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Abstract 

In recent years there has been a growing desire for the use of probe vehicle technology 
for congestion detection and general infrastructure performance assessment. Unlike costly 
traditional data collection by loop detectors, wide area detection using probe-sourced traffic data 
is significantly different in terms of measurement technique, pricing, coverage, etc. This affects 
how the new technology is applied and used to solve current traffic problems such as traffic 
incident management and roadway performance assessment. This report summarizes the 
experiences and lessons learned while using probe data for traffic operations and safety 
management in the state of Nebraska and makes recommendations on opportunities to maximize 
the use of probe data in light of its limitations. A detailed analysis of performance monitoring 
and historical trend analysis, including the top 10 congested segments, congestion per mile 
across metro areas, congested hour(s) during summer and winter months, and yearly travel time 
reliability, for Interstate 80 segments in Nebraska were performed. Two main conclusions can be 
drawn from this study. First, there is almost always a speed bias between data streaming from 
probes and traditional infrastructure-mounted sensors. It is important to understand the factors 
influencing these biases and how to cope with them. Second, lack of confidence score 30 (real-
time) probe data is a critical issue that should be precisely considered for incident detection, 
roadway performance assessment, travel time estimation, and other traffic analyses. Ultimately, 
the authors present several recommendations that will help transportation agencies gain the best 
value from their probe data. 
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Executive Summary 

Presently, there is an expanding interest among transportation agencies and state 
Departments of Transportation to consider augmenting traffic data collection with probe-based 
services, such as INRIX. The objective is to decrease the cost of deploying and maintaining 
sensors and increase the coverage under constrained budgets. This report documents a study 
evaluating the opportunities and challenges of using INRIX data in Nebraska. The objective of 
this study was twofold: (1) evaluate the reliability and accuracy of probe-data streams against 
fixed, infrastructure-mounted sensor data and (2) report the real-time performance monitoring 
and historical trend assessments. 

This study demonstrates a systematic way to compare the reliability and accuracy of 
probe-data streams for monitoring traffic conditions and supporting operations decisions. Out of 
65 automatic traffic recorders (ATRs) in Nebraska, 16 locations were identified based on various 
criteria. For each of the selected ATRs there were corresponding traffic message channels 
(TMCs), which are maintained by INRIX to collect the traffic details on major freeways and 
urban areas. Various traffic performance measures were used to help understand the traffic 
conditions across different road segments or different time periods and to identify bottlenecks in 
Nebraska. The data visualization program can also be used with a real-time data feed to monitor 
and analyze current traffic conditions. 

The reliability and accuracy of the INRIX data were evaluated by comparing the data to 
PVR (per-vehicle record) sensor data. The factors that were taken into consideration for 
examining the performance of the INRIX data are as follows: (1) percentage availability of 
INRIX; (2) speed bias between INRIX segments and PVR sensors; (3) incident detection, which 
provides the number of congestions, and detection latency; and (4) performance measures, such 
as congested hour(s), buffer time index, and reliability curves. By comparing sensor traffic speed 
data with segments, it was observed that INRIX is consistent for almost all minutes of a day on 
interstates. Moreover, it was shown in this study that INRIX is more reliable during the day than 
at night, especially during peak hours. Regarding incident detection, INRIX is more reliable in 
detecting recurring congestion as compared to incident related congestion. The congestion 
duration error varies with the congestion type. 

INRIX speed bias affected the process of congestion detection as well as calculation of 
congested hour duration. For instance, speed bias affects the magnitude of INRIX speed reported 
at segments with lower speed limits such that a 60-mph speed limit segment might shows speeds 
around 45 mph (the congestion threshold) or even less during non-congested times, whereas 
benchmarked sensor data reports speeds around 60 mph. Also, speed bias affects performance 
measures, such as congested hour, buffer time, and reliability curves, which are evaluated 
thoroughly in chapter 4. Accordingly, it is important to understand the factors that influence 
these biases and how to correct for them. Another critical issue that is discussed in this report is 
the quality of probe data, which depends heavily on the number of probes on the road network. 
Shortage of INRIX real-time data (confidence score 30), especially during off-peak hours or on 
arterials, influences the accuracy of the results. Substituting with historical data was not accurate 
and therefore not advised. In areas with limited probe penetration, transportation agencies can 
augment probe data with infrastructure-mounted sensors. 

A comprehensive analysis of performance monitoring and historical trend analysis using 
different measures for Interstate 80 (I-80) segments in Nebraska was also performed. The top 10 
congested segments on I-80 were identified and a detailed analysis of when congestion had 
occurred by month, day of week and time of day from 2013 through 2016 was performed. A 
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congestion-per-mile calculation was used to determine metro area congestion per mile, which 
supports contrasting performance given the varying amounts of segments and roadway lengths 
that exist. These values were calculated for each month for all metro areas across Nebraska to 
compare any trends in congestion. A yearly comparison is also provided for years 2013 through 
2016. The number of hours of congestion was used to display the severity of congestion by 
segment along I-80. Each segment was color coded based on the number of hours of congestion 
by summer and winter months. Once identified, these locations can also be analyzed by year, 
month, week, day, or time of day. Finally, the severity of congestion was evaluated by observing 
the percentage of time speeds were within a 10-mph bin from 0 to 75+ mph. 
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1. Introduction 

1.1 Background 

For comprehensive performance assessments of freeways, highways, and arterials, state 
DOTs and many of transportation agencies conventionally rely on infrastructure-mounted 
sensors, but the cost of installing and retaining these sensors is high. Most of these infrastructure-
mounted sensors are deployed on major freeways and in critical urban areas, and this leads to 
less coverage on highways and arterials. Also, in terms of geographical scalability, they need to 
be deployed in large numbers to be able to control the traffic situation in a given area. 
Considering all the limitations of fixed local sensors, it is essential to devise new data-streaming 
sources to augment the sensors. 

The emergence of probe vehicle technology, which has grown over the past few years, 
has caused a remarkable change in traffic data collection, processing, analyses, and utilization. 
Being able to access a huge volume of historical and real-time traffic data without any of the cost 
of installation, configuration, and maintenance of infrastructure-mounted sensors interests many 
agencies that want to utilize a single, uniform data source for monitoring traffic conditions across 
most routes in the U.S. Traffic information is collected from millions of cell phones, vans, trucks, 
connected cars, commercial fleets, delivery vehicles and taxis, and other global position system 
(GPS)-enabled vehicles. Presently, several probe-data vendors, such as INRIX, HERE, TomTom, 
NAVTEQ, TrafficCast, etc., provide broad and high quality real-time and historical traffic data 
around the world. 

INRIX provides speed, travel time, incidents, and quality data updates along each mile-
long travel segment at a frequency of once every minute. The resulting stream for traffic message 
channels (TMCs) comprises approximately 9–10 GB/month, or more than 100 GB/year, and for 
XD segments is approximately 45 GB/month, or more than 545 GB/year for the entire Nebraska 
roadway system. With the addition of new higher spatial coverage and resolution, the size of 
input streams is expected to increase [1]. 

1.2 Vehicle Probe Data from INRIX 

In this study, we utilized the historical and real-time traffic data collected through the 
INRIX TMC monitoring platform. Real-time traffic data, including speeds and travel times, as 
well as location information, were provided by INRIX, which is currently regarded as the largest 
crowd-sourced traffic dataset. With the help of today’s technologies, including connected 
vehicles and smartphones, INRIX leverages the vast amount of historical and real-time data that 
can be analyzed and investigated to improve transportation networks’ performance. INRIX’s 
historical traffic flow data is a spatial and temporal database of average speeds for major 
roadways and arterials across all 50 states. These speeds are determined by algorithms that 
evaluate multiple years’ worth of data collected using INRIX’s patented Smart Dust Network 
system, which reports speed values on roads across the country. The speed data are then 
processed across several different temporal resolutions and reported on a customer-configurable 
basis for each temporal resolution. 
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1.2.1 INRIX Data Sources 

INRIX derives historical flow data using the following: 
• Traffic sensors – Sensors put in place by local DOTs or private sector companies, from 

which traffic speed is either reported or can be inferred. The sensors utilize one of 
several types of technology: 
o Induction loop sensors imbedded in the roadway, 
o Radar sensors, and/or 
o Toll tag readers along stretches of roadway 

• Probe vehicles – The INRIX network includes hundreds of thousands of probe 
vehicles—trucks, taxis, buses, and passenger cars with onboard GPS devices and 
transmitting capability—to relay speed and location back to a main location. INRIX 
has agreements with several fleets to obtain the speed and location data anonymously. 

• INRIX Smart Dust Network – This network works by combining real-time GPS probe 
data from more than 650,000 commercial vehicles across the U.S. that travel on a 
specific segment of road during a particular time window, physical sensor information, 
and other real-time traffic flow information with hundreds of market-specific criteria 
that affect traffic—such as construction and road closures, real-time incidents, sporting 
and entertainment events, weather forecasts, and school schedules. This component 
gathers all input points, weights them appropriately based on input quality and latency, 
and calculates the speed occurring on that road segment to a measured degree of 
accuracy. 

1.2.2 INRIX Data Format 

All the INRIX historical traffic flow data for the state of Nebraska is delivered in CSV 
(comma separated value) format. Data provided by INRIX [2] contains the following 
information (refer to Figure 1.1): 

• TMC ID – the basic spatial unit used by INRIX to report the traffic flow data; INRIX 
uses a 9-digit TMC ID to define a unique segment. 

• Time segment – a 19-digit time format used by INRIX to define the year:month:day: 
hours:minutes:seconds (e.g., 2014-09-30 23:59:33 for September 30, 2014 at the 23rd 

hour, 59th minute, and 33rd second) for each TMC. 
• Speed – representing the average speed for a 

given TMC code, calculated from live data 
from the most current time slice. 

• Referenced speed - an uncongested “free-
flow” speed determined for each TMC 
segment using the INRIX traffic archive. 

• Average speed – the historical average mean 
speed for the reporting segment for that time 
of day and day of the week in miles per hour. 

• Travel time – reported by INRIX based on an 
aggregation of data provided by GPS probes. 

• Confidence – an attribute reported by INRIX 
Figure 1.1 An instant of Nebraska having three levels: 10, 20, and 30. A 

INRIX data 
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confidence of 30 indicates that enough base data were available to estimate traffic 
conditions in real time, rather than using either historical speed based on time of day and 
day of week (indicated by confidence of 20) or free-flow speed for the road segment 
(indicated by a confidence of 10). 

• C_value – the confidence value (range 0–100), designed to help agencies determine 
whether the INRIX value meets their criteria for real-time data. 

1.3 Performance Measures 

Transportation system reliability is defined in various ways, such as travel time reliability, 
connectivity reliability, and capacity reliability. The focus of this study was on travel time 
reliability, which is one of the key performance measures used by a majority of transportation 
agencies and state DOTs. Section 2.3 contains a summary of previous studies that were 
conducted on different kinds of probes and sensors as well as the accuracy and reliability of 
probe-sourced data using several measures such as congestion level percentage, travel time index, 
planning time index, buffer time index (BTI), user delay cost, average travel time, volume, space 
mean speed, density, average speed bias, absolute average speed error, absolute average travel 
time error, travel time bias, lane-miles congested, vehicle miles traveled, congested hour, latency, 
etc. Additionally, in section 4.2.4 congested hour, buffer time, and reliability curves are 
presented as three main measures for evaluating the performance of INRIX versus sensors data. 

1.4 Conclusion 

This report is organized as follows. A literature review summarizing previous related 
studies is provided in Chapter 2. Chapter 3 presents the how different criteria were used to select 
the 16 sites out of 65 ATRs in Nebraska. In Chapter 4 the experiments and results are explained 
in detail, the evaluation of reliability and accuracy of real-time INRIX data using different 
performance measures for selected ATRs is discussed, and insight is given about the observed 
results. In addition, the chapter includes a detailed analysis of some of the performance measures, 
such as congested hour, buffer time, and reliability curves, and a discussion about INRIX 
drawbacks such as speed bias and device penetration. Next, in Chapter 5, performance 
monitoring and historical trend analysis using the top 10 most congested roadways are discussed, 
and the number of hours of congestion in different metros, speed performance, and travel time 
reliability are identified for I-80 from 2013 through 2016. The report concludes with the findings 
of this study and a discussion of future recommendations in Chapter 6. 
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2. Literature Review 

2.1 Introduction 

This chapter provides a review of previous studies conducted on probe data, sensor 
technologies, and all performance measures using probe-sourced data. 

2.2 Review of Existing Opportunities for and Challenges of using INRIX data 

As demand for comprehensive traffic monitoring grows from both travelers and 
transportation agencies, a new technology that would reduce both installation and maintenance 
costs is needed for collecting accurate and real-time traffic details. Probe-based methods of 
measuring travel time and speed data can easily scale across large networks without the need for 
deploying any additional infrastructure [3]. 

The objective of this study was to evaluate the reliability and accuracy of probe data 
streams against fixed, infrastructure-mounted sensor data. This report, based on a critical 
evaluation of the INRIX stream, will highlight key considerations for incorporating probe data 
into traffic operations, planning, and management activities. The accuracy of the data stream was 
evaluated under different factors such as: INRIX coverage on freeways and non-freeways and 
during peak and non-peak hours; speed bias between INRIX TMC segments and PVR (per-
vehicle record) infrastructure sensors; incident management; and performance measures such as 
congested hour, BTI, and reliability curves. 

Although many studies comparing the accuracy and reliability of probe-sourced data 
against local sensor data such as radar sensor data, loop detector data, etc., have been conducted 
[4], [5], [6], [7], [8], [9], [10], Kim and Coifman [7] showed that INRIX speeds tend to lag 
behind loop detector measurements by almost 6 min. Although INRIX reports two measures of 
confidence, these confidence measures do not appear to reflect the latency or the occurrence of 
repeated INRIX reported speeds. Kim and Coifman used two months of concurrent data against 
the concurrent loop detector data to evaluate INRIX performance on 14 mi of I-71, including 
both recurrent and non-recurrent events. To calculate the amount of latency, they used a 
correlation coefficient with several months of continuous data from concurrent detectors while 
shifting the time-series loop detector with 10 sec steps [7]. 

The Federal Highway Administration (FHWA) conducted a survey to gather information 
on: (1) products and services offered by private sector data providers and (2) public sector 
agency uses of the private sector data products and services. It found that agencies are using a 
range of data sources including GPS data from fleet vehicles, commercial devices, cell phone 
applications, fixed sensors installed and maintained by other agencies, fixed sensors installed and 
maintained by data providers, and cell phone locations. Most providers did not disclose specific 
quality evaluation results or quality assurance algorithms. INRIX explicitly stated its capability 
of meeting an availability level of more than 99.9% and an accuracy of greater than 95% [8]. 

Nanthawichit et al. [9] proposed a method for treating probe vehicle data together with 
fixed detector data to estimate the traffic state variables of traffic volume, space mean speed, and 
density. The method uses a macroscopic model along with the Kalman filtering technique and 
was verified with several sets of hypothetical traffic data. They suggested the possibility of using 
estimated/predicted states to estimate/predict travel time. Coifman [5] has investigated various 
means of measuring link travel times on freeways. He used basic traffic flow theory to estimate 
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link travel time using point detector data without requiring any new hardware. Sadrsadat and 
Young [10] worked on the Vehicle Probe Project (VPP) to determine the probability of real-time 
data as a function of hourly volume. They compared the VPP data against travel time collected 
using BluetoothTM traffic monitoring equipment. The VPP provides an indication of real-time 
data by a confidence score attribute equal to 30, which is provided by INRIX. Their study 
confirmed the availability of real-time data with increasing traffic volume as measured by the 
percentage of 30 confidence scores. Feng et al. [4] investigated the analytical relationships 
between travel time prediction–estimation accuracy and sensor spacing, by means of two basic 
travel time prediction–estimation algorithms, and they also probed vehicle penetration rate. Their 
findings provide support for detector placement and probe vehicle deployment, especially along 
a freeway corridor with existing detectors. Online estimation and prediction of travel time using 
induction loop detectors were evaluated against observed travel time. Lindveld et al. [6] found 
reasonably accurate (10 to 15% root mean square error proportions) across different sites for 
uncongested to lightly congested traffic conditions. They used various travel time estimators, but 
only speed-based travel time estimators could be tested under congested conditions. 

The Florida Department of Transportation (FDOT) used several metrics, such as absolute 
average speed error, average speed bias, absolute average travel time error, and travel time bias, 
to determine the accuracy of the vendors’ (NAVTEQ, TrafficCast, and INRIX) system data. 
Overall, the data looked consistent with the ground truth and the license plate reader data, and no 
significant differences in data accuracy among the three vendors were observed [11]. Adu-
Gyamfi et al. [12] explored the reliability of probe data for congestion detection and overall 
performance assessment using an adaptive, data-driven, multiscale data decomposition algorithm 
called the Empirical Mode Decomposition. The cost of deploying large-scale control strategies 
for traffic networks has increased the need for more reliable real-time traffic condition prediction. 
Liu et al. [13] discussed two approaches: dynamic mode decomposition and spatiotemporal 
pattern networks. Their results show that data-driven approaches have effectively detected 
changes in traffic system dynamics during different times of the day. 

The FDOT’s [14] technical memorandum summarizes the various data available for 
analyzing bottlenecks and congestion on Florida’s Strategic Intermodal System. This technical 
memorandum also makes recommendations concerning the applicability of using existing FDOT 
data versus the vehicle probe data from INRIX. Rick and Ryan [15] discussed how INRIX 
launched the world’s first crowd-sourced traffic network with sensors in fleet vehicles and 
mentioned how the INRIX XD™ gives greater traffic detail on any map and a traffic platform 
for planning, analysis, and operation of road networks. Matsumoto et al. [16], using probe data 
for CO2 emission reduction, defined three services (traffic flow analysis, improvement of the 
signal control performance, and priority control of bypass) that enhance traffic flow control. 
They confirmed detection of a bottleneck without depending on deployment rate of the in-
vehicle unit by using probe data statistically in traffic flow analysis. 

Different techniques (data assimilation, Newtonian relaxation) to incorporate probe data 
into macroscopic traffic flow models have been used to solve the optimization problem in urban 
areas, and they have confirmed the possibility of decreasing probe data for congested traffic with 
negligible degradation on the quality of traffic status estimation [17]. To reduce CO2 emissions 
using intelligent traffic control requires many detectors and high installation costs. Nagashima et 
al. [18] used probe data collected by vehicles through GPS or other devices and a signal control 
system that calculates consecutive spatial traffic information (spatial data) such as queue length. 
They showed that it is possible to reduce the number of detectors [18]. Haghani et al. [19] 
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described a new validation scheme for comparing travel time data from two independent data 
sources with an emphasis on arterial applications. In addition, a context-dependent-based travel 
time fusion framework was developed to integrate data from INRIX and BT datasets to improve 
data quality. To minimize the impact of random errors that can occur with INRIX data, two new 
techniques, confidence value and smoothing, have been developed by a coalition of the 
University of Maryland and INRIX.. When used together, these techniques reduce both the 
frequency and severity of the sudden changes that have been observed [20]. Kobayashi et al. [21] 
suggested using probe data to collect spatial traffic information toward CO2 emission reduction 
and verified the possibility of detecting bottleneck intersections based on traffic flow analysis 
utilizing infrared beacon probe data collected from the real field. 

2.3 Review of Sensor Technologies 

To evaluate the reliability and accuracy of a probe data stream against fixed 
infrastructure-mounted sensor data, it is important to understand the process for both data 
collection and data processing. The collection of real-time quality data depends on the reliability 
and accuracy of the sensor technology used. In this section, we focus on the characteristics of 
different types of sensors used for traffic operations. We differentiate between point-based 
sensors, which collect the traffic information at a single point on the roadway, and section type 
sensors, which provide the traffic characteristics over a section of roadway. The strengths and 
limitations of different sensor technologies are compared, and they can be divided into three 
categories: roadway based, probe based, and driver 
based, as shown in Figure 2.1. 

Roadway-based sensors can be considered a 
part of the roadway infrastructure system. This 
technology generally involves the use of inductive loop 
detectors (ILDs) and loop emulators. Underwood [22] 
considered three types of detection means: magnetic 
sensing (i.e., ILDs and magnetic sensors), range 
sensing (i.e., microwave, infrared, ultrasonic, and 
acoustic sensors), and image sensing (i.e., video image 
processors). Roadway-based sensors are installed at the 
side of the road or below the road surface. They scan 
traffic and provide traffic information extracted from 
passing vehicles. 

Probe-based sensors are carried by vehicles to 
collect traffic details. They generally come in automatic 
vehicle identification (AVI) systems, used for vehicle 
positioning and navigation. Compared to roadway-
based sensors, probe-based sensors can probe traffic 
flow variation over space. Traffic flow information is 
collected only from a portion of vehicles traveling on 
roads due to the limitation of the current market 
penetration rate. 

Figure 2.1 Types of sensors 
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Unlike the other two types of sensors, driver-based sensors provide manual incident-
detection reports from drivers and/or service patrol crews, including wireless phone reports (to 
911), freeway service patrol units, in-vehicle personal communication systems, and emergency 
centers. The term sensor used here refers to a device that includes software to detect vehicles and 
converts real-time data into data that a computer can understand. The software can be installed 
within the sensor device, in a roadside cabinet, or at the traffic management center. This software 
includes the processing algorithms, which provide other traffic information such as vehicle speed, 
travel time, etc. [23]. 

Roadway-based sensors refer to the use of ILDs and loop emulators. ILDs comprise a 
large-scale application for traffic surveillance and monitoring, and they help in traffic 
management and incident detection systems. As loops are limited to one or two short sections, 
they cannot represent comprehensive roadway situations. Traditionally, they measure spot time-
average traffic parameters, such as speed, volume, occupancy, and vehicle classification, so it is 
difficult to collect the traffic details from urban arterial roads, where spatial variation of traffic 
flow is complex. Recent developments, such as vehicle identification techniques based on pairs 
of ILDs [24], [25], [26], video image processors [27], [28], and laser sensors [29], have provided 
promising results for traffic incident detection. Traffic surveillance and monitoring applications 
regularly use ILD sensors. Presently, most incident detection algorithms use traffic data derived 
from ILDs. ILDs are made up of insulated wire bent into a square or rectangular shape, and they 
are connected to a power source on both sides of the wire. When a vehicle passes over the loop, 
the oscillation frequency increases and causes the electronic unit to send a pulse to the controller, 
which registers its presence in its detection zone. With new developments, ILDs can be used to 
classify vehicles [23] and can also be tuned for different locations and environments, as the 
sensitivity of an ILD is adjustable. At times, readjustments are needed, as an ILD can go out of 
tune over time. All the collected traffic details can be used to calculate volume and occupancy. 
However, ILDs fail to detect long vehicles, as tractor-trailer units are too far above the loop, 
resulting in detection gaps. Also, when installed in poor pavement or in extreme weather 
conditions, ILDs are only poorly reliable. Moreover, most cities with mature systems report that 
25 to 30% of their sensors are not working properly at any given time [22], and the installation 
and maintenance of ILDs require lane closures, causing traffic disturbances. Finally, ILDs are 
less effective for incident detection in low volume conditions. 

Magnetic sensors work on the principle that the presence of a vehicle distorts the 
magnetic field within the earth. Although different in appearance and specific technology, they 
all operate on principle similar to ILDs. They are often installed in place of loops on bridge 
decks and in heavily reinforced pavement, where steel adversely affects loop performance [23]. 
Both types of sensors have their respective applications and tend to complement one another. 
There are two different types of magnetic sensors used for traffic flow management: active 
devices (two-axis fluxgate magnetometers), excited by an electrical current in windings around a 
magnetic core material, and passive devices, which sense perturbations in the earth’s magnetic 
flux produced when a moving vehicle passes over the detection zone. The self-powered vehicle 
detector, a type of magnetometer developed with FHWA support, is connected to a remotely 
located controller via a radio link. It has installation and maintenance problems similar to ILDs, 
as traffic needs to be disrupted to remove and re-insert the sensor. Although they are similar in 
price, magnetic detectors are easier to install and maintain than are ILDs, and compared to ILDs, 
magnetic detectors can sustain more stress. However, one of the biggest disadvantages of 
magnetic detectors is that they cannot measure lane occupancy; although, lane occupancy can be 
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measured using magnetic detectors, they may interfere with each other if two sensors are placed 
too close together [30]. 

In terms of working waveforms, microwave sensors can be divided into two types: 
constant-frequency waveforms and frequency-modulated waveforms. Continuous microwave 
detectors work under the same principle as Doppler to compute vehicle speed from constant-
frequency waveform microwave radar that transmits electromagnetic energy at a constant 
frequency. This type of microwave sensor is not suitable for incident detection, as vehicle 
presence cannot be measured with this waveform. Pulse microwave detectors can count vehicles, 
record speeds, and detect vehicle presence [31]. Microwave sensors provide a cost-effective 
substitute for ILDs for detecting vehicle presence and for collecting other traffic details. 
Comparatively, microwave sensors are smaller, lighter in weight, and easier to install than are 
ILDs and magnetic sensors. They can be mounted overhead or in a side-looking configuration 
and can detect multi-lane traffic and cover a longer range. Because of their small size, low cost, 
and low power consumption, they are suitable for traffic surveillance at intersections and on 
highways. However, newly installed microwave sensors may interfere with other similar 
microwave-based devices in the vicinity. 

Infrared sensors can work in active or passive modes. Active infrared sensors measure a 
vehicle’s presence, speed, volume, occupancy, and classification, but they are vulnerable to 
weather conditions such as fog, clouds, shadows, mist, rain, and snow. When using these sensors 
in the active mode, a detection zone is “illuminated” with infrared energy transmitted from laser 
diodes operating in the near infrared spectrum, then a portion of transmitted energy is reflected to 
the sensor by vehicles travelling through the detection zone, and finally the reflected energy is 
converted into electrical signals that are analyzed in real time. Active sensors are not widely used 
in traffic surveillance, as they are more expensive than passive ones. Passive infrared sensors do 
not transmit their own energy but, instead, use an energy-sensitive element. They measure the 
same traffic parameters that active detectors do except for speed; because the extended nature of 
a vehicle distorts the infrared signature, passive infrared sensors have difficulty measuring the 
speed. Another type of passive infrared sensor, known as the multi-zone passive infrared sensor, 
can measure the speed and length of a vehicle. Like with active infrared sensors, the performance 
of this type of sensor may be adversely affected by fog, snow, and precipitation, which scatter 
energy and change light [32]. 

Ultrasonic sensors transmit pressure waves of sound energy at frequencies between 25 
and 50 KHz [23],[30] and can be divided into two types: pulse-waveform ultrasonic sensors and 
constant-frequency ultrasonic sensors. Here, only the pulse waveform sensor is discussed, as 
most of the time it works with pulse waveforms. Pulse waveforms ultrasonic sensors can 
measure speed, occupancy, presence, queue length, and the distance to the road surface and the 
vehicle surface. Ultrasonic sensors are small and can be used as portable units, so they tend to be 
reliable and durable. However, bad weather can adversely affect their operational performance. 
If installed above the roadway, vehicle classification can be achieved for most vehicle types. 
Ultrasonic sensors work using the same technique is used by pulse microwave sensors, 
converting the received signal into electrical energy. 

Acoustic sensors are configured as a two-dimensional dipole array of microphones that 
are sensitive to acoustic (audio sound) energy. They work in a passive mode: the time delay 
between the arrival of sound (at the upper and lower microphones) changes with time as the 
vehicle emits a sound. As soon as vehicle passes through or leaves the detection zone, it is 
detected by the signal-processing algorithm. The best results are achieved when the data are 
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filtered to a bandwidth of 50–2000 Hz, and the preferred mounting is at a 10 to 30 degree angle 
from vertical. Acoustic sensors measure vehicle presence, speed, volume, occupancy, and they 
can count vehicles, but their performance is affected by low temperature, snow, and dense fog 
[31]. Another type of acoustic sensor can monitor up to 7 lanes of traffic using a fully populated 
microphone array, adaptive spatial processing, and mounting heights ranging from 20 and 40 feet. 

Laser sensors operate in active mode and are used for traffic surveillance. They offer 
high-speed measurement accuracy and collect all vehicle characteristics such as vehicle presence, 
classification, speed, volume, and occupancy [29]. Moreover, they can uniquely identify vehicles 
by measuring the travel times between two locations. Generally, they can be mounted on 
highways, and each unit can provide coverage for two adjacent lanes. They transmit the 
information between the sensor and the control and processing computer using a wireless modem. 

Video image processors automatically analyze traffic data, which are collected from 
closed circuit television systems using machine vision techniques. These units consist of one of 
more video cameras, a microprocessor for digitizing and processing the video imagery, and 
software for interpreting the image. They use an image-processing algorithm to calculate traffic 
flow information. These systems fall into three classes: tripline, closed-loop tracking, and data-
association tracking. With tripline, the user can define the limited number of detection zones. 
With closed-loop tracking, vehicle detection is allowed along larger roadway sections, which 
provides additional traffic flow information such as lane-to-lane vehicle movements. Tracking a 
specific vehicle or group of vehicles as it passes through the field of view of the camera is 
possible using data-association tracking systems [27]. 

Probe-based sensors, also referred to as vehicle-mounted sensors, have the capability of 
transmitting real-time individual probe data. The sensors measure the point data, point-to-point 
data, and/or section data and then send these measurements to the traffic management center or 
traffic operations center. The sensors move within the traffic stream and report an individual 
vehicle’s movement parameters, i.e., position and velocity with a time tag, with a pre-selected 
frequency or as they pass reader locations. Compared to roadway-based sensors, they can sense 
the spatial variation of traffic flow over a wide area. If there are more probe vehicles equipped 
with sensors in a traffic network, traffic stream conditions can be determined temporally and 
spatially at the finest level and the collected information can better reflect actual traffic 
conditions. With the latest probe-based sensor technologies, including automatic vehicle 
location/global positioning systems, AVI, Signpost/beacon systems, and cellular locating 
systems, these sensors are highly recommended for incident detection. 

Automatic vehicle location systems help to determine the position/location of a vehicle 
(typically using long-range communications) at a particular time. They use GPS, a satellite-based 
radio positioning, and a time transfer system. With a horizontal positioning accuracy of 5 meters 
95% of time, they enhance the reliability of real-time traffic information collection. As a GPS 
signal is transmitted via high-frequency microwave, it cannot handle obstructions. Therefore, 
these systems may suffer from signal blockage in tunnels or under bridges. With the latest 
developments, other positioning techniques, such as dead reckoning, have been incorporated 
within or combined with receivers to improve reliability. 

Signposts/beacons can be mounted at the sides of roadway or on existing cellular base 
stations. These can be infrared, microwave, or radio frequency devices, and they can transmit 
and receive the data from vehicles equipped with transceivers. Signposts/beacons can be either 
self-positioning, by which a tag in the vehicle picks up a signal from the beacon, or remote 
positioning, by which the beacon senses a tag on the vehicle. The devices consist of antennas, 
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transmitter electronics, and receiver electronics. With applications for traffic surveillance and 
parking management, radio frequency beacon systems are becoming more popular. Petty et al. 
[33] explored an incident detection algorithm using probe vehicles equipped with radio 
transponders and discussed the feasibility, infrastructure requirements, and performance of radio 
frequency beacon systems. 

Intelligent transportation system applications of cellular geolocation technology are 
currently being studied by many researchers. The main aim of this technology is to provide 
innovative services related to different modes of transport and to make the use of transport 
networks safer, more coordinated, and smarter. To determine locations, pattern recognitions 
using radio frequency signals are transmitted from a cellular phone. After identifying a signature 
based on the radio frequency pattern, the signature is then compared with a database of 
previously identified radio frequency signatures and their corresponding geographic locations. 
Finally, by matching the signature patterns, the caller’s location is identified. The data stored in 
the cellular location system include: the mobile identification number of each call, the longitude/ 
latitude of the call location, instantaneous speed, the current compass heading of the call’s 
mobile device, and a time stamp. This sensor technology used for traffic surveillance has several 
advantages, as it uses existing infrastructure and requires no alteration to the base station or 
subscriber handset, therefore significantly reducing the cost of establishing service. 

