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EXECUTIVE SUMMARY 

Unmanned aircraft systems (UAS), also called drones, and light detection and ranging (lidar) are rapidly 
emerging technologies, which are having a transformational effect on how mapping and monitoring are 
performed in a number of fields. Furthermore, machine learning is engendering rapid advances in 
automatic extraction of actionable information from imagery and point clouds. Together, these new 
acquisition and processing capabilities appear poised to revolutionize how data are collected for 
transportation applications, such as traffic network monitoring. However, myriad challenges remain. 
UAS-based lidar is a cutting-edge, and still relatively unproven, technology, with operational challenges 
ranging from sensor calibration to payload and flight time limitations. Machine learning algorithms that 
have been designed, implemented and tested in vastly different fields require adaptation for 
transportation use. In addition, regulatory and logistical issues are paramount, as FAA, state, and local 
regulations dictate how, when, where, and by whom UAS flights can be conducted, and operating UAS 
safely, effectively and in full compliance with all applicable laws, rules, and regulations requires training, 
preparation, and pre-planning. This project aimed to rigorously investigate and document both the 
state-of-the-art and the state-of-the-possible in performing traffic network monitoring with lidar-
equipped UAS and machine learning algorithms. A lidar-UAS was built, instrumented and operated over 
three sites, ranging from a highly-controlled test environment to alongside an active roadway with 
heavy traffic, with flights conducted by Federal Aviation Administration (FAA) Part 107 certified remote 
pilots. Additionally, a fourth site, covering an intersection on the University of Washington campus, was 
flown with a higher-end UAS lidar system. Novel processing algorithms were used to automatically parse 
raw data into georeferenced point clouds, filter out repetitions, and perform scanning to identify 
vehicles, all with processors that can be mounted on UAS and operated in real-time. The UAS lidar 
acquisition performed in this project led to a follow-on PacTrans Success Stories project and resulted in 
a report documenting current best practices in operational UAS for transportation applications. 
Meanwhile, the machine learning aspects of the study have led to the ability to identify vehicles using 
drone-mountable hardware and algorithms. Recommendations for future work include testing the 
approach using boards with even smaller computational power, enhancing the point cloud and 
reference vehicle filtering, and investigating new types of remote aircraft with greater endurance. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Two technologies that are having a dramatic impact on surveying, mapping and monitoring are light 
detection and ranging (lidar) and unmanned aircraft systems (UAS). Of the two, lidar is arguably the 
more mature technology, having first become commercially available for surveying and mapping in the 
mid-to late-1990s and proliferating rapidly over the past two decades (Nayegandhi and Nimetz, 2018). 
Lidar uses laser ranges—often obtained from a moving survey platform, such as an airplane or truck—
combined with pointing angle information, global navigation satellite system (GNSS) and inertial 
navigation system (INS) data to produce dense 3D point clouds. From the point clouds, downstream 
data products, including digital elevation models (DEMs), elevation contours, building models, and 
others, can be produced. Unmanned aircraft systems (UAS), also called drones, have emerged into the 
commercial market somewhat more recently, but are rapidly gaining recognition as an operationally-
viable tool for surveying, mapping and monitoring applications. Commercial use of UAS was greatly 
facilitated in 2016, when the Federal Aviation Administration (FAA) released regulations for small (< 55 
lb) unmanned aircraft: 14 CFR Part 107 (FAA, 2016), referred to simply as “Part 107” throughout the 
remainder of this report. 

Meanwhile, machine learning is having similarly transformative impacts on how information is extracted 
from the huge volumes of lidar and imagery now being collected. Machine learning algorithms provide 
the capability to identify features and objects in data representation, lidar scans in our case, and can be 
employed by government agencies to make better decisions from the data. Although machine learning 
was classically a centralized technique, where data are analyzed after being transferred to central high-
performance computing facilities, recent trends aim to implement machine-learning algorithms at or 
close to the data generation units, especially for real-time monitoring and applications. This direction is 
motivated by the huge size of the data, whose transmission can take a very long time and drain 
significant resources. Instead of sending the data, these “edge”-type lightweight machine learning 
approaches can extract basic objects and features, which are typically substantially smaller than the raw 
data, and send those in real-time. This approach is well suited for energy-constrained devices that are 
required to provide real-time information, and, therefore, cannot wait for data collection. Clearly, this is 
exactly the situation encountered in a real-time monitoring application using battery-powered UAS. 

The combination of lidar, UAS, and machine learning could be a game changer for a number of 
transportation applications. One such application is traffic network monitoring. It is envisioned that in 
the future, a traffic network could be monitored by a fleet of lidar-equipped UAS (Figure 1.1). Through 
the use of machine learning algorithms, features of interest could be automatically detected and 
identified, including those relevant to emergency response, clearance, congestion, accidents, fire, 
parking utilization, and multimodal transportation activities. If the feature extraction were to be 
accomplished in real time, the obtained results could be cooperatively reported to a traffic network 
controller, informing corresponding actions. 
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Figure 1.1 An example of UAS and anchor point distribution, and single/multi hop communications 
among them to relay their information to the anchor points. 

 

While the vision outlined above is compelling, a number of technical and logistical challenges must be 
overcome for it to be achievable. Lidar systems with low enough size, weight and power consumption to 
be suitable for UAS installation have only recently become available (Jozkow et al., 2016), and their 
performance is still largely untested. Furthermore, for lidar points to be assigned accurate 3D spatial 
coordinates (latitudes, longitudes, and heights or, in a projected coordinate system, eastings, northings, 
and heights), a direct georeferencing system, consisting of a global navigation satellite system (GNSS) 
aided inertial navigation system (INS) is needed. This direct georeferencing system add additional weight 
and processing requirements. Machine learning algorithms specifically for automatic extraction of 
features from UAS-lidar must be developed and tested.  

