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ABSTRACT 1 

The sustainability of transportation infrastructure depends on the adoption of new construction 2 

materials and technologies with great promise for improved performance and productivity. 3 

However, most agencies would like to evaluate these new materials and technologies at both 4 

project level and network level before replacing the traditional ones. It also remains a challenge to 5 

reliably estimate the costs and lifetime performance of new construction materials and 6 

technologies due to limited implementation data. To address these issues, this paper presents a 7 

comprehensive bottom-up methodology based on Life Cycle Cost Analysis (LCCA) to integrate 8 

project- and network-level analysis that can fast-track the acceptance of new materials or 9 

technologies. Hypothesized improvement rates are applied to the deterioration functions of 10 

existing materials to represent the expected improved performance of a new material compared 11 

with a conventional material with relatively similar characteristics. This new approach with 12 

stochastic treatment allows us to probabilistically evaluate new materials with limited data for their 13 

future performance. Feasible maintenance and rehabilitation schedules are found for each facility 14 

at the project level and near optimal investment strategies are identified at the network level by 15 

using a metaheuristic evolutionary algorithm while satisfying network-wide constraints. This 16 

provides an effective solution to many issues that have not been completely addressed in the past, 17 

including the trade-off between multiple objectives, effect of time, uncertainty and outcome 18 

interpretation. A hypothetical bridge decks system from New Jersey’s bridge inventory database 19 

is used to demonstrate the applicability of the proposed methodology in construction planning and 20 

management decision support procedure.  21 

 22 

Keywords: Bridge Management System, Life Cycle Planning, Life Cycle Cost Analysis, 23 

Probabilistic Multi-Objective Optimization 24 
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INTRODUCTION AND MOTIVATION 1 

Aging facilities, growing technical and environmental demands, and increasing maintenance and 2 

repair costs have led agencies to seek development of innovative materials for construction and 3 

maintenance, as well as reliable decision-making tools for cost-effective transportation 4 

management and investments. The benefits of new materials or construction technologies may 5 

include: 1) providing cost-effectiveness and longer service life, 2) offering more efficient use of 6 

resources in construction operations, and 3) enabling the use of construction methodologies that 7 

will minimize construction duration and traffic delays. However, they may also bring new 8 

challenges, such as: 9 

• Limited data availability: With no or very limited field implementation and historical data 10 

for new materials or construction technologies, accurately estimating cost and performance 11 

is challenging. 12 

• High levels of uncertainties: There are many uncertainties due to the lack of reliable 13 

deterioration functions and time-dependent characteristics in life cycle cost (LCC) 14 

considerations. These uncertainties should be designated in the recently developed 15 

methodologies. 16 

• Benefit in terms of “out-of-pocket” costs: A new construction material or technology may 17 

not bring direct cost savings. Instead, benefits may be reflected through indirect costs, such 18 

as decreasing work zone traffic delay or reducing air pollution or noise. 19 

To evaluate the cost-effectiveness of such new materials or technologies, an effective economic-20 

engineering solution, namely Life Cycle Cost Analysis, should be applied. Conducting Life Cycle 21 

Cost Analysis is a strategic decision-support approach for selecting the best strategies among 22 

feasible alternatives to achieve sustainability for the nation’s transportation infrastructure. At the 23 

project level, costs incurred during the lifetime of a transportation asset, including future 24 

maintenance and rehabilitation (M&R), delays in traffic, and social-economic impacts, should be 25 

considered. Network-level analysis that evaluates different combinations of projects and 26 

treatments to yield maximum benefits in developing cost-effective investment strategies is needed 27 

as well.  28 

This paper presents research efforts on conducting LCCA for both conventional and new-29 

technology materials to support decision making while considering agency, user, and social costs. 30 

The objective is to introduce a probabilistic bottom-up LCCA-based framework to meet project-31 

level and network-level goals that not only work for conventional materials but also brand new 32 

construction materials and technologies for which actual performance data is limited. The 33 

framework includes stochastic treatment of the inherent uncertainties, quantification of benefits 34 

from new construction materials or technologies, including out-of-pocket costs and other 35 

externalities affecting environmental sustainability, and the integration of a project- and network-36 

level optimization-based model framework. A combined project and network level approach 37 

should consider multiple performance measures and effect of time, deal with stochasticity and 38 

have clear outcome interpretation. Although there are studies in the literature that address one or 39 

two of these characteristics, our proposed methodology aims to provide a comprehensive solution 40 

to meet all three needs. 41 

Moreover, the proposed approach will specifically try to provide a reasonable estimate of 42 

the future performance of the “new” construction materials or technologies based on their 43 

laboratory-measured data to overcome the challenge of limited data. Hypothesized improvement 44 

rates are applied to the deterioration functions of existing and well-known materials to represent 45 

the expected improved performance of a new material compared with a conventional material with 46 
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relatively similar characteristics. In addition to the fixed rate improvement approach, our stochastic 1 

treatment is another way to account for the relatively higher uncertainties of new materials 2 

compared with the traditional ones. A case study is established using information based on the 3 

bridge inventory in New Jersey (NJ).  4 

 5 

LITERATURE REVIEW 6 

FHWA and State Highway Agencies (SHAs) recommend LCCA as an important technique for 7 

supporting transportation investment decisions. At the project level, numerous studies have applied 8 

