

December 2019

Report No. 19-010

Charles D. Baker
Governor
Karyn E. Polito
Lieutenant Governor
Stephanie Pollack
MassDOT Secretary & CEO

The Application of Unmanned Aerial Systems In Surface Transportation - Volume II-F: Drone Cyber Security: Assurance Methods and Standards

Principal Investigator
Dr. Lance Fiondella
University of Massachusetts Dartmouth

Technical Report Document Page

1. Report No.	2. Government	Accession	No.	Recipie	nt's Catalog No.			
19-010	n/a			n/a				
4. Title and Subtitle				5. Report Date				
The Application of Unmanned Aer		Decembe						
Transportation – Volume II-F:Dro								
Methods and Standards	surance		ing Organization Co	_i de				
		19-010						
7. Author(s)				8. Performi	ng Organization Rep	oort No.		
Bentolhoda Jafary ¹ , Saikath Bhatta								
Shuai Yuan ² , Jingchuan Zhou ² , Lin	na Wu², Poorn	ima Mar	njunath²,					
Tricia Chigan ² , Lance Fiondella ¹								
9. Performing Organization Name and Add					nit No. (TRAIS)			
1. University of Massachusetts, Da				n/a				
285 Old Westport Road, Dartmout	h, MA 02747			11. Contrac	ct or Grant No.			
2. University of Massachusetts, Lo	well,							
220 Pawtucket St, Lowell, MA 01								
12. Sponsoring Agency Name and Address					Report and Period	Covered		
Massachusetts Department of Tran	sportation			Final Rep				
Office of Transportation Planning				April 20	18- December 20	019		
Ten Park Plaza, Suite 4150, Boston	n, MA 02116			11 Casasa	win a Amana Cada			
				14. Sponso	oring Agency Code			
				,				
1-0				n/a				
15. Supplementary Notes Project Champion – Jeffrey DeCar	le MessDOT	Aaronas	itias Divisian					
Project Champion – Jerney DeCar	io, massido i	Aeronat	itics Division					
16. Abstract								
Unmanned Aerial Systems (UAS)								
provide a range of government and	l private servi	ces. UAS	are cyber-ph	ysical sys	stems and will th	nerefore be		
subject to cyberattacks. Hardware,	software, con	nmunicat	ions and data	must be	protected. To pro	omote		
cyber risk management, this study	examined pas	t researc	h and standar	ds relevar	nt to UAS securi	ty. While		
many of the potential security vuln	erabilities hav	e been d	ocumented, c	yber risk	management sta	ındards		
stop short of quantitative methods								
for cyber risk assessment adapted								
management framework that can c	•	,			•			
and defensive countermeasures, th								
through a countermeasure allocation								
			* *		•			
relative cost and effectiveness of in	inprementing a	i subset (or available co	bumerme	isures in order to	reduce		
risk. 17. Key Word			18. Distribution	Ctotomont				
UAS, cybersecurity, risk managem	unrestricted	Statement						
6715, cybersecurity, risk managen	umestreteu							
19. Security Classif. (of this report)			(of this page)		21. No. of	22. Price		
unclassified	unclassi	tied			Pages 76	n/a		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

The Application of Unmanned Aerial Systems In Surface Transportation – Volume II-F:Drone Cyber Security: Assurance Methods and Standards

Prepared By:

<u>Principal Investigator</u> **Lance Fiondella, Ph.D.**

Other Contributors

Bentolhoda Jafary, Ph.D.
Saikath Bhattacharya, Ph.D.
Maskura Nafreen, Ph.D.
Shuai Yuan, Ph.D.
University of Massachusetts Dartmouth

<u>Co-Principal Investigator</u> **Tricia Chigan, Ph.D.**

Other Contributors
Jingchuan Zhou, M.S.
Lina Wu, M.S.
Poornima Manjunath, M.S.
University of Massachusetts Lowell

Prepared For:
Massachusetts Department of Transportation
Office of Transportation Planning
Ten Park Plaza, Suite 4150
Boston, MA 02116

December 2019

Acknowledgments

This study was undertaken as part of the Massachusetts Department of Transportation Research Program with funding from the Federal Highway Administration State Planning and Research funds. The authors are solely responsible for the accuracy of the facts and data, the validity of the study, and the views presented herein.

The Project Team would like to acknowledge the efforts of Reed Porada, Scott Uebelhart, and other MassDOT officials who shared their technical expertise and guidance throughout the project. The University of Massachusetts Transportation Center staff was also critical to the success of this project.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Massachusetts Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Executive Summary

This study, Drone Cyber Security: Assurance Methods and Standards, was undertaken as part of the Massachusetts Department of Transportation (MassDOT) Research Program. This program is funded with Federal Highway Administration (FHWA) State Planning and Research (SPR) funds. Through this program, applied research is conducted on topics of importance to the Commonwealth of Massachusetts transportation agencies.

Commercial and recreational Unmanned Aerial Systems (UAS) have gained popularity in a wide variety of applications and are anticipated to expand use throughout civilian airspace. Potential applications include but are not limited to panoramic photography, three-dimensional surveying, transportation infrastructure monitoring, surveillance, and damage inspection, search and rescue, agricultural services, and scientific research. UAS are a form of cyberphysical system that are composed of both hardware and software elements and are therefore susceptible to a variety of attacks that could compromise their security and privacy as well as the reliability and safety of individuals and assets in the environments they operate. A risk management strategy that addresses how UAS can be integrated in to our national airspace must consider these technical risks in regulatory policies and procedures. To properly define the impact of cybersecurity on mission risk, it is necessary to assess preflight, inflight, and postflight operations. This includes the selection of a UAS and its payload as well as its configuration, including the mission profile, conduct of mission, potential data acquisition and transmission as well as post processing of data, storage, and reporting. Thus, UAS mission security must consider diverse threats such as attacks on hardware that is compromised by design, software that is compromised intentionally or due to a poor design, websites for mission configuration, mission laptop, wireless communication, and networks and data storage facilities. Formal risk models are needed to quantify the nature and severity of consequences, so that mitigation strategies can be identified, compared, implemented, and validated.

Table of Contents

Technical Report Document Page	i
Acknowledgments	V
Disclaimer	V
Executive Summary	vii
Table of Contents	
List of Tables	xi
List of Figures	
List of Acronyms	
1.0 Introduction	
1.1 Scope of Study	
1.2 Findings	
1.3 Recommendations	
2.0 Representative MassDOT UAS Mission and Cybersecurity Risk	5
2.1 Technical Decomposition of UAS Mission for Risks Identification	6
3.0 Risk Assessment and Mitigation	9
3.1 Cyber Risk Enumeration Example	
3.1.1 Risk Categories	
3.1.2 Risk Assessment Example	
3.1.3 Cyber Risk Stoplight Charts	
3.2 Countermeasure Portfolio Selection Problem	
3.3 Countermeasure selection Illustration	
3.3.1 Cost of Implementing Countermeasures	
4.0 Standards	
4.1 Aerial Systems Safety	
4.1.1 Safety: Department of Defense Standard Practice System Safety 882E	19
4.1.2 Airborne Systems: DO-178C Software Considerations in Airborne Systems and	• •
Equipment Certification	
4.2 UAS Navigation and Communication	
4.2.1 Navigation: RTCA/DO236B Minimum Aviation System Performance Standards	20
4.2.2 Communication: IEEE 1609 - Family of Standards for Wireless Access in Vehicular Environments (WAVE)	21
4.3 Cyber Test and Evaluation and Risk Management	
4.3.1 Cyber Test & Evaluation: Department of Defense Cyber Test and Evaluation Guideboo	
Version 2.0	
4.3.2 Cyber Risk Management: National Institute of Standards and Technology Risk	
Management Framework (RMF)	22
5.0 References	23
6.0 Appendices	
Appendix A: Additional Risk Evaluation Metrics	
Appendix B: Risks	
Appendix C: Attacks	
Appendix D: Countermeasures	
Appendix E: Functional Decomposition and Data-flow	
Appendix F: Attacks Categorized According to Mission Stage and Category	50

List of Tables

Table 3.1: Risk evaluation metrics for UASs	9
Table 3.2: Risk ID and name	11
Table 3.3: "Fly away" cyber risk evaluation	12
Table 3.4: Cyber risk assessment matrix	
Table 3.5: Interpretation of cyber risk assessment matrix	13
Table 3.6: Various measures for attack and countermeasure	16
Table 3.7: Effective risk to cost ratio for countermeasure impact	16
Table 3.8: Iterations of greedy algorithm for countermeasure selection	17
Table A.1: Graphical cyber risk assessment template	26
Table B.1: Fly away	30
Table B.2: Loss of GPS	31
Table B.3: Loss of Data Link	32
Table B.4: Crash	
Table B.5: Autopilot Software Error/Fail	35
Table B.6: GCS Failure	36
Table C.1: List of attack mechanisms	37
Table D.1: Countermeasures	39
Table D.2: Mitigation effectiveness notations	39
Table E.1: Functional modules and potential attacks on Navigation	43
Table E.2: Functional modules and potential attacks on data collection	45
Table E.3: Functional modules and potential attacks on communication	47
Table E.4: Flight control	49
Table F.1: Preflight software attacks	51
Table F.2: Preflight hardware attacks	52
Table F.3: Inflight software attacks	
Table F.4: Inflight hardware attacks	54
Table F.5: Inflight communications attacks	55
Table F.6: Inflight physical security attacks	59

List of Figures

Figure 2.1: An example of MassDOT mission	5
Figure 2.2: Technical decomposition UAS mission for Risk Identification	7
Figure 3.1: Attack risk model of UASs	9
Figure 3.2: Graphical cyber risk evaluation of "Fly away"	10
Figure 3.3: Graphical representation of countermeasure portfolio selection	15
Figure 3.4 Fly away risk attack countermeasure dependencies	15
Figure 3.5: Risk reduction Pareto front	17
Figure A.1: Graphical cyber risk assessment template	27
Figure E.1: UAS Functional Modules and Data-flow	42
Figure E.2: Functional modules and potential attacks on data collection	44
Figure E.3: Communication module	46
Figure E.4: Functional modules and potential attacks on flight control	48

List of Acronyms

Acronym	Expansion
ANSI	American National standard Institute
CAPEC	Common Attack Pattern Enumeration and Classification
COTS	Commercial-off-the-shelf
FAA	Federal Aviation Administration
FHWA	Federal Highway Administration
MassDOT	Massachusetts Department of Transportation
SPR	State Planning and Research
UAS	Unmanned aerial systems
UAV	Unmanned aerial vehicle

1.0 Introduction

Commercial and scientific entities are aggressively exploring a variety of Unmanned Aerial System (UAS) applications that would occupy our national airspace, requiring government provide regulatory guidance to protect public and private property as well as to ensure the safety and privacy of individuals. As a form of cyber-physical system, UAS and their supporting computational infrastructure are susceptible to cyberattacks on their hardware, software, communications, and data. Technical gaps and uncertainty have a cascading effect on the clarity and completeness of policy. Cyber risk management can identify threats and quantify their potential impact in the context of an organizations mission and business processes in order to systematically allocate limited resources to reduce the probability and consequences of cyberattacks. In the absence of comprehensive standards, such high-level risk assessment and proactive mitigation planning can inform technology evaluation practices for buy, build, configuration, and maintenance decisions as well as routine test and evaluation procedures intended to inspire confidence in the security of a system or process. Quantitative risk assessment can also support budget justifications for additional work where remediation is most needed.

1.1 Scope of Study

This study focused on technical risks to UAS missions that may be performed by MassDOT or its contractors, but is also relevant to UAS operating within MA airspace and can therefore inform broader regulatory discussion on cyber risk management. A MassDOT UAS mission was attended by UMass researchers to better understand the problem context and best serve MassDOT needs. Primary technical risks considered include UAS hardware, software, and communication as they contribute to functional capabilities employed during missions. Functional decomposition was conducted to identify common attacks and paths within primary UAS modules, including navigation, data collection, communication, and flight control. Moreover, attacks were categorized according to mission stage, including preflight, inflight, and postflight and mapped to the MITRE Common Attack Pattern Enumeration and Classification (CAPEC), a comprehensive dictionary of known patterns of attack employed by adversaries to exploit known weaknesses in cyber-enabled capabilities. Relevant standards were reviewed, including aerial systems safety, navigation and communication, and cyber test and evaluation/risk management. Literature surveyed concentrated on UAS testing, risk modeling, and UAS architectures. A stop light chart method for cyber risk assessment was adapted from the safety domain. The quantitative risk management framework considers attacks, their likelihood and impact, and alternative deterrent and defensive countermeasures. To compare alternative mitigation strategies, a countermeasure allocation problem has been formulated. A high-level discussion places selected UAS commercial-off-the-shelf (COTS) technologies employed by MassDOT in the context of the proposed quantitative risk management framework.

1.2 Findings

Risks can be introduced at every stage of the mission and business process. Inflight risks are commonly the focus of attention, due to safety concerns, but pre and post flight risks are equally if not more important. Preflight risks include the acquisition, assembly and configuration of the UAS hardware and software as well as multiple web-based applications that pose both security and privacy threats. Post flight risks include data processing and related storage infrastructure that threaten privacy. The business process helps define the mission process. Therefore, business processes can serve as a gatekeeper to mitigate technical risk before it is introduced. Standards are necessary but not sufficient. Specifically, domain specific standards often fail to recognize the shift toward software-enabled capabilities or prominently emphasize corresponding cybersecurity risks introduced by implementing such functionality in software. As a result, these standards regularly fall short of offering references to quantitative procedures that can enable desired decision support capabilities such as design for security and cyber risk mitigation. We identified the need for simple quantitative procedures to assess cyber risk, compare the effectiveness of alternative countermeasures, and communicate related findings graphically to MassDOT who must also consider the broader business context.

