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Executive Summary 

In collaboration with the Association of American Railroads’ (AAR) Strategic Research 
Initiatives (SRI) program, the Federal Railroad Administration (FRA) sponsored Transportation 
Technology Center, Inc. (TTCI) to perform research relating to the application of an advanced 
machine vision (MV) technology for the inspection of rail car components. The inspection of the 
components of the railcar truck or bogie are of particular interest in this study. According to FRA 
derailment statistics, failure of truck components was the third-largest mechanical cause of 
derailments after wheels, and axles/bearings, in 2017. This report summarizes the performance 
of an automated truck component inspection system during a 24-month test (i.e., December 
2016–December 2018) in revenue service on the CSX Transportation property at the Hague site 
south of Waycross, GA. 
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1. Introduction 

From December 2016 to December 2018, in collaboration with the Association of American 
Railroads’ (AAR) Strategic Research Initiatives (SRI) program, the Federal Railroad 
Administration (FRA) sponsored research advance the state of machine vision (MV) 
technologies for the railroads. Transportation Technology Center, Inc. (TTCI) worked with KLD 
Labs, Inc. of Hauppauge, NY, and CSX Transportation (CSX) to evaluate and advance the 
performance of the KLD truck component inspection system. This system is a wayside MV 
inspection system that automatically photographs and allows for the evaluation of the 
components of railcar trucks. Inspections include axle spacing measurements, missing bearing 
end cap bolt detection, broken and missing spring detection, and bolster spring height 
measurement. This work was performed to determine the reliability of the system and to promote 
methods of performance advancement and safety where appropriate. 

1.1 Background 
Rail car inspection is mandated by FRA to assure suitability for safe service. For more than a 
century, the means to assure component integrity has been to require trained personnel to 
visually inspect rail cars and assembled trains prior to departure. Advancements in technology 
are providing the opportunity to modernize the inspection process with the potential to make it 
more efficient, more reliable, and ultimately to improve safety. 
Automated rail car inspection technology has progressed rapidly in recent years. The Advanced 
Technology Safety Initiative (ATSI) was launched by North American railroads in 2004. Since 
then, derailments are down substantially largely due to the application of condition and 
performance monitoring technologies. Sensors are used to monitor the condition and 
performance of select components and systems on moving trains. Examples of this include 
Wheel Impact Load Detectors (WILD), Truck Performance Detectors (TPD), Acoustic Bearing 
Detectors (ABD), and other systems that can monitor critical components of the train. Some of 
the technologies rely on cameras and apply the principles of MV. For example, wheel profile 
detector (WPD) and brake shoe monitoring systems demonstrate that vision systems can 
effectively monitor components that have a high level of standardization. 

Application of MV technology to other components of the train is a critical next step in 
advancing the inspection process and thereby advancing railroad safety. Previous FRA testing to 
demonstrate automated inspection of safety appliances revealed that normal variations in rail car 
components (e.g., manufacturer, model, type, etc.) can confound image analysis algorithms. In 
general, inspection algorithms that identify defects require knowing the acceptable baseline 
condition of the components being inspected. The MV systems identify defects and out-of-
specification conditions by comparing features to a known good condition. Unfortunately, the 
commercial vendors that code up the inspection algorithms for evaluating component condition 
are not themselves train inspection experts; consequently, inspection automation has been an 
inefficient process of trial and error. A way to address this shortcoming is to better answer the 
first question of every algorithm developer: what does a defect look like? 

To answer the question, TTCI developed a manual reviewer interface designed to aid in the 
distinction between good and bad components. The manual viewer provides a means for railroad 
experts to view images from the MV system and store their inspection knowledge along with the 
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images. This creates a documented database of images that clearly identify component 
conditions and aid in the distinction between good and defective components. Now, the MV 
system and the manual viewer have been deployed at a revenue service site. Here, the true 
variety of components and conditions can be captured and documented for the benefit of 
improving the automated inspection capability of MV systems. 

1.2 Objectives 
The overarching objective of this research project is to advance MV inspection for the safety and 
efficiency of the railroads. Previous FRA-sponsored research has shown that the complexities of 
revenue service inspection complicate the creation of reliable defect detection algorithms. The 
purpose of this research was to explore a method to accelerate the rate of development of reliable 
defect detection algorithms by evaluating the performance of a MV system for inspecting truck 
components, and continually refining its performance using feedback from the manual viewer 
database. 

1.3 Overall Approach 
This was a two-phased project. The main objective of Phase 1 was to develop specifications and 
to demonstrate the concept for the manual reviewer interface. TTCI established functionality of 
the manual reviewer and confirmed intended operation of the KLD truck component inspection 
system using data from the systems installed at the Facility for Accelerated Service Testing 
(FAST) at the Transportation Technology Center (TTC) in Pueblo, CO. In Phase 2, the truck 
component inspection system was migrated to revenue service. There, the manual data reviewer 
and inspection algorithms were applied to a wide variety of freight rail vehicles. The site is on 
the CSX railroad at the Hague supersite south of Waycross, GA. Such testing applies the existing 
inspection algorithms over a wider variety of traffic and failure types. It also provides a larger 
reference population for algorithm development than is available with the limited test traffic at 
the TTC. 

