000000	0 0 0 0 0 0 0 0 0 0	/TotFlow n 0 0 0 0 0 0 0	ewTotVHT 0 0 0 0 0 0	0 0 0 0 0 0 77 0.25842 88 0.06792 88 0.335193 newTotVMT 0 0 0 0 0 0 0	0 0 0 0 0 0 7 0 0 3 0 0 2 0 0 4ifTotVHT 0 0 0 0 0	difTotVMT
0 0	V		0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 3337 0 0 0 0	0 0 0 0 0 /HT new 0 0 0 0 0 0	0 0 401.908496 401.908496 401.908496 0 0 0 0 0 0 0	2542.412 2542.412 CarVHT 0 0 0 0 0 0	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965 vvmt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	difTT nev 0 0 0 0 0 0 0 0 0 0	/TotFlow n 0 0 0 0 0 0 0 0 0	ewTotVHT 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 37 0.25842: 88 0.06792: 88 0.335192 newTotVMT 0 0 0 0 0 0 0 0	0 0 0 0 0 0 7 0 2 0 0 4ifTotVHT 0 0 0 0 0 0	
0 0			0.	0 0 000252 000252 000252	3337 3337 3337 3337 3337 3337 3337 0 3337 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 401.908496 401.908496 401.908496 0 0 0 0 0 0 0 0 0 0 0	2542.412 2542.412 CarVHT 0 0 0 0 0 0 0 0 0 0	0 0 2384 2384 2384	0.086236 0.077587 0.010867 0.069294 0.018297 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.089965 0.01829 0.0180	0 0 0 0 0 0 0 0 0 0 0 0 0 0	/TotFlow n 0 0 0 0 0 0 0 0 0 0	ewTotVHT 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 37 0.25842 88 0.06792 88 0.335192 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 7 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	

Figure A-48 RSH Tool Output VHT

0

2.661426

13.085609

10.078919 0.000643

0

0.000169

0.000834

0

2944.32088

2944.32088

2944.32088

0

204.023771

53.872239

264.885828

0

223.986267

59.145518

290.804684

0

10.988656

2.899339

14.264383

0

10.078919

2.661426

13.085609

0

10.730229

2.831416

13.929191

0

193.41148

51.07198

251.108986

0

176.173924

46.518519

228.72813

0

132.488347

132.488347

132.488347

	OID	CrtSets	NetCap	NetVHTCar	NetVHTTrk	NetVHTTot	NetVMTCar	NetVMTTrk	NetVMTTot
۲	0	Base Network	11267246	56317591.1654	10968334.8661	67285926.0315	3919481.83483	616980.235974	4536462.0708
	1	[2329, 1997, 1992, 2005, 1999]	11252391	56317591.1654	10968334.8661	67285926.0315	3919481.83483	616980.235974	4536462.0708
	2	[2023, 2010, 2250, 2216, 2310]	11249782	73897606.2422	26241396.6494	100139002.892	4011298.18898	741100.014985	4752398.20397
	3	[2005, 2010, 2329, 1948, 2120]	11252883	56317591.1654	10968334.8661	67285926.0315	3919481.83483	616980.235974	4536462.0708
	4	[2009, 1995, 2123, 2216, 2215]	11249211	56077434.8123	10775051.7788	66852486.5911	3916714.60917	628764.108128	4545478.71729
П	5	[2246, 1991, 2216, 2006, 2002]	11250631	56077723.3702	10774426.6167	66852149.9869	3916716.12361	628767.260918	4545483.38453

Figure A-49 RSH Tool Output Critical Link Sets

User then can add a network in format of shapefile (see Figure A-50) and join the RSH Tool output using field attribute Edge (*Note: User will have add new join field and convert the Edge data attribute field to short integer data type*) and visualize the tool outputs (see Figure A-51).

