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Abstract 

 

Operation of on-demand services like taxis, dynamic ridesharing services, or vehicle sharing 

depends significantly on the positioning of idle vehicles to anticipate future demand and 

operational states. A new queueing-based formulation is proposed for the problem of relocating 

idle vehicles in an on-demand mobility service. The approach serves as a decision support tool for 

future studies in urban transport informatics and design of types of urban mobility like ridesharing, 

and smart taxis. A Lagrangian Decomposition heuristic is developed and compared with a relaxed 

lower bound solution. Using New York taxicab data, the non-myopic allocation problem reduces 

the cost in 27%, and 25%, as compared to the myopic case.  
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1. Introduction 

When dealing with the dynamic operations of a demand-responsive transit or mobility-on-

demand (MOD) service, the location of an idle vehicle has a strong influence on the quality of 

service. Vehicles must be able to reach customers within a reasonable time. As an example, taxicab 

drivers in New York City (NYC) may spend 39% of their total mileage cruising for passengers 

(Schaller Consulting, 2006; Zhang et al., 2015). Similar issues exist with car sharing, where idle 

vehicles may need rebalancing to other locations in order to better serve the dynamic demand. The 

vehicle sharing service, Car2Go, had to abandon the market in San Diego due to high costs of 

rebalancing the fleet to fit the demand (Garrick, 2016).  

Because of these steep costs in MOD services, and with the emerging availability of large 

scale real-time data (see Sayarshad, 2015; Sayarshad and Chow, 2016), a number of studies have 

examined ways to use real-time data to improve decision support. These include strategies to 

preposition idle vehicles in anticipation of new passenger arrivals and future locations of vehicles, 

or to rebalance vehicles in the system. Recent examples include Yuan et al. (2011), Powell et al. 

(2011), and Li et al. (2011) for taxis; and Nourinejad and Roorda (2014), Raviv et al. (2013), 

Zhang et al. (2016), Contardo et al. (2012), and Waserhole and Jost (2016) for vehicle sharing 

systems. A review of various dynamic ridesharing systems is available from Agatz et al. (2012). 

A strategy consists of an online relocation policy that directs vehicles, whether it is rebalancing or 

prepositioning idle vehicles, based on real-time demand data.  

Recent forays into developing online relocation policies acknowledge the benefits of using 

information to look ahead, such as Thomas and White’s (2004) modeling of vehicle waiting 

strategies (i.e. stay or move on) with look ahead, Chow and Regan’s (2011a) chance-constraint 

relocation model with a rolling horizon, and Chow and Sayarshad’s (2015) adaptive facility 

location model. These studies differ from the ones mentioned earlier as they feature look-ahead, 

and are classified as “non-myopic” online relocation policies. In other words, network information 

is combined with statistical learning to anticipate such future states as demand or vehicle 

availability.  

Decisions that look ahead into the future based on stochastic information are called Markov 

decision processes (MDP), and are typically employed to find optimal non-myopic online policies. 

An MDP under discrete time intervals is modeled using a Bellman equation (Powell, 2011) as 

shown in Eq (1). 

 

𝑉𝑡(𝑅𝑡) = min
𝑥𝑡

(𝐶𝑡(𝑅𝑡, 𝑥𝑡) + 𝛾𝐸[𝑉𝑡+1(𝑅𝑡+1)|(𝑅𝑡, 𝑥𝑡)]) (1) 

 

where Vt is the value of the optimal dynamic policy, Ct is the immediate payoff of the decision xt 

under state Rt (which is also typically driven by information on exogenous stochastic variables, 

and varies in size based on the underlying distribution of the variable(s)), E is an expectation, and 

γ is a discount factor. As noted in the network-based studies, anticipation of future states in a 

network context is highly intractable without significant simplifications in the state or network 

structure, due to the curse of dimensionality when trying to evaluate the conditional expectation 

𝐸[𝑉𝑡+1(𝑅𝑡+1)|(𝑅𝑡, 𝑥𝑡)] in Eq (1). 

In the infinite horizon version of the problem, the optimal value function is a fixed point that 

is time-invariant. Researchers recently considered the use of queue delay as a simple 

approximation of this fixed point. This approximation stems naturally from the historical use of 

queueing models to capture steady state service delays. For example, Daganzo (1978) modeled a 

many-to-many static dial-a-ride service as a spatial queueing system, and Waserhole and Jost 



(2016) analyzed a vehicle sharing system with a steady state queueing network. In the context of 

dynamic decisions, however, the steady state queueing delay is used to capture the conditional 

expected cost of the steady state due to a current decision instead.  

Despite being an approximation, the queue-based policy has been shown in several simulation 

studies to be more effective than myopic policies in several applications: dynamic dispatch of 

MOD services (Hyytiä et al., 2012), dynamic pricing of MOD services (Sayarshad and Chow, 

2015), and dynamic vehicle rebalancing of MOD services (Zhang and Pavone, 2016). In particular, 

the latter study is most similar to our current study in dealing with relocating vehicles using queues 

to approximate the conditional expected costs. However, Zhang and Pavone (2016) use a multi-

server queueing network as the underlying model, which only considers the cost of matching with 

a customer in the same zone, as opposed to facility location problems, which consider spatial 

coverage costs of serving nearby zones.  

We propose an online, non-myopic idle vehicle relocation policy based on using queue delay 

as an approximation of the conditional expected cost. Our policy considers spatial coverage effects 

by relying on an underlying server relocation model from facility location theory to have queueing 

components similar to how Marianov and ReVelle (1994) modified static facility location models 

to include queueing.  

The significance of the contribution is most apparent in the area of shared autonomous vehicle 

fleet operations. Zhang and Pavone (2016), as well as other researchers (Brownell and Kornhauser, 

2014; Fagnant and Kockelman, 2015; Liang et al., 2016; Mendes et al., 2017), have sought to 

combine ride-sharing with autonomous vehicle fleets. The National Highway Transportation 

Safety Administration (2013) defined five levels of AV functionality ranging from no automation 

(level 0) to full automation without driver controls (level 5). The technology to enable automation, 

particularly at levels 3 to 5, is extremely sophisticated and needs to apply high-performance 

computational hardware, state-of-the-art online models, decision-making algorithms, and real-

time information. Our methodology could be of great use to automated vehicle (AV) and self-

driving cars within on-demand mobility systems. 

The literature is reviewed in Section 2; the dynamic policy is formulated in Section 3; a 

solution algorithm based on Lagrangian decomposition is proposed and tested in Section 4; and 

the effectiveness of the proposed non-myopic policy is validated against a myopic relocation 

policy using a simulation test derived from real NYC taxi data in Section 5.  

 

2. Literature review 

2.1. Idle vehicle rebalancing operations 

Due to the availability of taxi and shared vehicle/bike data, much of the recent progress in 

positioning or rebalancing idle service vehicles has been applied to those services (compared to 

truck deliveries, dial a ride services, and emergency vehicle operations). In most taxi systems, 

customer arrivals are highly irregular and known to the operator only shortly before serving the 

customer. Yuan et al. (2011) proposed a probabilistic model based on a parking place detection 

algorithm to recommend locations to taxi drivers and people where they can easily find vacant 

taxis. Powell et al. (2011) introduced an approach based on historical data (GPS dataset) to direct 

taxi drivers in order to reduce the number of cruising miles (taxi without passenger) while 

increasing the number of live miles (taxi with passenger). This approach was tested on 600 taxis 

in Shanghai. The proposed framework was based on historical GPS data to score the potential 

profitability of locations given the current location and time of a taxi driver. Li et al. (2011) 



proposed a time-location model with GPS data for passenger-finding strategies. This approach was 

tested on 5,350 taxis in China.  

Yang et al. (2010) modeled urban taxi services in a network context to reduce the number of 

cruising miles while increasing the number of live miles by defining the relationship between 

customer and taxi waiting times. Another approach focused on customer queueing at taxi stands 

and taxis switching between serving stands and looking for passenger (see Cheng et al. 2009). 

Phithakkitnukoon et al. (2011) developed a predictive model for the number of vacant taxis in a 

given area based on time and weather conditions. The approach was tested on 150 taxis in Lisbon, 

Portugal. Gan et al. (2010) considered travel time variability on driver route choices in Shanghai 

taxi service. Fernandez et al. (2006) were concerned with the economics of taxi services under 

various types of regulation such as entry restriction and price control. Li et al. (2009) and Sirisoma 

et al. (2009) introduced a variety of issues from demand versus supply to pricing issues. 