Automatic vehicle identification systems have two main components: an in-vehicle unit 
(transponder/reader) and a wireless communications link. These systems help to identify vehicles 
at specific location at a specific time. Most AVI systems transmit information through 
microwave, infrared, or radio frequency. Under good conditions, the reported accuracy of an 
AVI system is usually in the 99.5% to 99.9% range. However, accuracy may be reduced by 
adverse weather conditions and interference from other radiation sources. AVI technology is 
applied principally for electronic toll collection, electronic congestion pricing, and fleet control. 

Presently, most incident detection algorithms use traffic data derived from loop detectors. 
When a vehicle passes over the loop, the oscillation frequency increases, which causes the 
electronic unit to send a pulse to the controller and register its presence in its detection zone. 
With new developments, loop detectors can be used to classify vehicles. In this study, PVR 
sensors were considered the benchmark for evaluating the reliability of INRIX data. Hence, it 
was necessary to evaluate the performance of PVR sensors with another reliable source of data. 
Therefore, we utilized trailers to collect a few samples of Wavetronix sensor data to check the 
performance of PVR-reported data. Wavetronix sensors use radar technologies to collect traffic 
operations data. Each sensor unit consists of a Doppler radar, a wireless modem, a solar panel, 
and onboard processors for real-time processing of traffic information such as speed, volume, 
occupancy, etc. 

2.4 Review of Performance Measures Used for INRIX data 

Numerous studies, using various methods, have been conducted on the evaluation of 
probe vehicle technology performance. An overview of reviewed freeway and non-freeway 
system performance measures is provided in Table 2.2. 

Table 2.1 Overview of literature review on performance measures 
Source of Probe 

Data Used Performance 
Measures 

Comments 

Reference Positive Negative 
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Source of Probe 
Data Used Performance 

Measures 

Comments 

Reference Positive Negative 
(not mentioned) Traffic volume, 

space mean speed, 
density 

1. Proposed method can treat both 
conventional fixed-detector data and 
probe-vehicle data in a unified manner, 
regardless of the observation 
conditions. 
2. Estimation method that uses both 
fixed-detector and probe data provides 
the smallest errors. 
3. Errors from both travel-time 
estimation and prediction are small, 
having a MARE below 0.04. 

1. Findings were validated only for a 
single freeway section. 
2. This study assumed that the probe 
data could be obtained perfectly and 
the effect of the biased data due to 
individual willingness of probe 
drivers was neglected. 

Chumchoke, N. et al. 
[9] 

(NAVTEQ, 
TrafficCast, and 
INRIX) 

Absolute average 
speed error, average 
speed bias, absolute 
average travel time 
error, travel time 
bias 

1. NAVTEQ, TrafficCast, and INRIX 
are all generally consistent with the 
ground truth data. 
2. INRIX data on Route 1 appeared to 
have a slight advantage in accuracy 
compared to other probe datasets. 

1. TMC segments in urban areas with 
traffic signals experienced a larger 
variability in the results. 

Technical 
Memorandum. 
(FDOT) [11] 
(not mentioned) 95th percentile 

travel time, standard 
deviation, 
coefficient of 
variation, percent 
variation, skew 
statistic buffer index 
(w.r.t. average), 
buffer index (w.r.t. 
median), PTI, 
frequency of 
congestion, failure 
rate (w.r.t. average), 
failure rate (w.r.t. 
median), travel time 
index 

1. The coefficient of variation is a 
good proxy for a number of reliability 
measures, including planning time 
index, median-based buffer index, and 
skew statistic. 
2. Defining the buffer index and 
failure rate on the basis of the median, 
rather than the average, is 
recommended to avoid 
underestimating unreliability, 
especially for heavily right-skewed 
travel time distributions. 
3. The mathematical relationship 
between the reliability measures 
revealed in the studycould easily be 
used to predict one measure on the 
basis of another, or estimate their 
relative magnitudes. 

1. Standard deviation, is not 
recommended as a proxy because its 
magnitude relative to other measures 
is not stable. 
2. Travel time reliability generally 
deteriorates as traffic congestion 
increases. 
3. A notable limitation of this study 
was posed by the assumption of 
lognormal distributed travel times. In 
the real world, travel time distribution 
can have non-lognormal distributions, 
for example, bimodal, Weibull. 

Pu, W. (2011). [35] 

(not mentioned) Travel time 
window, percent 
variation, variability 
index, displaying 
variation, buffer 
time, BTI, PTI, 
travel rate envelope, 
on-time arrival, 
misery index 

Travel time reliability was described as a measure of the amount of congestion 
transportation system users experience at a given time. 

Lomax, T. et al. 
(2003) [36] 

(INRIX) Annual hours of 
delay per mile, 
hours of target 
delay per mile, TTI, 
PTI, top N 
congested segments 

1. INRIX is immediately available at 
relatively low cost for the entire 
arterial street network. 
2. Mobility performance measures for 
arterials should be travel speed-based 
measures that compare peak traffic 
speeds to speeds during light traffic, 
recognizing that the light traffic speed 
is not a target value but simply a 
reference point for performance 
measures. Thus, INRIX is a reliable 
data source in this case. 
3. PTI is the recommended reliability 

-----

(MnDOT Report) 
(Turner and Qu, 
2013) [37] 
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Source of Probe 
Data Used Performance 

Measures 

Comments 

Reference Positive Negative 
measure. 

(INRIX) Congestion hours, 
distance-weighted 
congestion hours, 
congestion index, 
speed profile, speed 
deficit, travel time 
deficit, congestion 
cost, top N 
bottlenecks 

Focused mainly on freeway measures. Congestion hours were reported as total 
hours across all segments when average 15-minute speed fell below 45 mph 
(threshold). 

2012 Indiana 
Mobility Report 
(Remias et al., 2013) 
and 2013-2014 
Indiana Mobility 
Report (Day et al., 
2014) [38] 
(INRIX) Number of 

intersections and 
mile of roadway 
(direction-wise) for 
LOS categories (D 
or better, E, F), list 
of intersections and 
road segments at 
LOS E and F, top N 
bottlenecks for 
freeways 

Focused mainly on freeway measures and also on an arterial route. It provided 
several pieces of information, such as speed limit, number of signals, number of 
lanes in each direction, average daily traffic, percentage of trucks, corridor 
length, etc. for each corridor and used INRIX data for bottlenecks and freeway 
measures. 

2013 Maryland State 
Highway Mobility 
Report (Mahapatra et 
al., 2013) [39] 

(not mentioned) Average travel time 
per 10 miles, 
additional travel 
time needed for on-
time arrival (80% of 
time), annual 
congestion costs 

Used RITIS and travel time data using wireless technology. Covered two metro 
areas and used mobility map, which showed high, medium and low levels in 
different colors. 

MoDOT Tracker 
(MoDOT, 2013) [40] 

(INRIX, HERE, 
TomTom, and 
NPMRDS) 

TTI, BI, and PTI, 
user delays, user 
delay costs, 
bottlenecks 

It hosted HERE, INRIX, TomTom and NPMRDS data and used INRIX 
historical average speed to calculate buffer index. 

RITIS VPP Suite 
(UMD CATT Lab, 
n.d.) [41] 
(NPMRDS) Congested hours, 

PTI, TTI 
Focused completely on freeways using HPMS volume data and 15-minute 
aggregated NPMRDS data by day of week and month. 

(UCR) (FHWA, 
2015b) [42] 
(INRIX) Travel speed, travel 

delay, annual 
person delay, 
annual delay per 
auto commuter, 
total peak period 
travel time, TTI, 
PTI, CSI, RCI, 
number of rush 
hours, percent of 
daily and peak 
travel in congested 

1. Improvements in the INRIX traffic 
speed data. 
2. Given availability and high quality 
of INRIX, they could track congestion 
problems for the midday, overnight 
and weekend time periods. 

-----

(UMR) (Schrank et 
al., 2012) (Urban 
Mobility Scorecard 
in 2015) [43], [44] 
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Source of Probe 
Data Used Performance 

Measures 

conditions, percent 
of congested travel 

Comments 

Reference Positive Negative 

(not mentioned) Lane-miles 
congested, total and 
cost of delay, TTI 

Defined congestion as speeds below 70% of the posted speed limit. Calculated 
delays on the basis of maximum throughput speeds (85% of posted speed limit). 
TTI was calculated using reference speed rather than free flow speed. It 
identified daily congested segments on individual corridors with segment length 
and hours. Several more measures like congested miles, etc. were calculated. 
Reports used loop detectors, automated license plate readers, Bluetooth, 
Wavetronix, vehicle detection, and private sector data. 

WSDOT Gray 
Notebook (WSDOT, 
2014) and Corridor 
Capacity Summary 
(WSDOT, 2013) 
[45], [46] 
(INRIX) Delay per vehicle, 

total delay, TTI, 
Buffer index, PTI, 
on-time arrival, 
congested travel, 
misery index 

Used INRIX and focused on freeways and arterials. Percentage of on-time 
arrival calculated as proportion of days when peak period travel time was less 
than 1.1 times mean peak period travel time. It also defined Congested Travel as 
the product of corridor length and volume of peak period. Percentage of 
congested travel and misery index were also calculated. 

VDOT Pilot Study: 
2010 [47] 

(not mentioned) Highway travel time 
reliability, vehicle 
hours of delay, 
percent of miles 
severely congested, 
VMT. Mobility 
performance 
measures grouped 
into quantity, 
quality, 
accessibility, and 
utilization. 

Highway travel time reliability defined as percentage of travel greater than 45 
mph on freeways. Percentage of miles severely congested was defined as 
percentage of roadway miles operating at LOS F during peak hours. 

FDOT Performance 
Report (FDOT, 
2013b) [48] 

(INRIX) INRIX TTI, wasted 
time in congestion 

Used INRIX speed data. It defined INRIX TTI as percentage increase in 
average travel time of a commute above free flow conditions. Used average 
delay of typical commute trip, length of typical commute trip, and number of 
trips a commuter takes monthly or annually to calculate wasted time in 
congestion. 

INRIX Traffic 
Scorecard (INRIX, 
2015) [49] 
(TomTom) Congestion level 

percentage 
Used TomTom speed data to calculate the extra travel time a driver experiences 
compared to an uncongested situation. 

TomTom Traffic 
Index (TomTom, 
2016) [50] 
(INRIX) Latency, occurrence 

of repeated INRIX 
reported speed 

1. Similar patterns of congestion, 
queue growth, and so forth between 
INRIX and ground-truth data. 

1. INRIX speeds tend to lag the loop 
detector measurements by almost 6 
min. 
2. Most of the time, INRIX reported 
speed is identical to the previous 
sample and repeating for average 3 to 
5 minutes. 
3. INRIX confidence measures do not 
appear to reflect the latency or the 
occurrence of repeated INRIX 
reported speeds. 

Kim, S., Coifman, B. 
(2014) [7] 

(INRIX) Travel time, 
average speed 

1. Paired-t method can be effectively 
applied for verification of probe data. 

1. Paired-t method has a binary 
outcome which says probe data for 
specified speed bin is good or not. No 

15 



 

 

   
   

 

 

   
   

   
    

     
     

    
 

  
  

 
 

   
   

  

     
     
  

       
   

 

    
   
  

  
   

 
 

 
 

   
  

    
  

    
   

     
      

   
      

    
    

    

    
  

  
  

 
 

   
 

        
      

  

  
  

 
  

  
 
 

   
 

      
     
   

      
     

      
   
     

     
 

    
 

 
 
 

   
  

      
    

   
    

 

      
 

  
     

 
 

 
 

  
  

 

     
    

 

      
       

    
    

   
 

 
 

  
 

     
   

   
 

 

    

            
             

          
            
 

Source of Probe 
Data Used Performance 

Measures 

Comments 

Reference Positive Negative 
Aliari, Y., Haghani, 
A. (2012) [51] 

additional info is provided. 
2. Since the method uses average 
errors over all time, high variance 
outliers can invalidate the whole 
segment. 

(INRIX, TomTom, 
Google, etc.) 

Traffic jams, traffic 
jams on (surface 
streets, highways) 

1. All probe sources reported traffic 
jams on highways significantly better 
than streets. 
2. The longer the jam, the better 
chance probe can accurately report. 

1. They experienced some type of 
operational failure or disruption 
during their study. 

Belzowski, B., 
Ekstrom, A., (2013) 
[52] 
(INRIX) Speed error, speed 

error bias 
1. Speed data provided by INRIX is 
generally of good quality. 

1. Segments with length less than one 
mile are in-accurate. 
2. Different confidence scores 30, 20, 
and 10 are not significant indicator of 
INRIX data quality. 
3. For speeds below 45 mph, INRIX 
overestimates the speeds and for 
speeds over 60 mph, it 
underestimates the actual speed. 

Haghani, A. et al. 
(2009) [53] 

(INRIX, NAVTEQ, 
and TrafficCast) 

Travel time, Speed 
bias 

----- 1. INRIX speed has a 6 mph bias 
relative to ground truth on an 
uncongested freeway. 

Lattimer and 
Glotzbach (2012) 
[54] 
(INRIX, NAVTEQ, 
and TrafficCast) 

Travel speed, Speed 
error 

----- 1. Overall average speed errors to be 
within 10 mph throughout various 
levels of congestion. 
2. Data providers missed a major 
incident lasting more than 4 hours. 
3. INRIX reported speeds 30 mph 
higher than ground truth data while 
INRIX classified those speeds with 
"high confidence" during this major 
incident. 

Kim et al. (2014) 
[55] 

(INRIX) Speed bias, latency, 
similarity index 

1. Probe data is reliable for monitoring 
the performance of transportation 
infrastructure over time. 
2. Latency on freeways is less than 
non-freeways. 

1. Various levels of amplitude bias 
between INRIX and benchmarked 
data. 

Adu Gyamfi Y. et al. 
(2017) [56] 
(INRIX) Travel time 

reliability, PTI, 
FOC 

1. Both FOC and PTI are capable to 
identify and rank recurrent freeway 
bottlenecks. 

1. Using either FOC or PTI alone 
may not be possible to identify the 
intensity of bottlenecks’ traffic 
congestion. Gong, Linfeng, and 

Wei Fan (2017) [57] 
(INRIX) Hourly traffic 

volume 
1. Probe data is promising for 
estimating hourly traffic volume using 
machine learning models. 

-----

P Sekuła et al. [58] 

PTI, Planning time index; BTI, Buffer time index; TTI, Travel time index; LOS, Level of service; MAP-21, Moving Ahead for 
Progress in the 21st Century Act; RITIS, Regional Integrated Transportation Information System; VPP, Vehicle Probe Project; BI, 
Buffer index; NPMRDS, National Performance Management Research Dataset; HPMS, Highway Performance Monitoring 
System; CSI, Commuter stress index; RCI, Roadway Congestion Index; WSDOT, Washington State DOT; VMT, vehicle miles 
traveled. 
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Transportation system reliability has been defined in various ways: first, as travel time 
reliability, which is the probability that trips can be successfully accomplished within a specified 
timeframe; second, as connectivity reliability, which focuses on trips carried out successfully 
based on the remaining connectivity between an origin–destination pair; and third, as capacity 
reliability, which refers to trips that can be completed at a certain level of link capacity [34]. The 
focus of this study was on travel time reliability, which is one of the key performance measures 
used by the majority of transportation agencies and state DOTs. More formally, FHWA defines 
travel time reliability as “the consistency or dependability in travel times, as measured from day-
to-day and/or across different times of the day” [59]. Lomax et al. [36] describes travel time 
reliability as a measure of the amount of congestion users of the transportation system experience 
at a given time. The 1998 California Transportation Plan explains “reliability” as the 
inconsistency between the projected travel time, which is based on the scheduled or average 
travel time, and the real travel time due to the effects of nonrecurring congestion [60]. 

Travel time reliability in the transportation engineering field is measured in several ways: 
the 90th or 95th percentile of travel time, the standard deviation, the coefficient of variation, the 
percentage of variation, the buffer index, the planning time index, the travel time index, etc. 
FDOT used some metrics, such as absolute average speed error, average speed bias, absolute 
average travel time error, and travel time bias, to evaluate the accuracy of probe stream data of 
different vendors (INRIX, TrafficCast, etc.). Altogether, different vendors’ data looked 
consistent with the ground truth and the license plate reader datasets, and there was no 
considerable difference between them in terms of data accuracy [11]. 

In a recent study conducted by Venkatanarayana [61], hours of congestion for a segment 
was considered the total number of hours when the average speed of the segment drops below a 
predetermined threshold. FHWA conducted a report to calculate congestion and reliability 
metrics with the National Performance Management Research Data Set. It defined hours of 
congestion as the amount of time when freeways operate at less than 90% of free-flow freeway 
speeds [62]. Another measure is the buffer index, which is defined as the extra time a traveler 
should take into account to arrive on time. Lomax et al. [36] calculated buffer time using the 
difference between the 95th percentile of travel time and the average travel time for a trip as a 
measure of the extra time a traveler would need to arrive on time. Similar to Pu [35], this study 
introduces a modified buffer time index (BTI) that incorporates the median, rather than average, 
travel time as a new travel time reliability measure. Pu [35] recommended using the median 
rather than the average travel time for calculating the buffer index, as this avoids trivializing the 
reliability in travel time, especially for heavily right-skewed travel time distributions. 

2.5 Conclusion 

This chapter comprised a summary of previous studies that were conducted on various 
kinds of probes and sensors as well as the accuracy and reliability of probe-sourced data using 
several measures such as congestion level percentage, travel time index, planning time index, 
BTI, user delay cost, average travel time, volume, space mean speed, density, average speed bias, 
absolute average speed error, absolute average travel time error, travel time bias, lane-miles 
congested, vehicle miles traveled, number of congested hours, latency, etc. In the next chapter, 
data collection for this study and how some specific locations were selected will be explained in 
detail. 
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3. Data Collection 

3.1 Introduction 

In today's complex global economy, transportation connections enable a business to 
locate in any region offering the best possible combination of labor, land, tax, and cost—while 
competing worldwide. All the state DOTs are relying on fixed-mounted sensors to collect traffic 
information such as travel time, traffic speed, volume, etc. This traffic information can be used 
by Nebraska Department of Roads (NDOR) councils to identify which routes are used most and 
to decide whether to improve that road or provide an alternative if there is an excessive amount 
of traffic. 

Presently, NDOR is maintaining 65 ATRs in different locations. However, the cost of 
deploying and maintaining these sensors is very high compared to alternatives provided by non-
traditional data streaming sources. Probe-data collection is a set of relatively low-cost methods 
for obtaining travel time and speed data for vehicles traveling on freeways and other 
transportation routes. NDOR has already procured probe data streams through a third-party 
vendor, INRIX, to augment traffic data collection and assess the performance of its operations. 
INRIX is maintaining 4125 traffic management centers to collect the traffic information for 
major freeways and urban areas. 

3.2 Selection of sites 

To evaluate the reliability and accuracy of probe data streams, it is important to identify 
the location of the ATRs. The research team and the technical advisory committee for the project 
decided to select 16 specific locations based on the following five criteria: 

• Nearest TMC from the ATR mid-point, 
• 2014 continuous traffic count data and traffic characteristics from Nebraska Streets and 

Highways (April 2015) and Automatic Traffic Recorder Data (June 2016), 
• Winter segments (given by NDOR), 
• Level of confidence available in particular areas, and 
• Anomalies found from cumulative distribution function (CDF) distributions. 

To improve decision making, we also considered the percentage of heavy truck usage and the 
interquartile range for each TMC. 

The dashboard view of all the ATR locations in Nebraska, along with their reliability 
curves, nearby TMCs, average annual daily traffic, confidence levels, and minimum distance 
from ATR mid-point, is shown in Figure 3.1. The 16 sites selected are shown in Figure 3.2. 
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Figure 3.1 Dashboard view of 16 selected locations 

Figure 3.2 Location of 16 selected sites 

Raw data files received from the INRIX server were parsed using Hadoop technology 
and then visualized with tools like Tableau and R programming to aid in choosing the final 16 
sites for evaluating the reliability and accuracy of probe data streams against fixed, 
infrastructure-mounted sensor data. The 16 sites with above criteria selected for this study are 
shown in Table 3.1. 
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Table 3.1 Selected sites with different criteria 

No. TMC Dir County Road 

% of 
Confi-
dence AADT IQR 

Heavy 
Truck 

Nearest 
TMC/XD Remarks 

1 118-12176 EB Chase US-6 7.10 570 3 188 
118+12177 

3096189 
3096305 

Nearest 
mid-point 
ATR#19 

2 118-04527 WB Douglas I-680 67.08 16094 4 1600 
118+04528 
48151029 
5111124 

Nearest 
mid-point 
ATR#32 

3 118-04559 SB Lancaster I-180 40.88 32399 7 837 
118+04560 

5115670 
5115743 

Nearest 
mid-point 
ATR#46 

4 118-04752 WB Sarpy I-80 97.76 67773 2 10,075 
118+04545 

5118286 
5118291 

AADT 
ATR#17 

5 118+04785 EB Dawson I-80 97.9 17917 3 7701 
118-04784 
5106319 
5106309 

AADT 
ATR#20 

6 118+04552 EB Douglas I-80 98.62 173168 4 ---- 5111192 ATR#24 E 

7 118+04805 EB Seward I-80 97.89 27086 3 7918 
118-04804 
5118482 
5118490 

Winter 
segments; 
near ATR 

#38 

8 118-04787 WB Buffalo I-80 97.97 20673 3 ----
118+04788 

5105936 
5105935 

Winter 
segments; 
near ATR 

#54 

9 118-04765 WB Deuel I-80 95.11 7297 2 4426 
118+04766 

3136954 
3136959 

High 
confidence; 
near ATR 

#31 

10 118-04773 WB Lincoln I-80 97.87 15667 2 7195 
118+04774 

5116674 
5116683 

High 
confidence; 
near ATR 

#43 

11 118-07638 SB Thayer US-81 66.68 3812 4 1270 
118+07639 

5059806 
5059878 

Middle 
confidence; 
near ATR 

#64 

12 118-09466 EB Dodge US-30 47.14 5335 3 661 
118+07729 

5110005 
5110018 

Low 
confidence; 
near ATR 

#61 

13 118-09439 EB Dawson US-30 10.08 2646 4 191 
118+09438 

5109780 
5109790 

Anomaly 
variance 

high; near 
ATR #2 
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14 118+07802 NB Otoe US-75 39.22 4122 3 630 
118-11849 
5107356 
5107390 

Anomaly 
variance 

high; near 
ATR #6 

15 118+08702 NB Howard US-281 19.85 5434 3 528 
118-08701 
5114752 
5114762 

Anomaly 
variance 
middle; 

near ATR 
#39 

16 118-11097 EB Otoe NE-2 82.67 11569 0 2872 
118+11098 

5116156 
5116160 

Anomaly 
variance 
middle; 

near ATR 
#65 

(suggested 
by NDOR) 

TMC: Traffic message channel; Dir: Direction; AADT: annual average daily traffic; IQR: Interquartile range. 

3.3 Checking Performance of PVR against Wavetronix 

To consider PVR data as benchmarked, it was necessary to evaluate the performance of 
PVR sensors using another reliable source of data. Therefore, to check the performance of PVR 
reported data we utilized trailers (as shown in Figure 3.3) to collect a few samples of Wavetronix 
sensor data. Wavetronix sensors use radar technology to collect traffic operations data. Each 
sensor unit consists of a Doppler radar unit, a 
wireless modem, a solar panel, and onboard 
processors for real-time processing of traffic 
information such as speed, volume, occupancy, 
etc. The date, time, and total number of minutes 
the data were collected by trailers for each 
location are shown in Table 3.2. Two locations, 
17 and 24 Eastbound, were excluded from 
further analysis. 

To evaluate the reliability of PVR data, 
the data were compared with data collected by 
the trailers (Wavetronix data). As shown in 
Figure 3.4, we used CDF to illustrate the 
difference in speed between PVR and Wave-
tronix sensors. CDF is the probability that a 
variable takes a value less than or equal to x. In 
Figure 3.4, the horizontal axis represents the 
allowable domain for the given probability 
function (speed). Because the vertical axis 
reflects probability, it must fall between 0 and 1. 
In all images, the probability increases from 0 to 
1 from left to right on the horizontal axis. The 

Figure 3.3 Wavetronix sensor during speeds shown on horizontal axis range from 
data collection 
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Table 3.2 Wavetronix data collected with trailer 
Sensor Time Number of minutes 

2 11/22/2016 2:01:17 pm – 11/22/2016 4:03:43 pm 122 
6 11/21/2016 4:16:23 pm – 11/21/2016 6:18:39 pm 122 
17 11/22/2016 2:10:03 pm – 11/22/2016 4:19:59 pm 130 
19 11/21/2016 2:45:37 pm – 11/21/2016 4:45:40 pm 120 
20 11/22/2016 5:08:49 pm – 11/22/2016 7:11:35 pm 123 

24E 11/21/2016 8:45:49 pm – 11/21/2016 10:47:42 pm 122 

31E 
11/21/2016 9:55:00 am – 11/21/2016 9:57:06 am 

11/21/2016 10:02:24 am – 11/21/2016 10:08:40 am 
11/21/2016 10:35:43 am – 11/21/2016 12:50:31 pm 

33 

32 11/23/2016 11:51:55 am – 11/23/2016 2:24:03 pm 153 
38 11/20/2016 7:52:35 pm – 11/20/2016 9:53:29 pm 121 
39 11/23/2016 11:20:12 am – 11/23/2016 1:23:11 pm 122 
43 11/22/2016 9:29:05 am – 11/22/2016 11:47:28 am 138 
46 11/21/2016 9:12:50 am – 11/21/2016 11:16:36 am 124 

54 

11/22/2016 8:29:29 pm – 11/22/2016 8:46:10 pm 
11/22/2016 10:41:57 pm – 11/22/2016 10:59:44 pm 
11/22/2016 11:01:16 pm – 11/22/2016 11:59:49 pm 
11/23/2016 12:00:03 am – 11/23/2016 1:05:01 am 

158 

61 11/22/2016 5:59:28 pm – 11/22/2016 8:07:52 pm 128 

64 11/20/2016 3:00:20 pm – 11/20/2016 5:02:20 pm 
11/20/2016 6:52:01 pm – 11/20/2016 7:55:15 pm 185 

65 11/21/2016 12:46:35 pm – 11/21/2016 2:55:42 pm 129 
Note: Sensors appearing in red were excluded from further analysis. 

Figure 3.4 Cumulative distribution function of speed for PVR and Wavetronix datasets 
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40 to 90 mph. We expected that the two CDF lines for the PVR and Wavetronix sensors for each 
location would nearly overlap each other. However, it is obvious from Figure 3.4 that different 
traffic speed performance was detected by the two sensors at locations 6N, 6S, 19E, 19W, 32W, 
39S, 61E, and 65E. Thus, these locations were excluded from further analysis. The location of 
the selected ATRs are shown in Figure 3.5 as red asterisks; excluded ATRs are shown as blue 
triangles. 

Figure 3.5 Location of ATRs (red asterisk: selected location), (blue triangle: excluded locations) 

3.4 Conclusion 

In summary, this chapter provides a brief description of how the 16 sites, out of the 65 
ATRs in Nebraska, were selected based on different criteria. For each selected ATR, there are 
corresponding TMCs, which are maintained by INRIX to collect traffic details on major 
freeways and urbanized areas. To make better informed decisions, we also considered the 
number of heavy trucks and the interquartile range for each TMC. Also, we examined the 
reliability of the PVR data by comparing those data with Wavetronix sensor traffic information 
collected by roadside trailers. In the next chapter, the reliability and accuracy of real-time INRIX 
data using different performance measures for selected ATRs is discussed. 
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4. Evaluation of Reliability and Accuracy of Real-Time INRIX Data 

4.1 Introduction 

For this study, real-time and historical traffic data, which were collected through two 
different methods—probe-sourced streamed data and fixed, infrastructure-mounted sensors— 
were utilized. The probe data stream used in the current study was obtained from INRIX, which 
aggregates traffic-related information from millions of GPS-enabled vehicles, mobile devices, 
road sensors, and other sources. The data collected were processed in real time, creating traffic 
speed information for major freeways, highways, and arterials in the state of Nebraska. The 
INRIX probe data stream was compared to a benchmarked sensor data source to explain some of 
the challenges and opportunities associated with using wide-area probe data. The benchmarked 
dataset used in this work was obtained from PVR sensors, which provided traffic data for each 
vehicle passing the sensor. 

In the remainder of this chapter, INRIX performance will be thoroughly evaluated by 
various factors including coverage, speed bias, latency, count, congested hour, rank order for 
congested hour, BTI, rank order for BTI, and reliability curves. The performance measures that 
will be addressed in this chapter 4 are summarized in Table 4.1. 

Table 4.2 Overview of performance measures 
Performance Measures Comments 

Percentage availability of 
INRIX 

Total percentage of time level 30 data is available for given TMC segment 

Speed bias Difference been speeds reported by INRIX as compared to the Wavetronix speed 
Congestion detection latency A measure of delay between two time series datasets, which is used to measure the difference 

of start times of a congestion detected by INRIX compared to PVR. 
Congestion counts Number of congestions detected by both INRIX segments and PVR sensors with latencies 

lower than 20 minutes. 
Congested hour In this study, two scenarios were considered for comparing number of hours of congestion 

between the INRIX and PVR datasets: 
• Scenario 1: total number of hours during which speed of each segment was less than 

45 mph. 
• Scenario 2: duration of congestions that were detected by both INRIX segments and 

PVR sensors with detection latency lower than 20 minutes. 
The two scenarios were compared for two time periods: single day and three weeks. 

Buffer time index Calculated by subtracting the 85th percentile of TTPM (travel time per mile) from the median 
of TTPM and then dividing that result by the median TTPM; calculated for 1- and 3-week 
periods. 

Reliability curves The inverse of speed multiplied by 60 was considered TTPM in minutes. 

4.2 Evaluating INRIX using PVR 

4.2.1 Percentage Availability of INRIX 

The most critical consideration in evaluating probe data is the geographic coverage 
provided by the vendor. The quality of probe data is heavily dependent on the number of probes 
on the road network. The more probes on the network, the better the coverage. In Figure 4.1, the 
yearly coverage for interstate and non-interstate roadways in the state of Nebraska is shown from 
2013 through 2016. In 2013 there was 73.14% availability of real-time data from interstate 
roadways as compared to 43.73% from non-interstate roadways (Figure 4.1a). In 2014, there was 
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an increase in availability of real-time data from interstate roadways with 77.21% and a decrease 
from non-interstate roadways with 41.01% (Figure 4.1b). The lowest availability of real-time 
data from interstate roadways during the time period studied (2013–2016) was in 2015 with 
71.90% (Figure 4.1c), and the highest was in 2016 with 78.82% (Figure 4.1d). There were a 
number of roads that had no coverage; however, this may improve with time as the number of 
probes increases. In regions with limited probe data, vendors derive real-time data from 
historical traffic data trends. Agencies may rely on this dataset; however, the accuracy should be 
evaluated. However, in these areas, the agency could augment probe data with infrastructure-
mounted sensors. 

