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ABSTRACT 

Although demand responsive feeder bus operation is possible with human-driven vehicles, it has not been 

very popular and mostly available as a special service because of the high operating costs due to the 

intensive labor costs as well as advanced real-time information technology and complicated operation. 

However, once automated vehicles become available, small-sized flexible door-to-door feeder bus 

operation will become more realistic, thanks to recent technological advances and business innovations by 

the transportation network companies (TNCs). So, preparing for the automated flexible feeder service is 

necessary to catch the rapid improvement of automated vehicle technology.  

Therefore, this research developed an algorithm for the optimal flexible feeder bus routing, which 

considers relocation of buses for multi-stations and multi-trains, using a simulated annealing (SA) 

algorithm for future automated vehicle operation. An example was developed and tested to demonstrate 

the developed algorithm. The algorithm successfully handled relocating the buses when the optimal bus 

routings were not feasible with the available buses at certain stations. Furthermore, the developed 

algorithm limited the maximum Degree of Circuity for each passenger while minimizing total cost, 

including total vehicle operating costs and total passenger in-vehicle travel time costs.  

In order to evaluate the impact of the acceptable individual passengers’ maximum travel time, four types 

of maximum Degree of Circuities (2.5, 3, 3.5, and 4) were applied. As expected, with the higher 

individual passengers’ maximum Degree of Circuity, the minimum number of buses used, vehicle 

traveled distance and total costs of the service decreased due to the more relaxed constraint, although the 

lower individual passengers’ maximum Degree of Circuity ratio guarantees lower maximum circuity of 

travel to all users. 

Unlike fixed route mass transit, small vehicle demand responsive service uses flexible routing, which 

means lower unit operating costs not only decrease total operating costs and total costs but also can affect 

routing and impact network characteristics. In the second part of this research, optimal flexible demand 

responsive feeder transit networks were generated with various unit transit operating costs using the 
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developed routing optimization algorithm. Then network characteristics of those feeder networks were 

examined and compared.  

The results showed that when unit operating costs decline, total operating costs and total costs obviously 

decline. Furthermore, when unit operating costs decline, the average passenger travel distance and total 

passenger travel costs decline while the ratio of total operating costs per unit operating costs increases. 

That means if unit operating costs decrease, the portion of passenger travel costs in total costs increases, 

and the optimization process tends to reduce passenger costs more while reducing total costs. Assuming 

that automation of the vehicles reduces the operating costs, it will reduce total operating costs, total costs 

and total passenger travel costs as well.  

 

Key words: Automated Transit, Demand Responsive Transit, Feeder Bus, Vehicle Routing Problem, 

Optimization 
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1. INTRODUCTION  

In the past, automated transit was regarded as Personal Rapid Transit or Automated Rail Transit. Now, 

people are talking about autonomous vehicle technology, which for public transit means autonomous bus 

transit, ridesharing and carsharing. Transportation network companies (TNCs), such as Uber, and many 

car manufacturers, including General Motors, reported recently that fully automated vehicles will be 

available by 2020-2030 (Fazlollahtabar & Saidi-Mehrabad, 2015). This means that carsharing and 

ridesharing using autonomous vehicles will become a reality within a decade. While car manufacturing 

and technology companies are developing and improving technologies for automated vehicles, it seems 

that policy, planning and other essential elements for the effective implementation of automated vehicles 

for transit service still lag behind the technology (Krueger, Rashidi, & Rose, 2016). 

Autonomous and connected vehicles (CVs) will change the paradigm for transportation users and 

industries, as well as for public transportation (including mass transit, ridesharing and carsharing) (Shin, 

Callow, Dadvar, Lee & Farkas, 2015; Shin, Callow, Farkas & Lee, 2016). Not only can they improve 

travel safety (e.g., reducing crashes), but they also will change our lives and travel patterns. When 

autonomous vehicles are available, users’ travel behaviors and modal choices will become completely 

different. Autonomous vehicles likely will result in reductions in car ownership and increases in 

carsharing and ridesharing (Bizon, Dascalescu, & Tabatabaei, 2014). Also, small automated transit 

vehicles could be utilized to pick up passengers as a feeder for mass transit – such as bus, LRT, and metro 

– because of lower operational costs due to no labor costs.  

Although demand responsive feeder bus operation is possible even with human-driven vehicles, it 

is not very popular and mostly available as a special service because of the high operating costs due to the 

intensive labor costs as well as advanced real-time information technology and complicated operation. 

However, once automated vehicles become available, small-sized flexible door-to-door feeder bus 

operation will become more realistic, thanks to recent technological advances and business innovations by 

the transportation network companies (TNCs). So, preparing for the automated flexible feeder service is 

necessary to catch the rapid improvement of automated vehicle technology. 
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Before procuring and operating automated transit vehicles, it is extremely important to determine 

what future transit customers want and expect from them. For example, whether transit customers prefer a 

traditional type of transit service (e.g., fixed-route) with an automated small-sized feeder transit or a more 

flexible service, similar to that provided by TNCs, transit agencies should prepare their future transit 

service accordingly.   

This research developed the algorithm for the optimal flexible operation of small-sized automated 

feeder transit vehicles as the first step in predicting future transit users’ mode choice and travel behavior. 

More specifically, this algorithm considers multi-station and multi-train situations while feeder buses are 

being relocated, if necessary. Then, the second part of this research generated optimal flexible demand 

responsive feeder transit networks with various unit transit operating costs using the developed routing 

optimization algorithm and compared the network characteristics of those feeder networks in order to 

examine the impact of the automated feeder transit operation. 

This study serves as the basis for evaluating the efficiency of the automated feeder service, which 

then can be compared to automated ridesharing and carsharing services in the future. Eventually, these 

studies will help predict users’ travel behaviors and modal choices between the automated 

ridesharing/carsharing operation and the automated feeder service for mass transit. 

 

2. LITERATURE REVIEW 

The vehicle routing problem (VRP) has been a very popular topic in the research field in recent decades. 

Many optimal vehicle routing algorithms have been developed, such as the traveling salesman problem, 

transit routing, delivery and pickup routing, multi-vehicle routing, and flexible ridesharing routing. 

Among the many types of VRP, most relevant categories were reviewed in this section.   
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2.1. Feeder Bus Service 

Feeder bus services impact commuters’ travel choice decisions and consequently the proportion of each 

mode used daily. Increasing the rate of passenger demand for the transit system could be one of the 

impacts; therefore enhancing social equality and welfare for the community and boosting operator 

revenue are expected results (Li, Lam, & Wong, 2009). In recent years, considering the rapid 

development of public transit, numerous studies have begun to focus more on feeder-bus network 

optimization. Most of the studies in recent years were focused on developing a feeder-bus network.  

Generally, two approaches are used to model feeder-bus route designs. One is solving the feeder-

bus network design problem (FBNDP) and the second one is a heuristic feeder route generation algorithm 

(HFRGA). For the first approach, Kuah & Perl (1988) are the pioneers of FBNDP. They provided a 

mathematical formulation for the many-to-one network design problem and solved the model by using a 

heuristic method based on the saving approach. A large number of studies have been conducted to 

develop and extend FBNDP. Martins & Pato (1998) used a combined heuristics method based on 

sequential savings and Tabu search algorithms to solve the NP-Hard FBNDP. Kuan, Ong, & Ng (2004) 

and Kuan, Ong, & Ng (2006) in two different studies tried to solve FBNDP using implemented Simulated 

Annealing (SA), Tabu Search (TS), Ant Colony (ACO), and Genetic Algorithms (GAs). They believed 

that SA could be a good algorithm when the issue is finding a better and more sophisticated neighborhood 

structure to reach high-quality results.  

Shariat Mohaymany and Gholami in two different studies (2010 & 2011) implemented a 

modified ACO algorithm to solve FBNDP which could construct routes and choose terminals 

simultaneously. The results of these studies show multimodal networks are more effective at decreasing 

user costs than unimodal networks, and using smaller buses like minibuses rather than conventional buses 

will reduce operating costs. Ciaffi, Cipriani, & Petrelli (2012) solved FBNDP using a set of heuristics. 

They divided the procedure for solving the problem into two phases. In the first phase, the procedure 

generated feasible routes based on the traveling salesman problem (TSP) and K-shortest path algorithms 

for improving the intermodal interaction, and in the second phase, the model found an optimal or near-
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optimal network of routes with the associated frequencies based on the GA. Recently, Lin & Wong 

(2014) proposed a multi-objective model to locate feeder-bus routes for a specific metro station in Taiwan 

as the case study taken by minimizing route length, and maximum route travel time, and maximizing 

service coverage for trip generation.  

For the second approach, Shrivastav & Dhingra (2001) introduced a new approach to feeder-bus 

route design by implementing HFRGA; thereafter, Shrivastava & O’Mahony (2006, 2007 & 2009) extend 

this algorithm by using GAs and a hybrid algorithm. They control the lengths of feeder routes and balance 

user need and operator requirements in the proposed algorithms.  

Although most of the studies on the optimization of feeder-bus networks considered a network 

approach, which involved a feeder-bus network that maximized joining the feeder-bus routes with a given 

rail public transit, some studies used an analytic approach to optimize the feeder-bus network (Almasi, 

Mirzapour Mounes, Koting, & Karim, 2014). In this approach, the problem maximizes the coverage of 

passengers’ access to all of the stops one by one. Regarding this approach, for the first time, Kuah & Perl 

(1988) introduced a model for designing an optimal feeder bus network considering bus route locations, 

bus headways, and stop spacing. The objective of this model was minimizing total user and operator 

costs. They pointed out that a combination of these three variables at the same time as a function of 

system parameters and demand density can provide appropriate results. Chien & Yang (2000) 

implemented the exhaustive search (ES) algorithm as a metaheuristic method based on a many-to-many 

travel pattern to optimize feeder bus route location and operating headway. The results of this work 

showed that the user in-vehicle and access costs dominate the optimal route location. Chien, Yang, & Hou 

(2001) extended this study implementing GA to solve the model. The results of the comparison between 

two algorithms show that although there was no significant difference between the ultimate solutions, GA 

can solve the problem much faster. Deng, Gao, Zhou, & Lai (2013) used GA to determine optimal feeder-

bus operating frequency. They believed that integrating public transit modes in a unit multimodal 

framework and improving the modes’ connectivity is necessary to enhance the competitiveness of public 

transport. 
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2.2. Ridesharing 

The shared economy can benefit communities. Ridesharing is one of the most efficient elements of the 

shared economy, one that is able to reduce unnecessary energy and costs and consequently open a way for 

communities to reach sustainable development in their urban areas (Samól, 2017). There has been a long 

discussion about coordination methods of ridesharing. Recently, Furuhata, et al. (2013) classified 

ridesharing into six classes: dynamic real-time ridesharing, carpooling, long-distance ride-match, one-shot 

ride-match, bulletin-board, and flexible carpooling. 

The carpooling problem has some specific features; generally, it is an arrangement of one-time 

trips rather than allocating a pickup visit for each passenger and instantly matching riders via a complex 

database system (Kaan & Olinick, 2013). Yan & Chen (2011) proposed an algorithm to solve the 

carpooling problem based on Lagrangian relaxation and a heuristic for the upper bound solution. They 

pointed out as a result, the model may increase the vehicle usage and save the passengers time. Some 

studies worked on fleet sizing of the carpooling problem. Karamanis, Niknejad, & Angeloudis (2017) 

provided a mixed-integer programming (MIP) algorithm for helping with the fleet size, depot location, 

and the number of Shared Autonomous Vehicles (SAV) problem. They concluded MIP could be an 

appropriate algorithm for SAV fleet establishment, especially in a larger network.  

Developing the vanpooling assignment problem is the other problem that has been considered in 

recent years. This problem generally pursues two goals: decreasing commuting costs of passengers 

(Concas, Winters, & Wambalaba, 2005; Ungemah, Rivers, & Anderson, 2006) and assessing the level of 

participation based on incentives and policies (Huang, Yang, & Bell, 2000; Washbrook, Haider, & 

Jaccard, 2006). Recently, Kaan & Olinick (2013) provided two models, the Minimum Cost Vanpool 

Assignment Model (MCVAM) and the Two-Stop MCVAM (TSMCVAM) model, to solve the vanpool 

assignment problem by minimizing total per-trip costs. They used heuristics to solve the problem and the 

results clearly showed TSMVCAM could bring significant cost savings for users in terms of both time 

and trip cost. 
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2.3. Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD) 

Min (1989) for the first time proposed VRPSPD – inspired by a distribution problem of a public library – 

and applied a heuristic method to solve this real-life problem. Then, many studies tried to solve this 

problem by various methods. Angelelli & Mansini (2002) could solve this problem with an exact 

algorithm. Other studies tried to solve the problem by heuristic and metaheuristics algorithms. Because of 

the structure of VRPSPD, very few studies used exact approaches, and the main part of recent studies 

focused on applying metaheuristics algorithms. GA (Tasan & Gen, 2012), Tabu Search (TS) (Montané & 

Galvao, 2006), Greedy Particle Swarm Optimization (Ai & Kachitvichyanukul, 2009), Ant Colony 

(ACO) (Gajpal & Abad, 2009), Iterated Local Search algorithm (Souza, Mine, Silva, Ochi, & 

Subramanian, 2011), and SA (Wang C. , Mu, Zhao, & Sutherland, 2015) were metaheuristics approaches 

that were considered in recent years to solve VRPSPD. The most recent studies are summarized and 

found in Montoya-Torres, J.R. et al.’s work (2015). 

2.4. The Pickup and Delivery Problem with Time Windows (PDPTW) 

The pickup and delivery problem with time windows (PDPTW) is a generalized version of the 

vehicle routing problem with time windows (VRPTW) which is focused on finding optimal routing 

solutions under capacity and time windows constraints (Baldacci, Bartolini, & Mingozzi, 2011). The 

objective function of the standard PDPTW is minimizing transportation costs while the routes generation 

is based on serving all demands (Sun, Veelenturf, Hewitt, & Van Woensel, 2018). At first, Dumas, 

Desrosiers, & Soumis (1991) solved PDPTW by a branch-and-price algorithm and found the exact 

solution to the problem. After that, by introducing new objectives and constraints, the PDPTW turned out 

to be an NP-hard problem, and new heuristic and metaheuristic methods have been implemented for 

solving these problems. Recent studies implemented two-stage metaheuristic approaches by minimizing 

the number of routes and total travel distance. These approaches include TS (Nanry & Barnes, 2000), SA 

(Bent & Van Hentenryck, 2006), large neighborhood search (LNS) (Ropke & Pisinger, 2006), and guided 

ejection search (GES) (Nagata & Kobayashi, 2010).  
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2.5. The Dial-A-Ride Problem (DARP) 

The dial-a-ride problem (DARP) is an extension of the VRPPD for transporting passengers in transit 

systems with a set of requests for pick-up and delivery from passengers who should be served by a 

limited number of transit fleet (Cordeau & Laporte, 2003). The objective functions of DARPs generally 

include minimizing the total routing distance of the fleet, minimizing travel and waiting time of 

passengers, and maximizing demand (Cordeau & Laporte, 2007). The DARPs belong to the NP-hard 

problems, and with a condition that the transit system is obligated to schedule vehicles to serve 

passengers in a determined time range, it turns to the dial-a-ride problem with time window (DARPTW), 

which is more complex. The structure of DARPTW is very similar to the PDPTW; however, it is more 

complicated and very sensitive to constraints.  

