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      Abstract— We study the traffic signal control problem with 

connected vehicles (CVs) by assuming a fixed cycle length so that 

the proposed model can be extended readily for the coordination of 

multiple signals. The problem can be first formulated as a mixed-

integer nonlinear program, by considering information of 

individual vehicle’s trajectories (i.e., second-by-second vehicle 

locations and speeds) and their realistic driving/car-following 

behaviors. The objective function is to minimize the weighted sum 

of total fuel consumption and travel time. Due to the large 

dimension of the problem and the complexity of the nonlinear car-

following model, solving the nonlinear program directly is 

challenging. We then reformulate the problem as a Dynamic 

programming (DP) model by dividing the timing decisions into 

stages (one stage for a signal phase) and approximating the fuel 

consumption and travel time of a stage as functions of the state and 

decision variables of the stage. We also propose a two-step method 

to make sure that the obtained optimal solution can lead to the 

fixed cycle length. Numerical experiments are provided to test the 

performance of the proposed model using data generated by 

traffic simulation. 

 
Index Terms— Connected Vehicles, Traffic Signal 

Optimization, Mixed Integer Nonlinear Program, Dynamic 

Programming, End Stage Cost, Branch and Bound. 

I. INTRODUCTION  

      As a critical infrastructure that is crucial to the economy and 

the daily life of everyone, transportation also creates severe 

congestion and consumes tremendous energy. In the United 

States, e.g., the gasoline consumption by the transportation 

sector was about 143.37 billion gallons in 2016, a daily average 

of about 9.33 million barrels [1]. At the same time, traffic 

congestion on urban roads has caused extra fuel consumption 

as well as additional travel delays. The 2015 Urban Mobility 

Scorecard [2] estimated that U.S. highway congestion costs 

$160 billion a year, and an average American commuter loses 

42 hours per year due to traffic congestion. Therefore, it is 

imperative to reduce traffic delay and improve transportation 

energy efficiency in urban areas.  

        Fuel consumption and traffic delay in urban areas can be 

reduced by optimizing traffic signal control strategies. 

Traditional traffic signal control problems have been extensively 

investigated, with a variety of methods such as fixed-time 

control, actuated control, and adaptive control [3]. The adaptive 

signal control methods (aka the most advanced traffic signal 

control methods so far), e.g., include swarm algorithm [4], 

platoon-based algorithms [5], rolling horizon approaches [6], 
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and oversaturation algorithm [7], among others. A 

comprehensive discussion of the signal control algorithms can 

be found in [8]. 

      Urban traffic signal control can be further enhanced by the 

connected vehicle (CV) technology [9]. CV enables vehicle to 

vehicle (V2V) and vehicle to infrastructure (V2I) 

communications through dedicated short-range 

communications (DSRC) and other means. With the V2V 

communications, location and speed information can be 

exchanged among nearby vehicles. With the V2I 

communications, vehicles can communicate with traffic 

signals, work zones, tollbooths, and other types of infrastructure 

to exchange information such as vehicle trajectories, traffic 

conditions, and signal timing. Such data/information exchange 

among vehicles and between vehicles and infrastructure has the 

potential to significantly improve traffic mobility and fuel 

consumption efficiency at signalized intersections.  

      There have been various traffic signal control studies under 

the CV environment. Goodall et al [10] developed the 

predictive microscopic simulation algorithm (PMSA) to control 

traffic signal. The strategy can minimize total delays, or the 

combination of delays, stops, and decelerations over a 15-

second time period by considering instantaneous vehicle data. 

The study showed that at low or mid-level traffic volume, their 

proposed algorithm outperformed state-of-the-practice 

coordinated-actuated timing plan, while the performance got 

worse during saturated and oversaturated conditions. He et al. 

[11] developed the platoon-based arterial multi-modal signal 

control with online data (PAMSCOD) algorithm, with signal 

updated every 30 seconds. A mixed-integer nonlinear program 

(MINLP) was solved to determine future optimal signal plan. 

Simulation results in VISSIM showed that delays were 

significantly reduced under both non-saturated and 

oversaturated traffic conditions compared to traditional state-

of-the-practice coordinated actuated signal control. Lee and 

Park [12] developed a cumulative travel-time responsive (CTR) 

real-time intersection control algorithm in the CV environment. 

They examined the different penetration rates of CV and level 

of congestion. Kalman filtering technique was utilized to 

estimate the cumulative of travel time under various penetration 

rates. Among various types of methods, dynamic programming 

(DP) is one of the most commonly used technique to solve the 

discretized signal control problems. It was first applied in Sen 

and Head [13] to optimize traffic signal timing. The idea was 

later applied in Chen et al. [14] and Feng et al.[15]. In particular, 

Feng et al. [15] proposed a bi-level formulation for optimizing 
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signal timing of a single intersection: the upper level is to 

optimize for the barrier lengths and the lower level is to optimize 

for the phase times. However, most of these studies assumed 

varying cycle lengths, which may not be readily applied to 

multiple intersections if signal coordination is needed. There are 

a few exceptions. He et al. [11] and Zamanipour et al. [16] 

incorporated fixed cycle length (thus coordination) as a virtual 

priority request, which introduces additional constraints in 

MILP. Beak et al. [17] extended Feng et al. [15] to impose the 

fixed cycle length, albeit with a bi-level formulation.  First, they 

imposed extra constraints to the upper level to ensure a fixed 

cycle length. The revised intersection-level model (with a fixed 

cycle length) is then integrated into a corridor-level model for 

signal coordination. In this paper, we develop a two-step method 

to consider fixed cycle length at the intersection level. This 

avoids the use of the bi-level structure in Feng et al. [15] and 

Beak et al. [17], which is computationally more efficient.  

      Fuel consumption is a major consideration that researchers 

have been trying to evaluate when they develop traffic signal 

strategies. Zhao et al. [18] proposed a signal timing optimization 

strategy to minimize the combined total energy consumption and 

traffic delay, considering the fuel consumption of individual 

vehicles. Vehicles’ trajectories were predicted second by second 

using the Nagel-Schreckenber model. An iterative grid search 

algorithm was used to solve the optimized signal timing. The 

method however ignored left-turn traffic and cannot be applied 

to real-world intersections. More studies that considered fuel 

prediction models can be found in [19]-[22]. Here we do not 

assume vehicles are autonomously driving, and therefore 

intersection control strategies, such as those based on reservation 

[23]-[26] and other methods [27]-[29], will not be discussed. 

      This study aims to optimize signal timing in the CV 

environment considering individual vehicle’s trajectories. As 

discussed above, most existing signal optimization methods 

work for single intersections and assume variable cycle lengths, 

with a few exceptions [16][17][30]-[32]. Coordination occurs 

when two or more traffic signals are working together so that 

moving vehicles could go through the intersections with 

minimum delays and the least number of stops. The cycle 

lengths of coordinated traffic signals are often fixed as a 

constant. In this study, we focus on a single intersection and 

assume a fixed cycle length such that the proposed method can 

be readily extended in the future to coordinate multiple signals 

in a traffic corridor or network. First, we formulate the CV-

based signal control problem as a MINLP, by considering 

information of individual vehicle’s trajectories (i.e., second-by-

second vehicle locations and speeds) and their realistic 

driving/car-following behavior, captured by the Intelligent 

Driving Model (IDM). The objective function is to minimize the 

weighted sum of total system fuel consumption and travel time. 

Due to the large dimension of the problem and the complexity 

of the nonlinear car-following model, solving the nonlinear 

program directly can be challenging. Secondly, we reformulate 

the problem as a DP model by dividing the timing decisions into 

stages (one stage for a signal phase) and approximating the total 

fuel consumption and travel time of a stage as functions of the 

state and decision variables. We note that imposing the fixed 

cycle length constraint will invalidate the DP formulation. We 

then apply a two-step method to resolve this issue. The first step 

is to add an end-stage cost to the DP formulation. The cost 

measures how much the DP solution violates the fixed cycle 

length constraint. This step forces the DP to produce a solution 

with a cycle length that is close enough to the given fixed cycle 

length. The second step is a branch and bound method to further 

refine the DP solution to obtain a solution of the original 

problem, with the exact fixed cycle length. Numerical 

experiments are provided in the paper to test the performance 

of the proposed model using data generated by traffic 

simulation.  

The main contributions of the paper include: 

1. This study accounts for the individual vehicle’s trajectories 

(i.e., second-by-second vehicle locations and speeds) into 

signal timing optimization, which can be provided by CV 

technologies. 

