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Abstract: Inefficient traffic control is pervasive in modern urban areas, which would exaggerate 

traffic congestion as well as deteriorate mobility, fuel economy and safety. In this paper, we 

systematically review the potential solutions that take advantage of connected and automated 

vehicles (CAVs) to improve the control performances of urban signalized intersections. We review 

the methods and models to estimate traffic flow states and optimize traffic signal timing plans based 

on CAVs. We summarize six types of CAV-based traffic control methods and propose a conceptual 

mathematical framework that can be specified to each of six three types of methods by selecting 

different state variables, control inputs, and environment inputs. The benefits and drawbacks of 

various CAV-based control methods are explained, and future research directions are discussed. We 

hope that this review could provide readers with a helpful roadmap for future research on CAV-

based urban traffic control and draw their attention to the most challenging problems in this 

important and promising field. 

 

Keywords: Urban Traffic Control (UTC), Connected and Automated Vehicles (CAVs), Mobile 
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1. Introduction 

Urbanization has incented dramatic growth of car usage in more and more cities globally. 

Motor vehicle miles have increased by 167% in the United States from 1970 to 2009 (U.S. Census 

Bureau, 2012). As a result, growing traffic congestion, accidents, and pollutions are threating 

sustainable mobility for our future. Various traffic management methods have been proposed to 

handle the fast-growing travel demands. For example, many cities are building better public 

transportation systems and launching low-price tickets to reduce private car usage (Ding et al., 2018; 

Nuzzolo and Comi, 2016). Ride-sharing is also advocated by many local governments to reduce car 

ownership (Dong et al., 2018; Nie, 2017). 

Urban traffic control (UTC) systems have also been continuously updated and innovated to 

keep up with the increasing traffic demands (Wang 2010, Hamilton et al., 2013; Li and Wang, 2018). 

Among many new techniques developed for traffic control recently, Connected and Automated 
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Vehicles (CAVs) are believed to have great promises (Mahmassani, 2016). Usually, connected 

vehicles (CVs) refer to vehicles that can communicate with other vehicles (vehicle-to-vehicle, V2V), 

infrastructure (vehicle-to-infrastructure, V2I), and other traffic participants such as pedestrians and 

bicyclists (V2X). Fully automated vehicles refer to "the vehicle can do all the driving in all 

circumstances. The human occupants are just passengers and need never be involved in driving" 

(NHTSA, 2016). The U.S. Department of Transportation's National Highway Traffic Safety 

Administration (NHTSA) defined five levels of automated driving, from driving assistance (Level 

1) to fully automated vehicles (Level 5). The automated vehicles discussed in this paper belong to 

Level 5. 

The benefits of introducing CAVs include but not limited to crash reduction/elimination, travel 

time reduction, energy efficiency improvement, and others. Focusing on urban traffic control, we 

may reach the following goals with the aid of CAVs techniques: 

 CAV data can be used to better estimate the performance of traffic flow states and traffic 

control for signal timing; 

 Traffic control systems could make better signal timing plans, since the arrivals of vehicles 

could be better predicted in advance; 

 Drivers or fully automated vehicles could better adapt their operations to cooperate with 

signal timing to reduce overall congestion and fuel consumption in urban areas. 

To further discuss the state-of-the-art findings obtained for CAV-based urban traffic control, 

we need to first clarify the topics that will be covered in this paper. Usually, the technologies for 

advanced traffic control systems, advanced driver assistance systems (ADAS), automated vehicles, 

and connected vehicles often overlap with each other. Existing studies in this field may focus on 

related but distinguished topics. Some studies only considered the traffic signal systems, while other 

studies took both signal systems and vehicles into considerations. From the viewpoint of control 

schemes used in these studies, some only applied feedback control, while others mainly relied on 

feedforward trajectory planning. 

Figure 1 depicts the underlying evolution of the design philosophy and research paradigms for 

UTC. The upper arrow represents the trend of considering more vehicle driving management in 

traffic control systems, while the lower arrow represents the trend of considering more traffic flow 

management in vehicle control systems. The curves divide three stages of transportation-vehicle 

integration (from lower left to upper right): the past, the current, and the future. As shown in the 

figure, we can roughly categorize existing studies for CAV-based traffic control into six types of 

approaches, namely, driver guidance, actuated (adaptive) signal control, platoon-based signal 

control, planning-based signal control, signal-vehicle coupled control (SVCC), and multi-vehicle 

cooperative driving without traffic signals. 

The introduction of CAV in UTC had linked two research fields: ITS (i.e., transportation) and 

IV (i.e., vehicles) which were studied mostly separately during the last 30 years. Although the initial 
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attempts focused on either the vehicle or the traffic control system, we are now composing the 

vehicle part and the traffic control systems into a more and more tight integration. 

This integration brings New Hope, New Changes, and also New Problems! 

 The objective has been extended from traffic efficiency to safety, energy economics, and 

pollution reduction. 

 The decision variables have become the motion planning and control of each individual 

vehicles, in addition to the phases, cycle length, green ration, and coordination of traffic 

signals. 

 The descriptions/models of the traffic systems have been gradually replaced from the 

continuous traffic wave model to the movements of each individual vehicles. 

 The solution strategies have been shifted from traffic-responsive feedback control to 

planning based feedforward control. 

 The solving methods have been changed also. For example, artificial intelligence (AI) 

techniques have been widely used now. 

To provide an overview of the technologies, benefits, and challenges of these changes, we 

sequentially review the first five types of approaches. The sixth type of approaches on multi-vehicle 

cooperative driving will not be covered in this paper for reasons explained below.  
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Figure 1 An illustration of different topics on urban street traffic control with CAVs. 

 

Although several literature reviews on traffic control (Florin and Olariu, 2015; Li et al., 2014c; 

Olia et al., 2016) have been made in this field, our surveys provide the following new insights: 



-4- 

 

First, we highlight the use of CAVs in traffic flow sensing and estimating, since the absence of 

reliable traffic state measurements has been shown to be one of the main obstacles that hinder the 

successful applications of appropriate traffic control. Many recently proposed traffic control 

methods have verified the importance and merits of CAV-based traffic sensing (Sharifi et al., 2017). 

In this paper, we would like to provide a timely survey on this topic. 

Second, we focus on the traffic control problem with mixed CAVs and human-driven vehicles. 

In other words, we emphasize the role of the traffic signal control system to guide the movements 

of vehicles, while at the same time allow the CAVs to change their movements to cooperate with 

the signal systems adaptively. We believe that the traffic signal control system will remain critical 

at least in the near term when mixed human-driven vehicles or non-connected vehicles and CAVs 

co-exist in the traffic system. Hence, we do not review the sixth approach, i.e., multi-vehicle 

cooperative driving without traffic signals, in this paper. Readers who are interested in cooperative 

driving around non-signalized intersections may refer to some other surveys and papers (Chen and 

Englund, 2016; Lee et al., 2012, Li et al., 2014c; Meng et al., 2018; Qian et al., 2017; 

VanMiddlesworth et al., 2008; Xu et al., 2018) for detailed discussions. 

Third, we review/address some practical yet essential topics related to CAV-based traffic 

control, including the transit priority control, network control, impacts of CAVs penetration, safety 

guarantee for CAV-based traffic control, and the implementation requirements of CAVs technologies. 

To the best our knowledge, such topics have not been well discussed in the literature in a systematic 

manner. 

We arrange the rest of this paper as follows. Section 2 summarizes how to collect and retrieve 

traffic information by CVs (or similar technologies such as mobile sensing) with increasingly 

available data and improved measurement accuracy. This summary provides a basis for the later 

survey. Section 3 summaries the advanced control technologies used to improve traffic performance. 

The driver guidance system is first discussed in Section 3.1; followed by signal control methods 

(Section 3.2) including actuated signal control, platoon-based control, planning-based control, and 

transit priority control; Section 3.3 discusses the newly emerged signal-vehicle coupled control. 

Section 4 provides some discussions and future research directions for CAV-based traffic state 

estimation and signal control. Section 5 concludes the paper. 

 

2. Traffic Information Collection and State Estimation by CAVs Data 

2.1 The Evolution of Traffic Information Collection Techniques 

Fixed sensors (e.g., loop detectors and video cameras) became pervasive in cities since the end 

of the last century and helped collect valuable traffic information to support the development of the 

first-generation intelligent transportation systems (Kurzhanskiy and Varaiya, 2015). However, fixed 

sensors can only provide the information of traffic flow measured at discrete spatial points (Sun and 
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Ban, 2013), and we need to build special models to estimate the traffic states at other spatial 

locations. Because not any traffic flow model or estimation method is perfect, we always expect to 

fuse additional traffic information to increase estimation accuracy (Berkow et al., 2009; Bhaskar et 

al., 2011, 2014). 

Most early attempts in this direction studied probe vehicle based traffic monitoring systems 

using wireless location technology (Ou et al., 2011; Smith et al., 2004). These approaches sampled 

a portion of vehicles as they traversed the network. Either wireless location technology or Global 

Position System (GPS) were used to record the specific locations (i.e., latitude/longitude) of these 

probe vehicles sampled along with their trips. Then, specific measurements of traffic flow (i.e., 

queue length and travel time) were estimated based on the sampled data (Ban et al., 2011; Cheng 

2013). Compared with fixed sensors, these approaches were able to provide more information of 

the traffic flow, which could improve our knowledge on traffic states and detect errors of fixed 

sensors (Li et al., 2014b). 

    Conventional probe vehicle based data have limited scope and time. Since the last decade, the 

CVs techniques have achieved significant advances, making it possible to access a great deal of 

more accurate, and multi-dimension information of traffic flow in real time (Massaro et al., 2017). 

The newly available high-resolution trajectory data of individual vehicles could increase our 

understanding of traffic flow states, which are critical to traffic control. In fact, the V2I based CVs 

data collection techniques have not been widely implemented. Some other technologies, especially 

the mobile sensing technique (Hoh et al., 2008; Sun and Ban, 2013), could also provide high 

precision trajectory data, which is similar to the location data that CVs could provide. Therefore, 

we include the studies based on both mobile sensing and CVs data in this section. 

We emphasize the difference between conventional probe vehicle based data and the CVs data 

(or mobile sensing data) by two aspects. First, the resolution levels of trajectories and the 

penetration-rates of sampling vehicles for probe vehicle based approaches are much lower than 

those for CVs based approaches. As a result, we usually need to divide the roads into grids and use 

the data collected by probe vehicles to estimate the average traffic flow states (e.g. average speed, 

average density) within each grid (He et al., 2017; Jiang et al., 2017a; Ran et al., 2016). In contrast, 

with the high-resolution data collected by CVs, we can characterize the trajectories of each sampled 

vehicles and may also derive the trajectories of other neighboring vehicles that are not sampled 

(Wan et al., 2016; Xie et al., 2018). 