Implementation of cyber technologies to assist cruising taxis in finding passengers was proposed 

by Hou et al. (2013).  

 Similar studies have been conducted for shared vehicle rebalancing, either in a static 

(Sayarshad et al., 2012; Raviv et al., 2013) or dynamic (Contardo et al., 2012; Nourinejad and 

Roorda, 2014; Zhang et al., 2016) context. However, these studies do not explicitly consider future 

actions as Markov decision processes. These studies also do not consider the reality of spatial 

coverage: that unmet demand may relocate to another node or be served by a vehicle positioned at 

a different node, which the class of facility location problems addresses.  

 

2.2. Server relocation 

Positioning of idle vehicles is a type of resource allocation problem categorized within the 

field of location science, where the location decision impacts the level of service that a vehicle 

provides to demand in neighboring nodes. Optimization problems in this area are called facility 

location problems, and like in routing, they can fall into different variations and subclasses 

depending on the objective and constraints desired. For example, the p-median problem is one type 

of location problem in which the objective is to minimize the average distance between all demand 

nodes and their closest facilities. Due to the large number of studies in location theory, only some 

relevant studies in relocation are highlighted. Interested readers can refer to Brotcorne et al. (2003) 

and Owen and Daskin (1998) for an overview.  

Some of the earliest relocation research dealt with emergency services in urban fires (Kolesar 

and Walker, 1974). Berman and Odoni (1982) demonstrated the computational challenges of 

locating mobile servers in a stochastic network. Solutions to cope with this computational 

challenge involved three approaches. The first, exemplified by Berman et al. (1985), sought to 

understand the problem using stylized analytical expressions in simplified network settings. The 

second approach, exemplified by Gendreau et al. (2006), treated the dynamic decision as a near-

myopic two-stage reoptimization problem. Other similar applications include Nair and Miller-

Hooks (2009), where trade-offs are made between immediate relocation with higher transportation 

costs against no relocation and subsequent changes in coverage cost. The third approach is based 

on approximation of the conditional expected future performance over more than one future 

period. One example is that of Chow and Regan (2011a), who designed a chance constraint 

approach under a multi-period rolling horizon for the server relocation problem. None of these 

latter two approaches, however, extended the dynamic decision beyond one a posteriori decision 

stage. Chow and Sayarshad (2015) showed how to quantify the value of a dynamic relocation 

policy that allowed for timing, which has been shown by Chow and Regan (2011b) to always be a 



better solution than a myopic policy. Such a policy, however, appears currently unattainable for 

practical problems.  

One scalable approximation approach for Markov decision processes is to approximate the 

future conditional expected value function with a queue delay expression. Hyytiä et al. (2012), 

Sayarshad and Chow (2015), and Zhang and Pavone (2016) demonstrated the effectiveness of this 

approximation for dynamic routing and assignment. Queueing has been used in location models 

before, but as a way of measuring the additional queue delay that may exist for certain services 

such as emergency vehicle fleets that may be busy when a call comes in, or electric charging 

infrastructure (e.g. Jung et al., 2014). Berman et al. (1987) presented a generalization of the p-

median queue, concerned with waiting cost and service time. Batta et al. (1988) and Batta (1989) 

proposed a one-server model for the optimal location. These problems were solved by greedy 

heuristic algorithms to find the location of the server.  

Marianov and ReVelle (1994, 1996) proposed queueing maximal availability location 

problems. These studies introduced several probabilistic maximal covering location-allocation 

models with linear constrained waiting time for queue length to consider service congestion. 

Marianov and Serra (1998) extended the maximum covering by taking the fact that the number of 

request services behaves according to some distribution function. Marianov and Serra (2002) 

modified these models, seeking a probabilistic location-allocation model to cover all the 

population. Berman and Drezner (2007) proposed a multi-server allocation model that accounted 

for queues at the server nodes, assuming that the demand is assigned to the closest node. Jung et 

al. (2014) proposed a simulation-based optimization approach using Berman and Drezner’s (2007) 

approach in the upper level to locate electric charging stations that accounted for queueing delay 

and allocating to taxi tours instead of demand nodes. 

 

2.3. Solution algorithms 

In terms of solution procedures, authors have considered exact, heuristic, and metaheuristic 

algorithms to solve facility location problems. Mladenovíc et al. (2007) provide a classification of 

constructive heuristics, local search and mathematical programming algorithms for solving the p-

median problem. Pasandideh and Niaki (2012) solved a multi-objective facility location problem 

based on queuing theory by genetic algorithms. They used a desirability function by defining a 

geometric mean to minimize waiting time, and idle probability at an open facility. Ant colony 

optimization (Levanova and Loresh, 2004), simulated annealing (Levanova and Loresh, 2004), 

and scatter search (García-López et al., 2003) have also been proposed in recent years. Marianov 

and Serra (2002) proposed a heuristic for solving the maximal covering, multiple-server model. 

The heuristic is based on the Heuristic Concentration method (Rosing et al., 1997). In addition, 

some heuristic algorithms have been proposed in order to find the optima (Cooper, 1964; Resende 

and Werneck, 2007). 

The branch and bound (B&B) algorithm and subsequent variations are exact solution methods 

to location problems formulated as integer programming problems. However, the increase in 

number of variables and constraints makes a problem especially troublesome to solve when 

probabilistic constraints have the form of capacity constraints. These constraints tend to 

dramatically increase the branching in the B&B algorithm (ReVelle, 1993). One strategy to deal 

with large-scale location problems is Lagrangian relaxation (LR), which consists of relaxing some 

of the constraints to obtain a lower bound. Typically, in this approach the capacity constraints are 

relaxed and penalized in the objective function (Geoffrion, 1974).  



       The application of Lagrangian relaxation method with subgradient optimization with exact 

solutions can be found in Neebe (1978), Boccia et al. (2008), Ceselli (2003), and Ceselli and 

Righini (2005). They proposed three exact solutions: branch and bound, branch and cut, and branch 

and price methods with Lagrangian relaxation and subgradient optimization to solve the p-median 

problem. The Lagrangian relaxation method has also been used with heuristics to solve capacitated 

problems. Pirkul and Schilling (1991) and Current and Storbeck (1988) proposed such heuristics 

for capacitated maximal covering location models, and Davis and Ray (1969), and Cornuejols et 

al. (1991) introduced algorithms for capacitated plant location problems. For a review of LR 

methods and applications, see Guignard (2003). 

 

3. Idle vehicle prepositioning problem 

3.1. System description and model formulation 

We consider the following generic data-driven (“smart”) MOD system as shown in Figure 1 

from Sayarshad (2015). The framework is shown in Figure 1, which lists the various technologies 

and data sources needed to ensure a viable “smart” transit system that can be used in real-world 

operators such as New York taxis and Toronto Transit Commission (TTC). For example, 

communications equipment between the vehicle and the dispatching center is needed. Intelligent 

Vehicle-Highways Systems (IVHS) is an application of information and communications 

technologies (ICT) in order to better control the flow of vehicles.  Electronic Data Interchange 

(EDI) is the electronic transfer from computer to computer to increase speed of communication 

and control all aspects using message data. Customers can send travel requests to dispatch centers 

via the communication equipment. Mobile device communication systems are one example of a 

technology capable of providing this information.  

This system can serve as any dynamic mobility system where trip demand enters the system 

dynamically (see Djavadian and Chow 2016 for a discussion of the complexities of evaluating 

such systems). In this system, there are three key functions: dispatch/routing/assignment of 

vehicles to passengers, prediction of customer arrivals, and positioning or rebalancing of idle 

vehicles. We focus on the last function.  

http://www.ttc.ca/


 
Fig. 1. General framework for a “smart” mobility-on-demand service (source: Sayarshad, 2015). 

