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ABSTRACT

This study analyzes the sensitivity of the efficiency
indicators of a sample of European railway com-
panies to different alternatives in output specifica-
tion. The results vary according to the specification
selected. However, investigating the causes of these
differences reveals that the efficiency indicators
obtained with different specifications can be
brought substantially closer, particularly when the
efficiency indicators obtained by considering
freight and passenger train-kilometers as output
variables are corrected to account for the impact of
the load factor.

INTRODUCTION

The literature on productivity and efficiency fre-
quently reports different rankings in terms of both
productivity and efficiency indicators, depending on
the output variables used in the construction of the
model.1 In the case of railways, there are very few
studies, besides that by Oum and Yu (1994), in
which this phenomenon has been tested since most
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1 Berg et al. (1992) and Grifell et al. (1993) analyze the
levels of efficiency for a sample of banks and show the
sensitivity of the results obtained to the specification
adopted for the output. 



estimates use a single specification for output.
Recently, Oum et al. (1999) published a complete
review of productivity and efficiency estimates in rail
transport in which it is clear that the results of these
estimates are very sensitive to output specification.

Other papers have estimated technical efficiency
levels for European railways on the basis of a
deterministic production function (Perelman and
Pestieau 1988) or a stochastic one (Gathon and
Pestieau 1995). Cantos et al. (1999) obtained effi-
ciency indicators using a non-parametric
approach, and Cowie and Riddington (1996) used
alternative methodologies. According to the latter,
accurate measurement of efficiency is not possible
although research is able to indicate good and bad
performers. In most of the studies quoted, such as
in Cantos et al. (1999), some companies are gener-
ally very efficient, as in the case of Sweden’s SJ,
Holland’s NS, or Switzerland’s CFF. However, oth-
ers are very inefficient, such as the Greek CH, the
Danish DSB, and the Irish CIE.

A notable feature of the railway industry is its
multi-product character: there are various types of
passenger railway output (long distance, urban,
high speed, etc.) and freight output (general, inter-
modal, parcels, etc.). However, due to the shortage
of data, most studies restrict the output vector to
two aggregate dimensions, passenger and freight.
The measurements most commonly used are the
number of passenger-kilometers and ton-kilometers
(see Caves et al. 1980, 1982, and 1985; McGeehan
1993; and Cantos et al. 1999). These demand-relat-
ed measurements for output enable an assessment
of the level of user consumption and the value they
place on the service. As indicated by Oum and Yu
(1994), this specification is recommended when
there is little government control, such as when the
restrictions imposed on the level of service (fre-
quency) or prices are of little importance. In that
case, the indices of passenger-kilometers and ton-
kilometers adequately reflect the efficient produc-
tive behavior of the various production units.

On the other hand, if there is a high degree of
government control over decisions about pricing or
frequency, the above specification will not ade-
quately reflect the greater or lesser efficiency of the
companies since output will be influenced by these
regulatory measures. In this case, supply-related or

intermediate measurements for output which place
the emphasis on the degree of capacity or service
level supplied by the companies are more suitable.
For this reason, Nash (1985), Deprins and Simar
(1989), Preston (1996), and Cantos and Maudos
(2000) use the number of freight and passenger
train-kilometers as output. These types of mea-
surements isolate the effect of governmental con-
trol measures. Nevertheless, the use of this second
type of measurement may lead to paradoxical
results, such as situations in which companies with
very low indices of load factor but with high levels
of train-kilometers run are even more efficient than
companies with high indices of load factor and low
levels of train-kilometers run.

The problem with grouping companies from
different countries is that the degree of govern-
mental intervention and control is very different,
complicating choice of measurement type. Oum
and Yu (1994) estimate efficiency indicators on the
basis of a Data Employment Analysis (DEA)
model, using two different sets of measurements,
passenger-kilometers and ton-kilometers on the
one hand and passenger train-kilometers and
freight train-kilometers on the other. Their results
confirm that levels and rankings of efficiency differ,
depending on which measurement is used. Thus,
some companies such as the Spanish RENFE or the
Norwegian NSB are clearly inefficient when mea-
sured by passenger-kilometers and ton-kilometers;
however, with the other type of measurement, both
companies notably improve their efficiency indica-
tors. Therefore, the choice of output specification
used continues to be a problem in studies of the
estimation of efficiency and productivity.