1.3 Recommendations

The primary recommendations are to (1) survey the MassDOT UAS mission portfolio to identify where cyber risk assessment can be applied for the greatest benefit and (2) assess and certify humans and UAS to prevent and close gaps in the mission and business processes of the organization/agency:

- Assess the MassDOT UAS mission portfolio. Risk mitigation must focus limited resources where they will be needed most. No process or system is entirely secure and making oneself a less attractive target is an effective first step toward protection.
 - O Survey present and future trends in the types and frequency of UAS missions to be carried out by MassDOT and its contractors in order to identify gaps and prioritize cyber risk modeling and mitigation efforts. Concentrate process, elaborating on dimensions where business risks are greatest and the volume of missions is the highest.
- Assess and certify humans and UAS systems. Cybersecurity is both a social and technical problem.
 - o For the human dimension:
 - Document best practices in pre, during, and post flight mission operations and develop lightweight training and certification procedures for employees and contractors to ensure best practices are followed and updated periodically.
 - Consider technologies that enforce good practices as part of the technology assessment process.

- o For the system dimension:
 - When possible assess, extend, and adapt existing IT security procedures to UAS and revise existing IT security policies and procedures that involve UAS to ensure consistency and simplicity.
 - Specify standard mission payloads. Consider using only the technology needed to complete a mission in order to avoid introducing unnecessary risk.
 - Identify approved/disapproved lists of hardware, software, and services to streamline the UAS certification process.
 - Conduct cyber risk assessment and mitigation studies based on the MassDOT mission portfolio. Specify single mission platforms where feasible to avoid concentrating risk that would require a more costly and complex portfolio of countermeasures to protect a multi-mission UAS.
- Ensure standards reference cybersecurity clearly before endorsing. MassDOT staff should consider participating in the working groups of Standards through their affiliated experts to ensure that cyber risk concerns for Massachusetts specific to transportation are adequately represented.

2.0 Representative MassDOT UAS Mission and Cybersecurity Risk

This section describes aerial mapping of approximately 10 acres that captured progress at the New MassDOT District 3 Administration Building construction site in Worcester, Massachusetts. Observing the stages of a MassDOT mission provided insight into the interactions between the UAS and its environment in order to enumerate sources of potential cybersecurity risk for this study.

DRONE FLIGHT MISSION Energency checking Construction Monitoring Ongoing Mission Mission Data essing(Post-fli checklists) checklists) Cyber Physical security checking Sensors Site Description Risk Assessment UAS- HPCC Zenmuse XAS 0 Active Work crew and construction zone demonstration participants Crew members Roadways and moving vehicles SD cards containing flight Drone Deploy (Flight Multiple uction vehicles Trees and shrubs within Google Drive DPP server Pix4D (Post-Processing Temporary buildings automated flight route Data retrieved, stored Residential/Commercia Traffic Properties close to flight Data uploaded to Pix4D & Drone Deploy EMI from electric distribution lines and construction VO Geo-rectified orthomosi

Figure 2.1 llustrates many of the factors associated with UAS mission.

Figure 2.1: An example of MassDOT mission

The thick black vertical bars denote the boundaries between the stages of the mission, including pre-mission (left), mission (center), and post-mission (right). Prior to the mission, hardware and software checklists are followed. The HeliPad at UMass Memorial Worcester was notified. An Inspire 2 UAS was equipped with a Zenmuse X4S Electro-Optical Camera, which can capture images with a ground sampling interval of 0.71 inches per pixel at an elevation of 200 feet above ground level.

Software applications to control the UAS:

- Define a flight path, including altitude
- Image post-processing
- Map georectification included DJI GO 4 Drone Deploy, and Pix4D

A default center defined where the aircraft will return to in case of failure or if the signal between the drone and pilot was lost.

An aircraft can also perform obstacle detection if equipped with collision avoidance technology, such as vision, ultrasonic, infrared, and LIDAR sensors. The pilot can override the automated mission at any time. The inflight portion of the mission lasted approximately 15 minutes. After ascent the UAS proceeded to follow the pre-programmed route to collect over 300 NADIR pictures. The flight team included a remote pilot in command and a visual, observer monitored the mission site for dynamic hazards that could have been created by the motion of the UAS and obstacles such as an active construction zone, crew members, construction vehicles, temporary buildings, and traffic. During flight, integrated software algorithms and simultaneous localization and mapping (SLAM) technology constructed 3D maps on the pilot's device, enabling the flight controller or pilot to sense and avoid objects. The 'Internal Compass and Failsafe Function' enables the UAS and pilot's remote-control system to precisely track its location. 'No Fly Zone Drone Technology' can prevent unexpected flight patterns in constrained areas.

Post-flight, images captured and their metadata were processed using high-performance computing and communications facilities to produce a geo-rectified orthomosaic image. Activities relevant to data security and privacy included handling of SD cards containing flight data and a Google Drive data processing program server for upload to Pix4D and Drone Deploy.

2.1 Technical Decomposition of UAS Mission for Risks Identification

Figure 2.2 shows the decomposition of a UAS mission, which is composed of one or more tasks that rely on functions. Each function is enabled by a combination of hardware, software, and communication and therefore a potential subject to attacks, posing corresponding risks.

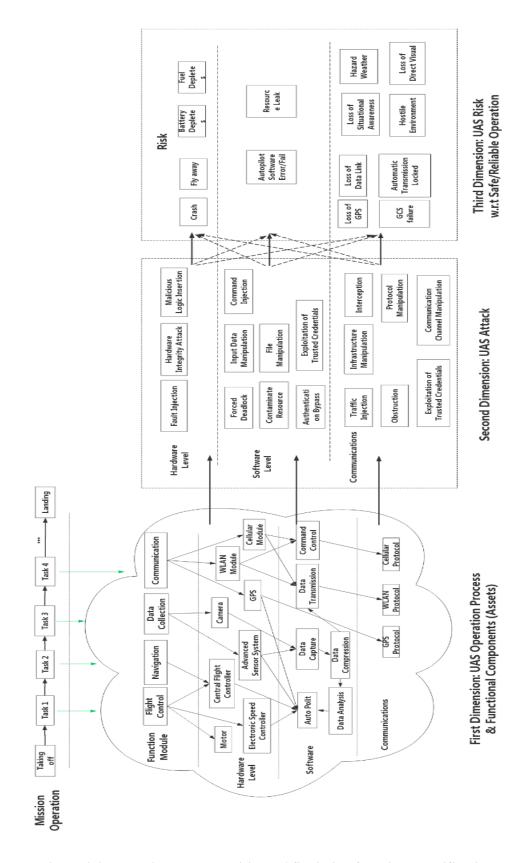


Figure 2.2: Technical decomposition UAS mission for Risk Identification

3.0 Risk Assessment and Mitigation

This section describes a UAS risk quantification approach and an objective strategy to mitigate risk through technology enhancement or countermeasures.

Figure 3.1 illustrates the conceptual structure of the proposed UAS risk model.

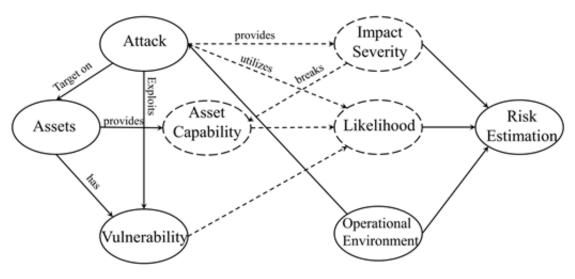


Figure 3.1: Attack risk model of UASs

Figure 3.1 contains eight nodes as well as the corresponding relations among them. It indicates that assets provide capabilities. However, they also possess vulnerabilities. Attacks target an asset through its vulnerabilities. Attacks transpire in the operational environment and are successful with a specified likelihood, producing consequences of a specified severity. The severity, likelihood, and operational environment contribute to risk.

Table 3.1 lists a set of risk evaluation metrics for UAS.

Table 3.1: Risk evaluation metrics for UASs

Metric	Description	Range
Impact	How much damage can be caused by an attack.	(0,1): where 0 means no impact and 1 asset is completely compromised
Likelihood	The probability of successfully exploiting a vulnerability	(0,1): where 0 means impossible and 1 easy to exploit a vulnerability

Impact and likelihood provide the basis for preliminary formulations of risk quantification and risk quantification. Table A.1 in the Appendices enumerates additional metrics that could further enrich the risk assessment and mitigation modeling presented here.

3.1 Cyber Risk Enumeration Example

Cyber risk management requires that risks and their potential consequences be identified. Only then is it possible to determine a strategy to mitigate these risks.

Figure 3.2 illustrates the "Fly away" risk, where one of several attacks leads to the UAS flying away.

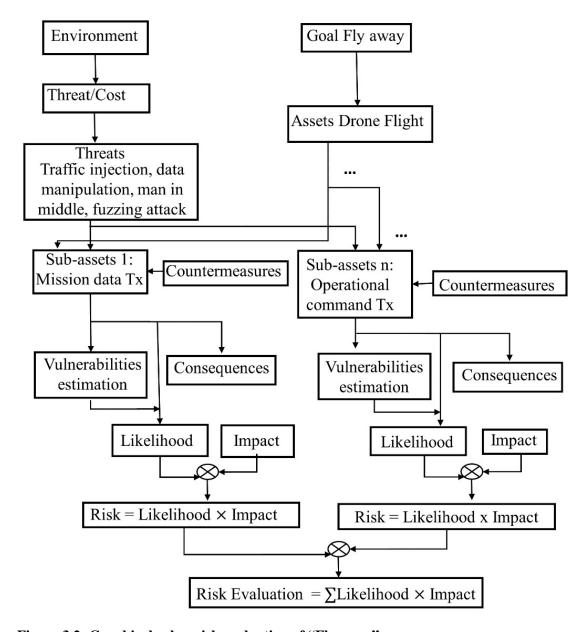


Figure 3.2: Graphical cyber risk evaluation of "Fly away"

The top center of Figure 3.2 indicates that the asset of the drone impacted is drone flight. Sub-assets required for this asset include transmission of mission data and command operations and that countermeasures that can reduce or potentially eliminate the impact of attacks on these

sub-assets. The top left of Figure 3.2 indicates the drone operating in an environment, which experiences a unique threat level and threats that could result in the drone flying away, such as: traffic injection, input data manipulation, and fuzzing as well as man-in-the-middle and potentially other attacks. Countermeasures of differing sophistication and cost can lower vulnerability and consequences of an attack, which can reduce the likelihood of an attack succeeding as well as its impact and corresponding severity. Traditional risk models quantify risk as the product of likelihood times impact. Assuming risks to sub-assets are mutually exclusive, allowing to sum over risk estimates for each sub-asset to obtain $Risk(Fly\ away) = \sum_i Likelihood_i \times impact_i$, incorporating each threat specific to this risk.

3.1.1 Risk Categories

Table 3.2 lists 14 risks identified as part of this study as well as representative references.

Table 3.2: Risk ID and name

Risk	Risk Name		Risk ID	Risk Name	Ref.
ID					
R01	Fly Away	(1)	R08	Resource Leak	(2)
R02	Loss of GPS		R09	Battery Depletes	(3)
R03	Loss of Data Link	(1)	R10	Fuel Depletes	(3)
R04	Crash	(1)	R11	Loss of Situational	(3)
				Awareness	
R05	Autopilot Software Error/Fail	(1)	R12	Loss of Direct Visual	(3)
R06	GCS Failure	(1)	R13	Hazard Weather	(3)
R07	Automatic Transmission Locked	(4)	R14	Hostile Environment	(3)

Figure A.1 provides a graphical cyber risk assessment template, which identify the attacks associated. Tabular summarizes of Risks 1-6 are provided in Appendix B. Appendices C and D discuss attacks and countermeasures respectively.

3.1.2 Risk Assessment Example

Table 3.3 provides an example of risk assessment with respect to Fly away, indicating the attack by name, its likelihood, impact, and resulting risk; as well as the acceptability of this risk and recommendation regarding the urgency of mitigation. **Note**: the likelihood and impact are mission specific and have been assigned values here for the sake of illustration.

Table 3.3: "Fly away" cyber risk evaluation

Attack	Attack Name	Likelihood	Impact	Risk	Acceptability	Recommendation
ID						
A18	Man in the	3	2	6	Tolerable	Mitigate according to
	middle attack					best practices
A11	Communication	3	3	9	Unacceptable	Immediate mitigation
	link jamming					required
A19	GPS jamming	3	2	6	Tolerable	Mitigate according to
						best practices
A20	Replay attack	3	5	15	Acceptable	No action required
A8	Sensor Spoofing	3	2	6	Unacceptable	Immediate mitigation
						required
A9	Sensor Jamming	3	2	6	Tolerable	Mitigate according to
						best practices

A brief description of the attacks underlying the fly away risk are as follows.