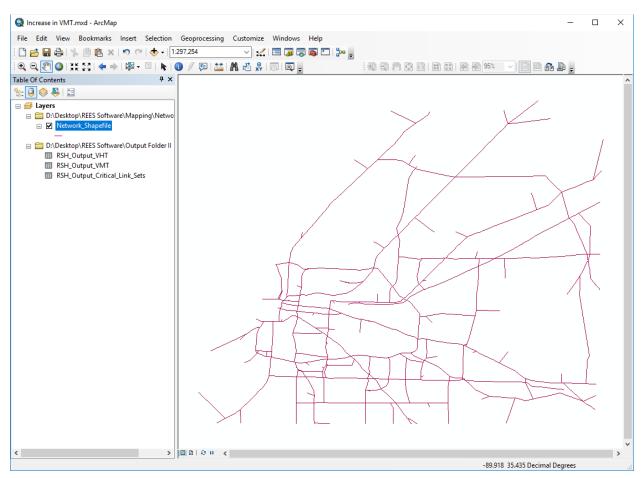


Figure A-50 Add Network in a form of Shapefile

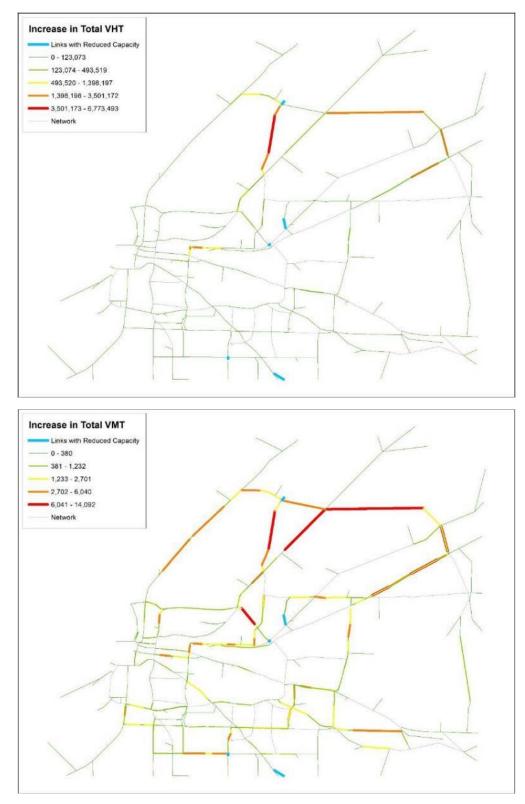


Figure A-51 Visualize the RSH Tool Output

Field Attribute	Description				
Weights	Weighted attribute ratio				
newTrkFlow	New truck flow				
newCarFlow	New car flow				
newTT	New travel time				
difTrkFlow	Difference in truck flow				
newTrkVHT	New truck vehicle hours traveled (VHT)				
newTrkVMT	New truck vehicle miles traveled (VMT)				
difTrkVHT	Difference in truck vehicle hours traveled (VHT)				
difTrkVMT	Difference in truck vehicle miles traveled (VMT)				
difCarFlow	Difference in car flow				
newCarVHT	New car vehicle hours traveled (VHT)				
newCarVMT	New car vehicle miles traveled (VMT)				
difCarVHT	Difference in car vehicle hours traveled (VHT)				
difCarVMT	Difference in car vehicle miles traveled (VMT)				
difTT	Difference in travel time				
newTotFlow	New total flow				
newTotVHT	New total vehicle hours traveled (VHT)				
newTotVMT	New total vehicle miles traveled (VMT)				
difTotVHT	Difference in total vehicle hours traveled (VHT)				
difTotVMT	Difference in total vehicle miles traveled (VMT)				

Table A-10 RSH Tool Output Attribute Field Dictionary for VHT and VMT Tables

Table A-11 RSH Tool Output Attribute Field Dictionary for Critical Link Sets

Field Attribute	Description
CrtSets	A set of critical links used to reduce capacity and run traffic assignment
NetCap	A sum of total network capacity
NetVHTCar	A sum of total network car vehicle hours travelled (VHT)
NetVHTTrk	A sum of total network truck vehicle hours travelled (VHT)
NetVHTTot	A sum of total network total vehicle hours travelled (VHT)
NetVMTCar	A sum of total network car vehicle miles travelled (VMT)
NetVMTTrk	A sum of total network truck vehicle miles travelled (VMT)
NetVMTTot	A sum of total network total vehicle miles travelled (VMT)

K SHORTEST PATH TOOL (KSP TOOL)

Description

K shortest path tool (KSP Tool) for every link in a given transportation network, tool will output:

- The number of k shortest paths link belongs to
- The total (passenger and trucks), passenger and truck flow of link over sum of demand of ODs for which link is on the k shortest path
- The percentage of total (passenger and trucks), passenger and truck flow of link divided by maximum total (passenger and trucks), passenger and truck total flow of any link in the network

Example Input Files

Following tables were used in executing KSP example in format of (.csv) (see Figure A-52) and (.dbf) (see Figure A-53).

- Network.csv Transportation network with the following order of field attributes: Link ID for one direction, From Node, To Node, Free Flow Travel Time, Capacity, Alpha, Beta, Length, Car Flow, Truck Flow, Total Flow, Travel Time, and Connector (0 No, 1 yes).
- Origin-Destination Matrix.csv Origin-Destination Matrix with the following order of field attributes: From Node, To Node, Car Demand, Truck Demand, and Total Demand.

