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Executive Summary 

Urban informatics is an important field that is attracting increasing attention from academia, 

government and industry. One particular area of interest in this field is in modeling movement of people 

and goods around cities. A city model should represent information that allows the derivation of 

analytical methods to answer questions like: How do cities evolve? How can cities be compared, 

clustered, and distinguished? 

This research project aims to develop a data-driven approach for modeling cities, which plays a 

fundamental role in urban planning. This requires the identification of areas in the city that have similar 

characteristics, such as similar urban fabric, building facade, or even a specific item of interest, such as 

broken curbs or pedestrians. However, new data sets consisting of dense collections of images are now 

becoming available, which can significantly help in answering many of the above questions. We leverage 

a new data set composed of tens of millions of images from New York City captured over a period of a 

year by cameras mounted on top of cars and produced by Brooklyn-based start-up Carmera. This data, 

by providing comprehensive coverage of not only the various streets of the city but also different time 

periods, has the potential to provide users with a visual perspective of the city that was not possible 

before. 

In this project, we first present a framework that leverages recent advances in computer vision to 

efficiently handle such a large collection of complex images. We then propose to construct a 

spatiotemporal map of relative pedestrian density. Due to the limitations of state-of-the-art computer 

vision methods, such automatic detection of pedestrians is inherently subject to errors. We model these 

errors as a probabilistic process, for which we provide theoretical analysis. Through numerical 

simulations, we demonstrate that, within our assumptions, our methodology can supply a reasonable 

estimate of pedestrian densities and provide theoretical bounds for the resulting error. Lastly, we 

present an interactive visual analysis tool for the exploration of this large collection of images. Our 

approach computes a set of feature vectors for each image in this large street-level collection and makes 

use of a memory-efficient index to interactively answer queries about this data. We then design a visual 

interface that couples the image data with other urban data sets and allows users to interactively query, 

explore and analyze visuals in a city over both space and time. This provides them with the opportunity 

to not only virtually audit the built environment but also help answer numerous questions about the 

complex system of cities. Working in collaboration with urban planning researchers, we illustrate the 

utility of our framework through several use cases.  
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Street-level Images 

The data-providing company has been equipping vehicles in NYC with a set of four inexpensive mobile 

phones, each one facing a particular direction (front, back, left, right). As the cars travel the boroughs of 

NYC, the cameras from the mobile phones capture images at regular time intervals. Every image in the 

data is accompanied by the following metadata: location captured by the mobile phone (latitude and 

longitude) of the car when the image was taken, time and camera orientation. 

It is important to note that, unlike in Google Street View (GSV), where cars were deployed specifically to 

capture street-level images, the cars used for capturing images are regular vehicles. Due to this, there is 

no control over the quality of the images such as illumination, weather, traffic condition or blurriness 

(due to vehicular speed). 

On the other hand, given the inexpensive image capturing approach, these images are spatially and 

temporally denser than other data sets, such as GSV or Bing Streetside. 

Framework Description 

 

Figure 1: System architecture. 

Our system can be broadly divided into two parts as illustrated in Figure 1: the visual interface (see 

Section 5.3), and a backend server. The backend server is responsible for enabling real-time responses 

to queries composed using the visual interface. It is composed of a data storage module and a query 

engine. The images are simply stored as individual files on disk. As mentioned earlier, one of the goals of 

this system is to also support other urban data sets, which are primarily spatiotemporal. Note that the 

metadata corresponding to the images is also spatiotemporal. We use MonetDBLite1, a lightweight 

column-oriented embedded analytical SQL database (code available at 
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https://github.com/MonetDB/MonetDBLite-C), as a data store and store the spatio-temporal data sets 

as tables. The advantage of using a column store is that queries involving only a subset of the data 

columns are more efficient than traditional row-oriented approaches. As we describe later in Section 

5.3, the following types of queries can be issued by the interface: 

1. spatiotemporal selection queries. 

2. spatiotemporal aggregation queries. 

3. image similarity queries. 

 We built a query engine to support such queries. Spatial selection queries are handled by first 

performing a coarse query from the data store that satisfies the time period constraint. The points 

resulting from this coarse query are then tested in parallel for the spatial constraint and returned to the 

interface. 

Handling spatiotemporal aggregation queries is more complicated, and we chose to use the fast GPU-

based RasterJoin2  algorithm (code available at https://github.com/VIDA-NYU/raster-join) for this 

purpose. Given a spatial aggregation query, as before we first run a coarse query to filter for the time 

period, and the result from this is fed to the RasterJoin algorithm to compute the required spatial 

aggregation.  

To handle image similarity queries, in a preprocessing step, we first compute a feature index that 

computes and stores the semantic features of the images. This index is then used to perform similarity 

queries. 

Pedestrian Density Estimation 

Introduction 

Pedestrians are an integral and pervasive aspect of the urban environment. Real estate, consumer 

patterns, public safety, and other aspects of city life are deeply intertwined with the variations of 

pedestrian densities across a city. However, current methods for estimating the distribution of people 

within a city tend to be expensive and mostly produce a space sampling of a few locations.  

In this chapter, we examine a new method to obtain an estimation of pedestrian density. We utilize 

recent advances in computer vision to find people within previously intractable collections of images to 

compile a relative density map. 

In order to take into account the errors inherent to visual objects detection, we model it as a 

probabilistic detection. Using our model, we provide a closed form and bounds for the asymptotic error 

https://github.com/MonetDB/MonetDBLite-C
https://github.com/VIDA-NYU/raster-join


 

  
3 

of the sampling process. We compare these formulas to numerical simulations of the sensing process. 

Our results suggest that computer vision produces usable data, despite the inherent noise. 

To test our method, we utilized over 40 million street-level images provided by Carmera. The images 

were obtained using special fleets that traveled through the region of Manhattan in New York City over 

the course of the year. A sample of this data was used to benchmark several state-of-the-art computer 

vision algorithms. We then utilized the top performing algorithm in a case study to map pedestrian 

densities in Manhattan. 

In this chapter, we make the following contributions: 

1. A new method for the analysis of the spatial variation of urban pedestrians densities utilizing 

state of the art, but imperfect, computer vision algorithms. 

2. A closed form function and bounds for the asymptotic error of the resulting pedestrian 

densities. 

3. The results of simulations validating the sampling process and the derived asymptotic error. 

4. A benchmark of several detection algorithms, along with the variation in their parameters, for 

the purpose of pedestrian detection. 

5. A case study demonstrating the resulting densities for a collection of images from the City of 

New York.  

Related Work 

There are many ongoing efforts on the use of urban data to achieve citizen-centered improvements 3. 

Governments and organizations in urban environments collect a vast amount of data daily, 4 amassing a 

large assortment of information about mobility, crime, pollution, and more. The collection and use of 

this information has been attracting attention from academics, governments and corporations 5. The 

work from Arietta et al. 6 explores the correlation of visual appearance of pictures and the attributes of 

the region to which it pertains. They collected images from Google Maps 7 and indicators from multiple 

regions and trained a model 8 to predict the indicator based on images. The city attributes include 

violent crime rates, theft rates, housing prices, population density and trees presence. Results show that 

the visual data can be efficiently used to predict the region’s attributes. Additionally, the regressor 

trained in one region showed reasonable results when tested in a different city. 

A pedestrian map of the city has numerous applications for urban planners, including the design of 

public transport networks and of public spaces 9. One approach to obtain a citywide count of 

pedestrians is to have people scattered around the city manually counting the pedestrians nearby. This 

approach is laborious, requiring significant manpower and time to perform the measures. Another 

possibility explored in 10 is to use cellphone use data to perform the pedestrian count. Two clear 
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limitations of this approach are that these data are not public, and the coverage is restricted to the 

places where the carrier signal is present. Additionally, it is hard to know whether the cell signal is from 

a pedestrian or from someone in a building or from someone in a car. 

Alternatively, we can consider the visual task of finding the pedestrians in city images. One approach to 

this challenge consists of using the histogram of oriented gradients as the features vector and a support 

vector machines for the classification task 11. In the context of deep neural networks 12 13, the work of 14 

introduced an approach that tries to solve this task by using a unified network that performs region 

proposal and classification. In this way, the method accepts annotations of multiple sized objects during 

the training step, and during the testing stage, it performs classification of those objects in images of 

arbitrary sizes. In 15 the authors follow the two-stage region proposal and classification framework of 14 

and propose the Region-based Fully Convolutional Networks, (R-FCN) which incorporate the idea of 

position-sensitive score maps to reduce the computational burden by sharing the per-RoI computation. 

Such speed alterations allow the incorporation of classification backbones such as 16. 

There are several city images repositories that considers pedestrians, some of them obtained using 

static cameras 17–19 and others obtained using dynamic ones 20–22. Such configuration of sensors has long 

been studied in the sensor network field23–25 and an important aspect of these networks is whether the 

sensors are static or mobile. In 26 the authors explore the setting of a network composed of both static 

sensors and of mobile sensors. The holes in the coverage of the static sensor network are identified and 

the mobile sensors are used to cover the holes. A common problem in sensor networks is the k-coverage 

problem defined in 27, that aims to find the optimal setting of sensors such that any region is covered at 

least by k sensors.  In 28 the authors perform the task of counting people based on images obtained 

through a wireless network of static sensors.  

Apart from controllable mobile sensor networks, many works explore data collected from collaborative 

uncontrolled sensors 29 such as from vehicle GPS 30,31, mobile phone  sensors 32–34 and even from on-

body sensors 35. 

The work of 36 considers the problem of using GPS data from a network of uncontrolled sensors to 

reconstruct the traffic in a city. They do that in two steps: initial traffic reconstruction and dynamic data 

completion. This approach allowed the authors to get a complete traffic map and a 2D visualization of 

the traffic. 

There are many ways to model the movement of mobile nodes in a sensor network, the so-called 

mobility models 37. A simple one is the random walk mobility model 38 where at each instant in time each 

particles gets a direction and a speed to move. In the random waypoint mobility mode 39, in turn, 

particles are given destinations and speeds. They travel toward their goal and once they arrive at the 

destination a new goal and speed are given. The Gauss-Markov mobility model 40 attempts to eliminate 



 

  
5 

abrupt stops and sharp turns present in the random waypoint mobility model. It is done by computing 

the current position based on the previous position, speed and direction. 

Simulation of wireless sensor networks has long been studied 41–43 because it allows a complete analysis 

of system architectures by providing a controlled environment for the system 44. The real-life systems 

non-determinism is simulated using pseudo random number generators 45. Among the large number of 

pseudo random number generators 46, a popular algorithm is the Mersenne Twister 47 due to its 

efficiency and robustness. 