- 1. Man in the middle attack (5) targets the communication between two components, typically client and server. Whenever one component attempts to communicate with the other to send data or authenticate, the attacker can observe and/or alter information before passing it to the other component. To overcome lack of trust in communication Common Attack Pattern Enumeration and Classification (CAPEC) recommended countermeasures include: 1) use of a Public Key signed by a Certificate Authority, 2) communication link encryption, 3) strong mutual authentication at both ends of any communications channel, and 4) exchange of public keys using a secure channel.
- 2. Communication link jamming (6) prevents transmitting or receiving data from the targeted Wi-Fi network. Examples include: 1) flooding the Wi-Fi access point such as the retransmission device with de-authentication frames and 2) transmitting high levels of noise on the radio frequency band used by the Wi-Fi network. Countermeasures disassociate from flooding and radio frequency jamming, but are not standardized and must be supported on both the retransmission device and handset in order to be effective.
- 3. GPS jamming (5) blocks all GPS communications, preventing the UAS from navigating. A simple type of attack is known as blanket jamming, which outputs noise or false information to saturate the GPS receiver. Countermeasures include retransmission and use of back up channels.
- 4. Replay attack bypasses security by replaying a requests and can be performed in various ways. Countermeasures include an authentication mechanism that uses fresh message requests in a secure manner prior to data exchange or communication.
- 5. Sensor spoofing (5) modifies original content, while keeping the source of the content unchanged. A sensor spoofing attack deceives the onboard UAS sensor regarding the environment or situation with the intention of misleading the UAS into taking an undesirable action. Countermeasures include verifying metadata along with the actual data and the use of redundant sensors (7).
- 6. Sensor jamming (8) can deprive the UAS from information required to operate and act appropriately. Sensors may GPS-based navigation, a camera, IR sensor, barometer, which are also susceptible to jamming. The recommended countermeasure is sensor redundancy.

3.1.3 Cyber Risk Stoplight Charts

A five-level cyber risk specification matrix of likelihoods and their coding (frequently (E), occasional (D), remote (C), improbable (B), and extremely improbable (A)) is provided because precise probabilities will be difficult to calculate. Thus, the proposed approach simplifies to categories in order to encourage adoption and elaboration. Similarly, impacts follow a five-level classification system and coding (extremely high (5), high (4), medium (3), low (2), and extremely low (1)), but this can also be adjusted according to the needs and practices of an organization.

Table 3.4 color codes the combination of likelihood and impact indicates whether action is required (unacceptable (dark gray) tolerable (medium gray), and acceptable (light gray).

5A 5B 5C **5D 5E** 4 **4A 4B** 4C **4D 4E** 3 **3A 3B** 3C 3D **3E** 2 **2A 2B 2C 2D 2E 1A** 1B **1C** 1D **1E** C Α В E D Likelihood

Table 3.4: Cyber risk assessment matrix

Table 3.5 provides recommendations according to the acceptability of the likelihood and impact.

Table 3.5: 1	Interpretation of	f cyber risl	k assessment matrix
---------------------	-------------------	--------------	---------------------

Acceptability	Likelihood/impact	Recommendation				
Unacceptable	3-5D and 1E-5E	Immediate mitigation action and escalation is				
		required. An operational stop should be considered				
Tolerable	4-5A, 3-5B, 1-5C, and	The cyber risk shall be mitigated as low as reasonable				
	1-2D	practicable and should a formal approval process				
		followed.				
Acceptable	1-3A and 1-2B	No action required.				

3.2 Countermeasure Portfolio Selection Problem

This section develops a risk mitigation framework to allocate limited resources in a manner that reduces risk effectively. The proposed approach is a quantitative elaboration of the 'Select' step of the National Institute of Standards and Technology (NIST) Risk Management Framework (9) described in Section 0.2.

Consider a drone designed to perform $M = M_1, ..., M_{|M|}$ missions. Each mission is defined by a sequence of tasks that determine the hardware, software, and communication functionality the drone must possess to successfully execute that mission. Each function is vulnerable to one or more attacks, which pose corresponding risks. Without loss of generality, let $A = A_1, ..., A_{|A|}$ be the set of all possible attacks that can be carried out against a drone, $R = R_1, ..., R_{|R|}$ the risks posed by these attacks, and $C = C_1, ..., C_{|C|}$ the countermeasures capable of mitigating or eliminating the impacts of the risks incurred by an attack.

Not all attacks contribute to each risk. For example, risk R01 (Fly Away) is susceptible to six attacks, namely: man in the middle (A18), communication link jamming (A11), GPS jamming (A19), replay attack (A20), sensor spoofing (A08), and sensor jamming (A09), which we denote Attacks(R02)={A08, A09, A11, A18, A19, A20} or $Attacks(R_i)$ more generally. Similarly, we denote the countermeasures capable of mitigating the ith attack as $Countermeasures(A_i)$.

Each attack has a corresponding probability (Likelihood) of occurrence ($\Pr\{A_i\}$) as well as a corresponding impact ($Impact(A_i)$), which is conditional upon the subset of countermeasures $C' \in C$, such that the impact of a risk with respect to its corresponding attacks and their impact conditioned on the countermeasures is $Impact(R_i) = \sum_{i=1}^n \Pr\{A_i\} Impact(A_i|C')$, where $Impact(A_i|C'_1) \leq Impact(A_i|C'_2)$ when $C'_2 \subseteq C'_1$, meaning that adding additional countermeasures decreases the impact. The overall impact of a set of risk $R' \in R$ is therefore the sum of the risks to which the drone is susceptible $Impact(R') = \sum_{R' \in R} Impact(R_i)$

This specification enables the definition of the **countermeasure selection problem** as the following budget constrained optimization problem

$$Minimize Impact(\mathbf{R}') \tag{1}$$

Subject to

$$\sum_{C' \in C} I(C_i \in C') \times Cost(C_i) < B$$
 (2)

where the indicator function $I(C_i \in C') = 1$ if countermeasure C_i is in the set of selected countermeasures and $Cost(C_i)$ is the cost of the ith countermeasure.

Inclusion of a countermeasure in a portfolio is a binary decision, and can, therefore, be represented as a binary string of length |C|, where a $p_i = 1$ if the counter measure is in the portfolio and 0 otherwise. Problems such as these can be solved effectively with methods such as the genetic algorithm (GA) and the solution. In the case where the drone performs more than one mission and some risks are unique to M_1 or M_2 , there is no single optimum countermeasure portfolio to reduce impacts to both missions, requiring a multi-objective solution that gives rise to a Pareto optimal front of solutions, where reducing the impact of M_1 may adversely affect the impact with respect to M_2 and vice versa.

Figure 3.3: provides a graphical representation of the countermeasure portfolio problem with respect to a single mission.

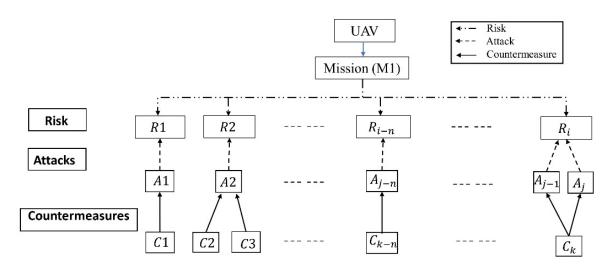


Figure 3.3: Graphical representation of countermeasure portfolio selection

A mission is subject to risks according to the capabilities required for that mission (dot-dot-dash arrows). Risk are posed by one or more underlying attacks (dashed arrows), as discussed in the previous section. Countermeasures (solid arrows) can mitigate one or more distinct attack and some attacks may contribute to more than one risk. Primary challenges are to elaborate mission specific risk and the effectiveness of countermeasures, after which it is possible to make an informed judgment regarding the countermeasures that should be taken proportional to risk appetite and budget constraints.

3.3 Countermeasure selection Illustration

We illustrate countermeasure selection in the context of flyaway risk (Risks R01), which may be caused by Attacks(R01)={A08, A09, A11, A18, A19, A20} given in Table 3.3 and countermeasure Countermeasures(Attacks(R01))= C2, C8, C9, C10, C13, C14, C19} given in Appendix F. Table D.2 provides a graphical representation of the fly away risk as well as the underlying attacks and potential countermeasures.

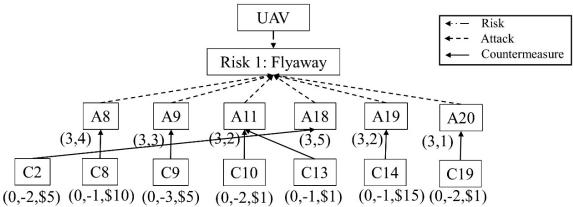


Figure 3.4: Fly away risk attack countermeasure dependencies

Tuples (L_i, I_i) attacks (Table 3.6) indicate the likelihood and impact of that attack, while the tuples (CI_i, C_s) indicate the reduction in likelihood of impact and corresponding cost of a countermeasure. A negative value indicate a reduction in likelihood (deterrent) and/or impact (mitigation).

Table 3.6 summarizes the attack, risk, and countermeasure information for clarity.

Table 3.6: Various measures for attack and countermeasure

Attacl	(A_i)	L_i	I_i	Risk	Counte	ermeasures (C_i)	CI_i	C_s
A8	Sensor Spoofing	3	4	12	C8	Verify metadata along with actual data.	0,-1	\$10.00
A9	Sensor Jamming	3	3	9	C9	Cross verify data from redundant sensors	0,-1	\$5.00
A11	Communication link jamming	3	2	6	C10, C13	Measure signal power level to detect jamming, Channel switching	(0,- 1), (0,-2)	\$1, \$1
A18	Man in the middle attack	3	5	15	C2	Utilize strong federated identity	0,-2	\$5.00
A19	GPS jamming	3	2	6	C14	Use backup channels;	0,-1	\$15.00
A20	Replay attack	3	1	3	C19	Use secure and robust protocols with strong authentication	0,-2	\$1.00
Total	Risk			51				

3.3.1 Cost of Implementing Countermeasures

The goal is to identify countermeasures that reduce risk to an acceptable level as indicated in Table 3.3 in order to achieve a level of cyber risk acceptance as defined in Table 3.4 and Table 3.5.

With no countermeasures allocated, the baseline fly away risk is

$$R_0 = (4 \times 3) + (3 \times 3) + (3 \times 2) + (3 \times 5) + (3 \times 2) + (3 \times 1) = 51,$$

whereas implementing a counter measure such as C2 reduces risk to

$$R(C2) = (4 \times 3) + (3 \times 3) + (3 \times 2) + ((3 - 2) \times 5) + (3 \times 2) + (3 \times 1) = 45$$

and the effective risk to cost ratio is

$$RC_2 = \frac{R_0 - R(C2)}{C_s} = \frac{51 - 45}{5} = 1.2.$$

Similarly the risk reduction for the other countermeasures are: R(C8) = 48, R(C9) = 48, R(C10) = 48, R(C13) = 45, R(C14) = 48, and R(C19) = 45.

Table 3.7 reports the risk to cost ratio of all countermeasures.

Table 3.7: Effective risk to cost ratio for countermeasure impact

Countermeasure	Ratio
C2	1.200
C8	0.300

Countermeasure	Ratio
C9	0.600
C10	3.000
C13	6.000
C14	0.200
C19	6.000

Both C13 and C19 possess the same cost ratio. However, A11 has a higher impact than A20, so C13 for A11 is selected. The ratios are then recomputing with the new total risk baseline of 45. Figure 3.5 shows the total risk as a function of the cumulative cost of countermeasures.

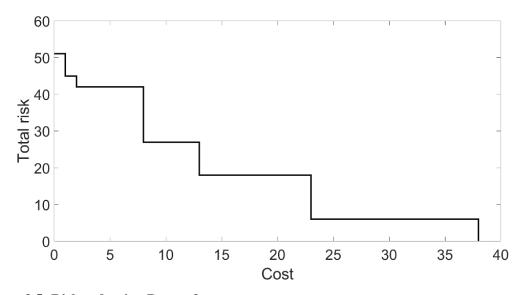


Figure 3.5: Risk reduction Pareto front

This approach enables a decision-maker to identify the risk attainable within a specified budget or the cost required to achieve a desired risk level. This approach can guide countermeasure selection as well as support budget justifications for such countermeasures.

Table 3.8 provides the details of the iterations of a greedy algorithm to allocate countermeasures, which produced Figure 3.5 above.

Table 3.8: Iterations of greedy algorithm for countermeasure selection

Cost	Risk reduction	Countermeasure subset	Selected Countermeasure
0	51	{C8,C9,C10,C13,C2,C14,C19}	0
1	45	{C8,C9,C10,C2,C14,C19}	C13
2	42	{C8,C9,C10,C2,C14}	C19
3	42	{C8,C9,C2,C14}	C10
8	27	{C8,C9,C14}	C2
13	18	{C8,C14}	C9

Cost	Risk reduction	Countermeasure subset	Selected Countermeasure
23	6	{C14}	C8
38	0	{0}	C14

A more fine-grained approach can consider multiple dimensions by quantifying risk with respect to the failure modes and effects of the various attacks, which would enable countermeasure selection to reduce risk with respect to multiple categories of consequences.

4.0 Standards

The ANSI (American National Standards Institute) Unmanned Aerial Systems Standardization Collaborative (UASSC) has developed standardization roadmap (10) and maintains links to UAS Standards (11). Of these links, the American Society for Testing and Materials, ASTM F3201-16 Standard Practice for Ensuring Dependability of Software Used in Unmanned Aerial Systems (UAS) is most relevant to this study, especially security as an enabler of safety. The remainder of this section summarizes prominent standards in the areas of aerial systems safety, UAS navigation and communication, and cyber test and evaluation, and cyber risk management. It is suggested that, before endorsing standards for use within the Commonwealth of Massachusetts, MassDOT should ensure that software and cybersecurity experts provide input on standards to ensure that these standards reference relevant cybersecurity standards and best practices, and that they are kept up to date on a regular basis.