A range of metaheuristics methods to find a near optimal solution of the DARPTW have been 

implemented in past studies: ACO (Tripathy, Nagavarapu, Azizian, Pandi, & Dauwels, 2017), GA 

(Cubillos, Urra, & Rodríguez, 2009), SA (Zidi, Zidi, Mesghouni, & Ghedira, 2011), and TS (Belhaiza, 

2017). For further details and a comprehensive review of DARP and DARPTW models, the reader is 

referred to a literature review study by Molenbruch, Braekers, & Caris (2017). Although these studies 

have provided useful results that can minimize passenger or operator costs, there are still limitations in the 

implementation of these approaches in rural areas. First, most of these studies tried to consider increased 

operator revenues by scheduling vehicles on optimal routes even though individual passengers’ travel 

time and traveler preferences are important variables that can change the travel behavior of the traveler. 

Second, these approaches did not consider relocation of the fleet service despite the fact that in high-

demand conditions fleet relocation might be required. Finally, none of studies considered visualization 

tools to show optimal solutions. Although many studies have investigated the VRPSPD, DARPTW, 

PDPTW and VRPTW problems, very little knowledge is available for solving VRPSPD with time 

window constraints and considering designing the optimal transit network and carsharing, especially 

including relocation of vehicles. Therefore, in the current study we will provide an algorithm to cover all 

of these considerations. 
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3. METHODOLOGY 

The authors developed the optimal routing algorithm specifically for the automated demand responsive 

feeder transit services. The algorithm minimizes total costs, including vehicle operating costs and 

passenger travel time, while individual passengers’ maximum travel times are limited within given 

maximum travel times. That differentiates this algorithm from the usual delivery-pickup algorithms, 

which do not consider individual packages’ (in this case, passengers’) travel times. Moreover, the other 

innovations of this study are considering relocation of buses and the dynamic nature of the operation, 

which involves multi-stations and multi-trains. Also, this algorithm applies the Simulated Annealing (SA) 

(Kirkpatrick, Gelatt, & Vecchi, 1983) algorithm to solve the proposed model. 

 Generally, the SA algorithm works effectively in permutation-based problems like VRP 

(Davendra, Zelinka, & Onwubolu, 2010) because this local search algorithm uses random transformations 

from the neighborhood of all solutions by considering the total costs in VRP problems, which are the total 

dispatching cost and total travel cost of possible solutions (Hasija & Rajendran, 2004). Among 

metaheuristics that have provided better solutions, TS and SA are two of the more effective algorithms 

(especially in the small-scale problems) due to structures of finding an appropriate neighborhood in these 

algorithms (Bräysy & Gendreau, 2005; Potvin, 2009; Van Breedam, 1996).  

3.1. Algorithm 

This section presents an efficient algorithm for optimal routing of the autonomous feeder transit services, 

and the first step of this algorithm is the clustering of passengers; we assumed that all passengers are 

assigned to certain stations.  

At first, the algorithm creates a random series of integers for creating the initial solution (random 

permutation of integers from 1 to “number of passengers of the related station plus number of feeder 

buses minus one”). The algorithm allocates feeder buses to passengers depending on the location of 

greater integers in the generated permutation, and then, based on the order of integers in the generated 

permutation, the routes of vehicles are determined. For instance, in the presence of two vehicles and 10 
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passengers, a permutation of integers from 1 to 11 is produced. Suppose that the generated permutation is 

as follows: Path= [10, 1, 3, 4, 8, 11, 2, 9, 5, 7, 6]. Then the route of the first vehicle would be generated 

by serving passengers 10, 1, 3, 4, 8, respectively, and the second vehicle route is made by serving 

passengers 2, 9, 5, 7, 6, respectively. In each iteration, the algorithm tries to improve the solution by 

searching its neighborhoods. For this purpose, common swap, insertion, and reversion methods were 

used. The generated solution in the neighborhood of current solution is compared to the current solution, 

and based on the SA algorithm approach it would be accepted or rejected. The comparison is based on the 

value of a hypothesized objective function which includes penalties for modeling constraints. The 

algorithm attempts to reduce the value of the hypothesized objective function. The original and 

hypothetical objective functions are calculated as follows: 

𝑍′ = 𝐶𝑂 × 𝑇𝑜𝑡𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +  𝐶𝑇 × 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑖𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

𝑍 = 𝑍′ ∗ (1 + 0.5 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑛𝑜𝑡 𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 +  5 ×

𝑚𝑎 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑖𝑛 𝑒𝑥𝑐𝑒𝑠𝑠 𝑜𝑓 𝑓𝑒𝑒𝑑𝑒𝑟 𝑏𝑢𝑠 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)  

Where CO is the unit operating cost of each vehicle kilometer and CT is the time value of each 

passenger per hour. Finally, the best feasible solution found during the total iterations is presented as the 

final solution proposed by the algorithm. 

If the algorithm fails to find a feasible solution for a certain station, relocations of vehicles would 

be considered. In this case, the proportion of the number of passengers to the number of feeder buses for 

the adjacent stations is computed and the algorithm chooses the station with the lower proportion to 

compensate for the deficiency. 

In order to consider individual passengers’ acceptable travel times and acceptable circuity of the 

routing, Degree of Circuity (DOC) and Maximum Degree of Circuity (Max DOC) as shown in Equations 

1 and 2 are introduced in this research  (Lee Y.-J. , 2012; Lee, Choi, Yu, & Choi, 2015). The given Max 

DOC and computed shortest travel times are used to define the maximum acceptable travel time for each 

passenger. Using those maximum acceptable travel times for passengers as constraints, optimal routings 

are developed for each station using the SA algorithm. 
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Degree of Circuity (DOC)  ≥ 
(𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒)𝑖

(𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) 𝑖
         (1) 

Maximum Degree of Circuity (Max DOC)  ≥ max [
(𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒)𝑖

(𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) 𝑖
]      (2) 

i = Individual passenger    

 

The buses at each station will serve the passengers who use that particular station. We developed 

the optimal routings and found the optimal number of buses for that operation. So, for each station and for 

each train, we calculate the number of buses for the operation and compare them with the available buses. 

If we have more buses than needed, then the surplus will be calculated, and the bus operation will be 

feasible. If the needed buses are more than the available buses, then the deficiency will be calculated, and 

it is necessary to examine whether there are surpluses at the adjacent stations for the relocation. 

If the total number of available buses at all the stations is more than the needed buses at all stations, then 

we may be able to make the entire service feasible with multiple relocations. Figure 1 shows the process 

for relocating the buses. In this algorithm, the relocated buses first serve alighting passengers at the 

station to deliver them to their destinations and then pick up passengers to take to the goal station to 

minimize the costs. In the algorithm of Figure 1, “s” is the index for stations and S is the index for the last 

station.  
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Figure 1. The conceptual flowchart for the proposed algorithm to solve the problem 
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To solve the problem in the model, in this study we applied the SA algorithm, one of the most efficient 

metaheuristics approaches for solving the vehicle routing problem with time windows (Wang C., Mu, 

Zhao, & Sutherland, 2015; Montoya-Torres, et al., 2015; Bräysy & Gendreau, 2005), because the local 

search strategy of the SA is more robust in finding high-quality solutions in VRP problems (Rochat & 

Taillard, 1995). The SA algorithm uses a probabilistic acceptance strategy which includes many iteration 

stages to find the global optimum by a temperature-changing schedule (Adewole, Otubamowo, Egunjobi, 

& Ng, 2012). The strong point of SA as opposed to other similar metaheuristics is that SA can easily 

escape from local minima and jump in the solution space to find a global optimum solution because the 

SA even accepts worse answers with a specific probability (Wang C. , Mu, Zhao, & Sutherland, 2015). 

The metaheuristics were coded in MATLAB 2016a. The code shown in Figure 2 describes the steps in the 

SA algorithm as applied to solve the proposed model. Following is the mathematical formulation. The 

objective function of the model is minimization of the total costs including passengers’ travel costs and 

operating costs. 

 

Variables: 

 

𝑣𝑘 = {
1     𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑖𝑠 𝑢𝑠𝑒𝑑
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

  

 

𝑦𝑖𝑘 = {
1     𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖  𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑤𝑖𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      

  

 

𝛼𝑖𝑗𝑘 = {
1         𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑗 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑤𝑖𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                          

 

 

𝑟𝑖 = {
1     𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖  𝑠𝑡𝑎𝑟𝑡𝑠 𝑡𝑟𝑖𝑝 𝑓𝑟𝑜𝑚 𝑡𝑟𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 (𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔)

0    𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖  𝑒𝑛𝑑𝑠 𝑡𝑟𝑖𝑝 𝑎𝑡 𝑡𝑟𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 (𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 )      
  

 

𝐷𝑖𝑘 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑢𝑝 𝑡𝑜 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘  
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𝑇𝑜𝑡𝑎𝑙𝐷𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 

 

𝐴𝑇𝑖 = 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑛𝑜𝑑𝑒 

 

𝑊𝑇𝑖 = 𝐼𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖  

 

𝑈𝐶𝑖 =Used capacity of vehicle after serving passenger i 

 

𝐼𝐶𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑔𝑒𝑡 𝑜𝑛 𝑎𝑡 𝑡𝑟𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘   

 

Objective function: 

𝑧 = min ∑ 𝐶𝑇 ∗ 𝑊𝑇𝑖 + ∑ 𝐶𝑂 ∗ 

𝐾

𝑘=1

𝑇𝑜𝑡𝑎𝑙𝐷𝑘 

𝐼

𝑖=1

                                          (3) 

 

Constraints: 

∑ 𝑦𝑖𝑘 = 1                                                                          𝑖 = 1.2. … . 𝐼    

𝐾

𝑘=1

(4) 

 

∑ 𝑦𝑖𝑘 ≤ 𝑀 ∗ 𝑣𝑘                                                                𝑘 = 1.2. … . 𝐾      

𝐼

𝑖=1

(5) 

 

∑ 𝑣𝑘 ≤ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟                                                       (6)                 

𝐾

𝑘=1

 

 

2 ∗ 𝛼𝑖𝑗𝑘 ≤  (𝑦𝑖𝑘 + 𝑦𝑗𝑘)    𝑖. 𝑗 = 1.2. … . 𝐼; 𝑖 ≠ 𝑗. 𝑘 = 1.2 … . 𝐾(7) 
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∑ ∑ 𝛼𝑖𝑗𝑘 + ∑ 𝛼𝑖0𝑘

𝐾

𝑘=1

≥ 1

𝐼

𝑗=1

𝐾

𝑘=1

                                            𝑖 = 1.2. … . 𝐼       (8) 

 

∑ ∑ 𝛼𝑖𝑗𝑘 + ∑ 𝛼0𝑗𝑘

𝐾

𝑘=1

≥ 1

𝐼

𝑖=1

𝐾

𝑘=1

                                            𝑗 = 1.2. … . 𝐼      (9) 

 

𝐷𝑗𝑘 ≥ 𝐷𝑖𝑘 − 𝑀(1 − 𝛼𝑖𝑗𝑘) + 𝑑𝑖𝑗                𝑖. 𝑗 = 1.2. … . 𝐼; 𝑖 ≠ 𝑗.  𝑘 = 1.2 … . 𝐾 (10) 

 

𝐷𝑖𝑘 ≥ 𝑑𝑖0𝑦𝑖𝑘                                                                       𝑖 = 1.2. … . 𝐼 𝑘 = 1.2 … . 𝐾     (11) 

 

𝐴𝑇𝑖 = ∑
𝐷𝑖𝑘

𝑠𝑝𝑒𝑒𝑑

𝐾

𝑘=1

                                                               𝑖 = 1.2. … . 𝐼 (12) 

 

𝑊𝑇𝑖 =  𝑟𝑖 𝐴𝑇𝑖 + (1 − 𝑟𝑖)(
TotalDk

𝑠𝑝𝑒𝑒𝑑
− 𝐴𝑇𝑖)                    𝑖 = 1.2. … . 𝐼       (13) 

 

𝐴𝑇𝑖 ≤  𝐷𝑂𝐶 ∗  
𝑑𝑖0

𝑠𝑝𝑒𝑒𝑑
                                          𝑖 = 1.2. … . 𝐼        (14) 

 

𝐴𝑇𝑖 +
𝑑𝑖0

𝑠𝑝𝑒𝑒𝑑
≤  cycle time                                             𝑖 = 1.2. … . 𝐼           (15) 

 

𝑈𝐶𝑖 =  ∑  𝐼𝐶𝑘 𝑦𝑖𝑘 + ∑ ∑  𝑟𝑖 𝛼𝑗𝑖𝑘

𝐼

𝑗=1

− ∑ ∑  (1 − 𝑟𝑖)𝛼𝑗𝑖𝑘

𝐼

𝑗=1

𝐾

𝑘=1

𝐾

𝑘=1

𝐾

𝑘=1

               (16) 

 

𝐼𝐶𝑘 = ∑ 𝑦𝑖𝑘𝑟𝑖

𝐼

𝑗=1

                                                                 𝑘 = 1.2. … . 𝐾      (17) 
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𝑈𝐶𝑖 ≤ 𝐶                                          𝑖 = 1.2. … . 𝐼        (18) 

 

TotalDk ≥  ∑(𝐷𝑖𝑘 + 𝑑𝑖0𝑦𝑖𝑘  )                                    𝑖 = 1.2. … . 𝐼 

𝐾

𝑘=1

      (19) 

∑ 𝛼0𝑗𝑘 

𝐼

𝑗=1

= 𝑣𝑘                                                                  𝑘 = 1.2 … . 𝐾       (20) 

 

∑ 𝛼𝑖0𝑘 

𝐼

𝑖=1

= 𝑣𝑘                                                                  𝑘 = 1.2 … . 𝐾       (21) 

 

𝑟𝑖 = (0.1), 𝑣𝑘 = (0.1),  𝛼𝑖𝑗𝑘 = (0.1),  𝑦𝑖𝑘 = (0.1) 

 

𝐷𝑖𝑘 ≥ 0.  𝑇𝑜𝑡𝑎𝑙𝐷𝑘 ≥ 0.  𝐴𝑇𝑖 ≥ 0.  𝑊𝑇𝑖 ≥ 0.  𝑈𝐶𝑖 ≥ 0. 𝐼𝐶𝑖 ≥ 0   

Where: 

I: number of passengers 

K: number of available vehicles 

dij: direct distance between passengers i and j 

di0: direct distance between passenger i and station  

CT: time value of passenger per hour 

CO: unit operating cost of vehicle per kilometer 

Speed: vehicles speed 

DOC: Degree of Circuity 

cycle time=20 minutes 

C=capacity of vehicles 

M: a big enough number used for modelling the expression 
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Formula (3) is the objective function of the problem. Constraint (4) specifies that each passenger 

is served by exactly one vehicle. Constraint (5) ensures that if a passenger is assigned to a vehicle, it is 

considered as a used vehicle. Eq. (6) makes sure that the total number of used vehicles does not exceed 

the total number of available vehicles. Eq. (7) defines that each path belongs to a single vehicle. Eq. (8) 

and (9) make sure that each passenger is assigned to a path. Eq. (10), (11), and (12) define the arrival time 

of vehicles to passengers. Eq. (13) calculates waiting time for passengers and Eq. (14) is additional time 

ratio constraint. Constraint (15) is the cycle time constraint. Eq. (16), (17), and (18) are capacity 

constraints. Total travelled distance is defined by Eq. (19). Eq. (20) and (21) ensure that every route starts 

and ends at the station.  