However, the greatest challenges pertain not to technical issues, but, rather, logistical and regulatory 
constraints (Stöcker et al., 2017; Collins et al., 2018; Parrish et al., 2018). Flights conducted under FAA 
Part 107 must adhere to all applicable rules, and state transportation agencies may have their own 
restrictions, such as how far from an active roadway a UAS can be operated. Specific guidance is needed 
for State DOTs and other transportation agencies to collect UAS lidar data in the vicinity of active 
roadways in a manner that meets all applicable rules, regulations, safety protocols, and provides 
accurate data from which actionable information can be extracted.  

1.2. Research Objectives 

Based on the long-range vision and challenges presented above, the overarching goal of this project was 
to develop and test procedures for using lidar-UAS, combined with machine learning, for traffic network 
monitoring. Specific objectives of the project were to: 1) optimize mission parameters for UAS-based 
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lidar acquisition for traffic network monitoring; 2) design, implement and train a convolutional layer for 
automatically extracting features from the UAS-based lidar data; 3) investigate operational strategies 
that will, in the future, enable fleets of UAS to work collaboratively to scan a transportation network; 
and 4) develop guidelines for State DOTs and other transportation agencies on the technical and 
operational requirements for UAS-based lidar acquisition.  
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CHAPTER 2. DEVELOPMENT AND TESTING OF LIDAR-UAS 

2.1. Justification for lidar 

A fundamental question, which was carefully considered at the outset of this project, is: why use lidar? 
Image-based mapping techniques, which are able to reconstruct 3D geometry from overlapping sets of 
imagery acquired from a UAS or other platform, are gaining wide acceptance. In particular, structure 
from motion (SfM), a new type of photogrammetric software leveraging advances from the field of 
computer vision (Fonstad et al., 2013; Westoby et al., 2012; Tonkin et al., 2014), has emerged as a 
highly-effective technique for creating accurate, spatially dense 3D point clouds from imagery acquired 
from UAS. To address this question, a qualitative comparison of UAS-SfM and UAS-lidar was conducted 
(Simpson, 2018). Results of this comparison are summarized in Table 2.1. It is worth noting that a major 
obstacle that was not considered in the comparison is that SfM processing for real-time traffic 
monitoring is not currently feasible, as the processing to derive a dense point cloud can take anywhere 
from several minutes to several hours depending on the size of the dataset and the computing power 
available. On the other hand, with appropriate on-board processing hardware and software, lidar can 
achieve better than 1:1 processing:acquisition time ratios, making it suitable for real-time monitoring.  

 

Table 2.1 Summary of the qualitative comparisons between UAS- lidar and UAS-SfM as conducted by 
Simpson, 2018 (included and modified with permissions from author). 

 UAS- lidar UAS-SfM 

Cost high low 
Acquisition time low low 
User-input processing time high moderate 
Demand on computing resources moderate high 
Operational expertise required high low 
Processing expertise required high low 
Sensor type  lidar (active) RGB camera (passive) 
Variables of each data point position & intensity position & RGB 
Minimum recommended 
georeferencing  

position and 
orientation 

position only 

Point Density (pts/m2) 30-250 350-5500 
Point Spacing (cm) 6-20 1-5 
Can penetrate dense vegetation yes no 
Reliant on surface texture no yes 
Reliant on lighting conditions no Yes 
Recommended for implementing 
real-time processing on aircraft 

yes no 
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2.2. UAS Selection and Sensor Integration 

An initial step in this project involved the selection of suitable remote aircraft, lidar, and direct 
georeferencing systems. Three basic categories of remote aircraft exist: multirotor aircraft (e.g., 
quadcopters, hexacopters, octocopters, etc.), fixed-wing aircraft (gliders), and helicopters. Each has 
specific advantages and disadvantages (Otero et al., 2015; Gillins et al., 2018), but the following broad 
characterization can be made: fixed-wing aircrafts are best for covering large areas efficiently on a single 
battery but cannot hover; multirotor aircrafts are less efficient for covering large areas but are good for 
hovering in place and also allow vertical takeoff and landing (VTOL); remote helicopters, which are less 
common, are often large, gas-powered aircraft that have greater lift capabilities. For traffic network 
monitoring, the ability to hover is critical, and vertical takeoff and landing are advantageous. 
Meanwhile, gas-powered remote helicopters, while capable of lifting greater payloads, could be 
considered too large, loud, and/or unwieldy to operate near roadways. Hence, multirotor aircrafts are 
the logical choice.  

Having determined that multirotor UAS are most suitable for traffic network monitoring—and most 
other transportation-related applications, including bridge inspection (Gillins et al., 2018)—the next 
considerations involved the size and payload capabilities of the aircraft. The absolute upper limit on 
unmanned aircraft size is established by FAA Part 107, which requires that the maximum allowable take-
off weight (includes airframe and payload) must be less than 55 lbs. to be characterized as a small UAS 
system (sUAS). If the maximum take-off weight is larger than 55 lbs., a different set of regulations, FAA 
Title 14 CFR Part 47, will govern.  