	А	В	С	D	E	F	G	Н	I.	J	K	L	М	N	
1	1	141379	142406	0.041364	3337	0.15	4	0.047706	0	0	0	0.041364	0		
2	2	142406	142414	0.027632	3337	0.15	4	0.031869	0	0	0	0.027632	0		
3	3	142414	142422	0.086236	3337	0.15	4	0.099459	0	0	0	0.086236	0		
4	4	142422	142430	0.077587	3337	0.15	4	0.089483	0	0	0	0.077587	0		
5	5	142430	126024	0.010867	3337	0.15	4	0.012533	0	0	0	0.010867	0		
6	6	142446	142454	0.06596	3337	0.15	4	0.076074	2491.711	393.9045	2885.616	0.077615	0		
7	7	126024	142446	0.017417	3337	0.15	4	0.020088	2491.711	393.9045	2885.616	0.020495	0		
8	8	142454	142462	0.085637	3337	0.15	4	0.098768	2491.711	393.9045	2885.616	0.100769	0		
9	9	142462	126032	0.085654	3284	0.15	4	0.098788	2491.711	393.9045	2885.616	0.10179	0		
10	10	126024	142478	1.026567	2063	0.15	4	0.732285	0	0	0	1.026567	0		-
If 4 >>> Network 2										· I					
		-	-	-	-	-	-								
	A	В	С	D	E	F	G	H		J	K	L	M	N	
4	5896	19560	152.7698		184.4315										
5	5896	23577		5.930025	32.50103										
6	5896	25532		34.91333											
7	5896	25596		3.473618	76.75859										
8	5896	28439													
9	5896	33668		3.216468	40.17722										
10	5896	39108		5.138063											- 1
11	5896	39140	70.98827	4.681057	75.66932										- 1
12	5896	45640	86.48406	15.7084	102.1925										_
13	5896	45712	59.30251	4.452708	63.75521										-
14 4	► ► Orig	in-Destina	ation Matri	ix / 🔁 /										•	1

Figure A-52 Example input tables in form of (.csv)

L	OID	Edge	Pointer	Pointee	FFTT	Capacity	Alpha	Beta	Length	Car_Flow	Truck_Flow	Total_Flow	TT	Connector	
	0	1	141379	142406	0.041364	3337	0.15	4	0.047706	0	0	0	0.249593	0	
	1	2	142406	142414	0.027632	3337	0.15	4	0.031869	0	0	0	0.717664	0	
	2	3	142414	142422	0.086236	3337	0.15	4	0.099459	0	0	0	0.095184	0	
Γ	3	4	142422	142430	0.077587	3337	0.15	4	0.089483	0	0	0	0.12022	0	
Γ	4	5	142430	126024	0.010867	3337	0.15	4	0.012533	0	0	0	0.069962	0	
Γ	5	6	142446	142454	0.06596	3337	0.15	4	0.076074	2888.440965	401.908496	3290.349461	0.510468	0	
	6	7	126024	142446	0.017417	3337	0.15	4	0.020088	2888.440965	401.908496	3290.349461	0.019867	0	
	7	8	142454	142462	0.085637	3337	0.15	4	0.098768	2888.440965	401.908496	3290.349461	0.350355	0	
	8	9	142462	126032	0.085654	3284	0.15	4	0.098788	2888.440965	401.908496	3290.349461	0.158653	0	
	9	10	126024	142478	1.026567	2063	0.15	4	0.732285	0	0	0	3.416619	0	

4	1 → H		(0 out of 2406 Selected)
---	-------	--	--------------------------

	OID	Pointer	Pointee	Car_Flow	Truck_Flow	Total_Flow
F	0	5896	5896	0	0	0
	1	5896	6072	216.375015	124.732246	341.107261
	2	5896	13777	844.064148	71.881973	915.946121
	3	5896	19560	152.769791	31.661749	184.43154
	4	5896	23577	26.571001	5.930025	32.501026
	5	5896	25532	239.412354	34.91333	274.325684
	6	5896	25596	73.284973	3.473618	76.758591
	7	5896	28439	55.429943	6.288477	61.71842
	8	5896	33668	36.960754	3.216468	40.177222
	9	5896	39108	77.428169	5.138063	82.566232
	10	5896	39140	70.988266	4.681057	75.669323
1	• •	1	۱ از ۱	🔲 (0 out of	1936 Selected)	

Figure A-53 Example input tables in form of (.dbf)

Open newly added REES Tools toolbox and launch KSP Tool (see Figure A-54)

💐 KSP Tool	- 🗆 X
Network	KSP Tool
Origin-Destination Matrix (Demand)	For every link in a given transportation network, tool will output:
● K\$P	the number of k shortest paths link belongs to
Select Output Folder	 the total (passenger and trucks), passenger and truck flow of link over sum of demand of ODs for which link is on the k shortest path
	 the percentage of total (passenger and trucks), passenger and truck flow of link divided by maximum total (passenger and trucks), passenger and truck total flow of any link in the network
×	~
OK Cancel Environments << Hide Help	Tool Help

Figure A-54 KSP Tool

STEP 2

Input path to transportation network file in a form of (.csv) or (.dbf) into the tool first input parameter Network (see Figure A-55).