(a) 2013 (b) 2014 

(c) 2015 (d) 2016 
Figure 4.1 Percentage coverage of INRIX in the state of Nebraska 

In addition to real-time data, INRIX provides historical data whenever real-time data are 
not available. The higher the device penetration (i.e., more cell phone probes), the better the data 
are. For each speed measurement, INRIX reports a measure of confidence, reported as one of 
three possible values: 

• Score 30: speed estimate for that segment based completely on real-time data (the 
highest confidence score), 
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• Score 20: speed estimate based on real-time data across multiple segments and /or 
based on a combination of expected and real-time data. and 

• Score 10: speed estimate based primarily on historic data (the lowest confidence score). 
The daily availability of INRIX traffic data is shown in Figure 4.2, reflecting how traffic 

speed data from interstates and non-interstates are spread over a span of a full day based on 
confidence scores 10, 20, and 30. As expected, INRIX was able to provide real-time speed data 
(score 30) most of the day on interstates, whereas on non-interstates, real-time data were 
provided mostly from around 6 am to 6 pm. For instance, at point A on Figure 4.2b, the blue and 
red lines (scores 10 and 20, respectively) descend drastically while the yellow line (score 30 = 
real-time) rises significantly. On the other hand, from midnight to 6 am (before point A) and 
around 6 pm to midnight (after point B), when there was less device penetration, historical data 
were used to predict speed and was reported with a confidence score value of 10. Thus, INRIX 
provides a higher percentage of real-time data on interstates compared to non-interstates and the 
data are more reliable during the day than at night. 

(a) 

A B 
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(b) 
Figure 4.2 Daily availability of traffic speed data for selected INRIX segments of (a) interstates 

and (b) non-interstates in the state of Nebraska 
4.2.2 Speed Bias 

Speed bias is defined as the difference of speed between two traffic speed data providers. 
There is almost always a speed bias between data streaming from probes and traditional 
infrastructure-mounted sensors. Different factors, such as the measurement technique, the 
number of probes on road, roadway type (interstates or non–interstates), geographical location, 
etc., influence the magnitude of probe data speed bias. To use these data accurately, it is critical 
to understand the factors that influence and handle these biases. In this study, speed bias was 
calculated by subtracting INRIX speed from PVR speed (Equation 1). 

����� ���� = ��� ����� − ����� ����� (1) 

Speed bias was evaluated based on three different categories: (1) confidence scores, (2) locations, 
and (3) congestion vs. non-congestion times. 

First, we examined how different speed biases are calculated using different scores. Probe 
technology calculates speed as the average speed of vehicles over a segment of a road, which is 
called space mean speed (SMS). Time mean speed (TMS), which is an arithmetic mean of 
vehicles’ speed passing a point, is the calculated speed for benchmarked local sensor dataset. 
There is always a difference between space mean speed and time mean speed due to the 
measurement technique used. CDF can be used to illustrate the different speed biases for all 
sensors with respect to different scores (10, 20, and 30). As explained previously, CDF is the 
probability that a variable takes a value less than or equal to x. The horizontal axis represents the 
allowable domain for the given probability function. Because the vertical axis reflects probability, 
it must fall between 0 and 1; it increases from 0 to 1 from left to right on the horizontal axis. 

The CDF of speed bias between INRIX and PVR datasets for all selected location based 
on confidence scores 10, 20, and 30 is shown in Figure 4.3a–c. In Figures 4.3a and b, some CDF 
lines (43W, 20W, 38E, 54E, 43E, etc.) are not in the shape of a curve due to the lack of sufficient 
confidence score 10 or 20 data. High speed bias is shown in Figure 4.3a, for lines 46N, 46S, 39N, 
and for lines 46N and 39S of both Figures 4.3b and c. No trends in the speed biases of various 
locations are shown in Figures 4.3a and b; however, in Figure 4.3c, speed biases at all locations 
are shown in a nearly homogeneous cluster. Dashed lines at the very left and right of Figures 
4.3a, b, and c depict the abnormal magnitude of speed bias. Accordingly, INRIX data with 
confidence scores 10 and 20, which represent historical data, should be excluded for speed bias 
analysis. Speed biases for all locations on aggregate by different confidence scores (10, 20, and 
30) are shown in Figure 4.3d. 
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(a) CDF of speed bias for confidence score 10 

(b) CDF of speed bias for confidence score 20 
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(c) CDF of speed bias for confidence score 30 

(d) CDF of speed bias of all locations for confidence scores 10, 20, and 30 

Figure 4.3 Segment–sensor pairwise cumulative distribution function of speed bias for: (a) 
confidence score 10, (b) confidence score 20, and (c) confidence score 30. (d) Score-wise 

cumulative distribution function of speed bias for all segment–sensor pairs. 
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After evaluating speed bias for the different confidence scores of 10, 20, and 30, we 
compared real-time speed biases of all locations separately. An example of errors associated with 
traffic speed reported using only real-time data for some sites is illustrated in Figure 4.4. In this 
case, because the magnitude of speed bias matters over all minutes of the day, error was defined 
as the absolute value of speed bias between PVR and INRIX data. The red dashed line in each 
image of Figure 4.4 shows the median error for each ATR site. At the right side of daily error 
plot for each site, CDF of the error is also plotted with a horizontal axis between 0 and 20. Due 
to a lack of sufficient real-time data from midnight to almost 6 am (point A in Figure 4.4), speed 
bias was higher compared to other times of a day. Plots for all other locations can be found in 
Appendix B (Figure B.1). 

A 

Figure 4.4 Errors associated with traffic speed reported using only real-time data for some sites 

The median speed bias for each ATR with respect to each direction is shown in Table 4.2. 
ATR 39 Northbound, with a speed bias of 14.32 mph, accounts for the highest speed bias among 
all sites. The average speed bias of all other locations was 6.06 mph. 
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Table 4.2 Median error for each site 
Median 

ATR speed bias 
(mph) 

2E 4.88 
2W 5.00 
20E 6.91 
20W 6.71 
31E 6.63 
31W 5.25 
32E 5.64 
38E 7.55 
38W 6.96 
39N 14.32 
40N 2.86 
40S 2.67 
43E 6.95 
43W 6.81 
46N 6.94 
46S 5.95 
54E 6.82 
54W 7.53 
56E 5.78 
56W 6.33 
61W 8.01 
64N 5.54 
64S 4.98 
65W 6.67 

Finally, we examined how speed bias varies during periods of congestion and no 
congestion. Generally, speed bias changes in different conditions, such as day vs. night, scores 
10 vs. 20 vs. 30, freeway vs. non-freeway, congestion vs. no congestion, etc. A box plot of speed 
bias for each location during times of congestion and no congestion is shown in Figure 4.5. A 
box plot is a standard way of depicting the distribution of data based on five values: minimum, 
first quartile, median, third quartile, and maximum. In Figure 4.5, the central rectangle for each 
plot spans the first quartile to the third quartile (the interquartile range). The line inside the 
rectangle between the light- and dark-shaded areas represent the median, and the lines above and 
below the box represent the minimum and maximum values. The interquartile range, a measure 
of statistical dispersion, is equal to the difference between the 75th and 25th percentiles, or 
between the third and first quartiles. In Figure 4.5, there are two plots for each congested 
location, one showing the speed bias for non-congested periods (left) and the other showing the 
speed bias for congested periods (right). Based on the interquartile range of all boxes shown in 
Figure 4.5, on can observe that INRIX performance is constant and reliable both during periods 
of free flowing speed (non-congested periods) and congested periods; however, we could not 
determine any stable pattern for speed bias of congested versus non-congested periods. For 
instance, for sites 2W, 32E, and 38E, the speed biases for congested and non-congested periods 
were negative and close to zero, whereas they were positive for the 40N, 46S, and 61W sites. On 
the other hand, for 39N, 43E, 46N, 54W sites, the speed biases were positive during non-
congested periods and negative during congested periods. According to available data, no 
patterns were found for speed bias between non-congested vs. congested periods; however, we 
concluded that INRIX performs reliably during both congested and non-congested periods. 
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Figure 4.5 Speed bias during (left) non-congested and (right) congested periods 
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4.2.3 Incident Detection 

Improving traffic safety and operations have long been areas of motivation among 
researchers and engineers. Traffic incidents, particularly traffic crashes, are of great interest due 
to the huge delay and costs that traffic injuries and fatalities impose on society. Traffic delays 
can be attributed to nonrecurring incidents including but not limited to traffic crashes, 
construction events, and adverse weather conditions. These incidents may also have other 
consequences, such as secondary crashes and delays in emergency medical services, which can 
cause further complications and impose additional costs. Consequently, monitoring the 
transportation network and being able to detect and report anomalies in real time are of great 
importance in the realm of traffic management. 

4.2.3.1 Data stream and pre-processing 

Most of the time in real-world scenarios, raw traffic data are incomplete, highly 
susceptible to noise, and inconsistent for many reasons, such as sensor failures, measurement 
technique errors, huge size, etc. Data pre-processing can be used to try to detect and correct 
corrupt and erroneous traffic data. However, the storage and analysis of massive amounts of 
INRIX and PVR data are impossible using traditional methods, as they require the processing of 
more than 500 GB of data, which would be prohibitively time intensive on a traditional machine. 
For this study, a high performing cluster was used for data processing. The Hadoop Distributed 
File System [63] was used for storage of the data, and map-reduce was used for processing. Pig 
Latin [64] was used as the language to implement map-reduce algorithms. 

4.2.3.2 Congestion detection algorithm 

After data processing, a congestion detection algorithm was implemented to detect and 
classify the onset of congestion throughout the network for the study period. Congestions were 
identified as when the speed data of the INRIX segment or the mean of the 1-minute aggregated 
speed data of the PVR sensor for that location indicated that the speed dropped below 45 mph. 
According to the Highway Capacity Manual (version 6) [65], LOS (level of service) on basic 
freeway segments is defined by density. Although speed, as it relates to service quality, is a 
major concern of drivers, describing LOS on the basis of speed is difficult, as it remains constant 
up to high flow rates [i.e., 1,000 to 1,800 pc/h/ln for basic freeway segments (depending on the 
free flow speed)]. There are six levels of service defined for basic freeway segments (levels A–F). 
The minimum speed of around 50 mph for LOS E is almost constant for different free flowing 
speeds (from 75 to 55 mi/h). With an approximately 5 mph average speed bias, 45 mph is 
considered the threshold for traffic congestion. 

How the algorithm recognizes congestions is illustrated in Figure 4.6. The blue line 
represents the original traffic speed, and red line represents the fixed threshold of 45 mph. The 
congestion start time is when the speed drops below 45 mph, and the congestion end time is 
when the speed rises above 45 mph. 
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Figure 4.6 Example of congestion detection 

4.2.3.3 Latency and count 

Latency is a parameter that represents the measurement of the time delay between two 
time-series datasets. In this study, latency was used to measure the difference between 
congestion start times detected by INRIX vs. PVR (Figure 4.7a). It is crucial to verify latencies 
within probe data streams for timely detection of events on roads. Based on work by Adu 
Gyamfi et al. [12], the average ranges of latencies associated with probe vs. sensor data are 
between 3 and 12 minutes on freeways and between 7 and 20 minutes on non-freeways. In this 
study, we considered only congestions that were detected by both INRIX segments and PVR 
sensors with latencies lower than 20 minutes. The location of all sites experiencing congestion 
with latencies lower than 20 minutes is shown in Figure 4.7b. 

Additionally, the number of congestions that occurred at each site and the average latency 
between INRIX and PVR associated with each site are shown in Figure 4.8. There were many 
instances when congestions with higher latencies were detected by both INRIX TMC segments 
and PVR sensors; however, it should be noted that we considered only congestions that were 
detected by INRIX TMC segments and PVR sensors with latency below 20 minutes. The 
average latency for all congestions detected by both the INRIX and PVR datasets was 4.97 
minutes. As shown in Figure 4.8, the average latencies for a few ATRs (39N, 43E, and 46S) 
were negative, which means that the INRIX segments detected congestion earlier than PVR 
sensors did. 
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(a) 

(b) 
Figure 4.7 (a) Latency and (b) location of congestion at ATRs 

Figure 4.8 Number of congestions and average latency for each site 
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The number of congestions detected by either INRIX or PVR or by both during a 3-week 
fixed period of time for all sites is shown in Table 4.3. TP (true positive) indicates the rate of 
events that were detected by both INRIX and PV, FN (false negative) represents the rate of 
events detected by PVR but not by INRIX, and finally, FP (false positive) represents the rate of 
events detected by INRIX but not by PVR. The values in the last column show the precision of 
congestion detection by INRIX, calculated using Equation 2. 

��������� = 
67 (2)

67 8 97 

Table 4.3 Reliability of INRIX in detecting congestion events 
Location INRIX PVR Both TP FN FP Precision 

2W 7 12 2 0.167 0.417 0.417 0.286 
32E 6 21 4 0.190 0.714 0.095 0.667 

38E 7 14 3 0.214 0.5 0.286 0.429 
38W 6 22 3 0.136 0.727 0.136 0.5 

39N 5 31 4 0.129 0.839 0.032 0.8 
40N 1 1 1 1 0 0 1 

40S 4 7 1 0.143 0.429 0.429 0.25 
43E 4 8 3 0.375 0.5 0.125 0.75 

46N 8 10 1 0.1 0.2 0.7 0.125 
46S 7 10 3 0.3 0.3 0.4 0.429 

54W 4 10 4 0.4 0.6 0 1 
61W 13 36 10 0.278 0.639 0.083 0.769 

It was difficult to derive any robust congestion detection results by comparing INRIX and 
PVR datasets using only 3 weeks of data and 16 different ATRs. For future studies, we strongly 
recommend using data from a longer period (1 year) and a larger number of sites. Using a 
congestion detection algorithm, 44 congestions were detected by both the INRIX and PVR 
datasets for all selected ATRs on all days. The timestamps for worst congestions for each 
congested site and the two worst congestions among all other sites are shown in Table 4.4. 

Table 4.4 Worst congestions 
ATR Worst Congestions 
2W 02/24/2017 08:38 am, 02/24/2017 09:25 am 
32E 10/31/2016 12:28 pm, 11/01/2016 09:27 am 
38E 02/24/2017 05:02 am, 2/24/2017 10:58 am 
38W 02/23/2017 08:45 pm, 2/24/2017 09:05 am 
39N 02/23/2017 05:01 pm, 2/24/2017 10:29 am 
40N 03/28/2017 05:13 pm 
40S 04/19/2017 07:47 am 
43E 02/24/2017 02:13 am, 02/24/2017 04:29 am 
46N 04/19/2017 05:24 pm 
46S 10/28/2016 07:49 am, 11/29/2016 07:42 am 
54W 02/24/2017 02:16 am, 02/24/2017 01:55 am 
61W 02/24/2017 05:39 pm, 02/24/2017 12:30 pm 

Two worst 
congestions among 

all ATRS 

ATR 46s: 02/23/2017 08:13 pm 
ATR 32e: 11/01/2016 09:27 am 
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4.2.4 Performance Measures 

4.2.4.1 Congested hour 
Traffic congestion is widely known as a transport cost. It plays a key role in transport 

system performance evaluation and affects transport planning decisions. When a road system 
reaches its capacity, each additional vehicle makes it more overloaded and imposes more delay 
on other vehicles. Some impacts of congestion include increased travel time, accidents, 
unreliability of arrival times, increased fuel consumption and pollution emissions, adverse health 
effects, etc. Generally, there are two types of congestion: recurring and nonrecurring. Recurring 
congestion is considered congestion caused by routine traffic in a normal environment and is 
somewhat expected, whereas nonrecurring congestion is unexpected and most likely caused by 
an incident. Nonrecurring congestion may occur as a result of a variety of factors such as lane-
blocking crashes or disabled vehicles, work-zone lane closures, adverse weather conditions, etc. 
When computing congestion costs, some organizations consider only recurring costs, whereas 
others include both recurring and non-recurring costs. In this study, we attempted to evaluate the 
reliability of INRIX using a cost–benefit analysis. We also discuss the limitations of INRIX with 
regard to the detection of recurring and non-recurring traffic congestions. Congested hour is one 
of the measures that indicate how reliable INRIX can be when evaluating the cost of congestion. 

In this study, if the speed of a road segment fell below 45 mph for a period of time, the 
segment was defined as being congested for that period. After considering all congestions 
detected by INRIX and sensor datasets in a similar study conducted for state of Iowa, we 
determined 6 minutes as the threshold for the minimum duration when determining the period of 
traffic congestion (Figure 4.9). The distribution of congested traffic periods from two datasets 
(sensor and INRIX) over the span of a year in the state of Iowa is shown in Figure 4.9 (the 
horizontal axis in the original image extended to more than 400 minutes, but here the image was 
zoomed in to from 1 to 100 minutes for clearer visualization). Looking at the distribution of the 
two datasets, especially from the sensor data, it is clear that congestion periods of less than 6 
minutes are very different from others in terms of trend. 
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Figure 4.9 Distribution of congestion periods (in minutes) for sensor and INRIX data in the state 
of Iowa for 2016 (the red arrows indicate 6 minutes as the minimum acceptable 

threshold for a period of congestion) 

In this study, we considered two scenarios for comparing INRIX and PVR datasets in 
terms of congested hour. For the first scenario, we considered the congestion period as the total 
number of hours for which the speed of each segment was less than 45 mph for a minimum 6 
continuous minutes, which is a very common scenario. For the second scenario, we considered 
the congestion period as the total duration of congestions detected by both INRIX segments and 
PVR sensors with detection latency lower than 20 minutes. 

The above-described scenarios were compared for two time periods: (1) a single day and 
(2) 3 weeks. Because the total number of days of data varied for different ATRs, a 3-week period 
was considered the fixed maximum period of time for all ATRs in our analysis. However, this 
period of time did not occur in the same month for the different ATRs; for instance, for location 
46 southbound, the 3 weeks were in April 2017, and for location 46 northbound the 3 weeks 
were in November 2016. Scatter plots for congested hour determined by the INRIX and PVR 
single-day and 3-week datasets for the two predefined scenarios are shown in Figure 4.10. 
Congested hour were aggregated for the respective time periods (single day and 3 weeks). In the 
scatter plots, the vertical and horizontal axes of the plots represent the congested hour 
determined by INRIX and PVR data, respectively. Each point on the plot represents the total 
duration of congestion of a segment–sensor pair (in hours) over the period of time that was 
plotted. For instance, the scatter plot in Figure 4.10c for scenario 1 illustrates all days with 
congestion for all ATRs over 3 weeks. Additionally, a regression line is plotted for each scatter 
plot using its equation and R2 values. 
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Single day 

3 weeks 

Figure 4.10 (a, b) Single-day and (c, d) 3-week periods of congested traffic duration (in hours) 
for scenarios 1 and 2. All congestions reflect traffic speed of less than 45 mph, and all 

congestions were detected by both the INRIX and PVR datasets 
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Because for some ATRs INRIX reported traffic speed as being close to 45 mph or even 
slower for most of the time, the duration of congestion from the INRIX database compared to the 
PVR database was observed as tending to be longer, as shown in Figure 4.10a and c. The lack of 
sufficient confidence score 30 (real-time) data negatively influenced this situation. Two 
examples of when INRIX detected speed at mostly around 45 mph for location 46S are shown in 
Figure 4.11a. In both INRIX-46S time series shown, the speed was almost always around 45 
mph, even though no congestion occurred on that day. Moreover, the four samples shown in 
Figure 4.11b indicate a lack of real-time data, especially during periods of congestion. Points A, 
B, C, D, and E in Figure 4.11b depict the change in confidence scores from real time (score 30) 
to historical (scores 20 or 10) data during periods of congestion. These critical issues with INRIX 
data, especially during periods of congestion, persuaded us to make use of scenario 2 for further 
analyses. Using scenario 2, for which we considered all congestions detected by both INRIX and 
PVR with detection latency lower than 20 minutes, we obtained reliable results for comparing 
the two datasets. 

INRIX speed is around 45 mph 

PVR speed is around 60 mph 

INRIX speed is around 45 mph 

PVR speed is around 60 mph 

a) INRIX reported speed is around 45 mph for most of the day 

40 



 

 

 
 

 

 

 

A 

B 

41 



 

 

 

 
 

 
   

 
 
  

 

  

C 

D E 

b) Insufficient INRIX confidence score 30 data during congestion 

Figure 4.11 Speed time series of PVR and INRIX data showing (a) INRIX speed being reported 
as around 45 mph and (b) lack of real-time (score 30) data during congestion 
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The congestion duration rank order from the PVR and INRIX data for selected ATRs, 
after evaluating INRIX performance for calculating congestion duration, is shown in Figure 4.12. 
As shown in the figure, 8 out of 12 sensors and their corresponding segments had nearly the 
same rank in terms of congestion duration. The INRIX performance for congestion duration was 
mostly reliable; however, it would be better to have been able evaluate its performance on more 
segments with a higher number of congestions over a longer period of time. 

Figure 4.12 Rank order of segments and sensors based on congestion duration 

4.2.4.2 Buffer-time index (BTI) 

In this study, BTI was calculated by subtracting the 85th percentile of TTPM (travel time 
per mile) from the median TTPM and then dividing that result by the median TTPM (see 
Equation 3). BTI represents the percentage of extra travel time that almost all travelers would 
need to add to their trips to reach their destination on time in a given time-of-day and/or day-of-
week period. For example, a buffer index of 60% at 7 am on a freeway where the travel time is 
10 min when there is no congestion, would indicate that travelers should allow for 16 min at 7 
am to make sure that they arrive on time. 

@ABC DEFGEHBIJE BBDK – KEMINH BBDK BTI (%) = (3)
KEMINH BBDK 

A comparison of the INRIX data stream versus the PVR sensor datasets based on weekly 
and three-weekly BTIs is shown in Figure 4.13. A BTI was calculated for each time period 
(weekly and three-weekly). Additionally, a regression line is plotted for each scatter plot using 
its equation and R2 values. 

As observed in Figure 4.13, the BTI for the PVR data was almost always more than that 
for the INRIX database. The main reason for this is low variation of the INRIX data. Because in 
Nebraska INRIX provides traffic data mostly via trucks traveling on the roads, it is hard to find 
considerable variability in the magnitude of the speed. On the other hand, local infrastructure 
sensors record traffic information from every vehicle on road, which leads to higher variability, 
or in other words, a wider range of speed. The speed profiles from raw, smoothed PVR sensor, 
and INRIX segment data corresponding to ATR 65 Westbound for a 1-week period of time are 
shown in Figure 4.14. It can be observed that level of variation for the INRIX data is less than 
the raw and even the de-noised sensor data. Considering variability as noise is one critical 
misunderstanding by many researchers. As can be seen in Figure 4.14, the time series of raw and 
de-noised PVR-65W data shows a wide range of speed compared to its corresponding INRIX-
65W segment. 
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1-week 3-week 

Figure 4.13 1-week and 3-weekly BTIs for probe and sensor datasets 

Figure 4.14 Sample time series showing difference of variability between probe and 
benchmarked data 
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Considering the definition of BTI, a wider range of travel time would lead to a higher 
BTI. In this study, TTPM was calculated using the inverse of speed multiplied by 60. Thus, a 
wider range of speeds would result in a higher BTI. It is important to note that noise does not 
affect the BTI significantly; however, this depends on the magnitude of noise reduction in the 
smoothing process. CDF of TTPM for some sample ATRs is shown in Figure 4.15. The bias 
shown between the PVR and INRIX CDF lines was corrected by shifting back the INRIX 50th 

percentile point to overlap on to the PVR 50th percentile point. By looking at the 85th percentile 
of TTPM on both CDF lines, it is clear that the magnitude of the 85th percentile of TTPM for 
PVR (blue line) was always higher than that for INRIX (red line), which led to a greater BTI. 
The comparison between INRIX and PVR raw data is shown in Figure 4.15a, whereas the 
comparison between the INRIX with the de-noised PVR datasets is shown in Figure 4.15b. 
Comparing the plots in Figure 4.15a with those in Figure 4.15b, it is clear that noise reduction 
did not drastically affect buffer time. Thus, we concluded that INRIX is not reliable for 
calculating BTI. 

(a) 

(b) 
Figure 4.15 Cumulative distribution function of travel time showing difference of 85th percentile 

between probe and (a) raw sensor data and (b) smoothed sensor data 
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After observing the poor performance of INRIX in calculating BTI, we calculated the 
BTI rank order of INRIX and PVR data for 1-week and 3-week periods of time (Figures 4.16a 
and 4.16b, respectively). Only 3 out of 24 sensors and their corresponding segments had almost 
in the same rank in terms of BTI. Therefore, it can be concluded that, for this analysis, INRIX 
performance was not reliable for either BTI or BTI rank order. However, it should be noted that 
this analysis was conducted on a limited number of ATRs over a short period of time. We 
recommend that more sites and longer period of time be used for further analyses. 

(a) 

(b) 
Figure 4.16 Rank order of segments and sensors based on BTI for 

(a) 1-week and (b) 3-week periods 

4.2.4.3 Reliability Curves 

As mentioned previously, TTPM was calculated as the inverse of speed multiplied by 60. 
A reliability curve is defined as the CDF of TTPM for each segment or sensor. The TTPM 
reliability curves for all ATRs for each direction are shown in Figure 4.17. As revealed in the 
graphs, there was almost always a visible shift between probe and sensor curves, known as travel 
time bias. Because TTPM was calculated using speed, speed bias was the reason for the small 
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differences in reliability curves at all locations. Equations (4) to (8) show how we calculated the 
travel time bias for this study. 

Travel time bias (minutes) = Sensor TTPM − INRIX TTPM, (4) 

where sensor TTPM and INRIX TTPM are explained in Equations (5) and (6) respectively. 

cSensor TTPM (minute) = 
d 
∗ 60 h� = ������i� ����� (��ℎ)l (5) 

cINRIX TTPM (minute) = 
dmn 

∗ 60 (6) 

After considering the average speed bias as 6 mph, travel time bias can be calculated as follows: 

c cTravel time bias (minute) = ∗ 60 − ∗ 60 (7)
d dmn 
nTravel time bias = ∗ 60 (8)

d(dmn) 

Reliability curves for all locations shown in Figure 4.17b have huge differences in TTPM 
(travel time bias) compared to the normal locations shown in Figure 4.17a. With regard to travel 
time bias, it was concluded that INRIX performance is usually reliable and consistent. 

(a) 
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(b) 
Figure 4.17 Cumulative distribution function of travel time per mile for (a) normal sites and (b) 

outlier sites 

4.3 Conclusion 

To sum up, there are some critical points that state DOTs and transportation agencies 
should consider when using a probe data stream like INRIX. Some advantages and limitations of 
INRIX are as follows: 

• In terms of geographic coverage, INRIX has been evaluated for interstates and non-
interstates and has been shown to be reliable for almost all times of day on interstates. 

• This study showed that INRIX is more reliable during the day than at night, especially 
during peak hours. 

• Regarding incident detection, INRIX is reliable for detecting merely congestion, 
especially recurring congestion. When it detects congestion, it gets all the information 
related to the congestion, such as the duration of the congestion. 

• There is almost always a time delay (latency) for INRIX congestion detection. 
Congestion detection latency was evaluated in this chapter for 16 specific locations over 
a short period of time. Other data streaming sources, such as sensors, are more preferred 
for incident detection application; however, they are very costly and not applicable for 
many places. Thus, for locations without other data sources, detecting congestion by 
INRIX, even with latency, is better than not detecting it at all. 

• There will always be a bias between traffic speed data from probe sources and 
benchmarked sensors. Speed bias directly affects incident detection, travel time 
estimation, calculation of performance measures (such as congested hour, BTI, reliability 
curves, etc.) and other traffic-related measures. For instance, it could be observed from 
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Figure 4.11a that speed bias caused INRIX speeds to be shown as approximately 45 mph, 
which is usually considered the threshold for congestion. Accordingly, it is important to 
understand the factors that influence these biases and how to correct for them. 

• Traffic incident management, roadway performance assessment, and travel time 
estimation applications should be developed based on real-time data. The lack of 
confidence score 30 data (real time), especially during congestion, leads to incorrect 
results. Substitutions with historical data are not accurate and therefore not advised. In 
areas with limited probe penetration, the agency could augment probe data with 
infrastructure-mounted sensors. 

Finally, many different tests, analyses, and experiments have been left for future studies 
due to lack of sufficient data. The main point that should be taken into consideration is the length 
of time of data collection. Increasing collection time to a year or more would make possible the 
measurement of the performance of probe data versus local sensors over a longer period of time. 
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5. Performance Monitoring and Historical Trend Analysis 

5.1 Introduction 

In this chapter, performance monitoring and historical trend analysis of Interstate 80 (I-80) 
is discussed. First, the top 10 congested segments were identified through a detailed analysis of 
when congestion occurred by month, day of week, and time of day. Second, congestion per mile 
was calculated for monthly and yearly comparisons of metro areas across Nebraska to determine 
any trends in congestion. Third, congestion duration was used to show the severity of congestion 
by segment during summer vs. winter months. Finally, yearly travel time reliability was 
calculated to measure the level of confidence that the traveler would arrive within an acceptable 
travel time. 

5.2 Top Congested Roadways on Interstate 80 

The top congested segments on I-80 in Nebraska are those that experience congestion 
throughout the year. The top 10 congested roadway lists were compiled by determining the 
segments with the most congestion and then identifying where the congestion began and ended. 
For our analysis, we included only segments with a length greater than 0.3 miles. A detailed 
analysis for each segment was conducted to determine when congestion occurred by month, day 
of week, and time of day. The top 10 list for each year was also compared to those of other years 
to determine trends in congestion along the segment. The top 10 most congested segments from 
2013 through 2015 are shown in Appendix C. 

5.2.1 Top 10 most congested segments in 2016 

The top 10 most congested segments in Nebraska in 2016 are shown in Figure 5.1. Compared 
with 2013 and 2015, the top 10 most congested locations were generally much more congested in 
2016, but less than in 2014. Most segments were consistent throughout year, except during 
February and March across weekdays and between 3 pm and 6 pm. The top segments were 
located in the Omaha and Lincoln areas. A summary of each of the top 10 locations is included 
below. 
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Figure 5.1 Top 10 congested segments on I-80 in Nebraska in 2016 

I-80 Omaha WB | S 72ND ST | 0.39 miles 

550 
Hours 

1 

Annual number 
of hours of 
congestion 

Second year at the top of the list; 
increased by 174 hours from 2015 

Highest monthly 
and weekday 
total hours of 
congestion 

Consistent by month and entire weekdays 

Longest conges-
tion duration by 

time of day 
3 pm to 6 pm 

Distribution of 
times of 

congestion times 
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Increased from 98 hours in 2015 
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and weekday 
total hours of 
congestion 

Throughout the year with a high in June at 
60 hours, consistent across weekdays 

Longest conges-
tion duration by 

time of day 
3 pm to 6 pm and 6 am to 9 am 

Distribution of 
times of 
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Highest monthly 
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I-80 Omaha WB | S 72ND ST | 0.39 miles 

380 
Hours 

2 

3 

I-80 Omaha WB | S 72ND ST | 0.39 miles 
Annual number of 

hours of Increased from 138 hours in 2015 
congestion 

Throughout the year with a high in 
August at 45 hours, consistent 

across weekdays 

3 pm to 6 pm 
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5 

I-80 Omaha EB | S 84TH ST | 1.2 miles 
Annual number of 

hours of Increased from 105 hours in 2015 
congestion 

Throughout the year with a high in 
June at 45 hours, consistent across 

weekdays 

3 pm to 6 pm and 6 am to 9 am 

307 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 

I-80 Omaha WB | S 84TH ST | 0.41 miles 
Annual number of 

hours of 172 hours 
congestion 

Throughout the year with a high in 
January at 30 hours, consistent 

across weekdays 

3 pm to 6 pm 

172 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 
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Hours
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I-80 Omaha EB | S 60TH ST | 0.37 miles 
Annual number of 

hours of Increased from 34 hours in 2015 
congestion 

High in January and June, consistent 
across weekdays 

3 pm to 6 pm and 6 am to 9 am 

163 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 

I-80 Omaha WB | S 126TH ST | 1.4 mile 
Annual number of 

hours of 152 hours 
congestion 

Throughout the year, except in 
March, consistent across weekdays 

3 pm to 6 pm 

7 Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion times 
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Hours

131 
Hours

I-80 Omaha EB | I-680 | 1.25 miles 
Annual number of 

hours of 
congestion 

Increased from 32 hours in 2015 

Highest monthly 
and weekday total 

hours of 
congestion 

Throughout the year, except in 
March, consistent across weekdays 

Longest conges-
tion duration by 

time of day 
3 pm to 6 pm and 6 am to 9 am 

Distribution of 
times of 

congestion 

8 

I-80 Omaha WB | L ST | 0.42 mile 
Annual number of 

hours of 
congestion 

131 hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Throughout the year, except in 
March and April, consistent across 

weekdays 
Longest conges-
tion duration by 

time of day 
3 pm to 6 pm 

Distribution of 
times of 

congestion 

9 
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129 
Hours

I-80 Omaha WB | I-480/US-75 | 1.27 miles 
Annual number of 

hours of Slight decrease from last year 
congestion 

Throughout the year, except in 
March; consistent across weekdays 

10 Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 

3 pm to 6 pm 

Many I-80 segments appeared on the top 10 list repeatedly over the years of the study. 
For example, a 1.45-mile-long segment at the interchange with L St. appeared on the list twice, 
ranking in the top position for 2013 and 2014. Similarly, a 2.5-mile-long segment near Exit 382 
also appeared on the list for both 2013 and 2014. Seven segments appeared on the list for more 
than one year, but their rank order changed over the years. The segments of I-80 that appeared on 
the top 10 list more than once from 2013 through 2016 are listed in Table 5.1. The top 10 
congested segments on I-80 from 2013 through 2016 are shown in Figure 5.2. 