1.4 Scope 
This is the final report on this research project and it summarizes the performance of the KLD 
truck component inspection system that was tested at the CSX Hague supersite south of 
Waycross, GA. 

1.5 Organization of the Report 
The report is organized according to the progression of work. Section 1 provides the 
introduction. Section 2 gives a summary of calibration and commissioning of the system and 
provides updates on the functions of the system. Section 3 covers the manual viewer and data 
vetting with subsections for both the Hague site and TTC data. Section 4 presents the 
conclusions related to the findings. Appendix A includes additional detailed data. 
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2. Service Reliability of the KLD Truck Component Inspection System 

KLD installed a truck component inspection system in December of 2016. The equipment was 
installed in conjunction with other detectors on the CSX railroad at the Hague site south of 
Waycross, GA. It was commissioned immediately after installation and has been in continuous 
operation since. The following sections describe the operation and reliability of the system 
throughout the test. 

2.1 Installation and Startup 
KLD installed the system at the Hague site on CSX railroad. The truck component inspection 
system is comprised of two subsystems or modules called TruckScan and AxleScan. The two 
modules provide different camera views of the truck components. The TruckScan is centered on 
the spring nest and the components at the center of the side frame. The AxleScan views the ends of 
each axle and the associated components in this area of the truck. Both sides of the truck are 
imaged at the same time. The system as installed at the Hague site is identical to the one at the 
TTC so that algorithm changes can be evaluated at both locations. 

2.2 Commissioning and Calibration 
Image processing requires knowing the physical size and location of elements within the image 
frame in terms of pixels. KLD developed a calibration procedure where precision targets are 
placed at known locations so that pixel mapping to known features can be performed. Figure 1 
and Figure 2 show the calibration target and the resulting image. 

 

Figure 1. Calibration target placed at a known distance and location from the camera 
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Figure 2. Calibration targets as imaged by opposing cameras 

2.3 System Operation 
The KLD truck component inspection system consists of two subsystems, AxleScan and 
TruckScan. The AxleScan system images are centered around the axle center, showing the end 
cap, bearing adapter, ends of the side frames, and wheel. The TruckScan system produces images 
of the central components of the truck, namely the springs, bolster, friction wedges, and side 
frame central casting. Figure 3 shows example images from both systems. 

 

Figure 3. Example images from the AxleScan and TruckScan modules 
Although the system was operational upon installation, there were incidents initially. An over-
voltage event, likely due to a lightning strike, damaged some of the cameras and four cameras 
had to be replaced. About 5 months after installation, a wheel sensor was broken because of track 
maintenance. This caused issues with both modules as axle counting became inaccurate. KLD 
was able to repair the sensors and promptly restore system operation after the repair. 

Also, it took the host railroad time to adjust its network configuration to accommodate the new 
data stream. After initialization of network communication, the system began generating 

• • • • • • • • • • • • • • • • • • 0 • • • • 
• • • .. 0 • • • • • • • • • • • • • • • • • • • • • • • • • ••••••• • • • • • • • ·1 
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unacceptably high numbers of false positive reports. An unexpected result was that these error 
reports were being sent with images and overcrowded the information bandwidth. As a result, 
KLD temporarily suspended sending any reports in the middle of 2017. Because of this, no train 
reports were generated during this time. Later, report sending was resumed without images. 
Images could still be retrieved from the KLD server manually for the manual viewer during this 
time. Other issues that affected uptime reliability are discussed in the next section. 

2.4 Uptime Reliability 
Automated component monitoring requires completely reliable hardware to assure all inspections 
are performed on every train. The system performance requirements were a 99 percent uptime 
reliability. This statistic was evaluated only during the final 5 months of the test, once the system 
had passed through any early stage issues. Table 1 reports the uptime statistics for the 5 months 
from March 2018 through July 2018. 

Table 1. Uptime reliability 

Month 
Hours 
Down 

Hours 
Up 

Total 
Hours % Uptime Comments 

March 0.75 743.25 744 100% 
Internal monitoring software identified an 
issue, KLD fixed, missed two trains 

April 84 636 720 88% 

Hut alternating current (AC) failure on 
April 27, system shutdown to preserve 
equipment 

May 372 372 744 50% 
Hut AC failure continued until AC repaired 
on May 16, 100% thereafter 

June 72 648 720 90% 

Hut over temperature Jun 23–26, system 
auto shutdown until AC replaced on June 
26. 

July 216 528 744 71% 

Uninterruptable power supply (UPS) 
battery replaced - 1 hour of downtime. 
AxleScan inoperable for 9 days due to 
technical error during restart. 