2. A signal optimization strategy is developed for a single 

intersection with fixed cycle length, which can be easily 

extended for signal coordination. It is formulated as a 

mixed-integer nonlinear program (MINLP). The MINLP 

model may have a large dimension and is hard to solve.  

3. A DP reformulation is proposed via certain approximation 

schemes. To ensure the fixed cycle length, a two-step 

method is developed: adding the end-stage cost and a branch 

and bound algorithm. 

II. FORMULATING SIGNAL CONTROL AS A MIXED-INTEGER 

NONLINEAR PROGRAM 

      In this section, the signal control problem with the fixed 

cycle length constraint is formulated as a MINLP. Here we 

adopt the dual-ring method for signal design as it can properly 

balance safety and efficiency of traffic signal control [3][15]. 

This is important since the primary objective of traffic signal 

control is to ensure safety, i.e., to minimize conflicts [3], while 

mobility is also important as long as safety is ensured. The 

signal configuration in a dual-ring diagram is shown in Figure 

1. Without loss of generality, we assume the eastbound/ 

westbound (EB/WB) through movements (2 and 6 in Figure 1) 

are the major movements and thus cannot be skipped (i.e., for 

coordination purposes). Other phases may be skipped by setting 

the corresponding phase durations as zero.  We also assume a 

cycle always starts with movements 2 and 6. Such a signal 

timing plan can be considered as 6 groups with a sequence of 8 

phases in Figure 2. Noted that phase 2 and 3 in group 2 cannot 

be realized at the same time, indicating that at least one of the 

two phases need to be skipped. Same situation happens for 

phase 6 and 7 in group 5. In this paper, the continuous time is 

discretized into 1s intervals.  

      Based on the literature [33], the maximum/minimum green 

parameters are defined for a movement. In this paper, we define 

maximum/minimum green based on phases, which is consistent 

to [33] and Sen and Head [13] when phase overlaps are not 

allowed, i.e., only phase 1, 4, 5, and 8 exist, as shown in Figure 

2. A phase overlap refers to a pair of phases that contain one 

common movement, e.g., phase 1 contains movement 2 and 6, 

and phase 2 contains movement 2 and 5, occurring in sequence 

would allow movement 2 to “overlap”. If phase overlaps exist, 

minimum greens for the overlap phases (phase 2, 3, 6, and 7) 
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are set to be zero in order to allow them to be skipped, the 

minimum greens for phases 1,4,5,8 remain the same. Maximum 

greens for the overlap phases (2, 3, 6, and 7) are set to be a small 

value, e.g., 10s, while maximum green for the non-overlap 

phases need to be deducted by a corresponding value, e.g., the 

maximum green for phase 1 needs to subtract 10s. In the 

numerical test, we set the maximum green for non-overlap 

phases (1, 4, 5, and 8) as the cycle length, minimum green for 

non-overlap phases as 5s. For overlap phases (2, 3, 6, 7), the 

maximum green is half of the cycle length and minimum green 

is zero. This is designed to allow DP to search for sufficiently 

large state spaces to find an optimal solution, with a reasonable 

computational effort. The numerical tests suggest that selecting 

different values as maximum/minimum greens does not have 

significant influence on the total cost.  

 
Figure 1 Traffic signal configuration [35] 

 
Figure 2 Traffic signal configuration 

Parameters 

C Cycle length (s). 

𝑚𝐹 Monetary value of fuel ($/gal), e.g., $3/gal. 

𝑚𝑇𝑇 Monetary value of travel time ($/s). e.g., $12/h 

($0.005/s). 

𝑒 Idle fuel consumption rate (gal/h). 

𝑙𝑛 Length of vehicle 𝑛 (m). 

𝛿 Acceleration exponent in IDM. It usually set at 4. 

H Desired time headway (s), e.g., 1.5s. 

𝑎𝑚𝑎𝑥 Maximum acceleration rate (m/s2), e.g., 1 m/s2. 

𝑏𝑚𝑎𝑥 Maximum deceleration rate (m/s2), e.g., 3 m/s2. 

𝑠𝑜𝑛  Gap between vehicles in complete standstill 

traffic jams (m), e.g., 2m. 

𝑣0 Vehicle desired speed (m/s). 

𝑔𝑘
𝑚𝑖𝑛  Minimum effective green time of phase k (s). 

𝑔𝑘
𝑚𝑎𝑥  Maximum effective green time of phase k (s). 

k Signal phase, k = 1, 2… 8. 

�̅�𝑛
0 , �̅�𝑛

1  Entrance location and exit location of the 

incoming approach of vehicle n (m).  
𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛 The location of the nearest front signal of 

vehicle 𝑛 (m). 
Variables 

𝐹𝐶𝑛,𝑡 Fuel consumption for vehicle 𝑛 at time t (gal/s). 

𝑇𝑇𝑛,𝑡 Travel time of vehicle n at time t (s). 
𝐹𝐶𝐼,𝑛 Fuel consumption for vehicle 𝑛 at the idle status 

(gal/s). 

𝐹𝐶𝑠,𝑛,𝑡 Fuel consumption of vehicle n at time t at the 

moving status (gal/meter). 

𝑔𝑘
𝑖  Effective green time allocated to phase k of cycle 

i (s). 

𝑣𝑛,𝑡 Speed of vehicle 𝑛 at time 𝑡 (m/s). 

𝑑𝑛,𝑡 Location of vehicle 𝑛 at time 𝑡 (m). 

𝐼𝑛,𝑡 Idle status indicator for vehicle n at time t. 

𝑆𝑘,𝑡 Traffic signal status of phase group k at time t. 

�̅� Current phase index at time t. It represents the 

phase that is currently given the green light. 
𝑍𝑛,𝑡 Traffic signal status for vehicle n at time t. 

𝑌𝑛,𝑡 Traffic signal indicator. It takes 1 if the preceding 

vehicle is traffic signal. 

𝑠𝑛,𝑡 Vehicle gap (m). 

∆𝑣𝑛,𝑡 Speed difference between vehicle  𝑛 and 𝑛 − 1 at 

time 𝑡 (m/s). 

𝑎𝑛,𝑡 Acceleration rate for vehicle n at time t (m/s2). 

𝑦𝑡,1, 𝑦𝑡,2, 

𝑦𝑡,3, 𝑦𝑡,4 

𝑦𝑛,𝑡,1, 𝑦𝑛,𝑡,2 

Binary variables (auxiliary). 

      The objective of the CV-based signal optimization problem 

can be formulated as minimizing the weighted sum of total fuel 

consumption and travel time [18][34] of all vehicles 

approaching the intersection:  

𝑚𝑖𝑛 𝐹 = ∑ ∑ (𝑚𝐹𝐹𝐶𝑛,𝑡 +𝑚𝑇𝑇𝑇𝑇𝑛,𝑡)
𝑁
𝑛=1

𝑇
𝑡=1             (1)      

𝐹𝐶𝑛,𝑡  and 𝑇𝑇𝑛,𝑡  are the fuel consumption and travel time for 

vehicle 𝑛 at time t. The corresponding parameters mF and mTT 

are the “value of fuel” and “value of time” respectively. Eq. (1) 

indicates that the objective function here considers the travel 

time and fuel consumption for all vehicles in the network for 

total time span T. N here is the total number of vehicles. Eq. (2) 

calculates the fuel consumption of vehicle n at time t, which is 

determined by the vehicle status. If vehicle n is idling at time t, 

the indicator variable for idle status, 𝐼𝑛(𝑡), takes one and the 

fuel consumption model 𝐹𝐶𝐼,𝑛 is applied, as shown in Eq. (4). 

Otherwise, 𝐼𝑛(𝑡) tales zero and Eq. (5) will be applied, which 

calculates the fuel consumption of vehicle n at the moving 

status. The threshold value for idle status is 2.2 m/s (5mph), 

which is provided in Zhao et al [18]. Eq. (3b) reformulate (3a) 

using the “big M” method [36] by establishing a relationship 

between speed 𝑣𝑛,𝑡  and idle status indicator 𝐼𝑛,𝑡 . M here is a 

large number and M=1,000 is used in this paper. The model 

could be used to calculate fuel consumption for different 

vehicle types, including sedan, SUV, bus, EV, and Hybrid 

Electric (HEV). Zhao et al [18] provided the calibrated 

parameters in Eq. (4) and (5) for different vehicle types, as 

shown in Table 1. 