Second, constrained by the resolution level and the amount of data, most probe vehicle based 

approaches are not suitable for real-time traffic control. Instead, such data were usually used to 

estimate freeway traffic flow states or vehicle travel times (Montanino and Punzo, 2015; Seo and 

Kusakabe, 2015; Van, 2010). In contrast, real time data collected by CVs and mobile sensing can 

be used to real-time traffic control. 
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Figure 2 An illustration of traffic information estimated based on V2X (or mobile sensing) data 

 

As shown in Figure 2 and inspired by Sun and Ban (2013) and Zheng and Liu (2017), there 

are basically four types of information which could be used to measure the performances of traffic 

signal control: flow volume, travel time, queue length, and shockwave boundary. Flow volume can 

be obtained by fixed sensors or estimated using CVs data. The rest three types can be accurately 

measured only if CVs are used. 

Conventionally, we often use two performance indices for traffic efficiency: point delay (that 

caused by traffic control devices such as traffic signals and STOP signs) and queueing length (HCM, 

2010). With the information feedback from CVs, we can accurately estimate not only the point delay 

of each vehicle but also the spatial evolution of the queues in real time (Ban et al., 2011). Many 

recent studies showed that segment delay (that combines the point delay and other delays incurred 

within the segment) could be a more appropriate performance index (Day et al., 2017; Gan et al., 

2017; Hunter et al., 2012; Li et al., 2015; Wang et al., 2016). In addition, CVs make it possible to 

obtain the accurate real-time estimation of the time-varying queue length and boundaries of 

shockwaves. Several different algorithms have also been proposed to accurately estimate travel time 

of vehicles, especially when only a limited number of vehicles are connected (Araghi et al., 2016; 

Ernst et al., 2014; Haghani et al., 2010; Sharifi et al., 2017; Zheng and Van Zuylen, 2013). 

Since appropriate traffic estimation is indispensable for traffic control. In this paper, we only 

review the studies related to the performance measurement of urban traffic that is crucial for traffic 

signal control using CAV or mobile sensing data. Table 1 (attached at the end of this paper) 

summarizes the existing studies in the literature, where most of the reviewed papers were published 

within the last decade. We can also find that most of the studies required trajectory data as the input, 
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while a few of them used reduced data (such as vehicles travel times) when considering privacy 

protection. Queue length was the most popular performance measure, and other measures included 

travel time (or delay), volume, density, trajectory, and shockwave boundary. In addition, most 

methods focused on real-time traffic state estimation. Many studies focused on a single intersection 

in under-saturated traffic, while a number of them could deal with multiple intersections in over-

saturated traffic. The outputs of these methods could be deterministic or probabilistic estimations. 

Based on the specific approaches in each study, we can roughly divide the existing methods into 

two categories: deterministic and stochastic approaches. In the following two subsections, we will 

discuss them respectively. 

 

2.2 Deterministic Approaches 

The deterministic approaches can be further divided into two kind of approaches: shockwave-

based and kinematic equation-based approaches. The shockwave-based approaches usually assume 

that vehicle trajectories could be considered as piecewise linear curves and then try to locate the 

critical patterns or points of these curves (e.g., boundaries of shockwave) to derive traffic flow 

measures. The kinematic equation-based approaches apply kinematic equations to describe the 

dynamics of individual vehicles and then derive traffic flow states. Such approaches often consider 

the acceleration and deceleration of vehicles, which may help derive more accurate traffic flow 

measures. 

Most shockwave-based approaches make additional assumptions on vehicle arrival patterns 

(e.g., uniform arrivals and Poisson arrivals) and transfer the traffic measurement estimation 

problems to certain optimization problems. The objectives of these optimization problems are 

usually to minimize the errors of estimated traffic measures (e.g., vehicle trajectories, travel time) 

with the observed measures. The empirical observations and the assumed traffic flow models are 

also considered as constraints in these optimization problems. 

Ban et al. (2009) proposed a two-step least square based shockwave-based approach to estimate 

the delay (travel time) patterns of signalized intersections. They assumed that the arrival pattern was 

uniform and the sample travel times of vehicles passing through an intersection were known from 

mobile sensors. They approximated the delays by piecewise linear curves based on the queue 

forming/discharging process and identified the signal cycles by detecting the delay changes. Within 

each cycle, the least square based linear fitting algorithm was used to estimate the delay pattern. 

Tested by both experimental and simulation data, the proposed method could be 10% more effective 

than a benchmark linear interpolation approach under varying penetration rates. Ban et al. (2009) 

were among the first to recognize the potential of mobile sensing data for estimation the 

performances of signalized intersections when such data reach meaningful penetration (e.g., 5-10% 

or more). Furthermore, instead of using traffic volume or density that was the primary input to fixed-

location-sensor based traffic estimation methods, only mobile data (such as sample vehicle travel 
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times) were used in the estimation method in Ban et al. (2009), which represents a class of "mobile-

sensing-data-based" traffic modeling methods. Such methods are featured by integration of traffic 

principles (such as traffic flow theories) and data analytics approaches (optimization or statistical 

learning approaches) (Hao et al., 2012; Hofleitner et al., 2012). 

Ban et al. (2011) presented another shockwave-based method to estimate the real-time queue 

length at signalized intersections using only sample travel times. The key idea of their method was 

also that the critical pattern changes of travel times were associated with the signal timing and queue 

length changes. The authors first assumed uniform arrivals with different rates in different cycles 

and the signal timing is known. The concept of Queue Rear No-delay Arrival Time (QRNAT) was 

then introduced. Based on the queue forming and discharging processes, the queuing delays could 

be estimated by detecting the discontinuity patterns of sample travel times. Queuing delays were 

used to estimate QRNATs, which were then used to estimate the maximum and minimum queue 

lengths of a cycle. Both field experiments and simulations showed promising results when the 

penetration rate is relatively large (e.g., more than 30%). Ramezani and Geroliminis (2015) 

presented an integrated method to estimate queue shockwave profiles at signalized intersections in 

urban networks. By assuming that the arrival distribution, the position, and the velocity of the 

sampled vehicles were known, they first classified the data into moving and stopped classes by a 

threshold-based classifier. Then, the stopped data were identified into different cycles based on a 

projection profile clustering algorithm, and the moving data were assigned to corresponding cycles 

by a linear boundary. Based on the Lighthill-Whitham-Richards (LWR) traffic flow model, they 

formulated the estimation of the queue front for each cycle as a constrained least squares problem. 

The back of the queue was identified by a piecewise linear function, whose number and attributes 

were determined by a curve-fitting nonlinear optimization method. This methodology was proved 

to be promising and robust according to the numerical results using both NGSIM field data and 

simulation data. 

Apart from using the critical pattern changes of travel times, detecting the critical points of 

shockwaves also received increasing attention. Cheng et al. (2012) proposed a shockwave-based 

method to estimate the cycle by cycle queue length at signalized intersections based on vehicle 

trajectory data. They first modeled the trajectories based on the LWR theory. Then, a threshold-

based critical point algorithm was developed to extract the critical points, which represented the 

changes in vehicle dynamics. The critical points were filtered for different purposes, i.e., queue 

estimation and signal timing estimation. They were then used to detect the signal timing plan that 

provided the basis for queue length estimation. The method was tested in both simulation and 

NGSIM data. The results showed that the mean absolute percentage errors of maximum queue 

length estimation under different scenarios were around 20%. 

The shockwave-based methods have solid theoretical foundations and are efficient considering 

the computational effort. However, there are two drawbacks of this type of methods. First, the 
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computation burden would be heavy if the physical models or optimization techniques are complex. 

To overcome this problem and make it feasible for real-time traffic control, many recent studies 

formulated the optimization-based models into relatively simpler problems such as least square 

optimization (Ban et al., 2009; Ramezani and Geroliminis, 2015), quadratic optimization problem 

with linear constraints (Hao et al., 2012), or dynamic programming (Sun and Ban, 2013), which 

could be solved easily by existing solvers. Second, the accuracy of the shockwave-based methods 

is relatively lower compared to the other methods. This is because detecting critical patterns and 

points will introduce errors, especially when real-world data are used. Furthermore, the shockwave-

based methods often ignore vehicles’ accelerations and decelerations, which may also influence the 

estimation performance. The kinematic equation-based method could help resolve this problem by 

focusing on the dynamic movement of an individual vehicle. 

Hao et al. (2015) presented a kinematic equation-based method to estimate the location of a 

vehicle in the queue based on the vehicle’s travel time traversing a signalized intersection. They 

assumed that the acceleration and deceleration rates are constant for one vehicle but could vary for 

different vehicles. Specific kinematic-based equations were developed for different cases of through 

vehicles and left-turning vehicles, with considerations of possible over-saturations. By focusing on 

the queue discharging process, the kinematic equations can help estimate the location of a sample 

vehicle in the queue and when it joined the queue. The method was tested using data from 

simulations, a field test, and NGSIM. The results showed a higher success rate compared to the 

optimization-based methods in Ban et al. (2011). One of the main reason for the improved 

performance is that the method in Hao et al. (2015) did not assume uniform arrivals. 

 

2.3 Stochastic Approaches 

The above deterministic methods simplify the real traffic as deterministic processes, which 

may introduce certain estimation errors. In contrast, some stochastic methods (i.e., stochastic 

learning-based methods) were then developed to address these issues. 

Stochastic approaches usually assume certain arrival distributions (e.g., uniform distribution, 

Poisson distribution), and builds specific stochastic models to describe the evolution process of the 

studied traffic flow variables for different traffic scenarios. The estimated performance measures 

(e.g., queue length, travel time) can then be derived as the expected values of the modeled random 

variables. Compared to deterministic methods, the main advantage of stochastic methods is that they 

can cope with incomplete/erroneous/sparse empirical data and oversimplified traffic flow models. 

This feature makes them more desirable in practical applications. Furthermore, to attain better 

performances, deterministic methods usually require relatively higher penetration of the available 

data, which may not be practical in many real-world applications. 

Such approaches could be divided into model-based methods and data-driven methods. So far, 
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most stochastic filtering and particle filter techniques are model-based and try to integrate traffic 

flow models with data; while the pure data-driven methods such as deep-learning based methods 

depend solely on data (Lv et al., 2015; Ma et al., 2015, 2017; Polson and Sokolov, 2017). 