Pedestrians and Sensors Flow Model 

 

Figure 2: A hypothetical illustration of the type of detection errors considered in this paper.  

As current pedestrian detection algorithms are far from perfect, it is natural to wonder about the 

accuracy of any pedestrian count resulting from their use. As shown in Figure 2, a number of detection 

errors can occur. The person on the left, outlined with the red dotted line, was not identified by the 

detector and is a false-negative. The rightmost detection, showing an empty red box, is a false-positive. 

The two correct detections in the center are true-positives. Missing from this example are true-

negatives, which are not a useful concept in this situation due to the overwhelming number. In this 

section, we provide a theoretical analysis of the effect of algorithmic errors on the final count.  

In our model, we assume that the world is modeled by a number of small regions, or buckets, each of 

which we intend to measure a density for. Sensors and people move around a world in some random 

fashion. At regular intervals, each sensor takes an independent measurement of the nearby pedestrian 

count and updates the recorded density at its current location, x. More formally, each time a sensor 
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takes a sample, it obtains a measurement represented by the random variable N(x) . While we don't 

specify the distribution of 𝑁(𝑥), we assume that the expected value follows the formula 

𝐸[𝑁𝑖(𝑥)] = 𝑝𝑛𝑖(𝑥) + λ 

Here ni(x) 𝑖s the actual number of people in the location and time being sensed. 𝑝 is a number giving 

the success rate of the vision algorithm and λ indicating its false positive rate. 

The result of this process is the density of people at each location, ψ(x). 

ψ(𝑥) =
1

𝑘
∑ 𝑁𝑖(𝑥)

𝑖

 

For comparison, the ground truth density ϕ(𝑥), defined respectively by (where 𝑘 is the number of steps 

and samples), 

ϕ(𝑥) =
1

𝑘
∑ 𝑛𝑖(𝑥)

𝑖

 

The expected value of ψ(𝑥) is  

𝐸[ψ(𝑥)] = 𝑝ϕ(𝑥) +  λ 

In other words, ψ(𝑥) is a biased estimator of ϕ(𝑥). Unless our sensing algorithm precisely follows the 

previous equation, we are unable to transform this biased estimator into an unbiased one. Furthermore, 

even in the ideal case, 𝑝 and λ may not be known. Instead, we directly utilize ψ(𝑥) and attempt to find a 

relative histogram. That is, we expect to get a number proportional to the density of the number of 

people at a location and not the actual density.  As such, for any constant 𝑎, our density is equivalent to 

one scaled to ψ′(𝑥) = 𝑎ψ(𝑥). Treating the distribution as a vector, we measure the direction but not 

the magnitude.  In the terminology of group theory, our measurement suggests a density within the 

equivalent class: 

[ψ] = { 𝑎 ∈ 𝑅+ ∣∣ 𝑎ψ } 

To validate our measurement we need a metric that indicates how well the equivalent class compares to 

the ground truth distribution ϕ(𝑥). To do that, we compare the ground truth to the unique closest 

element within the equivalent class. As a vector projection, this minimum element is: 

ψ′ = ψ
< ψ, ϕ >

|ψ|2
𝑖𝑓 |ψ| ≠ 0 

ψ′ = 0 𝑖𝑓 |ψ| = 0 
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which we can then compare using the usual Euclidean metric |ψ′ − ϕ|. However, this metric depends on 

the number of locations in the map, as well as the number of people. As such, we normalize the metric 

to between 0 and 1, to obtain a final metric: 

|ψ′ − ϕ|

|ψ′| + |ϕ|
 

Over long periods of time, we expect the asymptotic error to approach: 

|ψ′ − ϕ|

|ψ′| + |ϕ|
→

λ

ℎ

√𝑐2 (𝑝 +
λ
ℎ

)
2

+ (𝑝𝑐2 +
λ
ℎ

)
2

− 2 (𝑝 +
λ
ℎ

) (𝑝𝑐2 +
λ
ℎ

)

(𝑝𝑐2 +
λ
ℎ

) √𝑝2𝑐2 + (
λ
ℎ

)
2

+ 2𝑝
λ
ℎ

+ (𝑝2𝑐2 + 2𝑝
λ
ℎ

+ (
λ
ℎ

)
2

) 𝑐

 

Here ℎ >  0 is the average density of people and 𝑐 ≥ 1 describes the distribution of ϕ. However, 𝑐 can 

best be thought of as parameters that describe the asymptotic error. Both of these parameters depend 

on the resolution of the heat map in addition to pedestrian distribution. In many cases 𝑐 can not be 

determined, as such we can use the inequality: 

lim
𝑘→∞

|ψ′ − ϕ|

|ψ′| + |ϕ|
≤

√𝑐2 − 1λ

2𝑐2ℎ𝑝
≤

1

4

λ

ℎ𝑝
 

It is important to note that ℎ needs to be the ground truth density of people, in the same units of ϕ. If 

only the sampled average density, ℎ̂, is know, the unbiased estimator of ℎ, 
ℎ̂−λ

𝑝
 can be used. This leads to 

the bounds 

1

4

λ

ℎ𝑝
≈

1

4

λ

ℎ̅ − λ
 

This final formula is only dependent on the false positive rate of the sensing algorithm and the average 

density of sensed objects measured by process, making it suitable for practical sensing applications.  This 

function is only useful when λ ≤ ℎ̅. In that domain, it is a monotonically increasing function of λ. Thus, if 

λis not precisely known, it is best to err on the side of larger values. 
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Simulation 

 

Figure 3: (Left) An illustration of our simulation containing a sensor (center) moving through an 

environment with numerous pedestrians. (Right) Each sensor moves with uniform speed 𝛎𝒔 and is 

able to sense people within a radius of 𝒓. Each sensing operation has a probability 𝒑 of correctly 

detecting each person and, on expectation, finds 𝛌 false positives.  People move with uniform speed 

𝛎𝒑. 

 

The real-life acquisition process lacks some of the simplifications we used in our model. For example, 

samples taken in spatial and temporal proximity are correlated. To examine the performance of the 

sensing systems in the face of these non-ideal circumstances, we created a discrete event simulation 48 

to compare sensed distributions to known ground truths. 

As illustrated in Figure 3, we simulated a number of mobile sensors that detect nearby particles. Each 

sensor has a circular coverage of radius 𝒓. Collision among particles and sensors are ignored for 

simplicity. Sensors and particles move with uniform speeds 𝛎𝒔𝒆𝒏𝒔𝒐𝒓 and  𝛎𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆 respectively. The 

simulation world is mapped as a graph, as in 49. Each node in the graph is a traversable point by both 

sensors and particles and edges represent a path between the end nodes. 

We assume that, in each time step, a sensor has an independent chance, 𝒑, of detecting each of the 

𝒏(𝒙) persons within range along with an independent chance per location to obtain a false positive. 
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These assumptions lead to 𝑵(𝒙) being sampled from the sum of a binomial distribution with mean 𝒑 

and a Poisson process with a given expected number 𝛌 A calculation of the expected value indicates that 

the expected value formula is satisfied and that our theoretical error calculations and bounds should be 

valid.  

The system state can be described by various state variables: sensor and particle positions, sensor and 

particle waypoints, real density of particles and sensed density of particles.  Sensors and particles move 

with a variation of the random waypoint model~\cite{johnson1996dynamic}, differing from it by the fact 

that sensors and particles are not allowed to change speeds; they have fixed speeds given by the system 

parametersν𝑠𝑒𝑛𝑠𝑜𝑟 and ν𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 . When a new destination is randomly picked, the trajectory on the map 

graph is computed using the A* algorithm~\cite{hart1968formal} and the points of the trajectory are 

pushed to a heap. 

As time progresses, we obtain a 2D histogram for the sensed density as well as the ground truth density 

of particles. 

Simulation Results 

We evaluated different true positive rates and expected number of false positives of the sensors, 𝑝 and 

λ and we used a Mersenne Twister pseudo number generator 47. 

For the 143 possible combinations of values, we ran the simulation for 20,000 time steps 20 

independent times.   

The code is primarily implemented in Python with performance-sensitive sections implemented in 

Cython 50.  The average time to run a single experiment of this optimized code is of 11,718 seconds. A 

single processing and single machine processing would take roughly 1 year to run all the experiments, 

but running them in parallel, it took 11 days. 

For each experiment we examine the decay of the metric given by the error metric equation as a 

function of the cumulative number of samples captured by all the sensors. We assume the error 

continues to decay until it reaches an asymptotic minimum error within the 20,000 simulation time 

steps. Afterwards, we take the average decay curve of all 20 runs for each settings configuration and 

take the average of the last 200 values to find the asymptotic value. 
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Figure 4: (Left) Asymptotic error metric between the sensed and ground truth histograms in our 

simulation. (Right) Comparison of the asymptotic histograms error measured from the simulation 

experiments to the theoretical close form and the approximate bound.  

We can visualize the results from the simulations in Figure 4, which shows how the variation of true 

positive rate and false positive rate affect our histogram error. On the left, the asymptotic error metric 

between the sensed and ground truth histograms, piloted as a function of the sensors’ true positive and 

expected number of false positives, is shown. If we take a horizontal profile of 0.2 of true positive rate, 

we can see how the errors are greatly affected by the variation of the expected number of false 

positives, varying from very low to high error values (represented by the variation on the color 

saturation). We compare these values to our theoretical formulas, and show they are approximately 

equal, as shown in Figure 4 (Right). Note that p=0 is not shown due to the denominator of the inequality 

equation. Finally, we show that they are within the bound given by the inequality equation. 

Computer Vision Sensing 

Carmera uses a fleet of camera equipped cars (such as in 51) traveling through Manhattan to acquire a 

temporally and spatially dense collection of pictures. The orientation of the cameras varies and the 

nature of the images are similar to street level collections provided by many mapping services. However, 

the images are not stitched into a 360-degree panorama. Every image is accompanied by metadata 

including the acquisition time, location, and camera orientation. The images are captured as the vehicle 

travels, with no control of the content, illumination, weather, traffic conditions, or vehicular speed. The 

typical image depicts an urban scenario as a background and the city dynamics including pedestrians, 

vehicles and bicycles. Our dataset differ from several existing publications 17,18,20–22,52 by providing dense 

temporal coverage in addition to dense spatial coverage. 

We used a sample of images captured from March 2016 to February 2017 containing 10,708,953 

images. This sample presents a dense spatial sampling of the whole region over a year, but irregular 
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spatio-temporal sampling on a daily basis, as seen in the varying distribution of pictures by day of the 

week and hour of the day shown in Figure 50. All resulting heatmaps are weighted sampling according 

to this distribution. 

 

Figure 5: Distribution of pictures by day of the week and by hour of the day.  