    Average 80%   

The overall average uptime reliability during the 5-month window was 80 percent. The majority 
of the downtime was due to air conditioner failure in the equipment hut. Disregarding the AC 
failure, the system was up 94.1 percent of the time for the entire 5 months. The 45-minute 
window of downtime in March was due to an issue identified by the internal monitoring 
software. KLD responded immediately and returned the system to normal operation within the 
hour. During that short down time, two trains were missed. The 216 hours of downtime in July 
were primarily due to a technical error upon restart. The battery in the UPS needed to be replaced 
and the technician who performed the work did not adequately assure that both modules had 
resumed operation upon restart. The TruckScan module came up and operated reliably. The 
AxleScan module, however, required extra attention that was not afforded at the time of restart. 
Nine days lapsed before the technician was available to restore operation of the AxleScan 
module. So, although the system was functioning partially during the nine days, the uptime 
reliability statistic was penalized because the system was not fully functioning. The rest of the 
downtime was due to failure of the air conditioner in the bungalow. When the AC first failed in 
April, it took several weeks for CSX technicians to service the AC system. During this time, the 



 

7 

KLD system was shut down to prevent heat damage to the control computer and server. Within a 
few weeks of being repaired, the air conditioner failed again. This time, the AC unit was 
replaced and the bungalow maintained proper temperature for the KLD system hardware 
thereafter. No other hardware or system malfunctions were reported during the uptime reliability 
measurement period. Generally, the system performed well, such that with mature maintenance 
and operating practices, it would have met the uptime reliability requirement. 

2.5 Detection Reliability 
Defect detection and measurement reliability is the objective for this project. It ultimately defines 
the reliability of the MV algorithms for detection capability performance. Accurate defect 
detection, with high confidence of finding all defects and low opportunity to falsely identify 
good components as defective, is the output that defines system performance. This algorithm 
output must be reliable if it is to be used as the basis for an alert or alarm that is broadcast to the 
operating railroad. 
Defining and measuring metrics for this statistic can be approached in several ways. A 
comprehensive approach is displayed here, where each individual statistic is calculated. The 
statistics are true positive, true negative, false positive, and false negative as it relates the 
algorithm decision to the true state of the part. 

2.5.1 TruckScan Inspections 
KLD labs identified seven types of spring nest configurations for analytic purposes. The 
Appendix A shows pictures of these types as identified by KLD. For purposes of this section, the 
spring nest configurations will be referred to as Type 1, Type 2, etc., as defined by KLD and 
shown in Appendix A. The spring nest configuration is determined by car type rather than by 
truck type on the car. As such, the trained eye will recognize three basic truck types in the photos 
in Appendix A: swing motion, motion control, and ride control. Yet seven different spring nest 
configurations are identified. This is an example of the complications of varieties of 
configurations. Spring detection algorithms need to recognize a datum point on all truck types 
and still be general enough to accommodate all spring configurations for every truck type. 
Spring Algorithms at the Hague Site 
Table 2 shows the overall detection capability of the spring measurements (i.e., missing spring, 
broken spring, and bolster height) for all seven types identified by KLD as of mid-June 2018. 
This represents the latest version of the spring analysis algorithm. Not every statistic can be 
calculated fully because the exact condition of every car in the population is not known with 
certainty. The manual viewer is used to provide feedback on a subset of the data, but is not 
intended to review the image for every car on every train. The numbers reported for true negative 
(known good parts called “good”) and false positive (known good parts called “defective”) are 
reliable in the case where no defect exists. Accurate indication of false negative (known 
defective part called “good”) and true positive (known defective part called “bad”) cannot be 
verified unless the defect state is known with certainty. Values given are estimates based on 
known defects as observed in the data sample, not necessarily on all defects in the population. 
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Table 2. Detection statistics for seven spring configurations as of June 18, 2018 

 
Overall, the capability to assure that all springs are in place is extremely reliable. There were no 
known missing springs and no alerts that any springs were missing. Based on prior testing at 
TTC, the ability to detect missing springs is high. Also, there were no false alarms for missing 
spring detection. Broken spring detection is not as reliable. The ability to pass broken springs is 
between 90 and 99 percent reliable, but with a 1.5–8.5 percent false positive rate. 

Table 3 shows the progression of detection results over a 6-month period for spring detection on 
Type 1 trucks on CSX. Notice that the capability statistics change as the algorithms were updated 
and that the change was not always an improvement for Type 1 springs, although the same 
algorithm changes applied to other spring group types did show improvement. These data are 

Total No. of Trucks 7019             
  Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 
Total No. of Trucks 1,019 992 1,005 1,049 1,054 888 1,012 
Total No. of Spring Boxes 2,038 1,984 2,010 2,098 2,108 1,776 2,024 
          

Missing Springs 0 0 0 0 0 0   
True positive 0 0 0 0 0 0   

True negative 2,038 1,984 2,010 2,098 2,108 1,776   
False positive 0 0 0 0 0 0   

False negative 0 0 0 0 0 0   
% True positive - - - - - -   

% True negative 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%   
% False positive - - - - - -   

% False negative - - - - - -   
          

Broken Springs 2 0 0 0 0 0   
True positive 1 0 0 0 0 0   

True negative 1,858 1,954 1,876 2,007 2,032 1,627   
False positive 178 30 134 91 76 149   