SY KSP Tool -	×
Network Network Network.csv Image: Second s	^
KSP Select Output Folder E	
\sim	~
OK Cancel Environments << Hide Help Tool Help	

Figure A-55 Input Network

Input path to Origin-Destination Matrix (Demand) file in a form of (.csv) or (.dbf) into the tool second input parameter Origin-Destination Matrix (Demand) (see Figure A-56).

💐 KSP Tool	-		×
Network Image: Construction Matrix (Demand) Origin-Destination Matrix (Demand) Imput Origin-Destination Matrix (Demand) file in form Origin-Destination Matrix.csv Imput Origin-Destination Matrix (Demand) file in form • KSP Imput Origin-Destination Matrix (Demand) • Select Output Folder Imput Origin Destination Matrix (Demand) file in form	of (.cs	v) or (.db	ŋ
OK Cancel Environments << Hide Help Tool Help			~

Figure A-56 Input Origin-Destination Matrix

STEP 4

Select k shortest paths in input parameter KSP (see Figure A-57).

	S KSP Tool	-	×
	Network KSP		~
	Network.csv		
	Origin-Destination Matrix (Demand) Select K shortest parts Origin-Destination Matrix.csv C		
١.	KSP		
ľ			
	3 4		
	5 10		
	10 15 20 25		
	25		
	✓		\sim
	OK Cancel Environments < <hide help="" help<="" td="" tool=""><td></td><td></td></hide>		

Figure A-57 Select k Shortest Paths

In toolbox Select Output Folder parameter input output folder path where processed files will be exported after toolbox analysis (see Figure A-58).

S KSP Tool	_	×
Network Select Output Folder		~
Network.csv Congin-Destination Matrix (Demand) Select output folder where processed files will be output folder where procesed files will be output folder where processed files w	utted	
Origin-Destination Matrix.csv		
KSP 5		
Select Output Folder		
Output Folder		
OK Cancel Environments << Hide Help Tool Help		

Figure A-58 Input Output Folder

STEP 6

Once all required parameters are inputted, press OK to execute the application. The ArcGIS application invokes a task completion window, which reports status of each task (see Figure A-59). In addition, the processed table (see Figure A-60) in (.dbf) format will be imported to ArcMap Display.

KSP Tool	x
Completed	Close
Close this dialog when completed successfully	<< Details
Running script KSP_Tool Estimating the number of k shortest paths Estimating flow over sum of demand of ODs for which links are on the k shortes Estimating the percentage of flow over the maximum flow of any link in the new Completed script KSP_Tool Succeeded at Mon Aug 13 18:36:54 2018 (Elapsed Time: 5 minutes 21 seconds)	-

Figure A-59 Application Performance Task Window

C	DID	Edge	1st_KSP	2nd_KSP	3rd_KSP	4th_KSP	5th_KSP	1st_Tot	2nd_Tot	3rd_Tot	4th_Tot	5th_Tot
	1581	6	42	42	42	41	43	0.9106	0.9106	0.9106	0.9189	0.8299
	813	7	42	42	62	69	61	0.9106	0.9106	0.6141	0.6768	0.5114
	1582	8	42	42	42	41	43	0.9106	0.9106	0.9106	0.9189	0.8299
1	1583	9	42	42	42	41	43	0.9106	0.9106	0.9106	0.9189	0.8299
Г	1912	19	43	43	43	45	47	1	1	1	0.9973	0.9982
	1538	23	5	5	5	6	4	2.8149	2.8149	2.8149	2.7247	5.0858
	1539	24	5	7	5	6	4	2.8149	2.4153	2.8149	2.7247	5.0858
	11	52	16	16	16	16	16	0.7734	0.7734	0.7734	0.7734	0.7734
<												