 

The problem setting is defined generically as follows (and can be adapted for taxi prepositioning 

or rebalancing shared vehicles): 

 A centralized online operator policy queries the set of all idle vehicles and current demand 

levels at the start of every time interval 𝑇  

 The policy returns a set of relocation recommendations to all the idle vehicles  

 Requests arrive according to a Poisson process and service times are assumed independent 

and exponentially distributed 

 In the context of the dynamic policy described by Eq (1), the 𝐶𝑡(𝑅𝑡, 𝑥𝑡) is the immediate 

relocation cost, while 𝐸[𝑉𝑡+1(𝑅𝑡+1)|(𝑅𝑡, 𝑥𝑡)] is the expected future cost (including 

relocation and service cost) conditional on the new locations of the idle vehicles 

 

We illustrate this problem setting using Figure 2. 

 



Fig. 2. Illustration of different idle vehicle relocation strategies using a 3-vehicle example. 

The first panel in Figure 2 describes the problem setting. Vehicles are either idle or busy at 

any time in the system. In our system, decisions are made for all idle vehicles at the start of each 

time interval (𝑡, 𝑡 + 1, 𝑡 + 2, …). A newly idle vehicle at some interval in time stays in location 

until the new interval is reached (e.g. veh 3 between 𝑡 + 2 and 𝑡 + 3) or until a new request is 

matched (veh 2 between 𝑡 and 𝑡 + 1). Multiple vehicles may be posted in the same zone (e.g. veh 

2 and veh 3 at 𝑡 + 1). A vehicle may serve multiple customers over multiple locations before 

becoming idle (e.g. veh 1 between 𝑡 and 𝑡 + 2). Only idle vehicles are considered for relocation at 

the start of each time interval. For example, at 𝑡 the three vehicles are all allocated (veh 2 and veh 

3 assigned to the same location, while veh 1 assigned to relocate elsewhere), at 𝑡 + 1 veh 2 and 

veh 3 are assigned to the same location (likely because there is high demand noted there), at 𝑡 + 2 

only veh 3 is idle and assigned to relocate elsewhere. Once the relocation policy is executed at the 

start of a time interval, the system lets the vehicles run their course (via other dispatch/routing 

algorithms as needed) until the start of the next time interval.  

Different policies may be used for relocation, as highlighted by the bottom three panels in 

Figure 2. A static policy only considers decisions that are not updated based on new information 

(e.g. Nair and Miller-Hooks, 2012; Sayarshad et al., 2012; Raviv et al., 2013; Schuijbroek et al., 

2017). A dynamic policy without look-ahead (e.g. Chow and Regan, 2011a; Contardo et al., 2012; 

Nourinejad and Roorda, 2014; Zhang et al., 2016) takes into account the updated information, and 

System with three vehicles 

time 

location 

idle busy 

𝑡 𝑡 + 1 𝑡 + 2 𝑡 + 3 𝑡 + 4 … 

veh 1 

veh 2 

veh 3 

Static policy 

Dynamic policy with no look-ahead 

Dynamic policy with look-ahead 

Relocation decision 𝑥𝑡 is

independent of state 𝑅𝑡 

Example idle policies: 

 Return to depot

 Stay at location

Relocation decision 

𝑥𝑡 = 𝑓(𝑅𝑠), 𝑠 ≥ 𝑡  

Relocation decision 𝑥𝑡 =

𝑓 ቀ𝑅𝑠(𝑥𝑡 , 𝑅𝑡), 𝑥𝑠(𝑥𝑡 , 𝑅𝑠)ቁ , 𝑠 > 𝑡 

Example idle policies: 
 Myopic

 Rolling horizon: estimated

future states 𝑅𝑠 = 𝑓(𝑅𝑡), 𝑠 > 𝑡

Example idle policies: 
 One-stage look-ahead

 Scenario tree

 Infinite horizon steady state

approximation



may even use that information to make predictions of future state conditions (these are rolling 

horizon problems). However, these policies do not explicitly account for the dependency of future 

states on future decisions, which are in turn dependent on current state and decision. These are the 

ones modeled as Markov decision processes using Bellman equations as shown in Eq (1). As 

mentioned in the introduction, MDP policies can be solved in multiple ways. One- or two-stage 

look ahead considers all possible state changes combined with all possible relocation trajectories 

of vehicles. This problem is difficult to solve for real instances due to curse of dimensionality. 

Finite horizon approximate dynamic programming (with either value or function approximation) 

may be conducted by simulating scenario trees that branch off for different possible decisions and 

states. A third approach is to look at this problem from an infinite horizon perspective; that for a 

given state trend, we forecast the steady state condition and find a solution to Eq (1) that is stable. 

Several studies (e.g. Hyytiä et al. (2012), Sayarshad and Chow (2015), and Zhang and Pavone 

(2016)) have employed this last method for modeling MDPs by modeling the whole system of 

vehicles as a multi-server spatial queue such that the queue delay approximates the 𝐸[𝑉(𝑅, 𝑥)] of 

the fixed point of Eq (1).  

 We follow the same approach as these studies, where the policy is to locate idle vehicles at 

the start of each time interval 𝑇 based on current state of passenger requests arrivals, to minimize 

the cost of relocation and immediate coverage 𝐶𝑡(𝑅𝑡, 𝑥𝑡) as well as the fixed point value 

𝐸[𝑉(𝑅, 𝑥)] of this spatial queueing system. 

  

Parameters: 

𝑁: the set of nodes in system 

𝜆𝑖𝑇:  arrival rate at node 𝑖 ∈ 𝑁, which may vary for each time interval 𝑇 (the 𝑇 index is dropped 

for convenience since only the arrival rate at the current time interval 𝑇 is used when the model is 

run) 

𝜇𝑗: average rate at which vehicles at node 𝑗 ∈ 𝑁 match with and serve a customer, where the 

service time is assumed to follow an exponential distribution. 

𝑡𝑖𝑗:  travel time of matching a vehicle at node 𝑗 to a customer at node 𝑖 

𝑟𝑖𝑗: the cost of relocating an idle vehicle from node 𝑖 to node 𝑗 

𝜃: a scalar conversion of the relocation cost to the value of improved deployment time 

𝐶𝑗: maximum possible number of vehicles that are cruising or standing at node 𝑗 

𝐵: fleet of idle vehicles 

𝑦𝑗
𝑇: total number of idle vehicles located at node 𝑗 at the start of time interval 𝑇 

 

Decision Variables: (note that the index 𝑇 is dropped for convenience since each variable is solved 

anew at each time interval, independent of the variables in other time intervals) 

𝑋𝑖𝑗:  customer arrivals in node 𝑖 matched to vehicles in node 𝑗 if set to 1 

𝑌𝑗𝑚: the 𝑚𝑡ℎ vehicle from node 𝑗 to serve customers if set to 1 (note that multiple vehicles can be 

assigned to any given node by notation 𝑚 )  

𝑊𝑖𝑗: flow of idle vehicles relocating from node 𝑖 to node 𝑗 

𝑆𝑖:  dummy variable for the surplus of vehicles based on current idle vehicle configurations 𝑦𝑗
𝑇  

𝐷𝑗:  dummy variable for the demand of vehicles based on current idle vehicle configurations 𝑦𝑗
𝑇 

 

Contrary to the queues in other facility location problems, the queueing in this model is used 

to measure the future opportunities of a vehicle that is positioned at a particular node. In that 



context, the service rate is dependent on demand patterns. For example, a taxi that locates in an 

area in which it is matched to many short trips nearby may have a very high service rate (and 

effective queue capacity). Conversely, a car sharing service that relocates a car to an area whose 

users tend to reserve the vehicle for very long periods may have a very low service rate.  