False negative 1 0 0 0 0 0   
% True positive 0.05% - - - - -   

% True negative 91.17% 98.49% 93.33% 95.66% 96.39% 91.61%   
% False positive 8.73% 1.51% 6.67% 4.34% 3.61% 8.39%   

% False negative 0.05% - - - - -   
          

Bolster Height Difference Error        
Samples annotated 951 962 989 1,018 1,039 875 991 
Samples measured 813 814 726 803 992 764 898 

% Successfully found 85.49% 84.62% 73.41% 78.88% 95.48% 87.31% 90.62% 
Average (mm) 8.29 6.5 17.06 8.73 11.62 8.2 10.21 

Sd (mm) 18.07 15 28.43 17.54 21.2 14.95 17.7 
10th Percentile (mm) 0.28 0.31 0.45 0.35 0.41 0.38 0.44 
25th Percentile (mm) 0.7 0.79 1.18 0.87 1.03 1.06 1.14 
50th Percentile (mm) 1.54 1.66 2.71 1.96 2.15 2.19 2.5 
75th Percentile (mm) 2.71 2.7 5.2 3.29 3.8 3.53 4.07 
90th Percentile (mm) 3.88 3.59 9.15 4.57 5.78 4.74 5.47 
95th Percentile (mm) 4.88 4.08 11.69 5.39 7.31 5.42 6.54 
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available in Appendix A. As KLD updated algorithms, the original data set was reprocessed with 
the new algorithm to determine how the new algorithm would affect detection. 

Table 3. Detection progression for Type 1 springs at Hague from January to June 2018 

 
Spring Algorithms at the TTC Site 
The same spring algorithms were applied to the data from the detector at the TTC. Only Type 1 
springs are in the population at the TTC. Also, the data set is statistically different than the data 
set from Hague since measurements are made on the same 105 train cars multiple times during 
the nightly operations at FAST. Table 4 shows the trend in spring detection performance 
between April and June of 2018. In this case, the performance for Type 1 springs improved 

  Type 1 
Report Date 1/17/2018 4/24/2018 6/18/2018 
Total Number of Trucks 1019 1019 1019 
Total Number of Spring Boxes 2038 2038 2038 
     

Missing Springs 0 0 0 
True Positive 0 0 0 

True Negative 2038 2038 2038 
False Positive 0 0 0 

False Negative 0 0 0 
% True Positive - - - 

% True Negative 100.00% 100.00% 100.00% 
% False positive - - - 

% False negative - - - 
      

Broken Springs 2 2 2 
True Positive 1 1 1 

True Negative 1847 1871 1858 
False Positive 189 165 178 

False Negative 1 1 1 
% True Positive 0.05% 0.05% 0.05% 

% True Negative 90.63% 91.81% 91.17% 
% False positive 9.27% 8.10% 8.73% 

% False negative 0.05% 0.05% 0.05% 
      

Bolster Height Difference Error     
Samples annotated 951 951 951 
Samples measured 400 813 813 

% Successfully found 42.06% 85.49% 85.49% 
Average (mm) 37.69 8.29 8.29 

Sd (mm) 86.08 18.07 18.07 
10th Percentile (mm) 0.29 0.28 0.28 
25th Percentile (mm) 0.73 0.7 0.7 
50th Percentile (mm) 1.66 1.54 1.54 
75th Percentile (mm) 2.89 2.71 2.71 
90th Percentile (mm) 10.82 3.88 3.88 
95th Percentile (mm) 24.07 4.88 4.88 
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with the latest version of the algorithms, contrary to the performance seen at the Hague site 
with identical algorithms. 

Table 4. Detection progression for Type 1 springs at the TTC from April to June 2018 

 

2.5.2 AxleScan Inspections 
The AxleScan module looks at the items visible directly at the ends of the axles. Axle end cap 
bolt spacing is measured directly. Given known camera distances, this module can accurately 
determine axle spacing based on image position. Both of these measurements were made reliably 

  Type 1 at the TTC 
Report Date  4/24/2018 6/18/2018 
Total Number of Trucks  1098 1098 
Total Number of Spring Boxes  2196 2196 
      
Missing Springs  0 0 

True Positive  0 0 
True Negative  2196 2196 
False Positive  0 0 

False Negative  0 0 
% True Positive  - - 

% True Negative  100.00% 100.00% 
% False positive  - - 

% False negative  - - 
      
Broken Springs  0 0 

True Positive  0 0 
True Negative  2026 2029 
False Positive  170 167 

False Negative  0 0 
% True Positive  0.00% 0.00% 

% True Negative  92.26% 92.40% 
% False positive  7.74% 7.60% 

% False negative  0.00% 0.00% 
      
Bolster Height Difference Error     

Samples annotated  1074 1074 
Samples measured  1043 1043 

% Successfully found  97.11% 97.11% 
Average (mm)  6.12 6.12 

Sd (mm)  9.26 9.26 
10th Percentile (mm)  0.31 0.31 
25th Percentile (mm)  0.84 0.84 
50th Percentile (mm)  1.91 1.91 
75th Percentile (mm)  3.14 3.14 
90th Percentile (mm)  4.11 4.11 
95th Percentile (mm)   4.59 4.59 
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by the system. Table 5 offers a summary of the result that includes the summary statistics for 
1,176 axle measurements. 