Table 5.1 Interstate 80 segments appearing on the top 10 list more than once 
from 2013 through 2016 

No. TMC segment Year (Rank) Intersection | Length of Segment 
1 118+04546 2013 (1) 2014 (1) L ST | 1.45 
2 118N04552 2013 (2) 2014 (2) 2015 (7) 2016 (10) I-480/US-75 | 1.27 

3 118+04549 2013 (3) 2014 (4) 2015 (2) 2016 (2) S 72ND ST | 0.33 

4 118+04806 2013 (4) 2014 (3) Exit 382 | 2.5 
5 118-04549 2013 (5) 2014 (8) 2015 (3) 2016 (3) S 72ND ST | 0.39 

6 118-04550 2013 (6) 2014 (6) 2015 (1) 2016 (1) S 60TH ST | 0.83 

7 118+04548 2013 (7) 2014 (5) 2015 (4) 2016 (4) S 84TH ST | 1.2 

8 118+04550 2013 (8) 2014 (7) 2015 (9) 2016 (6) S 60TH ST | 0.37 

9 118P04547 2013 (10) 2014 (9) 2015 (10) 2016 (8) I-680 | 1.25 
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Figure 5.2 Top 10 congested segments on Interstate 80 from 2013 through 2016 

5.3 Comparison of Metro Congestion Duration 

Most of the congestion experienced in Nebraska is within urban areas, which have higher 
volumes of traffic. Given the varying numbers of segments and roadway lengths that were being 
considered, congestion per mile calculations for metro segments were used to contrast 
performance on different segments. 

The metro area segments were defined based on the last interchange when entering and 
exiting the urban area. Three commuter corridors—Dodge Street Omaha (US-6), North Platte 
(US-83), and NE–IA Border (US-275) were also included in the analysis. The durations of 
congestion for each segment along the route were added to determine the total number of hours 
of congestion. By dividing this value by the total route length, the average congestion per mile 
was determined. These values were calculated for each month for all metro areas across 
Nebraska to compare any trends in congestion. A yearly comparison is also provided for the 
years 2013 through 2016. Comparisons of metro congestion duration from 2013 through 2015 
are shown in Appendix C. 

5.3.1 Metro Congestion per Mile in 2016 

The average amount of congestion per mile in 2016 for metro areas across Nebraska is 
shown in Figure 5.3. The US 275 NE–IA border to Venice and US 6 Dodge Street Omaha 
segments were consistently among the most congested metro segments across the state. 

An annual comparison of the number of hours of congestion by roadway and selected 
metro areas are shown in Figures 5.4 and 5.5, respectively. The US 275 near NE–IA border to 
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Venice segment exhibited a consistent increase in the amount of congestion per mile in 2015 and 
2016. The congestion on the US 6 Dodge Street Omaha and I-129 in Sioux City segments 
significantly increased in 2014, 2015, and 2016. The I-180 in Lincoln segment exhibited a 
consistent amount of congestion per mile with slight increases in 2014, 2015, and 2016. Each of 
the remaining segments (I-80 Harrison St. to Omaha, US-83 North Platte, and I-690 Iowa border) 
exhibited consistent levels of congestion during the four reporting years. 

Figure 5.3 Congestion duration (hours) per mile metro area comparisons, 2016 
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Figure 5.4 Congestion duration (hours) per mile metro area comparison by year 

Figure 5.5 Selected metro routes with congestion 

5.4 Congestion Duration on Interstate 80 

In this section, we provide a detailed view of all segments along the I-80 corridor in 
Nebraska. Congestion duration (hours) were used to determine the severity of congestion by 
segment along I-80. This allowed for the locations with congestion, as well as the extent of 
where the congestion occurred, to be quickly identified. Once identified, the locations could also 
be analyzed by year, month, day, week, or time of day. 
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The congestion duration for the I-80 corridor from the Kimball to Omaha by direction of 
travel is shown in Figure 5.6. The right side of the chart represents the eastbound direction, and 
the left side represents the westbound direction, both sides directly across from each other 
representing the same location along I-80. The scale along each x-axis is the number of hours of 
congestion. Each segment is color coded based on the number of hours of congestion by summer 
(March, April, May, June, July, August, September, and October) and winter (November, 
December, January, and February) months. 

Figure 5.6 Congestion duration (hours) for westbound and eastbound Interstate 80 in 2013, 2014, 
2015, and 2016 
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5.4.1 Eastbound 

Congestion on I-80 eastbound was limited to the Omaha, Lincoln, and Julesburg areas: 

• Near the L ST interchange through Omaha 
Most congested year 2014 saw significant congestion. 
Most congested month Peaked in May but significant from April through November 
Most congested day All weekdays with peak on Thursday 
Most congested time of day 6 am – 9 am 
• Near I-80/EXIT 382 interchange through Lincoln 
Most congested year 2014 
Most congested month May 
Most congested day All weekdays with peak on Wednesday 
Most congested time of day 12 am – 6 am 

• Near NE-25B/EXIT 107, I-76, US-138/EXIT 101 interchanges 
Most congested year 2016 
Most congested month November 
Most congested day All weekdays with peak on Friday 
Most congested time of day 12 am – 6 am 

5.4.2 Westbound 

Congestion on I-80 westbound was limited to the Omaha, Lincoln, and near I-76 
interchanges. 

• Near S 60TH ST interchange through Omaha 
Most congested year 2016 saw significant congestion. 
Most congested month Peaked in August but significant from April through January 
Most congested day All weekdays with peak on Wednesday 
Most congested time of day 3 pm – 6 pm 

• Near US-6/EXIT 396 interchange through Lincoln 
Most congested year 2015 
Most congested month February 
Most congested day All weekdays with peak on Sunday 
Most congested time of day 12 am – 6 am 

• Near NE-56G/EXIT 179 interchange through North Platte 
Most congested year 2013 
Most congested month February and August 
Most congested day All weekdays with peak on Sunday 
Most congested time of day 12 am – 6 am 
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5.5 Speed Performance for Interstate 80 

One limitation with using congestion duration is the limited ability to evaluate additional 
speed thresholds lower than 45 mph without a web-based tool. One solution was to develop 
speed performance charts that allowed for the severity of the congestion to be evaluated by 
observing the percentage of time speeds were within 10-mph bins from 0 to 75+ mph. 

Similar to congestion duration, each segment is evaluated based on the number of 
minutes speeds are within a speed bin, using real-time data from the probe data source. Each 
segment varied in the amount of data that was provided in real time. To account for this, the 
number of minutes in each speed bin was divided by the total number of minutes of real-time 
speed data for that segment. This allowed for the data to be plotted on a chart running from 0 to 
100% to see what percentage of time speeds were within a defined range. 

The speed performance along I-80 in the eastbound and westbound directions is shown in 
Figures 5.7 and 5.8, respectively. Similar to the graph of the number of hours of congestion, the 
I-80 corridor through Nebraska is represented along with a reference bar along the left showing 
the nearest state routes. Each column of the chart represents a separate month, which allows for 
comparisons to be made. Each speed bin is represented by a separate color with lowest speeds 
represented by red and higher speeds represented by dark green. The scale along the x-axis 
identifies what percentage of the real-time data is within the designated bin. Speed performance 
data for I-80 for 2013 through 2015 are shown in Appendix C. 

As shown in Figures 5.7 and 5.8, the severity of congestion significantly increased near 
the Omaha and Lincoln areas in 2014, 2015, and 2016, as indicated by the larger percentage of 
slower speeds. No other significant changes in speed were identified along I-80. 
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   Figure 5.7 Interstate 80 EB speed percentage in 2016 
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Figure 5.8 Interstate 80 WB speed percentage in 2016 

5.6 Travel Time Reliability for Interstate 80 

5.6.1 Yearly travel time reliability 

Drivers across Nebraska expect to have few delays and to be able drive a similar route 
with little or no change in their travel time. Travel time reliability is an important performance 
measure that is used to measure drivers’ confidence that they will arrive within an acceptable 
travel time. In this report, the percentage increase in typical travel time was used to measure the 
increase in travel time that would be needed for 95% of trips to arrive on time. To compare this 
reliability between other routes with of different lengths, the increase for 95% confidence in 
travel time was divided by the average travel time to determine the percentage of additional 
travel time needed. 

Interstate 80 was divided into eight routes: through Omaha, from Chalco to Waverly, 
through Lincoln, from Lincoln to York, from York to Kearney, from Kearney to North Platte, 
from North Platte to Chappel, and from Lodge Pole to the NE–WY border. The travel time 
represents the time it took to travel all the segments through each route. After the travel time 
through each route was calculated every minute using the probe-based speed data, the average 
and 95th percentile of travel times were calculated. The 95th percentile travel time was 
determined for the entire year for the morning and evening peak periods during weekdays. This 
allowed for the reliability of the travel time to be analyzed during the more heavily congested 
hours of day. 
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Both directions of travel for I-80 are displayed in the charts of Figure 5.9. The center 
banner identifies the route along the interstate where the reliability was measured. The different 
colored bars represent the different times of day during which the reliability was measured and a 
comparison for the years from 2013 through 2016. The percentage increases in typical travel 
times along I-80 are displayed. Both directions of the NE–WY border segment experienced an 
increase in typical travel time from 2013 through 2016. Percentage increase in travel time 
reliability was fairly low from York to North Platte and remained consistent during all time 
periods. The segment from Waverly to Lincoln experienced a significant increase in the typical 
travel time from 2013 through 2016. 

Figure 5.9 Percentage increase in typical travel time on Interstate 80 

5.7 Conclusion 

In this chapter, we reported how we explored performance monitoring and historical 
trend analysis from INRIX data using different measures for I-80 in Nebraska. First, we 
identified the top 10 congested roadways by determining which segments had the most 
congestion and then the beginning and end of where the congestion occurred; we also included a 
detailed analysis of when congestion occurred by month, day of week, and time of day. Next, we 
presented the congestion per mile calculations that were used to determine metro area congestion 
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per mile, which supported comparing performance given the varying number and length of 
roadway segments that we investigated. These values were calculated for each month for all 
metro areas across Nebraska to compare congestion trends. A yearly comparison for years 2013 
through 2016 was also provided. Third, we reported on how congestion duration was used to 
show the severity of congestion by segment along I-80. Each segment was color coded based on 
the number of hours of congestion by summer and winter months. Once identified, the locations 
can also be analyzed by year, month, week, day, or time of day. Next, we presented how the 
severity of congestion could be evaluated by observing the percentage of time speeds were 
within a 10-mph bin from 0 to 75+ mph. Finally, we described how we divided I-80 into eight 
sections to calculate the change in travel time reliability from 2013 to 2016. 
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6. Conclusions and Recommendations 

6.2 Summary and Conclusions 

Traffic monitoring using wide-area probe-sourced data is growing as a viable means of 
comprehensive traffic monitoring without a large investment in deploying physical assets in 
right-of-ways and its associated costs and maintenance burden. Real-time and archived probe 
data streams have many uses, provided the above-mentioned considerations have been addressed. 
Real-time probe data is useful for traffic operations and safety management activities such as 
travel time estimation and incident management. 

For travel time estimation, real-time probe data streams can serve as a good data source 
for calculating and displaying travel times on message signs on major freeways and highways. 
However, it is important to know how some of the challenges, as discussed in Chapter 4, may 
affect this travel time estimation. It was very complicated and not very efficient using point-
based detection models for incident management until the emergence of wide-area probe data 
streaming. Incident management activities, such as detecting the back of a queue, were 
previously nearly impossible. This problem has now been simplified through the use of probe 
data streams. Probe data are being used in Iowa and Indiana for a real-time application, which 
allows for the identification of locations experiencing queuing in an effort to eliminate back-of-
queue crashes. 

In this study, we focused on several specific locations in the state of Nebraska to evaluate 
the reliability of INRIX data by comparing that data with data from PVR sensors using selected 
performance measures. A summary of the study appears in Table 6.1. 

Table 6.1 Summary of performance measures used in the study 
Performance Measures Comments 

Congestion detection latency This measure of delay between two time series datasets was used to measure the difference in 
detection of start times of a congestion period between INRIX and PVR sensors. The average 
latency calculated in this study was 4.97 minutes. 

Count of congestions Number of congestions that were detected by both INRIX segments and PVR sensors with 
latencies lower than 20 minutes. Using the congestion detection algorithm, 44 congestions 
were detected by both INRIX and PVR datasets for all selected ATRs for all days. 

Congestion durations Two scenarios for comparing INRIX and PVR datasets in terms of congested hour were 
considered: 

• Scenario 1: total number of hours for which the speed of each segment is less than 45 
mph. 

• Scenario 2: congestion durations detected by both INRIX segments and PVR sensors 
with detection latency lower than 20 minutes. 

The two scenarios were compared for two time periods; 1 day and 3 weeks. Scenario 1 
showed INRIX duration of congestion hour tended to be longer than for PVR because, for 
some ATRs, INRIX reported speed close to 45 mph or even less for most of the time. Also, 
lack of sufficient confidence score 30 (real-time) data negatively affected this situation. Using 
scenario 2, we obtained reliable results for comparing the two datasets. 

Buffer time index BTI was calculated by subtracting the 85th percentile of TTPM (travel time per mile) from 
the TTPM median and then dividing that result by the TTPM median. It was calculated for 1-
week and 3-week periods. Due to low variation of INRIX data, BTI for PVR is almost always 
greater than that for INRIX. In summary, INRIX did not perform reliably for calculating the 
BTI. 

Reliability curve Calculated as the inverse of speed multiplied by 60, was considered as TTPM in minutes. 
Except for some locations, INRIX performance was acceptable in terms of reliability curves. 

Archived probe data is useful for general transportation asset performance assessment 
and planning. Archived data can be used to build models to understand the performance of such 
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assets, especially for low volume and low speed roadways where real-time operational activities 
cannot be performed due to high speed bias and latencies. A comprehensive analysis of 
performance monitoring and historical trend analysis using different measures for I-80 segments 
in Nebraska was also performed in this study. Almost all top 10 congested segments from 2013 
through 2016 were located near Omaha and Lincoln on I-80. 

Observations: 
• In 2013, most segments exhibited slightly longer hours of congestion hours during 

September and October, across weekdays, and between 3 pm and 6 pm. 
• In contrast to 2013, the top 10 most congested locations in 2014 were much more 

congested. Most segments exhibited consistent congestion throughout year, except from 
May through October, across weekdays and between 3 pm and 6 pm and between 6 am 
and 9 am. 

• In contrast to 2013 and 2014, the top 10 most congested locations exhibited less 
congestion in 2015. Most segments saw slightly longer hours of congestion in November 
and December, across weekdays and between 3 pm and 6 pm. 

• Finally, in contrast to 2013 and 2015, the top 10 most congested locations exhibited more 
congestion in 2016 but less than in 2014. Most segments exhibited consistent congestion 
throughout the year, except in February and March, across weekdays and between 3 pm 
and 6 pm. 

The average amount of congestion per mile was calculated across metro areas in 
Nebraska from 2013 through 2016. Three commuter corridors—Dodge Street Omaha (US-6), 
North Platte (US-83), and NE–IA Border (US-275)—were also included in the analysis. 

Observations: 
• US 275 near the NE–IA border to Venice exhibited a consistent increase in congestion per 

mile in 2015 and 2016. 
• The congestion on US 6 Dodge Street Omaha and I-129 in Sioux City significantly 

increased in 2014, 2015, and 2016. 
• I-180 in Lincoln exhibited a consistent amount of congestion per mile with slight 

increases in 2014, 2015, and 2016. 
• Each of the remaining routes (I-80 Harrison St. to Omaha, US-83 North Platte, and I-690 

Iowa border) experienced consistent levels of congestion during the four reporting years. 

The duration of congestion was calculated to show the severity of congestion by summer 
and winter months and by direction for all segments along the I-80 corridor in Nebraska from 
2013 through 2016. 

Observations: 
• Congestion on I-80 eastbound was limited to the Omaha, Lincoln, and Julesburg areas. In 

2014, significant congestion was exhibited near the L ST interchange through Omaha, 
peaking in May but significant from April through November, all weekdays with a peak 
on Thursday, and mostly between 6 am and 9 am. Also, in 2016 congestion was exhibited 
near the NE-25B/EXIT 107, I-76, and US-138/EXIT 101 interchanges, peaking in 
November, all weekdays with a peak on Friday, and mostly between 12 am and 6 am. 

68 



 

 

     
    

     
         

    
      

      
    

    

  
  

   
  

 
      

   
  

     
 

 
 
  

  
    

  
    

  
 

       
 

  
 

  
 

 
 

 
  

 
 

  
 

  

• Congestion on I-80 westbound was limited to areas in Omaha and Lincoln and near the I-
76 interchange. In 2016 significant congestion was exhibited near the S 60TH ST 
interchange in Omaha, peaking in August but significant from April through January, all 
weekdays with a peak on Wednesdays, and mostly between 3 pm and 6 pm In 2015, there 
was significant congestion near the US-6/EXIT 396 interchange through Lincoln, peaking 
in February, all weekdays with peaks on Sunday, and mostly between 12 am and 6 am. In 
2013, congestion was exhibited near the NE-56G/EXIT 179 interchange through North 
Platte, peaking in February and August, all weekdays with peaks on Sunday, and mostly 
between 12 am and 6 am. 

The severity of congestion was evaluated by observing the percentage of time speeds 
were within 10-mph bins from 0 to 75+ mph in both the eastbound and westbound directions. In 
2014, 2015, and 2016, the severity of congestion significantly increased near the Omaha and 
Lincoln areas, as shown by the larger percentage of slower speeds. No other significant changes 
in speed were identified along I-80. 

The NE–WY border segment exhibited an increase in typical travel time from 2013 
through 2016 in both directions. The travel time reliability was low from York to North Platte 
and remained consistent during all time periods. From Waverly to Lincoln a significant increase 
in typical travel time was evident from 2013 through 2016. 

6.2 Recommendations 

Ultimately, wide-area probe data offers a wide array of opportunities for the 
transportation industry. With connected vehicles and sophistication of personal and commercial 
technologies in the future, these innovative data streams, which can also provide user feedback, 
are going to continue to influence and support innovation within the transportation industry. We 
offer the following recommendations to agencies considering the use of a probe data streams to 
support traffic operations management and decision making: 

• Most transportation agencies define road segments based on a linear referencing system. 
To easily associate probe data with other significant data sources, such as weather and 
crash data, agencies must conflate the probe data segmentation to the linear referencing 
system. 

• The length of segments for which probe data are available varies greatly, from 0.5 
miles to about 8 miles. Agencies must examine whether the space granularity of probe 
data is sufficient for the intended application. For incident detection applications, high 
space granularity may lead to false alarms. Segments with shorter lengths should be 
excluded. On the other hand, for work zone performance assessment, high space 
granularity is preferred for estimating measures such as queue lengths, total delays, etc. 

• Agencies should arrange to work with probe data vendors toward identifying, 
communicating, and ultimately automatically detecting lane configuration changes to 
vendors. 

• In terms of geographic coverage, INRIX has been evaluated for interstates and non-
interstates, showing that INRIX is reliable for almost all minutes of a day on interstates. 
Moreover, this study showed that INRIX is more reliable during the day than at night, 
especially during peak hours. 
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• Regarding incident detection, INRIX is reliable for merely detecting congestion, 
especially recurring congestion; when it detects congestion, it gets almost all the 
information related to the congestion. 

• There will always be a bias between traffic speed data from probe sources and 
benchmarked sensors. Speed bias directly affects incident detection, travel time 
estimation, calculating performance measures (such as congested hour, BTI, etc.), and 
other traffic-related measures. It is important to understand the factors that influence 
these biases and how to correct for them. 

• Travel time estimation and incident detection applications should be developed based 
completely on real-time data. Substitutions with historical data are not accurate and 
therefore not advised. In areas with limited probe penetration, an agency could augment 
probe data with infrastructure-mounted sensors. 

• Agencies should note that there is almost always a time delay in probe-based streaming 
data. Compared to loop detectors and radar sensors, latency increases on low-volume 
roadways and especially when traffic is moving at lower speeds. Thus, for time-
sensitive applications, it is important to know the possible range of expected latencies 
and plan appropriately; however, sensors are very costly and not applicable for many 
places. Thus, for locations without other data providers, detecting congestion with 
latency by INRIX is better than not detecting it at all. 

• Internal TMC segments with lengths less than 0.5 miles should also be excluded from 
traffic performance evaluations. 

• In this era of big data, all transportation agencies and state DOTs must be able to handle 
a huge volume of data. Apache Hadoop, Apache Pig, and Apache Spark [66] are high-
level open-source “big data” technologies that allow for the analysis of “big” probe data 
streams. 

Many different tests, analyses, and experiments have been left for the future due to lack 
of sufficient data. Because this study was focused mainly on freeways, future work should be 
focused on a deeper analysis of arterials and urban areas. This would be possible by deploying 
more infrastructure sensors on both freeways and arterials. Another main point that should be 
taken into consideration is the length of time that data is collected. In the best case scenario for 
this study, the longest time period available data for each sensor was almost a month. By 
increasing it to a year or more, it would be possible to measure the performance of probe data 
versus local sensors over a longer period of time. 
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Appendix A: Total PVR data available for all ATRs 

The table below shows each ATR, its direction, and the total number of days in each 
month for which data were provided by NDOR. To evaluate the reliability of PVR data, a 
comparison was made with data collected by trailers (Wavetronix data). In chapter 3, cumulative 
distribution function (CDF) was used in Figure 3.3 to illustrate the differences in speeds detected 
between PVR and Wavetronix sensors. It was expected that the two CDF lines for PVR and 
Wavetronix sensor data for each location would nearly overlap each other. However, it is 
obvious from Figure 3.3 that sites 6N, 6S, 19E, 19W, 32W, 39S, 61E, and 65E showed different 
traffic speed performance. Thus, these locations were excluded from further analysis. The data 
from these ATRs are shown in red in the table. 

Table A.1 Total PVR data available for all ATRs 

ATR Dir 
Number of Days 

Oct Nov Dec Feb Mar Apr Total 

2 E 7 14 2 6 - - 29 

2 W 7 14 2 6 - - 29 

6 N - 24 2 - - - 26 

6 S - 24 2 - - - 26 

19 E 7 14 2 6 - - 29 

19 W 7 14 2 6 - - 29 

20 E 7 14 2 6 - - 29 

20 W 7 14 2 6 - - 29 

31 E 7 14 2 6 - - 29 

31 W 6 14 2 6 - - 28 

32 E 7 14 2 6 - - 29 

32 W 7 14 2 6 - - 29 

38 E 7 14 2 6 - - 29 

38 W 7 14 2 6 - - 29 

39 N 7 14 2 6 -- - 29 

39 S 7 14 2 6 - - 29 

40 N - - - - 9 21 30 

40 S - - - - 9 21 30 

43 E 7 14 2 6 - - 29 

43 W 7 14 2 6 - - 29 

46 N 7 14 2 6 9 21 59 

46 S 7 14 2 6 9 21 59 

54 E 7 14 2 6 - - 29 

54 W 7 14 2 6 - - 29 

56 E - - - - 8 21 29 

56 W - - - - 8 21 29 

61 E - 24 2 6 - - 32 
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61 W - 24 2 6 - - 32 

64 N 7 14 2 6 - - 29 

64 S 7 14 2 6 - - 29 

65 E 5 14 8 6 - - 33 

65 W 5 14 8 6 - - 33 
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Appendix B. Errors associated with traffic speed reported using only real-time data for 

some sites 

Figure B.1 is continuation of Figure 4.4, illustrating the errors associated with real-time 
traffic speed data for the sites that were not shown in Figure 4.4. 

(a) 

(b) 
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(c) 
Figure B.1 Errors associated with traffic speed reported using only real-time data for some sites 
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Appendix C. Top 10 Most Congested Segments. Metro Congestion per Mile, and Speed 
Performance for Interstate 80 in 2013, 2014, and 2015 

Top 10 Most Congested Segments in 2013 

The top 10 most congested segments in 2013 are shown in Figure C.1. All of the 
segments were located in the Omaha and Lincoln areas. Nine of the ten locations were in Omaha; 
the other top congested segment was near Lincoln. Most segments exhibited slightly higher 
congested hours during September and October across weekdays and between 3 pm and 6 pm. A 
summary of each of the top ten locations are included below. 

Figure C.1 Top 10 congested segments in 2013 
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319
Hours

I-80 Omaha EB | L ST | 1.45 miles 

Annual number 
of hours of 
congestion 

Around 319 hours 

Highest 
monthly and 

weekday total 
hours of 

congestion 

Throughout year with a high in 
October at 46 hours, consistent 

across weekdays 

Longest 
congestion 
duration by 
time of day 

6 am to 9 am 

Distribution of 
times of 

congestion 

1 

I-80 Omaha WB | I-480/US-75 | 1.27 miles 
Annual number 

of hours of 
congestion 

251 hours 

Highest 
monthly and 

weekday total 
hours of 

congestion 

Throughout year with a high in June 
at 29 hours, consistent across entire 

week, except Saturday 

Longest 
congestion 
duration by 
time of day 

3 pm to 6 pm 

Distribution of 
times of 

congestion 

251 
Hours 

2 
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3 

4 

I-80 EB Omaha EB | S 72ND ST | 0.33 miles 
Annual 

number of 215 hours hours of 
congestion 

Throughout year with a high in 
September at 43 hours, consistent 

across entire week, except Saturday 

Primarily between 6 am to 9 am, peak 
from 3 pm to 6 pm with 91 hours 

215 
Hours 

Highest 
monthly and 

weekday total 
hours of 

congestion 
Longest 

congestion 
duration by 
time of day 

Distribution of 
times of 

congestion 

I-80 Near Lincoln EB| Exit 382 | 2.5 miles 
Annual number 

of hours of 202 hours 
congestion 

January to July with a high in March 
at 45 hours, consistent across entire 

week 

12 am to 6 am 

202 
Hours 

Highest 
monthly and 

weekday total 
hours of 

congestion 
Longest 

congestion 
duration by 
time of day 

Distribution of 
times of 

congestion 
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5 

6 

I-80 Omaha WB | S 72ND ST | 0.39 miles 
Annual number 

of hours of 167 hours 
congestion 

Throughout year with a high in 
February at 17 hours and Tuesday 

being the highest day 

3 pm to 6 pm 

167 
Hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 

I-80 Omaha WB | S 60TH ST | 0.83 miles 
Annual number 

of hours of 159 hours 
congestion 

Throughout year with a high in June 
at 19 hours, consistent across entire 

week, except Saturday 

3 pm to 6 pm 

159 
Hours 

Highest 
monthly and 

weekday total 
hours of 

congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 
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7 

8 

I-80 Omaha EB | S 84TH ST | 1.2 miles 
Annual number of 

hours of 133 hours 
congestion 

Throughout year with a high in 
September at 28 hours, consistent 

across entire week, except Saturday 
Primarily between 3 pm to 6 pm, 
peak from 6 am to 9 am with 54 

hours 

133 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 

I-80 Omaha EB | S 60TH ST | 0.37 miles 
Annual number of 

hours of 116 hours 
congestion 

Throughout year with a high in 
September at 24 hours, consistent 

across entire week, except Saturday 

Primarily between 3 pm to 6 pm, 
peak from 6 am to 9 am with 41 

hours 

116 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest conges-
tion duration by 

time of day 

Distribution of 
times of 

congestion 

84 



 

 

 

 

 
 

  

 

 

  
   

 

 
 

 

  

 

 
  

     
    

 
 

 
  

  
    

 

  

 

 
 
 

  

 

 

  
   

 

 
 

 
  

 

       
    

  
 

 
 

  

  
         

 

  

 

 
 
  

 

 

104
Hours

95 
Hours

I-80 Omaha EB | I-480/US-75 | 1.09 miles 
Annual number 

of hours of 
congestion 

104 hours 

Highest monthly 
and weekday 
total hours of 
congestion 

February to August with a high in 
August at 19 hours, consistent 

across entire week, except Tuesday 

Longest conges-
tion duration by 

time of day 

Primarily between 9 am to 3 pm, 
peak from 3 pm to 6 pm with 40 

hours 

Distribution of 
times of 

congestion 

9 

I-80 Omaha EB | I-680 | 1.25 miles 
Annual number 

of hours of 
congestion 

95 hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Throughout the year with a high in 
September at 11 hours, consistent 

across entire week 

Longest conges-
tion duration by 

time of day 

Primarily between 3 pm to 6 pm, peak 
from 6 am to 9 am with 40 hours 

Distribution of 
times of 

congestion 

10 
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Top 10 Most Congested Segments in 2014 

In contrast to 2013, the top 10 most congested locations were much higher in 2014. Nine 
of the ten locations were in Omaha, and the remaining segment was near Lincoln (see Figure 
C.2). Most segments exhibited consistent congestion throughout year, except for May through 
October across weekdays and between 3 pm and 6 pm and 6 am and 9 am. A summary of each of 
the top ten locations are included below. 