We evaluated how three computer vision algorithms for pedestrian detection perform on our dataset. 

The first one is based on a histogram of oriented gradients features 11. The second one is based on the 

extraction of features by means of convolutional neural networks 14. The third utilizes fully convolutional 

networks for accuracy and speed improvements 15. 

We manually tagged 600 images to use as a ground truth. We adopt the same metric as Everingham et 

al. 53 when comparing the detected objects in an image to the ground-truth. A detected object is 

considered to correspond to a particular ground truth object if there is a minimum ratio of 50% between 

the overlap of the detected bounding boxes 𝐵𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  ground-truth bounding boxes 𝐵𝑔𝑡𝑟𝑢𝑡ℎ, and the 

union of the two areas: 

|𝐵𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∩ 𝐵𝑔𝑡𝑟𝑢𝑡ℎ|

|𝐵𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∪ 𝐵𝑔𝑡𝑟𝑢𝑡ℎ|
≥ 0.5 

The recognition of distant objects in an image is difficult for humans and is even more difficult for 

computers. We assume that, on average, the size of a person within an image is an indicator of the 

distance from that person to the sensor and try to improve the accuracy by considering a minimal size of 

the people detected. Thus, bounding boxes smaller than a new hyperparameter threshold are ignored, 

as shown in Figure 6. When the threshold is small, as in the left image, all people in the images are 

annotated. As the threshold increases from medium to high in the middle and right images, the number 

of annotated people decreases. Those remaining tend to be closer to the camera.  
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Figure 6: Variation of the ground truth annotations for different minimal person size thresholds.  

As discussed below, we decided to utilize R-FCN, which we ran over our entire data set in parallel and 

created a database with the number of pedestrians detected in each image. This database is then 

aggregated in space and time to create a visualization of the pedestrian counts by finding the average 

number of pedestrians per image in each region. 

Survey of Algorithms 

 

Figure 7: Comparison of HoG, Faster R-CNN and R-FCN detection on our dataset. Left: The precision 

and recall for each configuration of method parameters and minimum size threshold; points in the 

same line represents the results of the same ground-truth height threshold. In this graph the upper 

left corner represents an ideal algorithm. Right: The true positive rate versus the average number of 

false positives for the same set of parameters and ground-truth thresholds. Here, the upper left 

corner represents an ideal algorithm. 

We used a total of 10,708,953 images, covering the region of Manhattan, Monday to Friday from 7am to 

6pm. We evaluated three methods for the task of people detection 11,14,15 over a sample of our dataset. 

We used the Matlab 54 implementation of 11, with an 8 × 8 stride of the detection window, 1.05 for the 

pyramid scaling factor and model trained on the 96 × 48 resolution images from the INRIA pedestrian 
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dataset 11. The detection thresholds ranged from 0.0 to 0.1, spaced by 0.01. The implementation of 14 is 

published by the authors and the model we used is a VGG16 network 55 trained with Pascal VOC 2007 

dataset 53 with a non-maximum suppression 56 threshold of 0.3. We evaluated the method with scores 

ranging from 0.0 to 1.0 score, spaced by 0.1. The R-FCN algorithm 15 was also trained on the Pascal VOC 

2007 dataset, but with the 101-layers neural network architecture proposed by 16. Here again, we 

evaluated the method with detection scores ranging from 0.0 to 1.0, spaced by 0.1. 

Figure 7 shows the results of the evaluation of the three methods over a random sample of 600 images 

of our dataset. The images were manually annotated and precision and recall values were computed. 

Ground-truth pedestrians in this comparison included tiny pedestrians, which explains such low values 

for recall. We can see that the overall accuracy of R-FCN was the best in our experiments. The detection 

times for each image are on average 5.7s for 11, 3.9s for 14 and 4.1s for 15. 

 

Figure 8: Evaluation of R-FCN for different ground-truth height thresholds. The utilized model has a 

Resnet-101 backbone trained on the Pascal VOC 2007 dataset. 

 

Figure 9: A comparison of the ground truth pedestrian count and the measured pedestrian count from 

the 600 tagged test images. While the actual true positive and false positive counts do not match their 

expected statistics (left), the total measured pedestrian count can be close to approximated as linear 

(right). It should be noted that this is only an approximation as, even taking sampling errors into 
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account, the mean measured count does not fit a linear model. Error bars are the 95% confidence 

interval of the mean. 

None of the methods in Figure 7 achieve recalls exceeding 80%, and this fact is inherent to the difficulty 

of object detectors in detecting small objects. To mitigate this issue, the detection model we propose 

assumes a finite radius of coverage (see Figure 3) and thus, we establish a limit on the size of the objects 

detected in the image. Figure 8 shows the results of the adopted detector over our sample as we vary 

the minimum acceptable height. As we can see, the higher the ground-truth height threshold, the higher 

the precision, and specifically the recall, of the method. 

Case Study 

Based on the results of the previous section, we adopted a R-FCN using a residual network of 101 layers 
16 trained on Pascal VOC 2007 53, as proposed by 15. The model was trained using a weight decay of 

0.0005 and a momentum of 0.9. Assuming a method minimum score of 0.7 and height threshold of 120 

pixels, 7,474,623 pedestrians were detected overall. 

We compared the number of pedestrians counted as a function of the average number of ground truth 

pedestrians in each of the 600 manually labeled images. Error bars for the mean were computed using 

the 5% to 95% values of the median of the appropriate sample process. We measured the true positive 

rate (p) to be 0.54 and the average number of false positives (λ) to be of 0.117. 

As shown in Figure 9, the actual number of true positive and false positives do not individually fit the 

linear and content assumptions that we proposed previously. However, the total number of pedestrians 

detected is closer to being approximately linear; though it still has statistically significant deviations. 

These stem from the vision algorithm's better-than-expected performance for images without any 

pedestrians and worse-than-expected performance for images with a single person. While we do not 

know how these deviations would affect the error bounds, we hypothesize that the two deviations 

would cancel themselves out and bound may still approximately hold with a slightly larger equivalent λ. 
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Figure 10: Visualization of the pedestrian density in Manhattan. The scale of colors represent the 

relative density of pedestrians. Left: The heatmap over the island of Manhattan. Right: The same 

heatmap enlarged to show the details of midtown and surrounding areas. 

A visualization of the density of pedestrians in all of Manhattan can be seen in Figure 11, with high-

density areas shown in red and lower density areas shown in yellow. For these maps, we obtained an 

average pedestrian density (ℎ̂) of 0.587, which takes us to an error of 0.062. The actual error may be 

larger due to the deviations from linearity discussed above.  

Pedestrian distributions like ours can be useful for city planning, commercial, and other purposes. 

Depending on the task at hand, a high pedestrian density can be beneficial or detrimental. Taxis seeking 
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riders, food trucks seeking customers, and businesses seeking storefronts all benefit from large crowds. 

However, traffic and self-driving cars do not. Knowledge of pedestrian densities can allow city planners, 

civil engineers, and traffic engineers to make better decisions.  

 

Figure 11: Map of Manhattan showing examples of locations with increased pedestrian densities. 

Futures studies may be able to use these correlations to better understand how cities interact with 

pedestrians. 

Our pedestrian map can also show the effect that features of the city have on its people. As shown in 

Figure 12, in addition to densely populated neighborhoods, subway stations and attractions like the 

Metropolitan Museum of Art are all associated with a spike in the pedestrian densities. These spikes 

might be too localized to be detected using traditional methods. Further studies of vision-based 

pedestrian counts may lead to a better understanding of how cities affect people's walking habits. 
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Conclusion 

In this project we used a large set of images from a region of Manhattan and automatically detected the 

number of pedestrians in each image. As a result, we obtained a map of pedestrians in the region given 

by the spatio-temporal sampling. Additionally, we modelled the errors in this process by simulating a 

sensor network with probabilistic detections. The results show that, even considering faults in the 

detection model, this process can still be used to get a reliable map of pedestrians in the region. 

Besides the results presented, there are other potential future avenues of study, as discussed in the 

following section. First, we should caution that any application of our methodology should perform 

statistical tests to ensure that their results are statistically significant. While we set bounds on the 

asymptotic error after the sampling process converges, we have only provided case studies and 

heuristics for the time to convergence. It would be interesting to find a formal bound on time to 

convergence as well as provide guidelines for the appropriate statistical tests to validate the data post 

collection. 

Our experiments could be extended to consider alternative mobility models 37, dynamics models 

including macroscopic ones 57–59.  We can also use data completion algorithms 36,60,61 to reconstruct a 

city-wide pedestrian map. 

The pedestrian map generated could then be combined with other urban datasets, such as Socrata 62, 

weather, crime rates, census data, public transportation, bicycles and shadows 63. We additionally aim to 

explore apparently disparate datasets such as wind and garbage collection. 

Another future work is incorporation of advances, such as from 64 to visualize our images in the context 

of the city and use this visualization to gain additional insights into the other datasets analyzed in 

Urbane 65. As a first pass, we are working to render the photographs in the locations they were 

captured. We hope to use Structure from Motion 66 to improve the accuracy of image location as well as 

find the orientation that the images were captured.  

Additionally, we hope to use 3D popups and/or photo-based rendering to fully enhance the images in 

the three-dimensional environments. It is our hope that the context of the images will allow users to 

better understand the different datasets that are analyzed in Urbane. 

Urban Portfolio 

Introduction 

Cities are complex systems of interrelated dynamic components tied together through a series of 

interactions. Transportation systems, street layouts, public utilities and land use all interact with one 
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another in a process that shapes and forms the city, ultimately influencing how people occupy, move 

and utilize the provided resources and services. Any intervention to alter one part can impact others in 

various ways 67. The rapid increase in urbanization in the past century 68 has made this process much 

more complex, as cities struggle to satisfy the demands imposed by an ever-larger number of people 

with different needs and expectations. It is therefore essential to have a better understanding of 

different aspects of the city, and how it changes over the course of time. 

The understanding and analysis of this process have been made possible in recent years with 

technological innovations that enable the collection of a diverse set of data that reflects how we 

conduct our daily lives in a city, as individuals or as a society. With an ever-growing list of urbanized 

areas and private firms making data publicly available through open data portals (e.g., see 69–71); several 

new techniques and tools have been proposed to quantify and better understand different aspects of 

the cities. Most of the works are limited to understanding cities through the measurement and 

quantification of a subset of attributes from interesting urban data. For instance, one could use taxi trips 

to better understand the flow of traffic 72, sensor data to understand noise problems 73,  or social media 

check-ins to understand land use patterns 74 or urban activity 75. These analyses, however, are mostly 

limited to non-visual tabular data, and, while capturing certain aspects of the cities, fail to capture their 

visual appearance. Several attempts have been made to objectively measure features of the urban 

environment, many of which are perceptual or qualitative in nature and were thought of as 

``unmeasurable" 76. These attempts lead to the creation of various different audit tools 77,78. For some 

time, any effort to quantify the physical appearance and built environment of cities was bound to 

limited geographical locations both in terms of the number of locations covered and the area of those 

locations, since such a task required timely and costly in-field data collection and assessment procedures 
79,80. 