Based on the aforementioned considerations and the resources available, the remote aircraft selected 
for use in this project was a DJI S1000 (Figure 2.1). The airframe is an octocopter weighing 4.1 kg (9 lbs.) 
with a maximum take-off weight (MTOW) of approximately 11 kg (24 lbs.), well below the maximum 
allowable weight of 55 lbs. required by Part 107. The aircraft was controlled using a DJI A2 flight 
controller and was unable to perform automated flights (i.e., following pre-planned flightlines and 
waypoints), resulting in all flights being controlled manually by the pilot on the ground. The inability to 
automatically navigate the remote aircraft along pre-planned flightlines adversely affected operational 
efficiency in this project. However, the manual flights were preferred, due to the enhanced safety, given 
the proximity to active roadways. 

 

Figure 2.2.1 DJI S1000 airframe selected for this project. 
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Similar to the aircraft selection, the selection of a lidar system and direct georeferencing system was 
driven by practical considerations, including size, weight and power requirements and availability of 
existing equipment for use by the project team. Based on the above considerations, the selected lidar 
system was a Velodyne Puck LITE.  The VLP-16, shown in Figure 2.2, is a compact lidar system operating 
at a wavelength of 905 nm, using 16 laser/detector pairs, with manufacturer-specified 100-m operating 
range, depending on target reflectivity at the laser wavelength (Velodyne, 2018; Glennie et al., 2016). 
The acquisition parameters and settings are summarized in Table 3.1. The direct georeferencing system 
selected was an OxTS xNAV 200 global navigation satellite system (GNSS)-aided inertial navigation 
system (INS), shown in Figure 2.3, with additional parameters listed in Table 3.1.  

  

Figure 2.2.2 Final sensor payload including the VLP-16 LITE (left) and the xNAV200 inertial navigation 
system (right).  

The next step was to integrate the lidar and direct georeferencing systems onto the UAS. To accomplish 
this, a custom mount was designed and 3D printed in-house. Creation of this mount in-house allowed 
the most flexibility for mounting to the custom DJI S1000 airframe being used and provided the project 
team the ability to precisely calibrate the 3D offsets (“lever arms”) between the origins of the laser 
scanner reference frame and the INS reference frame. (The importance of these lever arms will be 
further discussed in the lidar point cloud generation section of this report.) After the mount was 3D 
printed, the VLP-16 LITE and xNAV200 GNSS-aided INS were rigidly bolted to the mount (Figure 2.3), that 
was then fixed to the airframe using an off-the-shelf vibration dampening adapter (Figure 2.4). 

(a) (b) 
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Figure 2.2.3 Final sensor payload including xNAV200 rigidly fixed to the custom mount (left) and the 
data-logger for the VLP-16 LITE (right). 

 

 

Figure 2.2.4 Final sensor payload loosely fixed (via the vibration-dampening adapter, seen just above the 
lidar) to the DJI S1000 airframe. 

 

Table 2.2 Summary of mapping system components 

Component Make/model 
UAS  DJI S1000 
 lidar Velodyne Puck Lite 16 
Direct georeferencing system OxTS xNAV 200 
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2.3.  Lidar Point Cloud Generation and Testing 

After the system integration was completed, custom software was written to perform the 
georeferencing of the lidar data, as the original output consists of a raw, unprocessed, flight trajectory 
collected by the GNSS-aided INS and raw lidar data with reference frame of the lidar data being in the 
scanner’s own coordinate system (SOCS). The workflow implemented to create the georeferenced point 
cloud is illustrated in Figure 2.5. The general steps in this workflow are common to most airborne lidar 
systems (e.g., Petrie and Toth, 2009). The basic requirements include post-processing the aircraft 
trajectory and combining it with the raw lidar data in conjunction with the measured leaver arms 
previously mentioned in Section 2.2 using a form of the geolocation equation. It is important to note 
that the georeferencing can be performed in real time, although the highest accuracy results require 
post-processing. 

 

Figure 2.2.5 Workflow used to georeference lidar data.  

 

An overview of how the laser geolocation equation is used to convert the raw lidar data from SOCS 
reference frame to the conventional reference frame (e.g., Universal Transverse Mercator or U.S. State 
Plane coordinate systems) is depicted in Figure 2.6 and is summarized below. 
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Figure 2.2.6 Laser geolocation. 

 

The laser geolocation (i.e., the georeferencing of lidar returns to compute 3D spatial coordinates, 
relative to the mapping frame, of each point) is achieved using the following equation: 

𝒑𝒑𝑙𝑙 = �
𝑋𝑋𝑙𝑙
𝑌𝑌𝑙𝑙
𝑍𝑍𝑙𝑙
� = �

𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

� + 𝑹𝑹𝑙𝑙𝑙𝑙𝑚𝑚𝑹𝑹𝑏𝑏𝑙𝑙𝑙𝑙 ��
𝛿𝛿𝛿𝛿
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� + 𝑹𝑹𝑙𝑙𝑙𝑙𝑏𝑏 �

0
0
−𝜌𝜌

��   (1) 