Figure C.2 Top 10 congested segments in 2014 
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268
Hours

567
Hours

I-80 Omaha EB | L ST | 1.45 miles 
Annual number 

of hours of 
congestion 

Second year at the top of the list 
increased from 248 hours in 2013 

Highest monthly 
and weekday 
total hours of 
congestion 

April to November with a high in May 
at 105 hours 

Longest 
congestion 

duration by time 
of day 

Primarily between 3 pm to 6 pm, peak 
from 6 am to 9 am with 307 hours 

Distribution of 
times of 

congestion 

1 

I-80 Omaha WB | I-480/US-75 | 1.27 miles 
Annual number 

of hours of Increased from 17 hours in 2013 
congestion 

February to October with a high in July 
at 40 hours. Consistent across weekdays 

3 pm to 6 pm 

2 
Highest monthly 

and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 
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3 

4 

I-80 Near Lincoln EB| Exit 382 | 2.5 miles 
Annual number 

of hours of Increased from 30 hours in 2013 
congestion 

May to July with a high in September at 
43 hours, consistent across entire week 

Primarily between 3 pm to 6 pm, peak 
from 12 am to 6 am with 89 hours 

232 
Hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 

I-80 Omaha EB| S 72ND ST | 0.33 miles 
Annual number 

of hours of Decreased from 27 hours in 2013 
congestion 

Throughout the year with a high in 
February at 28 hours, primarily on 

Thursday 

3 pm to 6 pm and 6 am to 9 am 

188 
Hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 
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123
Hours

I-80 Omaha WB | S 84TH ST | 1.2 miles 
Annual number 

of hours of Slight decrease from last year 
congestion 

5 Consistent by month and entire week, 
except July and Sunday 

6 am to 9 am and 3 pm to 6 pm 

130 
Hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 

6 
Highest monthly 

and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 

I-80 Omaha WB | S 60TH ST) | 0.83 miles 
Annual number 

of hours of Decreased from 36 hours in year 2013 
congestion 

Consistent by month and entire week, 
except May and Saturday 

3 pm to 6 pm 

89 



 

 

 

 

 
 

   

 

 

  
   

 

 
       

 
  

  
  

  

 
       

      
 

 
 

 
  

 
        

         

  
  

  

 
 
 

   

 

 

  
   

 

 
       

 
  

  
  

  

 
      

    
 

 
 

 
  

 
  

 

  
  

  

 
 
 
 
  

 

 

7 

8 

I-80 Omaha EB | S 60TH ST | 0.37 miles 
Annual number 

of hours of Decreased from 14 hours in year 2013 
congestion 

Throughout the year with a high in 
February at 18 hours, consistent across 

weekdays 

Primarily between 6 am to 9 am, peak 
from 3 pm to 6 pm with 45 hours 

102 
Hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 

I-80 Omaha WB | S 72ND ST | 0.39 miles 
Annual number 

of hours of Decreased from 70 hours in year 2013 
congestion 

Throughout year with a high in 
February, consistent across weekdays 

3 pm to 6 pm 

97 
Hours 

Highest monthly 
and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 

90 



 

 

 

 

 
 

  

 

 

  
   

 

 
     

 
  

  
  

  

     
    

 

 
 

 
  

 
    

 

  
  

  

 
 
 

   

 

 

  
   

 

 
 

 
  

  
  

  

 
      

   
 

 
 

 
  

 
  

 

  
  

  

 
 
 
  

 

 

90 
Hours

I-80 Omaha EB | I-680 | 1.25 miles 
Annual number 

of hours of 
congestion 

Slight decrease from last year 

Highest monthly 
and weekday 
total hours of 
congestion 

June and December with consistent 
across entire week, except Sunday 

Longest 
congestion 

duration by time 
of day 

3 pm to 6 pm and 6 am to 9 am 

Distribution of 
times of 

congestion 

9 

I-80 Omaha EB | NE -- IA STATE BORDER | 0.67 miles 
Annual number 

of hours of 84 hours 
congestion 

May to October with consistent across 
entire week, except Saturday 

3 pm to 6 pm 

84 
Hours 

10 
Highest monthly 

and weekday 
total hours of 
congestion 

Longest 
congestion 

duration by time 
of day 

Distribution of 
times of 

congestion 
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Top 10 Most Congested Segments in 2015 

In contrast to 2013 and 2014, the top 10 most congested locations exhibited less 
congestion in 2015. Most segments had a slightly higher number of hours of congestions in 
November and December, across weekdays and from 3 pm to 6 pm. The top 10 segments were 
located in the Omaha and Lincoln areas (see Figure C.3). A summary of each of the top ten 
locations are included below. 

Figure C.3 Top 10 congested locations in 2015 
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376
Hours

I-80 Omaha WB | S 60TH ST | 0.83 miles 

Annual number of 
hours of 

congestion 

Increased progressively from 253 hours 
in 2014 

Highest monthly 
and weekday total 

hours of 
congestion 

Consistent by month and entire 
weekdays 

Longest 
congestion 

duration by time of 
day 

3 pm to 6 pm 

Distribution of 
times of 

congestion 

1 

282 
Hours 

2 

I-80 Omaha EB| S 72ND ST | 0.33 miles 

Annual number of 
hours of 

congestion 

Increased progressively from 94 hours in 
2014 

Highest monthly 
and weekday total 

hours of 
congestion 

Throughout the year with a high in 
December at 35 hours, primarily on 

Thursday 

Longest 
congestion 

duration by time of 
day 

Primarily between 6 am to 9 am, peak 
from 3 pm to 6 pm with 123 hours 

Distribution of 
times of 

congestion 
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3 

4 

I-80 Omaha WB | S 72ND ST | 0.39 miles 

Annual number of Increased progressively from 143 hours hours of in 2014 congestion 

Throughout year with a high in 
December, consistent across weekdays 

3 pm to 6 pm 

240 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest 
congestion 

duration by time of 
day 

Distribution of 
times of 

congestion 

I-80 Omaha WB | S 84TH ST | 1.2 miles 

Annual number of Increased progressively from 72 hours hours of in 2014 congestion 

Consistent by month and entire week, 
except August and weekends 

6 am to 9 am and 3 pm to 6 pm 

202 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest 
congestion 

duration by time of 
day 

Distribution of 
times of 

congestion 

94 



 

 

 

 

 
 

   

 

 

   
  

 

 
 

 
  

   
  

  

 
      

 
 

 
 

  
 

 
    

 

  
  

  

 
 
 

   

 

 

   
  

 

 
 

 
  

   
  

  

 
     

  
 

 
 

  
 

 
    

 

  
  

  

 
 
 
 
 
  

 

 

142
Hours

I-80 Near Lincoln WB | US - 6/EXIT 396 | 0.59 miles 
Annual number of 

hours of 
congestion 

142 hours 

Highest monthly 
and weekday total 

hours of 
congestion 

High in February and consistent across 
entire week 

Longest 
congestion 

duration by time of 
day 

12 am to 6 am and 6 pm to 12 am 

Distribution of 
times of 

congestion 

5 

I-80 Omaha WB | S 42ND ST | 0.859 mile 
Annual number of 

hours of 137 hours 
congestion 

Throughout year and across weekdays, 
except April 

6 am to 9 am and 6 pm to 12 am 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest 
congestion 

duration by time of 
day 

Distribution of 
times of 

congestion 

137 
Hours 

6 
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134
Hours

I-80 Omaha WB | I-480/US-75 | 1.27 miles 
Annual number of 

hours of 
congestion 

Decreased from 134 hours in 2014 

Highest monthly 
and weekday total 

hours of 
congestion 

February, August and September with 
consistent across entire week 

Longest 
congestion 

duration by time of 
day 

6 pm to 12 am and 12 am to 6 am 

Distribution of 
times of 

congestion 

7 

I-80 Omaha WB | I-480/US-75 | 0.39 mile 
Annual number of 

hours of 134 hours 
congestion 

June through February with a high in July 
at 28 hours, consistent across entire week 

12 am to 6 am 
134 
Hours 

8 
Highest monthly 

and weekday total 
hours of 

congestion 
Longest 

congestion 
duration by time of 

day 

Distribution of 
times of 

congestion 
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9 

I-80 Omaha WB | S 60TH ST | 0.37 miles 
Annual number of 

hours of Slight increase from past two years 
congestion 

September through June with a high in 
October at 20 hours, across weekdays 

6 am to 9 am and 3 pm to 6 pm 

129 
Hours 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest 
congestion 

duration by time of 
day 

Distribution of 
times of 

congestion 

I-80 Omaha EB | I-680 | 1.25 miles 
Annual number of 

hours of Slight increase from past two years 
congestion 

Throughout the year with a high in 
October at 23 hours, across entire week 

6 am to 9 am 

Highest monthly 
and weekday total 

hours of 
congestion 

Longest 
congestion 

duration by time of 
day 

Distribution of 
times of 

congestion 

113 
Hours 

10 
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Metro Congestion per Mile in 2013 

The average amount of congestion per mile in 2013 for metro areas across Nebraska is 
shown in Figure C.4. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were 
consistently among the most congested metro routes across the state. 

Figure C.4 Comparison of the number of hours of congestion per mile in metro areas, 2013 
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Metro Congestion per Mile in 2014 

The average amount of congestion per mile in 2014 for metro areas across Nebraska is 
shown in Figure C.5. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were 
consistently among the most congested metro routes across the state. A noticeable increase in 
congestion is seen for I-180 near Lincoln during June, July, August, September, and October. 

Figure C.5 Comparison of the number of hours of congestion per mile in metro areas, 2014 
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Metro Congestion per Mile in 2015 

The average amount of congestion per mile in 2015 for metro areas across Nebraska is 
shown in Figure C.6. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were 
consistently among the most congested metro routes across the state. 

Figure C.6 Comparison of the number of hours of congestion per mile in metro areas, 2015 
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Speed Performance for Interstate 80 

The speed performance along I-80 in the eastbound and westbound directions for 2013, 
2014 and 2015 is shown in Figures C.7 through C.12. 

Figure C.7 Interstate 80 EB Speed Percentage in 2013 

Figure C.8 Interstate 80 WB Speed Percentage in 2013 
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Figure C.9 Interstate 80 EB Speed Percentage in 2014 

Figure C.10 Interstate 80 WB Speed Percentage in 2014 
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Figure C.11 Interstate 80 EB Speed Percentage in 2015 

Figure C.12 Interstate 80 WB Speed Percentage in 2015 
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	Disclaimer 
	The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Nebraska Department of Transportation in the interest of information exchange. The contents do not necessarily reflect the official views of the Nebraska Department of Roads. This report does not constitute a standard, specification, or regulation. The U.S. Government assumes no liability for the conte
	Abstract 
	In recent years there has been a growing desire for the use of probe vehicle technology for congestion detection and general infrastructure performance assessment. Unlike costly traditional data collection by loop detectors, wide area detection using probe-sourced traffic data is significantly different in terms of measurement technique, pricing, coverage, etc. This affects how the new technology is applied and used to solve current traffic problems such as traffic incident management and roadway performanc
	-

	Executive Summary 
	Presently, there is an expanding interest among transportation agencies and state Departments of Transportation to consider augmenting traffic data collection with probe-based services, such as INRIX. The objective is to decrease the cost of deploying and maintaining sensors and increase the coverage under constrained budgets. This report documents a study evaluating the opportunities and challenges of using INRIX data in Nebraska. The objective of this study was twofold: (1) evaluate the reliability and ac
	This study demonstrates a systematic way to compare the reliability and accuracy of probe-data streams for monitoring traffic conditions and supporting operations decisions. Out of 65 automatic traffic recorders (ATRs) in Nebraska, 16 locations were identified based on various criteria. For each of the selected ATRs there were corresponding traffic message channels (TMCs), which are maintained by INRIX to collect the traffic details on major freeways and urban areas. Various traffic performance measures wer
	The reliability and accuracy of the INRIX data were evaluated by comparing the data to PVR (per-vehicle record) sensor data. The factors that were taken into consideration for examining the performance of the INRIX data are as follows: (1) percentage availability of INRIX; (2) speed bias between INRIX segments and PVR sensors; (3) incident detection, which provides the number of congestions, and detection latency; and (4) performance measures, such as congested hour(s), buffer time index, and reliability cu
	INRIX speed bias affected the process of congestion detection as well as calculation of congested hour duration. For instance, speed bias affects the magnitude of INRIX speed reported at segments with lower speed limits such that a 60-mph speed limit segment might shows speeds around 45 mph (the congestion threshold) or even less during non-congested times, whereas benchmarked sensor data reports speeds around 60 mph. Also, speed bias affects performance measures, such as congested hour, buffer time, and re
	A comprehensive analysis of performance monitoring and historical trend analysis using different measures for Interstate 80 (I-80) segments in Nebraska was also performed. The top 10 congested segments on I-80 were identified and a detailed analysis of when congestion had occurred by month, day of week and time of day from 2013 through 2016 was performed. A 
	A comprehensive analysis of performance monitoring and historical trend analysis using different measures for Interstate 80 (I-80) segments in Nebraska was also performed. The top 10 congested segments on I-80 were identified and a detailed analysis of when congestion had occurred by month, day of week and time of day from 2013 through 2016 was performed. A 
	congestion-per-mile calculation was used to determine metro area congestion per mile, which supports contrasting performance given the varying amounts of segments and roadway lengths that exist. These values were calculated for each month for all metro areas across Nebraska to compare any trends in congestion. A yearly comparison is also provided for years 2013 through 2016. The number of hours of congestion was used to display the severity of congestion by segment along I-80. Each segment was color coded b

	1. Introduction 
	1.1 Background 
	For comprehensive performance assessments of freeways, highways, and arterials, state DOTs and many of transportation agencies conventionally rely on infrastructure-mounted sensors, but the cost of installing and retaining these sensors is high. Most of these infrastructure-mounted sensors are deployed on major freeways and in critical urban areas, and this leads to less coverage on highways and arterials. Also, in terms of geographical scalability, they need to be deployed in large numbers to be able to co
	The emergence of probe vehicle technology, which has grown over the past few years, has caused a remarkable change in traffic data collection, processing, analyses, and utilization. Being able to access a huge volume of historical and real-time traffic data without any of the cost of installation, configuration, and maintenance of infrastructure-mounted sensors interests many agencies that want to utilize a single, uniform data source for monitoring traffic conditions across most routes in the U.S. Traffic 
	INRIX provides speed, travel time, incidents, and quality data updates along each mile-long travel segment at a frequency of once every minute. The resulting stream for traffic message channels (TMCs) comprises approximately 9–10 GB/month, or more than 100 GB/year, and for XD segments is approximately 45 GB/month, or more than 545 GB/year for the entire Nebraska roadway system. With the addition of new higher spatial coverage and resolution, the size of input streams is expected to increase [1]. 
	1.2 Vehicle Probe Data from INRIX 
	In this study, we utilized the historical and real-time traffic data collected through the INRIX TMC monitoring platform. Real-time traffic data, including speeds and travel times, as well as location information, were provided by INRIX, which is currently regarded as the largest crowd-sourced traffic dataset. With the help of today’s technologies, including connected vehicles and smartphones, INRIX leverages the vast amount of historical and real-time data that can be analyzed and investigated to improve t
	1.2.1 INRIX Data Sources 
	INRIX derives historical flow data using the following: 
	• 
	• 
	• 
	• 
	Traffic sensors – Sensors put in place by local DOTs or private sector companies, from which traffic speed is either reported or can be inferred. The sensors utilize one of several types of technology: 

	o 
	o 
	o 
	Induction loop sensors imbedded in the roadway, 

	o 
	o 
	Radar sensors, and/or 

	o 
	o 
	Toll tag readers along stretches of roadway 



	• 
	• 
	Probe vehicles – The INRIX network includes hundreds of thousands of probe vehicles—trucks, taxis, buses, and passenger cars with onboard GPS devices and transmitting capability—to relay speed and location back to a main location. INRIX has agreements with several fleets to obtain the speed and location data anonymously. 

	• 
	• 
	INRIX Smart Dust Network – This network works by combining real-time GPS probe data from more than 650,000 commercial vehicles across the U.S. that travel on a specific segment of road during a particular time window, physical sensor information, and other real-time traffic flow information with hundreds of market-specific criteria that affect traffic—such as construction and road closures, real-time incidents, sporting and entertainment events, weather forecasts, and school schedules. This component gather


	1.2.2 INRIX Data Format 
	All the INRIX historical traffic flow data for the state of Nebraska is delivered in CSV (comma separated value) format. Data provided by INRIX [2] contains the following information (refer to Figure 1.1): 
	• 
	• 
	• 
	TMC ID – the basic spatial unit used by INRIX to report the traffic flow data; INRIX uses a 9-digit TMC ID to define a unique segment. 

	• 
	• 
	Time segment – a 19-digit time format used by INRIX to define the year:month:day: hours:minutes:seconds (e.g., 2014-09-30 23:59:33 for September 30, 2014 at the 23hour, 59minute, and 33second) for each TMC. 
	rd 
	th 
	rd 


	• 
	• 
	Speed – representing the average speed for a given TMC code, calculated from live data from the most current time slice. 

	• 
	• 
	Referenced speed -an uncongested “freeflow” speed determined for each TMC segment using the INRIX traffic archive. 
	-


	• 
	• 
	Average speed – the historical average mean speed for the reporting segment for that time of day and day of the week in miles per hour. 

	• 
	• 
	Travel time – reported by INRIX based on an aggregation of data provided by GPS probes. 

	• 
	• 
	Confidence – an attribute reported by INRIX 


	having three levels: 10, 20, and 30. A 
	having three levels: 10, 20, and 30. A 
	INRIX data 

	confidence of 30 indicates that enough base data were available to estimate traffic 
	conditions in real time, rather than using either historical speed based on time of day and 
	day of week (indicated by confidence of 20) or free-flow speed for the road segment 
	(indicated by a confidence of 10). 
	• C_value – the confidence value (range 0–100), designed to help agencies determine whether the INRIX value meets their criteria for real-time data. 
	1.3 Performance Measures 
	Transportation system reliability is defined in various ways, such as travel time reliability, connectivity reliability, and capacity reliability. The focus of this study was on travel time reliability, which is one of the key performance measures used by a majority of transportation agencies and state DOTs. Section 2.3 contains a summary of previous studies that were conducted on different kinds of probes and sensors as well as the accuracy and reliability of probe-sourced data using several measures such 
	1.4 Conclusion 
	This report is organized as follows. A literature review summarizing previous related studies is provided in Chapter 2. Chapter 3 presents the how different criteria were used to select the 16 sites out of 65 ATRs in Nebraska. In Chapter 4 the experiments and results are explained in detail, the evaluation of reliability and accuracy of real-time INRIX data using different performance measures for selected ATRs is discussed, and insight is given about the observed results. In addition, the chapter includes 
	2. Literature Review 
	2.1 Introduction 
	This chapter provides a review of previous studies conducted on probe data, sensor technologies, and all performance measures using probe-sourced data. 
	2.2 Review of Existing Opportunities for and Challenges of using INRIX data 
	As demand for comprehensive traffic monitoring grows from both travelers and transportation agencies, a new technology that would reduce both installation and maintenance costs is needed for collecting accurate and real-time traffic details. Probe-based methods of measuring travel time and speed data can easily scale across large networks without the need for deploying any additional infrastructure [3]. 
	The objective of this study was to evaluate the reliability and accuracy of probe data streams against fixed, infrastructure-mounted sensor data. This report, based on a critical evaluation of the INRIX stream, will highlight key considerations for incorporating probe data into traffic operations, planning, and management activities. The accuracy of the data stream was evaluated under different factors such as: INRIX coverage on freeways and non-freeways and during peak and non-peak hours; speed bias betwee
	Although many studies comparing the accuracy and reliability of probe-sourced data against local sensor data such as radar sensor data, loop detector data, etc., have been conducted [4], [5], [6], [7], [8], [9], [10], Kim and Coifman [7] showed that INRIX speeds tend to lag behind loop detector measurements by almost 6 min. Although INRIX reports two measures of confidence, these confidence measures do not appear to reflect the latency or the occurrence of repeated INRIX reported speeds. Kim and Coifman use
	The Federal Highway Administration (FHWA) conducted a survey to gather information on: (1) products and services offered by private sector data providers and (2) public sector agency uses of the private sector data products and services. It found that agencies are using a range of data sources including GPS data from fleet vehicles, commercial devices, cell phone applications, fixed sensors installed and maintained by other agencies, fixed sensors installed and maintained by data providers, and cell phone l
	Nanthawichit et al. [9] proposed a method for treating probe vehicle data together with fixed detector data to estimate the traffic state variables of traffic volume, space mean speed, and density. The method uses a macroscopic model along with the Kalman filtering technique and was verified with several sets of hypothetical traffic data. They suggested the possibility of using estimated/predicted states to estimate/predict travel time. Coifman [5] has investigated various means of measuring link travel tim
	Nanthawichit et al. [9] proposed a method for treating probe vehicle data together with fixed detector data to estimate the traffic state variables of traffic volume, space mean speed, and density. The method uses a macroscopic model along with the Kalman filtering technique and was verified with several sets of hypothetical traffic data. They suggested the possibility of using estimated/predicted states to estimate/predict travel time. Coifman [5] has investigated various means of measuring link travel tim
	link travel time using point detector data without requiring any new hardware. Sadrsadat and Young [10] worked on the Vehicle Probe Project (VPP) to determine the probability of real-time data as a function of hourly volume. They compared the VPP data against travel time collected using Bluetoothtraffic monitoring equipment. The VPP provides an indication of real-time data by a confidence score attribute equal to 30, which is provided by INRIX. Their study confirmed the availability of real-time data with i
	TM 


	The Florida Department of Transportation (FDOT) used several metrics, such as absolute average speed error, average speed bias, absolute average travel time error, and travel time bias, to determine the accuracy of the vendors’ (NAVTEQ, TrafficCast, and INRIX) system data. Overall, the data looked consistent with the ground truth and the license plate reader data, and no significant differences in data accuracy among the three vendors were observed [11]. Adu-Gyamfi et al. [12] explored the reliability of pr
	The FDOT’s [14] technical memorandum summarizes the various data available for analyzing bottlenecks and congestion on Florida’s Strategic Intermodal System. This technical memorandum also makes recommendations concerning the applicability of using existing FDOT data versus the vehicle probe data from INRIX. Rick and Ryan [15] discussed how INRIX launched the world’s first crowd-sourced traffic network with sensors in fleet vehicles and mentioned how the INRIX XD™ gives greater traffic detail on any map and
	Different techniques (data assimilation, Newtonian relaxation) to incorporate probe data into macroscopic traffic flow models have been used to solve the optimization problem in urban areas, and they have confirmed the possibility of decreasing probe data for congested traffic with emissions using intelligent traffic control requires many detectors and high installation costs. Nagashima et al. [18] used probe data collected by vehicles through GPS or other devices and a signal control system that calculates
	Different techniques (data assimilation, Newtonian relaxation) to incorporate probe data into macroscopic traffic flow models have been used to solve the optimization problem in urban areas, and they have confirmed the possibility of decreasing probe data for congested traffic with emissions using intelligent traffic control requires many detectors and high installation costs. Nagashima et al. [18] used probe data collected by vehicles through GPS or other devices and a signal control system that calculates
	negligible degradation on the quality of traffic status estimation [17]. To reduce CO
	2 

	described a new validation scheme for comparing travel time data from two independent data sources with an emphasis on arterial applications. In addition, a context-dependent-based travel time fusion framework was developed to integrate data from INRIX and BT datasets to improve data quality. To minimize the impact of random errors that can occur with INRIX data, two new techniques, confidence value and smoothing, have been developed by a coalition of the University of Maryland and INRIX.. When used togethe
	suggested using probe data to collect spatial traffic information toward CO
	2 


	2.3 Review of Sensor Technologies 
	To evaluate the reliability and accuracy of a probe data stream against fixed infrastructure-mounted sensor data, it is important to understand the process for both data collection and data processing. The collection of real-time quality data depends on the reliability and accuracy of the sensor technology used. In this section, we focus on the characteristics of different types of sensors used for traffic operations. We differentiate between point-based sensors, which collect the traffic information at a s
	Roadway-based sensors can be considered a part of the roadway infrastructure system. This technology generally involves the use of inductive loop detectors (ILDs) and loop emulators. Underwood [22] considered three types of detection means: magnetic sensing (i.e., ILDs and magnetic sensors), range sensing (i.e., microwave, infrared, ultrasonic, and acoustic sensors), and image sensing (i.e., video image processors). Roadway-based sensors are installed at the side of the road or below the road surface. They 
	Probe-based sensors are carried by vehicles to collect traffic details. They generally come in automatic vehicle identification (AVI) systems, used for vehicle positioning and navigation. Compared to roadway-based sensors, probe-based sensors can probe traffic flow variation over space. Traffic flow information is collected only from a portion of vehicles traveling on roads due to the limitation of the current market penetration rate. 
	Figure 2.1 Types of sensors 
	Unlike the other two types of sensors, driver-based sensors provide manual incident-detection reports from drivers and/or service patrol crews, including wireless phone reports (to 911), freeway service patrol units, in-vehicle personal communication systems, and emergency centers. The term sensor used here refers to a device that includes software to detect vehicles and converts real-time data into data that a computer can understand. The software can be installed within the sensor device, in a roadside ca
	Roadway-based sensors refer to the use of ILDs and loop emulators. ILDs comprise a large-scale application for traffic surveillance and monitoring, and they help in traffic management and incident detection systems. As loops are limited to one or two short sections, they cannot represent comprehensive roadway situations. Traditionally, they measure spot time-average traffic parameters, such as speed, volume, occupancy, and vehicle classification, so it is difficult to collect the traffic details from urban 
	Magnetic sensors work on the principle that the presence of a vehicle distorts the magnetic field within the earth. Although different in appearance and specific technology, they all operate on principle similar to ILDs. They are often installed in place of loops on bridge decks and in heavily reinforced pavement, where steel adversely affects loop performance [23]. Both types of sensors have their respective applications and tend to complement one another. There are two different types of magnetic sensors 
	Magnetic sensors work on the principle that the presence of a vehicle distorts the magnetic field within the earth. Although different in appearance and specific technology, they all operate on principle similar to ILDs. They are often installed in place of loops on bridge decks and in heavily reinforced pavement, where steel adversely affects loop performance [23]. Both types of sensors have their respective applications and tend to complement one another. There are two different types of magnetic sensors 
	measured using magnetic detectors, they may interfere with each other if two sensors are placed too close together [30]. 

	In terms of working waveforms, microwave sensors can be divided into two types: constant-frequency waveforms and frequency-modulated waveforms. Continuous microwave detectors work under the same principle as Doppler to compute vehicle speed from constant-frequency waveform microwave radar that transmits electromagnetic energy at a constant frequency. This type of microwave sensor is not suitable for incident detection, as vehicle presence cannot be measured with this waveform. Pulse microwave detectors can 
	Infrared sensors can work in active or passive modes. Active infrared sensors measure a vehicle’s presence, speed, volume, occupancy, and classification, but they are vulnerable to weather conditions such as fog, clouds, shadows, mist, rain, and snow. When using these sensors in the active mode, a detection zone is “illuminated” with infrared energy transmitted from laser diodes operating in the near infrared spectrum, then a portion of transmitted energy is reflected to the sensor by vehicles travelling th
	Ultrasonic sensors transmit pressure waves of sound energy at frequencies between 25 and 50 KHz [23],[30] and can be divided into two types: pulse-waveform ultrasonic sensors and constant-frequency ultrasonic sensors. Here, only the pulse waveform sensor is discussed, as most of the time it works with pulse waveforms. Pulse waveforms ultrasonic sensors can measure speed, occupancy, presence, queue length, and the distance to the road surface and the vehicle surface. Ultrasonic sensors are small and can be u
	Acoustic sensors are configured as a two-dimensional dipole array of microphones that are sensitive to acoustic (audio sound) energy. They work in a passive mode: the time delay between the arrival of sound (at the upper and lower microphones) changes with time as the vehicle emits a sound. As soon as vehicle passes through or leaves the detection zone, it is detected by the signal-processing algorithm. The best results are achieved when the data are 
	Acoustic sensors are configured as a two-dimensional dipole array of microphones that are sensitive to acoustic (audio sound) energy. They work in a passive mode: the time delay between the arrival of sound (at the upper and lower microphones) changes with time as the vehicle emits a sound. As soon as vehicle passes through or leaves the detection zone, it is detected by the signal-processing algorithm. The best results are achieved when the data are 
	filtered to a bandwidth of 50–2000 Hz, and the preferred mounting is at a 10 to 30 degree angle from vertical. Acoustic sensors measure vehicle presence, speed, volume, occupancy, and they can count vehicles, but their performance is affected by low temperature, snow, and dense fog [31]. Another type of acoustic sensor can monitor up to 7 lanes of traffic using a fully populated microphone array, adaptive spatial processing, and mounting heights ranging from 20 and 40 feet. 

	Laser sensors operate in active mode and are used for traffic surveillance. They offer high-speed measurement accuracy and collect all vehicle characteristics such as vehicle presence, classification, speed, volume, and occupancy [29]. Moreover, they can uniquely identify vehicles by measuring the travel times between two locations. Generally, they can be mounted on highways, and each unit can provide coverage for two adjacent lanes. They transmit the information between the sensor and the control and proce
	Video image processors automatically analyze traffic data, which are collected from closed circuit television systems using machine vision techniques. These units consist of one of more video cameras, a microprocessor for digitizing and processing the video imagery, and software for interpreting the image. They use an image-processing algorithm to calculate traffic flow information. These systems fall into three classes: tripline, closed-loop tracking, and data-association tracking. With tripline, the user 
	Probe-based sensors, also referred to as vehicle-mounted sensors, have the capability of transmitting real-time individual probe data. The sensors measure the point data, point-to-point data, and/or section data and then send these measurements to the traffic management center or traffic operations center. The sensors move within the traffic stream and report an individual vehicle’s movement parameters, i.e., position and velocity with a time tag, with a pre-selected frequency or as they pass reader locatio
	Automatic vehicle location systems help to determine the position/location of a vehicle (typically using long-range communications) at a particular time. They use GPS, a satellite-based radio positioning, and a time transfer system. With a horizontal positioning accuracy of 5 meters 95% of time, they enhance the reliability of real-time traffic information collection. As a GPS signal is transmitted via high-frequency microwave, it cannot handle obstructions. Therefore, these systems may suffer from signal b
	Signposts/beacons can be mounted at the sides of roadway or on existing cellular base stations. These can be infrared, microwave, or radio frequency devices, and they can transmit and receive the data from vehicles equipped with transceivers. Signposts/beacons can be either self-positioning, by which a tag in the vehicle picks up a signal from the beacon, or remote positioning, by which the beacon senses a tag on the vehicle. The devices consist of antennas, 
	Signposts/beacons can be mounted at the sides of roadway or on existing cellular base stations. These can be infrared, microwave, or radio frequency devices, and they can transmit and receive the data from vehicles equipped with transceivers. Signposts/beacons can be either self-positioning, by which a tag in the vehicle picks up a signal from the beacon, or remote positioning, by which the beacon senses a tag on the vehicle. The devices consist of antennas, 
	transmitter electronics, and receiver electronics. With applications for traffic surveillance and parking management, radio frequency beacon systems are becoming more popular. Petty et al. 