4.1 Aerial Systems Safety

4.1.1 Safety: Department of Defense Standard Practice System Safety 882E

MIL-STD-882E is relevant because safety is a concern of MassDOT and cybersecurity vulnerabilities pose threats to system safety. MIL-STD-882E (12) identifies the Department of Defense (DoD) approach for identifying hazards, assessing and mitigating associated risks encountered in the development, test, production, use, and disposal of defense systems MIL-STD-882E defines the risk acceptance authorities. It also defines the system safety requirements throughout the life-cycle for any system and when properly applied, these requirements should enable the identification and management of hazards and their associated risks during system development and engineering sustainment activities. MIL-STD-882E provides four different severity categories starting from a loss of a work day to severe environmental impact, potential death or permanent disability. This standard also categorizes the hazard at a given point of time such as the probability of the hazards. A unified risk assessment matrix is provided.

The system safety process consists of managing life-cycle risk, software contribution to system risk, and software assessment. Software safety criticality matrix maps the software controls to severity categories using software criticality indices (SwCI). Task 102 system safety program develops a plan to document the system safety methodology for the identification, classification, and mitigation of safety hazards as part of the overall systems engineering process.

MIL-STD-882E also provides software system safety engineering and analysis requirements. This standard mentions that (12) "from the perspective of the system safety engineer and the hazard analysis process, software is considered as a subsystem." System safety engineers should ensure that software is considered in its contribution to mishap occurrences for the system under analysis, as well as interfacing systems within a systems of systems architecture. The software system safety processes and requirements are based on the identification and

establishment of specific and test tasks for each acquisition phase of the software development life-cycle. The software risk assessment should follow the same risk criteria or risk matrix as hardware system.

4.1.2 Airborne Systems: DO-178C Software Considerations in Airborne Systems and Equipment Certification

UAS are aerial systems and therefore are covered by DO-178C (13), which is an RCTA (Radio Technical Commission for Aeronautics) standard for demonstrating compliance with applicable airworthiness regulations for software aspects of aerial systems and equipment certification.

DO-178C consists of software considerations in Airborne Systems and Equipment Certification, published by RTCA. This standard categorizes the software into five hazard levels based on System Safety Assessment:

- Level A hazards consists of anomalous behavior of the aerial system resulting in catastrophic failure condition. These types of behavior prevent continued safe flight and landing.
- Level B hazards affects safety-critical capabilities and can result in serious or potentially fatal injuries.
- Level C hazards produce a major failure condition, where the hazard results in discomfort to occupants, possibly including injuries.
- Level D hazards result in a minor failure condition and some inconvenience to occupants.
- Level E hazards correspond to safe operational conditions and result in no effect on aircraft operational capability or the pilot.

DO-178C supports the objective verification of output of the software coding and integration process. The recent version of the standard also considers economic impact relative to system certification without compromising system safety. The primary steps for the software safety certification consists of formal methods for verification, object oriented technology, model based development and verification, and tool qualification.

4.2 UAS Navigation and Communication

4.2.1 Navigation: RTCA/DO236B Minimum Aviation System Performance Standards

RTCA/DO-236B (14) defines the path the aircraft must use to evaluate performance. The aircraft's navigation system will also define all vertical paths in the Final Approach Segment (FAS) by a Flight Path Angle (FPA) as a trajectory to a fix and altitude. However, RTCA/DO-236B facilitates airspace design and does not directly equate to obstacle clearance.

4.2.2 Communication: IEEE 1609 - Family of Standards for Wireless Access in Vehicular Environments (WAVE)

The IEEE 1609 Family of Standards (15) includes several active sub-standards related to cyber security of UAS communication:

- 1. P1609.0 IEEE Draft Guide for Wireless Access in Vehicular Environments (WAVE) Architecture
- 2. P1609.2b Standard for Wireless Access in Vehicular Environments--Security Services for Applications and Management Messages Amendment 2: Protocol Data Unit (PDU) Functional Types and Encryption Key Management
- 3. 1609.0-2013 IEEE Guide for Wireless Access in Vehicular Environments (WAVE) Architecture
- 4. 1609.2-2016 IEEE Standard for Wireless Access in Vehicular Environments-Security Services for Applications and Management Messages
- 5. 1609.4-2016 IEEE Standard for Wireless Access in Vehicular Environments (WAVE) -- Multi-Channel Operation
- 6. 1609.2a-2017 IEEE Standard for Wireless Access in Vehicular Environments-Security Services for Applications and Management Messages - Amendment 1

4.3 Cyber Test and Evaluation and Risk Management

4.3.1 Cyber Test & Evaluation: Department of Defense Cyber Test and Evaluation Guidebook Version 2.0

The Cyber Test and Evaluation Guidebook (16) develops data-driven mission-impact-based analysis and assessment methods for cybersecurity test and evaluation (T&E) and supports assessment of cybersecurity, survivability, and resilience within a mission context by encouraging planning for tighter integration with traditional system T&E. Cyber-security T&E starts at acquisition initiation and continues throughout the entire life cycle. A primary objective for test and evaluation is to understand how adversarial attacks affect a cyber physical system and the missions it is designed to perform.

Cybersecurity T&E consists of six phases aligned with DOD I5000.02 Operation of the Defense Acquisition System:

- 1. Phase 1 examines a system's cybersecurity and resilience requirements in order to develop an initial approach and plan for conducting cybersecurity T&E. This phase is performed during the early design and planning lifecycle.
- 2. Phase 2 characterizes the attack surface, identifies the vulnerabilities, and avenues of attack an adversary may use to exploit the system. This phase develops the plans to evaluate the impact of attacks on the mission.
- 3. Phase 3 verifies the cybersecurity and needed counter-measures, which helps stakeholders and designers reduce risk. This phase is conducted during developmental test and evaluation.
- 4. Phase 4 performs adversarial tests in the context of mission operations to identify residual risks.

- 5. Phase 5 characterizes the cybersecurity and resilience status of a system in a fully operational context and provides reconnaissance on the system. This phase is conducted during operational test and evaluation.
- 6. Phase 6 characterizes the operational mission effects to critical missions caused by threat-representative cyber activity against a unit trained and equipped with a system as well as the effectiveness of defensive capabilities. This phase is also performed during operational test and evaluation.

4.3.2 Cyber Risk Management: National Institute of Standards and Technology Risk Management Framework (RMF)

The NIST Risk Management Framework (9) integrates risk management into the system development lifecycle. It offers a holistic framework and process for determining organizational, mission, and system risk. The framework consists of six steps and three level of organization wide risk management. The six steps are:

- 1. Categorize: The purpose of this stage is to determine the order of risk criticality and its impact on the organization, mission, or system.
- 2. Select: This step selects various security controls or countermeasures based on the outputs from Step 1. A risk assessment is performed in this stage. A baseline risk or threat level is also specified.
- 3. Implement: In this step, the security control or the various countermeasures are implemented within the system or enterprise architecture.
- 4. Assess: This step determines the effectiveness of the security measures implemented, operational effectiveness, and requirements. This step determines the depth and coverage needed for system assurance. Both hardware and software risk assessment should be conducted.
- 5. Authorize: In this step, an expert examines the output of step four to determine the effectiveness of the risk management framework implementation.
- 6. Monitor: The final step involves the continuous monitoring of the system and its operational environment for changes or sign of attack. Monitoring activities should be integrated into the organization network wide.

5.0 References

- 1. User's Manual from MassDOT: Flight Operation Checklist.
- 2. Unmanned Aerial System Security using Real-time Autopilot Software Analysis. C. Stracquodaine, A. Dolgikh, M. Davis and V. Skormin. 2016, International Conference on Unmanned Aircraft Systems (ICUAS), pp. 830-839.
- 3. Unmanned Aerial System (UAS) Flight Operations Manual, City of Los Angeles, Department of Public Works, Bureau of Engineering, Mar. 2017. (53Unmanned Aerial System (UAS) Flight Operations Manual.pdf).
- 4. Characterization of Potential Security Threats in Modern Automobiles: A Composite Modeling Approach. C. McCarthy, K. Harnett and A. Carter. 2014.
- 5. MITRE. 1000: Mechanism of attack. [Online] MITRE. https://capec.mitre.org/data/definitions/1000.html.
- 6. Cyber Attack Vulnerabilities Analysis for Unmanned Aerial Vehicles. A. Kim, B. Wampler, J. Goppert and I. Hwang. Garden Grove, California: s.n., 2012. Infotech@Aerospace.
- 7. Cyber Security Threat Analysis and Modeling of an Unmanned Aerial Vehicle System. A. Javaid, W. Sun, V. Devabhaktuni, and M Alam. Waltham, MA, USA: s.n., 2012. IEEE Conference on Technologies for Homeland Security (HST).
- 8. The vulnerability of UAVs to cyber attacks An approach to the risk assessment. Hartmann, Kim and Steup, Christoph. Tallinn, Estonia: s.n., 2013. International Conference on Cyber Conflict.
- 9. NIST. Risk Management Framework. [Online] https://csrc.nist.gov/projects/risk-management/risk-management-framework-(RMF)-Overview.
- 10. American National Standard Institute (ANSI). Standardization roadmap For Unmanned Aircraft Systems, Version 1.0. s.l.: ANSI, 2018.
- 11. ANSI. Unmaned Aircraft systems (UAS). [Online] 2018. https://webstore.ansi.org/industry/aerospace/unmanned-aircraft-systems.
- 12. DoD. Department of defense standard practice system safety. [Online] 2012. https://safety.army.mil/Portals/0/Documents/ON-DUTY/ARMYSYSTEMS/POLICYANDREGULATIONS/Standard/MIL-STD_882E.pdf.
- 13. Rierson, Leanna. *Developing Safety-Critical Software, A Practical Guide for Aviation Software and DO-178C Compliance*. s.l.: CRC Press, 2013.
- 14. RTCA. SC-236|RTCA. [Online] March 2019. https://www.rtca.org/content/sc-236.

- 15. IEEE. IEEE Standard for Wireless Access in Vehicular Environment (WAVE). [Online] 2016. https://standards.ieee.org/standard/1609_12-2016.html.
- 16. DoD. CSTE guidebook v2.0. [Online] 4 2018. https://www.dau.edu/cop/test/DAU%20Sponsored%20Documents/Cybersecurity-Test-and-Evaluation-Guidebook-Version2-change-1.pdf.
- 17. Risk assessment for application of sensor technologies to overcoming the security risks of unmanned systems. Kelly, T. Waltham, MA: s.n., 2017. IEEE International Symposium on Technologies for Homeland Security (HST).
- 18. Leccadito, M. A Hierarchical Architectural Framework for Securing Unmanned Aerial Systems. s.l.: Virginia Commonwealth University, PhD Thesis, Aug. 2017.
- 19. A Review on Cybersecurity Vulnerabilities for Unmanned Aerial Vehicles. C. Krishna and R. Murphy. 2017, IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 194-199.
- 20. Looze, Douglas, Plotnikov, Micheal and Wicks, Ryan. *Current Counter-Drone Technology Solutions to Shield Airports and Approach and Departure Corridors.* s.l.: Massachusetts Dept. of Transportation, 2016.
- 21. *An Efficient Protocol for UAS Security.* Blazy, Olivier, et al. Herndon, VA, DOI: 10.1109/ICNSURV.2017.8011987: s.n., 2017. Integrated Communications, Navigation and Surveillance Conference.
- 22. Security, Privacy, and Safety Aspects of Civilian Drones: A Survey. R. Altawy and A. M. Youssef. 2, 2017, ACM Transactions on Cyber-Physical Systems, Vol. 1, pp. 1-25.
- 23. Security Issues for Civil Unmanned Aircraft Systems. Clothier, R. Seattle, USA: s.n., 2015. SAE AeroTech.
- 24. Security of unmanned aerial vehicle systems against cyber-physical attacks. Rani, Chaitanya, et al. 3, 2016, The Journal of Defense Modeling and Simulation, Vol. 13, pp. 331-342.
- 25. Cybersecurity and Mitigations. Cabler, S. Reston, VA.: s.n., 2017. FAA UAS Symposium.
- 26. Horowitz, Barry. *Systems Aware Cybersecurity*. s.l.: Systems Engineering Research Center, 2017.
- 27. Security Testing of an Unmanned Aerial Vehicle (UAV). Hagerman, Seana, Andrews, Anneliese and Oakes, Stephen. Coeur d'Alene, ID: s.n., 2016. Cybersecurity Symposium (CYBERSEC). pp. 26-31.
- 28. *DroneJack: Kiss your drones goodbye!* Fournier, Guillaume, et al. Rennes, France: s.n., 2017. Symposium on Information and Communications Security.

- 29. Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities. Solodov, Alexander, et al. 1, 2018, Security Journal, Vol. 31, pp. 305-324.
- 30. Unmanned Aerial Vehicle Smart Device Ground Control Station Cyber Security Threat Model. Mansfield, Katrina, et al. Waltham, MA: s.n., 2013. IEEE International Conference on Technologies for Homeland Security.
- 31. UAV-Empowered Edge Computing Environment for Cyber-Threat Detection in Smart Vehicles. Garg, Sahil, et al. 3, 2018, IEEE Networks, Vol. 32, pp. 42-51.
- 32. Drones for smart cities: Issues in cybersecurity, privacy, and public safety. Vattapparamban, Edwin, et al. Paphos, Cyprus: s.n., 2016. International Wireless Communications and Mobile Computing Conference.
- 33. Autonomous Vehicle Security: A Taxonomy of Attacks and Defences. Thing, Virzlynn and Wu, Jiaxi. Chengdu, China: s.n., 2016. IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
- 34. Understanding Security Threats in Consumer Drones Through the Lens of the Discovery Quadcopter Family. Valente, Junia and Cardenas, Alvaro. Dallas, Tx: s.n., 2017. Workshop on Internet of Things Security and Privacy.
- 35. *How to Detect Cyber-attacks in Unmanned Aerial*. Sejdjelmaci, Hichem, Senouci, Sidi and Messous, Mohamed. Washington, DC: s.n., 2016. IEEE Global Communication conference (GLOBECOM).
- 36. UAS security: Encryption key negotiation for partitioned data. Steinmann, Jessica, Babiceanu, Radu and Seker, Remzi. Herndon, VA: s.n., 2016. Integrated Communications Navigation and Surveillance.
- 37. Intrusion Detection and Ejection Framework Against Lethal Attacks in UAV-Aided Networks: A Bayesian Game-Theoretic Methodology. Sedjelmaci, Hichem, Senouci, Sidi Mohammed and Ansari, Nirwan. 5, 2017, Transactions on Intelligent Transportation Systems, , Vol. 18, pp. 1143-1153.
- 38. Detection of Fault Data Injection Attack on UAV Using Adaptive Neural Network. Abbaspour, Alireza, et al. Los Angeles, CA: s.n., 2016. Complex Adaptive Systems.
- 39. *Improving communication security of open source UAVs: Encrypting radio control link.* Podhradsky, Michal, Coopmans, Calvin and Hoffer, Nathan. Miami, FL: s.n., 2017. International Conference on Unmanned Aircraft Systems.

