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Chapter 1 

Introduction 

This research aims to identify and compare methodologies for prioritizing pedestrian hotspots, or 
high collision concentration locations (HCCLs) in the absence of pedestrian volume information 
and accompanying safety performance functions. In particular, we seek to evaluate the following 
methods: 

1. Methods evaluating presence of significant patterns among crash types: 

(a) Direct diagnostics approach [9], 
(b) Probability of specific crash types exceeding threshold proportion (HSM 4.4.2.9)[1], 

2. Methods controlling for regression-to-the-mean (in the absence of exposure): 

(a) Excess predicted average crash frequency using method of moments (HSM 4.4.2.6)[1]. 

In order to evaluate the above-mentioned methods, chapter 2 first presents two alternative 
pedestrian crash typology alternatives for pattern recognition. Chapter 3 describes the two pattern 
recognition-based approaches. Chapter 4 describes the method of moments approach for mitigating 
regression-to-the-means phenomenon, wherein the observed crash frequencies may contain outliers. 
Chapter 5 compares the performance of the potential HCCL prioritization alternatives using the 
2009-2013 pedestrian safety monitoring report (PSMR) investigation results. Finally, we provide 
the conclusions and recommendations from this research effort in Chapter 6. 
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Chapter 2 

Crash Typology Development 

A prerequisite for identifying pedestrian crash patterns is to develop a crash typology which can 
cover a substantial number of pedestrian crashes. In this chapter, we present two alternatives: (i) a 
fixed crash typology, and (ii) a dominant crash typology. A fixed crash typology is defined using a 
limited number of crash descriptors that are common to all crashes of a given type. In comparison, 
a dominant crash typology is defined by summarizing the dominant crash characteristics of all 
crashes assigned a given crash type. 

2.1 Fixed crash typology 
A fixed crash typology requires defining salient crash characteristics that can potentially span a 
large percentage of crashes are also meaningful across multiple types of facilities (i.e., intersections, 
ramps and segments). In the case of automobile collisions, the collision dynamics are succinctly 
summarized by categories such as broadside, sideswipe, head-on, etc. In order to create a similar 
pedestrian crash typology, we considered the following variables: movement preceding collisions of 
the pedestrian and the other party type involved in the collision. The motor vehicle movements were 
categorized as traveling straight, turning right or left, or making an alternate type of movement prior 
to the collision (e.g., backing up, lane changing, stopping). In the case of pedestrian movements, we 
considered differentiated them by whether the pedestrian was crossing at/away from the crosswalk, 
or not crossing at all. After evaluating different combinations of the two types of movements, we 
proposed a fixed crash typology comprising of 5 crash types as shown in table 2.1. 
The proposed crash types are generic in the sense that crashes belonging to a given type can 

occur across intersections, ramps or segments, as well as in restricted access-control locations (like 
freeways or expressways) or along arterial streets. We sought to ensure that the sample size of 
each crash type is substantially large so as to maintain adequate representation across multiple 
HCCLs. As a result, under some crash types (e.g., 4 and 5), we grouped different types of crossing 
movements while keeping the turning movements distinct, as specific turning-related patterns may 
lead to different operational countermeasures. In comparison, instances of pedestrians getting hit 
by vehicles traveling straight when crossing away from the crosswalk can be numerous and occur 
more randomly. As a result, we chose to keep crash types 1 and 3 as distinct events. 
A limitation of the fixed crash typology is that some crashes which do not exactly meet the 

desired crash characteristics do not get assigned to any crash type (e.g., crashes with alternate 
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Table 2.1: Fixed crash typology 

Crash Type Vehicle 
Movement 

Pedestrian 
Movement 

Percentage of Total 
Crashes (2013-2017) 

1 Straight Crossing 
at crosswalk 10% 

2 Straight Not crossing 30% 

3 Straight Crossing 
not at crosswalk 15% 

4 Right turn 
Crossing 
(at either 
location) 

10% 

5 Left turn 
Crossing 
(at either 
location) 

10% 

- Other 25% 

motor vehicle movements). Moreover, while we considered additional variables such as lighting, 
time of day, etc. with the crash typology, the inclusion of more variables puts additional constraints 
on the crash typology resulting in smaller sample sizes for each crash type. 