	[33] explored an incident detection algorithm using probe vehicles equipped with radio transponders and discussed the feasibility, infrastructure requirements, and performance of radio frequency beacon systems. 
	Intelligent transportation system applications of cellular geolocation technology are currently being studied by many researchers. The main aim of this technology is to provide innovative services related to different modes of transport and to make the use of transport networks safer, more coordinated, and smarter. To determine locations, pattern recognitions using radio frequency signals are transmitted from a cellular phone. After identifying a signature based on the radio frequency pattern, the signature
	Automatic vehicle identification systems have two main components: an in-vehicle unit (transponder/reader) and a wireless communications link. These systems help to identify vehicles at specific location at a specific time. Most AVI systems transmit information through microwave, infrared, or radio frequency. Under good conditions, the reported accuracy of an AVI system is usually in the 99.5% to 99.9% range. However, accuracy may be reduced by adverse weather conditions and interference from other radiatio
	Presently, most incident detection algorithms use traffic data derived from loop detectors. When a vehicle passes over the loop, the oscillation frequency increases, which causes the electronic unit to send a pulse to the controller and register its presence in its detection zone. With new developments, loop detectors can be used to classify vehicles. In this study, PVR sensors were considered the benchmark for evaluating the reliability of INRIX data. Hence, it was necessary to evaluate the performance of 
	2.4 Review of Performance Measures Used for INRIX data 
	Numerous studies, using various methods, have been conducted on the evaluation of probe vehicle technology performance. An overview of reviewed freeway and non-freeway system performance measures is provided in Table 2.2. 
	Table 2.1 Overview of literature review on performance measures 
	PTI, Planning time index; BTI, Buffer time index; TTI, Travel time index; LOS, Level of service; MAP-21, Moving Ahead for Progress in the 21Century Act; RITIS, Regional Integrated Transportation Information System; VPP, Vehicle Probe Project; BI, Buffer index; NPMRDS, National Performance Management Research Dataset; HPMS, Highway Performance Monitoring System; CSI, Commuter stress index; RCI, Roadway Congestion Index; WSDOT, Washington State DOT; VMT, vehicle miles traveled. 
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	Transportation system reliability has been defined in various ways: first, as travel time reliability, which is the probability that trips can be successfully accomplished within a specified timeframe; second, as connectivity reliability, which focuses on trips carried out successfully based on the remaining connectivity between an origin–destination pair; and third, as capacity reliability, which refers to trips that can be completed at a certain level of link capacity [34]. The focus of this study was on 
	-

	Travel time reliability in the transportation engineering field is measured in several ways: the 90th or 95th percentile of travel time, the standard deviation, the coefficient of variation, the percentage of variation, the buffer index, the planning time index, the travel time index, etc. FDOT used some metrics, such as absolute average speed error, average speed bias, absolute average travel time error, and travel time bias, to evaluate the accuracy of probe stream data of different vendors (INRIX, Traffi
	In a recent study conducted by Venkatanarayana [61], hours of congestion for a segment was considered the total number of hours when the average speed of the segment drops below a predetermined threshold. FHWA conducted a report to calculate congestion and reliability metrics with the National Performance Management Research Data Set. It defined hours of congestion as the amount of time when freeways operate at less than 90% of free-flow freeway speeds [62]. Another measure is the buffer index, which is def
	2.5 Conclusion 
	This chapter comprised a summary of previous studies that were conducted on various kinds of probes and sensors as well as the accuracy and reliability of probe-sourced data using several measures such as congestion level percentage, travel time index, planning time index, BTI, user delay cost, average travel time, volume, space mean speed, density, average speed bias, absolute average speed error, absolute average travel time error, travel time bias, lane-miles congested, vehicle miles traveled, number of 
	3. Data Collection 
	3.1 Introduction 
	In today's complex global economy, transportation connections enable a business to locate in any region offering the best possible combination of labor, land, tax, and cost—while competing worldwide. All the state DOTs are relying on fixed-mounted sensors to collect traffic information such as travel time, traffic speed, volume, etc. This traffic information can be used by Nebraska Department of Roads (NDOR) councils to identify which routes are used most and to decide whether to improve that road or provid
	Presently, NDOR is maintaining 65 ATRs in different locations. However, the cost of deploying and maintaining these sensors is very high compared to alternatives provided by nontraditional data streaming sources. Probe-data collection is a set of relatively low-cost methods for obtaining travel time and speed data for vehicles traveling on freeways and other transportation routes. NDOR has already procured probe data streams through a third-party vendor, INRIX, to augment traffic data collection and assess 
	-

	3.2 Selection of sites 
	To evaluate the reliability and accuracy of probe data streams, it is important to identify the location of the ATRs. The research team and the technical advisory committee for the project decided to select 16 specific locations based on the following five criteria: 
	• 
	• 
	• 
	Nearest TMC from the ATR mid-point, 

	• 
	• 
	2014 continuous traffic count data and traffic characteristics from Nebraska Streets and Highways (April 2015) and Automatic Traffic Recorder Data (June 2016), 

	• 
	• 
	Winter segments (given by NDOR), 

	• 
	• 
	Level of confidence available in particular areas, and 


	• Anomalies found from cumulative distribution function (CDF) distributions. To improve decision making, we also considered the percentage of heavy truck usage and the interquartile range for each TMC. 
	The dashboard view of all the ATR locations in Nebraska, along with their reliability curves, nearby TMCs, average annual daily traffic, confidence levels, and minimum distance from ATR mid-point, is shown in Figure 3.1. The 16 sites selected are shown in Figure 3.2. 
	Raw data files received from the INRIX server were parsed using Hadoop technology and then visualized with tools like Tableau and R programming to aid in choosing the final 16 sites for evaluating the reliability and accuracy of probe data streams against fixed, infrastructure-mounted sensor data. The 16 sites with above criteria selected for this study are shown in Table 3.1. 
	TMC: Traffic message channel; Dir: Direction; AADT: annual average daily traffic; IQR: Interquartile range. 
	3.3 Checking Performance of PVR against Wavetronix 
	To consider PVR data as benchmarked, it was necessary to evaluate the performance of PVR sensors using another reliable source of data. Therefore, to check the performance of PVR reported data we utilized trailers (as shown in Figure 3.3) to collect a few samples of Wavetronix sensor data. Wavetronix sensors use radar technology to collect traffic operations data. Each sensor unit consists of a Doppler radar unit, a wireless modem, a solar panel, and onboard processors for real-time processing of traffic in
	To evaluate the reliability of PVR data, the data were compared with data collected by the trailers (Wavetronix data). As shown in Figure 3.4, we used CDF to illustrate the difference in speed between PVR and Wavetronix sensors. CDF is the probability that a variable takes a value less than or equal to x. In Figure 3.4, the horizontal axis represents the allowable domain for the given probability function (speed). Because the vertical axis reflects probability, it must fall between 0 and 1. In all images, t
	-

	speeds shown on horizontal axis range from 
	speeds shown on horizontal axis range from 
	data collection 

	Note: Sensors appearing in red were excluded from further analysis. 
	40 to 90 mph. We expected that the two CDF lines for the PVR and Wavetronix sensors for each location would nearly overlap each other. However, it is obvious from Figure 3.4 that different traffic speed performance was detected by the two sensors at locations 6N, 6S, 19E, 19W, 32W, 39S, 61E, and 65E. Thus, these locations were excluded from further analysis. The location of the selected ATRs are shown in Figure 3.5 as red asterisks; excluded ATRs are shown as blue triangles. 
	3.4 Conclusion 
	In summary, this chapter provides a brief description of how the 16 sites, out of the 65 ATRs in Nebraska, were selected based on different criteria. For each selected ATR, there are corresponding TMCs, which are maintained by INRIX to collect traffic details on major freeways and urbanized areas. To make better informed decisions, we also considered the number of heavy trucks and the interquartile range for each TMC. Also, we examined the reliability of the PVR data by comparing those data with Wavetronix 
	4. Evaluation of Reliability and Accuracy of Real-Time INRIX Data 
	4.1 Introduction 
	For this study, real-time and historical traffic data, which were collected through two different methods—probe-sourced streamed data and fixed, infrastructure-mounted sensors— were utilized. The probe data stream used in the current study was obtained from INRIX, which aggregates traffic-related information from millions of GPS-enabled vehicles, mobile devices, road sensors, and other sources. The data collected were processed in real time, creating traffic speed information for major freeways, highways, a
	In the remainder of this chapter, INRIX performance will be thoroughly evaluated by various factors including coverage, speed bias, latency, count, congested hour, rank order for congested hour, BTI, rank order for BTI, and reliability curves. The performance measures that will be addressed in this chapter 4 are summarized in Table 4.1. 
	Table 4.2 Overview of performance measures 
	4.2 Evaluating INRIX using PVR 
	4.2.1 Percentage Availability of INRIX 
	The most critical consideration in evaluating probe data is the geographic coverage provided by the vendor. The quality of probe data is heavily dependent on the number of probes on the road network. The more probes on the network, the better the coverage. In Figure 4.1, the yearly coverage for interstate and non-interstate roadways in the state of Nebraska is shown from 2013 through 2016. In 2013 there was 73.14% availability of real-time data from interstate roadways as compared to 43.73% from non-interst
	The most critical consideration in evaluating probe data is the geographic coverage provided by the vendor. The quality of probe data is heavily dependent on the number of probes on the road network. The more probes on the network, the better the coverage. In Figure 4.1, the yearly coverage for interstate and non-interstate roadways in the state of Nebraska is shown from 2013 through 2016. In 2013 there was 73.14% availability of real-time data from interstate roadways as compared to 43.73% from non-interst
	an increase in availability of real-time data from interstate roadways with 77.21% and a decrease from non-interstate roadways with 41.01% (Figure 4.1b). The lowest availability of real-time data from interstate roadways during the time period studied (2013–2016) was in 2015 with 71.90% (Figure 4.1c), and the highest was in 2016 with 78.82% (Figure 4.1d). There were a number of roads that had no coverage; however, this may improve with time as the number of probes increases. In regions with limited probe da

	(a) 2013 (b) 2014 
	(c) 2015 (d) 2016 Figure 4.1 Percentage coverage of INRIX in the state of Nebraska 
	In addition to real-time data, INRIX provides historical data whenever real-time data are not available. The higher the device penetration (i.e., more cell phone probes), the better the data are. For each speed measurement, INRIX reports a measure of confidence, reported as one of three possible values: 
	• 
	• 
	• 
	Score 30: speed estimate for that segment based completely on real-time data (the highest confidence score), 

	• 
	• 
	Score 20: speed estimate based on real-time data across multiple segments and /or based on a combination of expected and real-time data. and 

	• 
	• 
	Score 10: speed estimate based primarily on historic data (the lowest confidence score). 


	The daily availability of INRIX traffic data is shown in Figure 4.2, reflecting how traffic speed data from interstates and non-interstates are spread over a span of a full day based on confidence scores 10, 20, and 30. As expected, INRIX was able to provide real-time speed data (score 30) most of the day on interstates, whereas on non-interstates, real-time data were provided mostly from around 6 am to 6 pm. For instance, at point A on Figure 4.2b, the blue and red lines (scores 10 and 20, respectively) de
	(b) 
	Figure 4.2 Daily availability of traffic speed data for selected INRIX segments of (a) interstates and (b) non-interstates in the state of Nebraska 
	4.2.2 Speed Bias 
	Speed bias is defined as the difference of speed between two traffic speed data providers. There is almost always a speed bias between data streaming from probes and traditional infrastructure-mounted sensors. Different factors, such as the measurement technique, the number of probes on road, roadway type (interstates or non–interstates), geographical location, etc., influence the magnitude of probe data speed bias. To use these data accurately, it is critical to understand the factors that influence and ha
	𝑆𝑝𝑒𝑒𝑑 𝑏𝑖𝑎𝑠 = 𝑃𝑉𝑅 𝑠𝑝𝑒𝑒𝑑 − 𝐼𝑁𝑅𝐼𝑋 𝑠𝑝𝑒𝑒𝑑 (1) 
	Speed bias was evaluated based on three different categories: (1) confidence scores, (2) locations, and (3) congestion vs. non-congestion times. 
	First, we examined how different speed biases are calculated using different scores. Probe technology calculates speed as the average speed of vehicles over a segment of a road, which is called space mean speed (SMS). Time mean speed (TMS), which is an arithmetic mean of vehicles’ speed passing a point, is the calculated speed for benchmarked local sensor dataset. There is always a difference between space mean speed and time mean speed due to the measurement technique used. CDF can be used to illustrate th
	The CDF of speed bias between INRIX and PVR datasets for all selected location based on confidence scores 10, 20, and 30 is shown in Figure 4.3a–c. In Figures 4.3a and b, some CDF lines (43W, 20W, 38E, 54E, 43E, etc.) are not in the shape of a curve due to the lack of sufficient confidence score 10 or 20 data. High speed bias is shown in Figure 4.3a, for lines 46N, 46S, 39N, and for lines 46N and 39S of both Figures 4.3b and c. No trends in the speed biases of various locations are shown in Figures 4.3a and
	30) are shown in Figure 4.3d. 
	(a) CDF of speed bias for confidence score 10 
	(b) CDF of speed bias for confidence score 20 
	(c) CDF of speed bias for confidence score 30 
	(d) CDF of speed bias of all locations for confidence scores 10, 20, and 30 
	After evaluating speed bias for the different confidence scores of 10, 20, and 30, we compared real-time speed biases of all locations separately. An example of errors associated with traffic speed reported using only real-time data for some sites is illustrated in Figure 4.4. In this case, because the magnitude of speed bias matters over all minutes of the day, error was defined as the absolute value of speed bias between PVR and INRIX data. The red dashed line in each image of Figure 4.4 shows the median 
	A 
	The median speed bias for each ATR with respect to each direction is shown in Table 4.2. ATR 39 Northbound, with a speed bias of 14.32 mph, accounts for the highest speed bias among all sites. The average speed bias of all other locations was 6.06 mph. 
	Finally, we examined how speed bias varies during periods of congestion and no congestion. Generally, speed bias changes in different conditions, such as day vs. night, scores 10 vs. 20 vs. 30, freeway vs. non-freeway, congestion vs. no congestion, etc. A box plot of speed bias for each location during times of congestion and no congestion is shown in Figure 4.5. A box plot is a standard way of depicting the distribution of data based on five values: minimum, first quartile, median, third quartile, and maxi
	4.2.3 Incident Detection 
	Improving traffic safety and operations have long been areas of motivation among researchers and engineers. Traffic incidents, particularly traffic crashes, are of great interest due to the huge delay and costs that traffic injuries and fatalities impose on society. Traffic delays can be attributed to nonrecurring incidents including but not limited to traffic crashes, construction events, and adverse weather conditions. These incidents may also have other consequences, such as secondary crashes and delays 
	4.2.3.1 Data stream and pre-processing 
	Most of the time in real-world scenarios, raw traffic data are incomplete, highly susceptible to noise, and inconsistent for many reasons, such as sensor failures, measurement technique errors, huge size, etc. Data pre-processing can be used to try to detect and correct corrupt and erroneous traffic data. However, the storage and analysis of massive amounts of INRIX and PVR data are impossible using traditional methods, as they require the processing of more than 500 GB of data, which would be prohibitively
	4.2.3.2 Congestion detection algorithm 
	After data processing, a congestion detection algorithm was implemented to detect and classify the onset of congestion throughout the network for the study period. Congestions were identified as when the speed data of the INRIX segment or the mean of the 1-minute aggregated speed data of the PVR sensor for that location indicated that the speed dropped below 45 mph. According to the Highway Capacity Manual (version 6) [65], LOS (level of service) on basic freeway segments is defined by density. Although spe
	How the algorithm recognizes congestions is illustrated in Figure 4.6. The blue line represents the original traffic speed, and red line represents the fixed threshold of 45 mph. The congestion start time is when the speed drops below 45 mph, and the congestion end time is when the speed rises above 45 mph. 
	4.2.3.3 Latency and count 
	Latency is a parameter that represents the measurement of the time delay between two time-series datasets. In this study, latency was used to measure the difference between congestion start times detected by INRIX vs. PVR (Figure 4.7a). It is crucial to verify latencies within probe data streams for timely detection of events on roads. Based on work by Adu Gyamfi et al. [12], the average ranges of latencies associated with probe vs. sensor data are between 3 and 12 minutes on freeways and between 7 and 20 m
	Additionally, the number of congestions that occurred at each site and the average latency between INRIX and PVR associated with each site are shown in Figure 4.8. There were many instances when congestions with higher latencies were detected by both INRIX TMC segments and PVR sensors; however, it should be noted that we considered only congestions that were detected by INRIX TMC segments and PVR sensors with latency below 20 minutes. The average latency for all congestions detected by both the INRIX and PV
	(a) 
	(b) Figure 4.7 (a) Latency and (b) location of congestion at ATRs 
	The number of congestions detected by either INRIX or PVR or by both during a 3-week fixed period of time for all sites is shown in Table 4.3. TP (true positive) indicates the rate of events that were detected by both INRIX and PV, FN (false negative) represents the rate of events detected by PVR but not by INRIX, and finally, FP (false positive) represents the rate of events detected by INRIX but not by PVR. The values in the last column show the precision of congestion detection by INRIX, calculated using
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (2)
	 

	   
	   

	Table 4.3 Reliability of INRIX in detecting congestion events Location INRIX PVR Both TP FN FP Precision 
	It was difficult to derive any robust congestion detection results by comparing INRIX and PVR datasets using only 3 weeks of data and 16 different ATRs. For future studies, we strongly recommend using data from a longer period (1 year) and a larger number of sites. Using a congestion detection algorithm, 44 congestions were detected by both the INRIX and PVR datasets for all selected ATRs on all days. The timestamps for worst congestions for each congested site and the two worst congestions among all other 
	Table 4.4 Worst congestions 
	4.2.4 Performance Measures 
	4.2.4.1 Congested hour 
	Traffic congestion is widely known as a transport cost. It plays a key role in transport system performance evaluation and affects transport planning decisions. When a road system reaches its capacity, each additional vehicle makes it more overloaded and imposes more delay on other vehicles. Some impacts of congestion include increased travel time, accidents, unreliability of arrival times, increased fuel consumption and pollution emissions, adverse health effects, etc. Generally, there are two types of con
	In this study, if the speed of a road segment fell below 45 mph for a period of time, the segment was defined as being congested for that period. After considering all congestions detected by INRIX and sensor datasets in a similar study conducted for state of Iowa, we determined 6 minutes as the threshold for the minimum duration when determining the period of traffic congestion (Figure 4.9). The distribution of congested traffic periods from two datasets (sensor and INRIX) over the span of a year in the st
	In this study, we considered two scenarios for comparing INRIX and PVR datasets in terms of congested hour. For the first scenario, we considered the congestion period as the total number of hours for which the speed of each segment was less than 45 mph for a minimum 6 continuous minutes, which is a very common scenario. For the second scenario, we considered the congestion period as the total duration of congestions detected by both INRIX segments and PVR sensors with detection latency lower than 20 minute
	The above-described scenarios were compared for two time periods: (1) a single day and 
	(2) 3 weeks. Because the total number of days of data varied for different ATRs, a 3-week period was considered the fixed maximum period of time for all ATRs in our analysis. However, this period of time did not occur in the same month for the different ATRs; for instance, for location 46 southbound, the 3 weeks were in April 2017, and for location 46 northbound the 3 weeks were in November 2016. Scatter plots for congested hour determined by the INRIX and PVR single-day and 3-week datasets for the two pred
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	Single day 
	3 weeks 
	Because for some ATRs INRIX reported traffic speed as being close to 45 mph or even slower for most of the time, the duration of congestion from the INRIX database compared to the PVR database was observed as tending to be longer, as shown in Figure 4.10a and c. The lack of sufficient confidence score 30 (real-time) data negatively influenced this situation. Two examples of when INRIX detected speed at mostly around 45 mph for location 46S are shown in Figure 4.11a. In both INRIX-46S time series shown, the 
	a) INRIX reported speed is around 45 mph for most of the day 
	b) Insufficient INRIX confidence score 30 data during congestion 
	The congestion duration rank order from the PVR and INRIX data for selected ATRs, after evaluating INRIX performance for calculating congestion duration, is shown in Figure 4.12. As shown in the figure, 8 out of 12 sensors and their corresponding segments had nearly the same rank in terms of congestion duration. The INRIX performance for congestion duration was mostly reliable; however, it would be better to have been able evaluate its performance on more segments with a higher number of congestions over a 
	4.2.4.2 Buffer-time index (BTI) 
	In this study, BTI was calculated by subtracting the 85th percentile of TTPM (travel time per mile) from the median TTPM and then dividing that result by the median TTPM (see Equation 3). BTI represents the percentage of extra travel time that almost all travelers would need to add to their trips to reach their destination on time in a given time-of-day and/or day-ofweek period. For example, a buffer index of 60% at 7 am on a freeway where the travel time is 10 min when there is no congestion, would indicat
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	   –   
	BTI (%) = (3)
	  
	A comparison of the INRIX data stream versus the PVR sensor datasets based on weekly and three-weekly BTIs is shown in Figure 4.13. A BTI was calculated for each time period (weekly and three-weekly). Additionally, a regression line is plotted for each scatter plot using its equation and Rvalues. 
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	As observed in Figure 4.13, the BTI for the PVR data was almost always more than that for the INRIX database. The main reason for this is low variation of the INRIX data. Because in Nebraska INRIX provides traffic data mostly via trucks traveling on the roads, it is hard to find considerable variability in the magnitude of the speed. On the other hand, local infrastructure sensors record traffic information from every vehicle on road, which leads to higher variability, or in other words, a wider range of sp
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	1-week 3-week 
	Considering the definition of BTI, a wider range of travel time would lead to a higher BTI. In this study, TTPM was calculated using the inverse of speed multiplied by 60. Thus, a wider range of speeds would result in a higher BTI. It is important to note that noise does not affect the BTI significantly; however, this depends on the magnitude of noise reduction in the smoothing process. CDF of TTPM for some sample ATRs is shown in Figure 4.15. The bias shown between the PVR and INRIX CDF lines was corrected
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	(b) Figure 4.15 Cumulative distribution function of travel time showing difference of 85percentile between probe and (a) raw sensor data and (b) smoothed sensor data 
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	After observing the poor performance of INRIX in calculating BTI, we calculated the BTI rank order of INRIX and PVR data for 1-week and 3-week periods of time (Figures 4.16a and 4.16b, respectively). Only 3 out of 24 sensors and their corresponding segments had almost in the same rank in terms of BTI. Therefore, it can be concluded that, for this analysis, INRIX performance was not reliable for either BTI or BTI rank order. However, it should be noted that this analysis was conducted on a limited number of 
	(b) Figure 4.16 Rank order of segments and sensors based on BTI for 
	(a) 1-week and (b) 3-week periods 
	4.2.4.3 Reliability Curves 
	As mentioned previously, TTPM was calculated as the inverse of speed multiplied by 60. A reliability curve is defined as the CDF of TTPM for each segment or sensor. The TTPM reliability curves for all ATRs for each direction are shown in Figure 4.17. As revealed in the graphs, there was almost always a visible shift between probe and sensor curves, known as travel time bias. Because TTPM was calculated using speed, speed bias was the reason for the small 
	As mentioned previously, TTPM was calculated as the inverse of speed multiplied by 60. A reliability curve is defined as the CDF of TTPM for each segment or sensor. The TTPM reliability curves for all ATRs for each direction are shown in Figure 4.17. As revealed in the graphs, there was almost always a visible shift between probe and sensor curves, known as travel time bias. Because TTPM was calculated using speed, speed bias was the reason for the small 
	differences in reliability curves at all locations. Equations (4) to (8) show how we calculated the travel time bias for this study. 

	Travel time bias (minutes) = Sensor TTPM − INRIX TTPM, (4) 
	where sensor TTPM and INRIX TTPM are explained in Equations (5) and (6) respectively. 
	P
	Sensor TTPM (minute) = ∗ 60 𝑋 = 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑠𝑝𝑒𝑒𝑑 (𝑚𝑝ℎ) (5) 
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	INRIX TTPM (minute) = ∗ 60 (6) 
	 

	After considering the average speed bias as 6 mph, travel time bias can be calculated as follows: 
	P
	Travel time bias (minute) = ∗ 60 − ∗ 60 (7)
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	Travel time bias = ∗ 60 (8)
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	Reliability curves for all locations shown in Figure 4.17b have huge differences in TTPM (travel time bias) compared to the normal locations shown in Figure 4.17a. With regard to travel time bias, it was concluded that INRIX performance is usually reliable and consistent. 
	(a) 
	(b) Figure 4.17 Cumulative distribution function of travel time per mile for (a) normal sites and (b) outlier sites 
	4.3 Conclusion 
	To sum up, there are some critical points that state DOTs and transportation agencies should consider when using a probe data stream like INRIX. Some advantages and limitations of INRIX are as follows: 
	• 
	• 
	• 
	In terms of geographic coverage, INRIX has been evaluated for interstates and non-interstates and has been shown to be reliable for almost all times of day on interstates. 

	• 
	• 
	This study showed that INRIX is more reliable during the day than at night, especially during peak hours. 

	• 
	• 
	Regarding incident detection, INRIX is reliable for detecting merely congestion, especially recurring congestion. When it detects congestion, it gets all the information related to the congestion, such as the duration of the congestion. 

	• 
	• 
	There is almost always a time delay (latency) for INRIX congestion detection. Congestion detection latency was evaluated in this chapter for 16 specific locations over a short period of time. Other data streaming sources, such as sensors, are more preferred for incident detection application; however, they are very costly and not applicable for many places. Thus, for locations without other data sources, detecting congestion by INRIX, even with latency, is better than not detecting it at all. 

	• 
	• 
	• 
	There will always be a bias between traffic speed data from probe sources and benchmarked sensors. Speed bias directly affects incident detection, travel time estimation, calculation of performance measures (such as congested hour, BTI, reliability curves, etc.) and other traffic-related measures. For instance, it could be observed from 

	Figure 4.11a that speed bias caused INRIX speeds to be shown as approximately 45 mph, which is usually considered the threshold for congestion. Accordingly, it is important to understand the factors that influence these biases and how to correct for them. 

	• 
	• 
	Traffic incident management, roadway performance assessment, and travel time estimation applications should be developed based on real-time data. The lack of confidence score 30 data (real time), especially during congestion, leads to incorrect results. Substitutions with historical data are not accurate and therefore not advised. In areas with limited probe penetration, the agency could augment probe data with infrastructure-mounted sensors. 


	Finally, many different tests, analyses, and experiments have been left for future studies due to lack of sufficient data. The main point that should be taken into consideration is the length of time of data collection. Increasing collection time to a year or more would make possible the measurement of the performance of probe data versus local sensors over a longer period of time. 
	5. Performance Monitoring and Historical Trend Analysis 
	5.1 Introduction 
	In this chapter, performance monitoring and historical trend analysis of Interstate 80 (I-80) is discussed. First, the top 10 congested segments were identified through a detailed analysis of when congestion occurred by month, day of week, and time of day. Second, congestion per mile was calculated for monthly and yearly comparisons of metro areas across Nebraska to determine any trends in congestion. Third, congestion duration was used to show the severity of congestion by segment during summer vs. winter 
	5.2 Top Congested Roadways on Interstate 80 
	The top congested segments on I-80 in Nebraska are those that experience congestion throughout the year. The top 10 congested roadway lists were compiled by determining the segments with the most congestion and then identifying where the congestion began and ended. For our analysis, we included only segments with a length greater than 0.3 miles. A detailed analysis for each segment was conducted to determine when congestion occurred by month, day of week, and time of day. The top 10 list for each year was a
	5.2.1 Top 10 most congested segments in 2016 
	The top 10 most congested segments in Nebraska in 2016 are shown in Figure 5.1. Compared with 2013 and 2015, the top 10 most congested locations were generally much more congested in 2016, but less than in 2014. Most segments were consistent throughout year, except during February and March across weekdays and between 3 pm and 6 pm. The top segments were located in the Omaha and Lincoln areas. A summary of each of the top 10 locations is included below. 
	I-80 Omaha WB | S 72ND ST | 0.39 miles 
	550 
	Hours 
	I-80 Omaha WB | S 72ND ST | 0.39 miles 
	380 
	Hours 
	I-80 Omaha WB | S 72ND ST | 0.39 miles 
	Annual number of hours of 
	Increased from 138 hours in 2015 congestion 
	Throughout the year with a high in August at 45 hours, consistent across weekdays 
	3 pm to 6 pm 
	378 
	Hours 
	I-80 Omaha EB | S 84TH ST | 1.2 miles 
	Annual number of hours of 
	Increased from 105 hours in 2015 congestion 
	Throughout the year with a high in June at 45 hours, consistent across weekdays 
	3 pm to 6 pm and 6 am to 9 am 
	307 
	Hours 
	I-80 Omaha WB | S 84TH ST | 0.41 miles 
	Annual number of hours of 
	172 hours congestion 
	Throughout the year with a high in January at 30 hours, consistent across weekdays 
	3 pm to 6 pm 
	172 
	Hours 
	I-80 Omaha EB | S 60TH ST | 0.37 miles 
	Annual number of hours of 
	Increased from 34 hours in 2015 congestion 
	High in January and June, consistent across weekdays 
	3 pm to 6 pm and 6 am to 9 am 
	163 
	Hours 
	I-80 Omaha WB | S 126TH ST | 1.4 mile 
	Annual number of hours of 
	152 hours congestion 
	Throughout the year, except in March, consistent across weekdays 
	3 pm to 6 pm 
	I-80 Omaha EB | I-680 | 1.25 miles 
	I-80 Omaha WB | I-480/US-75 | 1.27 miles 
	Annual number of hours of 
	Slight decrease from last year congestion 
	Throughout the year, except in March; consistent across weekdays 
	3 pm to 6 pm 
	Many I-80 segments appeared on the top 10 list repeatedly over the years of the study. For example, a 1.45-mile-long segment at the interchange with L St. appeared on the list twice, ranking in the top position for 2013 and 2014. Similarly, a 2.5-mile-long segment near Exit 382 also appeared on the list for both 2013 and 2014. Seven segments appeared on the list for more than one year, but their rank order changed over the years. The segments of I-80 that appeared on the top 10 list more than once from 2013
	Table 5.1 Interstate 80 segments appearing on the top 10 list more than once from 2013 through 2016 
	5.3 Comparison of Metro Congestion Duration 
	Most of the congestion experienced in Nebraska is within urban areas, which have higher volumes of traffic. Given the varying numbers of segments and roadway lengths that were being considered, congestion per mile calculations for metro segments were used to contrast performance on different segments. 
	The metro area segments were defined based on the last interchange when entering and exiting the urban area. Three commuter corridors—Dodge Street Omaha (US-6), North Platte (US-83), and NE–IA Border (US-275) were also included in the analysis. The durations of congestion for each segment along the route were added to determine the total number of hours of congestion. By dividing this value by the total route length, the average congestion per mile was determined. These values were calculated for each month
	5.3.1 Metro Congestion per Mile in 2016 
	The average amount of congestion per mile in 2016 for metro areas across Nebraska is shown in Figure 5.3. The US 275 NE–IA border to Venice and US 6 Dodge Street Omaha segments were consistently among the most congested metro segments across the state. 
	An annual comparison of the number of hours of congestion by roadway and selected metro areas are shown in Figures 5.4 and 5.5, respectively. The US 275 near NE–IA border to 
	An annual comparison of the number of hours of congestion by roadway and selected metro areas are shown in Figures 5.4 and 5.5, respectively. The US 275 near NE–IA border to 
	Venice segment exhibited a consistent increase in the amount of congestion per mile in 2015 and 2016. The congestion on the US 6 Dodge Street Omaha and I-129 in Sioux City segments significantly increased in 2014, 2015, and 2016. The I-180 in Lincoln segment exhibited a consistent amount of congestion per mile with slight increases in 2014, 2015, and 2016. Each of the remaining segments (I-80 Harrison St. to Omaha, US-83 North Platte, and I-690 Iowa border) exhibited consistent levels of congestion during t

	5.4 Congestion Duration on Interstate 80 
	In this section, we provide a detailed view of all segments along the I-80 corridor in Nebraska. Congestion duration (hours) were used to determine the severity of congestion by segment along I-80. This allowed for the locations with congestion, as well as the extent of where the congestion occurred, to be quickly identified. Once identified, the locations could also be analyzed by year, month, day, week, or time of day. 
	The congestion duration for the I-80 corridor from the Kimball to Omaha by direction of travel is shown in Figure 5.6. The right side of the chart represents the eastbound direction, and the left side represents the westbound direction, both sides directly across from each other representing the same location along I-80. The scale along each x-axis is the number of hours of congestion. Each segment is color coded based on the number of hours of congestion by summer (March, April, May, June, July, August, Se
	5.4.1 Eastbound 
	Congestion on I-80 eastbound was limited to the Omaha, Lincoln, and Julesburg areas: 
	• Near the L ST interchange through Omaha 
	Most congested year 
	2014 saw significant congestion. 
	Most congested month 
	Most congested month 

	Peaked in May but significant from April through November 
	Peaked in May but significant from April through November 

	Most congested day 
	All weekdays with peak on Thursday Most congested time of day 6 am – 9 am 
	• Near I-80/EXIT 382 interchange through Lincoln Most congested year 2014 Most congested month 
	May 
	Most congested day 
	All weekdays with peak on Wednesday Most congested time of day 12 am – 6 am 
	• Near NE-25B/EXIT 107, I-76, US-138/EXIT 101 interchanges Most congested year 2016 Most congested month November Most congested day 
	All weekdays with peak on Friday Most congested time of day 12 am – 6 am 
	5.4.2 Westbound 
	Congestion on I-80 westbound was limited to the Omaha, Lincoln, and near I-76 interchanges. 
	• Near S 60TH ST interchange through Omaha 
	Most congested year 
	2016 saw significant congestion. 
	Most congested month 
	Most congested month 

	Peaked in August but significant from April through January 
	Peaked in August but significant from April through January 