3.2. Hypothetical Network  

A hypothetical rail transit line that has four stations was developed to test the developed algorithm and 

demonstrate its efficiency. Also, we tested four trains to test and demonstrate the relocation of buses as 

shown in Figure 3.   

In this example, the headway of the train is assumed to be 20 minutes and the travel time between 

two stations is assumed to be two minutes. The capacity for each bus is assumed to be eight passengers. 

We also waived passengers’ boarding and alighting time at the nodes and the stations. Table 1 shows the 

number of boarding and alighting (B/L) passengers for each station and each train. For example, in 

Station 1 and for Train 1, 16 passengers need to be picked up and get on, and 24 passengers get off and 

need to be at Station 1 for Train 1. We also assumed that the average speed for feeder buses is 30 km/h 

and for trains is 60 km/h, and the distance between stations is 2 km. The travel time monetary value for 

each passenger has been placed at $20 per hour, and $0.3 per kilometers for vehicles is used as the 

operating cost. The origins and the destinations of the boarding and alighting passengers are randomly 

generated around the rail line for four trains. Figure 4 shows the boarding (blue points) and alighting 

passengers (red points) around the four stations for the four trains (yellow points). 
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Step 0: Initialization:  

Set s=1,  Best Cost=positive infinite, T=T0, alpha=0.99,  previous station 

help=0,       next station help=0,  vehicle (s; s: 1 to S) =4,  min vehicle(s; s: 1 to S) =  0  

Step 1: Clustering:     

 Define passenger’s cluster 

Step 2: Create random solution  

 Considering the length of trip (number of passengers (s) +vehicles(s)-1) 

   set x as a random solution 

Step 3: Find optimal solution: 

  IF It1<It1max, THEN  

  go to step 4, otherwise go to step 6  

   END IF 

Step 4: IF It2< It2max, THEN 

  go to step 4.1, otherwise go to step 5  

   END IF 

 Step 4.1: Creating neighborhood: 

  set xnew = a neighborhood of x 

 Step 4.2: IF best cost for x< best cost for xnew, THEN 

   set x=xnew and go to step 4.5, otherwise go to step 4.3 

   END IF 

Step 4.3: p= exp-(cost xnew – cost x)/T*Cost x 

Step 4.4: Accept x= xnew by p -probability and reject- and x= xnew by (1-p) and go to step 4.5 

Step 4.5: Cost calculation for xnew  

Step 4.6: IF best cost for xnew > best cost, THEN  

 set bestsol= xnew 

   END IF 

Step 4.7: IF xnew is feasible (considering time ratio), and best cost for xnew > feasible_best cost, THEN  

 set feasible_bestsol= xnew 

  END IF 

Step 4.8: Reducing the temperature: 

  set T = alpha*T0 (0<alpha<1) 

Step 4.9: set It2=It2+1 and go to step 4 

Step 5: Set It1=It1+1 and go to step 3 

Step 6: IF feasible_bestsol is empty, THEN  

  min vehicle (s)= vehicle (s)+1 and go to step 7, otherwise go to step 14 

END IF 

Step 7: Calculate the following proportion for stations s-1 and s+1: number of passengers (s)/vehicle(s) 

Step 8: IF s-1 exists and vehicle (s-1)> min vehicle (s-1), THEN 

go to step 9, otherwise go to step 11 

END IF 

Step 9: IF proportion for station s is ≤ the proportion for station s+1 or  vehicle (s+1) ≤ min vehicle (s+1) 

go to step 10, otherwise go to step 11 

END IF 
Step 10: Set previous station help (s)= previous station help (s)+1 and vehicle (s-1)=vehicle (s-1)-1, s=s-1, and 

go to step 2 

Step 11: IF s+1 exists and vehicle (s+1)> min vehicle (s+1) THEN 

  go to step 12, otherwise go to step 13 

   END IF 

Step 12: Set next station help (s)= next station help(s)+1 and vehicle (s+1)=vehicle (s+1)-1 and go to step 2 

Step 13: Show “The problem is not feasible; more vehicles is needed” 

Step 14: IF s<S, THEN 

  set s=s+1 and go to step 2, otherwise go to step 15 

   END IF 

Step 15: Show results 

Step 16: END  

 

Figure 2. The developed SA algorithm to solve the model 
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Figure 3. Conceptual operation of feeder transit (regular and relocation buses) 
 

 

Table 1. Passenger information for each station and each train 

Train 

Station 1 Station 2 Station 3 Station 4 Average 

total 

direct 

travel 

distance 

(Km) 

Boarding/ 

Alighting 

passengers 

(prs) 

Average 

direct 

travel 

distance 

(Km) 

Boarding/ 

Alighting 

passengers 

(prs) 

Average 

direct 

travel 

distance 

(Km) 

Boarding/ 

Alighting 

passengers 

(prs) 

Average 

direct 

travel 

distance 

(Km) 

Boarding/ 

Alighting 

passengers  

(prs) 

Average 

direct 

travel 

distance 

(Km) 

Train 1 16 + 24 2.08 21 + 19 2.33 19 + 21 2.23 25 + 15 2.08 2.18 

Train 2  8 + 12 2.37 24 + 36 2.49 26 + 24 2.35 16 + 14 2.20 2.38 

Train 3 16 + 29 2.37 12 + 13 2.15 26 + 29 2.37 15 + 20 2.26 2.31 

Train 4 19 + 21 2.34 23 + 17 2.24 21 + 19 2.36 20 + 20 2.39 2.33 

Average passenger total direct travel distance (Km)  2.30 
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Figure 4. Geographical distributions of the passengers 
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4. ANALYSES AND RESULTS 

The proposed SA started with the initializing of inputs and clustering of the passengers. The inputs are: 

passengers demand coordination 20 minutes before train arrival, vehicle speed, trains’ schedules, stations’ 

coordination, and velocity of trains. In the next step, the algorithm finds the optimal solution. It is 

important in this algorithm that the cost calculation process includes three parameters: without help, with 

help from the previous station, and help from next station. Finally, the outputs would be passenger’s 

travel times, vehicles traveled distance, assigned buses in each station in each time window, relocated 

buses, and routes. 

Figure 5 shows the results of the feeder bus routings including relocation of the buses. For Train 

3, two buses were relocated, shown in dash lines. One bus was relocated from Station 2 to Station 1, and 

one bus was relocated from Station 2 to Station 3.  

As mentioned previously, one aspect that can be distinguished in this research is considering 

individual passengers’ Max DOC (Maximum Degree of Circuity). Unlike package delivery and pickup, 

passengers are likely to consider their travel times in the feeder bus to choose this service. So in this 

research, we calculated each individual passenger’s shortest direct travel time from the origin to the 

station (or to the destination from the station), and computed the maximum acceptable travel time in the 

feeder bus as a constraint for the algorithm. Those acceptable additional times are calculated and used as a 

ratio (travel time in the feeder bus/direct travel time to the origin or to the station). Four different Max 

DOCs (2.5, 3, 3.5 and 4) were applied to the algorithm and the results are shown in Table 2 to Table 5.  

Table 6 summarizes the results of Table 2 and shows the comparison of models with four Max 

DOCs. As expected, with higher Max DOCs, total costs of the service decreased due to the more relaxed 

constraint (from $541.13 to $539.00 to $537.87 to $536.28). With the higher ratio, the minimum number 

of buses used and vehicle traveled distance also decreased (from 259.55 km to 257.80 km to 255.60 km to 

247.24 km) while passengers’ total travel time more likely increased, although it did not show a clear 

relationship with the Max DOC.  
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The expectation of the shorter passenger travel time with the lower Max DOC due to a more 

direct route was not always fulfilled because of the less efficient routings to satisfy the lower maximum 

additional individual passengers’ travel time ratio constraint. Contrary to the authors’ initial intuition, 

which expected the longer passenger travel time and shorter operating distance due to the more circuitous 

routings with the higher Max DOC, no clear trade-off relationship was found between passenger travel 

time and vehicle operating costs along the various Max DOCs. 

Although total costs were reduced with the higher Max DOC due to the more relaxed constraint 

for the algorithm, the savings in total costs were not significant (0.37%, 0.58% and 0.87%, respectively). 

So, transit agencies will decide whether to choose lower maximum additional individual passenger travel 

time ratio (2.5) for less maximum Degree of Circuity for individual passengers (2.49) and higher total 

costs ($541.13) and longer vehicle operating distance (259.55 km) or higher maximum Degree of Circuity 

ratio (4.0) for higher maximum Degree of Circuity for individual passengers (3.76) but less total costs 

($536.28) and shorter vehicle operating distance (247.24 km).  
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Figure 5. Results of the feeder bus routings (Max DOC of 2.5) 
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Table 2. Results of the model with Max DOC of 2.5 

Train Station Boarding 

passengers 

Alighting 

passengers 

Total 

passengers 

Available 

buses 

Used 

bus 

trips 

Relocation 

buses   

(+,-) 

Vehicle 

traveled 

distance 

(Km) 

Total 

passenger 

travel 

time 

(hour) 

Average 

distance 

traveled 

to each 

station 

(Km) 

Total 

passenger 

average 

distance 

traveled 

(Km) 

Total 

cost in 

each 

stage 

($) 

Total 

cost ($) 

#1 #1 17 23 40 4 4 0 15.19 1.47 1.65 1.64 33.93 136.29 

#2 19 21 40 4 4 0 16.91 1.41 1.58 33.19 

#3 21 19 40 4 4 0 17.86 1.54 1.73 36.15 

#4 18 22 40 4 4 0 15.96 1.41 1.59 33.03 

#2 #1 13 7 20 4 3 -1 9.47 0.69 1.55 1.61 16.58 132.72 

#2 31 29 60 4 5 1 21.85 1.95 1.46 45.61 

#3 32 18 50 4 4 0 16.20 2.07 1.86 46.21 

#4 12 18 30 4 4 0 12.52 1.03 1.54 24.33 

#3 #1 24 21 45 3 4 1 17.90 1.75 1.75 1.68 40.39 140.62 

#2 11 14 25 5 3 -2 13.73 0.99 1.78 23.84 

#3 31 29 60 4 5 1 24.79 2.23 1.67 51.96 

#4 16 14 30 4 4 0 13.64 1.02 1.53 24.43 

#4 #1 17 23 40 4 4 0 15.39 1.38 1.56 1.58 32.30 131.50 

#2 22 18 40 3 4 1 15.45 1.48 1.66 34.21 

#3 17 23 40 5 4 -1 14.02 1.26 1.42 29.44 

#4 18 22 40 4 4 0 18.66 1.50 1.68 35.54 

Total 319 321 640 64 64 0 259.55 23.16   1.63 541.13 541.13 
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Table 3. Results of the model with Max DOC of 3 

Train Station Boarding 

passengers 

Alighting 

passengers 

Total 

passengers 

Available 

buses 

Used 

bus 

trips 

Relocation 

buses   

(+,-) 

  

Vehicle 

traveled 

distance 

(Km) 

Total 

passenger 

travel 

time 

(hour) 

Average 

distance 

traveled 

to each 

station 

(Km) 

Total 

passenger 

average 

distance 

traveled 

(Km) 

Total 

cost in 

each 

stage 

($) 

Total 

cost ($) 

#1 #1 17 23 40 4 4 0 18.94 1.40 1.58 1.62 33.73 135.36 

#2 19 21 40 4 4 0 16.46 1.39 1.57 32.78 

#3 21 19 40 4 4 0 16.65 1.54 1.73 35.82 

#4 18 22 40 4 4 0 15.96 1.41 1.59 33.03 

#2 #1 13 7 20 4 4 0 9.95 0.58 1.31 1.67 14.64 138.23 

#2 31 29 60 4 4 0 23.56 2.31 1.73 53.26 

#3 32 18 50 4 4 0 19.90 2.00 1.80 46.00 

#4 12 18 30 4 4 0 12.52 1.03 1.54 24.33 

#3 #1 24 21 45 4 4 0 15.93 1.65 1.65 1.64 37.68 136.34 

#2 11 14 25 4 4 0 12.68 0.82 1.47 20.12 

#3 31 29 60 4 4 0 22.32 2.37 1.78 54.12 

#4 16 14 30 4 4 0 13.64 1.02 1.53 24.43 

#4 #1 17 23 40 4 4 0 15.39 1.38 1.56 1.56 32.30 129.07 

#2 22 18 40 4 4 0 12.85 1.47 1.65 33.17 

#3 17 23 40 4 4 0 14.02 1.26 1.42 29.43 

#4 18 22 40 4 4 0 17.03 1.45 1.63 34.17 

Total 319 321 640 64 64 0 257.80 23.08   1.62 539.00 539.00 
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Table 4. Results of the model with Max DOC of 3.5 

Train Station Boarding 

passengers 

Alighting 

passengers 

Total 

passengers 

Available 

buses 

Used 

bus 

trips 

Relocation 

buses   

(+,-) 

Vehicle 

traveled 

distance 

(Km) 

Total 

passenger 

travel 

time 

(hour) 

Average 

distance 

traveled 

to each 

station 

(Km) 

Total 

passenger 

average 

distance 

traveled 

(Km) 

Total 

cost in 

each 

stage 

($) 

Total 

cost ($) 

#1 #1 17 23 40 4 4 0 18.94 1.40 1.58 1.62 33.73 135.36 

#2 19 21 40 4 4 0 16.46 1.39 1.57 32.78 

#3 21 19 40 4 4 0 16.65 1.54 1.73 35.82 

#4 18 22 40 4 4 0 15.96 1.41 1.59 33.03 

#2 #1 13 7 20 4 4 0 9.95 0.58 1.31 1.66 14.64 137.27 

#2 31 29 60 4 4 0 22.22 2.28 1.71 52.30 

#3 32 18 50 4 4 0 19.90 2.00 1.80 46.00 

#4 12 18 30 4 4 0 12.52 1.03 1.54 24.33 

#3 #1 24 21 45 4 4 0 15.93 1.65 1.65 1.64 37.68 136.34 

#2 11 14 25 4 4 0 12.68 0.82 1.47 20.12 

#3 31 29 60 4 4 0 22.32 2.37 1.78 54.12 

#4 16 14 30 4 4 0 13.64 1.02 1.53 24.43 

#4 #1 17 23 40 4 4 0 15.39 1.38 1.56 1.57 32.30 128.90 

#2 22 18 40 4 4 0 12.85 1.47 1.65 33.17 

#3 17 23 40 4 4 0 14.02 1.26 1.42 29.43 

#4 18 22 40 4 4 0 16.17 1.46 1.64 33.99 

Total 319 321 640 64 64 0 255.60 23.06   1.62 537.87 537.87 
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Table 5. Results of the model with Max DOC of 4 

Train Station Boarding 

passengers 

Alighting 

passengers 

Total 

passengers 

Available 

buses 

Used 

bus trips 

Relocation 

buses   

(+,-) 

  

Vehicle 

traveled 

distance 

(Km) 

Total 

passenger 

travel 

time 

(hour) 