 

P1: Non-linear relocation problem  

𝑍1 = 𝑚𝑖𝑛 ∑ ∑ 𝜆𝑖𝑡𝑖𝑗𝑋𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ 𝜃 ∑ ∑ 𝑟𝑖𝑗𝑊𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ ∑
∑ 𝜆𝑖𝑋𝑖𝑗𝑖

𝜇𝑗 ∑ 𝑌𝑗𝑚𝑚 − ∑ 𝜆𝑖𝑋𝑖𝑗𝑖
𝑗∈𝑁

 (2) 

 

                         Subject to: 

∑ 𝑋𝑖𝑗

𝑗∈𝑁

= 1, ∀𝑖 ∈ 𝑁 (3) 

𝑌𝑗𝑚 ≤ 𝑌𝑗,𝑚−1, ∀𝑗, 𝑚 = 2,3, … , 𝐶𝑗  (4) 

𝑋𝑖𝑗 ≤ 𝑌𝑗1, ∀𝑖, 𝑗 ∈ 𝑁 (5) 

∑ ∑ 𝑌𝑗𝑚

𝐶𝑗

𝑚=1𝑗∈𝑁

= 𝐵   (6) 

∑ 𝑊𝑖𝑗

𝑗∈𝑁

= 𝑆𝑖 , ∀𝑖 ∈ 𝑁  (7) 

∑ 𝑊𝑖𝑗

𝑖∈𝑁

= 𝐷𝑗  , ∀𝑗 ∈ 𝑁 (8) 

−𝐷𝑗 − 𝑦𝑗
𝑇 + ∑ 𝑌𝑗𝑚

𝐶𝑗

𝑚=1

≤ 0, ∀𝑗 ∈ 𝑁  (9) 

−𝑆𝑗 + 𝑦𝑗
𝑇 − ∑ 𝑌𝑗𝑚

𝐶𝑗

𝑚=1

≤ 0, ∀𝑗 ∈ 𝑁 (10) 

𝑋𝑖𝑗, 𝑌𝑗𝑚 ∈ {0,1} (11) 

𝐷𝑗 , 𝑆𝑗 , 𝑊𝑖𝑗 ≥ 0 (12) 

Objective function (2) is to minimize the travel time between demand points and server locations, 

the sum of relocation costs to get vehicles from current locations to the new locations, and the 

conditional expected cost approximated as an average M/M/m queue delay. Customer demands at 

each node 𝑖 appear according to a Poisson process with intensity 𝜆𝑖. Constraint (3) allocates each 

customer demand node to one and only one idle vehicle. Constraint (4) ensures the (𝑚 − 1)𝑡ℎ idle 

vehicle is allocated before allocating the 𝑚𝑡ℎ idle vehicle. Constraint (5) forces the allocation of a 



demand node only to an idle vehicle. Constraint (6) sets the number of available idle vehicles. 

Constraints (7) – (10) form the transportation problem constraints used to determine the relocation 

flows. Constraints (7) and (8) assign the differences in vehicle locations to supply and demand at 

each node using dummy variables. By updating 𝑦𝑗
𝑇 to  𝑌𝑗𝑚 in each time interval, we are able to 

realize the total number of idle vehicles located at each node to serve multiple demand nodes. 

Constraints (9) and (10) are flow conservation constraints. The remaining constraints are non-

negativity and binary constraints.  

 

P1 is a non-linear optimization problem, since the average M/M/m queue delay is calculated 

by a nonlinear ∑
∑ λiXiji

μj ∑ Yjmm −∑ λiXiji
j∈N . Following Marianov and Serra (2002), we convert it to 

P2, which is an equivalent linear optimization. The contribution lies in how the constraint is 

designed to be dependent on the decision variables. By creating a reliability constraint that changes 

marginally as the number of servers in a node changes, the constraint values dynamically adjust to 

the decision variables of server locations. For example, a node with 2 servers will be bound by one 

reliability constraint, but if the model considers locating a third server there, it would encounter a 

different reliability constraint. The nonlinear objective is thus equivalently considered in an 

implicit manner. Furthermore, the degree of equivalency is controllable through the choice of 

parameters so that a solution can focus more on reducing queue delay or on total cost of the original 

P1 objective.  

To be more precise, Marianov & Serra (2002) showed the delay objective can be achieved 

with an exogenously constructed utilization rate constraint as shown in Eq (13) – (15). Eq (13) is 

the static representation of the reliability constraint.  

 

∑ 𝜆𝑖𝑋𝑖𝑗

𝑖∈𝑁

≤ 𝜇𝑗𝜌𝛼 , ∀𝑗 ∈ 𝑁 (13) 

  

where a 𝜌 can be determined for any reliability level α as shown in Eq (14) for a given number of 

users in queue 𝑏 and number of servers 𝑚. The constraint (13) is defined as: “at his/her arrival to 

the node, every passenger will wait on a line with no more than b other customers with a probability 

of at least 𝛼”.    

 

∑ ((𝑚 − 𝑘)𝑚! 𝑚𝑏 𝑘!⁄ )

𝑚−1

𝑘=0

(1 𝜌𝑚+𝑏+1−𝑘⁄ ) ≥ 1 (1 − 𝛼)⁄  (14) 

 

Eq (13) is in turn modified into a marginal constraint that changes depending on whether the 𝑚𝑡ℎ 

server is located there 𝑌𝑗𝑚, as shown in Eq (15). Since 𝑌𝑗𝑚 is bound to 𝑋𝑖𝑗, which is in turn in the 

objective, the constraint is able to capture a delay objective implicitly. 

∑ 𝜆𝑖𝑋𝑖𝑗

𝑖∈𝑁

≤ 𝜇𝑗 [𝑌𝑗1𝜌𝛼𝑗1 + ∑ 𝑌𝑗𝑚(𝜌𝛼𝑗𝑚 − 𝜌𝛼𝑗,𝑚−1)

𝐶𝑗

𝑚=2

] , ∀𝑗 ∈ 𝑁 (15) 

 



Note that the values of Eq (14) are completely independent of the decision variables, so fixed 

values of 𝜌𝛼𝑗𝑚 are computed for every possible 𝛼, 𝑗, 𝑚 prior to running the model. As an example, 

when 𝑏 = 0 and 𝛼 = 0.95, then solving for 𝜌𝛼𝑗𝑚 for 𝑚 = 1,2 we would get 𝜌0.95,𝑗1 = 0.2236 

and 𝜌0.95,𝑗2 = 0.6417. When 𝛼 = 0.85, we get 𝜌0.85,𝑗1 = 0.3873. 

The objective of P1 is replaced with a linear objective Eq (16) and the additional constraint 

(15) to create the equivalent P2. 

 

P2: Equivalent Mixed Integer Linear Programming Problem 

Additional inputs: 

𝜌𝛼𝑗𝑚: utilization ratio that corresponds to confidence level 𝛼 for node 𝑗 with 𝑚 servers 

 

𝑍2 = 𝑚𝑖𝑛 ∑ ∑ 𝜆𝑖𝑡𝑖𝑗𝑋𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ 𝜃 ∑ ∑ 𝑟𝑖𝑗𝑊𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

 (16) 

     Subject to:  

Constraints (3 to 12, 15)  

 

3.2. Illustration of P2 

For a better understanding of how P2 works, we illustrate the model difference with one 

without a queueing constraint. For this illustration, we use the following parameters with four 

nodes: 𝐵 = 2, 𝜃 = 0.2, and initial locations 𝑦0 = (1,1,0,0). Symmetric relocation costs and travel 

times are assumed: 𝑟21 = 0.043 , 𝑟31 = 0.032 , 𝑟41 = 0.049 , 𝑟32 = 0.030 , 𝑟42 = 0.073 , 𝑟43 =
0.077 , 𝑡21 = 0.950 , 𝑡31 = 1.265 , 𝑡41 = 0.638 , 𝑡32 = 0.773 , 𝑡42 = 1.473 , and  𝑡43 = 0.950 . 

The demand is based on the arrival rates 𝜆1 = 4, 𝜆2 = 3, 𝜆3 = 5, 𝜆4 = 6) . These parameters 

would be sufficient to solve a p-median relocation problem. The solution is shown in Figure 3(a). 

The optimal solution when queueing is ignored is to move the server in node 1 to node 4, and the 

server from node 2 to node 3. But is that the right model in a dynamic context? Suppose node 4 is 

shown to present the most opportunity for located servers to subsequently serve customers, due to 

a combination of customer origin-destination patterns (e.g. node 4 may have many short trips that 

start and end near node 4), while the other three nodes present less opportunity. We model this 

difference in future opportunity with service rates 𝜇1 = 8, 𝜇2 = 10, 𝜇3 = 9, 𝜇4 = 25  in a 

queueing system. In this case, taking into account the conditional future expected costs of the 

solution, the objective value of Z1 is 13.55 (4.89 from just the coverage and relocation cost, and 

8.67 from the conditional expected cost of relocating to nodes 3 and 4 modeled as queue delay).  