Table 5. AxleScan results 

Total Number of Axles 1,176   
Axle Spacing Max Diff (mm) Percent 
  1 66.60% 
  2 85.70% 
  5 97.30% 
     

  Did not measure 0.03% 
     

Missing Bolt True Positive 100.00% 
  False Positive 0.00% 
     
  True Negative 0.00% 
  False Negative 0.00% 

The axle spacing measurement was performed successfully on all but three of the axles. On these 
three axles, the algorithm failed to identify the center of the axle end cap and thus could not 
determine the axle spacing. Overall, the measurement data from both TruckScan and AxleScan is 
captured with more than 97 percent reliability. 
The measurement data is available for continued analysis. It is presumed that outliers would be 
the most interesting, since these would represent the cases where the axles are not tracking as 
expected. An attempt was made to correlate this measurement with axle spacing data from a 
nearby truck performance detector. The comparison was not conclusive for several reasons. First, 
the systems were some distance apart, and axle spacing would be expected to vary over travel 
distance, and notwithstanding that two single point measurements on an oscillating target will 
not provide an accurate correlation. Second, measurement and resolution of the output from the 
systems was not the same. The TPD produced angle of attack measurements. The KLD system 
measured axle spacing. There may be a correlation between the values, but it was not a goal of 
this project to discover that correlation. Instead, this project confirms that reliable data is 
available from the KLD truck component inspection system to perform such analyses. 

2.6 System Alerts and Broadcast Methods 
This work stopped short of identifying methods to broadcast alerts and alarms. This requires an 
additional level of infrastructure that is to be determined by the host railroad. This step was not 
ignored, as it was not under the scope of this research effort. The AAR and the railroads, through 
consortium agreements, have committees that meet regularly to handle the dissemination of data 
and alert messages throughout the network. The Asset Health Strategy Committee (AHSC) and 
the Equipment Health Monitoring Committee (EHMC) are well established groups that meet 
regularly to determine inspection formats, data quality, alert levels, and data sharing agreements 
for all the railroads. Technologies that are governed under these committees include performance 
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monitoring and condition monitoring systems such as WILD, TPD, Truck Hunting Detector 
(THD), and others. MV is one of the technologies that also is included under the authority of 
these committees. 
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3. Data Vetting with the Manual Reviewer 

3.1 Data Evaluation 
TTCI engineers evaluated the image data generated daily by KLD monitoring systems at the 
Hague site and in Section 1 at FAST. They also evaluated the real-time performance of the 
manual viewer after it was upgraded and optimized to seamlessly work with both systems 
(Figure 4). 
Several changes were made to the viewer server to accommodate needed changes at the Hague 
site server regarding the optimal transfer of American Standard Code for Information 
Interchange (ASCII) reports and image data. Also, to properly manage and adjust the daily data 
flow and disk space needs, data growth was monitored and optimized weekly. Long- and short-
term archiving procedures integrated into the viewer also were thoroughly tested and adjusted. 
For several months, archiving procedure implementation was monitored so as to ensure that only 
the most recent 3 months’ worth of data records were kept for immediate access and all data 
records older than 3 months were securely archived. Archived data remained accessible and 
could be queried if needed. For the long-term archiving, data records older than a year were 
permanently deleted as automatically scheduled except for the data records that were vetted and 
documented. 

 

Figure 4. MV manual viewer with FAST and the Hague site monitoring systems 
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3.2 Algorithm Performance and Data Evaluation 
The FAST test bed at the TTC provided an excellent environment for the initial KLD truck 
inspection system development and deployment. But the uniform truck types on the hopper cars at 
FAST are not representative of all truck types encountered in revenue service at the Hague site. 
It was anticipated that the existing KLD algorithms developed at FAST would not perform as 
accurately when deployed at the Hague site. Indeed, the algorithms needed refinement as new 
truck configurations were encountered in revenue service. Several months were needed to 
capture a new collection of images from the revenue service truck types. 

Then algorithms were retrained and enhanced. Using the web-based manual viewer, TTCI 
engineers provided KLD with images. KLD continued the process of improving the algorithm 
robustness and the system overall performance. The following are select examples of data 
records from the Hague site that were vetted and documented. 

Figure 5 shows an example of an image with an overexposure issue from the AxleScan module. 
Several similar instances were identified at the Hague site that KLD was notified about. KLD 
subsequently made changes to correct the exposure. 

 

Figure 5. Over-exposed, washed out image 
Early on, when the KLD system was deployed, it was observed that the AxleScan algorithm 
incorrectly identified several instances of missing wheel bolts as vehicles rolled by at track 
speed. Figure 6 shows a bolt obstructed by sill step, which was flagged as missing. Figure 7 
shows an instance where no obstruction was present yet the wheel was still flagged as having a 
missing bolt. In this case, there was insufficient contrast to detect the bolt. 