2.2 Dominant crash typology 
Clustering methods such as K-Means and Latent Class Analysis (LCA) are commonly used for 
generating crash typologies in the traffic safety literature [2, 8, 3, 5, 4]. These methods either 
deterministically or probabilistically partition the crash data into a user-defined number of clus-
ters. Cluster methods have the advantage of efficiently incorporating multiple variables while also 
ensuring that each collision can be assigned to one cluster or another. 
In order to develop a dominant crash typology, we considered five variables: access control, 

facility type, lighting, vehicle movement and pedestrian movement. Since the pedestrian crash data 
contain variables with discrete values, we first did principal component analysis (PCA) on the data 
and took the first 14 principal components which account for 90% variance of the data for further 
clustering. PCA not only transforms the discrete values to continuous values which are suitable for 
K-mean clustering but also reduces the dimensionality and noise of the data. 
Then we performed K-mean clustering on those 14 principal components. The idea of K-mean is 

to assign each data point to a closest center and then update all the centers until centers converge. 
We need to select the number of centers as the only parameter of this algorithm and we chose 
five clusters as the number of clusters according to elbow plot shown in Figure 2.1. Finally, we 
transformed the principal components back to the data and calculated the majority of values in 
each variable of each crash type. 
Table 2.2 presents the 5 crash types identified using k-means along with the dominant crash 

characteristics for each variable considered. For example, 61% of the crashes in crash type 1 have 
freeways under access control, so freeway is identified as the dominant crash characteristic. However, 
because the dominant crash characteristics are not necessary for a crash to be included within a 
given type, we are not guaranteed that all crashes of a given type within a HCCL share the same 
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Figure 2.1: Identifying appropriate number of clusters using an elbow method 

Table 2.2: Dominant crash typology 

Crash 
Type 

Access 
Control 

Facility 
Type Lighting 

Vehicle 
Move-
ment 

Pedestrian 
Movement 

Percentage 
of Total 
Crashes 

(2013-2017) 

1 Freeway 
(61%) 

Segment 
(92%) 

Dark no 
street light 
(96%) 

Straight 
(69%) Roadway (70%) 11 

2 Arterial 
(59%) 

Segment 
(100%) 

Daylight 
(95%) 

Straight 
(58%) 

Not crossing 
(64%) 32 

3 Arterial 
(58%) 

Segment 
(87%) 

Dark with 
street light 
(98%) 

Straight 
(71%) 

Crossing 
crosswalk 

not at 
(71%) 17 

4 Freeway 
(100%) 

Ramp 
(100%) 

Daylight 
(68%) 

Turning 
(46%) 

Crossing at 
crosswalk (60%) 12 

5 Arterial 
(95%) 

Intersection 
(77%) 

Daylight 
(74%) 

Turning 
(63%) 

Crossing at 
crosswalk (80%) 28 
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attributes. Finally, as Table 2.2 indicates, the crash coverage of the dominant crash typology is 
100%. 
In summary, in this chapter, we proposed two crash typologies that can be used for identifying 

patterns within HCCLs. In the next chapter, we shall describe the methodologies of two pattern 
recognition approaches that have previously been proposed in the traffic safety literature. 
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Chapter 3 

Pattern Recognition Methods 

In this chapter, we examine two methods for pattern recognition in HCCL prioritization. The first 
method is direct diagnostic approach proposed by [9]. The second method is defined under the 
Highway Safety Manual [1] as the probability of specific crash types exceeding threshold proportion 
(HSM 4.4.2.9). 

3.1 Direct Diagnostics 
Direct diagnostics is a pattern recognition-based approach to assess whether a location is observing 
a high proportion of crashes relative to the mean proportion derived from the reference population. 
The methodology assumes that collision occurrence follows a binomial distribution, wherein each 
Bernoulli trial is determined by the mean probability of crash occurrence. The mean proportion of 
occurrence of a targeted crash type, c, p̄  c, is calculated as: P 

i xic 
p̄  c = P (3.1) 

i ni 

Where xic is the number of type-c crashes at site i and ni is the total number of crashes at site 
i. 
Since the direct diagnostics approach assumes that all locations share the same underlying 

probability of occurrence of a given crash type, it follows that that a HCCL with ni crashes is result 
of a series of Bernoulli trials which follows a binomial distribution. The probability of observing 
xic crashes of type c out of a total ni crashes is given by, : � � 

ni 
)
ni −xicP (xic|ni, p̄  c) = p̄  cxic (1 − p̄  c (3.2) 

xic 

Finally, the probability of observing at least xic out of ni crashes, p-valbic, is given by: 

p-valb = P (x ≥ xic|ni, p) = 1 − P [x ≤ (xi − 1)] (3.3)ic 
xXic−1 

ni 
= 1 − (p)x(1 − p)ni−x (3.4) 

x! (ni − x)!
x=0 
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A low value of p-valbic indicates an overrepresentation of collisions of a given crash type, relative 
what is observed in the reference population. 
However, this method assumes that all facilities for a given reference population all have the 

same underlying propensity to observe a crash type which is restrictive. In order to relax this 
constraint, a beta-binomial distribution can be used, which utilizes a beta distribution to capture 
the uncertainty in the underlying probability of a observing a given crash type. In addition, the 
beta-binomial distribution can accommodate a greater amount of variation in the crash data, defined 
as overdispersion, than a binomial distribution. 