Where ρ is the range (equal to half the round trip travel time of the laser pulse times the speed of light 
in the atmosphere); 𝑹𝑹𝑙𝑙𝑙𝑙𝑏𝑏  rotates the range vector from the laser-scanner (ls) frame to the UAS body (b) 
frame using the measured scan angle, 𝜃𝜃𝑠𝑠; [𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿]𝑇𝑇 is the vector expressing the GNSS-antenna-to-
UAS-body frame offset or “lever arm”; 𝑹𝑹𝑏𝑏𝑙𝑙𝑙𝑙 rotates from the body frame to the local level (e.g., North-
East-Up) frame; 𝑹𝑹𝑙𝑙𝑙𝑙𝑚𝑚 rotates from the local level frame to the mapping frame (e.g., Universal Transverse 
Mercator coordinate systems), and [𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑌𝑌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺]𝑇𝑇is the position of the UAS’s GNSS antenna. 
The rotation matrices in Equation 1 are generally standard and well known within the Geomatics 
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community (e.g., Filin, 2003; Grewel et al., 2013; El-Sheimy, 2017; Eren et al., 2019). The rotation from 
the body frame to the local level frame is achieved using the roll (Φ), pitch (Θ), and heading (Ψ) from 
the INS: 

𝑹𝑹𝑏𝑏𝑙𝑙𝑙𝑙 = �
cosΘ sinΨ − cosΨ cosΦ− sinΨ sinΘ sinΦ cosΨ sinΦ− sinΨ sinΘ cosΦ
cosΘ cosΨ sinΨ cosΦ− cosΨ sinΘ sinΦ − sinΨ sinΦ− cosΨ sinΘ cosΦ

sinΘ cosΘ sinΦ cosΘ cosΦ
� (2) 

 
Failure to properly apply the laser geolocation equation can be one of many issues that may lead to a 
poorly georeferenced point cloud. Large errors can be caused by having a poor trajectory accuracy that 
might, in turn, be due to an extended period of loss of lock on GNSS satellites. Biases and other forms of 
systematic error may also be due to incorrectly measuring the lever arms, or improperly calibrate the 
lidar system. If relative biases, meaning a bias relative to points within the same dataset (see, e.g., 
Figure 2.7), are present in the data, they can become problematic when attempting to extract features 
using machine-learning algorithms. 
 

 

Figure 2.2.7 Illustration of the need for accurate georeferencing. Here, a slight offset (bias) between the 
points from flight paths 1 and 2 (shown in blue and red, respectively) is evident. If uncorrected, this 

offset could pose challenges for the machine learning algorithms used to auto-extract features. 

 

The UAS lidar data were fed into an end-to-end analytics system, developed by the University of Idaho 
(UI) project team members, responsible for reading directly from the raw lidar system output, 
performing georeferencing (as described above), creating the convolution scan environment, and 
detecting vehicles. The team also created a pipelining process to sequentially scan each batch of 
collected data during any interval, while the next batch is being collected, thus mimicking the exact 
processing that would occur onboard the UAS. This new system was tested using different computing 
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capabilities (different processors with differing RAM), and different time resolutions for running the 
algorithm on the entire scan. For each of the time resolutions and each stage of the code, runtime was 
recorded, along with the detection accuracy, and the number of false alarms. The details of the design 
and implementation of this system are illustrated in Chapter 4.  
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CHAPTER 3. UAS-LIDAR DATA COLLECTION AND EVALUATION 

The first test dataset was acquired at a Newberg-Dundee bypass construction site in collaboration with 
the Oregon Department of Transportation (ODOT). This section of the bypass was, at the time, recently 
completed but remained closed off to the public, allowing the UAS to be flown directly over the 
roadway. The goal of this data acquisition was to collect a dataset with multiple transportation features 
in the scene that the project team could use to begin developing the feature extraction algorithms. 
Some of the features acquired at this site included: signs, vehicles, pavement markings, and guardrails. 
In addition to collecting data of roadway features, the project team also conducted flights over 
stationary vehicles and a participating moving vehicle. Analysis of the data revealed the effects of 
incidence angles (due to the super-elevated roadway) and the freshly paved (very dark) pavement had 
on signal return dropouts. (Note: a “dropout” is defined as a transmitted lidar pulse for which no 
detectable return signal is received.) As a result of these site characteristics, the project team had to 
decrease the flying altitude over the roadway from 40 m (130 ft) down to 30 m (100 ft) and modify the 
trajectory to increase the total point returns. From analysis of the data, an even lower flying height 
would have be beneficial for reducing the number of dropouts.  

 

 

Figure 3.1 UAS data collection at the Newberg Dundee construction site. 
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Figure 3.2 Georeferenced lidar point cloud for Newberg-Dundee site. 

 

The second UAS-based lidar data set was collected over a portion of the Oregon State University (OSU) 
campus, including a parking lot with several parked vehicles, on April 17, 2018. All project team 
members from both OSU and UI participated in the data collection (Figure 3.3). The lidar data sets were 
subsequently used by UI project team members in developing and testing the vehicle-detection 
algorithms. 

 

Figure 3.3 Data collection on OSU campus. 

 

The acquisition parameters and system settings for the first two UAS-lidar data acquisitions are listed in 
Table 3.1. Lidar system parameters were obtained from Velodyne (2018) and Glennie et al. (2016). 
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Table 3.1 UAS-lidar data collection parameters and acquisition settings. 