Vit!-iicle A.El ID: 0000000000~~11 E._.,_. I 
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Figure 6. Obstructed bolt incorrectly flagged as missing 

 

Figure 7. Image example incorrectly identified as missing bolt (all bolts present) 
After algorithm improvements were made, the AxleScan module performance became more 
accurate. Figure 8 through Figure 11 show different images of bolts being either fully or partly 
obstructed yet none of them was incorrectly identified as missing. 
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Figure 8. Bolt mostly obstructed yet not flagged as missing 

 

Figure 9. Bolt partly obstructed by side sill and not flagged as missing  
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Figure 10. Bolt fully obstructed by sill step 

 

Figure 11. Bolt fully obstructed by side sill 
Figure 12 through Figure 14 show examples of bolts in various positions obstructed by 
handbrake links or handbrake link and chain (Figure 13). These configurations were never 
encountered at FAST yet the algorithm performed accurately and no bolt was flagged as missing. 
Figure 15 shows a typical email summary with the vehicle header information and expert 
reviewer comment regarding the truck configuration in Figure 14. 

V.hic .. A.Et ID: ., -

I' 
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Figure 12. Bolt obstructed by handbrake link 

 

Figure 13. Bolt partly obstructed by handbrake chain and link 

Velak.kAEI ID: 
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Figure 14. Bolt obstructed by handbrake link 

 

Figure 15. Exception summary email 

Date:6/11/2018 1:08:18 AM 
Vehicle ID 
Axle Endcap Defects: 2 
Bearing Adaptor Defects: 
Side Frame Defects : 
Track Side: 1 
Train Axle Number: 122 
Car Axle Number: 2 
Car Side: L 
Axle Spacing: 1589.3 
Axle Endcap Data Quality: N/A 
Axle Endcap Measured: 6 
Bearing Adaptor Height: 
Bearing Adaptor Measured: O 
Bearing Adaptor Data Quality: N/ A 
Side Frame Measured: O 
Side Frame Data Quality: N/A 
Comments: Bolt obstructed, but correct diagnosis. 
VerifiedStatus: 1 
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Figure 16 and Figure 17 are examples from the TruckScan module showing, respectively, 
instances of broken spring and a spring out of nest. Those two instances were not automatically 
identified. They were detected through manual data reviewing of the raw images and CSX was 
promptly notified. 

 

Figure 16. Broken spring (circled in red) 

 

Figure 17. Spring out of nest (circled in red) 

........................... _ 
------.......... --.... ....._ ......... __ 
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3.3 Manual Review of the FAST Data 
While most of the vetting efforts were directed at the revenue service data generated from the 
Hague site, some of the FAST data findings also were examined, documented and, when 
possible, verified in the field. 
Figure 18 shows an interesting example of a shattered rim wheel that was manually identified by 
examining the raw images generated onsite at the TTC. Figure 19 shows a zoomed-in image of 
the defect. Since this event occurred on site, it was possible to locate the defective wheel and 
verify the event validity. Figure 20 shows the actual wheel with the shattered rim after it had 
been removed. It should be noted that there is no algorithm yet to automatically identify such 
defects real-time. This defect was identified and vetted using the manual viewer. 

 

Figure 18. Shattered rim event (circled in red) 
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Figure 19. FAST wheel with shattered rim (circled in red) 

 

Figure 20. FAST wheel with shattered rim verified in field 
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4. Conclusion 

The KLD truck component inspection system at the Hague site was installed, commissioned, and 
operated for 24 months of evaluation (i.e., from December 2016 to December 2018). System 
reliability was measured in terms of uptime and detection performance. Although the uptime 
reliability target (99%) was not met (80% actual), it was clear that with prescribed maintenance 
and operating practice, the system likely would meet the reliability target. 
A manual viewer was put in place to allow railroad experts to review image data and record their 
inspection knowledge in a database. This knowledge was used by KLD to refine its algorithms 
and algorithm performance was seen to change as the work progressed. Not all changes were 
beneficial to all detections. Final detection statistics are reported for the inspections that were 
performed. Measurement performance (consistently above 97%) was more reliable than 
detection performance. In general, this work suggests that MV is reliable and well-suited to make 
precise measurements of select components on the railcar. 
Application of the learnings from this work should contribute to safety risk reduction as the 
efficacy of MV inspection improves. 
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5. Appendix A: Additional Data 

5.1 Spring Nest Types 

 

Figure A1. Type 1 motion control 
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Figure A2. Type 2 ride control 

Type 2 Ride Control 

Type 3 Swing Motion 
 

Figure A3. Type 3 swing motion 
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Swing Motion 

Swing Motion 

Figure A4. Type 4 swing motion 

 

Figure A5. Type 5 swing motion 
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Figure A6. Type 6 Buckeye XCR 

Buckeye XCR 

Type 7 Ride Control 
 

Figure A7. Type 7 ride control  
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5.2 TruckScan – Spring Algorithm Performance Trend by Truck Type at Hague 