Comert and Cetin (2009) proposed a sampling based model-based approach to estimate the 

average queue length at signalized intersections and its variance by using sample vehicles’ trajectory 

data. Comert (2013) further developed analytical models for the real-time estimation of queue 

lengths and analyzed the estimation errors under different penetration rates as well as volume-to-

capacity ratio levels. They assumed the arrivals follow Poisson distribution with a known arrival 

rate. In addition, the sample vehicle penetration rate and signal phase durations were also assumed 

to be known. Based on these primary parameters, they derived the probability distribution of queue 

locations and queue joining times of sample vehicles. For the cases without overflow queues, they 

generated fully analytical closed-form expressions for mean and variance of the queue length 

estimators. For overflow cases, approximation models were derived. Compared with the results 

from VISSIM microscopic simulations, the presented models could limit the estimation error within 

±4% at all volume-to-capacity ratios and sampled penetration rates.  

Comert’s probability analytical methods require queue locations and queue joining times as 

the input, which may not be available directly from CVs or other mobile data sources. Hao et al. 

(2014) presented a Bayesian network based method for the real-time queue length distribution 

estimation at signalized intersections, which only needs the travel times of sample vehicles as the 

input. They first defined the virtual trip lines (VTL; see Hoh et al. (2008) and Sun et al. (2013)) at 

an upstream location and a downstream location of the intersection, from which the sample travel 

times could be collected. Then they classified traffic conditions and sample scenarios into seven 

cases based on the sample travel times. For each case, a Bayesian network model was built by 

modifying a pre-defined three-layer Bayesian network in Hao et al. (2013) for vehicle index 

estimation. After computing the conditional probability of hidden variables using given sample 

travel times and vehicle indices, they finally calculated the queue length distributions for each case. 

Tested by both field experiments and simulation data, the proposed method was proven to be more 

accurate and robust compared to the linear fitting method and queue location method developed 

previously. 

In addition to queue length, traffic volume is another important measurement to signal control. 

Zheng and Liu (2017) proposed a maximum likelihood method to estimate traffic volume using the 

trajectory data of CVs. Modeling vehicle arrivals as time-dependent Poisson process (also used in 

Hao et al. (2013)) and observing trajectories from CVs approaching to the intersection, they 

formulated the volume estimation problem as a maximum likelihood problem and solved it by an 

expectation maximization (EM) procedure. Tested under real-world data, the proposed method 

could limit the estimation errors within 9-12% for intervals of 30 min and 1 hour, even under a low 

CV penetration rate (10%). 
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Other stochastic filtering techniques such as Kalman filter (Guo et al., 2014; Tampère and 

Immers, 2007), particle filter (Gustafsson et al., 2002; Marinica et al., 2013), and other machine 

learning based approaches (Lv et al., 2015; Rompis et al., 2017) have been applied to help estimate 

queue lengths, travel times, and volumes under disturbances. 

As the quantity of available data and the computation speed receive increased attention, data-

driven machine learning based methods have been receiving increasing attention recently. These 

methods could be regarded as a special type of stochastic approaches, since almost all the data-

driven machine learning methods would use the maximum likelihood or Bayesian approach to 

estimate the hidden variables and thus minimize/maximize the expectations. 

There are however some differences between the newly emerged data-driven machine learning 

methods and conventional stochastic methods. First, the former focuses more on prediction accuracy 

even at the expense of interpretability, while the latter cares more about the statistical inference and 

interpretability of the model and results. Second, data-driven machine learning methods do not rely 

on explicit models but usually require much more data than conventional methods. Third, the former 

might outperform the latter given a special case with sufficient data. However, the computation 

burden of the former may be high; while the fault tolerance and transferability would be lower than 

those of the latter. There are certainly tradeoffs between these two types of stochastic approaches, 

which should be carefully evaluated and selected when specific applications are concerned. 

For example, Lv et al. (2015) proposed a deep-learning based algorithm to predict the traffic 

flow. They used the stacked autoencoder to learn the latent traffic flow features, which could 

discover the nonlinear spatial and temporal correlations from the traffic data. The greedy layerwise 

unsupervised learning algorithm was used to train the deep network. After fine-tuning and 

parameters iteration, the algorithm was tested on the Caltrans Performance Measurement System 

(PeMS) database. The results showed that this deep-learning based method could outperform other 

competing algorithms like support vector machine (SVM) and radial basis function neural network 

model. 

 

2.4 Summary 

Deterministic approaches differ from stochastic approaches in the following aspects. First, 

deterministic approaches can only generate deterministic outputs, while stochastic approaches may 

produce distributions of traffic flow measures that contain richer information. Second, stochastic 

approaches are more robust and less sensitive to data errors and usually perform better under lower 

penetrations of CVs. Third, stochastic approaches usually require more computation times, while 

deterministic approaches are simpler and more efficient in computation. Researchers may choose 

either type of approaches according to specific applications and other practical requirements. 

According to what we have surveyed, we summarize several practical considerations of the 
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CAVs (or mobile sensing) based traffic state estimation techniques for traffic signal control. First, 

traffic states of over-saturated traffic and multiple intersections (even networks) should be further 

studied. The over-saturated traffic condition is an important part of the real traffic, while defining 

and estimating the network traffic performance is crucial for network-wide signal optimization and 

coordination. Second, the tradeoff between accuracy and efficiency should be well considered when 

designing the traffic state estimation algorithms, especially when stochastic learning methods are 

applied. Third, apart from the conventional measures discussed above, the estimation and prediction 

of vehicles trajectories are receiving more attention due to the great potential of improving the traffic 

signal control algorithms based on trajectories (Cai et al., 2014; Rompis et al., 2017). Research in 

this direction is expected to gain more momentum in the near future, especially when associated 

issues such as privacy protection can be properly addressed.  

Last but not least, most of the studies used vehicle trajectory data directly, which however may 

violate the privacy of individual vehicles/users (Hoh et al., 2008, 2012; Sun et al., 2013). Privacy is 

an important aspect of cybersecurity when emerging technologies are concerned in transportation, 

which is closely related to the collection and use of the data from such technologies (e.g., CAVs and 

mobile sensing) for traffic state estimation and related purposes. Privacy research in transportation 

and in particular for urban traffic control is still in its early stage; many transportation researchers 

still view privacy protection as a limiting factor for them to acquire/access data. In this new era of 

technologies and big data, however, privacy needs to be considered and addressed seriously for at 

least two reasons. One is that if we do not, future regulations may be in place to restrict what types 

of data we could collect and use from these technologies. The recent Facebook scandal (Rosenberg 

et al., 2018) has clearly shown this. More importantly, considering privacy in transportation 

modeling can indeed provide new opportunities to design smarter data collection and modeling 

schemes by collecting only the most relevant data (and thus not only to protect privacy but also to 

reduce data storage and transmission) and developing innovative modeling techniques to utilize the 

collected data to satisfy the data needs of various application. Recently developed concepts of virtual 

trip lines (VTL; see Hoh et al. (2008)) and VTL-zones (Sun et al., 2013), and methods such as 

privacy by design to “co-design” privacy techniques and modeling methods (Cavoukian, 2009; Ban 

and Gruteser, 2010), are some examples on how privacy may be simultaneously considered when 

modeling methods are developed. We expect privacy research will receive more attention in the near 

future especially for urban traffic control applications. 

 

3. Advanced Traffic Control under CAVs 

CAV-based traffic control can be broadly categorized as single intersection control, multi-

intersection coordinated control of a traffic corridor, and network traffic control; see Figure. 3. In 

this paper, we first discuss single intersection control since it is the basic unit of corridors and 

networks. Based on single intersection control, we will discuss CAV-based signal coordination on 
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traffic corridors. Research on network-wide CAV signal control is relatively sparse in the current 

literature, for which we will provide some discussions in Section 4. 

 

Driver guidance

Connected vehicles (CV)

Autonomous vehicles (AV)

Vehicle control

Signal control

Mixed control Coordinated control 

Network control 

Non-CAVs

 

Figure 3 Traffic control of urban intersections 

 

For CAV-based single intersection traffic control, there are generally three types of control 

methods, depending on the availability of vehicle automation and/or V2X: 

 Based on signal and vehicle data, the driver guidance control system can provide 

instructions to drivers on how to properly operate the vehicles to achieve certain 

objectives (e.g., minimizing fuel consumption, reducing travel times, etc.). Under the 

automated vehicle (AV) environment, these driving operations may be executed 

automatically, which can help achieve more improved control performances. 

 Under the CVs environment, the signal control system can optimize signal timing and 

phases based on CVs data to improve the performance of intersection traffic. Typically, 

actuated signal control, platoon-based signal control, and planning-based signal control 

are included in this category. Actuated signal control can adjust signal timing and phases 

based on current traffic states and does not apply prediction, while platoon-based and 

planning-based methods will predict future traffic flow states to generate optimal signal 

timing plans. Platoon-based control groups the incoming vehicles into platoons, while 

planning-based methods usually treat each vehicle individually. 

 Under the CAVs environment, the signal-vehicle coupled control (SVCC) system can 

optimize the vehicle operations and signal timing/phases simultaneously to achieve better 

traffic control performances.  
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Generally, as pointed out in Li et al. (2014c), we can formulate a general arterial traffic control 

problem as an optimization problem, in which the state variables are denoted as 𝑥(𝑘) and the 

environment inputs are denoted as 𝑑(𝑘). The objective is to optimize a certain performance index 

𝐽 over a finite time horizon [0, 𝐾]. J is usually mobility-based or sustainability-based objectives or 

the combination of the two. The decision variables are a sequence of control inputs 

𝑢(0), 𝑢(1), … 𝑢(𝐾) . Constraints include initial conditions, traffic flow dynamics, and vehicle 

dynamics. The state variables, environment inputs, control inputs, and constraints would be different 

for different control methods, for which details are provided in Table 2 (attached at the end of this 

paper). This optimization problem is denoted as A1 in this paper, which can be conceptually 

expressed as follows. 

 

Problem A1: 

𝐾

min 𝐽 = 𝑓[𝑥(𝐾)] + ∑ 𝑔[𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘)] (1) 
𝑢(𝑘)

𝑘=1

subject to 

(i) State equation 

𝑥(𝑘 + 1) = 𝑥(𝑘) + ℎ[𝑢(𝑘), 𝑑(𝑘)], 𝑘 = 1, … 𝐾 − 1 (2) 

(ii) Initial and end state conditions 

𝑥(1) = 𝑥0, 𝑥(𝐾) = 𝑥𝐾 (3) 

(iii) Constraints of state, environment and input variables 

𝜑[𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘)]𝜖𝛺, 𝑘 = 1, … 𝐾 (4) 

where 𝑓[. ], 𝑔[. ], ℎ[, ] and 𝜑[. ] are certain functions, 𝛺is a set of values.  