The advent of new computer vision algorithms has made it possible to use images as a source of data to 

measure physical built environment characteristics 81,82. Images provide excellent sources of 

information. They can encapsulate the spatial and temporal context and make otherwise abstract ideas 

relatable to different audiences. Using a temporally dense collection of images can make it possible to 

visualize not only the different blocks, neighborhoods, and boroughs of a city but also its physical 

changes over any period of time depending on the data availability. 

Recently several private companies have been collecting street-level images with the use of cameras 

mounted on top of cars. Perhaps the most popular, Google Street View (GSV) 83 allows the exploration of 

street-level images, emphasizing the particularities of a place rather than cartographic abstractions 84. 

The advent of these new GIS technologies and the availability of street view or other GIS-based images 

or video recordings have made it possible to conduct virtual auditing 80,85–87.This has helped expand and 

diversify the geographical area that can be covered in studies and reduced the amount of time and labor 
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required for the task to some extent. Trained experts can now directly use such image collections for 

analysis and data assessment.   

Although virtual auditing using an image collection such as GSV has many advantages compared to in-

field audits, there are still several shortcomings to this approach when it comes to the difficulty of doing 

the required analysis. The user still has to manually explore the image collection and identify images 

that are of interest for the analysis 81. This becomes especially hard when the analysis requires 

identifying images satisfying conditions based on external data. For example, identifying pavements 

dangerous to pedestrians might involve searching only for images when there is snowfall, or analyzing 

the effect of construction on a neighborhood would require obtaining images in regions with a lot of 

construction activity restricted to the period of construction. Furthermore, the image collections 

provided by services such as GSV is temporally sparse, typically having images corresponding to only a 

single time instant. Thus, analyzing any type of temporal evolution is not possible. 

Temporally Dense Street-level Images 

A new data set is now available comprised of images captured in New York City over the course of a 

year. Unlike GSV, this collection was gathered using off-the-shelf mobile phones mounted on top of 

regular vehicles, without any specialized hardware, and with no guarantee that consecutive 

photographs were taken to uniformly cover the streets (or with the correct focus). Because there is no 

human intervention involved, photographs could now, however, be taken continuously. Since these 

vehicles are on the move most of the time throughout the year, often repeating locations, it resulted in 

a large number of images that are temporally dense, covering not only different times of the day but the 

various seasons as well. To the best of our knowledge, this is the first known data set that has 

comprehensive coverage of a city over both space and time. 

Having such a temporally dense data set of images creates the opportunity to conduct longitudinal 

studies where one can identify exogenous shocks to places by comparing different socio-demographic 

indicators before and after some major natural or man-made changes. These results can then be used to 

answer some of the classical urban study questions 81,87. Since this data covers different neighborhoods 

with similar physical features, it can enable researchers to not only test the validity of various 

hypotheses at a larger scale but reveal characteristics that were not obvious before. 

Problem and Challenges 

The goal of this work is to design a visual analysis system that allows users to effectively explore such a 

dense collection of image data. This system should support the following features, which were finalized 

based on the use case scenarios common in the workflow of an urban planning researcher. 
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• It should have the ability to search for images having a user desired property (which is specified 

through a user-provided set of query images). Note that this can be both the presence (e.g., 

should contain construction cones) as well as absence (should not contain construction cones) 

of the property. Users can use this feature to both (a) query for macro elements such as active 

front buildings, buildings with red-bricks facades, etc.; as well as (b) perform a city-scale search 

for finer details like a specific window style, or even broken curbs. Having the ability to perform 

such fine-grained queries opens the door to exploring a variety of research questions that are 

otherwise not possible. 

• It should allow users to query for images based on other data sets. As mentioned earlier, this 

can help in policy-oriented analysis common in urban planning. 

• It should allow users to query for images over regions and/or time periods of interest. This can 

help in a spatially and/or temporally focused analysis of the urban environment. 

There are, however, several challenges in accomplishing this. First, querying for similar images having 

the desired properties requires first extracting the features of all the images, and then searching over 

this feature set. While recent advances in computer vision can be used for extracting the features, given 

the large number of images present, these features take hundreds of GBs of space, and thus cannot be 

memory resident. Second, visual exploration requires support for real-time queries, which is not 

possible over disk-resident data. Third, contextual queries dependent on external data sets requires 

interactive spatial queries over the image metadata such as the location of the image and the time it 

was taken. Moreover, the query interface should also support the visualization of external data sets to 

allow users to identify appropriate query constraints.  

Motivated by the use case scenarios common in urban planning, we present a visual analysis system 

that enables users to contextually explore a temporally dense collection of images from a city. It allows 

users to visually compose contextual queries by choosing either parts of images already in the database 

or uploading external images. Such queries are supported by first extracting the features, as a high 

dimensional vector, of the images at multiple resolutions using a convolutional neural network, and 

then searching based on these features. To enable interactive querying using these features, we design 

a lightweight feature index that: 

1. significantly reduces the memory footprint, thus allowing it to be memory efficient 

2. converts similarity testing into simple bitwise operations, thus making it computationally 

efficient, requiring less than 100 ms for queries that would otherwise require tens of minutes. 

  

Our system also supports loading and visualizing external spatiotemporal data sets, which can help to 

guide the user exploration. 
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Working in collaboration with urban planning researchers (also a co-author of this paper), we 

demonstrate the utility of this system through different case studies that: 

• Assess pedestrian safety in NYC. In particular, check for the presence of tactile squares on curb 

ramps in accordance with Americans with Disabilities Act compliance, as well as pedestrian 

safety around construction sites. 

• Explore how the visual appearance of neighborhoods has applications to urban design. 

• Track the evolution of construction projects. 

To the best of our knowledge, this is the first system that allows the visual exploration and analysis of a 

large and temporally dense collection of images from an urban center in conjunction with other urban 

data sets. We believe that this ability to marry a visual depiction of a city with urban data sets can 

significantly help and engage stakeholders when framing policies. 

Related Work 

We review related work in three categories: urban visual analytics, image similarity, and the use of 

street-level images in urban planning. 

Urban Visual Analytics 

The availability of an increasing number of data sets from cities has created an opportunity to analyze 

the city in several new ways. In order to interactively explore and analyze this data, multiple visual 

analytics systems have been proposed 65,72, targeted at transportation and mobility 88,89, air pollution 90, 

noise 73, real-estate ownership 91, and shadows 63. A comprehensive survey on urban visual analytics is 

presented in Zheng et al. 3. 

The use of street-level images in urban analysis has gained popularity since the introduction of GSV 83 

and Microsoft's Streetside 92, which allows users to explore cities through images captured by 

specifically designed cameras mounted on cars. The availability of street-level images has created an 

opportunity to analyze cities from a new perspective. These images have been used to assess urban 

environments 80,93, predict street safety 82, predict urban change 94, summarize city landscapes 95, 

compute sky exposure 96, and detect urban features 97–100. Arietta et al. 6 presented a method that uses 

street-level images to identify relationships between the visual appearance of a city and its attributes. 

More recently, Shen et al. proposed StreetVizor 101, using Google Street View images to analyze urban 

forms. Sakurada et al. 102 used a collection of images and mapping data to detect changes in buildings, 

applying their method to cities damaged by the tsunami in Japan. Our work differs from past proposals 

along three major directions. First, we use a first-of-its-kind street-level data set that is temporally 

dense. Second, we present a visual analysis system that enables users to explore this collection of 
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images by visually composing contextual queries and searching for visually similar images. Lastly, we 

support its spatiotemporal analysis in conjunction with other urban data sets. 

Image Retrieval 

The querying of large collections of images by similar features has been a major source of research in 

the computer vision community. Prior to 2012, image retrieval methods were mostly based on image 

features extracted by local descriptors such as SIFT 103 or HOG 11. Recent neural network proposals, 

however, have gained attention as a viable approach for feature extraction. Two possible approaches 

are to either use a convolutional neural network (CNN) 55 pre-trained on image data sets, such as 

ImageNet, or a fine-tuned CNN model 104. We refer the reader to the detailed survey by Zhou et al. 105 

covering content-based image retrieval. 

In this paper, we use an approach first presented in Razavian et al. 106. We decided on this approach 

based on the accuracy it provided for our test data sets, as well as its performance, which enabled us to 

compute the features of an image in real time, this operation is performed when a user specifies an 

image as a query constraint). Their idea is to use the feature representation extracted from an 

intermediate layer of a pre-trained convolutional neural network. 

Urban Planning 

The impact of the physical appearance of the cities on various aspects of human life has been studied for 

years. Jane Jacobs famous “eyes on the streets” theory, explains how certain features of the built 

environment, such as active ground floors with lots of details and windows, townhouse stoops, 

greeneries or wide sidewalks can create a vibrant street life that attracts more people to public spaces 

and hence increases the safety 107. Researchers from different fields have also looked at how the 

physical forms of an environment can shape, alter or influence certain features of daily life, such as 

physical and mental health 108,109, level of physical activity 110,111, willingness to walk 112, safety 110,113,114, 

social inclusion 115,116 and social capital 117,118. 

To empirically analyze the impact of the built environment on any of the above-mentioned fields, its 

properties should be quantified. For this purpose, different systematic observations or audits have been 

designed and developed 119,120. A majority of the physical features of urban built environments currently 

used in multiple audit tools were identified through direct field observations, focus groups, or experts' 

panels 77 or interviews 78. These features are then added to the audit checklists or protocols, together 

with the objective measurements for each feature.  

The most widely used method of collecting data on urban appearance is in-field auditing, which requires 

trained auditors to be present in the field, recording their observations based on different auditing 

protocols and in many cases, performing some level of on-site assessments 121–123. However, more 
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recent works employed crowdsourcing and virtual auditing through GSV street-level images to 

investigate this relationship on a larger scale 124,125. One of the major problems of using GSV is that the 

date when the images are taken is not always consistent for the whole city, or even across one 

neighborhood. Also, only the month and year in which each image is taken is being reported; there is no 

information about the specific day when the image was taken, and this can be problematic in some 

auditing protocols, specifically those concerned with public health or socioeconomic aspects of the built 

environment 80. 

Our system improves upon common virtual audits by enabling the user to interactively explore a 

temporally dense collection of street-level images, allowing them to compose queries and search for 

regions with similar built environment characteristics. 