Solving P2 not only accounts for the queue delay used to approximate the future cost, it is 

also able to control the degree of inclusion. For example, consider parameters 𝛼 = 0.95 and 𝑏 =
0. In this case, the operator wants to ensure that vehicle availability is a top priority through the 

high significance level and focus on probability of remaining idle. The solution to this problem is 

shown in Figure 3(b), which recommends relocating both servers to node 4. While the queue delay 

is minimal, the trade-off is overall higher coverage costs. The objective value of Z1 is 12.31 (11.75 

from coverage and relocation, and 0.56 from queue delay). 

Now consider what happens when we change our parameters to 𝛼 = 0.30 and 𝑏 = 1. The 

focus on delay is relaxed to queues of one or less. The result is shown in Figure 3(c), which 

recommends assigning the server at node 1 to node 4 while leaving the server at node 2 in place. 



The model recognizes that node 3 has a low service rate (which is interpreted as having a high 

opportunity cost of being relocated there) and not worth the relocation despite the reduced 

coverage cost. The objective value of Z1 is 11.09 (6.43 from coverage and relocation, and 4.67 

from queue delay). Both P2 models can improve upon the naïve model without queue 

consideration, and while the second P2 model reduces the overall cost, the queue delay is much 

higher than the first P2 model.   

 

 

 

a. Solution to p-median relocation without queueing constraint (queue-relaxed P2) 

 

b. Solution to p-median relocation with queueing constraint (P2), 𝜶 = 𝟎. 𝟗𝟓, 𝒃 = 𝟎. 

 

 
c. Solution to p-median relocation with queueing constraint (P2), 𝜶 = 𝟎. 𝟑𝟎, 𝒃 = 𝟏. 

Fig. 3. Comparison of solutions from illustrative example. 

 

3.3. LP-relaxed lower bound 

Because of the computational burden of large number of binary variables when the number of 

servers becomes large, we also consider a LP-relaxed formulation as a lower bound for 

comparison. In this case, we can recognize that the constraint (15) is essentially a server-by-server 

piecewise-linear representation of the queueing delay as a constraint. Since the queue delay is 

convex with a cost minimization objective under a budget constraint, Bradley et al. (1977) has 

shown that it is possible to just relax the integer constraints. We take our original formulation (P2) 

1 2 

3 4 

1 2 

3 4 

1 2 

3 4 

𝑌31 = 1 𝑌41 = 1 

 

𝑌41 = 1 

𝑌42 = 1 
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𝑊1,4 = 1 𝑊23 = 1 

𝑋1,4 = 1 

𝑊24 = 1 𝑊14 = 1 

𝑍1 = 13.55 

Costs = 4.89 

Queue delay = 8.67 

𝑍1 = 12.31 

Costs = 11.75 

Queue delay = 0.56 

𝑋14 = 1 

𝑋32 = 1 

𝑊14 = 1 

𝑌41 = 1 

𝑌21 = 1 

𝑍1 = 11.09 

Costs = 6.43 

Queue delay = 4.67 



and just set 𝑌𝑗m to be continuous between 0 and 1. We then introduce a new integer variable 𝑌𝑗 as 

a decision variable that represents the number of vehicles in zone j. So, we create a sum variable 

∑ 𝑌𝑗𝑚
𝐶𝑗

𝑚=1 = 𝑌𝑗    ∀𝑗 ∈ 𝑁 and require the sum to be integer. This could significantly simplify the 

model: by greatly reducing the number of binary decision variables. However, in some cases it 

may be possible that an infeasible solution is obtained.  

 

3.4. Algorithm design requirements 

If we let 𝑁1 be the set of demand nodes, 𝑁2 be the set of server nodes, and 𝐶 be the uniform 

server capacity for each node, then the number of design variables is: (2𝑁1𝑁2  + 𝑁2𝐶 +  𝑁1  +
 𝑁1). The total number of constraints is equal to(3( 𝑁1 + 𝑁2)  + 𝑁2𝐶). The total number of binary 

variables is equal to(𝑁1𝑁2  + 𝑁2𝐶). For example, if the number of both demand nodes and server 

nodes is equal to 30 and the uniform server capacity for each node is 10, then the number of design 

variables is equal to 2160. The total number of constraints is equal to 480 and the total number of 

binary variables is equal to 1200. Note that the input parameters, 𝑖 ∈ 𝑁1, 𝑗 ∈ 𝑁2, and 𝑚 ∈ 𝐶𝑗, 

govern the size of the problem with respect to both the design variables and the constraints.  

The increase in the number of variables and constraints is especially inconvenient because the 

probabilistic constraint has the form of a capacity constraint and capacitated problems are 

especially difficult to solve. We propose a heuristic based on Lagrangian decomposition in Section 

4 to address this challenge. Its premise is to separate the model into two sub-problems: 1) a p-

median problem in the space of the 𝑋𝑖𝑗 and 𝑌𝑗𝑚, and 2) a transportation problem in the space 𝑊𝑖𝑗 

that is the relocation cost.  

 

4. Proposed Lagrangian Decomposition heuristic 

4.1. Algorithm derivation 

We propose a Lagrangian relaxation method with decomposition of our problem into two sub-

problems to find feasible bounds for large problems. P2 is decomposed into a p-median problem 

in the space of the 𝑋𝑖𝑗 and 𝑌𝑗𝑚 called P3, where 𝑖, 𝑗 ∈ 𝑁 and 𝑚 ≤ 𝐶𝑗, and a relocation problem in 

the space 𝑊𝑖𝑗 called P4.  

 
P3 (IP):  

𝑍3 = min ∑ ∑ 𝜆𝑖𝑡𝑖𝑗𝑋𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

 

                                       Subject to: 

 

(3), (4), (5), (6), (11), 𝑎𝑛𝑑 (15) 

 
In the case of P3, we relax constraint (3) to obtain a Lagrangian with multiplier vectors 𝐿𝑖, as 

shown here.  

 

�̂�3 = min ∑ ∑(𝜆𝑖𝑡𝑖𝑗−𝐿𝑖)𝑋𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ ∑ 𝐿𝑖

𝑖∈𝑁

 

                                       Subject to: 

 

(4), (5), (6), (11)𝑎𝑛𝑑 (15) 



 

𝑋𝑖𝑗, 𝑌𝑗𝑚 ∈ {0,1} 

 

We derive an upper bound for the variable 𝑌𝑗𝑚  to use in determining the upper bound primal 

solution. If we sum the set of constraints in Eq (15) together we obtain: 

∑ 𝜆𝑖 ∑ 𝑋𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

≤ ∑ 𝜇𝑗 [𝑌𝑗1𝜌𝛼𝑗1 + ∑ 𝑌𝑗𝑚(𝜌𝛼𝑗𝑚 − 𝜌𝛼𝑗,𝑚−1)

𝐶𝑗

𝑚=2

] 

𝑗∈𝑁

 

 

From Eq (3), the ∑ 𝑋𝑖𝑗𝑗∈𝑁  term drops out of the left hand side, leading to Eq (17). 

∑ 𝜆𝑖

𝑖∈𝑁

≤ ∑ 𝜇𝑗𝑌𝑗1𝜌𝛼𝑗1 + ∑ ∑ 𝜇𝑗𝑌𝑗𝑚(𝜌𝛼𝑗𝑚 − 𝜌𝛼𝑗,𝑚−1)

𝑚=2𝑗∈𝑁

 

𝑗∈𝑁

 (17) 

We use this relationship to help determine a set of feasible 𝑌𝑗𝑚. As for P4, we have the following. 

 

P4 (LP): 

𝑍4 = min [�̂�3(𝑌𝑗𝑚
∗ , 𝑋𝑖𝑗

∗ , 𝐿𝑖
∗) + 𝜃 ∑ ∑ 𝑟𝑖𝑗𝑊𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

]                                           (18) 

 
                                    Subject to: 

(7), (8), (9), (10) 
 

𝐷𝑗 , 𝑆𝑗 , 𝑊𝑖𝑗 ≥ 0 

 

The proposed algorithm is shown below. 