 

We should note here that the general optimization model A1 likely involves binary or integer 

variables (e.g., to indicate whether the current phase is red or green; see Li and Ban (2018) and the 

dimension of the problem can be quite large especially when we consider individual vehicles' 

performances such as emissions or fuel consumption. Certain approximation or reformulation 

techniques (such as dynamic programming) or distributed methods were often applied to reach a 

satisfactory solution of A1 within a limited computational budget; see Feng et al. (2015). As shown 

in Table 2, this general optimization problem A1 can be specified to three types of control methods. 

In the follows, we will discuss them in detail. 

 

3.1 Advanced Driver Guidance Based on CAVs 

For this type of control methods, the state variables become the vehicle speeds and positions, 

which follow the equations of vehicle dynamics or traffic flow models (such as car-following 

models). The control inputs are the vehicle accelerations and turn angles. The environment inputs 
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become the signal timing and phases. All the variables are constrained by certain conditions, e.g., 

the physical limits of accelerations, speeds, and turn angles. The optimal solutions are speed 

guidances dedicated for certain objectives, such as to avoid being caught by red lights (Li et al., 

2012) or save fuel by driving in economic modes (Katsaros et al., 2011; Schuricht et al., 2011; Tang 

et al., 2018; Ubiergo and Jin, 2016; Wu et al., 2010). These driving strategies may also be executed 

by automated vehicles, which can reduce the uncertainty of compliance of human drivers and help 

improve the control performance. 

Reducing fuel consumption is one of the most important objectives of the driver guidance 

techniques, which is also called Eco-driving guidance and is believed to have the potential of saving 

fuels from 5% to 15% (Van et al., 2004). Different Eco-driving guidance algorithms may concentrate 

on different considerations: for examples, driver behaviors like lane changing and vehicle 

platooning, road structures like single/multiple intersections, traffic states like surrounding traffic 

and mixed traffic. Rakha and Kamalanathsharma (2011) proposed a rule-based Eco-driving strategy 

at signalized intersections based on the V2I communication. They used a real-world data based 

statistical emission model that consists of linear, quadratic and cubic combinations of speed and 

acceleration levels to describe fuel consumption. Integrated with the vehicle dynamics model and 

the information of signal phases and timings, the rule-based Eco-driving model was then designed 

to optimize fuel consumption by providing speed profiles. The objective 𝐽  is the total fuel 

consumption, which is calculated by the vehicle speed (state variable 𝑥) and acceleration (control 

variable 𝑢). The information of signal phases and timings serve as the environment inputs 𝑑. The 

vehicle speed follows the vehicle dynamics and also the constraints of the vehicle’s physical 

limitations. Together, an approximate minimization of the objective function was achieved by the 

rule-based controller. While Rakha and Kamalanathsharma’s work focused on a single intersection, 

Boriboonsomsin et al. (2012) extended the Eco-routing guidance to the entire trips of a vehicle, 

which is also known as Eco-routing. They used a dynamic roadway network database to integrate 

and store historical and real-time traffic information. In addition, they used a hybrid method that 

combines the microscopic energy model with a large vehicle activity database to create the 

relationships between link-based energy factors and the link-based explanatory variables. Based on 

such relationship, they estimated the energy/emission operational parameter set by a multivariate 

regression method. The Dijkstra algorithm was then used to build the routing engine to search the 

shortest paths based on different objectives. The evaluation results showed that the eco-routes could 

generate about 13% fuel savings while the travel time might slightly increase. 

Apart from fuel consumption, other objectives like those related to mobility may also be 

considered when designing driver guidance algorithms. For this, integrating multiple objectives in 

one algorithm is a promising direction. Katsaros et al. (2011) proposed a rule-based green light 

optimized speed advisory (GLOSA) algorithm to reduce fuel consumption and meanwhile improve 

traffic efficiency. The key idea of the method is to reduce the stop time at intersections. Their 

algorithm firstly calculated the distance and travel time to the front traffic signal, then calculated 
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the target speed based on the rules that were predefined considering different signal phases at the 

estimated arrival time. The advisory speeds were then presented to drivers via V2X. Assuming that 

drivers would follow the advisory speeds, they built an integrated cooperative ITS simulation 

platform and tested their algorithm under different CAVs penetration rates. The results showed that 

the proposed method could improve fuel consumption by up to 7% and reduce stop time up to 80% 

at intersections. 

Since drivers usually cannot perfectly follow the advisory speeds in reality, the effectiveness 

of the proposed methods needs to be proven in real traffic scenarios. To the best of our knowledge, 

some research groups and government agencies have conducted field experiments to evaluate the 

driver guidance systems. For example, the GLOSA system has been tested by field experiments in 

the city of Ingolstadt, Germany (Bodenheimer et al., 2014). The fuel-saving oriented driver guidance 

platform “Glidepath Prototype system” has also been developed and tested through extensive field 

experiments, of which the results showed a 17% fuel improvement on average (Altan et al., 2017). 

However, it should be pointed out that many existing studies about driver guidance systems were 

only tested in simulations. More efforts on real-world applications and testing of such systems need 

to be done in the future. In addition, the vehicle dynamics models and traffic models used in those 

methods were usually oversimplified, making the results less convincing. We expect more research 

studies can focus on this direction in the future to provide more empirical testing/validation results. 

 

3.2 Advanced Traffic Signal Control with CAVs 

For advanced traffic signal control with CAVs, the state variables of the general optimization 

problem A1 become the queue length, travel time, or other performance measures, which should 

also follow the state equations like queueing models, LWR models, and car-following models. The 

control variables are the signal timing and phases. The environment inputs become the arrival 

vehicles for actuated and planning-based control, and arrival platoons for platoon-based control. 

These variables should also follow proper constraints such as the cycle length, and maximum and 

minimum green times. The CAV-based traffic signal control methods are usually designed first for 

isolated intersections, and then extended to corridors, and even networks, along with the 

modification of the objective function to consider the coordination of all the intersections. 

There are two methods to derive the objective functions of corridors and networks. One is the 

centralized methods, which formulate the optimization problem by summing all the objectives of 

the intersections or defining a common objective such as throughput. The other one is the distributed 

methods, which usually assume the traffic information of neighboring intersections is known as an 

environment input. The distributed methods can lead to reduced computation burden, which, 

however, may not help achieve the global optimization results. 

 According to the control schemes, we can further divide advanced CAV-based traffic signal 
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control into three types: actuated traffic signal enhanced using CAVs data, platoon-based traffic 

signal control based on CAVs coordination, planning-based traffic signal control based on CAVs 

coordination (including transit priority traffic signal control enhanced by CAVs coordination). The 

resulting Problem A1 might be slightly different for these different control types. For example, the 

actuated traffic control may only extend or reduce the green time according to the estimated current 

volume, while the planning based method would optimize both signal timing and phases in a 

particular forward time horizon. 

The key difference among these three control methods is in what detail they predict the future 

traffic states. Enhanced by CAVs data, actuated (adaptive) traffic signal control would estimate the 

current traffic states (e.g., queue length) and predict some relatively rough and aggregated traffic 

measures (e.g., average volume) in the future, based on which the control decisions (e.g., extend or 

terminate certain phases) could be generated. The platoon-based signal control would simplify the 

problem by categorizing individual vehicles to platoons and predict their arrivals/trajectories, which 

could make it easier to adjust the timing plan. The planning-based signal control would take the 

detailed trajectories of individual vehicles into account and optimize the signal timing/phases in a 

forward time horizon by adopting more accurate and complex models. The traffic flow dynamic 

models and optimal control strategies usually become more exquisite when the control methods 

come from actuated to planning-based, while on the other hand, the robustness and flexibility would 

also decrease. 

 

3.2.1 Actuated Traffic Signal Control Enhanced by CAVs Data 

Actuated signal control can dynamically adjust the timing parameters to respond to real-time 

traffic arrival changes. Since many existing studies considered prediction of traffic flow based on 

CAVs data, this kind of control is also called adaptive traffic signal control in the literature. This 

generally results in more efficient utilization of intersection capacity than fixed-time signal control 

in which signal phases and cycle lengths are pre-selected based on historical traffic patterns (Roess 

et al., 2011; Zhang and Wang, 2011). 

Conventional actuated traffic signal control systems collect traffic information via inductive 

loop detectors that are usually installed tens of meters upstream to the stop lines. The obtained 

information is inaccurate and limited spatially. As a result, certain relatively rough models have 

been developed to describe traffic flow states which often fail to well present the variability in traffic 

demand and vehicular inter-arrival times (Yin et al., 2007; Yun and Park, 2012; Zheng et al., 2010). 

CAVs provides a remedy for such problems (Day and Bullock, 2016; Goodall et al., 2013; 

Gradinescu et al., 2007; Kari et al., 2014; Li et al., 2014c; Wu et al., 2015; Younes and Boukerche, 

2016). Based on the accurate position information of the arriving vehicles, we can either 

extend/shorten the current phase or add an extra phase to make on-time changes. 
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For example, Gradinescu et al. (2007) proposed an actuated traffic signal control system based 

on CVs. The information of vehicles within a few miles range around an intersection were collected 

by the V2I and infrastructure to infrastructure (I2I) communication techniques. They first used these 

data to estimate the demand volume of each approach per cycle, and then calculated the optimum 

cycle length using the Webster’s formula (Chaudhary et al., 2002). The green time was allocated to 

produce equal degrees of saturation on each link. The preliminary signal plan for the next cycle was 

generated during the current cycle and adjusted to meet practical limitations like the minimum and 

maximum cycle lengths and pedestrian minimum green times. They tested the system in simulation 

based on two real-world major intersections. The experiment results showed that the system could 

reduce traffic delay and fuel consumption compared with traditional pre-timed traffic signals. In this 

work, the estimated demand volume is the state variable 𝑥 and the information of vehicles around 

the intersection serve as the environment inputs 𝑑. The objective function 𝐽 is the equality of the 

degrees of saturation on each link, which is maximized by generating optimum cycle length and 

allocating green times proportionally. 