Interface 

The visual interface of our system consists of two main components: the query interface and the 

exploration interface. 

Query Interface 

 

Figure 12: Query and Exploration interfaces. The Query interface allows users to compose spatial and 

temporal constraints based on external urban spatial and / or temporal data sets.  
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The query interface allows users to define two types of queries: spatiotemporal queries and image-

based queries using a spatiotemporal query widget and an image query widget respectively (Figure 13). 

Image similarity queries can be composed by selecting images of interest, and optionally cropping 

regions of interest. These queries result in a set of images satisfying the different constraints. 

Additionally, a map also displays a heat map of the query results without the spatial constraint, thus 

allowing users to explore other areas having images with the required properties. 

Spatio-temporal Query Widget 

This widget is made of a map view and a time series view. Users can select a region of interest over the 

map, and a temporal range constraint using the time series. 

Additionally, users can also choose a spatiotemporal data (which has been loaded into the data store) to 

visualize it as a heatmap as well as in the time series view. This allows users to base their spatiotemporal 

query constraints based on other data sets. For example, by visualizing the noise complaints data, the 

user can select regions having a high number of complaints and/or time periods when there is a peak in 

the number of complaints. 

Image Query Widget 

This widget allows users to compose image-based queries. A default query run without any image 

constraints will simply return all images satisfying the spatiotemporal constraint specified above, 

ordered based on time. Users can “drop” images of interest into this widget to compose image 

constraints. These can be either external images or from the results of a previous query. When multiple 

images are part of the constraint, the query returns images that satisfy all the constraints (i.e., an 

intersection operation is performed). 

Users can also select only a patch within an image as a constraint. For example, if the user wants to 

query for a particular facade type, then only a small region corresponding from a larger image having 

this material can be cropped and used. 

Depending on the user preference, they can select at what scale to perform the queries: large, medium, 

or small. For example, the large-scale queries can be used when searching for an urban environment of 

a particular type, such as open fronts or parklets, or small-scale queries when looking for small objects 

such as trashcans, etc. By default, we consider two image features similar if the angle between them is 

less than 45° 

  



 

  
25 

. 

Exploration Interface 

The exploration interface is made up of two gallery widgets, and another map view. The first gallery 

view shows the list of images resulting from the query performed using the query interface. Since, the 

number of figures returned can be quite large and will not fit into a single view, we paginate the gallery 

into multiple pages. When no image constraint is provided, then the images are ordered by the time the 

photo was taken. Otherwise, the ranking is based on the angular distance. 

Additionally, the map view in the exploration interface visualizes a heatmap of the images satisfying the 

image constraint over the entire data (that is, when there is not spatio-temporal constraint). This is 

helpful for users to quickly identify spots in the city that have properties similar to the given constraint. 

Users can then select a region of interest in the map and view the images from this region on the second 

gallery view. The use of two gallery views also helps users compare images from different regions. 

Case Studies 

In this section, we demonstrate the application of Urban Portfolio through four case studies set in NYC.  

The first case study compares different facade types common to residential areas and their distribution 

across NYC. The second case presents the evolution of a construction project in the neighborhood of 

Williamsburg. The final study assesses the presence of tactile pavings on sidewalks, as well as two 

common sidewalk obstacles: traffic drums and scaffolding. 

Urban Design: Neighborhood Fabric 

A diverse city like NYC presents a variety of different architectural styles that make up the unique urban 

fabric of various neighborhoods. From Brooklyn's famous brownstone row houses and Manhattan's 

limestone townhouses to the tall and skinny glass towers, different facades bring different rhythms to 

the neighborhoods. Getting a better understanding of this diverse fabric can greatly help different 

aspects of urban design. 

For example, the design of the ground floors and facades of the buildings is proven to have a significant 

impact on the pedestrian's walking experience. According to Jan Gehl, fine details of the facade and 

display windows, narrower units and vertical facade articulation can make the walk seem shorter and 

less tiring. Such neighborhoods are more inviting and thus create livelier cities 126. Detecting areas that 

display such characters is hence of great importance for walkability studies.  

In a city like NYC, the codes and regulations for urban constructions as well as for repairs and 

installations differ based on the characteristics of the location where it is to be performed. For example, 
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safety inspections are scheduled typically every 5 years for buildings with certain facades 127. Fixing any 

problems in these cases often warrants a specialized crew and/or tools. However, given the long time 

interval between the audits, it is difficult to identify problems early, resulting in more work and hence 

incurring a higher cost. This is especially true for older buildings, since they require a lot more care. 

Having the ability to search through updated images (indicating some of the common problems) from 

across the city can greatly help in performing a virtual audit, thus helping identify some problems early. 

 

Figure 13: Exploration of similar building features across neighborhoods in Manhattan. Here, we first 

upload an image from a typical residential neighborhood and search for similar images using the 

medium level. The map on the left displays the regions of Manhattan with images that are most 

similar to the one used in our query. Next, we add another image to our query, now highlighting the 

front stoop. The map on the right shows the occurrence of similar images. We also highlight an 

example of two of these images. 

In this case study, we show some examples of how our system can spot different architectural styles and 

facade materials across neighborhoods. In the first example, we use an external image of a red brick 

apartment with detailed windows, crop a patch of interest, and query for similar images at a medium 

scale (see Figure 13 left). This results in several images matching the style, as well as a heatmap 

visualization highlighting regions in Manhattan containing images similar to the query pattern. Note 

here that historical neighborhoods, such as Greenwich Village, East Village and Gramercy, present a high 

concentration of buildings with red bricks. 

One of the result images contained a red brick apartment that has a front stoop. In the next step, we 

further refine our query by cropping and adding the patch corresponding to the stoop to the query 

constraint. Recall that using multiple images in the query constraint results in the intersection of images 

satisfying both the constraints. The distribution of this query result is again visualized as a heatmap. 

Figure 13 (right) shows representative images from two locations satisfying both the constraints. It is 
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interesting to see that the Greenwich village area has a higher density of such buildings compared to 

other areas. 

 

Figure 14: Querying for buildings having a (left) vinyl facade, and (right) limestone bay window of a 

Beaux-Arts style townhouse. 

Williamsburg and Greenpoint are Brooklyn neighborhoods known for having rows of colorful vinyl 

townhouses. So, in the next example, shown in Figure 14 (left), we query for buildings with a vinyl 

facade in Brooklyn. The results show a dense cluster of vinyl townhouses in both these neighborhoods, 

and more sparsely spread in other locations. 

In the final example, shown in Figure 14 (right), we search for a more specific detail of the building 

façade - the limestone bay window of a Beaux-Arts style townhouse. As seen in the resulting density 

distribution, this architectural feature is present in both the Upper East and West sides of Manhattan, as 

well as Hamilton Heights. But unlike the previous two examples, these are more sparsely and widely 

scattered, primarily due to the fact that these are very specific design types. 
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Construction Evolution 

 

Figure 15: Example of using our tool to assess the evolution of a construction site.  We start by 

selecting images in the beginning of 2016 from Williamsburg, Brooklyn. We use one of the images as 

our query, then find images later in the year when the construction is more advanced. We further use 

images from this stage as our query, continuously refining our query until we are able to see the 

inauguration of a new store in the neighborhood. 

Each year, New York City's Department of Buildings (DOB) issues thousands of building permits for a 

variety of different purposes. DOB also provides a data set containing a list of all issued permits across 

all of the five boroughs of NYC. This allows for an overview of the active construction hot spots 

throughout the city, an increasingly important topic considering the impact of construction on noise, 

pedestrian safety and pollution. 

However, tracking the actual evolution of construction projects and their impacts on the surrounding 

neighborhoods is a demanding task, considering the large number of constructions in a metropolis such 

as NYC. Relying only on permits to assess the evolution of a construction project can be misleading, 

since some permits issued by DOB may only involve minor work. Sometimes they do not even result in 

any construction work. In this case study, we use Urban Portfolio to demonstrate how it provides an 

intuitive way to visually grasp changes in a construction project over the course of a year and analyze 

the evolution of a construction site from the early stages of development until the end.  

We started with the construction permits issued by DOB to assist in our exploration. Using the heatmap 

of the construction permits issued, we first filtered the images that were captured within 100 meters of 

an active construction site (Figure 15 (left)). We then chose the neighborhood of Williamsburg in 

Brooklyn for further exploration. This neighborhood has been the focus of construction initiatives in 
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recent years, with old houses being replaced by modern buildings. This is rapidly changing the look of 

the area. 

After selecting a street block in Williamsburg, we query for images from the beginning of 2016. We 

identify an active construction site in its early stages of development and select an image to start a 

process of query refinement using this image. Next, we used this image to query for other such similar 

images in the region. One of the most similar ones is an image that was captured a few weeks in the 

future, depicting the construction in a more advanced stage. We then replaced the query with this new 

image and continued this process until we finally found an image capturing the opening of a new store 

(Figure 15 bottom right). 

Thus, through the use of street-level images taken by an unbiased fleet of sensors, we can assess the 

entire evolution of the development. This way, it is possible to assess the changes in the construction 

site in terms of the progress of the project. It can also help with monitoring whether safety measures, 

like using proper pedestrian protections, are being observed, or if the sidewalks are being obstructed 

throughout the project. Moreover, monitoring changes in the entire block in terms of new shops, new 

activities or detecting early signs of gentrification in the neighborhood is also possible using our tool. 

Pedestrian Safety Assessment 

Americans with Disabilities Act Compliance 

 

Figure 16: Using Urban Portfolio to inspect the presence and condition of tactile pavements in New 

York City, which is important to provide safe pedestrian access to people with movement or vision 

impairment disabilities. (a) Query image. (b) Other images in the database similar to the query image. 

(c) Visualizing the density of all images in NYC similar to the query image as a heatmap. The 

highlighted region is set as a spatial constraint to query only for other images in that region. (d) A 

temporal constraint is chosen based on a time period when there is rainfall. (e) An image from the 

result of the spatio-temporal query showing that the pavement is in dire need of repairs. Further 

exploration revealed that this pavement was later repaired before August 2016. 
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Designing inclusive, accessible streets that serve a variety of users is a crucial aspect of the human scale 

of the cities. Sidewalks are the most important pedestrian-dedicated planned public spaces. A proper 

assessment of their accessibility is then extremely important to the city and its dwellers since they are 

the access points to and from streets. Curbs are where the raised sidewalks or medians meet the 

streets, but they are often a big challenge for wheelchair users or other people with movement or vision 

impairment disabilities. A curb ramp, which is a short ramp cutting through a curb, can solve this 

problem. Title II of the Americans with Disabilities Act (ADA), requires pedestrian crossings to be 

accessible to people with disabilities 128. In order to do that, specific regulations regarding the curb 

ramps should be met. Aside from the specifications on the size and slope of the ramp, “detectable 

warnings” or tactile squares must be installed on all the ramp-cuts. 