Parameter Acquisition setting 
Lidar system Velodyne VLP-16 
Laser wavelength 903 nm 
Laser safety class Class 1 
Lidar horizontal field of view 360° 
Lidar vertical field of view 30° 
Angular resolution 2° vertical, 0.1-0.4° horizontal 
Laser/detector pairs 16 
Max lidar measurement rate 300 kHz 
Laser pulse width 6 ns 
Max output energy 0.19 μJ 
Nominal ranging accuracy ±3 cm 
Nominal lidar power consumption 8 W 
Power requirement 10-31 V 
Lidar physical dimensions 10.3 cm diameter; 7.2 cm height 
Inertial navigation system (INS) OxTS xNAV200 
INS measurement rate 100 Hz 
Nominal INS accuracy Roll and pitch: 0.05°; Heading: 0.15° (1σ) 
Nominal INS power consumption 6.5 W 
Airframe DJI s1000 
Max flight altitude 120 m (400 ft), AGL 

 

A third lidar data set was collected on August 16, 2018. The goal of this data acquisition was to simulate 
lidar data collected by a stationary (hovering) UAS scanning an intersection. The Velodyne VLP-16 lidar 
system (described earlier) and a video camera were fixed-mounted to a railing overlooking the Monroe-
14th Street intersection in Corvallis, Oregon (Figure 3.4). These sensors were used to collect 20 minutes 
of data from three different orientations: 1) scanner oriented horizontal with main axis pointing across 
the intersection; 2) scanner oriented vertical with main axis pointing across the intersection; and 3) 
scanner oriented vertical with main axis pointing across Monroe Street only. Analysis of the data 
revealed that vehicles were well detected and could be readily tracked in the lidar scans. 
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Figure 3.4 Stationary lidar data acquisition overlooking intersection. 

 

 

The fourth and final data collection for this project utilized a different aircraft and lidar system. Data 
were collected with a Phoenix Lidar Systems MiniRanger (Figure 3.5), incorporating a Riegl miniVUX-
1UAV lidar and an INS using fiber optic gyroscopes (FOGs), for a section of roadway near the University 
of Washington campus on November 27, 2018. The MiniRanger operates at a wavelength of 905 nm, 
with a maximum effective measurement rate of 100 kHz, and nominal ranging accuracy of 1.5 cm 
(Kellner et al., 2019; Phoenix LiDAR Systems, 2019). A benefit to this lidar system was the increased 
ranging distance of 250 meters (at 60% target reflectivity), as compared to the VLP-16 LITE, which had a 
nominal maximum range of 100 meters. Through the oblique scanning angle and increase in ranging 
distance (as compared with the other UAS lidar system used in this study), this platform enabled the 
flights to be completed at a greater distance from the roadway while still maintaining an acceptably 
small number of dropouts. The operational lessons-learned from all four field data collection efforts 
undertaken in this project were compiled and are presented in Chapter 5 of this report. 
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Figure 3.5 Phoenix Lidar Systems MiniRanger, incorporating a Riegl miniVUX-1UAV lidar. 

 

Figure 3.6 lidar data, colored by return intensity (bottom) with a snap shot of the co-acquired RGB video 
(top) collected at an intersection on UW campus. 
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Figure 3.7 Lidar UAS acquisition using Phoenix Lidar Systems MiniRanger. 

 

Figure 3.8 Field operations for UAS lidar acquisition. 
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CHAPTER 4. DESIGN AND IMPLEMENTATION OF MACHINE LEARNING ALGORITHMS 

The aim of this portion of the project was to develop an end-to-end vehicle recognition program (all 
built in C++) from lidar point clouds in real-time and on-board the UAS. As described earlier, the 
system for the real-time airborne traffic monitoring is composed of a UAS, a lidar scanner, a global 
navigation satellite system (GNSS) receiver, an inertial navigation system (INS), and an on-board 
computer. With the use of such equipment, we can divide the operation of the system into two 
time dependent blocks: a) scanning, and b) data analysis. Given that the data collection by the lidar 
scanner and positioning system can be operated alongside other computations within the on-board 
computer, the data analysis block is designed to run in parallel with the scanning block. Therefore, it 
is essential to select a scanning block time that allows the data processing algorithm to perform the 
computations before the next scanning block starts, as shown Figure 4.1. While the lidar and 
positioning systems scan the data for a given block, the on-board computer is processing the data 
from the previous block and needs to finish its computations before the end of the current scanning 
block. In this way, we can ensure that the rate of data accumulation does not exceed the capability 
of the system to process the information.  
 

 
Figure 4.1 Scheduling of scanning and data processing blocks for the airborne lidar based vehicle 

recognition system. 

 
With the information collected during the scanning block, the data analysis algorithm combines all 
of the available data to create a 3D representation of the environment, referenced to the UAS’s 
position during the flight. This 3D space goes through a filtering step to select the data within the 
range of interest and then it undergoes a convolutional step for the vehicle detection. The 
algorithm steps are further explained below.  
 
Step 1: Read and Prepare Data 
 
At the beginning of the data processing block, the on-board computer requests the lidar and UAS 
positioning data for the most recent frame and performs the initial data preparation. The raw lidar 
data is presented with the time of flight (TOF) distance, along with a vertical and horizontal firing 
angles, ω and α, respectively. In order to reconstruct the 3D distance from the lidar, the TOF 
distances are decomposed in X, Y, and Z components based on the firing angles, as shown in Figure 
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4.2. Since a time stamp is not assigned to all data points, the periodicity of the beam firings is used 
to assign a timestamp to the remaining points. The positioning information comes with the time 
stamp for each measurement with (a) Latitude, (b) Longitude, (c) Altitude, (d) Heading, (e) Pitch, 
and (f) Roll. The geodetic coordinates (latitude and longitude) are then converted to Universal 
Transverse Mercator (UTM) northings and eastings, due to the computational ease of working with 
projected coordinates. The coordinate computations are as follows (Velodyne, 2018) 
 