6.0 Appendices

Appendix A: Additional Risk Evaluation Metrics

Table A.1: Graphical cyber risk assessment template

Metric	Description	Value	
Asset Capacity	To what level the asset was compromised under an attack	(0,1): 0 means the asset is totally compromised, 1 means fully operational	
Number of Attack Paths	The number of potential attack paths in a network. n: the number of potential attack paths		
Operational Capacity	The remained operation capacity of a system after being attacked	(0,1): 0 means not operational, 1 means fully operational	
Service Availability	The availability of a required service to support a particular mission	{0, 1}: 0 means service is not available, 1 means service is available	
Severity Score	The severity of a vulnerability if it was successfully exploited, could be measure based on CVSS (Common Vulnerability Scoring System) score (outcome).	(0,1): 0 means no risk, 1 means high risk.	

Graphical Cyber Risk Assessment Template

Figure A.1 is an abstraction of the "Fly away" risk. It enables the graphical summarization of the threats specific to a cyber-risk in the form of a template.

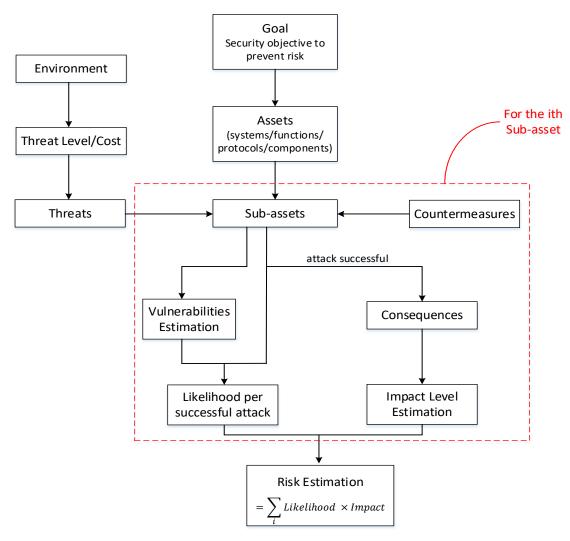


Figure A.1: Graphical cyber risk assessment template

More generally, assets operate in environments, which experience threat levels and therefore pose threats to the sub-assets of an asset. Each sub-asset can be safeguarded with countermeasures to lower the likelihood of a successful attack and potentially the impact of a successful attack. Thus, asset risk is expressed as $Risk = \sum_i Likelihood_i \cdot Impact_i$, where i represents i^{th} sub-asset.

P P =	Appendix B:	Risks
-------	--------------------	-------

Risk 1: Fly Away (Operation Phase: Flight & Pre-Flight Operation)

Table B.1 identifies the attacks associated with the risk. It also summarizes risk assessment and countermeasures. Attack types are categorized according to the CAPEC and attack mechanisms and the components target specified. Risk assessment specifies the likelihood and impact of attacks. Current and recommended actions to mitigate risk are also identified.

Table B.1: Fly away

	Attack Identification
Attack Types (CAPEC): Attack Mechanisms (Attack ID #, Mechanisms, Types): Components Targeted (Components & Attack ID #):	Communication Channel Manipulation; Obstruction; Protocol Manipulation; • 1.1 Man in the middle attack (Communication Channel Manipulation) • 1.2 Communication link jamming (Obstruction) • 1.3 GPS jamming (Obstruction) • 1.4 Replay attack (Protocol Manipulation) • 1.5 Sensor Spoofing (Protocol Manipulation) • 1.6 Sensor Jamming (Obstruction) • Hardware Components: • GPS sensor (ID: 1.5, 1.6); Camera sensor (ID: 1.5, 1.6); Obstacle avoidance sensors (ID: 1.5, 1.6) • Functional Components (software/algorithm + protocol): • Mission data transmission link (ID: 1.1, 1.2, 1.4); GPS
	transmission link (ID: 1.3)
Likelihood of attack (Likelihood & Attack ID #) Impact of successful attack (Impact level & Attack ID #): Risk Level (Risk level & Attack ID #):	 Frequently Occasional (ID: 1.2, 1.3, 1.6) Remote (ID: 1.1, 1.4, 1.5) Improbable Extremely Improbable High (ID: 1.1-1.4) Medium (ID: 1.5, 1.6) Low Unacceptable Tolerable Acceptable
Coun	termeasure-oriented Recommendations
Recommendations/actions (in literatures and COTs) for given drone configuration/operation practice: (Recommendations & Attack ID # & Targeted components)	 Current actions: Checklist activities for handling emergency conditions (ID: 1.1-1.6) Manual monitoring of the flight (ID: 1.1-1.6) Recommended techniques: Authentication and Encryption mechanisms (ID: 1.1) on mission data link; Anti-jamming techniques (ID: 1.2, 1.3) on mission data link, GPS transmission link; Verify metadata along with actual data (ID: 1.4, 1.5, 1.6) on mission data link, GPS sensor, Camera sensor and Obstacle avoidance sensors

Risk 2: Loss of GPS

Table B.2: Loss of GPS

Metric Category	Category Option Chosen for Current Practice		
ID #:	2		
Operation Phase	Flight Operation		
_	Attack Identification		
Attack Types (CAPEC)	Obstruction; Protocol Manipulation; Interception		
Attack Mechanisms	2.1 GPS Spoofing (Protocol Manipulation)		
(Attack ID # & Attack	• 2.2 GPS jamming (Obstruction)		
Mechanisms & Attack	• 2.3 Sensor Sniffing (Interception)		
Types)			
Components Targeted	Hardware Components:		
(Components & Attack ID	• GPS sensor (ID: 2.1-2.3); Camera sensor (ID: 2.1-2.3);		
#)	Obstacle avoidance sensors (ID: 2.1-2.3); Magnetometer		
	(ID: 2.1-2.3)		
	• Functional Components (software/algorithm + protocol):		
	GPS signal transmission (ID: 2.1-2.3)		
	Safety Risk Assessment		
Likelihood of attack	Frequently		
(Likelihood & Attack ID #)	• Occasional (ID: 2.1, 2.2, 2.3)		
	Remote		
	Improbable		
	Extremely Improbable		
Impact level of successful	High		
attack (Impact level &	• Medium (ID: 2.1, 2.2, 2.3)		
Attack ID #)	• Low		
Risk Level	Unacceptable		
(Risk level & Attack ID #)	Tolerable		
	Acceptable		
Cou	ntermeasure-oriented Recommendations		
Recommendations/actions	Current actions:		
(in literatures and COTs) for	• Checklist activities for handling emergency conditions (ID:		
given drone	2.1-2.3)		
configuration/operation	• Manual monitoring of the flight (ID: 2.1-2.3)		
practice	Recommended techniques:		
(D	 Verify metadata along with actual data (ID: 2.1) on GPS 		
(Recommendations &	sensor, Camera sensor and Obstacle avoidance sensors and		
Attack ID # & Targeted components)	Magnetometer		
components)	• Measure the signal power level to detect jamming (ID: 2.2)		
	on GPS sensor, Camera sensor and Obstacle avoidance		
	sensors and Magnetometer		
	• Use efficient cryptographic techniques, lie keys stream,		
	one-time key (ID: 2.3) on GPS sensor, Camera sensor and		
	Obstacle avoidance sensors and Magnetometer		

Risk 3: Loss of Data Link

Table B.2: Loss of Data Link

Metric Category Category Option Chosen for Current Practice			
ID #:	3		
Operation Phase	Flight Operation		
Attack Ide	ntification		
Attack Types (CAPEC)	Obstruction; Communication Channel Manipulation; Obstruction		
Attack Mechanisms (Attack ID # & Attack Mechanisms & Attack Types)	 3.1 Communication link jamming (Obstruction) 3.2 Man in the middle attack (Communication Channel Manipulation) 3.3 GPS jamming (Obstruction) 		
Components Targeted (Components & Attack ID #)	 Functional Components (software/algorithm + protocol): Mission data link (ID: 3.1, 3.2); GPS transmission link (ID: 3.3) 		
Safety Risk Assessment			
Likelihood of attack (Likelihood & Attack ID #)	 Frequently Occasional Remote (ID: 3.1, 3.3) Improbable (ID: 3.2) Extremely Improbable 		
Impact level of successful attack (Impact level & Attack ID #)	 High Medium (ID: 3.1-3.3) Low 		
Severity of attack (Severity & Attack ID #)	 Catastrophic Hazardous Major (ID: 3.1-3.3) Minor Negligible 		
Risk Level (Risk level & Attack ID #)	UnacceptableTolerableAcceptable		
Countermeasure-oriented Recommendations			
Recommendations/actions (in literatures and COTs) for given drone configuration/operation practice (continued on next page)	 Current actions: Checklist activities for handling emergency conditions (ID: 3.1-3.3) Manual monitoring of the flight (ID: 3.1-3.3) 		

Metric Category	Category Option Chosen for Current	
	Practice	
ID #:	3	
Operation Phase	Flight Operation	
(Recommendations & Attack ID # & Targeted components)	 Recommended techniques: Anti-jamming techniques (ID: 3.1, 3.3) on mission data link, GPS transmission link; Authentication and Encryption mechanisms (ID: 3.2) on mission data link; 	

Risk 4: Crash

Table B.3: Crash

Metric Category	Category Option Chosen			
ID#	4			
Operation Phase	Flight Operation & Pre-Flight Operation			
Potential Attack Types	4.1 Hardware Integrity Attack			
(ID # & Attack Type)	4.2 Forced Deadlock			
	4.3 Malicious Logic Insertion			
	• 4.4 Fault Injection			
	4.5 Exploiting Trust in Client			
	4.6 Authentication Bypass			
	• 4.7 Communication link jamming (17)			
	• 4.8 GPS jamming (17) (Interception)			
	• 4.9 Replay attack (17)			
	• 4.10 Sensor Spoofing (17)			
	• 4.11 Sensor Jamming (17)			
Countermeasures	• Checklist activities for handling emergency conditions (ID: 4.1-			
	4.11)			
	• Manual monitoring of the flight (ID: 4.1-4.11)			
	• Verify metadata along with actual data (ID: 4.9, 4.10)			
	• Anti-jamming techniques (ID: 4.7, 4.8, 4.11)			
	• Encryption and sensor firmware robustness (ID: 4.10)			
Component Affected	Hardware Components:			
	• Electronic Speed Control Circuits (ESCs) (ID: 4.1, 4.4); Motors			
	(ID: 4.1)			
	Functional Components:			
	• Central Flight Controller (ID: 4.1-4.5); Environmental			
	Perception (ID: 4.2, 4.4, 4.6); Auto Pilot (ID: 4.2, 4.4, 4.6)			
Consequences	Harm to people			
	Damage of drone			
	Damage of infrastructure			
Likelihood	Frequently			
	• Occasional (ID: 4.7-4.11)			
	• Remote (ID: 4.1-4.6)			
	Improbable			
	Extremely Improbable			
	High			
Impact	• Medium (ID: 4.1-4.11)			
	• Low			
Final Recommendation	Unacceptable			
(Risk Level)	Tolerable			
	Acceptable			

Risk 5: Autopilot Software Error/Fail

Table B.4: Autopilot Software Error/Fail

Metric Category	Category Option Chosen			
ID#	5			
Operation Phase	Flight Operation & Pre-Flight Operation			
Potential Attack Types	• 5.1 Signal Integrity (Command Injection)			
(ID # & Attack Type)	• 5.2 Hijacking			
	• 5.3 Malwares (5) (Contaminate Resource)			
	• 5.4 Code Injection (6; 5)			
	• 5.5 Hardware Integrity Attack			
	• 5.6 Fault Injection			
	• 5.7 Command Injection (6; 5)			
	• 5.8 Man in the middle attack (17; 18)			
	• 5.9 GPS jamming (6; 5) (Interception)			
	• 5.10 Replay attack (6; 5)			
Countermeasures	• Checklist activities for handling emergency conditions (ID: 5.1-5.10)			
	• Manual monitoring of the flight (ID: 5.1-5.10)			
	Verify metadata along with actual data (ID: 4.9, 4.10)			
	• Anti-jamming techniques (ID: 4.7, 4.8, 4.11)			
	• Encryption and sensor firmware robustness (ID: 4.10)			
Component Affected	Hardware Components:			
	• Autopilot (ID: 5.3);			
	Software Components:			
	• Cyber (ID: 5.3)			
	Functional Components:			
	• Mission data link (ID: 5.2, 5.8-5.10); Operation Command Link (ID: 5.2, 5.7, 5.8, 5.10)			
Consequences	• Harm to people			
Consequences	Damage of drone			
	Damage of infrastructure			
Likelihood	Frequently			
2	Occasional			
	• Remote (ID: 5.1-4.6)			
	• Improbable (ID: 5.7-5.10)			
	Extremely Improbable			
	High			
Impact	• Medium (ID: 5.1-5.10)			
<u> </u>	• Low			
Final Recommendation	Unacceptable			
(Risk Level)	Tolerable			
	Acceptable			