The CAVs based actuated traffic signal control is essentially a passive method since it adjusts 

the signal plan according to the estimated traffic states without detailed predictions of future traffic 

conditions. From the optimal control point of view, the strategies generated by the actuated control 

may not be optimal in long-term since future traffic conditions are not considered. Compared with 

other methods, the main advantage of actuated control is that its computation burden is relatively 

light due to the smaller number of control variables as well as the simpler traffic models. The fixed 

sensor based actuated signal control has been widely used in real-world traffic management. This 

makes it more practical to implement the CAV-based actuated signal control in practice compared 

to other advanced control methods. 

It should also be pointed out that most existing studies in this direction only considered isolated 

intersections. Although coordinated actuated signal control systems using information collected 

from fixed sensors once received noticeably attentions (Yin et al., 2007; Yun and Park, 2012), their 

V2X-based modifications have not been well studied. We expect more research efforts may be 

carried out in this direction when CAVs become more pervasive in the near future. 

 

3.2.2 Platoon-based Traffic Signal Control Based on CAVs Coordination 

Actuated traffic control relies more on prevailing real-time traffic information and does not 

require too much future traffic conditions (i.e., traffic prediction). In contrast, traffic prediction is 

essential to platoon-based traffic signal control (and also planning-based control). By identifying 

the platoons (or categorizing individual vehicles into pseudo platoons) and predicting their arrival 

time in advance, the platoon-based signal control aims to schedule the signal timing plans to allow 

the platoons to pass the intersections without severe interruptions, which can increase the overall 

traffic efficiency. Although the idea of platoon-based traffic signal control has been proposed for 
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several decades (Mirchandani and Head, 2001), it became realistic only after V2X technique was 

introduced (He et al., 2012; Liang et al., 2018; Lioris et al., 2017; Xie et al., 2012). This is because 

V2X makes it possible to properly identify platoons so that platoon-based optimal signal timing 

plans can be generated accordingly.  

Pandit et al. (2013) proposed a platoon-based “oldest arrival first” traffic signal control method 

to reduce delays at a single intersection. They reduced the traffic signal control problem to a job 

scheduling problem by enforcing that all jobs require equal processing time. The conflicts between 

jobs and the objective of minimizing job latency values were modeled as a two-competitive 

algorithm. After collecting real-time speed and position information of sample vehicles through 

vehicular ad-hoc networks (VANETs), they grouped the vehicular traffic into approximately equal-

sized platoons by searching all possible platoon configurations to minimize the difference between 

the maximum and minimum required processing time. The grouped platoons could be scheduled by 

solving the reduced job scheduling problem. The algorithm was tested under different approach 

arrival rates and penetration rates. Compared with traditional Webster’s method and vehicle-

actuated control method, the proposed method could significantly reduce delays when the traffic 

inflow rates are not large. The experimental results also showed that the proposed method did not 

perform well under low penetration rates, since the arrival rate cannot be accurately estimated under 

low penetration conditions. In this work, the speed and position information of sample vehicles 

serve as the environment input 𝑑, which are further processed to be the arriving platoons. The state 

variable 𝑥 is the travel time of the vehicle platoons and the control variable 𝑢 is the signal timing 

and phases. The objective 𝐽 is the total delay at the intersection experienced by all vehicles, which 

is minimized by adopting the optimal control variables generated by the “oldest arrival first” method. 

While Pandit et al. (2013) focused on a single intersection, He et al. (2012) presented a platoon-

based multi-modal dynamical progression model to control arterial traffic signals. Sample vehicle 

data were first used to identify existing queues and platoons approaching each intersection by a 

headway-based recognition algorithm. Then, they formulated the traffic signal control problem into 

a mixed-integer linear program (MILP) based on the calculated platoon information, current signal 

status, and priority requests of special vehicles. By using platoon data instead of individual vehicle 

data, they reduced the number of integer variables of the MILP, making it relatively easier to solve. 

Their model can deal with both under-saturated and over-saturated traffic conditions. The proposed 

method was tested in VISSIM simulations. Results showed that, under a 40% penetration rate, the 

method could reduce the overall average delay of two traffic modes (i.e. automobiles and transit 

buses) by 8% compared to the coordinated actuated signal control method optimized by SYNCHRO. 

Xie et al. (2011) proposed a platoon-based self-scheduling algorithm for real-time traffic 

network signal control. First, the sensed traffic data were used to aggregate incoming vehicles into 

critical platoons and anticipated queues based on the non-uniformly distributed nature of traffic 

flows. Each intersection was controlled by a self-interested agent with the knowledge of platoon 
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information of neighboring intersections. Based on the information of currently anticipated queues 

and incoming platoons from other intersections, the self-scheduling algorithm generated two 

possible actions (i.e., to extend or terminate the current phase) within each decision rolling horizon, 

aiming to keep vehicles moving rather than simply clear the queues. The proposed method was 

tested on two traffic networks with dynamic vehicle flows. Compared to the pre-timed method, 

queue-clearing based adaptive method, and Webster-based method, the proposed method performed 

the best considering the control performance of bottleneck intersections and the coordination 

performance of vehicle flows. 

Compared with actuated signal control, platoon-based signal control using CAV data could 

achieve better performance since it could forecast some mid-level traffic flow states (i.e., the volume 

and arrival time of platoons) and make the best control decisions accordingly. Meanwhile, 

aggregating vehicles into platoons could reduce the computation burden, making it more practical 

to be implemented in the real world. However, the method may only generate sub-optimal strategies 

due to this simplification. Besides, the performance of platoon identification algorithms may 

significantly affect the performance of the method. How to define, model, and aggregate platoons 

from real traffic flows needs further investigations. 

 

3.2.3 Planning-based Traffic Signal Control Based on CAVs Coordination 

Platoon-based methods categorize the incoming vehicles as platoons and ignore the inner 

dynamics and disturbances among vehicles in the same platoon. On the contrary, planning-based 

methods treat all vehicles at the same level, which can better describe the real traffic condition. 

Besides, platoon-based methods usually directly assume known arrival distributions (e.g., Poisson 

or uniform arrivals), or estimate the arrival time of the platoons and assume uniform arrivals within 

each platoon. Planning-based methods often estimate the actual arrival time of every vehicle and 

predict traffic conditions in a forward time horizon. 

Planning-based control has been widely studied by many researchers (Goodall et al., 2013; Lee 

et al., 2013). The optimization model of planning-based control is usually an integer nonlinear 

programing problem and hard to solve especially when individual vehicles' trajectories are 

considered (Li and Ban, 2018). Certain approximation and reformulation methods are usually 

applied. Dynamic programming (DP) is one of the most commonly used techniques to reformulate 

and solve such control problems (Chen and Sun, 2016; Feng et al., 2015; Sen and Head, 1997). For 

example, Feng et al. (2015) proposed an optimization-based real-time traffic signal control method 

in a CV environment. Assuming known vehicles’ speeds and positions, they first separated the 

upstream roads into three regions (i.e. free-flow, slow-down, and queuing) and estimated the status 

of unequipped vehicles. Based on such information, they constructed a complete predicted arrival 

table for each phase for a certain (future) time horizon. Then they built a two-level optimization 

model. The upper level generates the minimum and maximum allowable barrier group lengths by 
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DP, and the lower level is formulated as a utility minimization problem with two alternative 

objectives (i.e., minimizing total vehicle delay and queue length respectively). The outputs of the 

model are the optimal signal timing and phases. They tested the method by modeling a real-world 

intersection in VISSIM. The results showed that the method can reduce the total delay by 16.33% 

under high penetration rate compared to the fully actuated control method, which however generated 

the same delay under low penetration rates. In order to make the DP method more practical and 

efficient, Li and Ban (2017) proposed a DP based method to minimize both fuel consumption and 

travel time considering a fixed cycle length. They first formulated the signal control problem as a 

mixed integer nonlinear programing problem, and then reformulated the problem as a DP model by 

dividing the timing decisions into stages (one stage for a phase) and approximating the fuel 

consumption and travel time of a stage as functions of the state and decision variables of that stage. 

By adding the end-stage cost and a branch and bound regulator to the DP formulation, the resulting 

optimal solution can be guaranteed to lead to the fixed cycle length. Simulation results showed that 

the proposed method could generate optimal solutions that lead to the fixed cycle length. The control 

performance was improved compared to the actuated control methods and was similar to the results 

by a global mixed integer nonlinear programming (MINLP) solver in MATLAB. In this work, the 

objective 𝐽 is the weighted summation of total system travel times and fuel consumption. The state 

variables 𝑥 are the vehicle trajectories which are modeled by the intelligent driver model (IDM). 

The signal timing and phases serve as the control variables 𝑢. The constraints include man/min 

green time, fixed cycle length, and the physical limitations of vehicles. The objective function is 

minimized by DP, which also generates the optimal control variable in real-time. 

Compared to other control methods, planning-based methods are harder to be implemented for 

real-time arterial or network control due to the high complexity of the optimization models. Another 

reason is that even with CVs, we still need to predict vehicles volumes, delays, speeds, or queue 

lengths in order to optimize signal timing. Such predictions are mutually dependent on signal timing, 

making the problem a complex, integrated optimization problem. This is particularly true for 

corridor level or network level control. Beak et al. (2017) proposed a two-level optimization method 

for corridor level signal control. At the intersection level, they used DP to allocate the optimal green 

time to each signal phase by considering the coordination constraints. At the corridor level, they 

formulated a mixed integer linear program based on the information of individual intersections to 

generate the optimal offsets, which were then sent to the intersection level as the coordination 

constraints. Simulation results showed that the proposed algorithm can reduce the average delay as 

well as the number of stops for a corridor compared to conventional actuated-coordinated signal 

control methods. Similarly, Li and Ban (2019) formulated the corridor signal control problem as a 

centralized MINLP considering the fixed cycle length constraint to reduce both fuel consumptions 

and travel times. The MINLP was decentralized to a two-level model: At the intersection level, the 

phase durations were optimized by a DP algorithm initially proposed by Li and Ban (2018). At the 

corridor level, the optimal offsets were updated by the MINLP using the optimal phases generated 
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at the first level. They tested six cases considering different demands, and the simulation results 

showed that the performance of both major and minor streets improved under high traffic volumes. 

The above methods are centralized approaches, which are not efficient when solving large-

scale problems. In order to reduce the complexity and computation burden of network-wide 

optimization problems, the distributed control has been receiving more attention recently. Islam and 

Hajbabaie (2017) presented a distributed coordinated signal control method in the CV environment. 

They reformulated the optimization problem from a centralized architecture to a decentralized form, 

which can reduce the computation complexity and make it possible for real-time applications. The 

key idea of the method is to maximize the intersection throughput while penalizing for queue lengths. 