Table A1. Spring algorithm performance trend – Type 1 

 
  

            

  Type 1   
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 1,019 1,019 1,019   
  Total Number of Spring Boxes 2,038 2,038 2,038   
          
  Missing Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 2,038 2,038 2,038   
  False Positive 0 0 0   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 100.00% 100.00% 100.00%   
  % False Positive - - -   
  % False Negative - - -   
          
  Broken Springs 2 2 2   
  True Positive 1 1 1   
  True Negative 1,847 1,871 1,858   
  False Positive 189 165 178   
  False Negative 1 1 1   
  % True Positive 0.05% 0.05% 0.05%   
  % True Negative 90.63% 91.81% 91.17%   
  % False Positive 9.27% 8.10% 8.73%   
  % False Negative 0.05% 0.05% 0.05%   
          
  Bolster Height Difference Error       
  Samples annotated 951 951 951   
  Samples measured 400 813 813   
  % Successfully found 42.06% 85.49% 85.49%   
  Average (mm) 37.69 8.29 8.29   
  Sd (mm) 86.08 18.07 18.07   
  10th Percentile (mm) 0.29 0.28 0.28   
  25th Percentile (mm) 0.73 0.7 0.7   
  50th Percentile (mm) 1.66 1.54 1.54   
  75th Percentile (mm) 2.89 2.71 2.71   
  90th Percentile (mm) 10.82 3.88 3.88   
  95th Percentile (mm) 24.07 4.88 4.88   
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Table A2. Spring algorithm performance trend – Type 2 

  

            

  Type 2   I I 
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 992 992 992   
  Total Number of Spring Boxes 1,984 1,984 1,984   
        
  Missing Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 1,984 1,984 1,984   
  False Positive 0 0 0   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 100.00% 100.00% 100.00%   
  % False Positive - - -   
  % False Negative - - -   
        
  Broken Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 1,837 1,867 1,954   
  False Positive 147 117 30   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 92.59% 94.10% 98.49%   
  % False Positive 7.41% 5.90% 1.51%   
  % False Negative - - -   
        
  Bolster Height Difference Error      
  Samples annotated 962 962 962   
  Samples measured 112 814 814   
  % Successfully found 11.64% 84.62% 84.62%   
  Average (mm) 61.48 6.5 6.5   
  Sd (mm) 111.6 15 15   
  10th Percentile (mm) 0.62 0.31 0.31   
  25th Percentile (mm) 1.15 0.79 0.79   
  50th Percentile (mm) 2.11 1.66 1.66   
  75th Percentile (mm) 3.55 2.7 2.7   
  90th Percentile (mm) 33.15 3.59 3.59   
  95th Percentile (mm) 47.61 4.08 4.08   
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Table A3. Spring algorithm performance trend – Type 3 

  

            

  Type 3   I I 
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 1,005 1,005 1,005   
  Total Number of Spring Boxes 2,010 2,010 2,010   
        
  Missing Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 2,010 2,010 2,010   
  False Positive 0 0 0   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 100.00% 100.00% 100.00%   
  % False Positive - - -   
  % False Negative - - -   
        
  Broken Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 1,853 1,862 1,876   
  False Positive 157 148 134   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 92.19% 92.64% 93.33%   
  % False Positive 7.81% 7.36% 6.67%   
  % False Negative - - -   
        
  Bolster Height Difference Error      
  Samples annotated 989 989 989   
  Samples measured 80 726 726   
  % Successfully found 8.09% 73.41% 73.41%   
  Average (mm) 56.81 17.06 17.06   
  Sd (mm) 102.35 28.43 28.43   
  10th Percentile (mm) 0.49 0.45 0.45   
  25th Percentile (mm) 0.93 1.18 1.18   
  50th Percentile (mm) 1.83 2.71 2.71   
  75th Percentile (mm) 4.42 5.2 5.2   
  90th Percentile (mm) 31.72 9.15 9.15   
  95th Percentile (mm) 44.41 11.69 11.69   
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Table A4. Spring algorithm performance trend – Type 4 

  

            

  Type 4   I I 
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 1,049 1,049 1,049   
  Total Number of Spring Boxes 2,098 2,098 2,098   
        
  Missing Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 2,098 2,098 2,098   
  False Positive 0 0 0   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 100.00% 100.00% 100.00%   
  % False Positive - - -   
  % False Negative - - -   
        
  Broken Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 1,945 1,955 2,007   
  False Positive 153 143 91   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 92.71% 93.18% 95.66%   
  % False Positive 7.29% 6.82% 4.34%   
  % False Negative - - -   
        
  Bolster Height Difference Error      
  Samples annotated 1,018 1,018 1,018   
  Samples measured 73 803 803   
  % Successfully found 7.17% 78.88% 78.88%   
  Average (mm) 36.36 8.73 8.73   
  Sd (mm) 77.69 17.54 17.54   
  10th Percentile (mm) 0.84 0.35 0.35   
  25th Percentile (mm) 1.73 0.87 0.87   
  50th Percentile (mm) 3.15 1.96 1.96   
  75th Percentile (mm) 4.88 3.29 3.29   
  90th Percentile (mm) 10.63 4.57 4.57   
  95th Percentile (mm) 22.41 5.39 5.39   
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Table A5. Spring algorithm performance trend – Type 5 