Tactile squares are the distinctive yellow or red squares with bumpy surfaces designed by the Japanese 

inventor Seiichi Miyake in the 1960's to help visually impaired pedestrians navigate the potentially high 

risk and dangerous public spaces in cities more safely. The patterns are created to be detectable with 

canes, feet or by guide dogs. The bar patterns serve as the directional guide and the bumps show that a 

potentially unsafe area is close by and caution is needed.  

In 2014, The Manhattan Borough President's Office conducted a study assessing ADA compatibility of 

around 1200 curb ramps alongside Manhattan's Broadway street. The results showed that only 115 curb 

cuts were fully compliant with the ADA regulations.  

Following a court's approval to resolve lawsuits brought by disability rights activists, NYC has recently 

agreed to equip all the curbs in the city with the facilities required by the ADA and ensure that all the 

city's curbs will have proper ramps and tactile markings installed 129. However, this would require an in-

field assessment of the condition and quality of all of the 162,000 curbs in the city. For the 2014 study, 

in which less than 1 percent of the city's curbs were assessed, 40 auditors were trained and conducted 

the field auditing. However, given the required hours of training as well as travel costs, it becomes 

almost impossible to support the personnel needed not just for the initial assessment of all the curbs, 

but to also perform frequent audits to keep track of their conditions. 

In this case study, we show how a tool such as the proposed Urban Portfolio can greatly help in 

performing a virtual assessment and help filter regions requiring manual intervention. We first query for 

images having tactile paving using an initial image with red tactile paving as our query. This enables us to 

visualize locations on the map (Figure 16 (c)) where tactile pavements were installed, as well as street 

corners where no such images were found. Figure 16 (b) shows a few example representative images 

from locations that had tactile pavements. 
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Figure 17: Exploring images from locations on the map with no tactile pavements shows that these 

locations indeed do not have tactile pavements. 

Note that finding no images does not necessarily mean that the corresponding street corner has no 

tactile pavement. It could be that the location is not covered by the image database, or the image 

quality (e.g., the focus does not clearly capture the required feature) was not high enough to identify 

such a feature. So, in the next step, we restrict the spatial region to one such location and explore all 

images in that region. This will allow us to manually scan a small set of images to investigate why the 

initial query did not return any location from this region. Figure 17 shows representative images from 

two such locations, and we can see that in both these locations, while the curb ramps were present, the 

tactile pavements were indeed missing. 

Similar queries can be run to assess the condition of existing tactile pavements as well. To do this, we 

select one of the locations having a tactile pavement and use it as a spatial constraint (Figure 16 (c)). 

Then, using the visualization of the weather data, we select a time range when there was rainfall (Figure 

16 (d)).  One of the first results resulting from this query showed an old curb with a damaged tactile 

pavement (see Figure 16 (e)) that has a puddle of water, which makes this curb unsafe for pedestrians. 

This was in a picture taken in May 2016. We then queried for images taken after the time the original 

query picture was taken, and it showed that the curb was then repaired, and continued to be in good 

condition at the end of the year. 

Construction Zones Safety Compliance 
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Figure 18: Using Urban Portfolio to assess construction zone safety compliance. The left image shows 

results from a query for images containing traffic drums that are common to street renovation. The 

right image shows results from querying for scaffolds, commonly installed during building renovations 

in NYC. 

Although New York City ranks high in walkability score among American cities, its sidewalks are not 

always easy or safe for all types of pedestrians to navigate. Oftentimes there is construction going on, 

and if the safety measures enacted by NYC DOB are being observed, the sidewalks are either closed or 

narrowed by construction cones, safety dividers or scaffolding. The width of the sidewalks in Manhattan 

specifically are already narrow considering its pedestrian volume. NYC's sidewalks have significantly 

shrunk from their size at the turn of the 20th century to accommodate more cars. Taking this into 

account, the city's never-ending construction projects can create a myriad of different problems for all 

types of pedestrians, especially those with disabilities. As much as it is important for the construction 

projects to comply fully with the safety measurements required by the DOB, ensuring streets' and 

sidewalks' accessibility for all types of users should also be a priority. 

Given the amount of personnel required, regular monitoring of the safety compliance of all the 

construction zones and how they are impacting accessibility of adjacent streets and sidewalks is not 

feasible.  On the other hand, having the ability to easily explore a temporally dense data set of visual 

images of the city can allow different stakeholders to visually assess how these safety measures are 

being used and what type of accessibility or safety problems they can create. This way, planning to 

mitigate such issues will become much easier. 

In this case study, we use Urban Portfolio to query for two common sidewalk obstacles: construction 

cones and scaffolding. We first query for all images near a construction site using the heatmap of the 

construction permits data. We then selected an image that has one of these obstacles; we then crop this 

image around the object and query for similar objects, querying for small scale similarity for 
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construction cones (see Figure 18 left), and medium scale similarity for scaffolding (see Figure 18 right). 

This query scale was chosen based on the size of the object (patch) we were querying. 

The map in the exploration view denotes the locations in Manhattan where there is an active 

construction site with these two objects, allowing stakeholders to visually inspect these sites and check 

whether these structures conform to the regulated norms without the need for manual intervention. 

Figure 18 shows representative images from three such sites containing a construction cone, and three 

having scaffolding.  

Conclusion 

Glass facades 

A particular type of query that failed often was a query for glass facades. This was primarily because 

such buildings reflected the local environment, and thus do not have a unique set of features like 

opaque materials. As a next step, we would like to explore strategies that can help in identifying if a 

particular building has a glass facade or not. This could potentially involve trying to identify features that 

are clearly reflections. 

Quality of similarity search query results  

The quality of similarity query results is impacted by many factors such as lighting and distance from the 

object. But one particular property which affected the results the most was the angle at which the 

picture was taken. Overcoming this would involve searching over different rotations of the picture 

content, which is not an easy operation. Another factor affecting the similarity results is the similarity 

threshold. We used a threshold of 45 degrees by default and found it to be sufficient for most of the 

cases we tested. It would, however, be interesting to explore ways to automatically estimate this 

parameter based on the quality of the query images. 

Conclusions  

The availability of spatially and temporally dense street-level images opens new vistas for urban 

planning, design, and policy by making it easy to virtually audit different characteristics of an urban 

environment. However, the large size of such data sets creates several challenges to enable interactive 

analysis. In this work we presented Urban Portfolio, a visual analysis tool that allows for interactive 

searching and exploration of such data sets. Context-based searching is accomplished using features 

extracted from a convolutional neural network. A novel index that makes use of bit-wise operations to 

compute similarity between the features was proposed, which not only reduced the memory overheard 

by over 2 orders of magnitude, but also improved the query times by over 5 orders of magnitude, thus 

allowing for interactive queries crucial for visualization systems. 
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Working in collaboration with an urban planning researcher, we also demonstrated the potential utility 

of such a system through several case studies. We believe that this tool can have a significant impact on 

the way cities go about monitoring and assessing the urban environment by not only reducing the cost 

of these operations but also greatly simplifying this process. 

 

References 

  1.  Raasveldt M, Mühleisen H. MonetDBLite: An Embedded Analytical Database. CoRR. 
2018;abs/1805.08520. http://arxiv.org/abs/1805.08520. 

2.  Zacharatou ET, Doraiswamy H, Ailamaki A, Silva CT, Freiref J. GPU rasterization for real-time 
spatial aggregation over arbitrary polygons. Proceedings of the VLDB Endowment. 
2017;11(3):352–365. 

3.  Zheng Y, Capra L, Wolfson O, Yang H. Urban computing: concepts, methodologies, and 
applications. ACM Transactions on Intelligent Systems and Technology (TIST). 2014;5(3):38. 

4.  Data –USEEPAAD USEPAA. (Https://Www3.Epa.Gov/Airdata/Ad_data_daily.Html). United States 
Environment Protection Agency; 2017. 

5.  Vanegas CA, Aliaga DG, Benes B. Automatic extraction of Manhattan-world building masses from 
3D laser range scans. Visualization and Computer Graphics, IEEE Transactions on. 
2012;18(10):1627–1637. 

6.  Arietta SM, Efros AA, Ramamoorthi R, Agrawala M. City forensics: Using visual elements to 
predict non-visual city attributes. IEEE Transactions on Visualization and Computer Graphics. 
2014;20(12):2624–2633. 

7.  Google Inc. (Https://Maps.Google.Com). Google Maps; 2017. 

8.  Burges CJ. A tutorial on support vector machines for pattern recognition. Data mining and 
knowledge discovery. 1998;2(2):121–167. 

9.  Whyte WH. City: Rediscovering the Center. Pennsylvania, USA: University of Pennsylvania Press; 
2012. 

10.  Reades J, Calabrese F, Sevtsuk A, Ratti C. Cellular census: Explorations in urban data collection. 
IEEE Pervasive computing. 2007;6(3):30–38. 

11.  Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition. Vol 1. ; 2005:886-893 vol. 1. 

12.  Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural 
networks. In: Advances in Neural Information Processing Systems. Nevada, USA; 2012:1097–1105. 



 

  
35 

13.  Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Computer Vision and Pattern 
Recognition, 2015. CVPR 2015. IEEE Conference On. Massachusetts, USA; 2015. 

14.  Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region 
proposal networks. In: Advances in Neural Information Processing Systems. ; 2015:91–99. 

15.  Dai J, Li Y, He K, Sun J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. 
arXiv preprint arXiv:160506409. 2016. 

16.  He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE 
Conference on Computer Vision and Pattern Recognition. ; 2016:770-778. 

17.  Oh S, Hoogs A, Perera A, et al. A large-scale benchmark dataset for event recognition in 
surveillance video. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference On. 
Colorado, USA: IEEE; 2011:3153–3160. 

18.  Tokuda EK, Ferreira GBA, Silva C, Cesar-Jr RM. A novel semi-supervised detection approach with 
weak annotation. In: Image Analysis and Interpretation (SSIAI), 2018 IEEE Southwest Symposium 
On. Nevada, USA: IEEE; 2018. 

19.  Vezzani R, Cucchiara R. ViSOR: Video surveillance on-line repository for annotation retrieval. In: 
Multimedia and Expo, 2008 IEEE International Conference On. IEEE; 2008:1281–1284. 

20.  Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene 
understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. Nevada, USA: IEEE; 2016:3213–3223. 

21.  Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets Robotics: The KITTI Dataset. International 
Journal of Robotics Research (IJRR). 2013. 