𝐹𝐶𝑛,𝑡 = 𝐹𝐶𝑠,𝑛,𝑡 ∗ 𝑣𝑛,𝑡 ∗ (1 − 𝐼𝑛,𝑡) + 𝐹𝐶𝐼,𝑛 ∗ 𝐼𝑛,𝑡        (2)                                                               

     𝐼𝑛,𝑡 = {
1,     𝑖𝑓 𝑣𝑛,𝑡 < 2.2,    𝑖𝑑𝑙𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  

0, 𝑖𝑓 𝑣𝑛,𝑡 ≥ 2.2,𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
        (3a)      

{
𝑣𝑛,𝑡 − 2.2 < (1 − 𝐼𝑛,𝑡)𝑀

𝑣𝑛,𝑡 − 2.2 + 𝐼𝑛,𝑡M ≥ 0
                     (3b) 

𝐹𝐶𝐼,𝑛 = 𝑒                                   (4) 

𝐹𝐶𝑠,𝑛,𝑡 =
𝑎

𝑣𝑛,𝑡
+ 𝑏 + 𝑐𝑣𝑛,𝑡 + 𝑑𝑣𝑛,𝑡

2                  (5)                                       
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Table 1 Parameter identification for fuel consumption models  

Vehicle Type 
Parameters 

a b c d e 

1 EV 4.74e-2  2.66e-3  6.37e-5  1.49e-6  0  

2 HEV (SOC0=0.7) 1.83e-1  3.67e-3  1.27e-4  2.39e-6  0 

3 HEV  (SOC0=0.6) 1.83e-1  3.67e-3  1.27e-4  2.39e-6  0 

4 HEV (SOC0=0.5) 1.82e-1  1.51e-3  5.67e-4  -4.35e-6  0  

5 Sedan 4.75e-1  -8.50e-3   5.41e-4  1.04e-7  0.211 

6 SUV 7.44e-1  -1.23e-2  6.78e-4   5.29e-6  0.491 

7 Bus 2.51e+0 3.03e-2  4.18e-3  -1.26e-5  1.184 

      As aforementioned, this study assumes the cycle length be 

fixed for the whole time span T (e.g., a few hours). The effective 

green time for each phase k of cycle i, 𝑔𝑘
𝑖 , must sum up to the 

(fixed) cycle length C, as shown in Eq. (6). We assume there is 

no transition time between phases. There are eight phases in 

Figure 1 so K = 8. Eq. (7) indicates the bounds of the green 

time 𝑔𝑘
𝑖 . For phases that can be skipped, 𝑔𝑘

𝑚𝑖𝑛 = 0. Eq. (8-9) 

indicate phase 2 and 3 (and phase 6 and phase 7) cannot be 

realized for the same cycle i. At least one of the two variables, 

e.g.,  𝑔2
𝑖  (𝑔6

𝑖 ) and 𝑔3
𝑖  (𝑔7

𝑖 )), needs to be zero. 

∑ 𝑔𝑘
𝑖𝐾

𝑘=1 = 𝐶              ∀ 𝑖 ∈ 1,2, … 𝐼                   (6)                      

𝑔𝑘
𝑚𝑖𝑛 ≤ 𝑔𝑘

𝑖 ≤ 𝑔𝑘
𝑚𝑎𝑥                                 (7) 

𝑔2
𝑖 ∗ 𝑔3

𝑖 = 0                                         (8)                                   

𝑔6
𝑖 ∗ 𝑔7

𝑖 = 0                                         (9)                                   

      Each intersection contains multiple movements with two 

movements served by a phase  𝑘 . Variable 𝑆𝑘,𝑡  denotes the 

signal status at time 𝑡 for phase k, as shown in Eq. (10a). Noted 

that when k =0, 𝑔𝑘
𝑖 = 0. It takes one if the signal status at the 

current time stamp is red and zero if it is green. The variable �̅� 

is the current phase index at time t (i.e., 1, 2… 8). It represents 

the phase in Figure 1 that is currently given the green light. Eq. 

(10b) reformulates (10a) using two binary variables 𝑦𝑡,1and 𝑦𝑡,2 

based on the big M concept.   

𝑆𝑘,𝑡 = {0, 𝑖𝑓 
∑ 𝑔𝑘

𝑖�̅�−1
𝑘=0 ≤ (𝑡 𝑚𝑜𝑑 𝐶) < ∑ 𝑔𝑘

𝑖�̅�
𝑘=0

1,                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (10a) 

{
  
 

  
 
∑ 𝑔𝑘

𝑖�̅�
𝑘=0 − (𝑡 𝑚𝑜𝑑 𝐶) + 𝑦𝑡,1𝑀 > 0

∑ 𝑔𝑘
𝑖�̅�

𝑘=0 − (𝑡 𝑚𝑜𝑑 𝐶) ≤ (1 − 𝑦𝑡,1)𝑀

(𝑡 𝑚𝑜𝑑 𝐶) − ∑ 𝑔𝑘
𝑖�̅�−1

𝑘=0 + 𝑦𝑡,2𝑀 ≥ 0

(𝑡 𝑚𝑜𝑑 𝐶) − ∑ 𝑔𝑘
𝑖�̅�−1

𝑘=0 < (1 − 𝑦𝑡,2)𝑀

𝑆𝑘,𝑡 = 𝑦𝑡,1 + 𝑦𝑡,2

                (10b)                           

Eq. (11) use indicator variables 𝑦𝑡,3and 𝑦𝑡,4 together to identify 

whether vehicle n is within the “range” of the incoming 

approach defined by �̅�𝑛
0  and �̅�𝑛

1 . Both of them will be zero if 

vehicle n is within the range; otherwise, one of the will be 1. 

Furthermore, the signal status 𝑍𝑛,𝑡 at time t for vehicle n could 

be determined as long as the incoming approach of vehicle n is 

identified. There are usually two phases that may serve vehicle 

n, e.g., both phase 1 and phase 2 could serve vehicle n if it 

comes from movement 2. In this case, we first define �̅�𝑛,𝑡, the 

“minimum” signal status of the two phases that serve vehicle n; 

see equation (12a) below. This is to ensure that as long as one 

of the two phases is green (𝑆𝑘,𝑡 is zero), vehicle n will see green 

(�̅�𝑛,𝑡 is zero).  Note that signal status 𝑍𝑛,𝑡 and 𝑆𝑘,𝑡 are different. 

Before the vehicle enters the intersection range, the trajectory 

of the vehicle should not be impacted by the signal. This is 

guaranteed by Eq. (12b) that 𝑍𝑛,𝑡 is always zero (green) before 

the vehicle enters the intersection range so that neither the 

location nor the speed of the vehicle is impacted by 𝑍𝑛,𝑡; see 

equations (14) and (15).  Once the vehicle enters the range, 𝑍𝑛,𝑡 

is the same as �̅�𝑛,𝑡 as shown by equations (11) and (12b), which 

also equals to one of the 𝑆𝑘,𝑡’s as shown in (12a).  

{
 
 

 
 

 𝑑𝑛,𝑡 − �̅�𝑛
1 ≤ 𝑦𝑡,3𝑀

 𝑑𝑛,𝑡 − �̅�𝑛,
1 + (1 − 𝑦𝑡,3)𝑀 ≥ 0

 𝑑𝑛,𝑡 − �̅�𝑛
0 + 𝑦𝑡,4𝑀 ≥ 0

 𝑑𝑛,𝑡 − �̅�𝑛
0 ≤ (1 − 𝑦𝑡,4)𝑀

                   (11) 

�̅�𝑛,𝑡 = 𝑚𝑖𝑛{𝑆𝑘,𝑡} for all phase k that may serve vehicle n (12a) 

𝑍𝑛,𝑡 = �̅�𝑛,𝑡 −
𝑍𝑛,𝑡+(𝑦𝑡,3+𝑦𝑡,4)−|𝑍𝑛,𝑡−(𝑦𝑡,3+𝑦𝑡,4)|

2
           (12b)  

     The CV-based signal timing strategies in this paper require 

information on real time vehicle trajectories. This study 

assumes the 100% penetration rate of CVs. Vehicle trajectories 

can be transmitted when a vehicle enters the boundary of an 

intersection. Furthermore, to optimize signal timing for the 

current and future cycles, future vehicle trajectories are needed. 