LCCA to pavement and bridges. Some work (1-6) has been conducted comparing new construction 9 

materials or technologies with conventional ones. However, many of these studies used a 10 

deterministic approach (1-3) that did not reflect possible uncertainties involved in using new 11 

materials or construction technologies. Few of them consider uncertainties in service life or cost 12 

components. For example, Soliman and Frangopol (5) computed the bridge LCC using 13 

conventional painted carbon steel and corrosion-resistant maintenance-free steel. Though it had a 14 

higher initial cost, the maintenance-free steel was found to be more sustainable than conventional 15 

steel over the bridge’s lifetime. Their study considered a probabilistic approach for the 16 

conventional material, however, the cost of maintenance-free steel is deterministic and the traffic 17 

growth is not capped over the 100-year analysis period. Eamon et al. (6) conducted both 18 

deterministic and probabilistic LCCA for bridge superstructures. Compare to traditional 19 

reinforcement materials and epoxy-coated steel, the new material, namely, carbon fiber reinforced 20 

polymer (CFRP) has a 95% probability to be the least expensive beginning at year 23–77 after 21 

initial construction. CFRP’s expected service life was estimated based on experiences from other 22 

countries. The authors limited traffic growth by the bridge’s maximum average annual daily traffic 23 

(AADT) and found that traffic volume has a significant effect on LCC. However, this study did 24 

not consider environmental impacts. 25 

Network-level life cycle cost consideration is applied in various studies as well. National 26 

Cooperative Highway Research Program (NCHRP) Report 590 suggested a multi-objective 27 

network-level LCC model using Incremental Utility/Cost heuristic approach (7). In 2017, The 28 

Asset Management Rule (the Rule) (8) required each state Department of Transportation (DOT) 29 

to perform “Network-level Life Cycle Planning” which is defined as “a process to estimate the 30 

cost of managing an asset class, or asset sub-group, over its whole life with consideration for 31 

minimizing cost while preserving or improving the condition” in compliance with the Moving 32 

Ahead for Progress in the 21st Century (MAP-21) and the Fixing America’s Surface 33 

Transportation (FAST) Act. Based on NCHRP and the Rule, an ideal network-level model 34 

considering LCC is naturally a multi-objective optimization process that requires decision makers 35 

to evaluate the trade-offs between different conflicting objectives. It should take advantage of 36 

existing asset management system capabilities (9), for instance, integrating project level 37 

information from existing databases to network level analysis. TABLE 1 synthesizes some of the 38 

studies on network-level optimization models over the past two decades. While not exhaustive, it 39 

provides a representative sample of recent research efforts. The purpose of Table 1 is to understand 40 

recent approaches used in for the network-level LCCA and to identify the research and 41 

development needs for applications involving new materials or technologies. 42 

The majority of the studies in TABLE 1 are multi-objective optimization-based, which 43 

produces equally-good solutions known as a “Pareto Front” in which no alternatives can improve 44 

one or more objectives without making at least one objective worse. Different objectives can be 45 

either treated as separate functions without any preference before the optimization process (10), or 46 
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can be converted into a single-objective function (i.e. a single utility function) with subjective 1 

input (11, 12). There’s also an increasing trend of applying a probabilistic approach (11, 13-15) in 2 

the last decade to capture the uncertainties. For instance, Bryce et al. (13) demonstrated a network 3 

LCCA while treating the expected energy consumption probabilistically. They pointed out that a 4 

probabilistic approach should be used when the variable uncertainties may be significant. Although 5 

all studies incorporate agency cost, less than half considered user cost, and only three studies take 6 

social cost (i.e. from environment impacts) into account. In addition, some of the studies (15-17) 7 

considered project-level and network-level integration so information from existing asset 8 

management systems can be directly used as network-level inputs.  9 

To summarize, a project-level LCCA model should be capable of quantifying the benefit 10 

and cost brought by the new materials or technologies, including agency, user and social costs, 11 

while an ideal network-level optimization model should consider multiple performance measures, 12 

effect of time, uncertainty, outcome interpretation, and integration between project- and network-13 

level. Current practices meet one or some of the goals, but there is a need to develop a holistic and 14 

comprehensive tool that meets all of needs. 15 

 16 

TABLE 1 Literature Review on Network-level Life Cycle Cost Models 17 

Study Year 
Asset 

Type 
Objective(s) 

Agency/User/Social 

Cost 
Method 

Time 

Frame 

Bryce et 

al. (13) 
2014 Pavement 

Min(maintenance cost), 

max(condition), 

min(energy 

consumption) 

agency cost and 

social impact 

Pareto front-

based approach 
3-year 

Swei et 

al. (14) 
2015 Pavement 

Min(excess fuel 

consumption) 
Only agency cost 

Simple heuristic 

approach 
15-year 

Zhang et 

al. (18) 
2012 Pavement 

Min(life cycle energy 

consumption), min(GHG 

emissions), min(costs) 

Agency and 

social cost 

Backward 

Dynamic 

Programing 

20-year 

Marzouk 

& Omar 

(11) 

2013 Sewer 

min(cost), 

max(condition), 

max(extended network 

service life) 

Only agency cost 
Generic 

Algorithm 
50-year 

Liu & 

Frangopol 

(10) 

2005 Bridge 

Max(overall performance 

of a bridge network), 

min( maintenance cost) 

Only agency cost 
Generic 

Algorithm 
30-year 

Bukhsh et 

al. (12) 
2018 Bridge 

Max(condition index), 

min(agency cost), 

min(user delay cost), min 

(environmental cost) 

Agency, user and 

social cost 
Utility Theory 

Not 

Applied 

Yeo et al. 