Average 

distance 

traveled 

to each 

station 

(Km) 

Total 

passenger 

average 

distance 

traveled 

(Km) 

Total 

cost in 

each 

stage 

($) 

Total 

cost 

($) 

#1 #1 17 23 40 4 4 0 18.94 1.40 1.58 1.62 33.73 135.36 

#2 19 21 40 4 4 0 16.46 1.39 1.57 32.78 

#3 21 19 40 4 4 0 16.65 1.54 1.73 35.82 

#4 18 22 40 4 4 0 15.96 1.41 1.59 33.03 

#2 #1 13 7 20 4 4 0 9.95 0.58 1.31 1.67 14.64 137.09 

#2 31 29 60 4 4 0 22.22 2.28 1.71 52.30 

#3 32 18 50 4 4 0 16.16 2.05 1.84 45.82 

#4 12 18 30 4 4 0 12.52 1.03 1.54 24.33 

#3 #1 24 21 45 4 4 0 15.93 1.65 1.65 1.64 37.68 134.94 

#2 11 14 25 4 4 0 12.68 0.82 1.47 20.12 

#3 31 29 60 4 4 0 17.70 2.37 1.78 52.71 

#4 16 14 30 4 4 0 13.64 1.02 1.53 24.43 

#4 #1 17 23 40 4 4 0 15.39 1.38 1.56 1.57 32.30 128.90 

#2 22 18 40 4 4 0 12.85 1.47 1.65 33.17 

#3 17 23 40 4 4 0 14.02 1.26 1.42 29.43 

#4 18 22 40 4 4 0 16.17 1.46 1.64 33.99 

Total 319 321 640 64 64 0 247.24 23.11   1.62 536.28 536.28 
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Table 6. Summary of the routings for the various circuities 

 
Models Passenger related factors Agency related factors Total factors 

Total 

passenger 

average 

direct 

travel  

distance 

(Km) 

Total 

passenger 

average 

distance 

traveled 

(Km) 

Circuity of 

passenger 

travels due to 

feeder bus 

routings  

Maximum 

applied 

circuity 

for 

passengers  

Average 

passengers 

total travel 

time (h) 

Total 

passenger 

travel cost 

($) 

Total 

bus 

trips 

Average 

vehicles 

traveled 

distance 

(Km)  

Total 

vehicles 

traveled 

distance 

(Km) 

Total 

vehicle 

operating 

cost ($) 

Total 

Cost 

($) 

Percentage 

change of 

the total 

cost (%) 

With ratio 

of 2.5 

0.77 1.63 2.12 2.49 1.45 463.27 64 4.05 259.55 77.87 541.13 - 

With ratio 

of 3 

0.77 1.62 2.11 2.99 1.44 461.67 64 4.03 257.8 77.34 539 -0.37 

With ratio 

of 3.5 

0.77 1.62 2.11 3.21 1.44 461.19 64 3.99 255.6 76.68 537.87 -0.58 

With ratio 

of 4 

0.77 1.62 2.11 3.76 1.44 462.11 64 3.86 247.24 74.17 536.28 -0.87 
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5. IMPACT OF AUTOMATION IN FEEDER TRANSIT NETWORK 

Demand responsive feeder transit which serves first-mile and last-mile are usually small-sized 

bus services. Although they are not new, they have been widely discussed in recent years due to the 

technological innovation and recent successful business models by transportation network companies 

(TNCs), such as Uber and Lyft. People have become familiar with smartphone apps to request service, 

and it has become much easier to dispatch flexible routing small-sized buses with the better 

communication technology and improved optimization process.  

One inherent problem in using the small-sized bus for the flexible service is the high labor costs 

out of the total costs because of the lower vehicle capacity. Although total costs would be lower than a 

regular size bus for the same frequencies and routings due to the small size of the vehicles, most likely 

more frequent service or more vehicles would be required, possibly raising total costs because of lower 

vehicle capacity. Recent development of the automated vehicle technology can be a solution for the 

smaller vehicle flexible transit service’s higher portion of labor costs to the total costs, and it can mostly 

eliminate or minimize the drivers’ labor costs.  

Furthermore, lower operating costs may improve transit routing efficiency. In most studies, there 

are two major components in the objective function to optimize the transit network design, passenger 

travel time and operating costs. If operating costs are lowered, obviously total costs consisting of 

operating costs and passenger travel time costs will be reduced. Will lower operating costs change 

passenger travel times? Will they improve overall transit network efficiency? 

In this study, the economic impact by the automation of the transit operation will be examined. 

Then, using the authors’ previously developed algorithm for the optimal demand responsive flexible 

feeder bus network, optimal flexible transit networks will be generated for various operating costs, and 

their network characteristics will be examined and compared. 
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6. ESTIMATION OF TRANSIT OPERATING COSTS 

Cost is an important factor in transit decision-making since many decisions are cost-related or 

cost-oriented. Reliable and accurate cost models and estimates lead to better operational and strategic 

decisions. Operational costs of a transit system are key factors in critical decisions such as 

implementation, development, and extension of a system. Some cost models/estimates are simple while 

others are sophisticated, complex and consist of several different variables, but usually the outputs are 

expressed as dollars (or other currencies) per some units (e.g., per distance units, per time units, and per 

operator). However, regardless of the complexity and sophistication of the models, they should be based 

on valid and complete sources, cost components, and they should be validated (On Target Performance 

Group, 2011). There are usually some fixed costs that are unaffected by the amount of service and some 

variable costs that increase by vehicle mileage (Victoria Transport Policy Institute, 2016). 

6.1 Conventional Bus Operating Cost  

In this section, a conventional bus is defined as a bus driven by a human driver on a bus route. 

The main operating cost functions that have been considered by the National Transit Database 

(NTD) of the Federal Transit Administration (FTA) are as follows (Federal Transit Administration (FTA), 

2018): 

 Vehicle operations 

 Vehicle maintenance 

 Facility maintenance 

 General administration 

However, the main operating cost types that have been considered by the National Transit 

Database (NTD) of the Federal Transit Administration (FTA) are as follows (Federal Transit 

Administration (FTA), 2018): 

 Operators' salaries and wages 

 Other salaries and wages 
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 Fringe benefits 

 Service costs 

 Fuel and lubricants 

 Tires and tubes 

 Other materials and supplies 

 Utilities 

 Casualty and liability costs 

 Taxes 

 Purchased transportation expenses 

 Miscellaneous expenses 

Similar cost structures have been used by different agencies. In a 2011 study in Denver, 

Colorado, the main cost components were identified as administrative costs and costs based on scheduled 

service miles; however, the following items were allocated separately to account for differences in service 

class or the type of vehicles used on the routes (On Target Performance Group, 2011): 

 Operators (wages and benefits) 

 Consumables (fuel, tires, oil, etc.) 

 Parts (parts needed in vehicle maintenance) 

 Running repair (running repair mechanic hours, labor costs, etc.) 

Table 7 summarizes the bus operating costs per kilometer in the US, UK, and Switzerland. The 

UK costs seemed to be based on different assumptions and variables. Due to the variations, some 

researchers have tried to categorize the operating costs. Table 8 demonstrates operating costs per revenue 

kilometer by agency size.  
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Table 7. Bus operating cost per kilometer 

Location Year 

Total 

Operating Cost 

($) 

Total Units 

(km) 

Unit 

Cost 

($/km) 

Unit 

Cost 

in 

2018 

($/km) 

Source 

US: Bus 2007 18,267,000,000 2,999,809,760  6.09 7.31 (Victoria Transport Policy Institute, 2016) 

Full US 

Reporters 
2016 20,516,800,000 2,869,614,154  7.15 7.46 (Federal Transit Administration (FTA), 2018) 

Top 50 US 

Reporters 
2016 14,818,200,000 1,700,428,644  8.71 9.09 (Federal Transit Administration (FTA), 2018) 

MTA New 

York City 

Transit 

2016 2,779,372,331 139,792,686  19.88 20.75 (Federal Transit Administration (FTA), 2018) 

Massachusetts 

Bay Transp. 

Authority 

2016 412,610,862 37,167,234  11.10 11.59 (Federal Transit Administration (FTA), 2018) 

Southeastern 

Pennsylvania 

Transportation 

Authority 

2016 628,216,161 64,041,234  9.81 10.24 (Federal Transit Administration (FTA), 2018) 

Chicago 

Transit 

Authority 

2016 801,281,245 84,176,213  9.52 9.94 (Federal Transit Administration (FTA), 2018) 

Washington 

Met Area 

Transit  Auth. 

2016 590,647,746 63,349,542  9.32 9.73 (Federal Transit Administration (FTA), 2018) 
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Location Year 

Total 

Operating Cost 

($) 

Total Units 

(km) 

Unit 

Cost 

($/km) 

Unit 

Cost 

in 

2018 

($/km) 

Source 

King County 

Department of 

Transportation 

2016 477,562,833 54,060,019  8.83 9.22 (Federal Transit Administration (FTA), 2018) 

Maryland 

Transit 

Administration 

2016 272,115,276 32,413,493  8.40 8.77 (Federal Transit Administration (FTA), 2018) 

Tri-County 

Metropolitan 

Transportation 

District of 

Oregon 

2016 251,249,183 33,311,352  7.54 7.87 (Federal Transit Administration (FTA), 2018) 

New Jersey 

Transit 

Corporation 

2016 956,997,264 128,337,237  7.46 7.79 (Federal Transit Administration (FTA), 2018) 

New Orleans 

Regional 

Transit 

Authority 

2016 62,560,998 8,573,260  7.30 7.62 (Federal Transit Administration (FTA), 2018) 

Central Puget 

Sound 

Regional 

Transit Auth. 

DBA Sound 

Transit 

2016 118,582,934 19,183,891  6.18 6.45 (Federal Transit Administration (FTA), 2018) 
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Location Year 

Total 

Operating Cost 

($) 

Total Units 

(km) 

Unit 

Cost 

($/km) 

Unit 

Cost 

in 

2018 

($/km) 

Source 

City of 

Phoenix 

Public Transit 

Dept. dba 

Valley Metro 

2016 147,701,121 26,318,168  5.61 5.85 (Federal Transit Administration (FTA), 2018) 

Regional 

Transp District 

(Denver, CO) 

2008 184,514,747 41,408,148  4.46 5.35 (On Target Performance Group, 2011) 

Regional 

Transportation 

District 

(Denver, CO) 

2009 184,358,322 40,234,308  4.58 5.34 (On Target Performance Group, 2011) 

Jacksonville 

Transportation 

Authority 

2016 71,581,487 14,022,097  5.10 5.32 (Federal Transit Administration (FTA), 2018) 

Memphis Area 

Transit 

Authority 

2016 41,583,335 8,499,314  4.89 5.10 (Federal Transit Administration (FTA), 2018) 

Charlotte Area 

Transit System 
2016 80,465,139 16,924,262  4.75 4.96 (Federal Transit Administration (FTA), 2018) 

Central 

Oklahoma 

Transp. and 

Parking Auth. 

2016 21,729,641 4,755,912  4.57 4.77 (Federal Transit Administration (FTA), 2018) 
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Location Year 

Total 

Operating Cost 

($) 

Total Units 

(km) 

Unit 

Cost 

($/km) 

Unit 

Cost 

in 

2018 

($/km) 

Source 

Greater 

Roanoke 

Transit 

Company 

2016 7,011,634 2,578,142  2.72 2.84 (Federal Transit Administration (FTA), 2018) 

England 

outside 

London 

2016 NA NA  2.67 2.79 (Department for Transport (DfT), 2017) 

Wales 2016 NA NA  2.49 2.60 (Department for Transport (DfT), 2017) 

Scotland 2016 NA NA  2.41 2.52 (Department for Transport (DfT), 2017) 

Great Britain 

outside 

London 

2016 NA NA  2.62 2.73 (Department for Transport (DfT), 2017) 

Switzerland 

(Urban) 
2011 NA NA  7.21 8.05 Bundesamt für Verkehr (2011) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

Switzerland 

(Regional) 
2011 NA NA  6.77 7.56 Bundesamt für Verkehr (2011) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

Notes: Total Units (km) = "Annual Vehicle Revenue Kilometers." Unit Costs in 2018 calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics 

(BLS), 2018). £ 1 = $ 1.31 and CHF 1 = $ 1.01 (July 25, 2018)  
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Table 8. Operating cost by agency size for conventional buses 

Agency Size 

Florida Southeast US US 

2008 

Costs 

2018 

Costs 

2008 

Costs 

2018 

Costs 

2008 

Costs 

2018 

Costs 

All Agencies 

Per Revenue 

Kilometer 
 $    4.49   $    5.37   $    4.31   $    5.16   $    6.08   $    7.29  

Per Passenger 

Kilometer 
 $    0.47   $    0.56   $    0.50   $    0.60   $    0.55   $    0.66  

Small 

Agencies 

Per Revenue 

Kilometer 
 $    2.88   $    3.45   $    2.65   $    3.18   $    3.30   $    3.95  

Per Passenger 

Kilometer 
 $    0.59   $    0.71   $    0.56   $    0.67   $    0.47   $    0.56  

Medium-

sized 

Agencies 

Per Revenue 

Kilometer 
 $    3.52   $    4.23   $    4.09   $    4.90   $    4.32   $    5.18  

Per Passenger 

Kilometer 
 $    0.50   $    0.60   $    0.54   $    0.65   $    0.45   $    0.54  

Large 

Agencies 

Per Revenue 

Kilometer 
 $    4.84   $    5.80   $    4.69   $    5.62   $    6.95   $    8.33  

Per Passenger 

Kilometer 
 $    0.46   $    0.55   $    0.49   $    0.59   $    0.57   $    0.68  

Source: (Reich & Davis, 2011) 

Note: 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018) 

There have been some modeling efforts to estimate bus operating costs such as a hybrid approach 

(combining a Bottom-Up and a Top-Down approach) for Italian local public bus transport sector 

(Avenali, Boitani, Catalano, D’Alfonso, & Matteucci, 2017) and a cost and fare estimation for the bus 

transit system of Santiago through a uniform price with and without subsidy and two-part tariffs with and 

without subsidy (Batarce & Galilea, 2018). 

To conclude this section, due to several different factors – such as differences in wages, agency 

size, vehicle size, service features and design, demand, and other regional differences – bus operating cost 

varies from city to city and even from service to service, but the main costs are crew wages, capital costs, 
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maintenance, and administration costs. The National Transit Database (NTD) of the FTA has a 

comprehensive nationwide transit systems database with several different metrics that can be used to dig 

data for certain cities and/or aggregate level (e.g., by agency size, urban population, etc.). Based on the 

data, $3.95 – $8.33 is the range of operating cost per revenue kilometer for the US. 

6.2 Expected Bus Operating Cost with Emerging Technology 

There are various bus types with emerging technologies. Their definitions are as follows: 

 CV Bus Transit: a human driver operates the bus on a bus route in a connected vehicle 

environment. 

 AV Bus Transit: an autonomous bus operates on a bus route. 

 CAV Bus Transit: an autonomous bus operates in a connected vehicle environment. 

Table 9 summarizes the possible options of the future evolution of current transit with 

developing technologies. During the transitional period, some researchers consider semi-AV systems 

(Zhang, Jenelius, & Badia, 2018) and also different levels of market penetration. Shared transport services 

have also been proposed, discussed and analyzed in the recent literature. 