Given the information of neighboring intersections, the distributed algorithm can coordinate with 

each other to avoid finding local optimal solutions. Simulation results showed that the method could 

increase the throughput by 1%-5% compared to the actuated coordinated signal control method in 

VISTRO, and reduce travel time by 17%-48%. Another decentralized signal control technique is 

based on the backpressure concept, which was initially applied to communication and power 

networks and was recently applied to traffic signal control (Gregoire et al., 2014, 2015; Le et al., 

2015; Wongpiromsarn et al., 2012). The backpressure method is completely distributed over 

intersections such that the complexity of the problem could be dramatically reduced. For example, 

Wongpiromsarn et al. (2012) proposed a distributed traffic signal control algorithm based on 

backpressure to maximum the network throughput. They defined “pressure” as the current flow rate 

of the traffic movement weighted by the difference between the queue lengths on the two 

corresponding movements. After calculating the pressure of each phase, the algorithm selected the 

phase with the highest pressure for the current intersection. Each intersection only requires the 

information of its own and adjacent intersections, and no global view is needed. They also proved 

mathematically that the method could help achieve the maximum network throughput. Simulation 

results showed that this method performed significantly better than traditional adaptive signal 

control methods.  

Planning-based signal control could predict future traffic states and find the optimal solution 

within certain forward time horizon, which makes it more desirable. However, the computation cost 

might be high due to the resulting complex optimization problem, especially when dealing with 

large-scale networks or considering different movements of vehicles. In addition, the prediction 

horizon needs to be carefully selected. The longer the prediction horizon is, the more future 

information it could utilize, while the computation burden and the prediction errors may also 

increase. On the contrast, shorter prediction horizon could make the computation faster but may 

decrease the control performance due to the lack of future traffic information. 

 

3.2.4 Transit Priority Control Based on CAVs 

Transit priority signal control is a special case of planning-based signal control, which is also 
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one of the most important topics of multi-modal traffic control. We thus review it separately in this 

subsection. Transit priority control aims to reduce the delay of transit vehicles by adjusting the signal 

timing and phases. Based on the priority requesting time and current signal phase, there are generally 

four strategies that conventional transit priority control can adopt: 1) extend the green time if the 

current phase is green; 2) add an extra green phase if the current phase is red; 3) change back to the 

green phase if the current phase is yellow; and 4) run the green phase earlier if the current phase is 

red (Diakaki et al., 2014). However, conventional methods usually break traffic progressions and 

cause a significant delay of the competing traffic flow. Some advanced transit priority control 

methods have been invented to overcome these shortcomings (Balke et al., 2000; Ekeila et al., 2009; 

Liao and Davis, 2007). For example, Balke et al. (2000) proposed and tested an intelligent bus 

priority concept at signalized intersections without disrupting normal traffic progressions. They 

firstly estimated the arrival time of the bus at the bus stop and at intersection stop line to identify 

whether the bus is on schedule, which was used to determine the priority. The best priority strategy 

was then selected after comparing the performances of different strategies (phase extension, phase 

insertion, and early return) based on the arrival time. The method then adjusted the sequences and 

durations of the traffic signal phases so that the bus could pass the intersection at the green time.  

Among these advanced transit priority control methods, more and more recent studies utilized 

CAVs to build efficient algorithms (Hu et al., 2015; Wu et al., 2016, 2018; Yang et al., 2018; Zeng 

et al., 2015). CAVs could not only provide the control system with more accurate and richer data, 

but also make it possible for the drivers to be guided by the optimal solution to reduce the overall 

delay. For example, Hu et al. (2016) proposed a person-delay-based optimization method for 

intelligent transit signal priority (TSP) control, which can resolve multiple conflicting TSP requests 

at a single intersection. When multiple buses were detected and conflicting requests were generated 

based on the predicted arrival times, the TSP timing plan optimization problem was formulated as 

a binary mixed integer linear program with the objective to minimize per-person delays and solved 

by a standard branch-and-bound routine. Meanwhile, the recommended speed can be generated and 

provided to all the TSP buses. The method was evaluated by both analytical and microscopic 

simulations. The results showed that the proposed TSP control method could reduce the average bus 

delay up to 48% compared with the conventional first-come-first-serve TSP methods. 

How to build an effective transit priority control system without causing noticeable delays on 

the whole system is an important problem to be further studied. There are several promising 

directions to achieve this goal. The first one is to reduce the delay caused by conflicting priority 

requests. Most current studies adopted the first-come-first-serve strategy to resolve conflicting 

requests, which has been found to possibly increase the total system delay (Zlatkovic et al., 2012). 

New techniques such as simultaneous TSP accommodation have been proposed (He et al., 2014; Hu 

et al., 2016). However, more efforts need to be conducted, e.g., the selection of the accommodation 

weights and the sensitivity analysis of the uncertainties. The second one is to improve the efficiency 

of transit priority control by reducing the delay of the competing traffic. For example, in order to 
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reduce the negative impact of the priority signal algorithm on passenger cars, Zamanipour et al. 

(2016) proposed an analytical model and the corresponding multi-modal intelligent traffic signal 

system (MMITSS). Simulations based on real-world traffic networks showed that MMITSS could 

provide optimal signal schedules that minimize the total weighted delays. In addition, the idea of 

SVCC (see the next section) has been implemented in transit priority control and has been shown 

as a promising solution. This kind of control system could guide the bus drivers to follow certain 

velocity profiles as well as adjust the signal timings and phases, by which the control errors and 

system delays could be significantly reduced (Hu et al., 2016; Seredynski et al., 2015; Seredynski 

and Khadraoui, 2014). 

 

3.3 Signal Vehicle Coupled Control (SVCC) Based on CAVs 

Traffic signals and vehicles were traditionally studied separately. In traditional traffic signal 

control systems, the characteristics of individual vehicles were almost never considered. However, 

signal control and vehicle control are mutually dependent in reality: signal timing influences the 

movements of individual vehicles and thus the performances (such as emissions and fuel 

consumption) of the vehicles, while at the same time individual vehicle performances are the critical 

input to traffic control methods on how to best adjust signal timing. 

In the past, however, the information exchange between vehicles and signals were quite limited: 

signals detect the arrivals of vehicles (often as the aggregated number of vehicles in a certain time 

window) and adjust signal timing accordingly (and often reactively), while vehicles/drivers see the 

signal timing and adjust driving accordingly when they are close to the intersection. This makes it 

impossible to implement coupled signal and vehicle control. 

With CAVs, information between signals and (individual) vehicles can be exchanged in real 

time, which should be leveraged to further improve the traffic control performance, leading to the 

SVCC (Guler et al., 2014; Sun et al., 2017; Xu et al., 2017; Yang et al., 2016; Yu et al., 2018). For 

this problem, the state variables of the general problem A1 become the queue length, travel time, 

vehicle states (such as throttle and exhaust system states, and battery state of charge if electric 

vehicles are considered), which should follow proper state equations such as traffic flow models 

and vehicle dynamic equations. The control inputs are the signal timing and phases, vehicles 

operations (such as turn angle, gas pedal, etc.). These variables should be constrained by proper 

constraints related to both signals (such as minimum/maximum green times, cycle lengths, etc.) and 

traffic flow (such as car following models). In general, the optimization model for SVCC is more 

complex, involving both linear and nonlinear states, discrete and continuous control inputs, and 

other complex constraints, making the problem much more challenging to solve. 

Research on SVCC has just gained attentions. For example, Li et al. (2014a) developed a signal 

control algorithm for automated vehicles at isolated signalized intersections. The method can 
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simultaneously optimize vehicle trajectories and signal timing plans. By considering only two 

phases of the traffic signal, they used a simple enumeration method to select the optimum signal 

timing plan. They first determined the trajectory of the first vehicle, then calculated the trajectories 

of the following vehicles, and finally assigned the vehicles to different cycles by checking whether 

a vehicle can depart the intersection before the end of the green. A rolling horizon scheme was 

developed to implement the algorithm and to process newly arriving vehicles continually. 

Simulation results showed that the proposed algorithm can reduce the average travel time delay by 

16.2-36.9% and increase the mobility by 2.7-20.2% compared to traditional actuated signal control 

methods. 

Xu et al. (2017) proposed a cooperative control method to simultaneously optimize traffic 

signal timing and vehicle operations to improve transportation efficiency and vehicle fuel economy. 

The method considered multiple objectives: safety, mobility, and energy use. For this, the 

modeling/control framework of the paper defined different priorities for different objectives: safety 

first, mobility second, and energy third. Accordingly, they proposed to solve safety by design, i.e., 

by applying the classical “dual-diagram” signal control design, improve mobility by optimizing 

signal phases and timing to minimize the total travel time of all vehicles, and save energy by 

optimizing the trajectory of each vehicle given its time budget to pass the intersection (obtained via 

solving the mobility objective). The proposed approach thus decomposed the complex control 

problem into three (much simpler) sub-problems based on the priorities of the three main objectives. 

Cooperating with each other, these three sub-problems were solved sequentially. Simulation results 

in MATLAB and VISSIM showed that the proposed method could improve traffic efficiency by 

19.7% and fuel economy by 23.7% compared to a benchmark actuated signal control algorithm. 

The main contribution of Xu’s work is its useful insight on how to consider different important 

objectives of SVCC with CAVs in general. In this work, the vehicle speed and position are the state 

variables 𝑥  which follow the vehicle dynamics. The control variables consist of signal 

timing/phases and vehicle accelerations. The objective 𝐽  includes the travel times and fuel 

consumptions, which are estimated by the car following model and fuel consumption model. The 

objective is minimized by solving the sequential sub-problems. 

SVCC is relatively new but has great potential to improve traffic control performances. In 

addition, it may be relatively easier for SVCC to transfer to non-signal control (with proper safety 

guarantees) when 100% CAVs is achieved in the traffic system, which may further improve the 

performances of traffic control. Currently, many questions for SVCC still remained unsolved, e.g., 

how to efficiently combine signal and vehicle control, how to extend SVCC methods to control 

traffic corridors and networks, and how to apply the methods to real-world implementations. All 

those topics need to be further investigated. 
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4. Future Research of CAV-based Traffic Signal Control 

In addition to the future research topics under each of the control methods discussed above 

(listed at the end of each subsection in Section 3), we summarize and discuss several important 

future research directions on CAV-based traffic signal control in this section. 