For this, the Intelligent Driver Model (IDM) [37] is applied to 

simulate vehicle trajectories. IDM is a car-following model that 

fits better with CV [38]. We assume that there is only one lane 

(and a dedicated left turn lane at the intersection) per incoming 

approach, so there is no lane changing behavior involved. It is 

necessary to account for the signal status in the prediction of 

traffic flow propagation when applying IDM. For this, we 

model the red signal as a “standing vehicle” with speed equal 

to zero. It would disappear if the signal turns green. Eq. (13a) 

indicates whether the front object of vehicle n is a real vehicle 

or a standing vehicle (traffic signal) by comparing the relative 

location of the front vehicle 𝑛 − 1, vehicle 𝑛, and the nearest 

traffic signal in front of vehicle n. The binary variable 𝑌𝑛,𝑡 takes 

one if the front “vehicle” is the traffic signal (could be red or 

green) at location 𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛  with speed zero. If 𝑦𝑛,𝑡is zero, the 

front vehicle 𝑛 − 1 is a real vehicle with location 𝑑𝑛−1,𝑡  and 

speed 𝑣𝑛−1,𝑡. This helps update the vehicle trajectories in IDM 

as shown later.  Eq. (13b) reformulate (13a) using the big M 

method and two binary variables 𝑦𝑛,𝑡,1 and 𝑦𝑛,𝑡,2.  

𝑌𝑛,𝑡 = {
1, 𝑖𝑓 𝑥𝑛,𝑡 < 𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛 <  𝑥𝑛−1,𝑡
0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (13a) 

{
 
 

 
 

𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛 −  𝑑𝑛−1,𝑡 < 𝑦𝑛,𝑡,1𝑀

𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛 −  𝑑𝑛−1,𝑡 + (1 − 𝑦𝑛,𝑡,1)𝑀 ≥ 0

 𝑑𝑛,𝑡 − 𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛 < 𝑦𝑛,𝑡,2𝑀

 𝑑𝑛,𝑡−𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛 + (1 − 𝑦𝑛,𝑡,2)𝑀 ≥ 0

𝑌𝑛,𝑡 = 1 − (𝑦𝑛,𝑡,1 + 𝑦𝑛,𝑡,2)

        (13b)                                                  

Using IDM, Eq. (14-15) identify the vehicle location and speed 

of the preceding “vehicle” 𝑛 − 1, which could be a real vehicle 

or the nearest front signal.  

𝑓𝑛−1,𝑡
𝑑 = 𝑑𝑛−1,𝑡 ∗ [1 −

𝑌𝑛,𝑡+𝑍𝑛,𝑡−|𝑌𝑛,𝑡−𝑍𝑛,𝑡|

2
] + 𝑑𝑠𝑖𝑔𝑛𝑎𝑙,𝑛,𝑡 ∗

𝑌𝑛,𝑡+𝑍𝑛,𝑡−|𝑌𝑛,𝑡−𝑍𝑛,𝑡|

2
                             (14) 

𝑓𝑛−1,𝑡
𝑣 = 𝑣𝑛−1,𝑡 ∗ [1 −

𝑌𝑛,𝑡+𝑍𝑛,𝑡−|𝑌𝑛,𝑡−𝑍𝑛,𝑡|

2
]            (15) 
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Eq. (16-19) shows how IDM estimates the acceleration rate for 

vehicle n at each time interval, given the location and speed of 

vehicle 𝑛 − 1.  

𝑠𝑛,𝑡 = 𝑓𝑛−1,𝑡
𝑑 − 𝑑𝑛,𝑡 − 𝑙𝑛−1                         (16) 

∆𝑣𝑛,𝑡 = 𝑓𝑛−1,𝑡
𝑣 − 𝑣𝑛,𝑡                                 (17) 

𝑎𝑛,𝑡 = 𝑎𝑚𝑎𝑥[1 − (
𝑣𝑛,𝑡

𝑣0
)
𝛿

− (
𝑠∗(𝑣𝑛,𝑡), ∆𝑣𝑛,𝑡

 𝑠𝑛,𝑡
)
2

]                 (18) 

𝑠∗(𝑣𝑛,𝑡 , 𝑑𝑛,𝑡) = 𝑠𝑜𝑛 + 𝑣𝑛,𝑡𝐻 +
𝑣𝑛,𝑡∆𝑣𝑛,𝑡

2√𝑎𝑚𝑎𝑥𝑏𝑚𝑎𝑥
                 (19) 

Eq. (20-21) are applied to update the trajectories for vehicle n 

at the next time interval 𝑡 + 1. More details of Eq. (14-21) can 

be found in [37]. In this paper, the values of the parameters in 

IDM are chosen as a = 1𝑚/𝑠2, b =3 𝑚/𝑠2, 𝑠𝑜𝑛= 2m, 𝐻 = 1.5s, 

and 𝛿 = 4, according to  [39].   

𝑣𝑛,𝑡+1 = 𝑚𝑎𝑥 (0, 𝑣𝑛,𝑡 + 𝑎𝑛,𝑡  )                    (20) 

𝑑𝑛,𝑡+1 = 𝑑𝑛,𝑡 +
𝑣𝑛,𝑡+𝑣𝑛,𝑡+1

2
                          (21) 

      Eq. (1) – (21) is a MINLP for the CV-based signal control 

problem. It clearly shows that when individual vehicle status is 

considered for signal control, e.g., under the CV environment, 

the problem can be formulated as a very complex MINLP. This 

is mainly due to the different status of vehicles and signal 

phases, as well as the various if-then-else types of conditions 

(e.g., equations (3), (8), (13), and others) inherent to this 

coupled signal-vehicle optimization problem. In addition, since 

the variables of the model include the location and speed of 

each vehicle at each time interval, the dimension of the problem 

can be quite large. Furthermore, the IDM-based car following 

model is also very complex. Thus solving the model directly is 

quite challenging, and more tractable and efficient methods are 

needed. We next present one of such methods based on DP. 

III. DYNAMIC PROGRAMMING FORMULATION 

      DP provides a general framework to divide an optimization 

problem into multiple stages (under certain conditions), which 

could be solved sequentially one stage at a time. Here we divide 

the signal timing decisions into stages, one stage for a phase. 

We then approximate the total fuel consumption and travel time 

of a stage as functions of the state and decision variables of that 

stage only. The notation for DP is first summarized as follows; 

the unit of each variable/parameter is provided in parentheses 
𝑥𝑝 Decision variable, phase duration of stage p (s). 
𝑠𝑝 State variable, total time from beginning of the 

cycle to the end of stage p (s). 
𝑋𝑝(𝑠𝑝) The set of feasible control variable given stage 

variable 𝑠𝑝 at stage p (s). 

𝑉𝑝(𝑠𝑝) Value function, the cumulative value of 

objective function from stage 1 up to stage p 

($). 
𝑥𝑝
𝑚𝑖𝑛 Minimum value of the decision variable at 

stage p (s). 
𝑥𝑝
𝑚𝑎𝑥 Maximum value of the decision variable at 

stage p (s). 
𝑓𝑝(𝑠𝑝, 𝑥𝑝) Total cost at stage p, given state variable 𝑠𝑝, 

and decision variable 𝑥𝑝 ($). 
Np Total number of vehicles in phase p (veh). 

𝐹𝐶𝑛,𝑡(𝑠𝑝, 𝑥𝑝) Fuel consumption of the vehicle n at time 𝑡 
given stage variable 𝑠𝑝  and decision variable 𝑥𝑝 

(gal/s). 
𝑇𝑇𝑛,𝑡(𝑠𝑝, 𝑥𝑝) Travel time of vehicle 𝑛  at time 𝑡 given stage 

variable 𝑠𝑝  and decision variable 𝑥𝑝 (s). 

𝐹𝐶𝑠,𝑛,𝑡(𝑠𝑝, 𝑥𝑝) Fuel consumption of vehicle 𝑛  at moving 

status at time 𝑡 given stage variable 𝑠𝑝 and 

decision variable 𝑥𝑝  (gal/meter). 

𝐹𝐶𝐼,𝑛(𝑠𝑝, 𝑥𝑝) Fuel consumption of vehicle 𝑛  at idle status at 

time 𝑡 given stage variable 𝑠𝑝  and decision 

variable 𝑥𝑝(gal/s). 