𝑋𝑋 = 𝑅𝑅 cos𝜔𝜔 sin𝛼𝛼     (3) 
 
𝑌𝑌 = 𝑅𝑅 cos𝜔𝜔 cos𝛼𝛼     (4) 
 
𝑍𝑍 = 𝑅𝑅 sin𝜔𝜔     (5) 

 

 
Figure 4.2 A) coordinate decomposition for Velodyne VLP-16, based on TOF distance, R, and angles, ω 

and α; B) side view; and C) top view (adapted from Velodyne, 2018). 
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Step 2: Perform Coordinate Transformations 
 
The laser scanner and positioning system each collect data relative to their own 3D coordinate 
system. A 3D conformal transformation, consisting of rotations about three axes and translations to 
align the origins of the respective frames is performed to bring the data into a common frame. This 
step makes use of the lever arms that were previously described, and the measured attitude data, 
in the form of Tait-Bryan angles (roll, pitch, and heading). 
 
Step 3: Interpolate Data 
 
Given that the measurement rate of the INS unit on the UAS is much lower than the lidar system’s 
pulse repetition rate, the UAS trajectory data (position and orientation at each epoch) needs to be 
interpolated to provide an appropriate origination coordinate for each beam firing. Before the data 
sets with the position of the UAS and lidar-measured distance can be combined, a position needs to 
be assigned to the origin of each laser pulse. Given that the INS measurement rate is 100 Hz, a 
linear interpolation can be used to calculate the UAS position between two measurements. 
 

 
Figure 4.2 Algorithm for interpolation of UAS trajectory, based on differing data rates of INS and lidar 

measurement.  

 
Step 4: Apply Geolocation 
 
With all the lidar coordinates properly referenced to the UAS frame, the two data sets can be 
combined once axial rotations (heading, pitch, and roll) corrections have been applied. During the 
flight, changes in direction and speed cause the UAS to experience rotations as it corrects its course. 
The equations below demonstrate how the final data set can be obtained from the UAS position, 
lidar TOF distance measurements, and axial rotation corrections. 
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      (6) 
 
 
      (7) 
 
 
      (8) 
 
      (9) 
 
 
      (10) 
 
 
 
Step 5: Data Optimization 
 
After the proper 3D referencing calculations, the final point cloud needs to be optimized for the 
convolution calculations, the most computationally expensive step of the algorithm. First, repeated 
points need to be removed from the data set. This step is necessary because the lidar scanner can 
detect the same location of the area scanned during different parts of the flight, yielding the same 
X, Y, and Z coordinates after the referencing calculations. Once the unique point cloud is obtained, 
the road data set can is trimmed for the limits of the road segment of interest. Since the proposed 
system is meant to work with scheduled flights, the road limits can be obtained from the scheduled 
flight trajectory. Next, the point cloud needs to be filtered for the road level of interest, which can 
be based on the minimum data Z coordinate on the frame. The algorithm can concentrate in 
regions that vehicles are likely to occupy. The last optimization in this step is to add an offset to the 
data so it can start at the origin of the 3D Cartesian coordinates and continue along the positive 
axes. 
 
Step 6: Convolutional Recognition 
 

The final step of the vehicle-identifying algorithm is to perform the convolution computation. 
Utilizing a pre-selected reference vehicle filter (shown in Figure 4.3), the processed data captured 
by the system is convolved with this vehicle model to find similarities with the scanned data. Based 
on a selected threshold for the result of the convolution computation, the algorithm determines 
whether a vehicle is located in a given location. Since the calculations near an actual vehicle may 
yield multiple convolution results that surpass the chosen threshold, due to partial superposition 
between the actual vehicle and the model, smaller convolution results near a higher value need to 
be disregarded. In other words, a scanned vehicle will have partial matches with the selected 
model, and these partial matches need to be filtered from the desired “full” match between the 
point clouds. At the end of the data processing block, the algorithm outputs the coordinates for the 
detected vehicles minus the offset it had generated while optimizing the data. The performance of 
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the algorithm described above can be fine-tuned, based on the scanned time for each frame, the 
resolution step for the convolution computation, and the convolution result threshold. 

 

Figure 4.3 Reference vehicle filter. 
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CHAPTER 5. RESULTS  

5.1. UAS Operations 

One key result of this project is a set of guidelines or best practices for operational use of UAS for traffic 
network monitoring. Overarching guidelines for UAS for transportation applications are listed in the 
PacTrans UAS in Transportation Expo final report, stemming from a PacTrans “Success Stories” project 
(Parrish et al, 2018) aimed at disseminating the results of this project and previous UAS research in 
support of the Pacific Northwest Transportation Consortium. Key recommendations are summarized 
below: 

• Due to the rapidly evolving technological and regulatory aspects of UAS, state transportation 
agencies seeking to use UAS operationally are advised to develop a formal UAS program, with a 
defined structure and roles and responsibilities. 

• Standard operating procedures (SOPs) should be developed for as many operational aspects of 
the program as possible, as SOPs help reduce on-the-fly decision-making in stressful field 
situations.  

• For operations in controlled airspace, it is important to initiate correspondence with Air Traffic 
Control (ATC) as early as possible in the project planning stage. Likewise, conversations with 
landowners should occur as early as possible.  

• The FAA Low Altitude Authorization and Notification Capability (LAANC) is a very useful utility, 
which automates the application and approval process for airspace authorizations, enabling UAS 
pilots to obtain access to controlled airspace at or below 400 ft. 