	Most congested day 
	All weekdays with peak on Wednesday 
	Most congested time of day 
	3 pm – 6 pm 
	• Near US-6/EXIT 396 interchange through Lincoln Most congested year 2015 Most congested month 
	February 
	Most congested day 
	All weekdays with peak on Sunday Most congested time of day 12 am – 6 am 
	• Near NE-56G/EXIT 179 interchange through North Platte Most congested year 2013 Most congested month 
	February and August 
	Most congested day 
	All weekdays with peak on Sunday Most congested time of day 12 am – 6 am 
	5.5 Speed Performance for Interstate 80 
	One limitation with using congestion duration is the limited ability to evaluate additional speed thresholds lower than 45 mph without a web-based tool. One solution was to develop speed performance charts that allowed for the severity of the congestion to be evaluated by observing the percentage of time speeds were within 10-mph bins from 0 to 75+ mph. 
	Similar to congestion duration, each segment is evaluated based on the number of minutes speeds are within a speed bin, using real-time data from the probe data source. Each segment varied in the amount of data that was provided in real time. To account for this, the number of minutes in each speed bin was divided by the total number of minutes of real-time speed data for that segment. This allowed for the data to be plotted on a chart running from 0 to 100% to see what percentage of time speeds were within
	The speed performance along I-80 in the eastbound and westbound directions is shown in Figures 5.7 and 5.8, respectively. Similar to the graph of the number of hours of congestion, the I-80 corridor through Nebraska is represented along with a reference bar along the left showing the nearest state routes. Each column of the chart represents a separate month, which allows for comparisons to be made. Each speed bin is represented by a separate color with lowest speeds represented by red and higher speeds repr
	As shown in Figures 5.7 and 5.8, the severity of congestion significantly increased near the Omaha and Lincoln areas in 2014, 2015, and 2016, as indicated by the larger percentage of slower speeds. No other significant changes in speed were identified along I-80. 
	5.6 Travel Time Reliability for Interstate 80 
	5.6.1 Yearly travel time reliability 
	Drivers across Nebraska expect to have few delays and to be able drive a similar route with little or no change in their travel time. Travel time reliability is an important performance measure that is used to measure drivers’ confidence that they will arrive within an acceptable travel time. In this report, the percentage increase in typical travel time was used to measure the increase in travel time that would be needed for 95% of trips to arrive on time. To compare this reliability between other routes w
	Interstate 80 was divided into eight routes: through Omaha, from Chalco to Waverly, through Lincoln, from Lincoln to York, from York to Kearney, from Kearney to North Platte, from North Platte to Chappel, and from Lodge Pole to the NE–WY border. The travel time represents the time it took to travel all the segments through each route. After the travel time through each route was calculated every minute using the probe-based speed data, the average and 95percentile of travel times were calculated. The 95perc
	th 
	th 

	Both directions of travel for I-80 are displayed in the charts of Figure 5.9. The center banner identifies the route along the interstate where the reliability was measured. The different colored bars represent the different times of day during which the reliability was measured and a comparison for the years from 2013 through 2016. The percentage increases in typical travel times along I-80 are displayed. Both directions of the NE–WY border segment experienced an increase in typical travel time from 2013 t
	5.7 Conclusion 
	In this chapter, we reported how we explored performance monitoring and historical trend analysis from INRIX data using different measures for I-80 in Nebraska. First, we identified the top 10 congested roadways by determining which segments had the most congestion and then the beginning and end of where the congestion occurred; we also included a detailed analysis of when congestion occurred by month, day of week, and time of day. Next, we presented the congestion per mile calculations that were used to de
	In this chapter, we reported how we explored performance monitoring and historical trend analysis from INRIX data using different measures for I-80 in Nebraska. First, we identified the top 10 congested roadways by determining which segments had the most congestion and then the beginning and end of where the congestion occurred; we also included a detailed analysis of when congestion occurred by month, day of week, and time of day. Next, we presented the congestion per mile calculations that were used to de
	per mile, which supported comparing performance given the varying number and length of roadway segments that we investigated. These values were calculated for each month for all metro areas across Nebraska to compare congestion trends. A yearly comparison for years 2013 through 2016 was also provided. Third, we reported on how congestion duration was used to show the severity of congestion by segment along I-80. Each segment was color coded based on the number of hours of congestion by summer and winter mon

	6. Conclusions and Recommendations 
	6.2 Summary and Conclusions 
	Traffic monitoring using wide-area probe-sourced data is growing as a viable means of comprehensive traffic monitoring without a large investment in deploying physical assets in right-of-ways and its associated costs and maintenance burden. Real-time and archived probe data streams have many uses, provided the above-mentioned considerations have been addressed. Real-time probe data is useful for traffic operations and safety management activities such as travel time estimation and incident management. 
	For travel time estimation, real-time probe data streams can serve as a good data source for calculating and displaying travel times on message signs on major freeways and highways. However, it is important to know how some of the challenges, as discussed in Chapter 4, may affect this travel time estimation. It was very complicated and not very efficient using point-based detection models for incident management until the emergence of wide-area probe data streaming. Incident management activities, such as d
	-

	In this study, we focused on several specific locations in the state of Nebraska to evaluate the reliability of INRIX data by comparing that data with data from PVR sensors using selected performance measures. A summary of the study appears in Table 6.1. 
	Table 6.1 Summary of performance measures used in the study 
	Archived probe data is useful for general transportation asset performance assessment and planning. Archived data can be used to build models to understand the performance of such 
	Archived probe data is useful for general transportation asset performance assessment and planning. Archived data can be used to build models to understand the performance of such 
	assets, especially for low volume and low speed roadways where real-time operational activities cannot be performed due to high speed bias and latencies. A comprehensive analysis of performance monitoring and historical trend analysis using different measures for I-80 segments in Nebraska was also performed in this study. Almost all top 10 congested segments from 2013 through 2016 were located near Omaha and Lincoln on I-80. 

	Observations: 
	• 
	• 
	• 
	In 2013, most segments exhibited slightly longer hours of congestion hours during September and October, across weekdays, and between 3 pm and 6 pm. 

	• 
	• 
	In contrast to 2013, the top 10 most congested locations in 2014 were much more congested. Most segments exhibited consistent congestion throughout year, except from May through October, across weekdays and between 3 pm and 6 pm and between 6 am and 9 am. 

	• 
	• 
	In contrast to 2013 and 2014, the top 10 most congested locations exhibited less congestion in 2015. Most segments saw slightly longer hours of congestion in November and December, across weekdays and between 3 pm and 6 pm. 

	• 
	• 
	Finally, in contrast to 2013 and 2015, the top 10 most congested locations exhibited more congestion in 2016 but less than in 2014. Most segments exhibited consistent congestion throughout the year, except in February and March, across weekdays and between 3 pm and 6 pm. 


	The average amount of congestion per mile was calculated across metro areas in Nebraska from 2013 through 2016. Three commuter corridors—Dodge Street Omaha (US-6), North Platte (US-83), and NE–IA Border (US-275)—were also included in the analysis. 
	Observations: 
	• 
	• 
	• 
	US 275 near the NE–IA border to Venice exhibited a consistent increase in congestion per mile in 2015 and 2016. 

	• 
	• 
	The congestion on US 6 Dodge Street Omaha and I-129 in Sioux City significantly increased in 2014, 2015, and 2016. 

	• 
	• 
	I-180 in Lincoln exhibited a consistent amount of congestion per mile with slight increases in 2014, 2015, and 2016. 

	• 
	• 
	Each of the remaining routes (I-80 Harrison St. to Omaha, US-83 North Platte, and I-690 Iowa border) experienced consistent levels of congestion during the four reporting years. 


	The duration of congestion was calculated to show the severity of congestion by summer and winter months and by direction for all segments along the I-80 corridor in Nebraska from 2013 through 2016. 
	Observations: 
	• 
	• 
	• 
	Congestion on I-80 eastbound was limited to the Omaha, Lincoln, and Julesburg areas. In 2014, significant congestion was exhibited near the L ST interchange through Omaha, peaking in May but significant from April through November, all weekdays with a peak on Thursday, and mostly between 6 am and 9 am. Also, in 2016 congestion was exhibited near the NE-25B/EXIT 107, I-76, and US-138/EXIT 101 interchanges, peaking in November, all weekdays with a peak on Friday, and mostly between 12 am and 6 am. 

	• 
	• 
	Congestion on I-80 westbound was limited to areas in Omaha and Lincoln and near the I76 interchange. In 2016 significant congestion was exhibited near the S 60TH ST interchange in Omaha, peaking in August but significant from April through January, all weekdays with a peak on Wednesdays, and mostly between 3 pm and 6 pm In 2015, there was significant congestion near the US-6/EXIT 396 interchange through Lincoln, peaking in February, all weekdays with peaks on Sunday, and mostly between 12 am and 6 am. In 20
	-



	The severity of congestion was evaluated by observing the percentage of time speeds were within 10-mph bins from 0 to 75+ mph in both the eastbound and westbound directions. In 2014, 2015, and 2016, the severity of congestion significantly increased near the Omaha and Lincoln areas, as shown by the larger percentage of slower speeds. No other significant changes in speed were identified along I-80. 
	The NE–WY border segment exhibited an increase in typical travel time from 2013 through 2016 in both directions. The travel time reliability was low from York to North Platte and remained consistent during all time periods. From Waverly to Lincoln a significant increase in typical travel time was evident from 2013 through 2016. 
	6.2 Recommendations 
	Ultimately, wide-area probe data offers a wide array of opportunities for the transportation industry. With connected vehicles and sophistication of personal and commercial technologies in the future, these innovative data streams, which can also provide user feedback, are going to continue to influence and support innovation within the transportation industry. We offer the following recommendations to agencies considering the use of a probe data streams to support traffic operations management and decision
	• 
	• 
	• 
	Most transportation agencies define road segments based on a linear referencing system. To easily associate probe data with other significant data sources, such as weather and crash data, agencies must conflate the probe data segmentation to the linear referencing system. 

	• 
	• 
	The length of segments for which probe data are available varies greatly, from 0.5 miles to about 8 miles. Agencies must examine whether the space granularity of probe data is sufficient for the intended application. For incident detection applications, high space granularity may lead to false alarms. Segments with shorter lengths should be excluded. On the other hand, for work zone performance assessment, high space granularity is preferred for estimating measures such as queue lengths, total delays, etc. 

	• 
	• 
	Agencies should arrange to work with probe data vendors toward identifying, communicating, and ultimately automatically detecting lane configuration changes to vendors. 

	• 
	• 
	In terms of geographic coverage, INRIX has been evaluated for interstates and non-interstates, showing that INRIX is reliable for almost all minutes of a day on interstates. Moreover, this study showed that INRIX is more reliable during the day than at night, especially during peak hours. 

	• 
	• 
	Regarding incident detection, INRIX is reliable for merely detecting congestion, especially recurring congestion; when it detects congestion, it gets almost all the information related to the congestion. 

	• 
	• 
	There will always be a bias between traffic speed data from probe sources and benchmarked sensors. Speed bias directly affects incident detection, travel time estimation, calculating performance measures (such as congested hour, BTI, etc.), and other traffic-related measures. It is important to understand the factors that influence these biases and how to correct for them. 

	• 
	• 
	Travel time estimation and incident detection applications should be developed based completely on real-time data. Substitutions with historical data are not accurate and therefore not advised. In areas with limited probe penetration, an agency could augment probe data with infrastructure-mounted sensors. 

	• 
	• 
	Agencies should note that there is almost always a time delay in probe-based streaming data. Compared to loop detectors and radar sensors, latency increases on low-volume roadways and especially when traffic is moving at lower speeds. Thus, for time-sensitive applications, it is important to know the possible range of expected latencies and plan appropriately; however, sensors are very costly and not applicable for many places. Thus, for locations without other data providers, detecting congestion with late

	• 
	• 
	Internal TMC segments with lengths less than 0.5 miles should also be excluded from traffic performance evaluations. 

	• 
	• 
	In this era of big data, all transportation agencies and state DOTs must be able to handle a huge volume of data. Apache Hadoop, Apache Pig, and Apache Spark [66] are high-level open-source “big data” technologies that allow for the analysis of “big” probe data streams. 


	Many different tests, analyses, and experiments have been left for the future due to lack of sufficient data. Because this study was focused mainly on freeways, future work should be focused on a deeper analysis of arterials and urban areas. This would be possible by deploying more infrastructure sensors on both freeways and arterials. Another main point that should be taken into consideration is the length of time that data is collected. In the best case scenario for this study, the longest time period ava
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	Appendix A: Total PVR data available for all ATRs 
	The table below shows each ATR, its direction, and the total number of days in each month for which data were provided by NDOR. To evaluate the reliability of PVR data, a comparison was made with data collected by trailers (Wavetronix data). In chapter 3, cumulative distribution function (CDF) was used in Figure 3.3 to illustrate the differences in speeds detected between PVR and Wavetronix sensors. It was expected that the two CDF lines for PVR and Wavetronix sensor data for each location would nearly over
	Table A.1 Total PVR data available for all ATRs 
	some sites 
	Figure B.1 is continuation of Figure 4.4, illustrating the errors associated with real-time traffic speed data for the sites that were not shown in Figure 4.4. 
	(b) 
	(c) Figure B.1 Errors associated with traffic speed reported using only real-time data for some sites 
	Appendix C. Top 10 Most Congested Segments. Metro Congestion per Mile, and Speed 
	Performance for Interstate 80 in 2013, 2014, and 2015 
	Top 10 Most Congested Segments in 2013 
	The top 10 most congested segments in 2013 are shown in Figure C.1. All of the segments were located in the Omaha and Lincoln areas. Nine of the ten locations were in Omaha; the other top congested segment was near Lincoln. Most segments exhibited slightly higher congested hours during September and October across weekdays and between 3 pm and 6 pm. A summary of each of the top ten locations are included below. 
	I-80 Omaha EB | L ST | 1.45 miles 
	Annual number of hours of congestion 
	I-80 Omaha WB | I-480/US-75 | 1.27 miles 
	Annual number of hours of congestion 
	I-80 EB Omaha EB | S 72ND ST | 0.33 miles 
	Annual number of 
	Annual number of 
	215 hours 

	hours of congestion 
	Throughout year with a high in September at 43 hours, consistent across entire week, except Saturday 
	Primarily between 6 am to 9 am, peak from 3 pm to 6 pm with 91 hours 
	215 
	Hours 
	I-80 Near Lincoln EB| Exit 382 | 2.5 miles 
	Annual number of hours of 
	202 hours congestion 
	January to July with a high in March at 45 hours, consistent across entire week 
	12 am to 6 am 
	202 
	Hours 
	I-80 Omaha WB | S 72ND ST | 0.39 miles 
	Annual number of hours of 
	167 hours congestion 
	Throughout year with a high in February at 17 hours and Tuesday being the highest day 
	3 pm to 6 pm 
	167 
	Hours 
	I-80 Omaha WB | S 60TH ST | 0.83 miles 
	Annual number of hours of 
	159 hours congestion 
	Throughout year with a high in June at 19 hours, consistent across entire week, except Saturday 
	3 pm to 6 pm 
	159 
	Hours 
	I-80 Omaha EB | S 84TH ST | 1.2 miles 
	Annual number of hours of 
	133 hours congestion 
	Throughout year with a high in September at 28 hours, consistent across entire week, except Saturday Primarily between 3 pm to 6 pm, peak from 6 am to 9 am with 54 hours 
	133 
	Hours 
	I-80 Omaha EB | S 60TH ST | 0.37 miles 
	Annual number of hours of 
	116 hours congestion 
	Throughout year with a high in September at 24 hours, consistent across entire week, except Saturday 
	Primarily between 3 pm to 6 pm, peak from 6 am to 9 am with 41 hours 
	116 
	Hours 
	I-80 Omaha EB | I-480/US-75 | 1.09 miles 
	Top 10 Most Congested Segments in 2014 
	In contrast to 2013, the top 10 most congested locations were much higher in 2014. Nine of the ten locations were in Omaha, and the remaining segment was near Lincoln (see Figure C.2). Most segments exhibited consistent congestion throughout year, except for May through October across weekdays and between 3 pm and 6 pm and 6 am and 9 am. A summary of each of the top ten locations are included below. 
	I-80 Omaha EB | L ST | 1.45 miles 
	I-80 Omaha WB | I-480/US-75 | 1.27 miles 
	Annual number of hours of 
	Increased from 17 hours in 2013 congestion 
	February to October with a high in July at 40 hours. Consistent across weekdays 
	3 pm to 6 pm 
	I-80 Near Lincoln EB| Exit 382 | 2.5 miles 
	Annual number of hours of 
	Increased from 30 hours in 2013 congestion 
	May to July with a high in September at 43 hours, consistent across entire week 
	Primarily between 3 pm to 6 pm, peak from 12 am to 6 am with 89 hours 
	232 
	Hours 
	I-80 Omaha EB| S 72ND ST | 0.33 miles 
	Annual number of hours of 
	Annual number of hours of 
	Decreased from 27 hours in 2013 

	congestion Throughout the year with a high in February at 28 hours, primarily on 
	Thursday 
	3 pm to 6 pm and 6 am to 9 am 
	188 
	Hours 
	I-80 Omaha WB | S 84TH ST | 1.2 miles 
	Annual number of hours of 
	Slight decrease from last year congestion 
	Consistent by month and entire week, except July and Sunday 
	Figure

	6 am to 9 am and 3 pm to 6 pm 
	130 
	Hours 
	I-80 Omaha WB | S 60TH ST) | 0.83 miles 
	Annual number of hours of 
	Decreased from 36 hours in year 2013 congestion 
	Consistent by month and entire week, except May and Saturday 
	3 pm to 6 pm 
	I-80 Omaha EB | S 60TH ST | 0.37 miles 
	Annual number of hours of 
	Decreased from 14 hours in year 2013 congestion 
	Throughout the year with a high in February at 18 hours, consistent across weekdays 
	Primarily between 6 am to 9 am, peak from 3 pm to 6 pm with 45 hours 
	102 
	Hours 
	I-80 Omaha WB | S 72ND ST | 0.39 miles 
	Annual number of hours of 
	Decreased from 70 hours in year 2013 congestion 
	Throughout year with a high in February, consistent across weekdays 
	3 pm to 6 pm 
	97 
	Hours 
	I-80 Omaha EB | I-680 | 1.25 miles 
	I-80 Omaha EB | NE --IA STATE BORDER | 0.67 miles 
	Annual number of hours of 
	84 hours congestion 
	May to October with consistent across entire week, except Saturday 
	3 pm to 6 pm 
	Top 10 Most Congested Segments in 2015 
	In contrast to 2013 and 2014, the top 10 most congested locations exhibited less congestion in 2015. Most segments had a slightly higher number of hours of congestions in November and December, across weekdays and from 3 pm to 6 pm. The top 10 segments were located in the Omaha and Lincoln areas (see Figure C.3). A summary of each of the top ten locations are included below. 
	I-80 Omaha WB | S 60TH ST | 0.83 miles 
	I-80 Omaha WB | S 72ND ST | 0.39 miles 
	Annual number of 
	Annual number of 
	Increased progressively from 143 hours 
	hours of 
	in 2014 
	congestion 

	Throughout year with a high in December, consistent across weekdays 
	3 pm to 6 pm 
	240 
	Hours 
	I-80 Omaha WB | S 84TH ST | 1.2 miles 
	Annual number of 
	Annual number of 
	Increased progressively from 72 hours 
	hours of 
	in 2014 
	congestion 

	Consistent by month and entire week, except August and weekends 
	6 am to 9 am and 3 pm to 6 pm 
	202 
	Hours 
	I-80 Near Lincoln WB | US -6/EXIT 396 | 0.59 miles 
	I-80 Omaha WB | S 42ND ST | 0.859 mile 
	Annual number of hours of 
	137 hours congestion 
	Throughout year and across weekdays, except April 
	6 am to 9 am and 6 pm to 12 am 
	I-80 Omaha WB | I-480/US-75 | 1.27 miles 
	I-80 Omaha WB | I-480/US-75 | 0.39 mile 
	Annual number of hours of 
	134 hours congestion 
	June through February with a high in July at 28 hours, consistent across entire week 
	12 am to 6 am 
	I-80 Omaha WB | S 60TH ST | 0.37 miles 
	Annual number of hours of 
	Slight increase from past two years congestion 
	September through June with a high in October at 20 hours, across weekdays 
	6 am to 9 am and 3 pm to 6 pm 
	129 
	Hours 
	I-80 Omaha EB | I-680 | 1.25 miles 
	Annual number of hours of 
	Slight increase from past two years congestion 
	Throughout the year with a high in October at 23 hours, across entire week 
	6 am to 9 am 
	Metro Congestion per Mile in
	Metro Congestion per Mile in
	Metro Congestion per Mile in
	2013 

	The average amount of congestion per mile in 2013 for metro areas across Nebraska is shown in Figure C.4. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were consistently among the most congested metro routes across the state. 
	The average amount of congestion per mile in 2013 for metro areas across Nebraska is shown in Figure C.4. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were consistently among the most congested metro routes across the state. 

	Metro Congestion per Mile in
	Metro Congestion per Mile in
	2014 

	The average amount of congestion per mile in 2014 for metro areas across Nebraska is shown in Figure C.5. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were consistently among the most congested metro routes across the state. A noticeable increase in congestion is seen for I-180 near Lincoln during June, July, August, September, and October. 
	The average amount of congestion per mile in 2014 for metro areas across Nebraska is shown in Figure C.5. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were consistently among the most congested metro routes across the state. A noticeable increase in congestion is seen for I-180 near Lincoln during June, July, August, September, and October. 

	Metro Congestion per Mile in
	Metro Congestion per Mile in
	2015 

	The average amount of congestion per mile in 2015 for metro areas across Nebraska is shown in Figure C.6. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were consistently among the most congested metro routes across the state. 
	The average amount of congestion per mile in 2015 for metro areas across Nebraska is shown in Figure C.6. US 275 NE–IA border to Venice and US 6 Dodge Street Omaha were consistently among the most congested metro routes across the state. 
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	Figure
	Figure 1.1 An instant of Nebraska 
	Figure 1.1 An instant of Nebraska 


	Source of Probe Data Used 
	Source of Probe Data Used 
	Source of Probe Data Used 
	Performance Measures 
	Comments 

	Reference 
	Reference 
	Positive 
	Negative 


	Source of Probe Data Used 
	Source of Probe Data Used 
	Source of Probe Data Used 
	Performance Measures 
	Comments 

	Reference 
	Reference 
	Positive 
	Negative 

	(not mentioned) 
	(not mentioned) 
	Traffic volume, space mean speed, density 
	1. Proposed method can treat both conventional fixed-detector data and probe-vehicle data in a unified manner, regardless of the observation conditions. 2. Estimation method that uses both fixed-detector and probe data provides the smallest errors. 3. Errors from both travel-time estimation and prediction are small, having a MARE below 0.04. 
	1. Findings were validated only for a single freeway section. 2. This study assumed that the probe data could be obtained perfectly and the effect of the biased data due to individual willingness of probe drivers was neglected. 

	Chumchoke, N. et al. [9] 
	Chumchoke, N. et al. [9] 

	(NAVTEQ, TrafficCast, and INRIX) 
	(NAVTEQ, TrafficCast, and INRIX) 
	Absolute average speed error, average speed bias, absolute average travel time error, travel time bias 
	1. NAVTEQ, TrafficCast, and INRIX are all generally consistent with the ground truth data. 2. INRIX data on Route 1 appeared to have a slight advantage in accuracy compared to other probe datasets. 
	1. TMC segments in urban areas with traffic signals experienced a larger variability in the results. 

	Technical Memorandum. (FDOT) [11] 
	Technical Memorandum. (FDOT) [11] 

	(not mentioned) 
	(not mentioned) 
	95th percentile travel time, standard deviation, coefficient of variation, percent variation, skew statistic buffer index (w.r.t. average), buffer index (w.r.t. median), PTI, frequency of congestion, failure rate (w.r.t. average), failure rate (w.r.t. median), travel time index 
	1. The coefficient of variation is a good proxy for a number of reliability measures, including planning time index, median-based buffer index, and skew statistic. 2. Defining the buffer index and failure rate on the basis of the median, rather than the average, is recommended to avoid underestimating unreliability, especially for heavily right-skewed travel time distributions. 3. The mathematical relationship between the reliability measures revealed in the studycould easily be used to predict one measure 
	1. Standard deviation, is not recommended as a proxy because its magnitude relative to other measures is not stable. 2. Travel time reliability generally deteriorates as traffic congestion increases. 3. A notable limitation of this study was posed by the assumption of lognormal distributed travel times. In the real world, travel time distribution can have non-lognormal distributions, for example, bimodal, Weibull. 

	Pu, W. (2011). [35] 
	Pu, W. (2011). [35] 

	(not mentioned) 
	(not mentioned) 
	Travel time window, percent variation, variability index, displaying variation, buffer time, BTI, PTI, travel rate envelope, on-time arrival, misery index 
	Travel time reliability was described as a measure of the amount of congestion transportation system users experience at a given time. 

	Lomax, T. et al. (2003) [36] 
	Lomax, T. et al. (2003) [36] 

	(INRIX) 
	(INRIX) 
	Annual hours of delay per mile, hours of target delay per mile, TTI, PTI, top N congested segments 
	1. INRIX is immediately available at relatively low cost for the entire arterial street network. 2. Mobility performance measures for arterials should be travel speed-based measures that compare peak traffic speeds to speeds during light traffic, recognizing that the light traffic speed is not a target value but simply a reference point for performance measures. Thus, INRIX is a reliable data source in this case. 3. PTI is the recommended reliability 
	----
	-


	(MnDOT Report) (Turner and Qu, 2013) [37] 
	(MnDOT Report) (Turner and Qu, 2013) [37] 

	Source of Probe Data Used 
	Source of Probe Data Used 
	Performance Measures 
	Comments 

	Reference 
	Reference 
	Positive 
	Negative 

	TR
	measure. 

	(INRIX) 
	(INRIX) 
	Congestion hours, distance-weighted congestion hours, congestion index, speed profile, speed deficit, travel time deficit, congestion cost, top N bottlenecks 
	Focused mainly on freeway measures. Congestion hours were reported as total hours across all segments when average 15-minute speed fell below 45 mph (threshold). 

	2012 Indiana Mobility Report (Remias et al., 2013) and 2013-2014 Indiana Mobility Report (Day et al., 2014) [38] 
	2012 Indiana Mobility Report (Remias et al., 2013) and 2013-2014 Indiana Mobility Report (Day et al., 2014) [38] 

	(INRIX) 
	(INRIX) 
	Number of intersections and mile of roadway (direction-wise) for LOS categories (D or better, E, F), list of intersections and road segments at LOS E and F, top N bottlenecks for freeways 
	Focused mainly on freeway measures and also on an arterial route. It provided several pieces of information, such as speed limit, number of signals, number of lanes in each direction, average daily traffic, percentage of trucks, corridor length, etc. for each corridor and used INRIX data for bottlenecks and freeway measures. 

	2013 Maryland State Highway Mobility Report (Mahapatra et al., 2013) [39] 
	2013 Maryland State Highway Mobility Report (Mahapatra et al., 2013) [39] 

	(not mentioned) 
	(not mentioned) 
	Average travel time per 10 miles, additional travel time needed for on-time arrival (80% of time), annual congestion costs 
	Used RITIS and travel time data using wireless technology. Covered two metro areas and used mobility map, which showed high, medium and low levels in different colors. 

	MoDOT Tracker (MoDOT, 2013) [40] 
	MoDOT Tracker (MoDOT, 2013) [40] 

	(INRIX, HERE, TomTom, and NPMRDS) 
	(INRIX, HERE, TomTom, and NPMRDS) 
	TTI, BI, and PTI, user delays, user delay costs, bottlenecks 
	It hosted HERE, INRIX, TomTom and NPMRDS data and used INRIX historical average speed to calculate buffer index. 

	RITIS VPP Suite (UMD CATT Lab, n.d.) [41] 
	RITIS VPP Suite (UMD CATT Lab, n.d.) [41] 

	(NPMRDS) 
	(NPMRDS) 
	Congested hours, PTI, TTI 
	Focused completely on freeways using HPMS volume data and 15-minute aggregated NPMRDS data by day of week and month. 

	(UCR) (FHWA, 2015b) [42] 
	(UCR) (FHWA, 2015b) [42] 

	(INRIX) 
	(INRIX) 
	Travel speed, travel delay, annual person delay, annual delay per auto commuter, total peak period travel time, TTI, PTI, CSI, RCI, number of rush hours, percent of daily and peak travel in congested 
	1. Improvements in the INRIX traffic speed data. 2. Given availability and high quality of INRIX, they could track congestion problems for the midday, overnight and weekend time periods. 
	----
	-


	(UMR) (Schrank et al., 2012) (Urban Mobility Scorecard in 2015) [43], [44] 
	(UMR) (Schrank et al., 2012) (Urban Mobility Scorecard in 2015) [43], [44] 

	Source of Probe Data Used 
	Source of Probe Data Used 
	Performance Measures conditions, percent of congested travel 
	Comments 

	Reference 
	Reference 
	Positive 
	Negative 

	(not mentioned) 
	(not mentioned) 
	Lane-miles congested, total and cost of delay, TTI 
	Defined congestion as speeds below 70% of the posted speed limit. Calculated delays on the basis of maximum throughput speeds (85% of posted speed limit). TTI was calculated using reference speed rather than free flow speed. It identified daily congested segments on individual corridors with segment length and hours. Several more measures like congested miles, etc. were calculated. Reports used loop detectors, automated license plate readers, Bluetooth, Wavetronix, vehicle detection, and private sector data

	WSDOT Gray Notebook (WSDOT, 2014) and Corridor Capacity Summary (WSDOT, 2013) [45], [46] 
	WSDOT Gray Notebook (WSDOT, 2014) and Corridor Capacity Summary (WSDOT, 2013) [45], [46] 

	(INRIX) 
	(INRIX) 
	Delay per vehicle, total delay, TTI, Buffer index, PTI, on-time arrival, congested travel, misery index 
	Used INRIX and focused on freeways and arterials. Percentage of on-time arrival calculated as proportion of days when peak period travel time was less than 1.1 times mean peak period travel time. It also defined Congested Travel as the product of corridor length and volume of peak period. Percentage of congested travel and misery index were also calculated. 

	VDOT Pilot Study: 2010 [47] 
	VDOT Pilot Study: 2010 [47] 

	(not mentioned) 
	(not mentioned) 
	Highway travel time reliability, vehicle hours of delay, percent of miles severely congested, VMT. Mobility performance measures grouped into quantity, quality, accessibility, and utilization. 
	Highway travel time reliability defined as percentage of travel greater than 45 mph on freeways. Percentage of miles severely congested was defined as percentage of roadway miles operating at LOS F during peak hours. 

	FDOT Performance Report (FDOT, 2013b) [48] 
	FDOT Performance Report (FDOT, 2013b) [48] 

	(INRIX) 
	(INRIX) 
	INRIX TTI, wasted time in congestion 
	Used INRIX speed data. It defined INRIX TTI as percentage increase in average travel time of a commute above free flow conditions. Used average delay of typical commute trip, length of typical commute trip, and number of trips a commuter takes monthly or annually to calculate wasted time in congestion. 

	INRIX Traffic Scorecard (INRIX, 2015) [49] 
	INRIX Traffic Scorecard (INRIX, 2015) [49] 

	(TomTom) 
	(TomTom) 
	Congestion level percentage 
	Used TomTom speed data to calculate the extra travel time a driver experiences compared to an uncongested situation. 

	TomTom Traffic Index (TomTom, 2016) [50] 
	TomTom Traffic Index (TomTom, 2016) [50] 

	(INRIX) 
	(INRIX) 
	Latency, occurrence of repeated INRIX reported speed 
	1. Similar patterns of congestion, queue growth, and so forth between INRIX and ground-truth data. 
	1. INRIX speeds tend to lag the loop detector measurements by almost 6 min. 2. Most of the time, INRIX reported speed is identical to the previous sample and repeating for average 3 to 5 minutes. 3. INRIX confidence measures do not appear to reflect the latency or the occurrence of repeated INRIX reported speeds. 