 

Lagrangian Decomposition (LD) heuristic for solving P2 

 

Step 0. Initiate iteration counter 𝑛 = 0, given a maximum number of iterations 𝑛𝑚𝑎𝑥 . 
Calculate the matrix 𝐻 = (ℎ𝑖𝑗) = 𝜆𝑖𝑡𝑖𝑗, 𝛾 = 𝛾𝑖𝑗, Lagrangian multipliers 𝐿𝑖

𝑛 = 0 , ∀𝑖 ∈ 𝑁 so that 

𝛾𝑖𝑗 = min(0, ℎ𝑖𝑗 − 𝐿𝑖) , 𝛾𝑗 = ∑ 𝛾𝑖𝑗 ∀𝑗 ∈ 𝑁𝑖∈𝑁 , 𝑈𝐵 = ∞ and 𝐿𝐵 = 0. Initialize 𝑋𝑖𝑗
𝑛 = 0 ∀𝑖, 𝑗 ∈ 𝑁.  

 

Step 1. Determine a feasible 𝑌𝑗𝑚
𝑛+1 that satisfies constraints (17), (4), (5), and (6) based on 𝑋𝑖𝑗

𝑛 .  

 

Step 2. Update a set of candidate variables �̅�𝑖𝑗
𝑘  ∀𝑘 ∈ {0, 𝑁}: 

2A. Initiate �̅�𝑖𝑗
𝑘 = 0 ∀𝑖, 𝑗, 𝑘, 𝑋𝑖𝑗

𝑛+1 = 0 ∀𝑖, 𝑗. 

2B. Set 𝑋𝑖𝑗
𝑛+1 = 1 if 𝑌𝑗𝑚

𝑛+1 = 1 and 𝛾𝑖𝑗 < 0  . Set  �̅�𝑖𝑗
𝑘 = 1 ∀𝑘 if 𝑌𝑗𝑚

𝑛+1 = 1 and (𝑖, 𝑗) =

argmini,j(ℎ𝑖𝑗) ∀𝑖, 𝑗, 𝑚.  

 2C. For 𝑘 = 1 𝑡𝑜 |𝑁|, find (𝑖′, 𝑘) where (𝑖′, 𝑘) = argmini′,k(ℎ𝑖′𝑘): {(𝑖′ ≠ 𝑖)}. Set �̅�𝑖′𝑘
𝑘 = 1 

and �̅�𝑖𝑘
𝑘 = 0 if 𝑌𝑗𝑚

𝑛 = 1. 

2D. Remove infeasible solutions �̅�𝑖𝑗
𝑘  that do not satisfy constraint (15) with 𝑌𝑗𝑚

𝑛+1.  



2E. Compute 𝑍𝐷 and �̅�𝑘 for the remaining feasible solutions:  

 𝑍𝐷 = ∑ ∑ 𝛾𝑗𝑌𝑗𝑚
𝑛+1

𝑗∈𝑁𝑚 + ∑ 𝐿𝑖𝑖∈𝑁
𝑛

, and  �̅�𝑘 = ∑ ∑ 𝜆𝑖𝑡𝑖𝑗�̅�𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝑁 . 

 2F. Set 𝑈𝐵 = min {𝑈𝐵, min
𝑘

�̅�𝑘}, 𝐿𝐵 = max{𝐿𝐵, 𝑍𝐷}, 𝑋𝑖𝑗
𝑛+1 = argmin

�̅�𝑖𝑗
𝑘 (�̅�𝑘),  

and �̂�3(𝑋𝑖𝑗
𝑛+1, 𝐿𝑖

𝑛) (P3). If 𝑈𝐵 = 𝐿𝐵 and (𝑌𝑗𝑚
𝑛+1, 𝑋𝑖𝑗

𝑛+1) satisfy constraint (15), go to Step 4, else 

go to Step 3. 

 

Step3. Update multipliers.  

3A. Determine 𝜏 = (𝑈𝐵 − 𝐿𝐵) ∑ (∑ 𝑋𝑖𝑗
𝑛+1

𝑗 − 1)
2

𝑖⁄   

3B. Update multipliers: 𝐿𝑖
𝑛+1 = max{0, 𝐿𝑖

𝑛 − 𝜏(∑ 𝑋𝑖𝑗
𝑛+1

𝑗 − 1)}. If 𝑛 < 𝑛𝑚𝑎𝑥 , set 𝑛 = 𝑛 + 1 

and go to Step 1, else go to Step 4.  

 

Step 4. Set (𝑌𝑗𝑚
∗ , 𝑋𝑖𝑗

∗ , 𝐿𝑖
∗) = (𝑌𝑗𝑚

𝑛 , 𝑋𝑖𝑗
𝑛 , 𝐿𝑖

𝑛). Solve P4 to obtain 𝐷𝑗
∗, 𝑆𝑗

∗, 𝑊𝑖𝑗
∗  to accompany 

(𝑌𝑗𝑚
∗ , 𝑋𝑖𝑗

∗ , 𝐿𝑖
∗). 

 

 

Contrary to the earlier study by Marianov and Serra (2002), our proposed algorithm does not 

rely on random initial solutions. For large-scale problems, these random methods can run until the 

computer is out of memory without termination, whereas our algorithm can find good solutions to 

the same instances in a reasonable time. 

 

4.2. Computational tests 

We provide twelve instances to test the computational performance of our proposed heuristic. 

Data for these instances are publicly available at BUILT@NYU Lab’s data library: 

https://github.com/BUILTNYU/Nonmyopic-relocation-MOD. All but one of the instances are 

solved using an exact method in addition to the proposed algorithm for benchmarking purposes. 

The exact solution method used in this experiment was implemented using LINDO 8 via the branch 

and bound approach. The Lagrangian Decomposition algorithm was run in Matlab on an Intel Core 

i5-2450 CPU with 2.5 GHz and 8 GB RAM, running on a 64-bit Windows 7 operating system. 

Table 1 presents the computational results obtained on the 12 test problems to compare the 

LD solution with the exact solution as well as the LP relaxed lower bound formulation discussed 

in Section 3.3. The exact algorithm is unable to converge to a solution in one hour for problem 12.  

For problems 1 to 4, we are able to find exact solutions, but we reach 𝑛𝑚𝑎𝑥  = 5 million  iterations 

for large problems between 5 to 12. The maximum difference between the exact and the LD 

solution is at most 7% in the instances tested, with only a fraction of the computation time of the 

exact solution method. This is a crucial advantage, since the algorithm needs to run in an online 

setting using real time data every 5 to 15 minutes. The LP relaxed solution is also very effective, 

although in some cases the lower bound gap is quite large (denoted with negative GAP values).  

 

 

 

 

 

 

  

https://github.com/BUILTNYU/Nonmyopic-relocation-MOD


Table 1. Comparison results of the Lagrangian Decomposition with exact solution 

Prob. 

No. of 

nodes 𝑪 

No. of 

varia

bles 

No. of 

constrai

nts LD Exact LP 

GAP CPU time 

LD LP LD LP Exa

ct 

1 4 6 64 48 2.410 2.410 2.410 0% 0% 1s 1s 10s 

2 5 6 90 60 4.894 4.894 4.894 0% 0% 1s 1s 15s 

3 6 6 120 72 18.846 18.846 11.931 0% -37% 2s 2s 15s 

4 7 6 154 84 7.654 7.653 7.653 0% 0% 3s 3s 17s 

5 8 6 192 96 9.513 9.414 9.414 1% 0% 3s 3s 17s 

6 8 4 176 80 12.345 12.145 12.145 2% 0% 4s 4s 13s 

7 9 6 234 108 13.963 13.474 13.474 4% 0% 4s 4s 40s 

8 9 4 216 90 30.396 29.892 22.863 2% -24% 4s 4s 20s 

9 10 5 270 110 12.204 11.198 11.198 8% 0% 10s 6s 150s 

10 10 6 280 120 28.625 28.051 16.503 2% -41% 10s 6s 200s 

11 15 15 705 315 48.288 44.831 43.758 7% -2% 20s 12s 600s 

12 30 15 2310 630 45.250 N/A 42.411 N/A N/A 30s 15s 1h 

 

 

5. New York Taxi Cruising Simulation Experiment 

While the proposed model is designed to locate idle vehicles as an infinite horizon queueing 

system, the reality is that demand used at the start of a time interval may not necessarily reflect an 

infinite horizon setting, particularly if demand is extremely volatile and non-stationary. The model 

is an approximation method, and therefore requires computational experimentation to evaluate its 

limitations. 