3.2 Probability of specific crash types exceeding threshold 
proportion 

This approach, as defined by the Highway Safety Manual [1] utilizes a beta-binomial (BB) dis-
tribution to model the crash proportions. Herein, the beta distribution,Beta(p|α, β), models the 
prior distribution of the true proportion of the target crash type, p, among all the facilities in the 
reference population: 

pα−1(1 − p)α−1 
Beta(p|α, β) = , where 0 ≤ p ≤ 1 (3.5)

B(α, β) 

Γ(α)Γ(β)
B(α, β) = (3.6)

Γ(α + β) 

Herein, Γ represents the gamma function, and α(> 0) and β(> 0) are two parameters that 
determine the shape of the Beta distribution. More specifically, the mean and variance of the 
underlying true proportion for a given crash type can be described as follows: 

α 
E(p) = 

α + β 
(3.7) 

αβ 
V ar(p) = (3.8)

(α + β)2(α + β + 1) 

Equations 3.7 and 3.8 explain how α and β quantify the uncertainty in the prior distribution. 
While the relative magnitudes of alpha and beta inform the skewness of the distribution, high values 
of α and β lead to a small variance in the true proportion within the reference population. 
The BB distribution combines the Beta prior with the empirical evidence of the total number 

of crashes as well as the crashes observed for the target crash type.The probability of observing xic 
crashes of the target crash type, given ni total crashes, is defined by a binomial distribution: � � 

niP (xic|p, ni) = p xic (1 − p)ni−xic , (3.9)
xic 

p ∼Beta(α, β), (3.10) 

the resulting compound distribution can be defined as follows: 
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Z 1 
P (xic|ni, α, β) = P (xic|p, ni)Beta(p|α, β)dp (3.11) 

0 
ni! B (α + xic, β + ni − xic) 

= . (3.12) 
xic! (ni − xic)! B(α, β) 

We used Maximum Likelihood to solve for α,ˆ β̂. Thereafter, the posterior distribution of α,˜ β̃  
are given by the parameters: 

α̃ =α̂+ xic 

˜ ˆβ =β + ni − xic 

Finally, the BB test evaluates the proposition that the estimated proportion of the target crash 
type at a given location (given the posterior distribution) is greater than the median proportion of 
the reference population (as defined by the prior distribution) [7, 10]. The median proportion is 
derived from the prior distribution as follows: 

Z 1 
Beta(p|α,ˆ β̂)dp = 0.5 (3.13) 

pm 

Heydecker and Wu (1991) propose an alternate hypothesis to evaluate the posterior distribution 
while Lyon et al (2007) test the implication of choosing threshold proportions that are different 
from median. However, since the median proportion is popularly chosen threshold for the BB test 
in the literature (ref needed), our assessment of this methods shall be restricted to it. 
Given the chosen threshold proportion, pm, we test the proposition that the location’s propor-

tion, pi, exceeds the threshold proportion as follows: Z 1 
P (pi > pm|xic, ni) = Beta(p|α,˜ β̃)dp 

pm � � 
= 1 − Beta pm, α,˜ β̃  (3.14) 

Equation 3.14 returns a value close to 1 if the posterior probability of observing a crash of a 
given type is much greater than median proportion of the reference population. However, to make 
this performance measure behave similarly to p-valbic for the purposes of comparison, we utilize the 
following metric, p-valbbic : 

� � 
p-valbb = 1 − P (pi > pm|xic, ni) = Beta pm, α,˜ β̃  (3.15)ic 
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Chapter 4 

Methods controlling for 
Regression-to-the-Mean 

4.1 Excess predicted average crash frequency using method 
of moments 

This approach is to adjust a site’s observed crash frequency to partially account for regression to 
the mean and calculate the “potential improvement”. We then rank sites based on the potential 
improvement. 
According to HSM, we have five steps for this approach. First, we need to find reference sites 

for each HCCL. Reference sites should have similar attributes compared with a specific HCCL. For 
intersection or ramp HCCL, we find a location as reference site when it has the same intersection 
type, intersection control type, similar AADT (±2500) and median width (±2). For segment HCCL, 
we find a location as reference site when it has the same number of lanes, similar AADT (±2500) 
and median width (±2). 
All the HCCLs are less than 0.1 mile so the reference site should be in comparable length. For 

intersection and ramp references, they are around 0.1 mile. But for segment references, some can be 
very long since the entire segment has homogeneous attributes which may contain lots of crashes. 
Therefore, we need to find a representative for the long segment. We use sliding windows to find 
the 0.1-mile window that has the highest number of crashes over other windows within the segment 
as the representative. 
For a given reference population of size R and T years of crash data, we calculate the average 

crash frequency (N̄ ) and the crash frequency variance (var) [6]: 

N̄ =T y,̄ (4.1)� �
2 var =T 2 s y + ¯ , (4.2)y − ¯ y/T 
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R TXX 
ȳ = yit/RT, (4.3) 

i=1 t=1 
R TXX 

2 2 
sy = (xit − ȳ) /RT, (4.4) 

i=1 t=1 

where, 

• ȳ: represents the annual estimate of number of collisions 

• s2 
y: variance of the annual crash estimate 

Thereafer, we calculate the adjusted crash frequency using empirical Bayes (EB) for site i: 