	Kim, S., Coifman, B. (2014) [7] 
	Kim, S., Coifman, B. (2014) [7] 

	(INRIX) 
	(INRIX) 
	Travel time, average speed 
	1. Paired-t method can be effectively applied for verification of probe data. 
	1. Paired-t method has a binary outcome which says probe data for specified speed bin is good or not. No 

	Source of Probe Data Used 
	Source of Probe Data Used 
	Performance Measures 
	Comments 

	Reference 
	Reference 
	Positive 
	Negative 

	Aliari, Y., Haghani, A. (2012) [51] 
	Aliari, Y., Haghani, A. (2012) [51] 
	additional info is provided. 2. Since the method uses average errors over all time, high variance outliers can invalidate the whole segment. 

	(INRIX, TomTom, Google, etc.) 
	(INRIX, TomTom, Google, etc.) 
	Traffic jams, traffic jams on (surface streets, highways) 
	1. All probe sources reported traffic jams on highways significantly better than streets. 2. The longer the jam, the better chance probe can accurately report. 
	1. They experienced some type of operational failure or disruption during their study. 

	Belzowski, B., Ekstrom, A., (2013) [52] 
	Belzowski, B., Ekstrom, A., (2013) [52] 

	(INRIX) 
	(INRIX) 
	Speed error, speed error bias 
	1. Speed data provided by INRIX is generally of good quality. 
	1. Segments with length less than one mile are in-accurate. 2. Different confidence scores 30, 20, and 10 are not significant indicator of INRIX data quality. 3. For speeds below 45 mph, INRIX overestimates the speeds and for speeds over 60 mph, it underestimates the actual speed. 

	Haghani, A. et al. (2009) [53] 
	Haghani, A. et al. (2009) [53] 

	(INRIX, NAVTEQ, and TrafficCast) 
	(INRIX, NAVTEQ, and TrafficCast) 
	Travel time, Speed bias 
	----
	-

	1. INRIX speed has a 6 mph bias relative to ground truth on an uncongested freeway. 

	Lattimer and Glotzbach (2012) [54] 
	Lattimer and Glotzbach (2012) [54] 

	(INRIX, NAVTEQ, and TrafficCast) 
	(INRIX, NAVTEQ, and TrafficCast) 
	Travel speed, Speed error 
	----
	-

	1. Overall average speed errors to be within 10 mph throughout various levels of congestion. 2. Data providers missed a major incident lasting more than 4 hours. 3. INRIX reported speeds 30 mph higher than ground truth data while INRIX classified those speeds with "high confidence" during this major incident. 

	Kim et al. (2014) [55] 
	Kim et al. (2014) [55] 

	(INRIX) 
	(INRIX) 
	Speed bias, latency, similarity index 
	1. Probe data is reliable for monitoring the performance of transportation infrastructure over time. 2. Latency on freeways is less than non-freeways. 
	1. Various levels of amplitude bias between INRIX and benchmarked data. 

	Adu Gyamfi Y. et al. (2017) [56] 
	Adu Gyamfi Y. et al. (2017) [56] 

	(INRIX) 
	(INRIX) 
	Travel time reliability, PTI, FOC 
	1. Both FOC and PTI are capable to identify and rank recurrent freeway bottlenecks. 
	1. Using either FOC or PTI alone may not be possible to identify the intensity of bottlenecks’ traffic congestion. 

	Gong, Linfeng, and Wei Fan (2017) [57] 
	Gong, Linfeng, and Wei Fan (2017) [57] 

	(INRIX) 
	(INRIX) 
	Hourly traffic volume 
	1. Probe data is promising for estimating hourly traffic volume using machine learning models. 
	----
	-


	P Sekuła et al. [58] 
	P Sekuła et al. [58] 


	Figure
	Figure 3.1 Dashboard view of 16 selected locations 
	Figure 3.1 Dashboard view of 16 selected locations 
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	Figure 3.2 Location of 16 selected sites 
	Figure 3.2 Location of 16 selected sites 


	Table 3.1 Selected sites with different criteria 
	Table 3.1 Selected sites with different criteria 
	Table 3.1 Selected sites with different criteria 

	No. 
	No. 
	TMC 
	Dir 
	County 
	Road 
	% of Confidence 
	-

	AADT 
	IQR 
	Heavy Truck 
	Nearest TMC/XD 
	Remarks 

	1 
	1 
	118-12176 
	EB 
	Chase 
	US-6 
	7.10 
	570 
	3 
	188 
	118+12177 3096189 3096305 
	Nearest mid-point ATR#19 

	2 
	2 
	118-04527 
	WB 
	Douglas 
	I-680 
	67.08 
	16094 
	4 
	1600 
	118+04528 48151029 5111124 
	Nearest mid-point ATR#32 

	3 
	3 
	118-04559 
	SB 
	Lancaster 
	I-180 
	40.88 
	32399 
	7 
	837 
	118+04560 5115670 5115743 
	Nearest mid-point ATR#46 

	4 
	4 
	118-04752 
	WB 
	Sarpy 
	I-80 
	97.76 
	67773 
	2 
	10,075 
	118+04545 5118286 5118291 
	AADT ATR#17 

	5 
	5 
	118+04785 
	EB 
	Dawson 
	I-80 
	97.9 
	17917 
	3 
	7701 
	118-04784 5106319 5106309 
	AADT ATR#20 

	6 
	6 
	118+04552 
	EB 
	Douglas 
	I-80 
	98.62 
	173168 
	4 
	---
	-

	5111192 
	ATR#24 E 

	7 
	7 
	118+04805 
	EB 
	Seward 
	I-80 
	97.89 
	27086 
	3 
	7918 
	118-04804 5118482 5118490 
	Winter segments; near ATR #38 

	8 
	8 
	118-04787 
	WB 
	Buffalo 
	I-80 
	97.97 
	20673 
	3 
	---
	-

	118+04788 5105936 5105935 
	Winter segments; near ATR #54 

	9 
	9 
	118-04765 
	WB 
	Deuel 
	I-80 
	95.11 
	7297 
	2 
	4426 
	118+04766 3136954 3136959 
	High confidence; near ATR #31 

	10 
	10 
	118-04773 
	WB 
	Lincoln 
	I-80 
	97.87 
	15667 
	2 
	7195 
	118+04774 5116674 5116683 
	High confidence; near ATR #43 

	11 
	11 
	118-07638 
	SB 
	Thayer 
	US-81 
	66.68 
	3812 
	4 
	1270 
	118+07639 5059806 5059878 
	Middle confidence; near ATR #64 

	12 
	12 
	118-09466 
	EB 
	Dodge 
	US-30 
	47.14 
	5335 
	3 
	661 
	118+07729 5110005 5110018 
	Low confidence; near ATR #61 

	13 
	13 
	118-09439 
	EB 
	Dawson 
	US-30 
	10.08 
	2646 
	4 
	191 
	118+09438 5109780 5109790 
	Anomaly variance high; near ATR #2 


	14 
	14 
	14 
	118+07802 
	NB 
	Otoe 
	US-75 
	39.22 
	4122 
	3 
	630 
	118-11849 5107356 5107390 
	Anomaly variance high; near ATR #6 

	15 
	15 
	118+08702 
	NB 
	Howard 
	US-281 
	19.85 
	5434 
	3 
	528 
	118-08701 5114752 5114762 
	Anomaly variance middle; near ATR #39 

	16 
	16 
	118-11097 
	EB 
	Otoe 
	NE-2 
	82.67 
	11569 
	0 
	2872 
	118+11098 5116156 5116160 
	Anomaly variance middle; near ATR #65 (suggested by NDOR) 


	Figure
	Figure 3.3 Wavetronix sensor during 
	Figure 3.3 Wavetronix sensor during 


	Table 3.2 Wavetronix data collected with trailer 
	Table 3.2 Wavetronix data collected with trailer 
	Table 3.2 Wavetronix data collected with trailer 

	Sensor 
	Sensor 
	Time 
	Number of minutes 

	2 
	2 
	11/22/2016 2:01:17 pm – 11/22/2016 4:03:43 pm 
	122 

	6 
	6 
	11/21/2016 4:16:23 pm – 11/21/2016 6:18:39 pm 
	122 

	17 
	17 
	11/22/2016 2:10:03 pm – 11/22/2016 4:19:59 pm 
	130 

	19 
	19 
	11/21/2016 2:45:37 pm – 11/21/2016 4:45:40 pm 
	120 

	20 
	20 
	11/22/2016 5:08:49 pm – 11/22/2016 7:11:35 pm 
	123 

	24E 
	24E 
	11/21/2016 8:45:49 pm – 11/21/2016 10:47:42 pm 
	122 

	31E 
	31E 
	11/21/2016 9:55:00 am – 11/21/2016 9:57:06 am 11/21/2016 10:02:24 am – 11/21/2016 10:08:40 am 11/21/2016 10:35:43 am – 11/21/2016 12:50:31 pm 
	33 

	32 
	32 
	11/23/2016 11:51:55 am – 11/23/2016 2:24:03 pm 
	153 

	38 
	38 
	11/20/2016 7:52:35 pm – 11/20/2016 9:53:29 pm 
	121 

	39 
	39 
	11/23/2016 11:20:12 am – 11/23/2016 1:23:11 pm 
	122 

	43 
	43 
	11/22/2016 9:29:05 am – 11/22/2016 11:47:28 am 
	138 

	46 
	46 
	11/21/2016 9:12:50 am – 11/21/2016 11:16:36 am 
	124 

	54 
	54 
	11/22/2016 8:29:29 pm – 11/22/2016 8:46:10 pm 11/22/2016 10:41:57 pm – 11/22/2016 10:59:44 pm 11/22/2016 11:01:16 pm – 11/22/2016 11:59:49 pm 11/23/2016 12:00:03 am – 11/23/2016 1:05:01 am 
	158 

	61 
	61 
	11/22/2016 5:59:28 pm – 11/22/2016 8:07:52 pm 
	128 

	64 
	64 
	11/20/2016 3:00:20 pm – 11/20/2016 5:02:20 pm 11/20/2016 6:52:01 pm – 11/20/2016 7:55:15 pm 
	185 

	65 
	65 
	11/21/2016 12:46:35 pm – 11/21/2016 2:55:42 pm 
	129 


	Figure
	Figure 3.4 Cumulative distribution function of speed for PVR and Wavetronix datasets 
	Figure 3.4 Cumulative distribution function of speed for PVR and Wavetronix datasets 


	Figure
	Figure 3.5 Location of ATRs (red asterisk: selected location), (blue triangle: excluded locations) 
	Figure 3.5 Location of ATRs (red asterisk: selected location), (blue triangle: excluded locations) 


	Performance Measures 
	Performance Measures 
	Performance Measures 
	Comments 

	Percentage availability of INRIX 
	Percentage availability of INRIX 
	Total percentage of time level 30 data is available for given TMC segment 

	Speed bias 
	Speed bias 
	Difference been speeds reported by INRIX as compared to the Wavetronix speed 

	Congestion detection latency 
	Congestion detection latency 
	A measure of delay between two time series datasets, which is used to measure the difference of start times of a congestion detected by INRIX compared to PVR. 

	Congestion counts 
	Congestion counts 
	Number of congestions detected by both INRIX segments and PVR sensors with latencies lower than 20 minutes. 

	Congested hour 
	Congested hour 
	In this study, two scenarios were considered for comparing number of hours of congestion between the INRIX and PVR datasets: • Scenario 1: total number of hours during which speed of each segment was less than 45 mph. • Scenario 2: duration of congestions that were detected by both INRIX segments and PVR sensors with detection latency lower than 20 minutes. The two scenarios were compared for two time periods: single day and three weeks. 

	Buffer time index 
	Buffer time index 
	Calculated by subtracting the 85th percentile of TTPM (travel time per mile) from the median of TTPM and then dividing that result by the median TTPM; calculated for 1-and 3-week periods. 

	Reliability curves 
	Reliability curves 
	The inverse of speed multiplied by 60 was considered TTPM in minutes. 
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	(a) 
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	A
	A
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	Figure
	Figure
	Figure
	Figure 4.3 Segment–sensor pairwise cumulative distribution function of speed bias for: (a) confidence score 10, (b) confidence score 20, and (c) confidence score 30. (d) Score-wise cumulative distribution function of speed bias for all segment–sensor pairs. 
	Figure 4.3 Segment–sensor pairwise cumulative distribution function of speed bias for: (a) confidence score 10, (b) confidence score 20, and (c) confidence score 30. (d) Score-wise cumulative distribution function of speed bias for all segment–sensor pairs. 


	Figure
	Figure 4.4 Errors associated with traffic speed reported using only real-time data for some sites 
	Figure 4.4 Errors associated with traffic speed reported using only real-time data for some sites 


	Table 4.2 Median error for each site 
	Table 4.2 Median error for each site 
	Table 4.2 Median error for each site 

	TR
	Median 

	ATR 
	ATR 
	speed bias (mph) 

	2E 
	2E 
	4.88 

	2W 
	2W 
	5.00 

	20E 
	20E 
	6.91 

	20W 
	20W 
	6.71 

	31E 
	31E 
	6.63 

	31W 
	31W 
	5.25 

	32E 
	32E 
	5.64 

	38E 
	38E 
	7.55 

	38W 
	38W 
	6.96 

	39N 
	39N 
	14.32 

	40N 
	40N 
	2.86 

	40S 
	40S 
	2.67 

	43E 
	43E 
	6.95 

	43W 
	43W 
	6.81 

	46N 
	46N 
	6.94 

	46S 
	46S 
	5.95 

	54E 
	54E 
	6.82 

	54W 
	54W 
	7.53 

	56E 
	56E 
	5.78 

	56W 
	56W 
	6.33 

	61W 
	61W 
	8.01 

	64N 
	64N 
	5.54 

	64S 
	64S 
	4.98 

	65W 
	65W 
	6.67 


	Figure
	Figure 4.5 Speed bias during (left) non-congested and (right) congested periods 
	Figure 4.5 Speed bias during (left) non-congested and (right) congested periods 
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	Figure 4.6 Example of congestion detection 
	Figure 4.6 Example of congestion detection 
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	Figure
	Figure 4.8 Number of congestions and average latency for each site 
	Figure 4.8 Number of congestions and average latency for each site 


	2W 
	2W 
	2W 
	7 
	12 
	2 
	0.167 
	0.417 
	0.417 
	0.286 

	32E 
	32E 
	6 
	21 
	4 
	0.190 
	0.714 
	0.095 
	0.667 

	38E 
	38E 
	7 
	14 
	3 
	0.214 
	0.5 
	0.286 
	0.429 

	38W 
	38W 
	6 
	22 
	3 
	0.136 
	0.727 
	0.136 
	0.5 

	39N 
	39N 
	5 
	31 
	4 
	0.129 
	0.839 
	0.032 
	0.8 

	40N 
	40N 
	1 
	1 
	1 
	1 
	0 
	0 
	1 

	40S 
	40S 
	4 
	7 
	1 
	0.143 
	0.429 
	0.429 
	0.25 

	43E 
	43E 
	4 
	8 
	3 
	0.375 
	0.5 
	0.125 
	0.75 

	46N 
	46N 
	8 
	10 
	1 
	0.1 
	0.2 
	0.7 
	0.125 

	46S 
	46S 
	7 
	10 
	3 
	0.3 
	0.3 
	0.4 
	0.429 

	54W 
	54W 
	4 
	10 
	4 
	0.4 
	0.6 
	0 
	1 

	61W 
	61W 
	13 
	36 
	10 
	0.278 
	0.639 
	0.083 
	0.769 


	ATR 
	ATR 
	ATR 
	Worst Congestions 

	2W 
	2W 
	02/24/2017 08:38 am, 02/24/2017 09:25 am 

	32E 
	32E 
	10/31/2016 12:28 pm, 11/01/2016 09:27 am 

	38E 
	38E 
	02/24/2017 05:02 am, 2/24/2017 10:58 am 

	38W 
	38W 
	02/23/2017 08:45 pm, 2/24/2017 09:05 am 

	39N 
	39N 
	02/23/2017 05:01 pm, 2/24/2017 10:29 am 

	40N 
	40N 
	03/28/2017 05:13 pm 

	40S 
	40S 
	04/19/2017 07:47 am 

	43E 
	43E 
	02/24/2017 02:13 am, 02/24/2017 04:29 am 

	46N 
	46N 
	04/19/2017 05:24 pm 

	46S 
	46S 
	10/28/2016 07:49 am, 11/29/2016 07:42 am 

	54W 
	54W 
	02/24/2017 02:16 am, 02/24/2017 01:55 am 

	61W 
	61W 
	02/24/2017 05:39 pm, 02/24/2017 12:30 pm 

	Two worst congestions among all ATRS 
	Two worst congestions among all ATRS 
	ATR 46s: 02/23/2017 08:13 pm ATR 32e: 11/01/2016 09:27 am 


	Figure
	Figure 4.9 Distribution of congestion periods (in minutes) for sensor and INRIX data in the state of Iowa for 2016 (the red arrows indicate 6 minutes as the minimum acceptable threshold for a period of congestion) 
	Figure 4.9 Distribution of congestion periods (in minutes) for sensor and INRIX data in the state of Iowa for 2016 (the red arrows indicate 6 minutes as the minimum acceptable threshold for a period of congestion) 


	Figure
	Figure
	Figure 4.10 (a, b) Single-day and (c, d) 3-week periods of congested traffic duration (in hours) for scenarios 1 and 2. All congestions reflect traffic speed of less than 45 mph, and all congestions were detected by both the INRIX and PVR datasets 
	Figure 4.10 (a, b) Single-day and (c, d) 3-week periods of congested traffic duration (in hours) for scenarios 1 and 2. All congestions reflect traffic speed of less than 45 mph, and all congestions were detected by both the INRIX and PVR datasets 


	INRIX speed is around 45 mph PVR speed is around 60 mph INRIX speed is around 45 mph PVR speed is around 60 mph 
	A B 
	C D E 
	Figure 4.11 Speed time series of PVR and INRIX data showing (a) INRIX speed being reported as around 45 mph and (b) lack of real-time (score 30) data during congestion 
	Figure 4.11 Speed time series of PVR and INRIX data showing (a) INRIX speed being reported as around 45 mph and (b) lack of real-time (score 30) data during congestion 


	Figure
	Figure 4.12 Rank order of segments and sensors based on congestion duration 
	Figure 4.12 Rank order of segments and sensors based on congestion duration 


	Figure
	Figure 4.13 1-week and 3-weekly BTIs for probe and sensor datasets 
	Figure 4.13 1-week and 3-weekly BTIs for probe and sensor datasets 
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	Figure 4.14 Sample time series showing difference of variability between probe and benchmarked data 
	Figure 4.14 Sample time series showing difference of variability between probe and benchmarked data 
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	Figure 5.1 Top 10 congested segments on I-80 in Nebraska in 2016 
	Figure 5.1 Top 10 congested segments on I-80 in Nebraska in 2016 


	Figure
	Annual number of hours of congestion 
	Annual number of hours of congestion 
	Annual number of hours of congestion 
	Second year at the top of the list; increased by 174 hours from 2015 

	Highest monthly and weekday total hours of congestion 
	Highest monthly and weekday total hours of congestion 
	Consistent by month and entire weekdays 

	Longest congestion duration by time of day 
	Longest congestion duration by time of day 
	-

	3 pm to 6 pm 

	Distribution of times of congestion times 
	Distribution of times of congestion times 
	TD
	Figure



	Figure
	Annual number of hours of congestion 
	Annual number of hours of congestion 
	Annual number of hours of congestion 
	Increased from 98 hours in 2015 

	Highest monthly and weekday total hours of congestion 
	Highest monthly and weekday total hours of congestion 
	Throughout the year with a high in June at 60 hours, consistent across weekdays 

	Longest congestion duration by time of day 
	Longest congestion duration by time of day 
	-

	3 pm to 6 pm and 6 am to 9 am 

	Distribution of times of congestion 
	Distribution of times of congestion 
	TD
	Figure



	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	7 
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion times 
	Figure
	Annual number of hours of congestion Increased from 32 hours in 2015 Highest monthly and weekday total hours of congestion Throughout the year, except in March, consistent across weekdays Longest conges-tion duration by time of day 3 pm to 6 pm and 6 am to 9 am Distribution of times of congestion 8 
	I-80 Omaha WB | L ST | 0.42 mile Annual number of hours of congestion 131 hours Highest monthly and weekday total hours of congestion Throughout the year, except in March and April, consistent across weekdays Longest conges-tion duration by time of day 3 pm to 6 pm Distribution of times of congestion 9 
	10 
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	No. 
	No. 
	No. 
	TMC segment 
	Year (Rank) 
	Intersection | Length of Segment 

	1 
	1 
	118+04546 
	2013 (1) 2014 (1) 
	L ST | 1.45 

	2 
	2 
	118N04552 
	2013 (2) 2014 (2) 2015 (7) 2016 (10) 
	I-480/US-75 | 1.27 

	3 
	3 
	118+04549 
	2013 (3) 2014 (4) 2015 (2) 2016 (2) 
	S 72ND ST | 0.33 

	4 
	4 
	118+04806 
	2013 (4) 2014 (3) 
	Exit 382 | 2.5 

	5 
	5 
	118-04549 
	2013 (5) 2014 (8) 2015 (3) 2016 (3) 
	S 72ND ST | 0.39 

	6 
	6 
	118-04550 
	2013 (6) 2014 (6) 2015 (1) 2016 (1) 
	S 60TH ST | 0.83 

	7 
	7 
	118+04548 
	2013 (7) 2014 (5) 2015 (4) 2016 (4) 
	S 84TH ST | 1.2 

	8 
	8 
	118+04550 
	2013 (8) 2014 (7) 2015 (9) 2016 (6) 
	S 60TH ST | 0.37 

	9 
	9 
	118P04547 
	2013 (10) 2014 (9) 2015 (10) 2016 (8) 
	I-680 | 1.25 
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	Figure 5.2 Top 10 congested segments on Interstate 80 from 2013 through 2016 
	Figure 5.2 Top 10 congested segments on Interstate 80 from 2013 through 2016 
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	Figure 5.3 Congestion duration (hours) per mile metro area comparisons, 2016 
	Figure 5.3 Congestion duration (hours) per mile metro area comparisons, 2016 
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	Figure 5.4 Congestion duration (hours) per mile metro area comparison by year 
	Figure 5.4 Congestion duration (hours) per mile metro area comparison by year 


	Figure
	Figure 5.5 Selected metro routes with congestion 
	Figure 5.5 Selected metro routes with congestion 


	December, January, and February) months. 
	Figure 5.6 Congestion duration (hours) for westbound and eastbound Interstate 80 in 2013, 2014, 2015, and 2016 
	Figure 5.6 Congestion duration (hours) for westbound and eastbound Interstate 80 in 2013, 2014, 2015, and 2016 
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	Figure 5.7 Interstate 80 EB speed percentage in 2016 
	Figure 5.7 Interstate 80 EB speed percentage in 2016 
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	Figure 5.8 Interstate 80 WB speed percentage in 2016 
	Figure 5.8 Interstate 80 WB speed percentage in 2016 


	Figure
	Figure 5.9 Percentage increase in typical travel time on Interstate 80 
	Figure 5.9 Percentage increase in typical travel time on Interstate 80 


	Performance Measures 
	Performance Measures 
	Performance Measures 
	Comments 

	Congestion detection latency 
	Congestion detection latency 
	This measure of delay between two time series datasets was used to measure the difference in detection of start times of a congestion period between INRIX and PVR sensors. The average latency calculated in this study was 4.97 minutes. 

	Count of congestions 
	Count of congestions 
	Number of congestions that were detected by both INRIX segments and PVR sensors with latencies lower than 20 minutes. Using the congestion detection algorithm, 44 congestions were detected by both INRIX and PVR datasets for all selected ATRs for all days. 

	Congestion durations 
	Congestion durations 
	Two scenarios for comparing INRIX and PVR datasets in terms of congested hour were considered: • Scenario 1: total number of hours for which the speed of each segment is less than 45 mph. • Scenario 2: congestion durations detected by both INRIX segments and PVR sensors with detection latency lower than 20 minutes. The two scenarios were compared for two time periods; 1 day and 3 weeks. Scenario 1 showed INRIX duration of congestion hour tended to be longer than for PVR because, for some ATRs, INRIX reporte

	Buffer time index 
	Buffer time index 
	BTI was calculated by subtracting the 85th percentile of TTPM (travel time per mile) from the TTPM median and then dividing that result by the TTPM median. It was calculated for 1week and 3-week periods. Due to low variation of INRIX data, BTI for PVR is almost always greater than that for INRIX. In summary, INRIX did not perform reliably for calculating the BTI. 
	-


	Reliability curve 
	Reliability curve 
	Calculated as the inverse of speed multiplied by 60, was considered as TTPM in minutes. Except for some locations, INRIX performance was acceptable in terms of reliability curves. 


	ATR 
	ATR 
	ATR 
	Dir 
	Number of Days 

	Oct 
	Oct 
	Nov 
	Dec 
	Feb 
	Mar 
	Apr 
	Total 

	2 
	2 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	2 
	2 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	6 
	6 
	N 
	-
	24 
	2 
	-
	-
	-
	26 

	6 
	6 
	S 
	-
	24 
	2 
	-
	-
	-
	26 

	19 
	19 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	19 
	19 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	20 
	20 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	20 
	20 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	31 
	31 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	31 
	31 
	W 
	6 
	14 
	2 
	6 
	-
	-
	28 

	32 
	32 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	32 
	32 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	38 
	38 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	38 
	38 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	39 
	39 
	N 
	7 
	14 
	2 
	6 
	-
	-

	-
	29 

	39 
	39 
	S 
	7 
	14 
	2 
	6 
	-
	-
	29 

	40 
	40 
	N 
	-
	-
	-
	-
	9 
	21 
	30 

	40 
	40 
	S 
	-
	-
	-
	-
	9 
	21 
	30 

	43 
	43 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	43 
	43 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	46 
	46 
	N 
	7 
	14 
	2 
	6 
	9 
	21 
	59 

	46 
	46 
	S 
	7 
	14 
	2 
	6 
	9 
	21 
	59 

	54 
	54 
	E 
	7 
	14 
	2 
	6 
	-
	-
	29 

	54 
	54 
	W 
	7 
	14 
	2 
	6 
	-
	-
	29 

	56 
	56 
	E 
	-
	-
	-
	-
	8 
	21 
	29 

	56 
	56 
	W 
	-
	-
	-
	-
	8 
	21 
	29 

	61 
	61 
	E 
	-
	24 
	2 
	6 
	-
	-
	32 

	61 
	61 
	W 
	-
	24 
	2 
	6 
	-
	-
	32 

	64 
	64 
	N 
	7 
	14 
	2 
	6 
	-
	-
	29 

	64 
	64 
	S 
	7 
	14 
	2 
	6 
	-
	-
	29 

	65 
	65 
	E 
	5 
	14 
	8 
	6 
	-
	-
	33 

	65 
	65 
	W 
	5 
	14 
	8 
	6 
	-
	-
	33 


	(a) 
	Appendix B. Errors associated with traffic speed reported using only real-time data for 
	Appendix B. Errors associated with traffic speed reported using only real-time data for 
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	Figure
	Figure C.1 Top 10 congested segments in 2013 
	Figure C.1 Top 10 congested segments in 2013 


	Around 319 hours Highest monthly and weekday total hours of congestion Throughout year with a high in October at 46 hours, consistent across weekdays Longest congestion duration by time of day 6 am to 9 am Distribution of times of congestion 1 
	251 hours Highest monthly and weekday total hours of congestion Throughout year with a high in June at 29 hours, consistent across entire week, except Saturday Longest congestion duration by time of day 3 pm to 6 pm Distribution of times of congestion 
	251 Hours 2 
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest conges-tion duration by time of day Distribution of times of congestion 
	Figure
	Annual number of hours of congestion 104 hours Highest monthly and weekday total hours of congestion February to August with a high in August at 19 hours, consistent across entire week, except Tuesday Longest conges-tion duration by time of day Primarily between 9 am to 3 pm, peak from 3 pm to 6 pm with 40 hours Distribution of times of congestion 9 
	I-80 Omaha EB | I-680 | 1.25 miles Annual number of hours of congestion 95 hours Highest monthly and weekday total hours of congestion Throughout the year with a high in September at 11 hours, consistent across entire week Longest conges-tion duration by time of day Primarily between 3 pm to 6 pm, peak from 6 am to 9 am with 40 hours Distribution of times of congestion 10 
	Figure
	Figure C.2 Top 10 congested segments in 2014 
	Figure C.2 Top 10 congested segments in 2014 


	Annual number of hours of congestion Second year at the top of the list increased from 248 hours in 2013 Highest monthly and weekday total hours of congestion April to November with a high in May at 105 hours Longest congestion duration by time of day Primarily between 3 pm to 6 pm, peak from 6 am to 9 am with 307 hours Distribution of times of congestion 1 
	Figure
	2 
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	6 
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Annual number of hours of congestion Slight decrease from last year Highest monthly and weekday total hours of congestion June and December with consistent across entire week, except Sunday Longest congestion duration by time of day 3 pm to 6 pm and 6 am to 9 am Distribution of times of congestion 9 
	Figure
	84 Hours 10 
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Figure C.3 Top 10 congested locations in 2015 
	Figure C.3 Top 10 congested locations in 2015 


	Figure
	Annual number of hours of congestion Increased progressively from 253 hours in 2014 Highest monthly and weekday total hours of congestion Consistent by month and entire weekdays Longest congestion duration by time of day 3 pm to 6 pm Distribution of times of congestion 1 
	282 Hours 2 
	I-80 Omaha EB| S 72ND ST | 0.33 miles Annual number of hours of congestion Increased progressively from 94 hours in 2014 Highest monthly and weekday total hours of congestion Throughout the year with a high in December at 35 hours, primarily on Thursday Longest congestion duration by time of day Primarily between 6 am to 9 am, peak from 3 pm to 6 pm with 123 hours Distribution of times of congestion 
	Figure
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
	Annual number of hours of congestion 142 hours Highest monthly and weekday total hours of congestion High in February and consistent across entire week Longest congestion duration by time of day 12 am to 6 am and 6 pm to 12 am Distribution of times of congestion 5 
	Figure
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	137 Hours 6 
	Figure
	Annual number of hours of congestion Decreased from 134 hours in 2014 Highest monthly and weekday total hours of congestion February, August and September with consistent across entire week Longest congestion duration by time of day 6 pm to 12 am and 12 am to 6 am Distribution of times of congestion 7 
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	134 Hours 8 
	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
	Figure
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	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
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	Highest monthly and weekday total hours of congestion Longest congestion duration by time of day Distribution of times of congestion 
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	Figure
	Figure
	Figure C.4 Comparison of the number of hours of congestion per mile in metro areas, 
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	Figure C.4 Comparison of the number of hours of congestion per mile in metro areas, 
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	2014 
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	Figure C.6 Comparison of the number of hours of congestion per mile in metro areas, 
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	Figure C.6 Comparison of the number of hours of congestion per mile in metro areas, 
	2015 



	Speed Performance for Interstate 80 
	The speed performance along I-80 in the eastbound and westbound directions for 2013, 
	2014 and 2015 is shown in Figures C.7 through C.12. Figure C.7 Interstate 80 EB Speed Percentage in 2013 
	Figure C.8 Interstate 80 WB Speed Percentage in 2013 
	Figure C.8 Interstate 80 WB Speed Percentage in 2013 
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	Figure C.9 Interstate 80 EB Speed Percentage in 2014 
	Figure C.9 Interstate 80 EB Speed Percentage in 2014 
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	Figure C.10 Interstate 80 WB Speed Percentage in 2014 
	Figure C.10 Interstate 80 WB Speed Percentage in 2014 
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	Figure C.11 Interstate 80 EB Speed Percentage in 2015 
	Figure C.11 Interstate 80 EB Speed Percentage in 2015 
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	Figure C.12 Interstate 80 WB Speed Percentage in 2015 
	Figure C.12 Interstate 80 WB Speed Percentage in 2015 
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