Our study aims to analyze the differences in the
efficiency indicators for the railway sector when
different variables are specified as output. For this
purpose, we use a non-parametric DEA model to
calculate the efficiency indicators of a sample of
European railway companies using the two types
of output mentioned above. We then regress the
difference between the efficiency indicators
obtained on the indices of load factor of the sup-
plied trains and show that when one of the effi-
ciency indicators is corrected for the effect of these
variables, the efficiency indicators of the two types
of output become similar.
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Our results, then, demonstrate that the differ-
ences in efficiency indicators can be explained by
the differences in the output specification used,
suggesting that efficiency indicators are compatible
once differences in output specification are consid-
ered. When passenger and freight train-kilometers
are specified as output, the efficiency is analyzed
only as a function of the level of capacity or service
supplied in terms of the volume of kilometers trav-
eled. Meanwhile, when the number of passenger-
kilometers and ton-kilometers is used, efficiency is
evaluated as a function of the degree of use of the
capacity or service supplied. Our study shows that
the levels and rankings of efficiency obtained on
the basis of different output specifications can be
approximated by analyzing the differences
between the output variables used.

METHOLODOGY, DATA, AND RESULTS

Methodology

In this study, we use the non-parametric technique,
Data Envelopment Analysis (DEA), to estimate the
technical efficiency of railway companies. DEA has
two advantages over other techniques. First, it does
not require specification of any functional form for
production, avoiding the bias produced by an incor-
rect functional form. Second, DEA is better than
parametric techniques at assessing the productive
efficiency of railway companies since it can handle
the multi-product nature of some companies.2

We calculate efficiency indicators with DEA by
constructing a frontier through mathematical pro-
gramming. A comparison of the companies relative
to this production frontier gives us the measure-
ments of individual effectiveness. Unlike paramet-
ric techniques, this technique does not estimate a
previously specified functional form but instead
calculates a convex frontier that “envelops” the

observations. In this sense, the data themselves
“dictate” the profile of the frontier. This tech-
nique’s flexibility (it makes few assumptions) and
applicability have led to its use in a large number
of studies in recent years.3

To illustrate this technique,4 let us suppose that
the N companies forming the sample (i = 1, . . ., N)
use a vector of input xi = (xi1, . . ., xin)T� Rn � to
produce a vector of output yi = (yi1, . . ., yim)T� Rm �.
The measurement of the efficiency of company 
j (�j) is obtained by comparing this company’s per-
formance with a linear combination of the N com-
panies of the sample:

Max�,� �j

such that: Y� ≥ �j yj, 

X� ≤ xj, (1)

� ≥ 0

where xj and yj are vectors of dimensions (nX1)
and (mx1), respectively; � is a vector of dimension
(nx1), while X and Y are matrices of dimensions
(nxN) and (mxN), respectively.

From the resolution of this problem for each of
the N companies of the sample, we obtain N
weightings (�) and N optimum solutions (�*).
Each optimum solution �* is the parameter of effi-
ciency of each company that, by construction, sat-
isfies �* ≥ 1. Companies with � > 1 are considered
inefficient, while those with � = 1 catalogued as
efficient are those that stand at the frontier. The
inherent virtues of the DEA technique have encour-
aged studies comparing this methodology with
alternative techniques, with varying results.5
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2 In this respect, some authors, such as Cowie and
Riddington (1996), analyze the productive efficiency of
railway companies by using parametric techniques as well
as DEA. However, since parametric techniques only allow
specification of a production function with a single out-
put, these authors chose the number of passenger train-
kilometers as the output, without considering that the
companies also carry freight. The consideration of a single
output causes a bias in the efficiency measurements
obtained, undervaluing the efficiency of those companies
that specialize in freight. 