(15) 
2010 Pavement Min(total system cost) Agency cost 

Generic 

Algorithm 
40-year 

Florida 

DOT (16) 
2007 Bridge Min(Life cycle cost) 

Agency and user 

cost 

Incremental 

benefit/cost 

algorithm 

10-year 

Indiana 

DOT (19) 
2009 Bridge 

Min(Overall benefits or 

effectiveness) 

Agency and user 

cost 

Dynamic/Integer 

linear 

programming 

/Markov chain 

10-year 

 18 
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METHODOLOGY 1 

Consider an infrastructure system composed of n  independent facilities with different 2 

serviceability, traffic loads, etc. A “project candidate” in this study is defined as a life-cycle activity 3 

profile that contains a sequence of M&R activities for a transportation facility over certain analysis 4 

period. The proposed method aims to develop a two-level bottom-up approach based on LCC 5 

considerations. In the project-level, we first find “project candidates” -- all feasible M&R strategies 6 

for each facility based on project-level constraints, such as the facility’s maximum traffic load or 7 

minimum acceptable serviceability and calculate the associated cost for each candidate. Secondly, 8 

we solve the network-level optimization to find the best combination of projects to meet network-9 

level goals by choosing among project candidates found in the project-level model. Various 10 

economic and engineering models with optimization algorithms (i.e. Evolutionary Algorithm) are 11 

combined in the proposed approach to balance the trade-off between objectives and arrive at the 12 

optimum or near-optimum life cycle strategy. In addition, by connecting the two-level approach 13 

with an existing database as well as empirical deterioration models for the facilities, we are able 14 

to establish an integrated project- and network-level LCCA model framework as illustrated in 15 

FIGURE 1. 16 

 17 

 18 
FIGURE 1 An integrated project- and network-level LCCA model framework. 19 
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Deterioration Model 1 

The determination of cost-effective M&R actions demands accurate deterioration models that 2 

predict the anticipated future condition of transportation assets. Take a bridge deck as an example. 3 

The state of a bridge deck often is represented by discrete numbers such as the National Bridge 4 

Inventory (NBI) rating that describes the overall deck condition, ranging from 0 (Failed Condition) 5 

to 9 (Excellent Condition) (20). In this study, empirical deterioration models for bridge decks in 6 

New Jersey were applied from a previous study (21) that uses NBI data for 2,438 bridges located 7 

on interstates, US numbered and state highways. A third order polynomial regression model 8 

(Equation 1) is fitted based on the assumption that the downgrade of condition rating represents 9 

the deterioration of the bridge deck (21). The regression results and more details can be found in 10 

(21). These deterioration models are used as the baseline for conventional construction materials 11 

or technologies. 12 
2 3

0 1 2 3CR M M x M x M x= + + +                                            (1) 13 

where CR is the bridge condition rating, and regressor x is the age of deck in years. M0, M1, M2, 14 

and M3 are the parameters. 15 

However, it is not a simple task to predict the actual field performance of a brand-new 16 

construction material or technology that has either only been tested in a laboratory environment or 17 

undergone a very limited field deployment. A hypothesized improvement rate approach is 18 

proposed in this study to link the deterioration functions of existing and well-known materials to 19 

represent the expected enhanced performance of a new material compared with a conventional 20 

material with relatively similar characteristics. It is assumed that the deterioration function of the 21 

new material will follow a similar “pattern” as that of the well-known conventional material. 22 

However, this pattern will be shifted to represent the enhanced performance of the new material 23 

(Equation 2). The laboratory improvement rate estimated from a combination of performance 24 

measures (i.e. compressive strength and cracking resistance), which is denoted by β, can be a 25 

single fixed value that is most likely to occur (deterministic approach) or a distribution 26 

(probabilistic approach). The correlation factor k is applied to generate estimates when applying 27 

laboratory improvement rate to field. The improvement rate can be applied to all or part of the 28 

deterioration function. For instance, if the new material has a significant improvement in terms of 29 

increasing the crack and propagation resistance for bridge decks, the estimated improvement rate 30 

may be applied to Stage 1 (condition rate 9-6) of the deterioration model. FIGURE 2 shows an 31 

example that turns results from laboratory tests into the improvement rate by employing this 32 

approach.  33 

                 ( ) ( )F x k f x=                                                               (2) 34 

Where ( )F x  = New material deterioration function 35 

( )f x  = Conventional material deterioration function 36 

  = Deterministic or probabilistic laboratory improvement rate 37 

k  = Correlation factor when applying laboratory improvement rate to field 38 



Gao, Ozbay, Nassif and Kalan  8 

 

 