The future of public transportation has been discussed in positive and negative ways in the recent 

literature. A recent study based on the Capital Metropolitan Transportation Authority bus fleet in Austin, 

Texas, predicts that electric buses will be life-cycle cost-competitive by 2022 and self-driving buses 

enabled by electric engines possibly could be adopted by 2023-2026 or 2024-2035, depending on 

different scenarios (Quarles & Kockelman, 2018). 

Stocker & Shaheen (2017) discussed the existing business models of shared mobility providers. 

The models were as follows: 

 Business-to-Consumer: Vendors typically own/lease and maintain a fleet of vehicles and 

allow users to access these vehicles via membership and/or usage fees 

 Peer-to-Peer: Companies supervise transactions among individual owners and renters by 

providing the necessary platform and resources needed for the exchange 
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 For-Hire: A customer or passenger hires a driver on an as-needed basis for transportation 

services. 

Table 9. Possible options of the evolution of current transit in the future with developing 

technologies. 

Transit System CV EV Note 

Conventional 

  Existing condition in many cities. 

    

    

    

AV 

    

    

    

    

Notes: CV: Connected Vehicle; EV: Electric Vehicle; AV: Autonomous  

 

Stocker & Shaheen (2017) stated that SAV (Shared Automated Vehicles) business models would 

depend on vehicle ownership and network operations and discussed the possibilities of each of the 

aforementioned business models. 

Bosch et al. (2017) stated that public transportation (in its current form) would only remain 

economically competitive where demand can be bundled to larger units, which would be the case in dense 

urban areas, where public transportation can be cheaper than autonomous taxis (even if pooled) and 

private cars. In their study, they reviewed and listed past relevant studies and also estimated associated 

costs of emerging systems through a comprehensive approach. Table 10 summarizes the operating costs, 

mainly per passenger-distance.  
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Table 10. Estimated operating costs for some emerging transit technologies 

System Type Year Cost Currency Cost Unit 
Cost in 2018 US 

Dollars ($/km) 
Note Source 

Purpose-built shared AV 

system for a small to 

medium town 

2013 0.09 $ Per trip-km 0.10   

Burns et al. (2013) cited in 

(Bosch, Becker, Becker, & 

Axhausen, 2017) 

Shared AV system (cost 

of AVs only) 
2015 0.31 $ Per kilometer 0.33 

Investment cost = 

$70,000 

Fagnant and Kockelman (2015) 

cited in (Bosch, Becker, 

Becker, & Axhausen, 2017) 

Shared AVs 2015 0.27 $ Per trip-km 0.29 
Operating cost plus 

30% profit margin  

Johnson (2015) cited in (Bosch, 

Becker, Becker, & Axhausen, 

2017) 

Purpose-built shared AVs 

used as pooled taxis 
2015 0.10 $ Per trip-km 0.11   

Johnson (2015) cited in (Bosch, 

Becker, Becker, & Axhausen, 

2017) 

Fully autonomous 

vehicles used with ride-

sharing 

2016 0.12 - 0.19 $ 
Per 

passenger-km 
0.13 - 0.20 

Lower-bound and 

upper-bound costs 

Stephens et al. (2016) cited in 

(Bosch, Becker, Becker, & 

Axhausen, 2017) 

Ride-sharing scheme in 

an urban area in 

Germany 

2016 0.15 € 
Per 

passenger-km 
0.18   

Friedrich and Hartl (2016) cited 

in (Bosch, Becker, Becker, & 

Axhausen, 2017) 

Fully autonomous 

vehicles used with ride-

sharing 

2016 0.19 $ 
Per 

passenger-km 
0.19   

Johnson and Walker (2016) 

cited in (Bosch, Becker, 

Becker, & Axhausen, 2017) 

Fully autonomous 

vehicles in a ride-sharing 

scheme 

2016 0.09 € 
Per 

passenger-km 
0.11 

Lower cost than rail 

services 

Hazan et al. (2016) cited in 

(Bosch, Becker, Becker, & 

Axhausen, 2017) 

Autonomous bus in 

urban area  
2017 0.25 CHF 

Per 

passenger-km 
0.26   

(Bosch, Becker, Becker, & 

Axhausen, 2017) 

Autonomous bus in 

regional area  
2017 0.42 CHF 

Per 

passenger-km 
0.43   

(Bosch, Becker, Becker, & 

Axhausen, 2017) 

Notes: 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018). € 1 = $ 1.17 and CHF 1 = $ 1.01 (July 

25, 2018)  
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Bosch et al. (2017) stated that the overhead costs of shared services were neglected in all previous 

cases that they reviewed (all rows of Table 10 except the last two rows). This is a major limitation since 

the new service markets in the transport sector such as Uber and Lyft only offer overhead services rather 

than actual transportation services. In their comprehensive analysis, they accounted for potential impacts 

of electrification and automation on operating costs (Table 11); however, these impacts are predicted for 

solo (1 seat), midsize (4 seats), van (8 seats), and minibus (20 seats) vehicles. In addition, electrification 

and automation may decrease total operating cost per kilometer (of city and regional buses with 60 seats) 

by 5.5% and 55%, respectively (Bosch, Becker, Becker, & Axhausen, 2017). Since it’s possible that the 

smaller vehicles might be used in public transport using emerging technologies, they provided detailed 

cost estimates for vans (8 seats) and minibuses (20 seats) along with regular buses that are presented in 

Table 12. 

The Bosch et al. (2017) study results indicated that private vehicle ownership would remain 

attractive in comparison with other modes. Line-based public transportation will remain viable for high-

demand relations (at dense urban areas); shared taxis and transit based on smaller vehicles would replace 

line-based public transportation on low-demand relations. One-seaters would be used for first- and last-

mile connections if fleet heterogeneity would not be a problem, as was also studied and proposed by 

Chong et al. (2011). Cleaning cost would be an important cost component that might be as much as one-

third of the total operating cost. It is usually an overlooked cost that may add $0.50-1.00 per trip or 5-10¢ 

per vehicle-mile, plus travel time and costs for driving to cleaning stations (Litman, 2018). 

Zhang et al. (2018) proposed an analytical cost model of bus operations considering emerging 

automation technology. The generalized cost (the sum of waiting, riding, operating and capital cost) was 

modeled for conventional (level 0), semi-autonomous (level 4) and fully autonomous (level 5) bus 

services on a generic corridor-and-branches network. The bus company cost consists of bus operating cost 

(80%) and overhead cost (20%). Crew cost (40% of total cost) is a major cost component. The main 

impact of automation will be in the direct reduction or elimination of on-vehicle crew costs. The CV 

environment will also contribute with platooning, which will reduce the operating costs of buses. The 
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main cost components considered in the study included fixed or time-based costs, such as travel time cost, 

vehicle hour cost and so on. The analytical and numerical results supported the fully autonomous bus 

services even with high additional capital costs; however, the success of semi-autonomous bus services 

was weak and very dependent on network, demand and other factors. 

 

Table 11. Potential impacts of electrification and automation on operating costs 

Item Electric Autonomous 

Acquisition - +20% 

Yearly insurance -35% -50% 

Yearly tax -100% - 

Yearly parking - - 

Yearly toll - - 

Maintenance +28% - 

Cleaning - $0.02-0.05 per kilometer 

Tires - -10% 

Fuel -50% -10% 

Source: (Bosch, Becker, Becker, & Axhausen, 2017) 

Table 12. Estimated operating costs considering different emerging technologies 

Mode Capacity Technology 

Urban Regional 

Per  

Vehicle-km 

Per Passenger-

km 

Per  

Vehicle-km 

Per Passenger-

km 

Bus 60 

Conventional  $           7.37   $           0.55   $           6.92   $           0.92  

Electric  $           7.00   $           0.52   $           6.57   $           0.87  

Autonomous  $           3.32   $           0.25   $           3.12   $           0.41  

EV & AV  $           3.15   $           0.24   $           2.95   $           0.39  

Minibus 20 

Conventional  $           2.02   $           0.48   $           2.51   $           1.30  

Electric  $           1.95   $           0.47   $           2.44   $           1.27  

Autonomous  $           1.07   $           0.26   $           0.70   $           0.36  

EV & AV  $           1.01   $           0.25   $           0.63   $           0.32  

Van 8 

Conventional  $           3.66   $           1.75   $           2.42   $           1.25  

Electric  $           3.60   $           1.72   $           2.38   $           1.23  

Autonomous  $           0.80   $           0.38   $           0.60   $           0.31  

EV & AV  $           0.77   $           0.36   $           0.57   $           0.29  

Source: (Bosch, Becker, Becker, & Axhausen, 2017) 

Notes: Costs presented in 2018 US dollars. Shaded cells calculated based on 5.5% and 55% cost decrease of 

electrification and automation, respectively (Bosch, Becker, Becker, & Axhausen, 2017). Assumption: EV and AV 

influence independently and result in 57.25% decrease. 2018 Costs calculated using “CPI Inflation Calculator” 

(Bureau of Labor Statistics (BLS), 2018) 
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Presently, new transportation technologies are under development, such as AV and CV, while 

some other technologies are on the path to mass adoption, such as shared services and EV. Considering 

different rates of progress and adoption and the way these technologies may blend and interact, currently 

most of the predictions and scenarios are mixed with significant levels of speculation and contemplation. 

Some operating costs have been proposed and examined, but estimated costs may not be reliable due to 

uncertainty about the business model schema and also involved technologies and economies of scales 

phenomenon. However, to have rough estimates in 2018 costs, the values in Table 8 were adjusted by the 

5.5% and 55% reductions proposed by Bosch et al. (2017) for electrification and automation of buses, 

respectively. For smaller transit vehicles such as vans and minibuses, the values in Table 12 may be used. 

It should be noted that estimates were based on data from Switzerland but converted into 2018 US dollars. 

Table 13 presents the estimates in 2018 costs by different agency sizes. 

 

Table 13. Operating cost per revenue kilometer for buses by agency size for emerging 

technologies (2018 US dollars) 

Agency Size Conventional Electric Autonomous EV & AV 

All Agencies  $           7.29   $           6.92   $           3.28   $           3.12  

Small Agencies  $           3.95   $           3.75   $           1.78   $           1.69  

Medium-sized Agencies  $           5.18   $           4.92   $           2.33   $           2.22  

Large Agencies  $           8.33   $           7.92   $           3.75   $           3.56  

Notes: 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018). 

Assumption: EV and AV influence independently and result in 57.25% decrease. 

 

Based on the values in Table 8, Table 12, and Table 13, the following ranges of operating costs 

(2018 US dollars) per kilometer seem reasonable: 

 Bus (conventional): $3.95 – 8.33 

 Bus (emerging technologies): $1.69 – 3.56 

 Minibus (conventional): $2 – 2.5 
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 Minibus (emerging technologies): $0.63 – 1.01 

 Van (conventional): $2.42 – 3.66 

 Van (emerging technologies): $0.57 – 0.77 

 

7. ANALYSES AND RESULTS WITH VARIOUS TRANSIT OPERATING 

COSTS  

A hypothetical rail transit line that has four stations was created to test the developed algorithm 

and demonstrate its efficiency. Also, we tested four trains to test and demonstrate the relocation of buses. 

In this example, the capacity for each bus is assumed to be eight passengers. We also waived passengers’ 

boarding and alighting time at the nodes and the stations. Table 14 shows the number of boarding and 

alighting passengers for each station and for each train. For example, in Station 1, 20 passengers need to 

be picked up and get on and 20 passengers get off and need to be at Station 1, and so on. The bus speed is 

assumed to be 30km/h and the travel time value for passengers is assumed to be $20/hour. The origins 

and destinations of the boarding and alighting passengers are randomly generated around the rail line for 

four trains. Figure 6 shows the boarding (blue points) and alighting passengers (red points) around four 

stations. 

 

Table 14. Passenger information for each station 

Station 1 Station 2 Station 3 Station 4 Average 

total 

direct 

travel 

distance 

(Km)  

Boarding/ 

Alighting 

passengers 

(prs) 

Average 

direct 

travel 

distance 

(Km)  

Boarding/ 

Alighting 

passengers 

(prs) 

Average 

direct 

travel 

distance 

(Km)  

Boarding/ 

Alighting 

passengers 

(prs) 

Average 

direct 

travel 

distance 

(Km) 

Boarding/ 

Alighting 

passengers  

(prs) 

Average 

direct 

travel 

distance 

(Km) 

20+20 1.1714 19+16 1.1688 18+22 1.1962 18+17 1.2765 1.2019 
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Figure 6. Geographical distributions of the passengers 
 

 
The generated demand on the hypothetical network is applied to the optimization algorithm. The 

key assumptions in the computation are bus speed of 30km/hr to convert passenger travel distance to their 

travel time, and $20/hr time value to convert their travel time to travel costs. As discussed in the literature 

review, estimating vehicle operating costs per distance requires wild estimations with many assumptions 

because the components for vehicle operating costs are in different dimensions, such as fixed costs, 

variable costs, time-related, distance-related, etc. Cost estimation for vehicle operation with emerging 

technology requires even wilder assumptions and guesses. So, the authors tested five operating cost 

scenarios, from $1/km to $5/km, which covers CAV van or minibus services to general van or minibus 

services, as a sensitivity analysis to find the impact of operating cost reduction on the optimal feeder 

transit network. Figure 7 shows the sample optimal network with $3/km operating costs. 

Table 15 shows the network characteristics of five unit operating costs. Obviously, when unit 

operating costs decline ($5/km to $1/km), total operating costs ($395.85 to $90.60) and total costs 

($640.66 to $302.91) decline. One thing that should be noted is when unit operating costs decline ($5/km 

to $1/km), average passenger travel distance (3.44 km to 2.99 km) and total passenger travel costs 

($244.82 to $212.32) decline while total operating costs per unit operating costs increase (79.17 to 90.60). 

Also, the total costs decrease with the lower unit operating costs even if the networks remain the same 

(total cost with $5/km network), due to the lower total operating costs. However, their total costs are 

always higher than the total costs of the optimized network, because the feeder network with $5/km unit 
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cost was not optimized with the lower unit operating costs. Figure 8 shows the relationships between cost 

components of the transit network and unit operating costs. 

The insight gained from these results is that if unit operating costs decrease, the portion of 

passenger travel costs in total costs increases, and the optimization process tends to reduce passenger 

costs more while it reduces total costs. Assuming that automation of the vehicles reduces the operating 

costs, it will reduce total operating costs, total costs and total passenger travel costs as well.  