3 Seiford and Thrall (1990) counted more than 400 arti-
cles on the application of DEA between 1978 and 1990.
More recently, Førsund and Seiford (1999) count the
empirical applications of this technique in the thousands.
4 See details in Charnes, Cooper, and Rhodes (1978).
5 See Banker, Conrad, and Strauss (1986); Gong and
Sickless (1992); Ferrier and Lovell (1990); Bjurek,
Hjalmarsson, and Førsund (1990); Pastor (1996); Cowie
and Riddington (1996); etc. However, the precision of the
estimation of efficiency with DEA can only be assessed on
the basis of simulated data where the efficiency is known
in advance. In this respect, Banker et al. (1988) compare
the results of a translogarithmic function, using simulated
data for a known underlying technology, concluding that



From an intuitive viewpoint, to analyze the effi-
ciency of the productive scheme of company j
(yj,xj) the problem constructs a feasible scheme as
a linear combination of the schemes of the N com-
panies of the samples that produce �jyj, using a
lower or equal amount of input. Therefore, (�j–1)
indicates the maximum radial expansion to which
the vector of the output of company j can be sub-
jected without needing to increase the level of
input. When �j = 1, no linear combination of com-
panies producing more with less input can be
found, so the company is catalogued as efficient. In
the other cases, �j > 1, and so a feasible alternative
scheme which obtains a higher amount of output
using the same input does exist.

Data

A panel of 17 European companies over the period
of 1970 to 1995 was selected. The information
was taken mostly from the reports published by
the Union International des Chemins de Fer and
was completed with the data published in the com-
panies’ statistical memoranda. Table 1 provides a
set of the main characteristics of the railways used.
Two sets of output were selected: 1) the number of
passenger-kilometers (PKT) and ton-kilometers
(TOKT) and 2) the passenger train-kilometers
(PTK) and freight train-kilometers (FTK). For
both, we estimate the efficiency indicators of the
European companies using a non-parametric fron-
tier approach (DEA). The variables used as input
were 1) number of workers, 2) consumption of
energy and materials,6 3) number of locomotives,

4) number of passenger carriages, 5) number of
freight cars, and 6) number of track-kilometers.7

It should be noted that there are other factors
that can affect the level of efficiency. The different
indices of the quality of service or of infrastructure
may bias the results if they are not taken into
account. Another important factor is the degree of
circuitousness. For example, if the infrastructure is
expanded to allow for less circuitous routes, the
number of passenger-kilometers or ton-kilometers
will decrease even though the outcome is un-
changed. The lack of relevant information on this
type of variable makes it impossible to consider
them in our study.

Results

The individual average inefficiency indicators for
the period are shown in table 2.8 INEF refers to the
results obtained using the number of passenger-
kilometers and ton-kilometers as output, and
INEG refers to results obtained using passenger
train-kilometers and freight train-kilometers. Each
type of measurement refers to different aspects of
the efficiency in the use of input, as noted in the
previous section. The average correlation indices
measured by the Pearson coefficient and the
Spearman ranking coefficient between INEF and
INEG are respectively 0.62 and 0.76, each with a
standard error of 0.16.

Alternatively, a parametric test was made of the
similarity of the two measurements, using ordinary
least squares (OLS) to regress the inefficiency indi-
cators obtained in INEF against the indicators
obtained in INEG. The value of the parameter esti-
mated was 0.937, with a standard error of 0.008.
In this case, the null hypothesis that the parameter
is equal to one can be rejected; in other words, it
can be rejected that both measurements of efficien-
cy are statistically equal (student’s t is 7.80).
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the predominance of DEA over parametric methods with
regard to lesser deviation from the true values is due to DEA’s
greater flexibility of approach to the true functional form.
Banker et al. (1988) also verify that the accuracy of the DEA
results is greater when the size of the sample is increased, sug-
gesting that DEA estimators show the property of consisten-
cy, subsequently shown theoretically by Banker (1993). In
this same sense, Gong and Sickles (1992) conclude that the
disadvantages of DEA relative to other methods depend on
the choice of functional form. If the chosen specification coin-
cides with the underlying one, parametric methods work bet-
ter. On the other hand, the advantages of DEA are more
evident when errors of specification exist.
6 This variable was converted into U.S. currency using the
Purchasing Power Parity Index obtained from the
Organisation for Economic Cooperation and Develop-
ment (OECD) reports (2000) and deflated to constant
1975 value.