 1 
FIGURE 2 Using laboratory results to update a deterioration function: an example. 2 

 3 

Project-level LCCA Model 4 

Let’s denote t as the year and T as the analysis period. {0,1,2... },mta m   is a non-negative 5 

integer representing the type of M&R activity to be scheduled at year t. 
ta  equals zero if no activity 6 

is to take place that year. For example, if bridge project A has three types of activities (0,1,2) that 7 

stands for “no action” “repair” and “replacement”, then 
20 2a =  means at year 20, a type 2 activity 8 

“replacement” is scheduled. The M&R strategy for a project becomes a sequence of 
ta . 9 

The proposed project-level LCCA model considers three cost components: agency cost, 10 

user costs and social cost. User cost in the proposed methodology includes a Traffic Delay Cost 11 

(TDC) model using deterministic queueing approach (22), a Vehicle Operation Cost (VOC) 12 

adopted from NCHRP Report 133 method and FHWA’s guideline on work zone road user costs 13 

(23), and a Crash Risk Cost (CRC) model (24, 25). Social cost (SC) has an air pollution module 14 

(26) and can be extended to include other costs from noise or energy consumption. Only the 15 

differential user and social costs occurring during work zone periods are considered in this 16 

approach. Weights are assigned to different costs to mimic the actual decision-making process 17 

used in many agencies where the agency costs usually get the highest weight (27). For each M&R 18 

strategy j of facility i, its net present value (NPV) is calculated as follows: 19 

1 t 2 ( ) 3

0

( ( ) SV ) ( ( , ) ( , ) ( , )) ( , )
NPV

(1 )

T
t t t t t t t t t t t t t t

t
t

w AC a w TDC a V VOC a V CRC a V w SC a V

r=

− + + + + 
=

+
  (3) 20 

Where, 21 

• t  = the year at which the cost is incurred (years) 22 

• T= analysis period (years) 23 

• r = discount rate (decimals) 24 

• 
ta  = a non-negative integer representing the type of maintenance & rehabilitation (M&R) 25 

activity to be scheduled at year t and equals to zero if no M&R action is to take place, 
ta  26 

is bound by deterioration function ( )tf CR , where CRt is the condition rate at year t. 27 

• 
tV  = AADT at year t (vehicles/day) and (AADT)tV Max  28 

• ( )t tAC a , ( , )t t tTDC a V , ( , )t t tVOC a V , ( , )t t tCRC a V , ( , )t t tSC a V  are the agency cost, traffic 29 

delay cost, vehicle operation cost, crash risk cost, and social cost at year t ($); all are 30 

dependent on M&R activity 
ta . Traffic delay, vehicle operation, crash risk, and social 31 

cost are also subject to traffic volume Vt 32 
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tSV  = the salvage value, it only occurs at the end of the analysis period T ($) 1 

• w1, w2, w3 are the weight factor of agency cost, user cost, and social cost 2 

 3 

Since the technical performance, initial construction cost, timing and cost of M&R activity, and 4 

disposing of a new-material structure are usually less certain than those for conventional materials, 5 

these variabilities can greatly affect the final solutions. Therefore, stochastic treatments - Monte 6 

Carlo simulations are applied when calculating all cost components. The final output of the project-7 

level tool is a set of feasible project candidates that contains a sequence of M&R activity 
ta  and 8 

associated costs. It is worth mentioning that different candidates of the same facility may have the 9 

same type of M&R activities, but because these activities are scheduled for different years, their 10 

costs will be different. Traffic growth is bounded by the maximum allowable traffic that can pass 11 

through the facility, so this value cannot grow infinitely and lead to unrealistic user or social cost. 12 

Furthermore, the maximum allowable year for the first rehabilitation/replacement action depends 13 

on the minimum acceptable serviceability of the facility– if a facility’s estimated serviceability at 14 

year t is less than a certain threshold, a rehabilitation/replacement activity is assumed to be 15 

scheduled immediately for the next year t+1. Each candidate after this year becomes infeasible. 16 

Consequently, each facility has a different number of feasible candidates.  17 

 18 

Network-level Multi-Objective Optimization Model 19 

Assuming that all facilities are independent and given a set of constraints (i.e. budget), the network-20 

level optimization can be formulated as a multi-choice, multi-dimensional knapsack problem 21 

(MCMDKP). Let’s denote {0,1,2,...}iM =  to be the feasible project candidates for facility i  22 

where 1 i n  . ijx is the decision variable and equals to 1 if candidate j  of facility i  is selected 23 

(
ij M ). Two objectives are considered in this study. The first objective is to minimize the total 24 

LCC of selected project candidates. The second objective is to consider facility importance. For 25 

example, bridges carrying heavier traffic may get higher priority than others as they are more 26 

sensitive to potential failure. Therefore, traffic loads are used to represent facility importance. Both 27 

objectives are normalized so they are comparable. The network-level optimization problem can be 28 

formulated as follows: 29 

         
1

 Minimize 
i

n

ij ij

i j M

NPV x
= 

                                                                (4)     30 

1

 Maximize 
i

n

i ij

i j M

AADT x
= 

                                                              (5) 31 

Subject to: 32 

                     
1

B      
i

n

l ij ij u

i j M

B AC x
= 

                                                        (6) 33 

1,      (1 )
i

ij

j M

x i n


                                                               (7) 34 

1 i

n

ij

i i M

x S
= 

                                                                         (8) 35 

0 or 1ijx =                                                                          (9) 36 
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Where,  1 