• When the flight crew and flight operations are visible to passing motorists, the flight crew 
should be as conspicuous and official as possible, including wearing safety vests, headsets, and 
other personal protective equipment, as required. 

• UAS firmware updates should be avoided in the field; firmware should be updated and tested in 
a non-operational environment away from traffic. 

Additionally, the following operational recommendations and lessons-learned are specific to UAS traffic 
network monitoring and the operations performed in this research: 

• Low-reflectance (i.e., dark) surfaces, such as new asphalt, result in a significant number of lidar 
“dropouts” (i.e., non-detections, leading to data gaps). This situation is exacerbated when 
combined with large inflection angles (i.e., when scanning obliquely to the roadway to maintain 
the required stand-off distance). While flying lower to reduce laser range would seem to be a 
logical solution, this typically cannot be done for the safety reasons noted below. Hence, it is 
critical to ensure that the lidar system used has sufficient range to detect returns from low-
reflectance surfaces at the required operational ranges.  

• In addition to maintaining adequate distance from drivers to minimize potential driver 
distraction (Hurwitz et al., 2018; Barlow et al., 2019a; Barlow et al., 2019b), adequate flying 
altitude must be maintained to minimize impact to pedestrians, while still receiving adequate 
point returns. (While FAA Part 107 prohibits flights over non-participants, a more stringent 
requirement of ensuring UAS operations are unnoticed by pedestrians is recommend, to the 
extent feasible.)  

• Moving vehicles can appear distorted in the resulting point cloud  
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o When flying against the moving flow of traffic, vehicles appear compressed in the point 
clouds, whereas flying with the flow of traffic, vehicles appear elongated (streaking 
effect). 

o In some areas, it can be difficult or impossible to calibrate the GNSS-aided INS without 
overflying a roadway; therefore, not all areas are suitable for being monitored under 
current laws and policies that preclude flights over roadways and over nonparticipants. 
 INS systems require calibration flights to warm up the INS about all axes. 

Requiring the user to fly “figure eights” prior to acquiring any data. This could 
possibly be alleviated through different methods for point cloud registrations 
such as any of the various SLAM based approaches. 

o Lidar scanning angle/trajectory orientation has a large impact on the ability to capture 
specific vertical features adequately. Having a large forward/back scan angle can help 
alleviate this issue and thus possibly eliminate the need for multiple flight lines. 

o A geo-fence should be used to assist in ensuring that the aircraft does not at any time fly 
over the roadway and any areas containing nonparticipants. 

5.2. Vehicle Detection 

The performance evaluation of the system/algorithm was conducted in a controlled environment, 
emulating real-time conditions and allowing for the assessment of different processing units. During the 
tests, the computer received the raw data obtained from the lidar scanner and positioning devices 
(replicating a real-time data stream) and provided the locations of vehicles according to the 
computations in the algorithm described above. For this evaluation, two airborne UAS scans were 
utilized with different values for the performance variables, frame time, convolution threshold, and 
resolution step. For the end-to-end tests, from data collection to vehicle identification, two processors 
were utilized to obtain the time required for the data processing block. The first processor, a 3GHz Intel 
Core 2 Duo, was tested with 2GB, 4GB, 8GB of RAM while the second processor, a 2.5GHz Intel Core i7, 
had a fixed 16GB DDR3 of RAM. 

The first data set corresponds to the scan of a free road segment containing a single moving vehicle. 
Figure 5.1 (a) displays the post-processing point cloud with the vehicle circled in red. The second data 
set scanned an urban setting with multiple vehicles in a parking lot. Figure 5.1 (b) displays the post-
processing point cloud with some of the visible vehicles circled in red. In addition to vehicles, the figure 
also displays buildings and trees, which help test the algorithm in the typical environment in which the 
airborne lidar based system will be utilized.  

Analysis of the algorithm applied to the two datasets demonstrates that the proposed system can be 
utilized with moving and static vehicles. The point clouds shown in Figure 5.1 were utilized for a visual 
verification of the algorithm. For this analysis, the vehicle model utilized for the convolution step was 
extracted from the point cloud. During the initial steps of the development of the algorithm, the post-
processing point cloud for the single vehicle was subdivided into frames of different lengths and 
evaluated for different convolution step resolutions. 

Table 5.1 displays the time required to identify the single vehicle with a resolution of 0.1 and 1 meters. 
The X Range variable serves as an illustration to the quantity of data points in the scanned area, helping 



 

26 
 

to demonstrate that the difference in timing for smaller resolutions increases considerably as the 
number of points in the data set grows. 

Table 5.1 Single Vehicle Convolution Timing. 

 

Analyzing the data set with multiple vehicles and other urban features provides a better understanding 
on how the convolution threshold and the time interval selected for a frame affect the Detection Ratio 
and False Detection Ratio of the algorithm. The data packets from the raw data set for the multiple 
vehicle scanned environment was segmented into different time frame lengths from 1 second to the full 
length of the data set, 47 seconds. The graphs in Figure 5.1 display the Detection Ratio and False 
Detection Ratio for convolution thresholds of 100, 150, 200, and 250, computed as follows: 

 

Detection Ratio =  # Correctly Detected Vehicles
# Actual Vehicles

∙ 100%   (11) 

 

False Detection Ratio =  # Falsely Detected Vehicles
# Total Detected Vehicles

∙ 100%   (12) 

 

Tables 5.2 to 5.5 present the average time for the different frame times and convolution thresholds 
considered with different amounts of RAM. Under the current algorithm and systems utilized, the time 
requirements for the frame times considered followed Figure 4.1, maintaining the Data Processing Block 
timing less than the Frame Time. 