To determine the effectiveness of the relocation policy, we run it within a simulation and 

measure the actual performance of a taxi fleet operation instead of comparing only coverage and 

queue delay costs. The proposed non-myopic policy was tested on a simulation experiment drawn 

from real data. In 2011, 13,586 taxicabs in New York carried over 172 million trips with 

passengers, with over 150 million taxi trips that originated or ended in Manhattan (Santi et al., 

2013). A significant portion of time and fuel was spent by taxis cruising on non-revenue generating 

activities without passengers, leading to inefficiencies (Li, 2006). 

We conduct a comparison test between a policy operating with the idle taxi relocation with 

queueing (Scenario A) against a myopic policy in which no queueing is considered (Scenario B). 

A simulation of pickups and drop-offs of passengers over a representative day is conducted. In 

each time interval of the simulation, taxis are either busy or idle. Busy taxis are dispatched using 

the same dispatch algorithm for both scenarios; passenger arrivals are also the same across 

scenarios. The only difference between scenarios is the idle taxi relocation policy.  

 

5.1. New York Taxi Data 

Taxi pickup data is used to represent arrival processes of “picked up passengers”. The data is 

collected by the NY Taxi and Limousine Commission (TLC) (see Gonzales et al., 2014), who logs 

the GPS data for every taxi trip in the city, and pickup/drop-off locations and times are made 

available to researchers as an open data source. All the experiments are conducted using data from 

six nodes (aggregated at the Neighborhood Tabulation Area (NTA) level) in Manhattan shown in 

Table 2.  

 



Table 2. Selected nodes in Manhattan study area 

NTA Code NTA Name 

MN13 Hudson Yards-Chelsea-Flatiron-Union Square 

MN15 Clinton 

MN17 Midtown-Midtown South 

MN19 Turtle Bay-East Midtown 

MN20 Murray Hill-Kips Bay 

MN21 Gramercy 

 

Figure 4 shows pickups in March of 2013, categorized by all trips in NYC and all trips 

originating from Public Use Microdata Sample Areas (PUMA) 3807 and 3808 in Manhattan. For 

our empirical study, we selected six nodes with high congestion. Each file has about 1 million 

rows, and each node has about 100,000 rows contains household id, pickup date/time drop-off 

date/time, passenger count, trip time in seconds, trip distance, and latitude/longitude coordinates 

for the pickup and drop-off locations. Only weekdays are used since weekend taxi demand patterns 

can differ significantly. For our experiment, 5 full weekdays of data are extracted from the file to 

estimate the arrival process parameters for the simulation scenario, with each day divided into 

arrival counts per 15 minutes resulting in 480 observations. The time interval of 15 minutes is 

chosen to ensure that idle taxis have sufficient time to reach a customer within that interval. Thus, 

we considered 1 billion samples (6 × 100000 × 5 × 15 × 24 ) for six nodes to provide the 

parameter setting in our large case study.  

 

 
Fig. 4. Pick-up locations of passengers in New York in March 2013 (via QGIS). 

 

To run the idle taxi relocation policy, we use the following parameters with six nodes: 𝛼 =
0.95, 𝜃 = 0.2, 𝑏 = 0, 𝐵 = 150, 𝑌0 = {25,25,25,25,25,25}, 𝐶𝑗 = 150  ∀𝑚 = 1,2, … 150. The 

parameters 𝜆𝑖𝜏 and 𝜇𝑗 are exogenous and approximated from historical data. Figure 5 shows the 

variation in the number of passengers per 15 minutes in a day. The service time is the time a user 

is picked up (i.e. matched under a ride-hail system) until they are dropped off. Figure 6 presents 



the service rates per 15 minutes for each origin. The travel and relocation costs are calculated from 

historic data as shown in Table 3 and Table 4.  

 

 
Table 3. Travel cost from zone 𝒊 to zone 𝒋 

 MN13 MN15 MN17 MN19 MN20 MN21 

MN13 0 1.860 1.815 2.140 1.695 1.650 

MN15 1.860 0 1.696 1.968 1.873 2.130 

MN17 1.815 1.696 0 1.260 1.160 1.660 

MN19 2.140 1.968 1.260 0 1.160 1.670 

MN20 1.695 1.873 1.160 1.160 0 1.058 

MN21 1.650 2.130 1.660 1.670 1.058 0 

 
Table 4. The cost of relocation from zone 𝒊 to zone 𝒋 

 MN13 MN15 MN17 MN19 MN20 MN21 

MN13 - 0.186 0.1815 0.214 0.1695 0.165 

MN15 0.186 - 0.169633 0.196833 0.187333 0.213 

MN17 0.1815 0.169633 - 0.126 0.116 0.166 

MN19 0.214 0.196833 0.126 - 0.116 0.167 

MN20 0.1695 0.187333 0.116 0.116 - 0.1058 

MN21 0.165 0.213 0.166 0.167 0.1058 - 

 

 

 
Fig. 5. Customer arrivals per 15 minutes in a 24-hour period (96 periods), averaged over 5 days. 
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Fig. 6. Service rates per 15 minutes in a 24-hour period (96 periods), averaged over 5 days.  

 

 

5.2. The simulation setup 

We run a simulation of a taxi fleet serving this study area every 15-minute periods over a 24-

hr period with 90 passenger arrivals per 15-minute. The passenger arrival zones are distributed 

according to the 𝜆𝑖𝜏; i.e. if 𝜆𝑖𝜏 = 2𝜆𝑗𝜏 then zone 𝑖 is twice as likely to generate a request during 

that 15 minute interval in the simulation. Destinations of these simulated trips are assumed to be 

within the six zones in the study area. This experimental design focuses on the ability of the look-

ahead approximation method to capture realistic changes in arrival demand over the course of a 

day. 

Two scenarios are simulated; Scenario A uses the proposed relocation policy to direct idle 

taxis at the start of each time interval, while Scenario B uses a relocation policy that ignores 

queueing approximation. Both scenarios use the same dispatching and routing policy to simulate 

the movement of taxis and passengers. For convenience, the Hyytiä policy (Hyytiä et al., 2012) 

tested in Sayarshad and Chow (2015) is used for assigning vehicles to passengers and for routing 

the vehicles through the nodes in order to advance the simulation from the output of the idle vehicle 

relocation algorithm from one time interval to the next. The Hyytiä policy dispatches vehicles 

based on a cost function shown in Eq (19), where each vehicle is considered for dispatch by solving 

a traveling salesman problem with pickup and delivery (TSPPD). The vehicle and route with 

lowest increase in cost is assigned to a new customer. Note that we are not proposing a new 

dispatch or routing model here, merely using it as part of a simulation to evaluate the long-term 

performance of the idle vehicle relocation policy over multiple time intervals. 
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𝑐(𝑣, 𝜉) = 𝛾𝜁(𝑣, 𝜉) + (1 − 𝛾) (𝛽𝜁(𝑣, 𝜉)2 + ∑ 𝑆𝑜𝑖(𝑣, 𝜉)

𝑖

) (19) 

 

where 𝑣 is a vehicle, 𝜉 is a tour obtained from TSPPD, 𝑐 is the cost function, 𝜁 is the tour length, 

𝑆𝑜𝑖 is the total delay for customer 𝑖 (service plus wait time, i.e. time from call in to time they are 

delivered), and 𝛾 and 𝛽 are control parameters to adjust the degree of system cost versus user cost 

(𝛾) and degree of look ahead (𝛽). 

For this experiment, we use a Matlab script to convert Latitude and 

Longitude coordinate system to X and Y coordinate by inputting the shape file. The following 

parameters are used for the dispatch algorithm: speed = 4/6 km/min, vehicle capacity = 4, 𝛾 = 0.4,
𝛽 = 0.5, and 96 different 15-minute periods over a 24-hr period which do 30 simulated runs for 

full-day. To ensure reliable results, we run the simulations thirty different times. 

Comparisons are made between non-myopic and myopic policies for two solution methods: 

the proposed LD-based solution method, as well as the LP-relaxed lower bound formulation. As a 

result, we run 4 scenarios over 30 runs each, for a total of 120 runs. 

 

5.3. Results 

We evaluate the average performance of the proposed non-myopic policy against the myopic 

policy over each 15 minutes. By updating 𝑌𝑗𝑚 in each time interval, our approach is able to realize 

the total number of idle vehicles located at node. In this scenario, we divide one day to 96 different 

15-minute periods with 90 passenger arrivals per 15-minute, then we obtain the average system 

cost per user (𝑇/𝑄) and the average user cost per user (𝑆𝑞) after 30 simulated runs for full-day.   