N̄ 
Ni,ad = Ni + (N̄ − Ni) (4.5) 

var 

Finally, we calculate the potential improvement for site i and rank sites according to PI: 

PIi = Ni,ad − N 

In the absence of safety performance functions, method of moments-based estimators such as 
Ni,ad and PIi, provide the capability to the mitigate concerns of regression-to-the-mean by weight-
ing the observed number of crashes with the average number of crashes observed in the reference 
population. Since these metrics are derived for the total number of crashes, these estimates do not 
reveal if specific crash types are recurring these locations. However, EB-adjusted estimates can also 
be derived for specific crash types. 
In comparison, the pattern recognition methods may be subject to the regression-to-means 

phenomenon if an observed pattern is driven by outliers as opposed to a true underlying crash 
pattern. However, the methods described in Chapter 3 are targeted towards querying whether 
specific crash types are over-represented at a given location or not. 
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Chapter 5 

Empirical Comparison of Methods 

In this chapter, we present the results of conducting an empirical assessment of the the methods 
described in chapters 3 and 4, using pedestrian crash data from 2009-2013, which was also analyzed 
and investigated as part of the first round of the pedestrian safety monitoring program pilot. In the 
subsequent sections, we first compare the performance of using the the direct diagnostic approach vs 
the beta-binomial test, followed by comparing pattern recognition-based detection with method of 
moments. In order to assess the quality of the prioritization, we analyzed the recommendations em-
anating from the investigations conducted at specific high collision concentration locations. While 
the comparison does not reveal if a given prioritization method is indicative of a true hotspot, it 
provides insight into which methods may align well with the investigation process. 

5.1 Comparison between the pattern recognition-based ap-
proaches 

The outputs for pattern recognition-based approach and probability of specific crash types exceeding 
threshold proportion approach are both probability matrix where each row represent one site and 
each column represent one crash type. For any probability pic in the matrix, it represents the 
probability of Nic crashes happen in site i where Nic is the number of type-c crashes in site i. If 
this probability is small but it did happen, we should pay more attention to this type of crashes in 
site i so we can prioritize sites based on different crash type probabilities. 
Figure 5.1 shows parts of probability matrices from direct diagnostics and probability of specific 

crash types exceeding threshold proportion approach. The probabilities less than 0.1 are highlighted 
in red to indicate that they likely contain a significant pattern. 
Moreover, we can see that the results from two different methods are similar and highlight 

almost the same locations. Then we calculated the similarity between two results, and they are 
99.6% similar. Since the computation of the probability of specific crash types exceeding threshold 
proportion approach is complex, we utilized the direct diagnostic method as the desirable pattern 
recognition-based approach for comparison with method of moments. 
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District Route County Route PM PM Number Number of crashes in 
Name START END of F+I Cl C2 C3 C4 cs 

Pattern Recognition 
Cl (%) C2(%) C3 (%) C4 (%) CS (%) 

Exceed Threshold Proportion 
Cl(%) C2(%) C3 (%) C4 (%) CS (%) 

10 120 STA S.28 S.3S 11 0 2 2 0 7 100 7S S7 100 13 100 78 60 100 11 
4 101 SF T 4.86 4.948 10 0 2 1 0 7 100 70 84 100 7 100 74 BS 100 6 
4 185 ALA 2.55 2.64 10 0 3 1 0 6 100 41 84 100 20 100 48 85 100 18 
1 101 HUM 77.23 77.31 9 0 3 1 0 5 100 34 80 100 31 100 41 82 100 27 
1 101 HUM 77.48 77.55 9 0 1 1 0 7 100 90 80 100 3 100 91 82 100 3 