 

 

 
Figure 7. Results of the feeder bus routings ($3/km Unit Operating Cost) 
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Table 15. The network characteristics of optimal feeder bus networks with various unit operating costs 

Unit 

operating 

cost 

($/Km) 

Station 

Vehicle 

travelled 

Distance 

(Km) 

Total 

passenger 

travel 

time 

(hour) 

Average 

passenger 

distance 

travelled to 

each station 

(Km) 

Total 

passenger 

average 

distance 

travelled 

(Km) 

Total 

passenger 

travel cost 

($) 

Percentage 

Change 

(passenger 

cost) 

Total bus 

operating 

cost ($) 

Percentage 

Change 

(operating 

cost) 

Total 

operating 

cost/Unit 

operating 

cost 

Cost($) 
Total 

cost($) 

Percentage 

Change 

(total cost) 

Total 

cost 

with 

$5/km 

network 

$1/Km 

#1 23.96 2.72 3.06 

2.99 212.32   90.60   90.60 

78.32 

302.91   323.99 
#2 21.49 2.37 3.05 68.98 

#3 23.17 2.86 3.22 80.37 

#4 21.98 2.66 3.42 75.25 

$2/Km 

#1 20.72 2.91 3.27 

3.06 217.62 2.50 172.97 90.92 86.48 

99.53 

390.59 28.95 403.16 
#2 20.94 2.43 3.12 90.39 

#3 23.17 2.86 3.22 103.54 

#4 21.66 2.69 3.46 97.13 

$3/Km 

#1 20.72 2.91 3.27 

3.09 219.98 1.08 256.67 48.39 85.56 

120.25 

476.65 22.03 482.33 
#2 20.63 2.47 3.17 111.27 

#3 23.03 2.87 3.23 126.57 

#4 21.18 2.75 3.54 118.56 

$4/Km 

#1 20.00 3.03 3.40 

3.21 228.28 3.77 332.40 29.50 83.10 

140.49 

560.68 17.63 561.50 
#2 19.53 2.65 3.41 131.21 

#3 22.86 2.90 3.27 149.49 

#4 20.72 2.83 3.64 139.50 

$5/Km 

#1 20.00 3.03 3.40 

3.44 244.82 7.24 395.85 19.09 79.17 

160.48 

640.66 14.26 640.66 
#2 18.14 2.94 3.77 149.40 

#3 22.86 2.90 3.27 172.35 

#4 18.18 3.38 4.34 158.44 
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Figure 8. Various cost components for various unit operating costs 
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8. CONCLUSIONS 

Although demand responsive feeder bus operation is possible even with human-driven vehicles, it 

is not very popular and mostly available as a special service because of the high operating costs due to the 

intensive labor costs. However, once automated vehicles become available, small-sized flexible door-to-

door feeder bus operation can become more realistic, and preparing for that is necessary to catch the rapid 

improvement of automated vehicle technology. So, in this research, an algorithm for the optimal flexible 

feeder bus routing, which considers relocation of buses for multi-stations and multi-trains, was developed 

using an SA algorithm for future automated vehicle operation. 

 The example was developed and tested to demonstrate the developed algorithm. The 

algorithm successfully handled relocating the buses when the optimal bus routings were not feasible with 

the available buses at certain stations. Also the developed algorithm considered the maximum acceptable 

Degree of Circuity (DOC) for each passenger’s trip while minimizing total costs including total passenger 

travel time and vehicle traveled distance. Unlike package delivery and pickup problems, each individual 

considers his/her travel time in the feeder bus, while a transit agency considers vehicle operating costs. In 

order to evaluate the impact of the acceptable maximum travel time, four types of Max DOC (2.5, 3, 3.5 

and 4) were applied.  

As expected, with higher Max DOCs, total costs of the service decreased due to the more relaxed 

constraint. With the higher ratio, the minimum number of buses used and vehicle traveled distance also 

decreased while passengers’ total travel time more likely increased, although it did not show a clear 

relationship with the Max DOC. This study also found that the expectation of the shorter passenger travel 

time with the lower Max DOC due to a more direct route was not always fulfilled because of the less 

efficient routings generated by the algorithm to satisfy the lower maximum individual passenger’s Degree 

of Circuity constraint.  

Although total costs were reduced with the higher Max DOC due to the more relaxed constraint 

for the algorithm, the savings in total costs were not significant. So, transit agencies will decide whether 



 

56 

 

to choose lower individual passengers’ maximum DOC for less maximum additional travel time for 

individual passengers or higher individual passengers’ maximum DOC for less total costs and less transit 

operating costs. 

This study also provides a mechanism for future evaluations of how efficient automated feeder 

services are and how they will compare with the fast-approaching automated ridesharing and carsharing 

services. Eventually, these studies will help predict users’ travel behaviors and modal choices between the 

automated ridesharing/carsharing operation and the automated feeder service for mass transit.  

For future research, a feeder bus routing algorithm for the trains with much shorter headways is 

being developed, which requires a passenger-feeder bus-train matching process in the algorithm. Also, the 

algorithm using smarter metaheuristics, one that incorporates composite heuristics for the larger and real 

networks, will be developed and adopted. 

Automated vehicles are expected to provide safer service and reduce accidents, and also expected 

to lower operating costs by eliminating or reducing labor costs. 

Unlike fixed route mass transit, small vehicle demand responsive service uses flexible routing, 

which means lower unit operating costs not only decrease total operating costs and total costs but also can 

affect routing and impact network characteristics.  

In this research, optimal flexible demand responsive feeder transit networks were generated with 

various unit transit operating costs using the authors’ previously developed routing optimization 

algorithm. Then network characteristics of those feeder networks were examined and compared.  

The results showed that when unit operating costs decline, total operating costs and total costs 

obviously decline. Furthermore, when unit operating costs decline, the average passenger travel distance 

and total passenger travel costs decline while the ratio of total operating costs per unit operating costs 

increases. That means if unit operating costs decrease, the portion of passenger travel costs in total costs 

increases, and the optimization process tends to reduce passenger costs more while it reduces total costs. 

The total costs decrease with the lower unit operating costs even if the networks remain the same due to 

the lower total operating costs, but their total costs are always higher than the total costs of the optimized 
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networks because the feeder networks were not optimized with the lower unit operating costs. Assuming 

that automation of the vehicles reduces the operating costs, it will reduce total operating costs, total costs 

and total passenger travel costs as well.  

In the future, more various demand distribution and scenarios will be applied to develop more 

general results.  
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	ABSTRACT 
	Although demand responsive feeder bus operation is possible with human-driven vehicles, it has not been very popular and mostly available as a special service because of the high operating costs due to the intensive labor costs as well as advanced real-time information technology and complicated operation. However, once automated vehicles become available, small-sized flexible door-to-door feeder bus operation will become more realistic, thanks to recent technological advances and business innovations by th
	Therefore, this research developed an algorithm for the optimal flexible feeder bus routing, which considers relocation of buses for multi-stations and multi-trains, using a simulated annealing (SA) algorithm for future automated vehicle operation. An example was developed and tested to demonstrate the developed algorithm. The algorithm successfully handled relocating the buses when the optimal bus routings were not feasible with the available buses at certain stations. Furthermore, the developed algorithm 
	In order to evaluate the impact of the acceptable individual passengers’ maximum travel time, four types of maximum Degree of Circuities (2.5, 3, 3.5, and 4) were applied. As expected, with the higher individual passengers’ maximum Degree of Circuity, the minimum number of buses used, vehicle traveled distance and total costs of the service decreased due to the more relaxed constraint, although the lower individual passengers’ maximum Degree of Circuity ratio guarantees lower maximum circuity of travel to a
	Unlike fixed route mass transit, small vehicle demand responsive service uses flexible routing, which means lower unit operating costs not only decrease total operating costs and total costs but also can affect routing and impact network characteristics. In the second part of this research, optimal flexible demand responsive feeder transit networks were generated with various unit transit operating costs using the 
	developed routing optimization algorithm. Then network characteristics of those feeder networks were examined and compared.  
	The results showed that when unit operating costs decline, total operating costs and total costs obviously decline. Furthermore, when unit operating costs decline, the average passenger travel distance and total passenger travel costs decline while the ratio of total operating costs per unit operating costs increases. That means if unit operating costs decrease, the portion of passenger travel costs in total costs increases, and the optimization process tends to reduce passenger costs more while reducing to
	 
	Key words: Automated Transit, Demand Responsive Transit, Feeder Bus, Vehicle Routing Problem, Optimization 
	  
	1. INTRODUCTION  
	In the past, automated transit was regarded as Personal Rapid Transit or Automated Rail Transit. Now, people are talking about autonomous vehicle technology, which for public transit means autonomous bus transit, ridesharing and carsharing. Transportation network companies (TNCs), such as Uber, and many car manufacturers, including General Motors, reported recently that fully automated vehicles will be available by 2020-2030 (Fazlollahtabar & Saidi-Mehrabad, 2015). This means that carsharing and ridesharing
	Autonomous and connected vehicles (CVs) will change the paradigm for transportation users and industries, as well as for public transportation (including mass transit, ridesharing and carsharing) (Shin, Callow, Dadvar, Lee & Farkas, 2015; Shin, Callow, Farkas & Lee, 2016). Not only can they improve travel safety (e.g., reducing crashes), but they also will change our lives and travel patterns. When autonomous vehicles are available, users’ travel behaviors and modal choices will become completely different.
	Although demand responsive feeder bus operation is possible even with human-driven vehicles, it is not very popular and mostly available as a special service because of the high operating costs due to the intensive labor costs as well as advanced real-time information technology and complicated operation. However, once automated vehicles become available, small-sized flexible door-to-door feeder bus operation will become more realistic, thanks to recent technological advances and business innovations by the
	Before procuring and operating automated transit vehicles, it is extremely important to determine what future transit customers want and expect from them. For example, whether transit customers prefer a traditional type of transit service (e.g., fixed-route) with an automated small-sized feeder transit or a more flexible service, similar to that provided by TNCs, transit agencies should prepare their future transit service accordingly.   
	This research developed the algorithm for the optimal flexible operation of small-sized automated feeder transit vehicles as the first step in predicting future transit users’ mode choice and travel behavior. More specifically, this algorithm considers multi-station and multi-train situations while feeder buses are being relocated, if necessary. Then, the second part of this research generated optimal flexible demand responsive feeder transit networks with various unit transit operating costs using the deve
	This study serves as the basis for evaluating the efficiency of the automated feeder service, which then can be compared to automated ridesharing and carsharing services in the future. Eventually, these studies will help predict users’ travel behaviors and modal choices between the automated ridesharing/carsharing operation and the automated feeder service for mass transit. 
	 
	2. LITERATURE REVIEW 
	The vehicle routing problem (VRP) has been a very popular topic in the research field in recent decades. Many optimal vehicle routing algorithms have been developed, such as the traveling salesman problem, transit routing, delivery and pickup routing, multi-vehicle routing, and flexible ridesharing routing. Among the many types of VRP, most relevant categories were reviewed in this section.   
	2.1. Feeder Bus Service 
	Feeder bus services impact commuters’ travel choice decisions and consequently the proportion of each mode used daily. Increasing the rate of passenger demand for the transit system could be one of the impacts; therefore enhancing social equality and welfare for the community and boosting operator revenue are expected results (Li, Lam, & Wong, 2009). In recent years, considering the rapid development of public transit, numerous studies have begun to focus more on feeder-bus network optimization. Most of the
	Generally, two approaches are used to model feeder-bus route designs. One is solving the feeder-bus network design problem (FBNDP) and the second one is a heuristic feeder route generation algorithm (HFRGA). For the first approach, Kuah & Perl (1988) are the pioneers of FBNDP. They provided a mathematical formulation for the many-to-one network design problem and solved the model by using a heuristic method based on the saving approach. A large number of studies have been conducted to develop and extend FBN
	Shariat Mohaymany and Gholami in two different studies (2010 & 2011) implemented a modified ACO algorithm to solve FBNDP which could construct routes and choose terminals simultaneously. The results of these studies show multimodal networks are more effective at decreasing user costs than unimodal networks, and using smaller buses like minibuses rather than conventional buses will reduce operating costs. Ciaffi, Cipriani, & Petrelli (2012) solved FBNDP using a set of heuristics. They divided the procedure f
	optimal network of routes with the associated frequencies based on the GA. Recently, Lin & Wong (2014) proposed a multi-objective model to locate feeder-bus routes for a specific metro station in Taiwan as the case study taken by minimizing route length, and maximum route travel time, and maximizing service coverage for trip generation.  
	For the second approach, Shrivastav & Dhingra (2001) introduced a new approach to feeder-bus route design by implementing HFRGA; thereafter, Shrivastava & O’Mahony (2006, 2007 & 2009) extend this algorithm by using GAs and a hybrid algorithm. They control the lengths of feeder routes and balance user need and operator requirements in the proposed algorithms.  
	Although most of the studies on the optimization of feeder-bus networks considered a network approach, which involved a feeder-bus network that maximized joining the feeder-bus routes with a given rail public transit, some studies used an analytic approach to optimize the feeder-bus network (Almasi, Mirzapour Mounes, Koting, & Karim, 2014). In this approach, the problem maximizes the coverage of passengers’ access to all of the stops one by one. Regarding this approach, for the first time, Kuah & Perl (1988
	2.2. Ridesharing 
	The shared economy can benefit communities. Ridesharing is one of the most efficient elements of the shared economy, one that is able to reduce unnecessary energy and costs and consequently open a way for communities to reach sustainable development in their urban areas (Samól, 2017). There has been a long discussion about coordination methods of ridesharing. Recently, Furuhata, et al. (2013) classified ridesharing into six classes: dynamic real-time ridesharing, carpooling, long-distance ride-match, one-sh
	The carpooling problem has some specific features; generally, it is an arrangement of one-time trips rather than allocating a pickup visit for each passenger and instantly matching riders via a complex database system (Kaan & Olinick, 2013). Yan & Chen (2011) proposed an algorithm to solve the carpooling problem based on Lagrangian relaxation and a heuristic for the upper bound solution. They pointed out as a result, the model may increase the vehicle usage and save the passengers time. Some studies worked 
	Developing the vanpooling assignment problem is the other problem that has been considered in recent years. This problem generally pursues two goals: decreasing commuting costs of passengers (Concas, Winters, & Wambalaba, 2005; Ungemah, Rivers, & Anderson, 2006) and assessing the level of participation based on incentives and policies (Huang, Yang, & Bell, 2000; Washbrook, Haider, & Jaccard, 2006). Recently, Kaan & Olinick (2013) provided two models, the Minimum Cost Vanpool Assignment Model (MCVAM) and the
	2.3. Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD) 
	Min (1989) for the first time proposed VRPSPD – inspired by a distribution problem of a public library – and applied a heuristic method to solve this real-life problem. Then, many studies tried to solve this problem by various methods. Angelelli & Mansini (2002) could solve this problem with an exact algorithm. Other studies tried to solve the problem by heuristic and metaheuristics algorithms. Because of the structure of VRPSPD, very few studies used exact approaches, and the main part of recent studies fo
	2.4. The Pickup and Delivery Problem with Time Windows (PDPTW)
	2.4. The Pickup and Delivery Problem with Time Windows (PDPTW)
	 