Risk 6: GCS Failure

Table B.5: GCS Failure

Metric Category	Category Option Chosen		
ID#	6		
Operation Phase	Flight Operation		
Potential Attack Types	• 6.1 Spyware (6; 5)		
(ID # & Attack Type)	• 6.2 Malware (6; 5)		
	• 6.3 Authentication Bypass		
	6.4 Exploiting Trust in Client		
	6.5 Interception		
	6.6 Infrastructure Manipulation		
Countermeasures	• Checklist activities for handling emergency conditions (ID: 6.1-		
	6.6)		
	• Manual monitoring of the flight (ID: 6.1-6.6)		
	• Anti-spyware software, firewalls, packet filters [7] (ID: 6.1)		
	• Anti-malware software, packet filters, firewalls [7] (ID: 6.2)		
Component Affected	Hardware Components:		
	• GCS (ID: 6.1, 6.2)		
	Functional Components:		
	GPS transmission (ID: 6.3-6.6)		
Consequences	Harm to people		
	Damage of drone		
	Damage of infrastructure		
Likelihood	Frequently		
	Occasional		
	• Remote (ID: 6.3-6.6)		
	• Improbable (ID: 6.1-6.2)		
	Extremely Improbable		
	• High (ID: 6.3-6.6)		
Impact	• Medium (ID: 6.1-6.2)		
	• Low		
Final Recommendation	Unacceptable		
(Risk Level)	Tolerable		
	Acceptable		

Appendix C: Attacks

Table C.1 provides attack ID, the attack name, links to the CAPEC (Common Attack Pattern Enumeration and Classification) ID wherever possible, and references.

Table C.1: List of attack mechanisms

Attack	Attack Name	Ref.	Attack	Attack Name	Ref.
ID	(CAPEC ID)		ID	(CAPEC ID)	
A01	Code Injection (<u>242</u>)	(18; 19)	A23	Rogue Node (<u>616, 524</u>)	(18)
A02	Identity Spoofing (151)	(7)	A24	Theft and Vandalism (507)	(7)
A03	Sleep Deprivation	(18; 2)	A25	Rogue Drone Collision	(20)
				Attack	
A04	Hardware Integrity Attack	(20)	A26	Firmware Modification (<u>638</u>)	(18)
	(<u>440</u>)				
A05	Fault Injection Attack	(21)	A27	Supply Chain Attack	(18)
	(<u>624</u>)			(522,544)	
A06	Spyware (<u>549</u>)	(19)	A28	Corruption	(22)
A07	Malwares (<u>441</u>)	(23)	A29	Video Replay Attack	(19)
A08	Sensor Spoofing (<u>148</u>)	(2; 23)	A30	Root Kits (<u>552</u>)	(18)
A09	Sensor Jamming (<u>601</u>)	(8)	A31	Key Loggers (<u>568</u>)	(18)
A10	Sensor Sniffing (<u>157</u>)	(19)	A32	Password Cracking (<u>55</u>)	(18)
A11	Communication Link	(18)	A33	Eavesdropping (<u>651</u>)	(7)
	Jamming (<u>601</u>)				
A12	Command Injection (248)	(18; 24)	A34	Scrambling/Distortion	
A13	False Data Injection (240)	(18; 23)	A35	Reference Station Attack	(18)
A14	Fuzzing Attack (28)	(18; 20)	A36	Signal Delay (236)	(18)
A15	Network Isolation	(18)	A37	Address Resolution Protocol	(19)
				(<u>590</u>)	
A16	Black Hole/Gray Hole	(18)	A38	Hijacking (501)	(18)
A17	Packet Sniffing (157)	(18)	A39	Cross Layer Attack	(18)
A18	Man in the Middle Attack	(18)	A40	Multi-Protocol Attack	(7)
	(<u>94</u>)				
A19	GPS Signals Jamming	(18; 25)	A41	Back Doors	(18)
	(<u>627</u>)				
A20	Replay Attack (<u>60</u>)	(18; 19)	A42	Code Modification (<u>242</u>)	(19)
A21	Denial of Service (210)	(7; 25)	A43	External Signal Spoofing	(19)
A22	De-authentication Attack	(19)	A44	In-Vehicle Spoofing	(19)

Selected literature on UAS testing, risk modeling, and architectural frameworks

The cybersecurity literature is vast. Therefore, this selected literature review describes past studies performed in the context of UAS. Specifically, testing, risk modeling and mitigation, and architectural frameworks are considered. Papers focused on a single UAS attack are not discussed here, but can be identified from the references. Both attacks and countermeasures are covered because a comprehensive method to design and test require both perspectives.

Altway and Youssef (22) identified security, safety, and privacy aspects of civilian drone operation, including protocols for fail-safe procedures. Horowitz et al. (26) developed architectural decision support, mission-centric analysis and modeling methods to combining inputs from system experts at the design and user levels in support of cybersecurity aware systems engineering. The thesis of Leccadito (18) developed a hierarchical embedded cyber attack detection framework in the context of UAS to ensure security is a testable property that is built into a system. Hagerman et al. (27) described a UAS security testing approach which uses behavioral, attack, and mitigation models. The behavioral and attack models are used to identify attack points. The mitigation model then generates the security test suite. DroneJack (28) allows the user to shutdown a UAS, pilot the UAS, or direct it to GPS coordinates as well as exploit data, including recovery of photo, video, and flight logs. Custom attacks can also be configured and deployed. DroneJack can therefore be used as a testing tool. The Defense Advanced Research Projects Agency (DARPA) High Assurance Cyber Military Systems (HACMS) Program demonstrated that an open-source quadcopter was secured from hijacking despite being given six weeks and full access to the source code of the copter.

Krishna and Murphy (19) reviewed UAS cybersecurity vulnerabilities and developed a UAS specific taxonomy of attacks according to attack vector and target. Solodov et al. (29) overviewed UAS technology and potential threats to nuclear facilities, evaluating measures to detect, delay, and neutralize. Mansfield et al. (30) analyzed security vulnerabilities within smart phones and tablets, and software applications to develop a risk model of the threat profile of the Department of Defense Ground Control Station communications. Similarly, Hartmann and Steup (8) developed a risk assessment methodology for UAS which considers physical and environmental factors, communication, storage media, sensors, and fault handling mechanisms.

Garg et al. (31) anticipate the role of UAS will play in edge computing, which creates new quality of service requirements to ensure uninterrupted data sharing for what may come to be regarded as mission and life critical services. Toward this end, the authors proposed a data-driven transportation optimization model that also conducts cyber-threat detection. Vattapparamban et al. (32) review aspects of UAS related to cybersecurity, privacy, and public safety. They also provide examples of attacks on UAS as well as UAS as a platform from which to carry out attacks. Kim et al. (6) reviewed general and network systems specific cyberattacks to identify potential threats, vulnerabilities, post-attack behaviors in existing autopilot systems. Stracquodaine et al. (2) presented a comprehensive method to protect a UAS from hardware and software attacks by directly monitoring the autopilot as well as the onboard operating system, enabling dependable operation despite sensor or data spoofing attacks. Given the high potential for cyberattacks on UAS, Blazy et al. (21) proposed an efficient protocol to ensure the confidentiality of data collected, which is independent of the encryption scheme implemented.

Appendix D: Countermeasures

Table D.1 lists classes of countermeasure identified according to their ID and name.

Table D.1: Countermeasures

	Countermeasure				
ID	Name	ID	Name		
C01	Update firmware	C13	Use channel switching		
C02	Utilize strong federated identity	C14	Use backup channels		
C03	Check for power leakage	C15	Perform jamming detection techniques		
C04	Use intrusion detection	C16	Validate user- controllable input		
	technique				
C05	Perform penetration testing	C17	Whitelisting/blacklisting the inputs.		
C06	Use anti-spyware and packet	C18	Use Fault detection approach		
	filters				
C07	Use firewalls, anti-malware and	C19	Use secure and robust protocols with		
	packet filters		strong authentication		
C08	Verify metadata along with	C20	Utilize redundant communication links		
	actual data.				
C09	Cross verify data from	C21	Utilize strong passwords		
	redundant sensors				
C10	Measure the signal power level	C22	Fail safe/fail loud protocol		
	to detect jamming				
C11	Use encryption technique	C23	Use physical security techniques		
C12	Use adaptive transmission	C24	Utilize counter-drone techniques		

Table D.2 lists general mitigation categories into which specific counter measures can be classified, including: (D)etect, (N)eutralize, (L)imit, and (R)ecover as well as the corresponding effectiveness: (L)ow, (M)edium, (H)igh, and (V)ery high. Classification may depend on system and mission specific factors.

Table D.2: Mitigation effectiveness notations

Effectiveness	Mitigation Category [49]				
	Detect	Neutralize	Limit	Recover	
Very High	DV	NV	LV	RV	
High	DH	NH	LH	RH	
Medium	DM	NM	LM	RM	
Low	DL	NL	LL	RL	

Risk Assessment of selected UAS components utilized by MassDOT

Standard practice (23) relies on fail-safe protocols for a UAS to execute scripted behavior such as return to base or hold in cases of jamming or disruption of communications. Hard-coded geofences are still vulnerable to override in the case of spoofing or signal hijacking. Omnidirectional antennas radiate in all directions to improve outdoor performance, but increase eavesdropping risk (18) on the commercial 2.4 and 5.8 GHz bands.

The following discusses functionality and some potential vulnerabilities associated with UAS components utilized by MassDOT. However, a detailed mapping to attacks and potential countermeasures enumerated above is not performed here.

DJI Inspire 2 is a platform integrating high definition video transmission (Security issues)

- In the past, the SSL Certificate for the DJI website has been compromised. DJI subsequently revoked this certificate and replaced it with a new certificate. Tampering with website content would have been possible.
- An independent security researcher reported that an Amazon Web Services server repository was accessible by unauthorized parties and was fixed in a day. Data could have been stolen or altered.
- The new Local Data Mode stops internet traffic to and from its DJI Pilot app, in order to enhance data privacy. However, this prevents connecting to the Internet and the DJI Pilot app cannot detect the user's location, display the map and geofencing information such as No Fly Zones and temporary flight restrictions. Moreover, firmware updates will not be available. Telemetry data contained in flight logs such as altitude, distance, and speed will remain stored on the aircraft even if the user deactivates Local Data Mode, preventing utilization of real-time counter measures such as auto-pilot monitoring.

AirMap provides access to airspace advisories, flight plan creation, and enables contact with airspace authorities. (Security issues)

• AirMap features include: an intrusion detection system, log analysis, and a web application firewall, penetration testing and vulnerability assessments, content delivery network, and data security controls. Compromise of these features can enable various attacks that could be executed throughout the mission lifecycle.

Skyward is a drone-management platform

Skyward's interactive airspace allows viewing of flight restrictions, marking points of
interest and hazards to be avoided. Syncing Skyward with DroneDeploy and DJI GO
enables automated log upload, flight path visualization, and battery health monitoring.
Compromise of Skyward can introduce vulnerabilities associated with its functionality,
while compromise of Skyward while linked to DroneDeploy and DJI GO may enable
introduction of vulnerabilities in to all aspects of functionality in DroneDeploy and DJI
GO that interact with Skyward.

DroneDeploy is a cloud-based software to automate drone flight, capture data, and create maps and 3D models. (Security issues)

While DroneDeploy implements many practices in support of data, web, and application security, compromise of these services can introduce corresponding vulnerabilities into the mission lifecycle. Assessment of data related services must consider the types of data transmitted through and stored on these platforms. Web and application security must consider the corresponding capabilities to identify and prioritize potential vulnerabilities.

- Data is encrypted in transit and at rest on DroneDeploy servers.
- Data is sent securely to DroneDeploy via the HTTPS protocol using the latest recommended ciphers and transparent LAN service (TLS).
- DroneDeploy is hosted on Amazon Web Services and Google Cloud.
- DroneDeploy employees do not have physical access to the Amazon or Google data centers, servers, network equipment, or storage, which can deter insider data theft.
- Annual network and system level penetration tests are conducted by an outside security vendor.
- Each software component undergoes a security risk assessment based on the Open Web Application Security Project (OWASP) Top 10, which is a list of the ten most critical security risks to web-based applications identified by consensus among web security organization.
- Application security includes password-based logins, and Google single sign-on for all accounts allowing use of Google or GSuite accounts to authenticate users requiring two-factor authentication with mechanisms including access codes or security keys.

Appendix E: Functional Decomposition and Data-flow

A UAS may be decomposed into four functional modules (6)

- 1. Navigation: Analyze sensory data for Autopilot decisions.
- 2. Data Collection: Collect raw data for mission and UAS status.
- 3. Communication: Send and receive the control signal and UAS data.
- 4. Flight Control: Interact with other modules to preserve correct UAS flight state

Navigation Module

The navigation module is responsible for correctly stabilizing the UAS and navigating the UAS along a predefined path. Navigation can be performed automatically by the auto-pilot function of the drone or through manual control using a handheld controller over a wireless network setting. The auto-pilot function uses the predefined mission plan and sensing data generated from the navigational sensors noted above to navigate. In manual control, a user controls the navigation using line of sight communication with the UAS. Both the manual and auto-pilot modes are controlled by the central flight controller, which is primarily responsible for processing the sensor data.