12 1 ORA 8.49 8.59 9 0 2 1 0 6 100 64 80 100 13 100 69 82 100 11 
12 39 ORA 3.11 3.12 9 0 1 2 0 6 100 90 4S 100 13 100 91 50 100 11 
12 39 ORA 6.58 6.65 9 0 2 0 0 7 100 64 100 100 3 100 69 100 100 3 
1 101 HUM 78.78 78.87 8 0 3 1 0 4 100 27 77 100 46 100 3S 78 100 41 
4 29 SOL 2.26 2.34 8 0 4 0 0 4 100 9 100 100 46 100 14 100 100 41 
4 101 SF 5.54 5.62 8 0 1 5 0 2 100 87 0 100 91 100 88 1 100 88 
4 101 SF S.9S 6.0S 8 0 2 1 0 s 100 S8 77 100 21 100 63 78 100 18 
4 123 ALA 0.37 0.47 8 0 0 2 0 6 100 100 39 100 6 100 100 44 100 5 
7 2 LA 10.896 10.99 8 0 2 4 0 2 100 S8 3 100 91 100 63 s 100 88 
12 39 ORA 11.64 11.681 8 0 2 4 0 2 100 SB 3 100 91 100 63 5 100 88 
12 39 ORA 12.63 12.72 8 0 1 1 0 6 100 87 77 100 6 100 88 78 100 s 
4 29 SOL 2.12 2.21 7 0 1 0 0 6 100 84 100 100 3 100 85 100 100 2 
4 101 SF T s S.076 7 0 2 1 0 4 100 so 72 100 33 100 S7 74 100 29 
4 101 SF S.74 S.81 7 0 0 3 0 4 100 100 9 100 33 100 100 13 100 29 
4 101 SF S.86 5.94 7 0 1 0 0 6 100 84 100 100 3 100 BS 100 100 2 
7 1 LA 6.Sll 6.S91 7 0 3 0 0 4 100 20 100 100 33 100 28 100 100 29 
7 1 LA 2S.43 25.46 7 0 0 1 0 6 100 100 72 100 3 100 100 74 100 2 
12 1 ORA 24.SSl 24.61 7 0 1 3 0 3 100 84 9 100 63 100 BS 13 100 S7 
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Figure 5.1: Results from Direct Diagnostics and Exceeding Threshold Proportion 
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5.2 Results from Method of Moments 
For excess predicted average crash frequency using method of moments approach, we calculated a 
list of potential improvement (PI) shown as Figure 5.2. 

Figure 5.2: Results from Method of Moments 

The potential improvements greater than 4 are highlighted in red. 

Figure 5.3: Results from Direct Diagnostics and Method of Moments for each crash type 

We also applied method of moments for each crash in the crash typology. The idea is that 
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instead of calculating the PI with total F+I, we use the number of crashes in each crash type and 
calculate PI for each crash type as in Figure 5.3. 

5.3 Combining results from method of moments and direct 
diagnostics 

The correlation coefficient between Potential improvement (PI) and fatal & Injury crash frequency 
is 0.83 which means PI is highly correlated with F+I crash frequency. Therefore, PI contains the 
information about number of crashes in an HCCL. 
Information from pattern recognition can help the investigators find out the recurring trend and 

the corresponding countermeasure and thus reduce the false positive rate. 
Thus, we considered combining PI and the p-value from the pattern recognition to create a 

weighted PI for crash type, c: � � 
PIw = PIic ∗ 1–p-valb (5.1)ic ic 

Herein, (1–p-valbic) can be seen as a discounting factor reflecting how confident we are in observ-
ing a recurring crash type c. So the higher PIwic, the more potential improvement and confidence 
for a HCCL with a recurring crash type c relative to the reference population. 

5.4 Potential prioritization metrics 
Based on pattern recognition and method of moment, we have five available prioritization criteria: 

1. Observed crash frequency (fatal(F) + injury(I)), Ni 

2. EB-adjusted crash frequency, Ni,eb 

3. Potential for safety improvement, PIi 

4. Weighted sum of potential improvement by crash types: 

X� � 
1–p-valb ∗ PIi,cic 

c 

5. Weighted max of potential improvement by crash types: 

� � 
max 1–p-valic

b ∗ PIi,c 
c 

In order to compare these metrics, we evaluate the the HCCL list from PSMR Round 1 where we 
compare the consistency between the recommendation column and the ranking from each criterion. 
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5.5 Empirical data based on PSMR Round 1 
There are 129 HCCLs investigated from PSMR Round 1 and all HCCLs are provided with recom-
mendation from site investigators. Since the recommendations are made by the site investigators 
who are experienced and have been to the sites, we can think of them as “ground truth” rank-
ing for the HCCLs. In order to compare the recommendation with the five criteria, we will need 
to convert them from the text format into some quantitative format. Therefore, we read all the 
recommendations and label them in the following way: 

Table 5.1: Classification of recommendations 

Label Recommendation 
0 No action 

1.2 Planned/implemented projects do not align with crash type patterns 
1.3 Planned/implemented projects align with crash type patterns 
2 Improvements made which did not align with crash type patterns 
3 Improvements made which aligned with crash type trends 

Some examples pertaining to each label, recommendation and the associated direct diagnostic 
outputs are shown in Table 5.2. The direct diagnostic p-values for the fixed and dominant crash 
typology shown in the examples indicate that the fixed typology might reveal more consistent 
patterns. 
After labelling the recommendation, we sorted the HCCLs by a given performance metric (e.g., 

F+I). We divided the list of 129 sites to top 43, middle 43, and last 43 sub-groups and aggregate 
the number of recommendations within each sub-group. Performance metrics which mimic the 
investigator’s process best should yield higher 3/1.3 (or fewer 0’s) in the top and middle sub-group 
relative to the bottom 43 HCCLs. We were specifically interested in the following two questions: 

• How is the distribution of patterns identified upstream aligned with a given performance 
metric’s prioritization? 

• Is their correlation between “no action taken” and a prioritization? 