𝐴𝑝(𝑠𝑝−1, 𝑠𝑝) The number of arriving vehicles in the time 

interval [𝑠𝑝−1, 𝑠𝑝]. 
𝑀𝑝(𝑥𝑝) The maximum number of vehicle that can be 

discharged during phase duration 𝑥𝑝. 
𝑣𝑛,𝑡(𝑠𝑝, 𝑥𝑝) Approximated speed of vehicle n at time t 

given the stage variable 𝑠𝑝  and decision 

variable 𝑥𝑝 (m/s). 
𝑡𝑎 Arrival time at the predefined intersection 

boundary (distance L upstream of intersection) 

(s). 
𝑡𝑑 Time when vehicle joins the queue (started to 

slow down) (s). 
𝑡0  Time when the vehicle fully stops (s). 
 𝑡𝑎𝑐 Time when vehicle starts to be discharged (s). 

 𝑡𝑙  Time when the vehicle achieves the free flow 

speed  𝑣0(s). 
 𝑙𝑑 Distance upstream of end of queue or the stop 

line (if no queue) (m), e.g., 100m. 
𝑉𝑝(𝑠𝑝) Value function at phase p given state 

variable 𝑠𝑝.  

𝜎 Tolerance of the fixed cycle length (s), e.g., 5s. 

      As shown in Figure 1 and Figure 2, there are eight stages in 

total. The state variable 𝑠𝑝 is defined as the total number of time 

intervals from the beginning of the cycle to the end of stage p, 

while the decision variable 𝑥𝑝 is the phase duration. Eq. (22-23) 

illustrate the relationship between state variable and decision 

variable. Parameter r denotes the effective clearance interval; 

see Sen and Head [13] for more details.  

𝑠𝑝 = 𝑠𝑝−1 + ℎ(𝑥𝑝)                               (22) 

ℎ(𝑥𝑝) = {
0, 𝑖𝑓 𝑥𝑝 = 0

𝑥𝑝 + 𝑟, 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
                        (23) 

      Given the state variable  𝑠𝑝 , the feasible set of decision 

variables could be determined based on Eq. (24): 

𝑋𝑝(𝑠𝑝) = {
0,                                                              𝑖𝑓𝑠𝑝 < 𝑥

𝑚𝑖𝑛

{0, 𝑥𝑝
𝑚𝑖𝑛, 𝑥𝑝

𝑚𝑖𝑛 + 1,… , (min (𝑥𝑝
𝑚𝑎𝑥, 𝑠𝑝)},   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (24) 

      To formulate the DP, we first assign the initial value 

function 𝑉0 = 0. The DP starts from stage (phase) p = 1, and 

proceed recursively to p = 2, 3 … 8. At each stage, the method 

calculates the optimal decision variable 𝑥𝑝
∗( 𝑠𝑝)  by minimizing 

the value function for each possible value of the state 

variable 𝑠𝑝  in the forward recursion. Note that after stage 1, 

phase 2 or phase 3 may be chosen for the optimal decision 

variable, but not both; the same rule applies to phase 6 and 
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phase 7. After the decision variables are estimated for all stages, 

the optimal decision of each stage can be retrieved in the 

backward recursion. The DP calculation process can be 

equivalently represented by an acyclic graph, as shown in 

Figure 3. 

 

Figure 3 Acyclic graph of DP calculation process       

      However, in order to reformulate the signal control problem 

(1) – (21) as a DP, a critical condition is that the objective 

function in (1) can be expressed as the summation of the 

objective function of each stage. Furthermore, the stage-

specific objective function (i.e., the sum of the vehicle fuel 

consumption and travel time of all vehicles in the stage) can be 

expressed as a function of the state and decision variables of 

that stage only [13]. This however is not true in general for most 

of the objectives we consider here, i.e., travel time or fuel 

consumption. It is especially so when we consider the 

data/information of individual vehicles (such as trajectories, 

speeds, delays, etc.). In the next subsection, we approximate the 

objective function of each stage so that it can be expressed as a 

function of the state and decision variables of the stage. 

A. Objective Function Approximation 

      Eq. (25a) expresses the total fuel consumption and travel 

time of all the vehicles for phase p (i.e., it is from time 𝑠𝑝−1 

to 𝑠𝑝), where Np is the total number of vehicles in phase p. In 

this paper, travel time of a vehicle is estimated by the 

summation of free flow travel time of the vehicle and the delay 

it encountered. As shown previously [13], the total delay (and 

thus travel time) of a stage in (25b) can be approximated as a 

function of the state and decision variables. We show in this 

subsection how the fuel consumption can be approximated as a 

function of the state and decision variables. As shown in (5) and 

rewritten in (26), fuel consumption is a function of vehicle 

speeds. Thus we aim to approximate the vehicle speed as a 

function of the state and decision variables.  

𝑀𝑖𝑛 ∑ ∑ 𝑓𝑝(𝑠𝑝, 𝑥𝑝)
𝑠𝑝
𝑠𝑝−1

𝑁𝑝
𝑛=1                         (25a)    

𝑓𝑝(𝑠𝑝, 𝑥𝑝) ≜ 𝑚𝐹𝐹𝐶𝑛,𝑡(𝑠𝑝, 𝑥𝑝) + 𝑚𝑡𝑇𝑇𝑛,𝑡(𝑠𝑝, 𝑥𝑝)       (25b) 

𝐹𝐶𝑛,𝑡(𝑠𝑝, 𝑥𝑝) = 𝐹𝐶𝑠,𝑛,𝑡(𝑠𝑝, 𝑥𝑝) ∗ 𝑣𝑛,𝑡(𝑠𝑝 , 𝑥𝑝) ∗ (1 − 𝐼𝑛,𝑡) + 𝐹𝐶𝐼,𝑛 ∗ 𝐼𝑛,𝑡     (26)              

      The speed of a vehicle is estimated based on the queue 

discharging process. Let 𝐴𝑝(𝑠𝑝−1, 𝑠𝑝)  denote the number of 

arriving vehicles for phase p, i.e., during the time interval 

[𝑠𝑝−1, 𝑠𝑝].  𝑀𝑝(𝑥𝑝) denotes the maximum number of vehicle 

that can be discharged during the time interval of green time 𝑥𝑝. 

As shown in [13], Ap and Mp can be expressed as functions of 

the state and decision variables of stage p only.  We next show 

how the speed of a vehicle can be approximated as those 

variables. There are four possible cases for the speed of a 

vehicle arriving in stage p, as shown in Figure 4. 

 

(1) Vehicle arrives during green signal at stage p and can pass 

freely through intersection. 

    �̅� = 𝑣𝑜                                     (27) 

(2) Vehicle arrives during green at stage p but a queue already 

exists. The queue includes vehicles that were not 

discharged in the previous stage p-1 and the newly arrived 

vehicles at stage p before the current vehicle. Denote 𝑡𝑎 the 

time when the current vehicle arrives at the predefined 

intersection boundary (distance 𝑙  upstream of intersection), 

𝑡𝑑the time when the vehicle joins the queue (started to slow 

down), 𝑡0  the time when the vehicle fully stops, 𝑡𝑎𝑐  the 

time when the vehicle starts to be discharged,  and  𝑡𝑙 the 

time when the vehicle achieves the free flow speed 

 𝑣0 again after being discharged. We assume the vehicle 

starts to decelerate with a constant rate at time 𝑡𝑑 if queue 

exists. We can then approximate the average speed 

between  𝑡𝑑  and  𝑡0 as 
𝑣0

2
. The same assumption applies to 

the acceleration process from 𝑡𝑎𝑐 to 𝑡𝑙. When the vehicle 

starts to decelerate at 𝑡𝑑, the distance between the vehicle 

and the stop line is denoted as  𝑙𝑑. 

      If the vehicle could pass the intersection within the 

current phase 𝑝 (trajectory ① in Figure 4(b)), speed could 

be approximated using Eq. (28), otherwise (trajectory ②), 

vehicle has to wait until the next phase. In this case, we 

only apply first three conditions in Eq. (28) since 𝑡1 ≥ 𝑠𝑝. 

We could consider ② as a special case of ①. 