	1st_Car	2nd_Car	3rd_Car	4th_Car	5th_Car	1st_Trk	2nd_Trk	3rd_Trk	4th_Trk	5th_Trk	TotToMax	CarToMax	TrkToMax	Ē٨
. F	0.9005	0.9005	0.9005	0.9092	0.8202	0.9801	0.9801	0.9801	0.985	0.897	10.149	10.4758	8.4764	[
	0.9005	0.9005	0.6058	0.6616	0.5097	0.9801	0.9801	0.6721	0.7921	0.5227	10.149	10.4758	8.4764	
	0.9005	0.9005	0.9005	0.9092	0.8202	0.9801	0.9801	0.9801	0.985	0.897	10.149	10.4758	8.4764	[
	0.9005	0.9005	0.9005	0.9092	0.8202	0.9801	0.9801	0.9801	0.985	0.897	10.149	10.4758	8.4764	[
	1	1	1	0.9966	0.9978	1	1	1	0.9999	0.9997	18.4778	17.4229	23.8769	[
	2.7705	2.7705	2.7705	2.6788	4.9118	3.2288	3.2288	3.2288	3.1562	7.0938	6.9953	7.4317	4.7617	[
	2.7705	2.3446	2.7705	2.6788	4.9118	3.2288	3.1811	3.2288	3.1562	7.0938	6.9953	7.4317	4.7617	[
	0.7502	0.7502	0.7502	0.7502	0.7502	0.8459	0.8459	0.8459	0.8459	0.8459	23.8325	20.9431	38.6212	[~
													>	

Figure A-60 KSP Tool Output

User then can add a network in format of shapefile (see Figure A-61) and join the KSP Tool output using field attribute Edge (*Note: User will have add new join field and convert the Edge data attribute field to short integer data type*) and visualize the tool outputs (see Figure A-62).

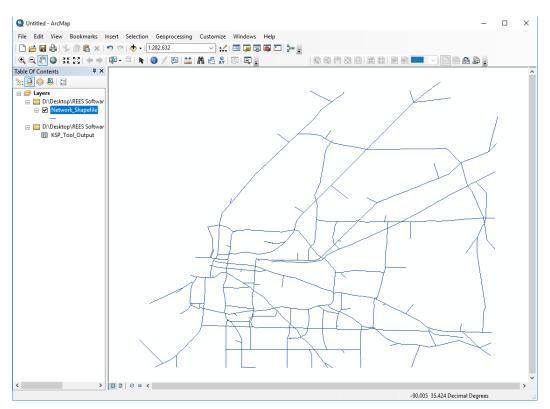


Figure A-61 Add Network in a form of Shapefile

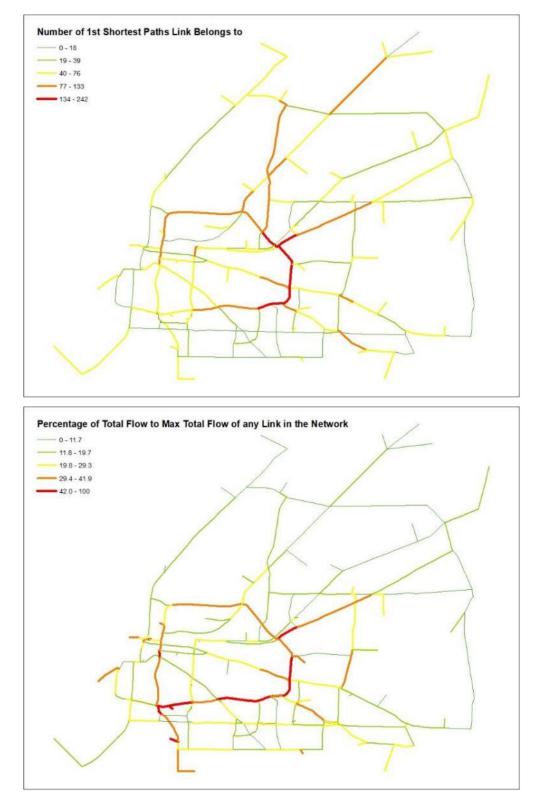


Figure A-62 Visualize the KSP Tool Output

Field Attribute	Description
#_KSP	Number of # shortest paths link belongs to
#_Tot	Total flow of link over sum of demand of ODs for which link is on the # shortest path
#_Car	Passenger flow of link over sum of demand of ODs for which link is on the # shortest path
#_Trk	Truck flow of link over sum of demand of ODs for which link is on the # shortest path
TotToMax	Percentage of total flow of link over the maximum total flow of any link in the network
CarToMax	Percentage of passenger flow of link over the maximum passenger flow of any link in the network
TrkToMAX	Percentage of truck flow of link over the maximum truck flow of any link in the network

Table A-12 KSP Tool Output Attribute Field Dictionary