	The pickup and delivery problem with time windows (PDPTW) is a generalized version of the vehicle routing problem with time windows (VRPTW) which is focused on finding optimal routing solutions under capacity and time windows constraints (Baldacci, Bartolini, & Mingozzi, 2011). The objective function of the standard PDPTW is minimizing transportation costs while the routes generation is based on serving all demands (Sun, Veelenturf, Hewitt, & Van Woensel, 2018). At first, Dumas, Desrosiers, & Soumis (1991) 
	2.5. The Dial-A-Ride Problem (DARP) 
	The dial-a-ride problem (DARP) is an extension of the VRPPD for transporting passengers in transit systems with a set of requests for pick-up and delivery from passengers who should be served by a limited number of transit fleet (Cordeau & Laporte, 2003). The objective functions of DARPs generally include minimizing the total routing distance of the fleet, minimizing travel and waiting time of passengers, and maximizing demand (Cordeau & Laporte, 2007). The DARPs belong to the NP-hard problems, and with a c
	A range of metaheuristics methods to find a near optimal solution of the DARPTW have been implemented in past studies: ACO (Tripathy, Nagavarapu, Azizian, Pandi, & Dauwels, 2017), GA (Cubillos, Urra, & Rodríguez, 2009), SA (Zidi, Zidi, Mesghouni, & Ghedira, 2011), and TS (Belhaiza, 2017). For further details and a comprehensive review of DARP and DARPTW models, the reader is referred to a literature review study by Molenbruch, Braekers, & Caris (2017). Although these studies have provided useful results tha
	3. METHODOLOGY 
	The authors developed the optimal routing algorithm specifically for the automated demand responsive feeder transit services. The algorithm minimizes total costs, including vehicle operating costs and passenger travel time, while individual passengers’ maximum travel times are limited within given maximum travel times. That differentiates this algorithm from the usual delivery-pickup algorithms, which do not consider individual packages’ (in this case, passengers’) travel times. Moreover, the other innovati
	 Generally, the SA algorithm works effectively in permutation-based problems like VRP (Davendra, Zelinka, & Onwubolu, 2010) because this local search algorithm uses random transformations from the neighborhood of all solutions by considering the total costs in VRP problems, which are the total dispatching cost and total travel cost of possible solutions (Hasija & Rajendran, 2004). Among metaheuristics that have provided better solutions, TS and SA are two of the more effective algorithms (especially in the 
	3.1. Algorithm 
	This section presents an efficient algorithm for optimal routing of the autonomous feeder transit services, and the first step of this algorithm is the clustering of passengers; we assumed that all passengers are assigned to certain stations.  
	At first, the algorithm creates a random series of integers for creating the initial solution (random permutation of integers from 1 to “number of passengers of the related station plus number of feeder buses minus one”). The algorithm allocates feeder buses to passengers depending on the location of greater integers in the generated permutation, and then, based on the order of integers in the generated permutation, the routes of vehicles are determined. For instance, in the presence of two vehicles and 10 
	passengers, a permutation of integers from 1 to 11 is produced. Suppose that the generated permutation is as follows: Path= [10, 1, 3, 4, 8, 11, 2, 9, 5, 7, 6]. Then the route of the first vehicle would be generated by serving passengers 10, 1, 3, 4, 8, respectively, and the second vehicle route is made by serving passengers 2, 9, 5, 7, 6, respectively. In each iteration, the algorithm tries to improve the solution by searching its neighborhoods. For this purpose, common swap, insertion, and reversion metho
	𝑍=𝑍′∗(1+0.5× 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑛𝑜𝑡 𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤+ 5×𝑚𝑎𝑥𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓  𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑖𝑛 𝑒𝑥𝑐𝑒𝑠𝑠 𝑜𝑓 𝑓𝑒𝑒𝑑𝑒𝑟 𝑏𝑢𝑠 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)  
	Where CO is the unit operating cost of each vehicle kilometer and CT is the time value of each passenger per hour. Finally, the best feasible solution found during the total iterations is presented as the final solution proposed by the algorithm. 
	If the algorithm fails to find a feasible solution for a certain station, relocations of vehicles would be considered. In this case, the proportion of the number of passengers to the number of feeder buses for the adjacent stations is computed and the algorithm chooses the station with the lower proportion to compensate for the deficiency. 
	In order to consider individual passengers’ acceptable travel times and acceptable circuity of the routing, Degree of Circuity (DOC) and Maximum Degree of Circuity (Max DOC) as shown in Equations 1 and 2 are introduced in this research  (Lee Y.-J. , 2012; Lee, Choi, Yu, & Choi, 2015). The given Max DOC and computed shortest travel times are used to define the maximum acceptable travel time for each passenger. Using those maximum acceptable travel times for passengers as constraints, optimal routings are dev
	 
	Degree of Circuity (DOC)  ≥ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒)𝑖(𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) 𝑖         (1) 
	Maximum Degree of Circuity (Max DOC)  ≥ max [(𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒)𝑖(𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) 𝑖]      (2) 
	i = Individual passenger    
	 
	The buses at each station will serve the passengers who use that particular station. We developed the optimal routings and found the optimal number of buses for that operation. So, for each station and for each train, we calculate the number of buses for the operation and compare them with the available buses. If we have more buses than needed, then the surplus will be calculated, and the bus operation will be feasible. If the needed buses are more than the available buses, then the deficiency will be calcu
	If the total number of available buses at all the stations is more than the needed buses at all stations, then we may be able to make the entire service feasible with multiple relocations. Figure 1 shows the process for relocating the buses. In this algorithm, the relocated buses first serve alighting passengers at the station to deliver them to their destinations and then pick up passengers to take to the goal station to minimize the costs. In the algorithm of Figure 1, “s” is the index for stations and S 
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	Figure 1. The conceptual flowchart for the proposed algorithm to solve the problem 
	  
	To solve the problem in the model, in this study we applied the SA algorithm, one of the most efficient metaheuristics approaches for solving the vehicle routing problem with time windows (Wang C., Mu, Zhao, & Sutherland, 2015; Montoya-Torres, et al., 2015; Bräysy & Gendreau, 2005), because the local search strategy of the SA is more robust in finding high-quality solutions in VRP problems (Rochat & Taillard, 1995). The SA algorithm uses a probabilistic acceptance strategy which includes many iteration stag
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	𝐷𝑖𝑘≥0.  𝑇𝑜𝑡𝑎𝑙𝐷𝑘≥0.  𝐴𝑇𝑖≥0.  𝑊𝑇𝑖≥0.  𝑈𝐶𝑖≥0.𝐼𝐶𝑖≥0   
	Where: 
	I: number of passengers 
	K: number of available vehicles dij:direct distance between passengers i and j di0:direct distance between passenger i and station  
	CT: time value of passenger per hour 
	CO: unit operating cost of vehicle per kilometer 
	Speed: vehicles speed 
	DOC: Degree of Circuity 
	cycle time=20 minutes 
	C=capacity of vehicles 
	M: a big enough number used for modelling the expression 
	 
	Formula (3) is the objective function of the problem. Constraint (4) specifies that each passenger is served by exactly one vehicle. Constraint (5) ensures that if a passenger is assigned to a vehicle, it is considered as a used vehicle. Eq. (6) makes sure that the total number of used vehicles does not exceed the total number of available vehicles. Eq. (7) defines that each path belongs to a single vehicle. Eq. (8) and (9) make sure that each passenger is assigned to a path. Eq. (10), (11), and (12) define
	3.2. Hypothetical Network  
	A hypothetical rail transit line that has four stations was developed to test the developed algorithm and demonstrate its efficiency. Also, we tested four trains to test and demonstrate the relocation of buses as shown in 
	A hypothetical rail transit line that has four stations was developed to test the developed algorithm and demonstrate its efficiency. Also, we tested four trains to test and demonstrate the relocation of buses as shown in 
	Figure 3
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	.   

	In this example, the headway of the train is assumed to be 20 minutes and the travel time between two stations is assumed to be two minutes. The capacity for each bus is assumed to be eight passengers. We also waived passengers’ boarding and alighting time at the nodes and the stations. 
	In this example, the headway of the train is assumed to be 20 minutes and the travel time between two stations is assumed to be two minutes. The capacity for each bus is assumed to be eight passengers. We also waived passengers’ boarding and alighting time at the nodes and the stations. 
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	 shows the number of boarding and alighting (B/L) passengers for each station and each train. For example, in Station 1 and for Train 1, 16 passengers need to be picked up and get on, and 24 passengers get off and need to be at Station 1 for Train 1. We also assumed that the average speed for feeder buses is 30 km/h and for trains is 60 km/h, and the distance between stations is 2 km. The travel time monetary value for each passenger has been placed at $20 per hour, and $0.3 per kilometers for vehicles is u
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	 shows the boarding (blue points) and alighting passengers (red points) around the four stations for the four trains (yellow points). 

	  
	Step 0: Initialization:  
	Step 0: Initialization:  
	Step 0: Initialization:  
	Step 0: Initialization:  
	Set s=1,  Best Cost=positive infinite, T=T0, alpha=0.99,  previous station help=0,       next station help=0,  vehicle (s; s: 1 to S) =4,  min vehicle(s; s: 1 to S) =  0  
	Step 1: Clustering:     
	 Define passenger’s cluster 
	Step 2: Create random solution  
	 Considering the length of trip (number of passengers (s) +vehicles(s)-1) 
	   set x as a random solution 
	Step 3: Find optimal solution: 
	  IF It1<It1max, THEN  
	  go to step 4, otherwise go to step 6  
	   END IF 
	Step 4: IF It2< It2max, THEN 
	  go to step 4.1, otherwise go to step 5  
	   END IF 
	 Step 4.1: Creating neighborhood: 
	  set xnew = a neighborhood of x 
	 Step 4.2: IF best cost for x< best cost for xnew, THEN 
	   set x=xnew and go to step 4.5, otherwise go to step 4.3 
	   END IF 
	Step 4.3: p= exp-(cost xnew – cost x)/T*Cost x 
	Step 4.4: Accept x= xnew by p -probability and reject- and x= xnew by (1-p) and go to step 4.5 
	Step 4.5: Cost calculation for xnew  
	Step 4.6: IF best cost for xnew > best cost, THEN  
	 set bestsol= xnew 
	   END IF 
	Step 4.7: IF xnew is feasible (considering time ratio), and best cost for xnew > feasible_best cost, THEN  
	 set feasible_bestsol= xnew 
	  END IF 
	Step 4.8: Reducing the temperature: 
	  set T = alpha*T0 (0<alpha<1) 
	Step 4.9: set It2=It2+1 and go to step 4 
	Step 5: Set It1=It1+1 and go to step 3 
	Step 6: IF feasible_bestsol is empty, THEN  
	  min vehicle (s)= vehicle (s)+1 and go to step 7, otherwise go to step 14 
	END IF 
	Step 7: Calculate the following proportion for stations s-1 and s+1: number of passengers (s)/vehicle(s) 
	Step 8: IF s-1 exists and vehicle (s-1)> min vehicle (s-1), THEN 
	go to step 9, otherwise go to step 11 
	END IF 
	Step 9: IF proportion for station s is ≤ the proportion for station s+1 or  vehicle (s+1) ≤ min vehicle (s+1) 
	go to step 10, otherwise go to step 11 
	END IF 
	Step 10: Set previous station help (s)= previous station help (s)+1 and vehicle (s-1)=vehicle (s-1)-1, s=s-1, and go to step 2 
	Step 11: IF s+1 exists and vehicle (s+1)> min vehicle (s+1) THEN 
	  go to step 12, otherwise go to step 13 
	   END IF 
	Step 12: Set next station help (s)= next station help(s)+1 and vehicle (s+1)=vehicle (s+1)-1 and go to step 2 
	Step 13: Show “The problem is not feasible; more vehicles is needed” 
	Step 14: IF s<S, THEN 
	  set s=s+1 and go to step 2, otherwise go to step 15 
	   END IF 
	Step 15: Show results 
	Step 16: END  
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	Figure 2. The developed SA algorithm to solve the model 
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	Figure 3. Conceptual operation of feeder transit (regular and relocation buses) 
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	134.94 
	134.94 
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	2.37 
	2.37 
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	1.78 

	52.71 
	52.71 
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	24.43 

	Span

	TR
	TD
	Span
	#4 

	#1 
	#1 

	17 
	17 

	23 
	23 

	40 
	40 

	4 
	4 

	4 
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	1.38 
	1.38 

	1.56 
	1.56 

	1.57 
	1.57 

	32.30 
	32.30 

	128.90 
	128.90 
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	12.85 
	12.85 

	1.47 
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	1.65 
	1.65 

	33.17 
	33.17 
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	0 
	0 

	14.02 
	14.02 

	1.26 
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	1.42 

	29.43 
	29.43 
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	40 
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	16.17 
	16.17 

	1.46 
	1.46 

	1.64 
	1.64 

	33.99 
	33.99 
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	319 
	319 

	321 
	321 

	640 
	640 

	64 
	64 

	64 
	64 

	0 
	0 

	247.24 
	247.24 

	23.11 
	23.11 

	  
	  

	1.62 
	1.62 

	536.28 
	536.28 

	536.28 
	536.28 
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	Table 6. Summary of the routings for the various circuities 
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	TD
	Span
	Maximum applied circuity for passengers  
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	Percentage change of the total cost (%) 
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	With ratio of 2.5 

	0.77 
	0.77 

	1.63 
	1.63 

	2.12 
	2.12 

	2.49 
	2.49 

	1.45 
	1.45 

	463.27 
	463.27 

	64 
	64 

	4.05 
	4.05 

	259.55 
	259.55 

	77.87 
	77.87 

	541.13 
	541.13 

	- 
	- 
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	With ratio of 3 

	0.77 
	0.77 

	1.62 
	1.62 

	2.11 
	2.11 

	2.99 
	2.99 

	1.44 
	1.44 

	461.67 
	461.67 

	64 
	64 

	4.03 
	4.03 

	257.8 
	257.8 

	77.34 
	77.34 

	539 
	539 

	-0.37 
	-0.37 
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	With ratio of 3.5 

	0.77 
	0.77 

	1.62 
	1.62 

	2.11 
	2.11 

	3.21 
	3.21 

	1.44 
	1.44 

	461.19 
	461.19 

	64 
	64 

	3.99 
	3.99 

	255.6 
	255.6 

	76.68 
	76.68 

	537.87 
	537.87 

	-0.58 
	-0.58 
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	With ratio of 4 

	0.77 
	0.77 

	1.62 
	1.62 

	2.11 
	2.11 

	3.76 
	3.76 

	1.44 
	1.44 

	462.11 
	462.11 

	64 
	64 

	3.86 
	3.86 

	247.24 
	247.24 

	74.17 
	74.17 

	536.28 
	536.28 

	-0.87 
	-0.87 
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	5. IMPACT OF AUTOMATION IN FEEDER TRANSIT NETWORK 
	Demand responsive feeder transit which serves first-mile and last-mile are usually small-sized bus services. Although they are not new, they have been widely discussed in recent years due to the technological innovation and recent successful business models by transportation network companies (TNCs), such as Uber and Lyft. People have become familiar with smartphone apps to request service, and it has become much easier to dispatch flexible routing small-sized buses with the better communication technology 
	One inherent problem in using the small-sized bus for the flexible service is the high labor costs out of the total costs because of the lower vehicle capacity. Although total costs would be lower than a regular size bus for the same frequencies and routings due to the small size of the vehicles, most likely more frequent service or more vehicles would be required, possibly raising total costs because of lower vehicle capacity. Recent development of the automated vehicle technology can be a solution for the
	Furthermore, lower operating costs may improve transit routing efficiency. In most studies, there are two major components in the objective function to optimize the transit network design, passenger travel time and operating costs. If operating costs are lowered, obviously total costs consisting of operating costs and passenger travel time costs will be reduced. Will lower operating costs change passenger travel times? Will they improve overall transit network efficiency? 
	In this study, the economic impact by the automation of the transit operation will be examined. Then, using the authors’ previously developed algorithm for the optimal demand responsive flexible feeder bus network, optimal flexible transit networks will be generated for various operating costs, and their network characteristics will be examined and compared. 
	6. ESTIMATION OF TRANSIT OPERATING COSTS 
	Cost is an important factor in transit decision-making since many decisions are cost-related or cost-oriented. Reliable and accurate cost models and estimates lead to better operational and strategic decisions. Operational costs of a transit system are key factors in critical decisions such as implementation, development, and extension of a system. Some cost models/estimates are simple while others are sophisticated, complex and consist of several different variables, but usually the outputs are expressed a
	6.1 Conventional Bus Operating Cost  
	In this section, a conventional bus is defined as a bus driven by a human driver on a bus route. 
	The main operating cost functions that have been considered by the National Transit Database (NTD) of the Federal Transit Administration (FTA) are as follows (Federal Transit Administration (FTA), 2018): 
	 Vehicle operations 
	 Vehicle operations 
	 Vehicle operations 