𝑣𝑛,𝑡(𝑠𝑝, 𝑥𝑝) =

{
 
 

 
 
 𝑣0,       𝑖𝑓  𝑡𝑎 ≤ 𝑡 ≤  𝑡𝑑
𝑣0

2
,       𝑖𝑓  𝑡𝑑 < 𝑡 ≤ 𝑡0

0,         𝑖𝑓 𝑡0 < 𝑡 ≤ 𝑡𝑎𝑐
𝑣0

2
,        𝑖𝑓 𝑡𝑎𝑐 < 𝑡 ≤ 𝑡𝑙  

 𝑣0,        𝑖𝑓  𝑡𝑙 < 𝑡 ≤ 𝑠𝑝  

              (28) 

(3) Vehicle arrives during red signal at stage p. Figure 4 (c) 

and (d) are differentiated by whether queue exists at the end 

of stage p. If there is no queue, vehicle n will start to leave 

at 𝑡1(𝑡1 = 𝑠𝑝), otherwise it will have to wait for the queue 

to dissipate (𝑡1 ≥ 𝑠𝑝). Here we only care about the vehicle 

status from time 𝑠𝑝−1  to  𝑠𝑝 . The speed of vehicle 𝑛 

arriving during red can be summarized as: 

𝑣𝑛,𝑡(𝑠𝑝, 𝑥𝑝) = {

 𝑣0,    𝑖𝑓 𝑡𝑎 ≤ 𝑡 ≤  𝑡𝑑
𝑣0

2
,     𝑖𝑓  𝑡𝑑 < 𝑡 ≤ 𝑡0

0,       𝑖𝑓 𝑡0 < 𝑡 ≤ 𝑠𝑝

               (29)    

      After approximating the vehicle speed 𝒗𝒏,𝒕(𝒔𝒑, 𝒙𝒑) in the 

objective function for stage p based on the above four cases, the 

objective function can be approximated as a function of sp and 

xp only, as shown below: 

𝑉𝑝(𝑠𝑝) = min{𝑓𝑝(𝑠𝑝, 𝑥𝑝) + 𝑉𝑝−1(𝑠𝑝−1)|𝑥𝑝 ∈ 𝑋𝑝(𝑠𝑝), 𝑝 ∈ 𝑃}     (30) 

This means that Eq. (25), and the objective function of the 

MINLP in Section II as well, can be expressed as a function of 

𝒔𝒑  and 𝒙𝒑  (for all p) only. Thus the problem can be 

reformulated as a DP. Detailed proof is straightforward and 
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omitted here. Furthermore, after obtaining the optimal decision 

variable 𝒙𝒑
∗  at stage p, IDM is applied to update the trajectories 

of all the vehicles from 𝒔𝒑−𝟏 to 𝒔𝒑 = 𝒔𝒑−𝟏 + 𝒙𝒑
∗ .  

    
 

(a) Vehicle arrives during green 

signal (no queue) 

(b) Vehicle arrives during         

green signal and queue exists 

  
(c) Vehicle arrives during red 

signal (no queue) 

(d) Vehicle arrives during             

red signal and queue exists 

Figure 4 Vehicle average speed Approximation                           

B. End Stage Cost 

      The DP formulation so far does not impose any constraint 

on the cycle length. As shown in the next section, imposing 

such a constraint will invalidate the DP formulation. We 

propose two steps to address this issue: adding the end-stage 

cost to the DP formulation and a branch-and-bound method to 

refine the solution. First, in the last stage P, we modify the value 

function by adding the end stage cost 𝑓𝑒  if the difference 

between the estimated cycle length 𝐶𝑒  by DP and  the 

predefined cycle length 𝐶 is large. If 𝜎 denotes the tolerance, 

e.g., 5 seconds, and 𝑤  denotes the weight, the revised value 

function for the last stage P can be expressed as: 

𝑉𝑝(𝑠𝑝) = min{𝑓𝑝(𝑠𝑝, 𝑥𝑝) + 𝑉𝑝−1(𝑠𝑝−1) + 𝑓𝑒|𝑥𝑝 ∈ 𝑋𝑝(𝑠𝑝), 𝑝 = 𝑃}   (31) 

The end-stage cost fe can be expressed as in (32) while the 

estimated cycle length is the summation of the green time of all 

phases: 

𝑓𝑒 = {
0,                 𝑖𝑓 |𝐶𝑒 − 𝐶| ≤ 𝜎

𝑤(𝐶𝑒 − 𝐶)
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (32)                          

𝐶𝑒 = ∑ 𝑥𝑝
𝑃
𝑝=1                               (33)  

The end-stage cost (32) with a proper weight works as a penalty 

function, ensuring that the obtained solution from the DP can 

result in a cycle length Ce close enough to the predefined cycle 

length C. To obtain a solution that can lead to C exactly, the 

second step applies a branch and bound method to refine the DP 

solution.     

C. Branch and Bound Algorithm 

      To produce a signal timing solution that leads to exactly the 

predefined cycle length C, we need to add the following 

constraint to the decision variables in the DP formulation.  

∑ 𝑥𝑝
8
𝑝=1 = 𝐶                                    (34) 

This constraint however will invalidate the DP model as 

decisions cannot be made stage by stage when Eq. (34) is 

considered. In other words, DP cannot guarantee that the 

optimal phase durations sum up to a fixed cycle length. A 

branch and bound method is applied here to resolve the issue, 

which was used in the past to solve the Resources Constrained 

Shortest Path (RCSP) problem [40]. The method creates a tree 

by selecting one variable each time from an initial solution. 

Here the initial solution is produced by solving the DP 

formulation with the end-stage cost, as discussed above. The 

maximum level of the tree is the number of stages because the 

variable in a given set can only be used for branching once. 

Moreover, all branches at a given level of the tree have to be 

computed and analyzed before advancing to the next level. The 

numerical example of the branch and bound method will be 

provided in the net section. The can be summarized as below: 

(1) DP with the end-stage cost is solved first to produce an 

initial solution. 

(2) Define the error gain for stage/phase p: 

𝐸𝐺𝑝(𝑠𝑝 , 𝑥𝑝) = 𝑓𝑝(𝑠𝑝 , 𝑥𝑝)                         (35)                                             

The error gain is the objective function in DP (total fuel 

consumption and travel time) for all vehicles traveling in 

stage p with stage variable 𝑠𝑝  and decision variable 𝑥𝑝.  

(3) If the estimated cycle length happens to be exactly the 

predefined cycle length C, the DP solution is an optimal 

solution. The algorithm stops. 

(4) If the cycle length from the DP solution is larger than the 

predefined fixed cycle length (decision variable should be 

decreased), the selected phase for branching at each level 

is the one that has the minimum error gain. There could be 

multiple number of branching depending on the difference 

between the predefined cycle length and the cycle length 

from the DP solution. If the produced cycle length is less 

than the fixed cycle length (decision variable should be 

increased), the selected phase for branching would be the 

maximum error gain. 

(5) The algorithm stops when the results of all branching (i.e., 

leaves) are feasible. The optimal solution is selected from 

the feasible solutions that satisfies the cycle length 

constraint while producing the minimum objective value. 

IV. NUMERICAL EXPERIMENTS 

      We test the proposed CV-based signal timing optimization 

model and the DP method using data generated in VISSIM, 

which include the arrival time, arrival link (movement) and 

initial speed of each vehicle. The testing network contains a 

single intersection with a boundary of 300 meters upstream and 

downstream of the intersection to mimic the communication 

range of V2I. After comparing the approximated vehicle speed 

using our approximation method and the speed generated from 

VISSIM, we evaluate the proposed signal timing optimization 

method in three steps. First, we estimate the optimal cycle 

length using SYNCHRO, a widely used traffic signal design 

and optimization software tool, for different traffic demand 

cases. Next, for a given case, we apply different methods (see 

Table 2 and Table 3) to optimize the signal timing plans (phases 

and green splits), one for each method. We then evaluate the 

performance of each signal timing plan (i.e., each method) by 

applying the plan to the intersection and using IDM to generate 
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vehicle trajectories, based on which to calculate the total cost. 

We also illustrate the procedure of the branch and bound 

algorithm and test the impact of the tolerance in the end-stage 

cost Eq. (32) on the performance of the proposed model.  The 

values of all parameters used in this study can be found in the 

notation lists.   

A. Speed approximation 

      In the proposed method, we approximate the vehicle speed 

as a function of the state variables and decision variables, as 

shown in Section III. Here we compare the vehicle speed 

between our method (Eq. (27)-(29)) and IDM simulation for the 

major streets in Figure 5. The suggested value of parameters in 

IDM are indicated in the notation lists. The platoon contains 

four vehicles. It is observed that the approximate speeds have 

the similar trend but not as smooth as the speed profile in IDM.   

  
(a) IDM speed (b) Approximated speed 

Figure 5 Speed Comparisons   

      In order to validate the speed approximation method is 

acceptable in fuel consumption estimation, the absolute 

differences of the fuel consumption with and without the speed 

approximation are estimated. It is observed that under all six 

cases, the mean absolute errors of fuel consumption using 

approximate speed are all less than 16%, which are considered 

acceptable in fuel consumption estimation. 