• 1ijx =  if candidate j of bridge i is selected,  0ijx = otherwise. 2 

• ijNPV  = Net Present Value of candidate j for bridge i 3 

• 
iAADT  = Current annual average daily traffic of bridge i 4 

• 
0iCR  = Current condition rating of bridge i 5 

ijAC  = Agency cost of candidate j for bridge i 6 

• B = Budget ($) 7 

• S = Maximum number of candidates selected  8 

NCHRP Report 590 (7) pointed out that besides a budgetary ceiling, considering a minimum 9 

budget is also necessary in the optimization problem. Hence, a lower bound of the budget is 10 

considered to ensure at least a certain percentage of the budget will be utilized. In addition to the 11 

monetary limitation, a maximum number of selected project candidates are determined in Equation 12 

(8) to represent agency resource limitations (i.e. maximum number of construction contractors an 13 

agency can have in a certain time horizon). Equation (7) is to make sure every facility will have 14 

only one project candidate (a sequence of M&R actions) selected.  15 

 Various optimization algorithms have been applied in long-term infrastructure 16 

management such as linear programming or dynamic programming. Evolutionary algorithms like 17 

Generic Algorithm (GA) based on Darwin’s evolution theory have also gained recognition in many 18 

engineering applications. For the proposed network-level optimization model, the Non-dominated 19 

Sorting Genetic Algorithm II (NSGA-II) (28) is employed to obtain the Pareto optimal solutions. 20 

Steps of NSGA-II can be found in FIGURE 1. NSGA-II has been proven to be an efficient Multi-21 

objective evolutionary algorithm that maintains population diversity and excellent individuals (29) 22 

and has been used in transportation asset management (30).  23 

 However, instead of a single solution, multi-objective optimization usually produces many 24 

equally good solutions, making it complicated to interpret the outcome. Furthermore, each 25 

managing agency may have additional performance measures besides minimizing cost and giving 26 

priority to important facilities. To solve these problems, we propose to have one more step after 27 

getting the Pareto-optimal solutions – applying multiple clustering strategies based on additional 28 

preferences. Additional preferences may include network-level serviceability requirement, less 29 

risky selections or best utilization of the budget. The best solutions from each cluster will give 30 

decision makers clearer insight into the outcome and narrow down the selections to a few optimal 31 

and sub-optimal solutions.   32 

 33 

CASE STUDY 34 

The following section illustrates an application of the proposed stochastic multi-objective 35 

optimization using a conventional concrete and an advanced material—fiber reinforced self-36 

consolidating concrete (FR-SCC)—material for bridge decks. Self-consolidating concrete (SCC) 37 

can decrease construction time, labor, and equipment needed on construction sites and reduce noise 38 

impact and injuries related to vibration work of concrete (31). Fiber reinforcement can extend the 39 

technical benefits of SCC by providing crack bridging ability, higher toughness, and long-term 40 

durability. Based on the potential benefits of the FR-SCC, the following assumptions are applied 41 

in the case study (32, 33): 42 

• Based on a combination of laboratory improvements including compressive strength, 43 

modulus of elasticity, shrinkage, durability factor, and cracking resistance, probabilistic 44 
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TABLE 2 Bridge and traffic information for 10 bridges in New Jersey 
ID Route Year 

Build 

 

Number 

of Lanes 

ADT 

(vehicles/

day) 

Deck 

Length 

(ft) 

Deck 

Width 

(ft) 

Condition 

Rate 

%ADT 

Truck 

Service 

Life* 

(year) 

0 I-78 1965 4 39,135 39.3 23 4 9 29 

1 US-322 1924 2 23,685 6.1 10 4 4 53 

2 US-80 1959 3 66,400 32.9 17.5 6 9 31 

distribution of a hypothetical improvement rate is applied on the conventional material 1 

deterioration curve to Stage 1 (condition rate 9-6) of deck deterioration to represent the 2 

estimated deterioration curve of FR-SCC (FIGURE 3). 3 

• The material unit cost is approximately $91.05/CY for conventional concrete and 4 

$106.5/CY for the FR-SCC mix used in this study (33). The new material is assumed to 5 

have higher uncertainty in terms of material and construction unit cost and expected service 6 

life. 7 

• Since no vibration is required (34), SCC is possible to shorten construction duration so a 8 

10%-15% time saving is suggested for rehabilitation activities. 9 

• The placement and consolidation labor costs will be reduced by using SCC (35), thus a 10 

20% saving in the labor cost is assumed when estimating FR-SCC construction unit cost. 11 

 12 
FIGURE 3 Deterioration curve for new material on highway Interstate-80. 13 

 14 

The traffic, structure, and current deck condition rate information for 10 bridges (TABLE 2) is 15 

obtained from a unified database of New Jersey Bridge Management System and Inventory (36). 16 

The service life of these bridges using conventional concrete is estimated from the empirical model 17 

described in the previous section. Average Daily Traffic (ADT) values are used as an 18 

approximation of AADT values. In this case study, normal and triangular distributions are assumed 19 

for five parameters whose uncertainties are significant: 1) new material improvement rate:20 