7 A more detailed discussion of the data used in this study
can be found in Cantos et al. (1999). 
8 We will follow Farrell’s (1957) definition of the techni-
cal efficiency of a company: it is not possible to produce
more output with less input. In the results of table 2, a
company is technically efficient in this way when the
index has a value of 1, whereas if the index is higher than
1, the company would be able to increase output without
needing to increase input.
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TABLE 1   Average Values for Variables: 1970 to 1995

Company Country PKT (mill.) TOKT (mill.) LT (km) PTK (thous.) FTK (thous.) PT TT

BRa UK 30,917 18,200 17,387 345,279 78,297 90.14 239.24
CFF Switzerland 9,586 7,067 2,960 75,880 27,847 127.17 253.64
CFL Luxemburg 234 658 272 3,335 1,520 74.53 435.71
CH Greece 1,687 695 2,494 13,787 2,998 123.82 238.13
CIE Ireland 1,007 590 2010 8,413 4,231 117.91 140.05
CP Portugal 4,940 1,272 3,434 27,477 6,639 178.64 183.36
DBb Germany 41,977 60,638 28,094 40,049 198,841 100.62 305.12
DSB Denmark 4,081 1,793 2,227 40,919 7,982 99.89 227.25
FS Italy 40,679 18,912 16,257 227,877 60,584 177.46 309.88
NS Holland 9,928 3,114 2,851 98,918 13,156 98.40 238.07
NSB Norway 2,097 2,694 4,180 23,235 10,217 90.30 263.94
ÖBB Austria 7,536 11,203 5,781 66,622 36,501 114.56 304.63
RENFE Spain 15,361 11,441 13,083 101,791 44,353 155.33 255.86
SJ Sweden 5,741 16,595 11,110 59,839 40,042 95.52 414.47
SNCB Belgium 6,940 8,235 3,975 68,786 21,667 102.05 379.89
SNCF France 54,967 60,519 34,716 290,831 189,179 188.75 320.02
VR Finland 3,027 7,617 5,941 24,651 17,816 122.65 426.18

a Does not include information for period 1970–1973
b Does not include information for 1995
PKT: number of total passenger-kilometers
TOKT: number of total ton-kilometers
LT: length of track

PTK: number of passenger train-kilometers
FTK: number of freight train-kilometers
PT: index of passengers per train
TT: index of tons per train

TABLE 2   Inefficiency Levels

INEF INEG INEGC

CIE 1.703 CH 1.528 CIE 1.512
CH 1.475 FS 1.520 CH 1.476
BR 1.352 SNCB 1.449 DSB 1.375
DSB 1.269 CIE 1.428 SNCB 1.344
NSB 1.183 DSB 1.349 BR 1.339
SNCB 1.107 CP 1.296 FS 1.268
RENFE 1.045 BR 1.295 CP 1.188
FS 1.029 RENFE 1.109 NSB 1.109
DB 1.027 NSB 1.087 CFL 1.045
CP 1.022 VR 1.079 NS 1.013
ÖBB 1.020 ÖBB 1.062 DB 0.995
SNCF 1.014 CFL 1.054 RENFE 0.994
CFL 1.004 SNCF 1.037 ÖBB 0.992
VR 1.000 DB 1.031 CFF 0.941
SJ 1.000 CFF 1.000 VR 0.937
CFF 1.000 NS 1.000 SJ 0.928
NS 1.000 SJ 1.000 SNCF 0.851

INEF: inefficiency index when passenger-kilometers and ton-kilometers are used as output measurements

INEG: inefficency index when passenger train-kilometers and freight train-kilometers are used as output measurements

INEGC: corrected inefficiency measures when passenger train-kilometers and freight train-kilometers are used as output measurements



We would expect the different degrees of utiliza-
tion of trains to explain a large part of the differ-
ences. In particular, companies with high indices of
load factor are much more efficient when passenger-
kilometers and ton-kilometers are used as measures
of output. See the values for variables representing
the number of passengers per train (PT) and freight
tons per train (TT) in table 1 for VR, SNCB, or FS.
On the other hand, companies with low indices of
load factor, such as NSB, are more efficient when
output is expressed as train-kilometers.