  

            

  Type 5   I I 
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 1,054 1,054 1,054   
  Total Number of Spring Boxes 2,108 2,108 2,108   
        
  Missing Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 2,108 2,108 2,108   
  False Positive 0 0 0   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 100.00% 100.00% 100.00%   
  % False Positive - - -   
  % False Negative - - -   
        
  Broken Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 2,023 2,032 2,032   
  False Positive 85 76 76   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 95.97% 96.39% 96.39%   
  % False Positive 4.03% 3.61% 3.61%   
  % False Negative - - -   
        
  Bolster Height Difference Error      
  Samples annotated 1039 1039 1039   
  Samples measured 111 992 992   
  % Successfully found 10.68% 95.48% 95.48%   
  Average (mm) 47.87 11.62 11.62   
  Sd (mm) 87.29 21.2 21.2   
  10th Percentile (mm) 0.3 0.41 0.41   
  25th Percentile (mm) 1.04 1.03 1.03   
  50th Percentile (mm) 2.31 2.15 2.15   
  75th Percentile (mm) 4.73 3.8 3.8   
  90th Percentile (mm) 24.17 5.78 5.78   
  95th Percentile (mm) 36.32 7.31 7.31   
            

      
 



 

33 

Table A6. Spring algorithm performance trend – Type 6 

   

            

  Type 6   I I 
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 888 888 888   
  Total Number of Spring Boxes 1,776 1,776 1,776   
        
  Missing Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 1,776 1,776 1,776   
  False Positive 0 0 0   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 100.00% 100.00% 100.00%   
  % False Positive - - -   
  % False Negative - - -   
        
  Broken Springs 0 0 0   
  True Positive 0 0 0   
  True Negative 1,620 1,614 1,627   
  False Positive 156 162 149   
  False Negative 0 0 0   
  % True Positive - - -   
  % True Negative 91.22% 90.88% 91.61%   
  % False Positive 8.78% 9.12% 8.39%   
  % False Negative - - -   
        
  Bolster Height Difference Error      
  Samples annotated 875 875 875   
  Samples measured 40 764 764   
  % Successfully found 4.57% 87.31% 87.31%   
  Average (mm) 6.72 8.2 8.2   
  Sd (mm) 4.74 14.95 14.95   
  10th Percentile (mm) 0.97 0.38 0.38   
  25th Percentile (mm) 1.71 1.06 1.06   
  50th Percentile (mm) 3.15 2.19 2.19   
  75th Percentile (mm) 4.46 3.53 3.53   
  90th Percentile (mm) 5.52 4.74 4.74   
  95th Percentile (mm) 6.1 5.42 5.42   
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Table A7. Spring algorithm performance trend – Type 7 

  

            

  Type 7   I I 
  Report Date 1/17/2018 4/24/2018 6/18/2018   
  Total Number of Trucks 1,012 1,012 1,012   
  Total Number of Spring Boxes 2,024 2,024 2,024   
        
  Missing Springs      
  True Positive      
  True Negative      
  False Positive      
  False Negative      
  % True Positive      
  % True Negative      
  % False Positive      
  % False Negative      
        
  Broken Springs      
  True Positive      
  True Negative      
  False Positive      
  False Negative      
  % True Positive      
  % True Negative      
  % False Positive      
  % False Negative -     
        
  Bolster Height Difference Error      
  Samples annotated 991 991 991   
  Samples measured 21 898 898   
  % Successfully found 2.12% 90.62% 90.62%   
  Average (mm) 47 10.21 10.21   
  Sd (mm) 95.44 17.7 17.7   
  10th Percentile (mm) 0.29 0.44 0.44   
  25th Percentile (mm) 0.6 1.14 1.14   
  50th Percentile (mm) 1.16 2.5 2.5   
  75th Percentile (mm) 2.7 4.07 4.07   
  90th Percentile (mm) 9.21 5.47 5.47   
  95th Percentile (mm) 21.37 6.54 6.54   
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Abbreviations and Acronyms 

ACRONYMS EXPLANATION 

ABD Acoustic Bearing Detectors 
ATSI Advanced Technology Safety Initiative 
AC Alternating Current 
ASCII American Standard Code for Information Interchange 
AHSC Asset Health Strategy Committee 
AAR Association of American Railroads 
CSX CSX Transportation 
EHMC Equipment Health Monitoring Committee 
FAST Facility for Accelerated Service Testing 
FRA Federal Railroad Administration 
MV Machine Vision 
SRI Strategic Research Initiative 
TTC Transportation Technology Center 
TTCI Transportation Technology Center, Inc. 
THD Truck Hunting Detector 
TPD Truck Performance Detectors 
WILD Wheel Impact Load Detectors 
UPS Uninterruptable Power Supply 
WPD Wheel Profile Detector 
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