(45.5%,25%)N , 2) service life: Conventional Concrete (year): (27,31,29)Tri , FR-SCC (year): 21 

(33,43,38)Tri , 3) traffic growth: (1.0%,0.5%)N , 4) construction unit cost: Conventional Concrete 22 

($/SF): (167,5)N , FR-SCC ($/SF): (171.5,20)N , and 5) discount rate: (3.0%,0.5%)N  (33). Monte 23 

Carlo simulations are applied to perform random sampling from these probability distributions. A 24 

weighted factor for user cost (0.3 in this example) is applied when calculating LCC. 25 

 26 

27 
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3 US-9 1925 2 20,660 7.9 13.4 3 4 48 

4 NJ-15 1900 2 31,625 15.5 14.2 4 4 86 

5 US-46 1933 4 8,430 53 27.8 4 7 44 

6 US-22 1931 4 68,880 163.1 28.5 4 4 56 

7 US-1 1928 4 44,900 262.7 12.9 3 4 39 

8 I-280 1972 3 39,730 320.7 13.7 4 9 41 

9 I-280 1950 1 4,000 41.8 9.1 4 9 41 

*Service life using conventional concrete: estimated from the empirical deterioration model (21). 1 

 2 

After getting all feasible project candidates from project-level LCCA model, NSGA-II-based 3 

procedure is then applied on the network-level. 100 probabilistic runs with 50 NSGA-II 4 

generations in each run are generated. The time horizon is assumed to be 75 years for LCC 5 

calculations, and year-10 evaluation of average network conditional rate is computed as an 6 

additional network-level performance measure. The total agency budget is set at 3 million dollars. 7 

For demonstration purposes, only two M&R actions (do nothing and rehabilitation) for the bridge 8 

deck are considered in the network-level model. 9 

 10 

RESULTS, DISCUSSIONS AND LIMITATIONS 11 

Project-level LCCA Results 12 

Let’s use the first four digits to represent the bridge ID and the next two digits to represent the year 13 

of the first rehabilitation activity, for example, “bridge 0 – year 1” project candidate is denoted as 14 

(‘0000’,’01’). The total LCC of two alternatives for this project candidate is represented using 15 

Probability Density Function (PDF) and Cumulative Distribution Function (CDF). FIGURE 4 16 

shows the output of the project-level LCCA model for a single project candidate using bridge 0 17 

information from TABLE 2 with a first rehabilitation activity at year 1. The results indicate the 18 

FR-SCC alternative is less expensive ($0.341 million) compared with the conventional concrete 19 

($0.383 million) in terms of their mean LCC values. However, FR-SCC also has more uncertainty 20 

(a wider distribution) with a standard deviation of $0.045 million compared to that of the 21 

conventional material, which is $0.031 million. If we investigate the cost component separately, 22 

the application of the new material saves 10.6%, 42.9%, and 37.5% for agency costs, user cost, 23 

and social cost in terms of their main values, respectively. Although the agency cost saving is not 24 

significant, the benefit of using FR-SCC in user costs and potential environmental savings play an 25 

important role and should not be ignored. Each project candidate is evaluated probabilistically via 26 

multiple runs and these cost values are then passed into the network-level optimization model.  27 

 28 
FIGURE 4 PDF and CDF of the LCC for conventional concrete and FR-SCC for project 29 

candidate (‘0000’, ‘01’). 30 
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Network-level Optimization Results 1 

For each probabilistic run, the network-level optimization model generates various pareto-optimal 2 

solutions where each solution is a combination of different project candidates. Due to the 3 

stochasticity of input parameters and the NSGA-II searching procedure, the pareto-optimal 4 

solutions of each run may be different. The final network-level optimization model output contains 5 

all pareto-optimal solutions that ever exist in any of the runs and their selection probabilities are 6 

computed. Selection probability indicates how many times this solution is selected as a pareto-7 

optimal solution during all probabilistic runs. A solution with lower selection probability means a 8 

relatively riskier solution in comparison to a solution with higher selection probability. The final 9 

model generates 2,335 and 2,399 pareto-optimal solutions for the 10 bridges in TABLE 2 using 10 

conventional concrete and FR-SCC, respectively. FIGURE 5 presents the first 50 solutions ranked 11 

by their selection probabilities for each alternative.  12 

   13 

 14 
(a) Conventional Concrete                                    (b) FR-SCC 15 

 16 

FIGURE 5 Network-level optimization model results. 17 

 18 

Next, two clustering strategies are applied to better interpret the results. The first strategy 19 

is to best utilize the available budget, so the remaining budget is minimized. The second strategy 20 

is to maximize the average network bridge deck condition rate (evaluated at the end of year 10 21 

consider a planning horizon), so it can meet the agency’s performance goals. An efficient 22 

unsupervised learning algorithm, K-means, is used to cluster the pareto-optimal solutions into 23 

three clusters. FIGURE 6 illustrates the graphic representation of the clustering results. Network 24 

performance measures of  the top three solutions (project sets) in each cluster are listed in TABLE 25 

3 and TABLE 4 including selection probability, total agency cost, total life cycle cost, total traffic 26 
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loads, average bridge network condition rating and remaining budget. The results are for the mean 1 

condition - the average of the stochastic variables.  2 

 3 

  4 
          (a) Best utilization of the budget (Conventional)         (b) Average network condition rating (Conventional) 5 