22.  Maddern W, Pascoe G, Linegar C, Newman P. 1 year, 1000 km: The Oxford RobotCar dataset. The 
International Journal of Robotics Research. 2017;36(1):3–15. 

23.  Akyildiz IF, Melodia T, Chowdhury KR. A survey on wireless multimedia sensor networks. 
Computer networks. 2007;51(4):921–960. 

24.  Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. IEEE 
Communications magazine. 2002;40(8):102–114. 

25.  Othman MF, Shazali K. Wireless sensor network applications: A study in environment monitoring 
system. Procedia Engineering. 2012;41:1204–1210. 

26.  Wang G, Cao G, LaPorta T. A bidding protocol for deploying mobile sensors. In: Network 
Protocols, 2003. Proceedings. 11th IEEE International Conference On. Georgia, USA: IEEE; 
2003:315–324. 

27.  Huang C-F, Tseng Y-C. The coverage problem in a wireless sensor network. Mobile Networks and 
Applications. 2005;10(4):519–528. 



 

  
36 

28.  Yang DB, Guibas LJ, others. Counting people in crowds with a real-time network of simple image 
sensors. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. 
Nice, France: IEEE; 2003:122. 

29.  Basagni S, Carosi A, Petrioli C. Controlled vs. uncontrolled mobility in wireless sensor networks: 
Some performance insights. In: Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 
66th. Maryland, USA: IEEE; 2007:269–273. 

30.  Karagiorgou S, Pfoser D, Skoutas D. A layered approach for more robust generation of road 
network maps from vehicle tracking data. ACM Transactions on Spatial Algorithms and Systems 
(TSAS). 2017;3(1):3. 

31.  Shi W, Shen S, Liu Y. Automatic generation of road network map from massive GPS, vehicle 
trajectories. In: Intelligent Transportation Systems, 2009. ITSC’09. 12th International IEEE 
Conference On. Missouri, USA: IEEE; 2009:1–6. 

32.  Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A survey of mobile phone 
sensing. IEEE Communications magazine. 2010;48(9):140–150. 

33.  Rana RK, Chou CT, Kanhere SS, Bulusu N, Hu W. Ear-phone: an end-to-end participatory urban 
noise mapping system. In: Proceedings of the 9th ACM/IEEE International Conference on 
Information Processing in Sensor Networks. ACM; 2010:105–116. 

34.  Sheng X, Tang J, Zhang W. Energy-efficient collaborative sensing with mobile phones. In: 
INFOCOM, 2012 Proceedings IEEE. Florida, USA: IEEE; 2012:1916–1924. 

35.  Consolvo S, McDonald DW, Toscos T, et al. Activity sensing in the wild: a field trial of ubifit 
garden. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 
Florence,Italy: ACM; 2008:1797–1806. 

36.  Li W, Wolinski D, Lin MC. City-scale traffic animation using statistical learning and metamodel-
based optimization. ACM Transactions on Graphics (TOG). 2017;36(6):200. 

37.  Camp T, Boleng J, Davies V. A survey of mobility models for ad hoc network research. Wireless 
communications and mobile computing. 2002;2(5):483–502. 

38.  Davies VA, others. Evaluating mobility models within an ad hoc network. 2000. 

39.  Johnson DB, Maltz DA. Dynamic source routing in ad hoc wireless networks. Mobile computing. 
1996;353(1):153–181. 

40.  Liang B, Haas ZJ. Predictive distance-based mobility management for PCS networks. In: 
INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications 
Societies. Proceedings. IEEE. Vol 3. New York, USA: IEEE; 1999:1377–1384. 

41.  Lesser V, Ortiz Jr CL, Tambe M. Distributed Sensor Networks: A Multiagent Perspective. Vol 9. 
Springer Science & Business Media; 2012. 



 

  
37 

42.  Niazi MA, Hussain A. A novel agent-based simulation framework for sensing in complex adaptive 
environments. IEEE Sensors Journal. 2011;11(2):404–412. 

43.  Vinyals M, Rodriguez-Aguilar JA, Cerquides J. A survey on sensor networks from a multiagent 
perspective. The Computer Journal. 2011;54(3):455–470. 

44.  Titzer BL, Lee DK, Palsberg J. Avrora: Scalable sensor network simulation with precise timing. In: 
Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium On. 
Tennessee, USA: IEEE; 2005:477–482. 

45.  Knuth DE. The Art of Computer Programming. Vol 3. Pearson Education; 1997. 

46.  Park SK, Miller KW. Random number generators: good ones are hard to find. Communications of 
the ACM. 1988;31(10):1192–1201. 

47.  Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform 
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 
(TOMACS). 1998;8(1):3–30. 

48.  Law AM, Kelton WD, Kelton WD. Simulation Modeling and Analysis. Vol 3. Arizona, USA: McGraw-
Hill New York; 2007. 

49.  Tian J, Hahner J, Becker C, Stepanov I, Rothermel K. Graph-based mobility model for mobile ad 
hoc network simulation. In: Simulation Symposium, 2002. Proceedings. 35th Annual. California, 
USA: IEEE; 2002:337–344. 

50.  Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The Best of Both Worlds. 
Computing in Science Engineering. 2011;13(2):31-39. doi:10.1109/MCSE.2010.118 

51.  Lee U, Magistretti E, Gerla M, Bellavista P, Corradi A. Dissemination and harvesting of urban data 
using vehicular sensing platforms. IEEE Transactions on Vehicular Technology. 2009;58(2):882–
901. 

52.  Vezzani R, Cucchiara R. Video surveillance online repository (visor): an integrated framework. 
Multimedia Tools and Applications. 2010;50(2):359–380. 

53.  Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes 
(voc) challenge. International journal of computer vision. 2010;88(2):303–338. 

54.  The MathWorks, Inc. Matlab Version 2017b. Massachusetts, USA; 2017. 

55.  Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 
arXiv preprint arXiv:14091556. 2014. 

56.  Kitchen L, Rosenfeld A. Gray-level corner detection. Pattern recognition letters. 1982;1(2):95–
102. 

57.  Helbing D. A fluid dynamic model for the movement of pedestrians. arXiv preprint cond-
mat/9805213. 1998. 



 

  
38 

58.  Helbing D. Traffic and related self-driven many-particle systems. Reviews of modern physics. 
2001;73(4):1067. 

59.  Iwata T, Shimizu H, Naya F, Ueda N. Estimating People Flow from Spatiotemporal Population Data 
via Collective Graphical Mixture Models. ACM Transactions on Spatial Algorithms and Systems 
(TSAS). 2017;3(1):2. 

60.  Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex 
optimization. Inverse Problems. 2011;27(2):025010. 

61.  Li L, Li Y, Li Z. Efficient missing data imputing for traffic flow by considering temporal and spatial 
dependence. Transportation research part C: emerging technologies. 2013;34:108–120. 

62.  NYC open data. (Https://Opendata.Cityofnewyork.Us/). New York city open data portal; 2017. 

63.  Miranda F, Doraiswamy H, Lage M, Wilson L, Hsieh M, Silva CT. Shadow Accrual Maps: Efficient 
Accumulation of City-Scale Shadows Over Time. IEEE Transactions on Visualization and Computer 
Graphics. 2019;25(3):1559-1574. 

64.  Photosynth. (Https://Blogs.Msdn.Microsoft.Com/Photosynth/ 2017/02/06/Microsoft-Photosynth-
Has-Been-Shut-Down/). Microsoft Photosynth; 2017. 

65.  Doraiswamy H, Tzirita Zacharatou E, Miranda F, et al. Interactive Visual Exploration of Spatio-
Temporal Urban Data Sets Using Urbane. In: Proceedings of the 2018 International Conference on 
Management of Data. ; 2018:1693–1696. http://doi.acm.org/10.1145/3183713.3193559. 

66.  Koenderink JJ, Van Doorn AJ. Affine structure from motion. JOSA A. 1991;8(2):377–385. 

67.  Batty M. Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban 
Morphologies. 2009. 

68.  UN Department of Economic and Social Affairs. UN 2018 Revision of World Urbanization 
Prospects. 

69.  Barbosa L, Pham K, Silva C, Vieira MR, Freire J. Structured open urban data: understanding the 
landscape. Big data. 2014;2(3):144–154. 

70.  Twitter Public API. https://dev.twitter.com/streaming. 

71.  Yahoo Labs.; 2018. https://webscope.sandbox.yahoo.com/. 

72.  Ferreira N, Poco J, Vo HT, Freire J, Silva CT. Visual exploration of big spatio-temporal urban data: 
A study of New York City taxi trips. IEEE Transactions on Visualization and Computer Graphics. 
2013;19(12):2149–2158. 

73.  Miranda F, Lage M, Doraiswamy H, et al. Time Lattice: A Data Structure for the Interactive Visual 
Analysis of Large Time Series. Computer Graphics Forum. 2018;37(3):23-35. 
doi:10.1111/cgf.13398 



 

  
39 

74.  Quercia D, Saez D. Mining urban deprivation from foursquare: Implicit crowdsourcing of city land 
use. IEEE Pervasive Computing. 2014;13(2):30–36. 

75.  Miranda F, Doraiswamy H, Lage M, et al. Urban Pulse: Capturing the Rhythm of Cities. IEEE 
Transactions on Visualization and Computer Graphics. 2017;23(1):791-800. 
doi:10.1109/TVCG.2016.2598585 

76.  Ewing R, Handy S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. 
Journal of Urban Design. 2009;14(1):65-84. 

77.  Day K, Boarnet M, Alfonzo M, Forsyth A. The Irvine–Minnesota Inventory to Measure Built 
Environments: Development. American Journal of Preventive Medicine. 2006;30(2):144-152. 

78.  Pikora T, Giles-Corti B, Bull F, Jamrozik K, Donovan R. Developing a framework for assessment of 
the environmental determinants of walking and cycling. Social science & medicine. 
2003;56(8):1693–1703. 

79.  Purciel M, Neckerman KM, Lovasi GS, et al. Creating and validating GIS measures of urban design 
for health research. Journal of Environmental Psychology. 2009;29(4):457-466. 

80.  Rundle AG, Bader MDM, Richards CA, Neckerman KM, Teitler JO. Using Google Street View to 
audit neighborhood environments. American Journal of Preventive Medicine. 2011;40(1):94–100. 

81.  Glaeser EL, Kominers SD, Luca M, Naik N. Big data and big cities: The promises and limitations of 
improved measures of urban life. Economic Inquiry. 2018;56(1):114–137. 

82.  Naik N, Philipoom J, Raskar R, Hidalgo C. Streetscore-predicting the perceived safety of one 
million streetscapes. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern 
Recognition Workshops. ; 2014:779–785. 