In any event, due to the multi-product nature of
railway companies and the wide range of input used,
there is no simple transformation between the two
output measurements or between the measurements
of efficiency obtained in each case. This can only
occur when there is a single output and a single
input. In this case, if we know that the company
offers only passenger services, we can use two mea-
surements of output, passenger-kilometers (PKT) or
passenger train-kilometers (PTK). If we only have
one input (I), a measurement of productivity can be
constructed from the ratio of PKT/I or PTK/I.
Therefore, a simple transformation exists between
the two measurements using the ratio PKT/PTK.
However, this is not the case for the railway industry.

We define DINEF as the difference between the
logs of INEG and INEF and regress it by OLS on
the logs of the number of passengers per train
(LPT) and the freight-tons per train (LTT). Thus,
DINEF = log (INEG/INEF). The regression results,
including time effects (DUMMYt), follow9:

DINEFit = DUMMYt + 
0.2493 LPTit + 0.175 LTTit

R2 = .2984;  N=442,10 (2)  

where the LPT coefficient has a t-statistic of 10.60
and the LTT coefficient has a t-statistic of 8.19.

Other reasons for the difference between these two
measurements of efficiency may exist, such as the
different passenger and freight traffic. In the case
of passenger traffic, the companies that focus their
production on urban services will carry a larger
number of passenger-kilometers out of the same
number of kilometers supplied than the companies
focusing on long distance services. In this example,
the lack of this type of information prevents a bet-
ter fit of the regression given in equation (2).

We can see that both variables are highly sig-
nificant and positive. Therefore, estimates of effi-
ciency that use indices of train-kilometers penalize
the companies with high indices of load factor.
Estimates that use indices of passenger-kilometers
and ton-kilometers favor companies with high
indices of load factor. A higher degree of load fac-
tor involves a higher level of inefficiency when only
train-kilometers are used as a measurement of out-
put. We can obtain a corrected measurement of
INEG (INEGC) by taking into account the effect of
the degree of load factor:

INEGCit = exp(log INEGit – DIN
^

EFit),
where DIN

^
EFit = DUM

^
MYt

+ 0.2493 LPTit + 0.175 LTTit. (3)

With this, we aim to correct such a bias. The
individual average levels of this corrected measure-
ment of inefficiency are shown in table 2. The cor-
relation between INEGC and INEF rises to 0.82, a
value clearly higher than the 0.62 obtained for the
original inefficiencies. In the case of Spearman’s
correlation coefficient, the growth is more modest,
passing from an initial 0.76 to 0.84, with a stan-
dard error of 0.13. As for the alternative test of the
two measurements of efficiency, if INEF is now
regressed against INEGC, the parameter estimated
for INEGC is 0.989, with a standard error of
0.006. In this case, the null hypothesis that these
measurements are equal cannot be rejected (stu-
dent’s t is 1.63). The results indicate that once we
take into account the different focus of each type of
output measurements, the inefficiencies we obtain
are largely consistent. The results show a similar
view of the performance of European companies
over the period and that in an analysis of efficien-
cy it is not only important to know a company’s
position in the ranking but also its relative level of
efficiency.
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9 Note that the regression does not include a constant
since all the time effects were included in the estimation.
Alternative specifications were also tried for the variables
of the regression (semi-logarithmic transformation, esti-
mation of levels, etc.). The results were very similar to
those of equation (2), so the logarithmic specification was
chosen due to the advantages of its ease of interpretation
and the reduction of problems of heteroscedasticity. 
10 The F-test for the joint significance for LPT and LTT is
F2,416 = 55.49. However, the F-test for the significance for
LPT, LTT, and the time effects is F27,442 = 6.52. In both
cases, the null hypothesis of nonsignificance is clearly
rejected.



CONCLUSIONS

This paper verifies the sensitivity of the efficiency
indicators to the output specification in the rail sec-
tor. Additionally, it shows that the results obtained
with two different specifications for railway output
can be harmonized. In particular, when the efficien-
cy indicators obtained with one of the specifications,
number of passengers and freight train- kilometers,
are corrected to take the degree of utilization of the
trains into account, the efficiency indicators
obtained with this new specification are very similar
to those obtained when the number of passengers
and ton-kilometers are used as output measures.
This study shows, therefore, that the analysis of the
differences between the alternatives for the specifi-
cation of measurements of output helps to explain
the differences between the indicators of efficiency
that such measurements can generate. Thus, this
analysis serves as an additional means of testing the
consistency of the efficiency results obtained.
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