B. Signal Timing Optimization 

      Different combinations of traffic demands and vehicle types 

are tested in order to evaluate the proposed signal optimization 

method. Vehicle arrivals at the boundaries of the intersection 

are generated from VISSIM. For each direction, 80% of the 

vehicles will go straight and the others will turn left. Six cases 

are tested to reveal the influence of traffic demands and vehicle 

types on the model performance. In Case I – III, vehicle demand 

is set to be 250 vph, 500 vph, and 800 vph, respectively. All 

vehicles are sedans (Type 5 in Table 1). In Case IV - VI, traffic 

demands are identical as in Case I - III, but the vehicle types are 

assigned differently. In the N-S directions, vehicles are 

assigned as Electric Vehicles (EVs, i.e., Vehicle type 1), while 

in the W-E directions, vehicles are assigned as buses (Vehicle 

type 7). Notice that generating all buses from one direction and 

all EVs from another is not very realistic. This is done here 

mainly to show more clearly the influences of the vehicle types 

on fuel consumption and signal timing. 

      We first test all models for 10 cycles. There are vehicles 

randomly generated to enter the network during the first 8 

cycles, while during the last 2 cycles, there is no traffic demand. 

This guarantees the network is cleared by the end of the 

simulation. We test three signal control methods, as shown in 

Table 2 and Table 3. The first method is the actuated signal 

timing plan produced by SYNCHRO. The timing plan from 

SYNCHRO is then applied in IDM to update vehicle 

trajectories and estimate the objective function value, i.e., the 

total cost of fuel consumption and travel time using Eq. (1-5). 

The same procedure also applies to the other two models: the 

NOMAD solver in MATLAB and the DP method proposed 

here. The solver “NOMAD” uses a Mesh Adaptive Direct 

Search algorithm to solve non-differentiable and global 

nonlinear programs. It can solve non-convex MINLPs while it 

may not produce the global optimal solution. Since the starting 

point will directly influence the optimization results in 

NOMAD, we set the solution from SYNCHRO and DP 

respectively as the starting point in NOMAD to further reduce 

the cost. Dimensionality is another key factor affecting the 

performance of NOMAD. We test the model by updating the 

signal plan in various updating intervals (e.g., in every 1, 2, 5 

or 10 cycles). The number of variables in NOMAD increases as 

the update frequency increases. For example, if we update the 

signal plan every cycle, there will be 80 variables in the total 

time span (10 cycles). The third model is the DP with the 

proposed end stage cost and the branch and bound method. DP 

update the signal plan every cycle. The results from DP without 

fixed cycle length constraints are also shown in the tables.  

      Table 2 and Table 3 summarize the results, in terms of the 

objective values, by different models for the six cases 

respectively, considering the influence of demand levels only 

(Table 2) and the combined demand levels and vehicle types 

(Table 3). The cycle lengths for different demand levels are 

determined by SYNCHRO: they are 60s for low traffic demand 

(250 vph), 65s for medium traffic demand (500 vph), and 85s 

for high demand (800vph), which are also the maximum value 

for the state variables in DP. Table 2 shows the cost from 

different models under various demand levels. NOMAD 

produces different solutions for different signal plan updating 

intervals and the starting points (from SYNCHRO in first four 

rows and from DP in the last row). We use the DP solution or 

the Synchro results as the initial points for NOMAD to make 

sure it can start with some reasonably good initial points. The 

best solutions from NOMAD are highlighted for each Case. 

Table 2 shows that if the signal plan is updated every cycle or 

every two cycles, the network performance are not improved 

since the total costs keep the same as its initial evaluation from 

the initial guess (SYNCHRO plan). However, a better solution 

may be obtained as the updating frequency decreases to every 

5 or 10 cycles. This indicates that NOMAD has difficulties 

finding optimal solutions when the number of variables is 

relatively large. Table 2 also shows that different starting points 

in NOMAD can affect the optimal solutions. When compared 

with different models, DP outperforms SYNCHRO and 

achieves the same solution as NOMAD under low and medium 

demands in case I and case II. In case III, as the demand 

increases, DP results are still better than SYNCHRO but 

slightly worse than NOMAD. Table 3 shows the costs from 

different models under various demand levels and vehicle 

types. By comparing Case IV to Case I, we can see that the 

performance improvements of DP and NOMAD over 

SYNCHRO are more dramatic, which is also shown in Figure 

6. Case IV incorporates buses in W-E direction, which produces 

much more fuel consumption than sedan in Case I. The cost 

generated from DP and NOMAD were both lower than 

SYNCHRO because SYNCHRO does not consider the 
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influence of vehicle types on the fuel consumption when 

optimizing the signal timing. As the demand increases while 

still maintaining different vehicle types on NS and WE 

directions, the performance of DP is still better than 

SYNCHRO but slightly worse than NOMAD in medium 

(500vph) and high (800 vph) demand levels. Since NOMAD 

uses the optimal phase plan from SYNCHRO and DP as the 

starting point, it makes sense that the best NOMAD results are 

always better than or equal to SYNCHRO and DP for all cases. 

It is also observed that the results from DP without the fixed C 

constraint always have the lower objectives compared with the 

one with the fixed C constraint. This indicates that enforcing 

the fixed cycle length, i.e., for signal coordination purposes 

(and thus to the benefit of the entire system), may likely worsen 

the performance of individual intersections. 

Table 2 Total Cost under Various Demand Levels   

 

Case I Case II Case III

1. SYNCHRO 49.64 162.39 368.99 /

2. NOMAD update every  cycle 49.64 162.39 368.99 80

    NOMAD update every 2 cycles  49.64 162.39 368.99 40

    NOMAD update every 5 cycles  49.64 153.25 362.5 16

    NOMAD update every 10 cycle 48.12 143.52 358.05 8

NOMAD update every 10 cycles & initial   

points from DP solution)
47.74 140.65 359.96 8

3. DP with fixed C constraint 47.74 140.65 360.73

(DP without fixed C constraint) 46.97 138.55 354.74

Model # of variables
250 vph, sedan 500 vph, sedan

800 vph, 

sedan

/

 

Table 3 Total Cost under Various Demand Levels and 

Vehichle Types 

 

Case IV Case V Case VI

1. SYNCHRO 68.42 209.54 453.81 /

2. NOMAD update every  cycle 68.42 209.54 453.81 80

    NOMAD update every 2 cycles  68.42 209.54 453.81 40

    NOMAD update every 5 cycles  68.42 168.29 453.81 16

    NOMAD update every 10 cycle 65.78 180.67 434.37 8

NOMAD update every 10 cycles & initial 

points from DP solution)
63.37 169.54 436.65 8

3. DP with fixed C constraint 63.37 172.43 436.65

(DP without fixed C constraint) 61.25 163.54 433.36
/

Model # of variables250 vph; NS: 

Evs; WE: Bus 

500 vph; NS: 

Evs; WE: Bus

800 vph; NS: 

Evs; WE: Bus

      Figure 6 shows the performance improvements of 

NOMAD, DP with fixed cycle length, and DP without fixed 

cycle length over SYNCHRO. As shown in the dashed line, the 

model improvements of low and high demand levels are not as 

significant as the middle demand levels. This may be because 

under unsaturated but relatively heavy traffic conditions, there 

are more opportunities to optimize the splits and reduce the total 

cost of fuel consumption and travel time. Such opportunities 

tend to diminish when traffic is very light (all methods can work 

well) or very heavy (no method can work well). Furthermore, 

the performance improvements are more obvious if considering 

different vehicle types, as shown in Case IV – VI in Figure 6. 
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Figure 6 Improvement of Model Performance over 

SYNCHRO Results       

      Figure 7 shows the cost of fuel consumption and travel time 

separately for the four methods and six cases. For all cases, the 

cost of travel time is much larger than the cost of fuel 

consumption. Comparing cases IV, V, VI to cases I, II, III, it is 

observed that the influence of vehicle types is more significant 

on the cost of fuel consumption than travel time. Considering 

the same level of travel demand (e.g., case I and IV), the cost of 

fuel consumption is larger for the cases considering different 

vehicle types while the costs of travel time are similar. 