83.  Anguelov D, Dulong C, Filip D, et al. Google Street View: Capturing the world at street level. 
Computer. 2010;43(6):32–38. 

84.  Shapiro A. Street-level: Google Street View’s abstraction by datafication. New Media & Society. 
2017. 

85.  Badland HM, Opit S, Witten K, Kearns RA, Mavoa S. Can virtual streetscape audits reliably replace 
physical streetscape audits? Journal of Urban Health. 2010;87(6):1007–1016. 

86.  Badland HM, Schofield GM, Witten K, et al. Understanding the Relationship between Activity and 
Neighbourhoods (URBAN) Study: research design and methodology. BMC Public Health. 
2009;9(1):224. 

87.  Kelly CM, Wilson JS, Baker EA, Miller DK, Schootman M. Using Google Street View to audit the 
built environment: inter-rater reliability results. Annals of Behavioral Medicine. 
2012;45(suppl_1):S108–S112. 

88.  Andrienko G, Andrienko N. Spatio-temporal aggregation for visual analysis of movements. In: 
2008 IEEE Symposium on Visual Analytics Science and Technology. ; 2008:51-58. 



 

  
40 

89.  Zeng W, Fu C, Arisona SM, Erath A, Qu H. Visualizing Mobility of Public Transportation System. 
IEEE Transactions on Visualization and Computer Graphics. 2014;20(12):1833-1842. 

90.  Qu H, Qu H, Qu H, et al. Visual Analysis of the Air Pollution Problem in Hong Kong. IEEE 
Transactions on Visualization and Computer Graphics. 2007;13(6):1408-1415. 

91.  Hoang-Vu T-A, Been V, Ellen IG, Weselcouch M, Freire J. Towards Understanding Real-Estate 
Ownership in New York City: Opportunities and Challenges. In: Proceedings of the International 
Workshop on Data Science for Macro-Modeling. DSMM’14. New York, NY, USA: ACM; 2014:15:1–
15:2. http://doi.acm.org/10.1145/2630729.2630746. 

92.  StreetSide: Dynamic Street-Level Imagery via Bing Maps. 

93.  Li X, Zhang C, Li W, Ricard R, Meng Q, Zhang W. Assessing street-level urban greenery using 
Google Street View and a modified green view index. Urban Forestry & Urban Greening. 
2015;14(3):675–685. 

94.  Naik N, Kominers SD, Raskar R, Glaeser EL, Hidalgo CA. Computer vision uncovers predictors of 
physical urban change. Proceedings of the National Academy of Sciences. 2017;114(29):7571–
7576. 

95.  Doersch C, Singh S, Gupta A, Sivic J, Efros AA. What Makes Paris Look like Paris? ACM 
Transactions on Graphics. 2012;31(4):101:1–101:9. 

96.  Carrasco-Hernandez R, Smedley ARD, Webb AR. Using urban canyon geometries obtained from 
Google Street View for atmospheric studies: Potential applications in the calculation of street 
level total shortwave irradiances. Energy and Buildings. 2015;86:340–348. 

97.  Balali V, Rad AA, Golparvar-Fard M. Detection, classification, and mapping of US traffic signs using 
google street view images for roadway inventory management. Visualization in Engineering. 
2015;3(1):15. 

98.  Hara K, Sun J, Moore R, Jacobs D, Froehlich J. Tohme: detecting curb ramps in Google Street View 
using crowdsourcing, computer vision, and machine learning. In: Proceedings of the 27th Annual 
ACM Symposium on User Interface Software and Technology. ACM; 2014:189–204. 

99.  Lander C, Wiehr F, Herbig N, Krüger A, Löchtefeld M. Inferring landmarks for pedestrian 
navigation from mobile eye-tracking data and Google Street View. In: Proceedings of the 2017 
CHI Conference Extended Abstracts on Human Factors in Computing Systems. ; 2017:2721–2729. 

100.  Zhang Y, Dong R. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic 
Price Model and a Massive Street View Image Dataset in Beijing. ISPRS International Journal of 
Geo-Information. 2018;7(3). 

101.  Shen Q, Zeng W, Ye Y, et al. StreetVizor: Visual Exploration of Human-Scale Urban Forms Based 
on Street Views. IEEE Transactions on Visualization and Computer Graphics. 2018;24(1):1004–
1013. 



 

  
41 

102.  Sakurada K, Tetsuka D, Okatani T. Temporal city modeling using street level imagery. Computer 
Vision and Image Understanding. 2017;157:55–71. 

103.  Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vision. 
2004;60(2):91–110. 

104.  Babenko A, Slesarev A, Chigorin A, Lempitsky V. Neural codes for image retrieval. In: European 
Conference on Computer Vision. Springer; 2014:584–599. 

105.  Zhou W, Li H, Tian Q. Recent Advance in Content-based Image Retrieval: A Literature Survey. 
arXiv preprint arXiv:170606064. 2017. 

106.  Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding 
baseline for recognition. In: Proceedings of the 2014 IEEE Conference on Computer Vision and 
Pattern Recognition Workshops. ; 2014:806–813. 

107.  Jacobs J. The death and life of great American cities. 1961. New York: Vintage. 1992. 

108.  Lee BJ, Jang TY, Wang W, Namgung M. Design criteria for an urban sidewalk landscape 
considering emotional perception. Journal of urban planning and development. 2009;135(4):133–
140. 

109.  Nickelson J, Wang AR, Mitchell QP, Hendricks K, Paschal A. Inventory of the physical environment 
domains and subdomains measured by neighborhood audit tools: A systematic literature review. 
Journal of Environmental Psychology. 2013;36:179-189. 

110.  Forsyth A, Hearst M, Oakes JM, Schmitz KH. Design and Destinations: Factors Influencing Walking 
and Total Physical Activity. Urban Studies. 2008;45(9):1973-1996. 

111.  Williams JE, Evans M, Kirtland KA, et al. Development and Use of a Tool for Assessing Sidewalk 
Maintenance as an Environmental Support of Physical Activity. Health Promotion Practice. 
2005;6(1):81-88. 

112.  Katzmarzyk PT, Denstel KD, Beals K, et al. Results from the United States 2018 Report Card on 
Physical Activity for Children and Youth. Journal of Physical Activity and Health. 
2018;15(S2):S422-S424. 

113.  Aghaabbasi M, Moeinaddini M, Shah MZ, Asadi-Shekari Z, Kermani MA. Evaluating the capability 
of walkability audit tools for assessing sidewalks. Sustainable Cities and Society. 2018;37:475-484. 

114.  Asadi-Shekari Z, Moeinaddini M, Shah MZ. Pedestrian safety index for evaluating street facilities 
in urban areas. Safety Science. 2015;74:1-14. 

115.  Bise RD, Rodgers III JC, Maguigan MA, et al. Sidewalks as Measures of Infrastructure Inequities. 
Southeastern Geographer. 2018;58(1):39–57. 

116.  Thornton CM, Conway TL, Cain KL, et al. Disparities in pedestrian streetscape environments by 
income and race/ethnicity. SSM-population health. 2016;2:206–216. 



 

  
42 

117.  Rogers SH, Gardner KH, Carlson CH. Social capital and walkability as social aspects of 
sustainability. Sustainability. 2013;5(8):3473–3483. 

118.  Toker Z. Walking beyond the Socioeconomic Status in an objectively and perceptually walkable 
pedestrian environment. Urban studies research. 2015;2015. 

119.  Lee S, Talen E. Measuring Walkability: A Note on Auditing Methods. Journal of Urban Design. 
2014;19(3):368-388. 

120.  Marshall WE, Garrick NW. Effect of street network design on walking and biking. Transportation 
Research Record. 2010;2198(1):103–115. 

121.  Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the Built Environment for 
Physical Activity: State of the Science. American Journal of Preventive Medicine. 2009;36(4, 
Supplement):S99-S123.e12. 

122.  Clifton KJ, Smith ADL, Rodriguez D. The development and testing of an audit for the pedestrian 
environment. Landscape and Urban Planning. 2007;80(1-2):95–110. 

123.  Harvey CW. Measuring streetscape design for livability using spatial data and methods. 2014. 

124.  Charreire H, Mackenbach JD, Ouasti M, et al. Using remote sensing to define environmental 
characteristics related to physical activity and dietary behaviours: a systematic review (the 
SPOTLIGHT project). Health & place. 2014;25:1–9. 

125.  Dubey A, Naik N, Parikh D, Raskar R, Hidalgo CA. Deep Learning the City: Quantifying Urban 
Perception at a Global Scale. In: Leibe B, Matas J, Sebe N, Welling M, eds. Computer Vision – ECCV 
2016. Cham: Springer International Publishing; 2016:196–212. 

126.  Gehl J. Cities for People. Island press; 2013. 

127.  NYC Department of Buildings. Facades and Retaining Walls: Laws, Rules, and Filing Protocols. 
https://www1.nyc.gov/assets/buildings/pdf/facades_retaining_walls.pdf. 

128.  United States Department of Justice Civil Rights DIvision. Curb Ramps and Pedestrian Crossings 
Under Title II of the ADA. https://www.ada.gov/pcatoolkit/ch6_toolkit.pdf. 

129.  Gothamist. NYC Agrees To Make All Sidewalk Curbs Accessible To The Disabled. 
http://gothamist.com/2019/03/21/sidewalk_curbs_accessible_nyc.php. 

 


	Integrated Analytics and Visualization for Multi-modality Transportation Data
	Executive Summary
	Table of Contents
	Introduction 2
	Related Work 3
	Pedestrians and Sensors Flow Model 5
	Simulation 8
	Simulation Results 9

	Computer Vision Sensing 10
	Survey of Algorithms 12
	Case Study 14

	Conclusion 17
	Introduction 17
	Related Work 21
	Interface 23
	Query Interface 23
	Exploration Interface 25

	Case Studies 25
	Urban Design: Neighborhood Fabric 25
	Construction Evolution 28
	Pedestrian Safety Assessment 29

	Conclusion 33
	List of Figures
	Street-level Images
	Framework Description
	Pedestrian Density Estimation
	Introduction
	Related Work
	Pedestrians and Sensors Flow Model
	Simulation
	Simulation Results

	Computer Vision Sensing
	Survey of Algorithms
	Case Study

	Conclusion

	Urban Portfolio
	Introduction
	Related Work
	Interface
	Query Interface
	Exploration Interface

	Case Studies
	Urban Design: Neighborhood Fabric
	Construction Evolution
	Pedestrian Safety Assessment

	Conclusion

	References




Accessibility Report


		Filename: 

		Silva_Integrated_Analytics_Visualization_Final_20190918.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found no problems in this document.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