 6 
       (c) Best utilization of the budget (FR-SCC)              (d) Average network condition rating(FR-SCC) 7 

FIGURE 6 Clustering results. 8 

 9 

With conventional material, for example, if a decision maker’s additional preference is to 10 

best utilize all budget, he or she should focus on solutions in the clustering strategy “budget” 11 

(solution 1 to 9). Solution 1 in budget cluster 1 (Bridge 5 with its first rehabilitation at year 4, 12 

Bridge 6 and 7 with their first rehabilitation at year 1) can be a good candidate since it has the 13 

minimum remaining budget of 0.17 million dollars. However, as the selection probability of this 14 

candidate is relatively low (0.23), in certain cases, decision makers might opt for less risky 15 

alternatives even if the mean value is higher. Under this circumstance, solution 7 in budget cluster 16 

3 may be a good alternative. Our findings also provide additional support of FR-SCC’s benefit on 17 

the network-level. For similar budget levels and selection probability, FR-SCC allows decision 18 

makers to select more bridges. For example, solution 3 and 33 both have similar budget levels 19 

($2.66 Million and $2.62 Million) and selection probabilities of 0.20 and 0.16, respectively. 20 

Solution 33 using FR-SCC allows to rehabilitate two more bridges compared with solution 3 which 21 

uses conventional material. Moreover, using FR-SCC is relatively cheaper and maintains a better 22 

average network level condition rate for the same project combination (i.e. solution 4 and 14). 23 

 24 

 25 

 26 
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TABLE 3 Clusters Based on Remaining Budget – Top Three Solutions in Each Cluster 1 

Budget 

Cluster 
# 

Project Set (‘project ID’, ‘first 

rehabilitation year’) 

Selection 

Prob 

Total 

Agency 

Cost ($M) 

Total 

LCC 

($M) 

Total 

Traffic 

(1000vehs/

day) 

Avg 

Net 

CR 

RMNG 

budget 

($M) 

Conventional Concrete 

1 

1 ['0007,01', '0005,04', '0006,01'] 0.23 2.83 47.86 146.51 4.09 0.17 

2 ['0007,01', '0005,04', '0006,04'] 0.20 2.68 50.55 145.99 4.13 0.32 

3 ['0006,05', '0007,01', '0005,04'] 0.20 2.66 44.38 142.87 4.15 0.34 

2 

4 ['0006,01', '0007,01'] 0.24 2.38 47.84 135.70 3.52 0.62 

5 ['0006,05', '0007,01'] 0.20 2.24 42.10 132.82 3.58 0.76 

6 ['0007,01', '0006,02'] 0.19 2.36 47.42 135.34 3.54 0.64 

3 

7 ['0007,01', '0005,04', '0009,07'] 0.45 1.63 8.08 67.71 4.17 1.37 

8 ['0007,01', '0005,04'] 0.44 1.53 1.56 63.00 3.57 1.47 

9 ['0007,01', '0005,04', '0009,06'] 0.43 1.63 8.20 67.78 4.15 1.37 

FR-SCC 

1 

10 ['0006,01', '0007,01', '0005,03'] 0.43 2.59 28.10 149.48 4.63 0.41 

11 ['0005,07', '0007,01', '0006,02'] 0.34 2.51 28.55 146.77 4.69 0.49 

12 
['0005,07', '0009,11', '0007,01', 

'0006,02'] 

0.25 2.59 33.86 152.04 5.29 0.41 

2 

13 ['0007,01', '0006,02'] 0.44 2.16 28.22 137.49 4.11 0.84 

14 ['0006,01', '0007,01'] 0.36 2.22 27.67 139.20 4.10 0.78 

15 
['0001,03', '0007,01', '0003,01', 

'0006,02'] 

0.18 2.19 59.75 194.38 5.23 0.81 

3 

16 ['0006,01', '0005,03'] 0.51 1.61 26.96 94.90 4.02 1.39 

17 ['0005,07', '0006,02'] 0.18 1.55 27.64 94.19 4.08 1.45 

18 ['0005,08', '0006,02'] 0.07 1.53 26.94 92.07 4.10 1.47 

 2 

TABLE 4 Clusters Based on Average Network CR – Top Three Solutions in Each Cluster 3 

NetCR 

Cluster 
# 

Project Set (‘project ID’, ‘first 

rehabilitation year’) 

Selection 

Prob 

Total 

Agency 

Cost 

($M) 

Total 

LCC 

($M) 

Total 

Traffic 

(1000vehs

/day) 

Avg 

Net 

CR 

RMNG 

budget 

($M) 

Conventional Concrete 

1 

19 
['0006,05', '0007,01', '0005,04', 

'0002,22', '0009,04'] 

0.01 2.92 186.37 217.24 5.76 0.08 

20 
['0007,01', '0005,05', '0002,23', 

'0006,03', '0009,07'] 

0.01 2.88 186.91 231.34 5.87 0.12 

21 
['0007,01', '0005,04', '0006,03', 

'0002,24', '0001,04'] 

0.01 2.81 192.14 253.34 5.87 0.19 

2 

22 
['0005,03', '0009,03', '0006,01', 

'0007,01', '0003,01'] 