Table 5.3 provides the mean estimates of the various prioritization metrics for all the 129 HCCLs 
distributed across the 5 recommendation categories. We observe the following trends: 

1. The average number of crashes are greatest among the type 3 recommendations, followed by 
type 2 recommendations and finally no action taken. 

2. The weighted PIs are on average greater in the type 3 recommendations than in the other 
cases. This implies that recommendations with patterns also yield high scores in the pattern 
recognition-based metrics. In addition, it is also likely that the investigators require a sub-
stantial number of crashes to deem a pattern to be present during their investigations which 
would explain the presence of greater number of crashes within type 3 recommendations. 

3. Type 3 recommendations also have fewer fatalities in comparison to Type 2 recommendations 
and recommendations with no actions. 
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Table 5.2: Examples of recommendations 

Recommendation Label Pattern Recognition 
Project EA 10-0K150 just ended July 7, 2015. 
This project is a cold plane and resurface road-
way which includes to place high visibility 
cross walks with PED XING marking in key 
locations. 

1.2 No significant crash type 

Pedestrian enhancements, including corner 
bulb-outs, at most intersections, ADA compli-
ant curb ramps, and pedestrian countdown 
timers (PCT) and audible pedestrian signals 
(APS) at all intersections 
Traffic signal infrastructure for real-time traf-
fic management, including traffic signal re-
placement, fiber interconnect, transit signal 
priority, protected left-turn phases at in-
tersections, variable real-time message signs 
and real-time bus arrival information displays 
(NextMuni) 

1.3 

• Fixed typology: left-turning 
crashes at intersection (type 
5)(pval: 0.05) 

• Dominant typology: turning-
movement crashes at intersection 
(type 5) (pval: 0.12) 

”Install rectangular rapid flashing beacon sys-
tem and continental style crosswalk markings 
for SB Sunrise to WB US-50 on ramp. In ad-
dition, install SW24-2 signs and continental 
style crosswalk at the SB Sunrise to EB US-
50 loop onramp.” 

2 

• Fixed typology: vehicle going 
straight, pedestrian crossing not 
at crosswalk (type 3) (pval: 0.008) 

• Dominant typology: none of them 
is significant 

”Since the collisions are due to illegal cross-
ing, the Vallejo Police Department has been 
contacted by our field investigator and and 
asked to aid in enforcement. No additional 
improvements are proposed.” 

3 

• Fixed: vehicle going straight, 
pedestrian crossing not at 
crosswalk (type 3) (pval: 0.003) 

• Dominant: conventional segment, 
dark with street light, straight, 
pedestrian crossing not at 
crosswalk (type 3) (pval: 0.03) 
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To further breakdown the performance of the different metrics, we analyze the trends in the types 
of recommendations when sorting the list of HCCLs by each metric. We group the recommendations 
into (i) no action, (ii) action that are not pattern-based and finally (iii) actions that are pattern-
based. 

5.5.1 Observed crash frequency(F+I) 
The results of the F+I metric are shown in Figure 5.4. We observe no major trends in pattern-
based HCCLs observed in dominant crash types (figure 5.5a). In contrast, there is sharp drop-off 
in pattern-based recommendations in the last 43 HCCLs for fixed crash types (figure ??). Finally, 
we do not observe any significant patterns for the case of no action taken when we progress from 
the top 43 to the last 43 sub-groups. 

(a) Patterns identified using fixed typology (b) Patterns identified using dominant typology 

Figure 5.4: Empirical assessment of F+I metric 

5.5.2 EB-adjusted crash frequency 
The results of the EB-adjusted crash frequency metric are shown in Figure 5.5. The performance is 
similar to F+I, which is not unexpected given that we are adjusting the observed crash frequencies 
within EB using a 5-year evaluation period. In theory, we expect EB to converge to F+I as the 
number of years being considered are increased. However, as the number of years increase, we also 
expect the traffic and built environment conditions to change for the location which may make the 
historical crash data less meaningful. 

5.5.3 Potential for Improvement (PI) 
The results of PI-based prioritization are shown in Figure 5.6. The performance is similar to F+I 
and EB. However, we observe a greater drop-off in the pattern-based recommendations after the 
top 43 HCCLs. 
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(a) Patterns identified using dominant typology (b) Patterns identified using fixed typology 

Figure 5.5: Empirical assessment of EB-adjusted crash frequency metric 

5.5.4 Weighted Sum PI 
Figure 5.7 shows the trends for weighted sum PI for both dominant and fixed crash types. As 
observed earlier in the summary statistics, the weighted sum PI shows a consistent drop in pattern-
based recommendations across the different sub-groups for both crash types. 