Figure E.1 shows the decomposition of a UAS into four functional modules (17) and dataflow. Navigation related functions and data flows are highlighted with bold arrows and boxes.

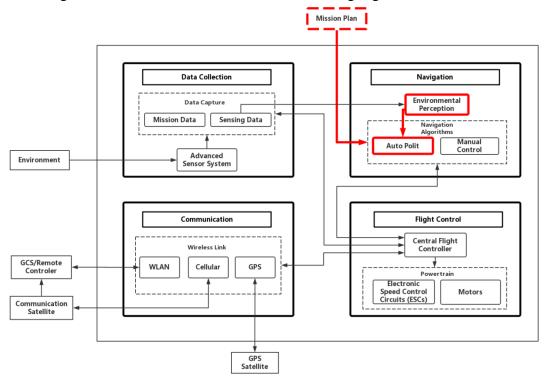


Figure E.1: UAS Functional Modules and Data-flow

Figure E.1 summarizes potential CAPEC attacks on functional modules of Navigation. Relevant CAPEC attacks include: forced deadlock, fault injection, and authentication bypass. For example, corruption of navigational data can lead to a forced deadlock. UAS functions such as environmental perception and the auto-pilot mechanism may be effected by this attack and the primary risks associated with this attack is failure of the autopilot software, resulting in a crash or fly-away.

Table E.1: Functional modules and potential attacks on Navigation

Navigation				
Potential Attacks		Functional Modules		Risk (checklist + literature)
Attack Type (CAPEC)	Attack	Environmental Perception	Auto Pilot	
Forced Deadlock	Corruption [23]	Affected	Affected	Autopilot Error/Fail, Crash, Fly Away
Fault Injection	Code Injection [18]	Affected	Affected	Autopilot Error/Fail, Crash, Fly Away
	False Data Injection [18]	Affected	Affected	Autopilot Error/Fail, Crash, Fly Away
Authentication Bypass	Rootkits [18]	Affected	Affected	UAS Loss of Control, Crash

Data Collection Module

The data collection module acquires raw data during the mission and provides UAS mission control with necessary control data. The unit interacts with the environment to sense its surroundings. Sensor data may be divided into two types, navigational and mission specific. Navigational measurements such as magnetic sensors accelerometers, gyroscope sensors, and tilt sensors. These sensors provides an environmental perception about the UAS location, speed, position, stabilization, and orientation in real time. Possible mission specific sensors include cameras, infrared or night vision camera to take video and still images. Other type of mission specific sensors can be temperature and pressure sensors, which can provide additional information about the UAS operational environment. These sensor data are then sent to the navigational unit and flight control unit for further processing.

Figure E.2 shows data collection related functions and data flows highlighted with bold arrows and boxes.

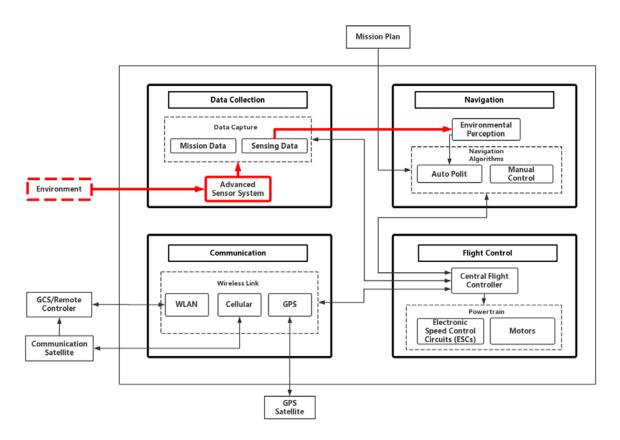


Figure E.2: Functional modules and potential attacks on data collection

Table E.2 summarizes potential CAPEC attacks on functional modules of data collection.

Table E.2: Functional modules and potential attacks on data collection

Flight Control					
Potential Attacks		Hardware Component		Functional Component	Risk (checklist + literature)
Attack Type (CAPEC)	Attack Name	ESCs	Motors	CFC	
Exploitation of Trusted Credentials	Back Doors (18)			Affected	Autopilot Error/Fail
Hardware Integrity	Firmware Modification (18)	Affected			Crash, Fly Away
Attack	Supply Chain Attack (18)		Affected		Crash, Fly Away
Forced Deadlock	Corruption (23)			Affected	Autopilot Error/Fail
Authentication Bypass	Rootkits (18)			Affected	Autopilot Error/Fail
Malicious Logic Insertion	Sleep Deprivation (18)			Affected	Autopilot Error/Fail, Crash
Fault Injection	Code Injection (18) False Data	Affected		Affected Affected	Autopilot Error/Fail, Crash Autopilot Error/Fail,
Injection	Injection (18)	Affected		Affected	Crash
Exploiting Trust in Client	Fuzzing (18)			Affected	Autopilot Error/Fail, Crash

Communication Module

The Communication module is responsible for transmitting and receiving information, either from the user or from GPS satellites. There are three primary wireless communication links in a UAS. The first link uses a wireless network based on IEEE 802.11 2.4GHz channel. This channel is used for line of sight communication with the UAS. The second link is based on the cellular network to control the UAS remotely. The third communication link communicates with GPS satellites.

Figure E.3 shows communication related functions and data flows highlighted with bold arrows and boxes.

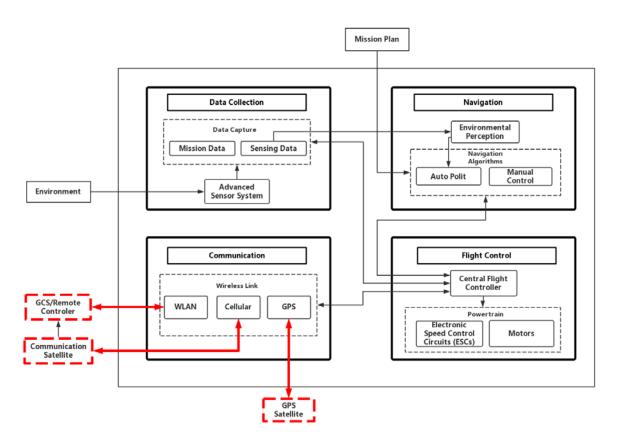


Figure E.3: Communication module

Table E.3 summarizes potential CAPEC attacks on functional modules of communication.

Table E.3: Functional modules and potential attacks on communication

Communication				
Potential Attacks		Functional Components		Risk (checklist + literature)
Attack Type (CAPEC)	Attack Name	Data Tx	GPS Tx	
Input Data Manipulation	Keyloggers (18)	Affected		Resource Leakage
Authentication Bypass	Rootkits (18)	Affected	Affected	Resource Leakage, GCS failure
Exploiting Trust in Client	Fuzzing (18)	Affected		GCS Failure
	Sniffing (19)	Affected	Affected	Resource Leakage
Interception	Password Cracking (18)	Affected		Resource Leakage, Automatic transmission Locked
-	Eavesdropping (7)	Affected	Affected	Resource Leakage
	Scrambling/ Distortion	Affected		GCS Failure
Infrastructure	Reference Station Attack (18)	Affected	Affected	GCS Failure
Manipulation	Signal Delay (18)	Affected	Affected	GCS Failure, Automatic Transmission Locked
Communication Channel Manipulation	Black Hole/Gray Hole (18)	Affected		GCS Failure, Automatic Transmission Locked
	Man-in-the-Middle (18)	Affected		Resource Leakage, Automatic Transmission Locked, GCS Failure
	Replay Attack (19)	Affected	Affected	GCS Failure
	Address Resolution Protocol (19)	Affected		GCS Failure
Protocol Manipulation	Spoofing (19)	Affected		Resource Leakage, GCS Failure
	Network Isolation (18)	Affected		GCS Failure
	Rogue Node (18)	Affected		Resource Leakage, GCS Failure
	Hijacking (7)	Affected		Resource Leakage, GCS Failure
	Cross Layer Attack (7)	Affected		Resource Leakage, GCS Failure

	Multi-Protocol Attack (7)	Affected		Resource Leakage, GCS Failure
Cmmd Injection (18)		Affected	d GCS Failure	
Traffic Injection	False Data Injection (18)	Affected	Affected	GCS Failure
Obstruction	Jamming (19)	Affected	Affected	GCS Failure,
				Loss of Data Link
	Deauthentication attack (19)	Affected	Affected	GCS Failure,
				Loss of Data Link
	DoS (19)	Affected	Affected	GCS Failure,
				Loss of Data Link

Flight Control Module

The flight control module consists of a central flight controller, which is responsible for processing the sensor and mission data, mission plan, and wireless communication data into electrical signals for the UAS motors and control circuits. The flight controller provides bidirectional communication between the data collection, communication, and navigation modules.

Figure E.4 shows flight control related functions and data flows highlighted with bold arrows and boxes.

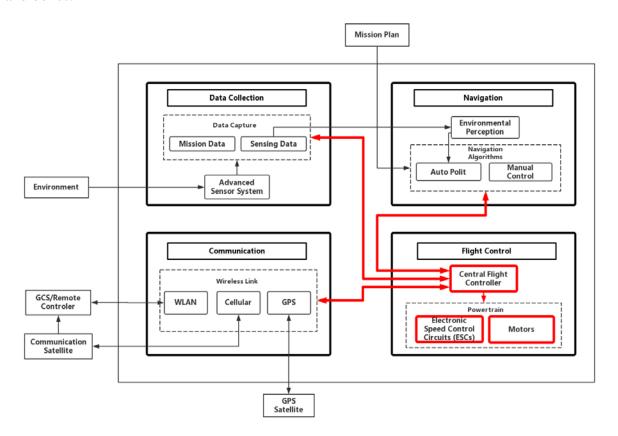


Figure E.4: Functional modules and potential attacks on flight control

Table E.4 summarizes potential CAPEC attacks on functional modules of Flight Control.

Table E.4: Flight control

	Flight Control					
Potential Attacks		Hardware Component		Functional Component	Risk (checklist	
Attack Type (CAPEC)	Attack Name	ESCs	Motors	CFC	+ literature)	
Exploitation of Trusted Credentials	Back Doors (18)			Affected	Autopilot Error/Fail	
Hardware Integrity	Firmware Modification (18)	Affected			Crash, Fly Away	
Attack	Supply Chain Attack (18)		Affected		Crash, Fly Away	
Forced Deadlock	Corruption (23)			Affected	Autopilot Error/Fail	
Authentication Bypass	Rootkits (18)			Affected	Autopilot Error/Fail	
Malicious Logic Insertion	Sleep Deprivation (18)			Affected	Autopilot Error/Fail, Crash	
Facility is a firm	Code Injection (18)			Affected	Autopilot Error/Fail, Crash	
Fault Injection	False Data Injection (18)	Affected		Affected	Autopilot Error/Fail, Crash	
Exploiting Trust in Client	Fuzzing (18)			Affected	Autopilot Error/Fail, Crash	

Appendix F: Attacks Categorized According to Mission Stage and Category

As noted in Figure 2.1, drone missions may be divided into pre-, in-, and post-flight. Attacks are classified into different categories according to the CAPEC standard developed by the MITRE Corporation (5) and links provided wherever possible. Our study was limited to the pre and inflight stages with emphasis on the inflight stage. Preflight categories considered include software and hardware, while inflight categories include software, hardware, communication, and physical security.

Preflight

Preflight software attacks

Preflight software attacks include fault injection and authentication bypass. The following tables summarize these attacks, alternative names these attacks are known by, the physical component subject to the attack, mechanism of the attack according to the CAPEC, security service attribute affected, risk, current countermeasures taken by MassDOT (present in their checklist), and recommended techniques to mitigate the risk.

Table F.1: Preflight software attacks

Attack type [CAPEC]: Fault Injection (624)

Attack name	Code Injections (18; 19),
(Physical) component	Firmware
Mechanism of attack (CAPEC)	<u>Inject unexpected items into the code (152)</u>
Security service attribute affected	Integrity
Risk	Crash Autopilot Software Error/Fail
Current countermeasure activities	Firmware updated.
[MassDOT checklist]	COTS related findings: AirMap has an Intrusion
	detection System [https://www.airmap.com/security/]
Recommended mitigation	Regular patching of software (CAPEC) IDS (33)
techniques	

Attack type [CAPEC]: <u>Authentication bypass (115)</u>

Attack type [CA	PECJ: Authentication bypass (115)
Attack name	Identity Spoofing (7)
(Physical) component	Software used, e.g, Skyward, AirMap, DroneDeploy
Mechanism of attack (CAPEC)	Engage in Deceptive Interactions (156)
Security service attribute affected	Authentication, Confidentiality.
Risk	Hostile environment
Current countermeasure activities	Flight authorization; Flyaway in airport reviewed and
[MassDOT checklist]	informed to FAA; Map cached, Flight plan is built (setting
	altitudes, gimble angle).
	COTS related findings:
	DroneDeploy provides Google single sign-on for all
	accounts allowing use of Google or GSuite accounts to
	authenticate users requiring two-factor authentication.
	Google logins can be protected by multiple 2FA
	mechanisms including access codes or security keys.
	https://support.dronedeploy.com/docs/security-and-
	<u>compliance</u> .
Recommended mitigation	Strong federated identity such as SAML to encrypt and
techniques	sign identity tokens in transit.
	(Ref: CAPEC)
	Session timeout for all sessions.
	(Ref: CAPEC)
	Verify of authenticity of all

Table F.2: Preflight hardware attacks

Attack type [CAPEC]: Malicious logic insertion (441)

Attack name	Sleep deprivation (2; 18)
(Physical) component	Battery
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
Security service attribute affected	Integrity, Availability
Risk	Battery depletion
Current countermeasure activities	Batteries (controller, display) charged.
[MassDOT checklist]	Communication devices charged.
	COTS related findings:
	Syncing Skyward with Drone-Deploy and DJI GO
	enables visualize battery health.
	[https://community.skyward.io/s/dji-go-syncing-
	and-flight-visualizations]
Recommended mitigation techniques	Check for power leakage.