The four configurations of RAM for the system present a similar timing behavior when considering the 
convolution threshold. While the algorithm timings for thresholds of 150, 200, and 250 are very similar 
for the four test scenarios, the lower threshold of 100 presents a higher time difference. This indicates 
that the algorithm is detecting a higher rate of partial objects, requiring more filtering computations to 
be performed. 

In addition, the amount of RAM utilized in the testing does not seem to have a significant effect 
compared to that of the processor utilized. The 2GB, 4GB, and 8GB RAM configurations present very 
similar timing results, indicating the smaller on-board computers with lower power consumption can be 
selected. Moreover, it is interesting to notice that as the convolution threshold increases, the total data 
processing time for a frame decreases. This is due the fact that less partial matches between a scanned 
vehicle and the vehicle model surpass the convolution threshold, lowering the computation load. 
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Figure 5.1 Detection Ratio and False Detection Ratio for Different Resolution Thresholds and Time Frame 
Segments. 

 

 

Table 5.2 Average data processing time (sec) for different frame lengths and convolution thresholds for 
a 3GHz Intel Core 2 Duo processor with 2GB of RAM. 

 

Table 5.3 Average data processing time (sec) for different frame lengths and convolution thresholds for 
a 3GHz Intel Core 2 Duo processor with 4GB of RAM. 
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Table 5.4 Average data processing time (sec) for different frame lengths and convolution thresholds for 
a 3GHz Intel Core 2 Duo processor with 8GB of RAM. 

 

Table 5.5 Average data processing time (sec) for different frame lengths and convolution thresholds for 
a 2.5GHz Intel Core i7 processor with 16GB of RAM. 
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CHAPTER 6. CONCLUSIONS  

This research project demonstrated the current state-of-the-art for traffic network monitoring using a 
novel combination of three emerging technologies, unmanned aircraft system (UAS), light detection and 
ranging (lidar) and machine learning, and identified key avenues for ongoing work. An investigation of 
suitable remote aircraft and payloads for lidar-UAS traffic monitoring was conducted. A custom lidar-
UAS was then built, instrumented, and used to collect data for multiple test sites, including a controlled 
test environment on the OSU campus, and a portion of the Newberg-Dundee construction site in 
Dundee, Oregon. Additionally, a higher-end UAS lidar, with greater range and higher georeferencing 
accuracy, was used to acquire data for a section of roadway near the University of Washington campus. 
All flights were conducted under FAA Part 107 regulations with Part 107 certified remote pilots serving 
as Pilot in Command (PIC). 

Processing algorithms were developed to automatically parse raw data, generate georeferenced point 
clouds, filter out repetitions, and perform scanning to identify vehicles. Importantly, the software uses a 
pipelining process to sequentially scan each batch of collected data during any interval while the next 
batch is being collected, enabling efficient processing that could occur onboard the UAS. This work 
resulted in an end-to-end processing system, implemented in C++, capable of real-time vehicle 
recognition with processors that can be mounted on UAS. 

The UAS data collection portions of the project were used to develop a set of operational 
recommendations for the use of UAS in traffic network monitoring. These recommendations are 
summarized in Chapter 5.1 and were disseminated in a PacTrans “Success Stories” project, through a 
UAS in Transportation workshop held on the OSU campus (Parrish et al., 2018). Analysis of the vehicle 
recognition system applied to two datasets demonstrated that the proposed system: a) can be utilized 
with both moving and static vehicles; b) can achieve suitably high detection rates and low false alarm 
rates; and c) can be made efficient enough for real-time operation onboard a UAS. The amount of RAM 
utilized in the testing was not found to have a significant effect, in comparison with the processor 
utilized. Similar timing results were obtained with 2GB, 4GB, and 8GB RAM configurations, indicating the 
smaller on-board computers with lower power consumption can be selected. 

Looking to the future, trends in miniaturization of GNSS, INS, and lidar should greatly assist in traffic 
network monitoring with lidar-equipped UAS. Smaller, lighter payloads with the same or better 
performance specifications will enable smaller UAS to be used and also increase endurance (i.e., flight 
time per battery), which is highly beneficial for monitoring. So-called “hybrid” UAS, which allow vertical 
takeoff and landing (VTOL) like a multirotor, but then convert to a fixed-wing/glider-type aircraft when 
airborne, may greatly enhance operational efficiencies. At the same time, anticipated regulatory 
changes are likely to ease some of the operational challenges in use of UAS for transportation 
applications. For example, proposed new rules, which are being evaluated by the FAA (FAA, 2019) would 
allow for nighttime flights and flights over people (nonparticipants) without waivers in some situations.  

Follow-on research will contribute to the long-range vision for traffic network monitoring, utilizing a 
fleet of lidar-equipped UAS that cover very wide transportation network segments, perform real time 
processing, and communicate with one another and with a the traffic network cloud controller, 
informing real-time decisions. Leveraging the results of this project, specific recommendations for future 
research include: 1) testing the software developed in this research on boards with lower computational 
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power; 2) improving the point cloud and reference vehicle filtering and further reducing latency; and 3) 
investigating new types of remote aircraft with greater endurance (e.g., hybrid UAS). Additionally, it is 
recommended that transportation agencies implementing UAS programs remain active in providing 
input on changes to UAS regulations, which may lead to significant increases in operational efficiency for 
applications, such as traffic network monitoring. 
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