Figure 7 shows a comparison of the total realized cost for each of the 15 minutes over the two 

policies. Under non-myopic location policy, the average system cost per user is 12.5955 and the 

average user cost per user is 12.8289, while for myopic allocation policy it is 17.64 and 17.6664, 

respectively. Furthermore, the non-myopic preposition can have an even greater effect where the 

minimum, average and maximum total cost under non-myopic is 19.256, 25.4245, and 35.0269, 

whereas for the myopic policy it is 25.8385, 35.3065, and 44.2333. The non-myopic allocation 

problem performs better than myopic case where the total cost decreases by 25% (Min), 27% 

(Ave), and 20% (Max) over the 30 runs.   

Using the LP relaxed lower bound, solutions may end up being infeasible leading to 

suboptimal decisions during the simulation of the fleet operations. The minimum, average and 

maximum total costs under non-myopic are 22.145, 28.844, and 36.875, respectively, whereas for 

the myopic policy they are 29.8596, 38.7543, and 47.5820, respectively. The non-myopic 

allocation problem performs better than myopic case where the total cost decreases by 25% (Min), 

25% (Ave), and 22% (Max) over the 30 runs.  Overall, however, it is clear that a non-myopic 

policy based on the LD algorithm outperforms a similar policy using the lower bound decisions 

by 11.9%.  

One particularly interesting result is that the proposed approach can reduce the total time the 

customer must wait, and thus improve the quality of the service. From the point of view of facility 

location, the proposed non-myopic policy is able to allocate of the right number of idle vehicle to 

each node and the optimal assignment of customers to them.  

 

 

 



Table 5. Comparisons of the accrued costs over the 30 runs for each of the four scenarios. 

Over 30 runs Myopic-LP Non-myopic LP Myopic-LD Non-myopic LD 

Min cost 29.860 22.145 25.839 19.256 

Avg cost 38.754 28.844 35.307 25.425 

Max cost 47.582 36.875 44.233 35.027 

 

 
a. The results by the LD-based policy 

 

 
b. Results by the LP relaxed lower bound-based policy 

Fig. 7. Comparison of 96 consecutive 15-minute costs between proposed policy (under (a) LD algorithm and 

(b) LP lower bound) and a myopic policy, averaged over 30 simulation runs. 
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6. Conclusions 

We proposed a new formulation and solution algorithm for the online policy of relocating idle 

vehicles in a demand responsive service system. To the best of our knowledge, this is the first 

dynamic facility location model to use queueing-based approximation for look-ahead. We 

proposed a Lagrangian decomposition heuristic to solve this model, and conducted various tests 

to demonstrate the effectiveness of the online policy, the model formulation, and solution 

algorithm. Computational tests to evaluate the performance of the algorithm across twelve 

different instances show promise. Lastly, a case study using NYC taxi data demonstrated the 

effectiveness of the algorithm under a simulated fleet operation environment when compared to a 

myopic policy.  

      We were able to solve small-size instances by an exact approach in a fair amount of CPU time, 

but we were unable to solve the problem to optimality for medium and large- size instances. To 

tackle this problem, a Lagrangian Decomposition (LD) algorithm was proposed to solve the model. 

Numerical examples are solved to check for the efficiency and validity of the Lagrangian 

Decomposition algorithm. The difference between the exact solution and the LD solution in the 

instances tested is at most 6% - 7%, which is reasonable. An LP relaxed lower bound was also 

computed for comparison. 

We empirically proved the effectiveness of the proposed algorithm by comparing it against a 

myopic prepositioning policy using taxicab passenger data and a common dispatch algorithm. The 

proposed queueing-based relocation policy is compared to a myopic policy that ignores queueing, 

using the same simulation of passenger arrivals, initial taxi positions, same dispatch and routing 

algorithm, and same length of day. The proposed algorithm is shown to improve over the myopic 

case by an average of 27% in total cost across thirty simulation runs.  

One key future research direction is identifying the impact of the relocation policy on fuel use, 

which can have a great effect on the environment and energy savings (see Greenblatt and Saxena, 

2015), vehicle miles traveled (VMT), and traffic congestion. Finally, there are opportunities to 

integrate the relocation policy with other dynamic optimization policies to systematically control 

hybrid fixed and on-demand automated vehicle fleets. Further policies can be examined in 

conjunction, including fare structure, parking charges, transit level of service, and overall system 

level of service. 
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Appendix: Illustration of algorithm 

To help explain the algorithm, we present a step-by-step illustration of one iteration of an 

example. At a particular iteration for an example with 4 nodes, suppose we have the following 

Lagrange multipliers L1 = 0.5, L2 = 0.6, L3 = 0.7, L4 = 0.8 and the matrix 

 



𝐻 = [

0
3.13
6.05
3.63

     3.93
0

  3.7
     8.39

   5.24
  2.55

0
   5.41

     2.64
    4.86

    
4.55

0

] 

 

where 𝐻 = (ℎ𝑖𝑗) = 𝜆𝑖𝑡𝑖𝑗 ∀ 𝑖, 𝑗. The matrix 𝛾 is updated for each element 𝛾𝑖𝑗 = min(0, ℎ𝑖𝑗 − 𝐿𝑖).  

 

𝛾 = [

−0.5
0
0
0

0
−0.6

0
0

0
0

−0.7
0

0
0
0

−0.8

] 

 
At the current iteration, the current solution is at 𝑌21

1 = 𝑌41
1 = 1, and 𝑌11

1 = 𝑌12
1 = 𝑌22

1 = 𝑌31
1 =

𝑌32
1 = 𝑌42

1 = 0 . This implies the primal solutions �̅�𝑖𝑗
0  and dual solutions 𝑋𝑖𝑗

1  as shown below. 

Again, 𝑋𝑖𝑗
1 = 1 if 𝑌𝑗𝑚

1 = 1 and 𝛾𝑖𝑗 < 0  and �̅�𝑖𝑗 = 1 if 𝑌𝑗𝑚
1 = 1 and H = min(𝜆𝑖𝑡𝑖𝑗) ∀𝑖, 𝑗, 𝑚. 

 

�̅�0 = [

0 0 0 1
0 1 0 0
0 1 0 0
0 0 0 1

] and  𝑋1 = [ 

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

] 

 

The value �̅�0 is perturbed four times, once for each row, to swap the value of one from the current 

solution to a column with the next lowest value of ℎ𝑖𝑗. Each newly generated solution is shown 

below. All of them are checked for feasibility (they are all feasible). 

 

�̅�1 = [

0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 1

]  ,  �̅�2 = [

0 0 0 1
0 0 0 1
0 1 0 0
0 0 0 1

]  ,  �̅�3 = [

0 0 0 1
0 1 0 0
0 0 0 1
0 0 0 1

], and 

 

�̅�4 = [

0 0 0 1
0 1 0 0
0 1 0 0
0 1 0 0

] 

 

Then �̅�𝑘 = ∑ ∑ 𝜆𝑖𝑡𝑖𝑗�̅�𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝑁 = 0 + 3.70 + 2.64 + 0 = 7.346, and 𝑍𝐷 = ∑ ∑ 𝛾𝑗 . 𝑌𝑗𝑚
𝑛+1

𝑗∈𝑁𝑚 +

∑ 𝐿𝑖𝑖∈𝑁
𝑛

= −0.6 − 0.8 + 2.6 = 1.2, so that 𝑈𝐵 = 7.364 and 𝐿𝐵 = 1.2. Since there is a gap, we 

need to update the multipliers. We first compute the step size 𝜏 =
1(7.364−1.2)

1+0+1+0
= 3.07. The 

numbers in the denominator are based on the dual solution 𝑋𝑖𝑗
1  that, at present, provides single 

assignments in row 2 and 4, and no assignment in row 1 and 3. The new multipliers are then 

calculated as L1 = 0.5 − 3.07(−1) = 3.57, L2 = 0.6, L3 = 0.7 − 3.07(−1) = 3.77, L4 = 0.8. 

From there, the algorithm would continue to the next iteration until there is no gap or if the 

maximum number of iterations is reached. 
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