 
Figure 7 Total cost comparisons 

      The computation times for NOMAD and DP depend on the 

several factors, e.g., the update intervals of signal plans, 

whether considering vehicle types and traffic demands in the 

network. For NOMAD, the initial points and number of 

variables also influence the optimization time. Under high 

traffic demand, NOMAD can take up to 20 minutes to find a 

solution if signal timing is updated every 10 cycles; in some 

cases, NOMAD may fail to find any solution. For DP, the 

optimization time ranges from 10-20s per cycle (in the cycle-

by-cycle signal optimization), depending on the traffic demand 

level. Currently the methods are implemented in Matlab and no 

code optimization is performed. When signal timing 

optimization is conducted in real time, the methods will be most 

likely programed in a more efficient language/platform (such as 

C or machine language) and the codes should be optimized to 

improve the performance. This can often significantly improve 

the computation time. Detailed investigation of this issue is 

beyond the scope of the paper, and may be pursued in future 

research.         

      In order to further verify the algorithm, the simulation 

period is extended from 10 cycles to 1 hour. For NOMAD, it 

cannot find a feasible solution even if the updating interval for 

signal timing is 10 cycles (larger updating intervals indicate 

fewer number of variables in NOMAD). Therefore we consider 

NOMAD fail to solve the signal optimization problem for the 1 

hour simulation period and results are not shown here. In Table 

4, the cost estimated from DP is less than SYNCHRO in every 

case. Case V has the largest improvement (10.02%) when 

considering various vehicle types under medium vehicle 

demands.  
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Table 4 Cost of Different models for 1 hour simulation 

       

Case I Case II Case III

1. SYNCHRO 277.72 685.39 1388.55

2.DP  | Improvements (%) 266.39 | 4.08% 643.75 | 6.08% 1303.12 | 6.15%

Case IV Case V Case VI

1. SYNCHRO 355.85 844.41 1658.3

2.DP | Improvements (%) 331.26 | 6.91% 759.81 | 10.02% 1623.86 | 2.08%

Model
250 vph, sedan 500 vph, sedan 800 vph, sedan

Model 250 vph; NS: Evs; 

WE: Bus 

500 vph; NS: Evs; 

WE: Bus

800 vph; NS: Evs; 

WE: Bus

C. Branch and Bound Algorithm 

      This section illustrates how the branch and bound algorithm 

can be applied to the DP results (without the fixed cycle length  

constraint) to guarantee a solution with the fixed cycle length. 

Here we use the DP result of Case I in Table 2. Figure 8 shows 

the result from the DP by considering the end stage cost, which 

leads to a cycle length of 57s, 3 seconds lower than the 

predefined and fixed cycle length of 60s.  

 
Figure 8  Estimated solution from DP 

      With the information of the DP solutions, the estimated 

Error Gain (EG) from DP, the total cost of fuel consumption 

and travel time, and the fixed cycle length, the branching can 

be selected based on the value of EG. In this case, since phase 

group 5 (phase 7) has the maximum EG, it is selected as the first 

level of branching, guided by the algorithm presented in the 

previous section. The nodes 1-3 enumerate each possible value 

of the decision variable for phase 7 in phase group 5, with the 

green time for phase 7 being 12, 13, 14, respectively. Only node 

3 is feasible since its phase durations add up to the fixed cycle 

length 60s.  For the node 1 – 2, the next level of branching is 

generated by the same rule. Figure 9 is the tree for branch and 

bound that lists all the feasible solutions with the total cost (TC) 

estimated using IDM. The feasible solution with the minimum 

objective value represents the optimal solution. It is observed 

that the total cost for the optimal solution in Figure 9 is larger 

than the total cost of the initial solution from DP (C=57s) 

because we sacrifice the signal performance by adding a fixed 

cycle length constraint using the branch and bound method. 

      The simulation results verify that the proposed DP with the 

two-step method is able to generate the phase durations that 

guarantee the given fixed cycle length and at the same time with 

objective to minimize the weighted traffic delay and fuel 

consumption. Ensuring the fixed cycle length makes it possible 

to extend the proposed model in the future to coordinate 

multiple intersections in a traffic corridor or network. 

Furthermore, the proposed method shows its advantages by 

considering the influence of vehicle types compared to the 

actuated traffic signal (i.e., SYNCHRO). 

 
Figure 9 Branch and Bound Tree 

D. Tolerance parameter of branch and bound method 

      In Eq.(32), we define a tolerance 𝜎  to calculate the end 

stage cost to find the DP solution. Different values of 𝜎 may 

produce difference intial solutions and influence the number of 

evaluations in the Branch and Bound algorithem. Here an 

evaluation means that for a given tentative signal timing plan, 

we need to estimate the objective in (25) using IDM, which may 

be time consuming. As shown in Figure 9, one node in the graph 

corresponds to one signal timing plan that needs to be 

evaluated. We test the tolerance 𝜎 from 0 to 10 and test the 

performance of the algorithm for Case I. In Figure 10, as 𝜎 

increases, the total cost decreases slightly and attains its 

minimum value at 𝜎 = 8 , but the number of evalutations 

increases dramatically. A very large value of 𝜎 (e.g., 10) will 

need to evalutate more timing plans, but may not help much to 

minimize the objective. Similar trends can be found for other 

cases. Seting 𝜎 = 5, as we use in this paper, seems a good 

balance between solution quality and the computational effort 

of the algorithm.  

 
Figure 10  Influence of σ on the total cost for Case I 

V. CONCLUSION 

      This paper presented a signal timing optimization model for 

a single intersection with a fixed cycle length under the CV 

environment. The algorithm utilized arrival information 

(speeds, locations, etc.) from CV as the input to optimize the 

green times by considering individual vehicles’ fuel 

consumption and travel time. The problem was first formulated 

as a mixed-integer nonlinear program (MINLP) by applying the 
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IDM to predict vehicle trajectories. Such a formulation has a 

large dimension and a complex car-following model (the IDM). 

A DP formulation was then developed to approximate the 

MINLP. The overall problem was divided into stages (one stage 

for each signal phase). The objective is the summation of the 

objective of each stage. The objective function of a stage was 

approximated as a function of the state and decision variables of 

the stage only, by approximating the vehicle speeds and delays. 

We showed that imposing the fixed cycle length constraint 

would invalidate the DP formulation. We then applied a two-

step method to address this issue. First, we added an end-stage 

cost to the DP formulation, defined by how much the DP 

solution violates the fixed cycle length constraint. This step 

forced the DP to produce a solution with a cycle length that is 

close to the given fixed cycle length. The second step was a 

branch and bound method to further refine the DP results to 

obtain a solution that produces the given cycle length exactly. 

      We evaluated the performance of the algorithm using data 

generated from traffic simulation. The results of the proposed 

DP model were compared with two other models. The first one 

is the traditional actuated signal timing plan generated by 

SYNCHRO. The second is to solve the MINLP formulation 

directly using the NOMAD solver in MATLAB.  The results 

showed that the proposed DP method is always superior to 

SYNCHRO under all cases and can generate similar (slightly 

worse) solutions compared with NOMAD. However, NOMAD 

has difficulties finding optimal solutions when the number of 

variables is relatively large and the computational times of 

NOMAD are much larger than DP. This makes the proposed 

DP method more favorable when dealing with large scale 

problems. 

      Overall, the obtained solution by the proposed model 

ensures the (given) fixed cycle length, which is crucial for 

extending the proposed method to optimize and coordinate 

multiple traffic signals in a traffic corridor or network in the 

future. The objective for such corridor level optimization and 

coordination is to produce optimal offsets by minimizing the 

total fuel consumption and travel times of vehicles traveling 

along the coordinated movements [41]. For this, the proposed 

single-intersection optimization method, especially the DP 

reformulation and the two-step method, serves as a crucial 

component. The authors are investigating such a signal 

coordination problem and results may be reported in subsequent 

papers. Future research may also investigate how different 

penetration of CV-equipped vehicles will affect the 

performance of the proposed signal control method. This will 

require estimating the trajectories of vehicles that are not 

equipped with CV. When sample trajectory data from real 

world are available, certain stochastic models, e.g., Kalman 

filter based or Bayesian methods may be applied to estimate and 

predict the trajectories. For this, past work of the authors on 

estimating vehicle trajectories at signalized intersections may 

be helpful [42]. Recent study by Continental  [43] can also be 

insightful for this. They applied the complete sensor set for an 

intersection to track vehicle trajectories, which can largely 

improve the penetration rate of CV. Furthermore, the proposed 

method needs to be tested using real world traffic signals and 

CV data. This will be pursued in future research.  
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