5.5.5 Weighted Max PI 
Figure 5.8 shows the trends for weighted max PI for dominant and fixed crash types. The results 
for the weighted max case are similar to the weighted sum PI. However, since we are only selecting 
the weighted PI estimate of the crash type which has the highest value, the use of max over sum 
amplifies the presence of dominant patterns. This phenomenon is visible from the relatively high 
number of pattern-based recommendations (∼30) in the top 43 HCCLs when prioritized using the 
weighted max metric. 
In summary, based on the empirical comparison of the different prioritization metrics proposed 

in this research, we find the weighted sum PI and weighted max PI to be the most effective in 
prioritizing pattern-based recommendations. We also note that the fixed crash typology showed 
more consistent trends in pattern-based recommendations. However, none of the metrics show any 
strong correlations vis-a-vis predicting fewer no action scenarios. 
It is possible that since these investigations were being conducted for the first time under the 

PSMR pilot, there was a greater push to implement some pedestrian countermeasures (such as 
upgrading signal controls or re-painting crosswalks) even when there wasn’t a significant pattern 
within the crashes to drive the countermeasure identification. Moreover, the list that was identified 
for the PSMR pilot was not based on single crash prioritization metric (e.g., F+I) and included 
some considerations for pedestrian fatalities. As a result, the findings may differ when evaluating 
a larger list of potential HCCLs for the 2009-2013 crash data. 
Finally, we note that the performance of the weighted sum/max PI metrics indicates that 
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(a) Patterns identified using dominant typology (b) Patterns identified using fixed typology 

Figure 5.6: Empirical assessment of potential for improvement metric 

these metrics can prioritize HCCLs with patterns higher up on the list. However, since the direct 
diagnostic metric is dependent on the observed number of collisions, presence of outliers within 
the 5-year evaluation period can predict patterns even though the site may not have an underlying 
long-running pattern of producing crashes of the given crash type. Thus, more research needs to 
be done to investigate if regression-to-the-mean is present within the direct diagnostic method. 

5.6 Practical Considerations 
As part of the analysis, we also made some observations regarding the implementations of the 
proposed methods as well as the current network screening process: 

1. Method of moments: Finding suitable reference sites for method of moments is challenging 
(some site characteristics may be more common than others). As a result, using a model to 
estimate the expected number of crashes for a given set of site characteristics (e.g., SPFs), 
even in the absence of pedestrian volume data, may be more desirable. 

2. Planned projects: 2/3 of the HCCLs at the time of investigation indicated prior projects 
that were already implemented or planned. Such a high proportion may be likely due to the 
large time gap in the period of evaluation (2009-2013) and the period of site investigations 
(2016-2017). 

3. Need for segmentation: the use of a sliding window-based method for identifying pedestrian 
HCCLs provides the capability to maximize the total number of crashes. However, they also 
lead to HCCL definitions that are not ideal for providing well-defined site characteristics for 
implementing SPFs or method of moments. Thus, using a segmentation-based approach may 
be desirable for the network screening of pedestrian collisions. 
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(a) Patterns identified using dominant typology (b) Patterns identified using fixed typology 

Figure 5.7: Empirical assessment of weighted sum PI metric 

(a) Patterns identified using dominant typology (b) Patterns identified using fixed typology 

Figure 5.8: Empirical assessment of weighted max PI metric 
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Chapter 6 

Conclusions, Recommendations 
and Future Work 

6.1 Summary 
The objective of this research was to identify metrics to prioritize crash frequency-based pedestrian 
high collision concentration locations, that went beyond prioritizing sites based on total number of 
fatal and injury collisions. To this end, we analyzed methods that controlled for the regression-to-
the-mean phenomenon in the total number of crashes in the absence of safety performance functions 
(Chapter 4). We also evaluated methods that used information present within the coded, party-
level crash data to identify recurring crash patterns further upstream in the decision-making process 
(chapter 3). More specifically, we analyzed the following three methods: 

• Direct diagnostic approach ([9]), 

• Probability of specific crash types exceeding threshold proportion (HSM 4.4.2.9), 

• Excess predicted average crash frequency using method of moments (HSM 4.4.2.6). 

In order to implement these pattern recognition-based methodologies, we also proposed two 
alternative pedestrian crash typologies (chapter 2). Once the crash typologies were defined, based 
on the methods described above, we considered five potential prioritization metrics: 

1. Observed crash frequency (F + I), Ni 

2. EB-adjusted crash frequency, Ni,eb 

3. Potential for safety improvement, PIi 

4. Weighted sum of potential improvement by crash types: 

5. Weighted max of potential improvement by crash types: 

Finally, we assessed the quality of the aforementioned metrics with regards to (i) mimicing 
the pattern identification process of traffic safety investigators and (ii) minimizing cases where an 
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HCCL investigation yields no action. To this end, we used the investigation results of round 1 
of the pedestrian safety monitoring report (PSMR) which analyzed 129 pedestrian HCCLs. We 
analyzed these HCCLs to assess if the any recommendations were made, and if so whether the 
recommendations were in alignment of either the fixed of the dominant crash typology. Thereafter, 
we sorted 129 HCCLs using each metric and evaluated whether the investigations with no actions 
showed an monotonically increasing trend (fewer at the top, more at the bottom), and if the 
investigations with patterns yielded a monotonically decreasing trend (more at the top, fewer at 
the bottom). The results of the empirical analysis provided the following findings: 

• None of the results showed any significant trends with regards to minimizing false positives, 
i.e. investigations with recommendations to take no action. 