 

4.1 Network Control 

The current CAV-based control methods mainly emphasized on single intersections, and only 

a handful of them discussed corridor-level signal optimization and coordination. CAV-based 

network traffic control, however, has not been extensively studied. The key challenges of CAV-

based network control, beyond what has been discussed so far for single intersection and corridor 

control, are how to coordinate multiple intersections by leveraging CAVs and how to solve the 

resulting large-scale problems efficiently. These problems all require further and dedicated 

investigations. 

For example, distributed control may be helpful in solving large-scale CAV-based network 

control by decomposing the network control problem into small sub-problems each for an 

intersection or a small number of intersections. The sub-problems can share information with each 

other and be solved more efficiently (Islam and Hajbabaie, 2017; Wongpiromsarn et al., 2012). So 

far, most centralized network-level control to distributed control decomposition methods were 

heuristic (Islam and Hajbabaie, 2017; Mckenney and White, 2013; Mehrabipour and Hajbabaie, 

2017). Few of the current studies on how to guarantee the global optimality of distributed traffic 

signal control and how to analyze the stability/sensitivity issues of the decomposition process. For 

this, researchers might benefit from the distributed control techniques that appear in other fields like 

computer science and automatic control (Cao et al., 2013). For example, the decomposition 

approach for identical dynamically coupled sub-systems (Massioni and Verhaegen, 2009), the 

distributed control design principles for spatially interconnected systems (D'Andrea and Dullerud, 

2003), and the distributed model predictive control and stability analysis techniques (Camponogara 

et al., 2002) that could all provide useful insights for the topic of distributed network-level traffic 

signal control. 

Another promising network traffic control method is the hierarchical control technique that 

considers a multi-level optimization problem. Most hierarchical approaches made macroscopic 

regional level decisions (like perimeter control) at the upper level, and microscopic intersection 

level decisions (like specific signal phases and timings) at the lower level. One key technique of 

hierarchical traffic control is to define the macroscopic and microscopic models. Traffic flow models 

such as the macroscopic fundamental diagrams (MFD; see Daganzo et al., 2012; Geroliminis and 

Daganzo, 2008; Yang et al., 2017) may be of great promise for modeling the macroscopic traffic. 

MFD can guide the division of the network (into regions) and construct the upper level problem (for 
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the entire network) and the lower level problems (for individual regions). Most current works on 

MFD-based traffic control focused on regional-level perimeter control (Geroliminis et al., 2013; 

Haddad et al., 2013). How to integrate the MFD based network control with more detailed 

intersection/corridor control under the CAVs environment remains largely open. In addition, current 

MFD based network control rarely took CAVs to consideration. Researchers usually assumed full 

knowledge of the accumulation of vehicles, which is not applicable when CAVs have not reached 

100% penetration. How to estimate the vehicle accumulations under limited CAVs penetration rate 

is one of the important topics, which the research community has just started to explore (Yang, 

2018). Other critical issues such as the consistency between the upper level problem and the lower 

level problems, and the priority on different vehicle types merit further investigations. Future studies 

may focus on those and other critical issues of CAV-based network control, including network 

decomposition, information sharing, cooperation methods, and computation efficiency. 

 

4.2 Impact of CAVs Penetration and Level of Automation 

The penetration rate of CAVs can significantly influence the performances of the above traffic 

control methods (Ferman et al., 2005; Jenelius and Koutsopoulos, 2015). Many existing studies 

assumed 100% penetrations of CVs and/or AVs with full automation (i.e., level 5) so that the full 

information of all vehicles can be used and/or all vehicles can be controlled to better design the 

traffic control methods (Islam and Hajbabaie, 2017; Li and Ban, 2017; Li et al., 2014a; Xu et al., 

2017). The main advantage of assuming 100% penetration is that we can avoid estimating the 

information of unequipped vehicles, which can significantly reduce the complexity of the resulting 

model and estimation errors. 

Although it is expected that the penetration rate of CAVs may dramatically increase in the 

future, there is still a long way to achieve such a goal of high CAVs penetration or fully automated 

vehicles. Therefore, it is practical and important to consider different levels of CAVs penetration 

and vehicle automation, i.e., to consider mixed traffic flow with both human-driven vehicles and 

AVs, with and without connectivity, and with different automation levels, when designing CAV-

based traffic control methods in practice. 

For the purpose of traffic signal control, the traffic flow states including travel times, queue 

lengths, and volumes are the most important measures. Usually, we do not need to track every 

vehicle to accurately predict the future traffic flow states. Although specific algorithms requiring 

lower penetration rates have been investigated (Zheng and Liu, 2017), most current results indicated 

that the performance would undergo a significant change when the penetration rate becomes larger 

than 25%-30% (Ban et al., 2011; Hao et al., 2014). However, we still do not know the exact phase 

transition point (i.e., the critical penetration rate) for all the scenarios, since there are too many 

factors that may influence the signal control performances. 

A few existing studies (Argote-Cabañero et al., 2015; Beak et al., 2017; Day and Bullock, 2016; 
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Feng et al., 2015; Rios-Torres and Malikopoulos, 2018；Validi et al., 2018) had begun to discuss 

the relationship between CAV penetration rates and various performances of the control algorithms. 

For example, Day and Bullock (2016) explored the relationship between CVs penetration and the 

performance of the signal offset optimization algorithm of a corridor. They found that the offline 

optimization algorithm over a 3-hour window could perform well with a CV penetration as low as 

1%, while the online optimization with 15-min windows requires at least 5% CV penetration. Validi 

et al. (2018) studied the impact of different V2V communication and ADAS penetration rates on 

road safety. The simulation results under six different scenarios showed that a 40% V2V penetration 

rate could prevent all types of accidents. Argote-Cabañero et al. (2015) explored the relationship 

between the CV penetration rate and the accuracy of the estimation of arterial measures of 

effectiveness (MOEs) such as average speed, number of stops and delay. The minimum penetration 

rates required in order to yield acceptable estimations on different MOEs were generated based on 

simulations. Rios-Torres and Malikopoulos, (2018) analyzed the impact of CV penetration on fuel 

consumption and traffic flow under different traffic volumes based on a merging on-ramp scenario. 

They showed that 100% CV penetration could improve the fuel efficiency under any traffic volume; 

in the mixed flow scenario, the fuel-saving benefits could be only achieved when the traffic volume 

is low. 

These studies could serve as a good starting point, while more efforts need to be conducted. 

For example, more traffic scenario studies and real-world tests are urgently needed to build the 

relationship between the CAV penetration rate and different performance measures, and more efforts 

are needed to quantify the benefits of different levels of vehicle automation levels for traffic signal 

control, with or without V2X connectivity. In addition, current works usually adopted simulation 

models to study the impact of penetration. Whether there are theoretical models or theoretical-

simulation mixed models that could better verify the impact of penetration on signal control 

performances should also be thoroughly studied.  

 

4.3 Safety Guarantees and Balance of Multiple Objectives 

Most of the CAV-based traffic control methods reviewed here were developed by optimizing 

certain mobility and/or sustainability objectives such as minimizing the total system travel time or 

fuel consumption. Ironically few studies have considered safety when designing traffic/vehicle 

control and optimization strategies. 

For traditional traffic control, our first objective should be safety, followed by mobility and 

other objectives (such as sustainability) (Li et al., 2018). Safety is traditionally guaranteed by design: 

including the dual-diagram design scheme (Roess et al., 2004) and other associated techniques such 

as the conflict monitor embedded in traffic controllers. Mobility is usually considered by minimizing 

the total delays or travel times of all vehicles passing the intersection (e.g., for optimizing the timing 

of a single intersection), or maximizing the throughput or other related measures (for coordinating 
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multiple intersections). The sustainability objective is often defined as the total energy consumption 

or emissions of vehicles passing the intersection (Jiang et al., 2017b). 

There were two primary ways to deal with safety issue of CAV-based traffic control. The first 

way focused on 100% penetration of CAVs and set certain safe following distances or time gaps for 

vehicles which have conflicts along their driving paths (e.g., at a traffic intersection where there is 

no physical signal system). If we consider the framework proposed in the general Problem A1, the 

first way for safety is to add new constraints 𝜑 for safe distances or time gaps, while objective 𝐽 

could be mobility or other related objectives. However, safety may not always be guaranteed via 

such methods, since not all vehicles were CAVs (i.e., 100% penetration) in the foreseeable future; 

and the communications problems and the vehicle sensing faults may still introduce too much 

uncertainty. 

The second way considered mixed traffic flow and assumed the presence of physical traffic 

signals at intersections. Most of them applied traditional safety design methods such as the dual-

diagram design for signal timing plans. Such design methods can usually ensure safety. However, 

when the penetration of CAVs reaches certain levels, it is important to investigate whether these 

existing safety design methods are the most appropriate for CAVs. There may be other design 

methods that can achieve similar safety guarantees but are more efficient. In addition, most current 

studies have focused only on vehicular traffic and neglected bicyclists and pedestrians. When 

applied to real-world traffic, the safety (and mobility) of all traffic participants needs to be 

considered properly (The Verge, 2018). 

Furthermore, many existing studies focused on only one objective, while simultaneously 

considering multiple objectives can improve the overall control performance (Xu et al., 2017; Zhao 

et al., 2018). The key challenges include: 1) how to select the specific and quantitative measures for 

different objectives; 2) how to integrate multiple objectives with different units into one function 

and balance them; 3) and how to design the constraints for different objectives. We expect that future 

studies can simultaneously consider safety, mobility and sustainability objectives for vehicles, 

bicyclists, and pedestrians when developing CAV-based traffic/vehicle control methods. 

 

4.4 Testing and Implementations in Real World 

Most existing studies applied simulations and limited field data to test the developed methods, 

which might be quite different from real-world traffic conditions. For traffic state estimation, 

observation errors are inevitable when applied to real traffic systems, which might cause bias and 

even failures of the theoretical methods. How and to what extent could the errors influence the 

accuracy and robustness of the models are important research topics. At the same time, real-world 

implementations need a large number of field tests, which might be time- and resource- consuming. 

For this, researchers could benefit from several large-scale CV/probe vehicle data collection 
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platforms to conduct initial testing/validation of the methods, including the Next Generation 

Simulation (NGSIM) program (Alexiadis et al., 2004), Safety Pilot program (Henclewood et al, 

2014), Mobile Century project (Herrera et al., 2010), the Connected Vehicle Pilot Deployment 

Program of the United States Department of Transportation (USDOT), and the GAIA open dataset 

(Chuxing, 2018). 