0.03 2.89 77.24 183.82 5.22 0.11 

23 
['0005,03', '0007,01', '0009,04', 

'0006,01', '0003,01'] 

0.03 2.89 80.78 183.60 5.23 0.11 

24 
['0001,05', '0005,03', '0006,01', 

'0007,01', '0003,01'] 

0.03 2.79 92.78 208.71 5.22 0.21 

3 
25 ['0007,01', '0005,04', '0009,07'] 0.45 1.63 8.08 67.71 4.17 1.37 

26 ['0007,01', '0005,04'] 0.44 1.53 1.56 63.00 3.57 1.47 
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27 ['0007,01', '0005,04', '0009,06'] 0.43 1.63 8.20 67.78 4.15 1.37 

FR-SCC 

1 

28 
['0001,03', '0005,07', '0007,01', 

'0002,37', '0006,02'] 

0.13 2.57 106.48 258.94 6.45 0.43 

29 
['0006,01', '0002,44', '0005,03', 

'0007,01'] 

0.10 2.60 80.41 231.85 6.27 0.40 

30 
['0001,03', '0002,39', '0005,07', 

'0007,01', '0006,02'] 

0.09 2.58 98.29 255.42 6.55 0.42 

2 

31 
['0001,03', '0005,07', '0009,11', 

'0007,01', '0006,02'] 

0.17 2.61 48.48 182.11 5.80 0.39 

32 
['0001,03', '0005,07', '0007,01', 

'0003,01', '0006,02'] 

0.17 2.55 60.87 203.81 5.82 0.45 

33 
['0001,03', '0005,07', '0009,10', 

'0007,01', '0006,02'] 

0.16 2.62 49.34 183.41 5.80 0.38 

3 

34 ['0006,01', '0005,03'] 0.51 1.61 26.96 94.90 4.02 1.39 

35 ['0007,01', '0006,02'] 0.44 2.16 28.22 137.49 4.11 0.84 

36 ['0006,01', '0007,01', '0005,03'] 0.43 2.59 28.10 149.48 4.63 0.41 

 1 

While the aim of the study is achieved, the current approach has limitations. Firstly, 2 

applying a constant traffic growth rate or a growth rate with a same distribution over the whole 3 

analysis period does not reflect real-world conditions and may overestimate user costs when using 4 

deterministic queueing model. Instead, a multi-stage traffic growth rate can be applied. For 5 

example, New York City (NYC) suggests a 0.25% traffic growth rate for year 1 to 5, and 0.125% 6 

from year 6 and beyond (37). Secondly, including the effect of more M&R strategies such as 7 

Preventive Maintenance (PM) and defining reliable probabilistic distribution of input parameters 8 

are needed as future research efforts as well.  9 

 10 

CONCLUSIONS  11 

This paper presented an integrated bottom-up stochastic LCCA-based approach for finding 12 

feasible M&R strategies at the project level and optimizing best project selection for transportation 13 

infrastructure network. A probabilistic multi-objective framework is proposed for conventional 14 

and innovative construction material and technologies. A hypothetical improvement rate method 15 

with stochastic treatment is developed based on an empirical deterioration model of known 16 

material to provide a reasonable estimate of the performance for the new construction material and 17 

technology. Use of this new approach to evaluate new materials with limited data for the 18 

development of deterioration functions allows us to account for the relatively higher uncertainties 19 

of new materials compared with the traditional ones. 20 

Besides quantification of benefits from new construction materials or technologies, this 21 

study further contributes to the literature by providing a holistic and comprehensive approach that 22 

meets the following needs: 1) to support multi-objective decision making while considering time 23 

effect and agency, user, and social costs, 2) to provide stochastic treatment of the inherent 24 

uncertainties, 3) to establish an integration of a project- and network-level optimization-based 25 

model framework, and 4) to provide clear outcome interpretation. 26 

The project-level LCCA model extracts facility information from an existing database and 27 

produces feasible project candidates with their associated M&R activities and costs. Besides 28 

agency cost, user and social cost are also included when computing project LCC. The network-29 

level optimization model is formulated as a MCMDKP and is solved by using an evolutionary 30 

algorithm, NSGA-II, to identify near-optimal solutions that balance the trade-offs between 31 
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minimizing LCC and maximizing traffic loads of selected projects. Stochastic treatment of input 1 

parameters with high uncertainties provides us with a risk-based asset management approach that 2 

is more versatile and comprehensive than deterministic LCCA when it comes to making long-term 3 

decisions. In addition, clustering strategies are integrated into the decision process to enhance the 4 

traditional multi-objective LCCA by adding the capability of partitioning the pareto-optimal 5 

solutions based on additional preference. Finally, a case study is presented to demonstrate the 6 

applicability of the proposed approach in selecting near-optimum solutions for a bridge network. 7 

Though with a higher material and construction cost, FR-SCC was found to be more sustainable 8 

than conventional concrete over the lifetime of bridge decks on both project-level and network-9 

level.  10 

As an ongoing research effort, the proposed method will be integrated into an easy-to-use 11 

web-based application with multi-stage traffic growth rate, different M&R strategies and more 12 

reliable probabilistic distribution of input parameters. 13 
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