• Weighted max and weighted sum PIs showed a consistently decreasing trend in pattern-based 
HCCLs. These metrics combined information from both method-of-moments and the pattern 
recognition-based methods. 

• The performances of EB-adjusted crash frequency, potential for improvement and unadjusted 
crash frequency (F+I) were similar. 

6.2 Recommendations 
Based on the findings from this research, we recommend the following: 

1. Metrics derived from significance of pattern recognition may potentially mimic pattern identifi-
cation process of investigators. Thus, incorporating pattern recognition-based metrics further 
upstream in the decision-making process can potentially help increase the likelihood ensuring 
that the investigators can find a recurring safety concern at a location. 

2. Fixed crash typologies provide more consistent results along with the added the advantage of 
being easy to interpret. 

3. Since the round 1 of PSMR did not contain many false positives, we encourage continuing 
further research into the methods and metrics analyzed in this project to assess if they are 
prone to predicting presence of recurring pattern in response to outliers. 

4. The results of the investigations also contain multiple cases of sites where countermeasures 
were implemented prior to the investigations as part of other capital projects. Thus, we 
recommend identifying sites that have undergone relevant design/operational changes prior to 
the HCCL list generation, so as to consider excluding them from the final list of recommended 
sites for investigations. 

5. We also recommend revising the existing network screening process to adopt a segmentation-
based approach so as to make it easier to implement methodologies that require well-defined 
site characteristics (e.g., SPFs and method of moments). We also recommend considering 
model-based alternatives to method of moments as defining the reference populations for the 
latter approach is not straightforward. 
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6.3 Future Work 
To further investigate the accuracy of the methods considered in this research, we propose conduct-
ing a simulation-based study, where we can generate synthetic HCCLs with a true crash mean and 
crash type distributions, and analyze the performance of the various metrics for varying numbers 
of reference sites, overdispersion, total number of crashes, etc. 
For instance, The aforementioned parameters can interact with each other to create scenarios 

where direct diagnostics and the beta-binomial tests may produce different results. Consider a case 
where the mean proportion of observing a given crash type is p = 0.49. Subsequently, let’s say we 
observe that a specific site produces 4 out 4 collisions of the corresponding crash type. Under such a 
scenario, the direct diagnostic/binomial test would indicate that a pattern exists (p-valb = 0.058),ic 
as illustrated in Figure 6.1. 

Figure 6.1: Direct diagnostic/binomial test visualization 

For the beta-binomial test, the detection of a pattern is contingent on how much overdispersion 
there is in the reference population. Overdispersion is a statistical measure of the amount of vari-
ation there is the sample relative to the mean estimate. In the context of proportions, it can mean 
that the sites in the reference population may be homogeneous (leading to less overdisperison) or 
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extremely varied (leading to high overdispersion). A low-to-no overdispersion case can be simulated 
by using high α and β values (see Figure 6.2a). Assuming α = 49 and β = 51, we observe the 
median proportion to be pm = 0.49. The lack of variation in the proportions is indicated by the 
high concentration of the distribution shown in Figure 6.2a around the mean and median estimate. 
Given the information about the number of crashes about the given site, the posterior beta distri-
bution under the beta-binomial test does not change much (as shown in Figure 6.2b), which results 
in p-valb = 0.344. Thus, as per BB test, we cannot say that there is a significant pattern present. ic 
In comparison, if there is high overdispersion (i.e., lots of variation in the crash proportions 

observed in the reference population), we can simulate this scenario using low parameter estimates 
for the prior Beta distribution such as α = 0.49 and β = 0.51 (see Figure 6.3). The high overdis-
persion implies that even though the mean proportion of crashes in the population remains 0.49, 
a significant percentage of sites in the population actually have a true proportion of nearly 0 or 1 
as reflected in the bathtub shape of the distribution shown in Figure 6.3a around the mean and 
median estimate. This also implies that we have low confidence in our prior information provided 
by the reference population. As a result when accounting for the fact that the specific site observes 
4 out of 4 crashes for the given crash type, the posterior beta distribution under the beta-binomial 
test changes dramatically to skew towards the right (as shown in Figure 6.3b), which results in 
p-valb = 0.013. Thus, as per BB test, given high overdispersion, the BB test says that there may ic 
be a significant underlying crash pattern. 
Thus, in the presence or absence of overdisperion, the performance of the direct diagnostic 

test may differ from the beta-binomial test. A simulated dataset can provide more insights into 
developing a more robust pattern recognition framework. 
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Figure 6.2: Beta-binomial test given low/no dispersion 
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