To the best of our knowledge, real-world testing and validation of CAV-based traffic control 

methods discussed in Section 3 have just started. The advanced driver guidance system is the first 

one that has been tested in real world due to the fact that it is relatively easier to develop a driver 

interface than to actually modify traffic signal control. We have discussed the real-world 

applications of the advanced driver guidance system (e.g., Altan et al., 2017; Bodenheimer et al., 

2014; Lee et al., 2017) in section 3.1. More efforts still need to be done to verify this and other 

advanced traffic signal control methods based on CAVs. So far, researchers have tried to precisely 

build real-world scenarios in simulation environments. 

Limited research has done so far for testing CAV-based traffic signal control algorithms in the 

real world. One example of this is Zheng et al. (2018) who proposed an integrated platform to 

estimate traffic volumes by vehicle trajectory data and then optimize traffic signal parameters (such 

as cycle length, offset, and green times). They tested the methods in the City of Jinan, China by 

using vehicle trajectory data from Didi, a ridesharing company. The results of two case studies 

showed that the proposed signal control algorithm could reduce delays by 5%-20%. Meanwhile, 

CV-based or CAV-based testbeds such as M-City (Uhlemann, 2015) and Changshu Testing Ground 

(Li et al., 2016, 2018) have been increasingly built in recent years. Researchers should seek 

opportunities to test/validate CAV-based traffic control methods using those testbeds.  

Testing and validating various CAV-based control methods and strategies in real-world traffic 

intersections, corridors, and networks can also help demonstrate the benefits and discover/resolve 

potential issues of CAV-based traffic control to decision-makers and the public. This is a critical 

step for transitioning the CAV-related research results and methods from laboratories to the real 

world to make a real impact. As the CAVs technologies are becoming mature, we hope that at least 

a few of the CAV-based control methods could soon be tested and validated. The field test results 

can then help gain valuable insights into CAV-based urban traffic control and select the best-fit 

control methods for our cities to deploy. 

 

4.5 Implementation Requirements of CAVs Technologies 

The successful applications of the aforementioned traffic control methods rely on proper 

implementations of both CAVs and the supporting infrastructure. 

First, the reliability of V2X communications is one of the critical factors that may influence 

the performance of CAV-based traffic control. The delayed/missed vehicle information and the 
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position errors (Meng et al., 2018; Shen and Stopher, 2014; Waterson and Box, 2012) may lead to 

failures of pre-selected signal timing plans or even result in traffic accidents. Generally speaking, 

actuated traffic control and planning-based traffic control are less vulnerable than platoon-based 

traffic control and SVCC. However, we believe that robust planning (Yin, 2008) and stochastic 

programming (Tong et al. 2015) can still be helpful, unless the V2X communications become very 

robust. Since network traffic control requires transmitting information over a large distance, many 

researchers believe that 5G communication should be one of the supporting backbones for the 

communications of the next generation traffic control systems, due to its speed and transmission 

range. Therefore, 5G-based CAVs communications should be studied and tested for urban traffic 

signal control. 

Second, the cybersecurity issues of CAV technologies (e.g., V2X communications) and traffic 

control systems should also be carefully investigated. Cybersecurity should address at least two 

major issues: privacy protection of individual users/vehicles, and the security of vehicles and traffic 

control systems. Existing research on this topic is rather sparse. Privacy protection is mainly related 

to the collection and use of CAV data, which has been briefly discussed in Section 2.4. Regarding 

the security of traffic control systems, in a recent study, Feng et al. (2018) proposed a method to test 

the vulnerability of actuated and adaptive traffic signal control systems in a CVs environment. 

Falsified data were sent from four typical elements including signal controllers, vehicle detectors, 

roadside units, and onboard units to try to maximize the network-wide delay. The experimental 

results showed that some attacks could significantly increase congestion, while others may even 

reduce the total delay. Chen et al. (2018) also analyzed the vulnerability of CV-based transportation 

system by focusing on a realistic attack that aims to create traffic congestion. Compared to the 

systems without CV-based signal control, the attacks could significantly reduce the mobility of CV-

based signal control systems by up to 23.4%. It is expected that with the wide deployment of CAV 

technologies and the implementation of CAV-based traffic control, the cybersecurity of vehicles and 

traffic control systems will become increasingly critical. This calls for innovative and 

comprehensive investigations of this important topic in the near future. 

Third, traffic control systems need to be continuously updated to keep the pace with CAVs 

technologies, since automated vehicles and conventional human-driven vehicles will co-exist for a 

relatively long time. For example, the computational capability of traffic control systems needs to 

be improved. Otherwise, we may neither fully utilize the information collected by CAVs to improve 

traffic efficiency nor respond to the prompt changes of traffic demands. 

 

5. Conclusions 

Inspired by the rapid developments and potential benefits of connected and automated vehicles 

(CAVs), researchers have studied extensively in the last decade on the design and control of future 
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urban traffic intersections. Following this trend, this paper provided a comprehensive review of the 

methods of CAV-based urban traffic control. The review started with CAV-based deterministic and 

stochastic traffic states estimation methods, which are essential to traffic control. The review then 

summarized different types of CAV-based methods for traffic signal control and/or vehicle 

guidance/control. We further presented a conceptual mathematical framework to formulate the CAV-

based urban traffic control. Based on this framework, we discussed the relations and differences 

among different types of CAV-based traffic control methods by specifying the state variables, 

control inputs, and environment inputs for each method. Representative results were briefly outlined 

to illustrate the merits and shortcomings of various traffic state estimation methods and traffic 

control strategies. Detailed discussions were also provided to present several future research needs 

and directions in this important area. 
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Table 1. Traffic information extraction via V2X paper summary 

  Papers 
Input data Performance measures 

Real time 

or not 
Output 

Under/Over-

saturated 

Intersection 

types 

Traj. Redu. Q.L. T.T. Den. Vol. Traj. S.B. Yes No Deter. Distr. Under Over Single Multi 

Stochastic 

Learning 

Comert and Cetin (2009)  √  √       √ √  √  √  

Comert and Cetin (2011)  √  √      √   √ √  √  

Hao et al. (2014)   √ √      √   √ √ √ √  

Comert (2013)  √  √      √   √ √  √  

Peng Hao et al. (2013)  √ √      √   √ √ √ √  

Marinica et al. (2013) √  √      √   √ √ √ √ √ 

Hofleitner et al. (2012)  √  √ √     √   √ √ √ √ √ 

Zheng and Liu (2017) √     √    √   √   √ 

Rompis et al. (2017)  √  √    √  √   √ √  √  

 Ramezani & Geroliminis (2012) √   √     √   √  √  √ 

Shockwave-

Based 

Ramezani & Geroliminis (2013) √  √     √  √ √  √ √ √ √ 

Ramezani & Geroliminis (2015) √  √     √  √ √  √ √ √ √ 

Han et al. (2014)  √  √      √  √  √ √ √ √ 

Ban et al. (2009)  √  √     √  √  √ √ √  

Sun and Ban (2013)  √ √      √  √  √  √  

Cheng et al. (2012)  √  √ √ √    √  √  √  √ √ 

Hiribarren and Herrera (2014) √  √  √    √  √  √ √ √ √ 

Cai et al. (2014)  √  √    √  √  √  √ √ √ √ 

Hao and Ban (2015)   √       √  √  √ √ √ √ 

Ban and Gruteser (2010)  √ √ √  √   √  √  √  √ √ 

Hao et al. (2012)  √ √      √    √ √ √  

Ban et al. (2011)   √ √ √   √  √  √  √ √ √ √ 

Kinematic 

Equation-Based 

Hao et al. (2015)   √ √ √   √  √  √  √ √ √ √ 

Liu and Ma (2009)  √  √     √ √  √  √  √ √ 

Note:  

Traj. – Trajectory; Redu. – Reduced; Q.L. – Queue length; T.T. – Travel time; Den. – Density; Vol. – Volume; S.B. – Shockwave boundary; Deter. – Deterministic; Distr. -- Distributions 
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Table 2. Summary of traffic control methods 

Control methods 
Signal control with CVs Driver guidance and AV control 

with signal information 
SVCC 

Actuated and planning based Platoon based 

State variables 𝑥(𝑘) Queue length, travel time Vehicle speed, position 
Queue length, travel time, Vehicle 

speed, position 

Environment inputs 𝑑(𝑘) Arrival vehicles Arrival platoon Signal timing, phases  

Control inputs 𝑢(𝑘) Signal timing, phases Vehicle acceleration, turn 
Signal timing, phases, Vehicle 

acceleration, turn 

Objective function 𝐽: 

mobility, fuel, 

emissions, and safety 

Single intersection min
𝑢(𝑘)

𝐽 = 𝑓[𝑥(𝐾)] + ∑ 𝑔[𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘)]

𝐾

𝑘=1

 

Arterials and 

networks 

min
𝑢(𝑘)

𝐽 = ∑{𝑓[𝑥(𝐾)] + ∑ 𝑔[𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘)]

𝐾

𝑘=1

}

𝑁

𝑛=1

    𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 

min
𝑢(𝑘)

𝐽 = 𝑓[𝑥(𝐾)] + ∑ 𝑔[𝑥(𝑘), 𝑢(𝑘), 𝑑′(𝑘)]

𝐾

𝑘=1

               𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

where 𝑑′(𝑘) consists of the information of other intersections 

State equations 

𝑥(𝑘 + 1) = 𝑥(𝑘) + ℎ[𝑢(𝑘), 𝑑(𝑘)] 
Queueing models, LWR, car-following models 

Vehicle dynamics, car-following 

models 

Traffic flow models, vehicle 

dynamics, car following models 

Initial and end state condition 

𝑥(1) = 𝑥0, 𝑥(𝐾) = 𝑥𝐾 

Start and target queue length or travel time (e.g. 

dispatch all vehicles in the queue) 
Start and target speed and position 

Start and target queue length, travel 

time, vehicle speed and position 

Constraints of state, environment and input 

variables  𝜑[𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘)]𝜖𝛺 

Maximum queue length, cycle length, green signal 

length; no interrupt phases etc. 

Physical acceleration, speed, and 

turn angle limits etc. 

All constraints of the former two 

methods 

Published works 

Beak et al., 2017; Gradinescu 

et al. 2007; Feng et al., 2015; 

Hu et al., 2016; Islam et al., 

2017; Li and Ban, 2017 

He et al., 2012; 

Lioris et al., 2017; 

Pandit et al., 2013; 

Xie et al., 2011  

Katsaros et al., 2011; Li et al., 

2012; Schuricht et al., 2011; Tang 

et al., 2018; Ubiergo and Jin, 

2016; Wu et al., 2010 

Guler et al., 2014; Li et al., 2014a; 

Sun et al., 2017; Xu et al., 2017; Yu 

et al., 2018 
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