Attack type [CAPEC]: <u>Firmware Modification (638)</u>

Attack name	Hardware Integrity Attack (6)
(Physical) component	ESC, Camera and other sensors
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
Security service attribute affected	Integrity
Risk	Crash, Autopilot Software Error/Fail
Current countermeasure activities	UAS hardware inspected, registered and packed
[MassDOT checklist]	Rotors inspected, mounted. Camera fixed. Mission
	limitations and safety (eg. radio interference is
	checked, hazards/site Assessment) Weather check,
	Flyaway in airport reviewed and informed to FAA
Recommended mitigation techniques	Intrusion detection, (2)
	(normalcy profiling), CIDS (33)
	Penetration testing with the Attack tools

Attack type [CAPEC]: Fault Injection (624)

Attack name	Fault Injection, Signals like EMP
	(electromagnetic pulses), laser pulses, clock glitches,
	etc.) (34)
(Physical) component	ESC, Barometer, Gyroscope, Accelerometer, Antenna
Mechanism of attack (CAPEC)	<u>Inject unexpected items (152)</u>
Security service attribute affected	Integrity, Availability
Risk	Crash, Autopilot Software Error/Fail
Current countermeasure activities	UAS hardware inspected, registered and packed
[MassDOT checklist]	Rotors inspected, mounted. Camera fixed. Mission
	limitations and safety (eg. radio interference is
	checked, hazards/site Assessment) Weather check,
	Flyaway in airport reviewed and informed to FAA
Recommended mitigation techniques	Intrusion detection, (2)
	(normalcy profiling), CIDS (33) Penetration testing
	with the Attack tools

In flight

Inflight attacks are classified into four categories according to the CAPEC standard, namely software, hardware, communication, and physical security.

Table F.3: Inflight software attacks

Attack type [CAPEC]: Malicious logic Insertion (441)

	Mancious logic inscrition (441)
Attack name	Spyware (23)
(Physical) component	GCS or Flight controller
Mechanism of attack (CAPEC)	<u>Inject unexpected items (152)</u>
Security service attribute affected	Integrity Confidentiality
Risk	Resource leak
Current countermeasure activities	Unknown
[MassDOT checklist]	
Recommended mitigation techniques	Anti—spyware software, firewalls, packet filters,
	Managing the security of the supply chain (22)
Attack name	Malwares (22) like Viruses/worms/Trojan/Rootkit/
	keyloggers (18)
(Physical) component	GCS (18) Or Flight controller (on-board control unit)
	(19)
Mechanism of attack (CAPEC)	<u>Inject unexpected items (152)</u>
Security service attribute affected	Integrity
Risk	Crash
	Autopilot Software Error/Fail
Current countermeasure activities	COTS related finding
[MassDOT checklist]	Air Map has a Web Application Firewall
	Ref: AirMap Website-
	https://www.airmap.com/security/]
Recommended mitigation techniques	Anti-malware software, packet filters, firewalls,
	managing the security of the supply chain (22)

Table F.4: Inflight hardware attacks

Attack type [CAPEC]: Protocol Manipulation (272)

· · · · · · · · · · · · · · · · · · ·	1 Totocoi Mumpulation (272)
Attack name	Sensor Spoofing (2; 18)
(D) 1 1)	CDC 1 1 11 C
(Physical) component	GPS sensor, obstacle avoidance sensors, Camera
	sensor, other sensors like IR sensor, ultrasonic
	wave sensor, magnetometer, barometer (22)
Mechanism of attack (CAPEC)	Engage in Deceptive Interactions (156)
	Content spoofing (148)
Security service attribute affected	Integrity
Risk	Loss of GPS, crash, fly away (8; 19), auto pilot
	software error, loss of situational awareness
Current countermeasure activities	Manual monitoring of the flight checklist
[MassDOT checkliist]	activities for handling emergency conditions
	(mentioned in above table.)
Recommended mitigation techniques	Verify metadata along with actual data (35),
	cross verify data from redundant sensors (8),
	RANSAC algorithms
	To it to the discriming

Attack type [CAPEC]: Obstruction (607)

Attack name	Sensor Jamming (8)
(Physical) component	GPS sensor, obstacle avoidance sensors, camera
_	sensor, other sensors like IR sensor, ultrasonic
	wave sensor, magnetometer
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
Security service attribute affected	Integrity, Availability
Risk	Crash, fly away (8), auto pilot software error,
	loss of situational awareness
Recommended mitigation techniques	Measure the signal power level to detect
	jamming. (22), alternative navigation method
	[INS] (21)(Eg: Multiple camera system like
	MTS-B (8))

Attack type [CAPEC]: Interception (117)

Attack type [CAI EC]. interception (117)	
Attack name	Sensor sniffing (19)
(Physical) component	GPS sensor, obstacle avoidance sensors, camera
	sensor, other sensors like IR sensor, ultrasonic
	wave sensor, magnetometer
Mechanism of attack (CAPEC)	Collect and analyze information
Security service attribute affected	Affected service attribute
Risk	Resource leak
Recommended mitigation techniques	Encryption (18) sensor firmware robustness

Table F.5: Inflight communications attacks

Attack type [CAPEC]: Obstruction (607)

Attack name	Communication link Jamming (18)	
(Physical) component	Control transmission and data transmission link	
Mechanism of attack	Manipulate System Resources (262)	
(CAPEC)	Obstruction (607)	
Security service attribute	Availability	
affected	Trumonity	
Risk	Loss of data link, Crash, Flyaway, Loss of direct visual	
Current countermeasure	Manual monitoring of the flight.	
activities [MassDOT	Handling Emergency situations based on	
checklist]	UAS ability to execute scripted behavior (return to base or hold) (23) fail-safe	
	protocol should be implemented. (23)	
	1. Fly away	
	a. Alert crew	
	b. Press Home button	
	c. Press kill if required	
	2. Loss of datalink	
	a. Alert crew	
	b. Assess loss type	
	c. Press Home Button	
	3. Loss of GPS	
	a. Wait in hover for 1 min to reconnect.	
	b. Press Home Button	
	4. Autopilot Software Error/Fail	
	a. Stabilize aircraft.	
	b. Switch to manual mode, fly towards GCS.	
	5. Loss of Engine power	
	a. Note the position of aircraft.	
	b. Switch to manual mode.	
	c. Fly to predetermined safe zone.d. If maintaining altitude, fly to home.	
	6. GCS failure	
	a. Home button pressed.	
	b. Manual mode.	
	c. Fly home.	
	d. Land.	
	7. Intrusion of Aircraft into UAS airspace	
	a. Land immediately.	
	8. Crash	
	a. Switch to Manual mode. b. Safety procedures.	
	Geo-fencing is used.	
	COTS related findings:	
	1) All data is sent securely to DroneDeploy via the HTTPS protocol using the	
	latest recommended ciphers and TLS	
	protocol.(Ref: https://support.dronedeploy.com/docs/security-and-compliance)	
	2) DJI has recently launched a new Local Data Mode. This new mode stops	
	internet traffic to and from its DJI Pilot app, in order to provide enhanced data	
	privacy assurances. (Pof: https://www.ovpollAS.com/pows/letest/solution.cy/por.yulners/bilities	
	(Ref: https://www.expoUAS.com/news/latest/solution-cyber-vulnerabilities-dji-drones/)	
	1 ⁻¹	
Recommended mitigation	Adaptive Transmission, Channel switching, Backup channels Jamming	
techniques	detection, Electronic Counter Measure techniques and jamming resistant	
	modulations for security (19).	

Attack type [CAPEC]: Traffic Injection (594)

Attack name	Command Injection (18; 36)
(Physical) component	Control transmission link
Mechanism of attack (CAPEC)	Inject unexpected items (152)
Security service attribute affected	Integrity
Risk	Crash, Autopilot Software Error/Fail
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	User-controllable input should be validated and filtered for
techniques	potentially unwanted characters. (CAPEC)
	Whitelisting/blacklisting the inputs. (CAPEC)
	Location-based authentication (22)A lightweight Public
	Key Infrastructure (PKI). (22)
Attack name	False Data Injection (18; 22)
(Physical) component	Data transmission link
Mechanism of attack (CAPEC)	Engage in Deceptive Interactions (156)
	Content spoofing (148)
Security service attribute affected	Integrity
Risk	Integrity
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	Fault detection approach (6)
techniques	Checking the meta data along with the data. (19)

Attack type [CAPEC]: Exploiting Trust in Client (22)

Attack name	Fuzzing Attack (6; 18)
(Physical) component	Control transmission and data transmission link
Mechanism of attack (CAPEC)	Employ Probabilistic Techniques (223), fuzzing(28)
Security service attribute affected	Authentication
Risk	Illegal access of UAS which might lead to autopilot
	software error.
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	Secure networking protocols.
techniques	white-box and black-box fuzzing tests (6)

Attack type [CAPEC]: Protocol Manipulation (272)

Attack name	Network Isolation (18)
(Physical) component	Control transmission and data transmission link
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
	<u>Infrastructure manipulation (161)</u>
Security service attribute affected	Availability
Risk	Loss of data link (loss of communication) (19)
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above
Recommended mitigation	Secure networking, Protocols, Redundant links (23)
techniques	

Attack type [CAPEC]: Communication Channel Manipulation (216)

J1 - L	
Attack name	Black Hole/Gray Hole (18)
(Physical) component	Control transmission and data transmission link
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
	<u>Infrastructure manipulation (161)</u>
Security service attribute affected	Integrity, Availability
Risk	Loss of communication, situational awareness, Crash
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above
Recommended mitigation	Verifying the links, in fact, connected to the site they
techniques	intended, Secure network protocols.

Attack type [CAPEC]: Interception (117)

[CH EC]: Merception (117)
Packet Sniffing (18; 32)
Data transmission link
Collect and Analyze Information (118)
Confidentiality
Resource leak
See Obstruction under Inflight communications attacks
above.
Encryption (Combination of OTR and PGP (36) and
authentication [MAC] techniques.
Password cracking (18)
Control transmission and data transmission link
Employ Probabilistic Techniques (223)
Brute force (112)
Authentication,
Confidentiality
Illegal access to UAS which might lead to resource leak,
flyaway, crash
See Obstruction under Inflight communications attacks
above.
Strong passwords. (34)

Attack type [CAPEC]: Communication Channel Manipulation (216)

Attack name	Man in the Middle attack (18; 22)
(Physical) component	Control transmission and data transmission link
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
	Communication Channel Manipulation (216)
Security service attribute affected	Confidentiality, Integrity
Risk	Resource leak, Crash, Fly away, Loss of datalink (3 rd party
	can cause the link to disconnect)
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	Secure network protocols, Encryption (18), Authentication
techniques	Like One-time key (21)
	location-based authentication (22)

Attack type [CAPEC]: Obstruction (607)

Attack name	GPS signals jamming (18; 22)
(Physical) component	GPS signals jamming (18; 22)
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
	Obstruction (607)
Security service attribute affected	Availability
Risk	Loss of GPS, Crash (19), Fly away, Auto Pilot Software
	error
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	Anti-Jamming techniques.
techniques	Jamming detection (22), Electronic
	Counter Measure techniques and jamming resistant
	modulations for security. (19)

Attack type [CAPEC]: <u>Authentication Bypass (115)</u>

Attack name	De-authentication attack (19; 32)
(Physical) component	Control transmission and data transmission link
Mechanism of attack (CAPEC)	Manipulate System Resources (262)
Security service attribute affected	Flight safety, Availability
Risk	Loss of Data Link
	Drone can go to unexpected state (22), Ungraceful UAS
	operation shutdown (19; 22)
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	Strong authentication mechanisms and side channel
techniques	analysis (22)
	Use of Physical Unclonable functions (PUF) in
	authentication. (22)

Attack type [CAPEC]: Protocol Manipulation (272)

Attack name	Rogue Node (18)
(Physical) component	Control transmission and data transmission link
Mechanism of attack (CAPEC)	Inject unexpected items (152)
Security service attribute affected	Confidentiality, Integrity, Availability
Risk	Hostile environment
Current countermeasure activities	See Obstruction under Inflight communications attacks
[MassDOT checklist]	above.
Recommended mitigation	Anomaly-based IDS (21)
techniques	

Table F.6: Inflight physical security attacks

Attack type [CAPEC]: Physical Theft (507)

Attack name	Theft and Vandalism (22)
(Physical) component	Entire UAS or other physical components like camera
Mechanism of attack (CAPEC)	Subvert Access Control (225)
Security service attribute affected	Availability, Confidentiality
Risk	Loss or Damage to UAS/UAS components
Current countermeasure activities	Manual monitoring of the drone.
[MassDOT checklist]	
Countermeasure	Electronic immobilizer (22) alarms, and monitoring of
	targets.

Attack type [CAPEC]: Obstruction (607)

EMP or Laser pulses [CAPEC]
ESC, Barometer, Gyroscope, Accelerometer, Antenna
Fault Injection (624)
Availability
Crash
Manual monitoring of the drone.
Sense and avoid features (22)
Rogue Drone Collision Attack (20)
Entire UAS in flight
Using rogue drones
Availability
Crash
Manual monitoring of the drone.
Counter-drone techniques. (20)