	 Vehicle maintenance 
	 Vehicle maintenance 

	 Facility maintenance 
	 Facility maintenance 

	 General administration 
	 General administration 


	However, the main operating cost types that have been considered by the National Transit Database (NTD) of the Federal Transit Administration (FTA) are as follows (Federal Transit Administration (FTA), 2018): 
	 Operators' salaries and wages 
	 Operators' salaries and wages 
	 Operators' salaries and wages 

	 Other salaries and wages 
	 Other salaries and wages 


	 Fringe benefits 
	 Fringe benefits 
	 Fringe benefits 

	 Service costs 
	 Service costs 

	 Fuel and lubricants 
	 Fuel and lubricants 

	 Tires and tubes 
	 Tires and tubes 

	 Other materials and supplies 
	 Other materials and supplies 

	 Utilities 
	 Utilities 

	 Casualty and liability costs 
	 Casualty and liability costs 

	 Taxes 
	 Taxes 

	 Purchased transportation expenses 
	 Purchased transportation expenses 

	 Miscellaneous expenses 
	 Miscellaneous expenses 


	Similar cost structures have been used by different agencies. In a 2011 study in Denver, Colorado, the main cost components were identified as administrative costs and costs based on scheduled service miles; however, the following items were allocated separately to account for differences in service class or the type of vehicles used on the routes (On Target Performance Group, 2011): 
	 Operators (wages and benefits) 
	 Operators (wages and benefits) 
	 Operators (wages and benefits) 

	 Consumables (fuel, tires, oil, etc.) 
	 Consumables (fuel, tires, oil, etc.) 

	 Parts (parts needed in vehicle maintenance) 
	 Parts (parts needed in vehicle maintenance) 

	 Running repair (running repair mechanic hours, labor costs, etc.) 
	 Running repair (running repair mechanic hours, labor costs, etc.) 


	Table 7
	Table 7
	Table 7

	 summarizes the bus operating costs per kilometer in the US, UK, and Switzerland. The UK costs seemed to be based on different assumptions and variables. Due to the variations, some researchers have tried to categorize the operating costs. 
	Table 8
	Table 8

	 demonstrates operating costs per revenue kilometer by agency size.  

	Table 7. Bus operating cost per kilometer 
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	US: Bus 

	2007 
	2007 

	18,267,000,000 
	18,267,000,000 

	2,999,809,760  
	2,999,809,760  

	6.09 
	6.09 

	7.31 
	7.31 

	(Victoria Transport Policy Institute, 2016) 
	(Victoria Transport Policy Institute, 2016) 
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	Full US Reporters 

	2016 
	2016 

	20,516,800,000 
	20,516,800,000 

	2,869,614,154  
	2,869,614,154  

	7.15 
	7.15 

	7.46 
	7.46 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Top 50 US Reporters 

	2016 
	2016 

	14,818,200,000 
	14,818,200,000 

	1,700,428,644  
	1,700,428,644  

	8.71 
	8.71 

	9.09 
	9.09 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	MTA New York City Transit 

	2016 
	2016 

	2,779,372,331 
	2,779,372,331 

	139,792,686  
	139,792,686  

	19.88 
	19.88 

	20.75 
	20.75 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Massachusetts Bay Transp. Authority 

	2016 
	2016 

	412,610,862 
	412,610,862 

	37,167,234  
	37,167,234  

	11.10 
	11.10 

	11.59 
	11.59 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Southeastern Pennsylvania Transportation Authority 

	2016 
	2016 

	628,216,161 
	628,216,161 

	64,041,234  
	64,041,234  

	9.81 
	9.81 

	10.24 
	10.24 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Chicago Transit Authority 

	2016 
	2016 

	801,281,245 
	801,281,245 

	84,176,213  
	84,176,213  

	9.52 
	9.52 

	9.94 
	9.94 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 

	Span

	TR
	TD
	Span
	Washington Met Area Transit  Auth. 

	2016 
	2016 

	590,647,746 
	590,647,746 

	63,349,542  
	63,349,542  

	9.32 
	9.32 

	9.73 
	9.73 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	King County Department of Transportation 

	2016 
	2016 

	477,562,833 
	477,562,833 

	54,060,019  
	54,060,019  

	8.83 
	8.83 

	9.22 
	9.22 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Maryland Transit Administration 

	2016 
	2016 

	272,115,276 
	272,115,276 

	32,413,493  
	32,413,493  

	8.40 
	8.40 

	8.77 
	8.77 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Tri-County Metropolitan Transportation District of Oregon 

	2016 
	2016 

	251,249,183 
	251,249,183 

	33,311,352  
	33,311,352  

	7.54 
	7.54 

	7.87 
	7.87 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	New Jersey Transit Corporation 

	2016 
	2016 

	956,997,264 
	956,997,264 

	128,337,237  
	128,337,237  

	7.46 
	7.46 

	7.79 
	7.79 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	New Orleans Regional Transit Authority 

	2016 
	2016 

	62,560,998 
	62,560,998 

	8,573,260  
	8,573,260  

	7.30 
	7.30 

	7.62 
	7.62 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Central Puget Sound Regional Transit Auth. DBA Sound Transit 

	2016 
	2016 

	118,582,934 
	118,582,934 

	19,183,891  
	19,183,891  

	6.18 
	6.18 

	6.45 
	6.45 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	City of Phoenix Public Transit Dept. dba Valley Metro 

	2016 
	2016 

	147,701,121 
	147,701,121 

	26,318,168  
	26,318,168  

	5.61 
	5.61 

	5.85 
	5.85 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Regional Transp District (Denver, CO) 

	2008 
	2008 

	184,514,747 
	184,514,747 

	41,408,148  
	41,408,148  

	4.46 
	4.46 

	5.35 
	5.35 

	(On Target Performance Group, 2011) 
	(On Target Performance Group, 2011) 
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	Regional Transportation District (Denver, CO) 

	2009 
	2009 

	184,358,322 
	184,358,322 

	40,234,308  
	40,234,308  

	4.58 
	4.58 

	5.34 
	5.34 

	(On Target Performance Group, 2011) 
	(On Target Performance Group, 2011) 

	Span

	TR
	TD
	Span
	Jacksonville Transportation Authority 

	2016 
	2016 

	71,581,487 
	71,581,487 

	14,022,097  
	14,022,097  

	5.10 
	5.10 

	5.32 
	5.32 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Memphis Area Transit Authority 

	2016 
	2016 

	41,583,335 
	41,583,335 

	8,499,314  
	8,499,314  

	4.89 
	4.89 

	5.10 
	5.10 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Charlotte Area Transit System 

	2016 
	2016 

	80,465,139 
	80,465,139 

	16,924,262  
	16,924,262  

	4.75 
	4.75 

	4.96 
	4.96 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Central Oklahoma Transp. and Parking Auth. 

	2016 
	2016 

	21,729,641 
	21,729,641 

	4,755,912  
	4,755,912  

	4.57 
	4.57 

	4.77 
	4.77 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	Greater Roanoke Transit Company 

	2016 
	2016 

	7,011,634 
	7,011,634 

	2,578,142  
	2,578,142  

	2.72 
	2.72 

	2.84 
	2.84 

	(Federal Transit Administration (FTA), 2018) 
	(Federal Transit Administration (FTA), 2018) 
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	England outside London 

	2016 
	2016 

	NA 
	NA 

	NA  
	NA  

	2.67 
	2.67 

	2.79 
	2.79 

	(Department for Transport (DfT), 2017) 
	(Department for Transport (DfT), 2017) 
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	Wales 

	2016 
	2016 

	NA 
	NA 

	NA  
	NA  

	2.49 
	2.49 

	2.60 
	2.60 

	(Department for Transport (DfT), 2017) 
	(Department for Transport (DfT), 2017) 
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	Scotland 

	2016 
	2016 

	NA 
	NA 

	NA  
	NA  

	2.41 
	2.41 

	2.52 
	2.52 

	(Department for Transport (DfT), 2017) 
	(Department for Transport (DfT), 2017) 
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	Great Britain outside London 

	2016 
	2016 

	NA 
	NA 

	NA  
	NA  

	2.62 
	2.62 

	2.73 
	2.73 

	(Department for Transport (DfT), 2017) 
	(Department for Transport (DfT), 2017) 
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	Switzerland (Urban) 

	2011 
	2011 

	NA 
	NA 

	NA  
	NA  

	7.21 
	7.21 

	8.05 
	8.05 

	Bundesamt für Verkehr (2011) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Bundesamt für Verkehr (2011) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
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	Switzerland (Regional) 

	2011 
	2011 

	NA 
	NA 

	NA  
	NA  

	6.77 
	6.77 

	7.56 
	7.56 

	Bundesamt für Verkehr (2011) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Bundesamt für Verkehr (2011) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span


	Notes: Total Units (km) = "Annual Vehicle Revenue Kilometers." Unit Costs in 2018 calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018). £ 1 = $ 1.31 and CHF 1 = $ 1.01 (July 25, 2018)  
	Table 8. Operating cost by agency size for conventional buses 
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	Agency Size 
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	Florida 
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	2018 Costs 
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	2008 Costs 
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	2018 Costs 
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	2008 Costs 
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	2018 Costs 
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	All Agencies 

	TD
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	Per Revenue Kilometer 

	 $    4.49  
	 $    4.49  

	 $    5.37  
	 $    5.37  

	 $    4.31  
	 $    4.31  

	 $    5.16  
	 $    5.16  

	 $    6.08  
	 $    6.08  

	 $    7.29  
	 $    7.29  

	Span
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	Per Passenger Kilometer 

	 $    0.47  
	 $    0.47  

	 $    0.56  
	 $    0.56  

	 $    0.50  
	 $    0.50  

	 $    0.60  
	 $    0.60  

	 $    0.55  
	 $    0.55  

	 $    0.66  
	 $    0.66  

	Span

	TR
	TD
	Span
	Small Agencies 

	TD
	Span
	Per Revenue Kilometer 

	 $    2.88  
	 $    2.88  

	 $    3.45  
	 $    3.45  

	 $    2.65  
	 $    2.65  

	 $    3.18  
	 $    3.18  

	 $    3.30  
	 $    3.30  

	 $    3.95  
	 $    3.95  
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	Per Passenger Kilometer 

	 $    0.59  
	 $    0.59  

	 $    0.71  
	 $    0.71  

	 $    0.56  
	 $    0.56  

	 $    0.67  
	 $    0.67  

	 $    0.47  
	 $    0.47  

	 $    0.56  
	 $    0.56  
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	Medium-sized Agencies 

	TD
	Span
	Per Revenue Kilometer 

	 $    3.52  
	 $    3.52  

	 $    4.23  
	 $    4.23  

	 $    4.09  
	 $    4.09  

	 $    4.90  
	 $    4.90  

	 $    4.32  
	 $    4.32  

	 $    5.18  
	 $    5.18  
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	Per Passenger Kilometer 

	 $    0.50  
	 $    0.50  

	 $    0.60  
	 $    0.60  

	 $    0.54  
	 $    0.54  

	 $    0.65  
	 $    0.65  

	 $    0.45  
	 $    0.45  

	 $    0.54  
	 $    0.54  
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	Large Agencies 
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	Per Revenue Kilometer 

	 $    4.84  
	 $    4.84  

	 $    5.80  
	 $    5.80  

	 $    4.69  
	 $    4.69  

	 $    5.62  
	 $    5.62  

	 $    6.95  
	 $    6.95  

	 $    8.33  
	 $    8.33  

	Span

	TR
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	Per Passenger Kilometer 

	 $    0.46  
	 $    0.46  

	 $    0.55  
	 $    0.55  

	 $    0.49  
	 $    0.49  

	 $    0.59  
	 $    0.59  

	 $    0.57  
	 $    0.57  

	 $    0.68  
	 $    0.68  

	Span


	Source: (Reich & Davis, 2011) 
	Note: 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018) 
	There have been some modeling efforts to estimate bus operating costs such as a hybrid approach (combining a Bottom-Up and a Top-Down approach) for Italian local public bus transport sector (Avenali, Boitani, Catalano, D’Alfonso, & Matteucci, 2017) and a cost and fare estimation for the bus transit system of Santiago through a uniform price with and without subsidy and two-part tariffs with and without subsidy (Batarce & Galilea, 2018). 
	To conclude this section, due to several different factors – such as differences in wages, agency size, vehicle size, service features and design, demand, and other regional differences – bus operating cost varies from city to city and even from service to service, but the main costs are crew wages, capital costs, 
	maintenance, and administration costs. The National Transit Database (NTD) of the FTA has a comprehensive nationwide transit systems database with several different metrics that can be used to dig data for certain cities and/or aggregate level (e.g., by agency size, urban population, etc.). Based on the data, $3.95 – $8.33 is the range of operating cost per revenue kilometer for the US. 
	6.2 Expected Bus Operating Cost with Emerging Technology 
	There are various bus types with emerging technologies. Their definitions are as follows: 
	 CV Bus Transit: a human driver operates the bus on a bus route in a connected vehicle environment. 
	 CV Bus Transit: a human driver operates the bus on a bus route in a connected vehicle environment. 
	 CV Bus Transit: a human driver operates the bus on a bus route in a connected vehicle environment. 

	 AV Bus Transit: an autonomous bus operates on a bus route. 
	 AV Bus Transit: an autonomous bus operates on a bus route. 

	 CAV Bus Transit: an autonomous bus operates in a connected vehicle environment. 
	 CAV Bus Transit: an autonomous bus operates in a connected vehicle environment. 


	Table 9
	Table 9
	Table 9

	 summarizes the possible options of the future evolution of current transit with developing technologies. During the transitional period, some researchers consider semi-AV systems (Zhang, Jenelius, & Badia, 2018) and also different levels of market penetration. Shared transport services have also been proposed, discussed and analyzed in the recent literature. 

	The future of public transportation has been discussed in positive and negative ways in the recent literature. A recent study based on the Capital Metropolitan Transportation Authority bus fleet in Austin, Texas, predicts that electric buses will be life-cycle cost-competitive by 2022 and self-driving buses enabled by electric engines possibly could be adopted by 2023-2026 or 2024-2035, depending on different scenarios (Quarles & Kockelman, 2018). 
	Stocker & Shaheen (2017) discussed the existing business models of shared mobility providers. The models were as follows: 
	 Business-to-Consumer: Vendors typically own/lease and maintain a fleet of vehicles and allow users to access these vehicles via membership and/or usage fees 
	 Business-to-Consumer: Vendors typically own/lease and maintain a fleet of vehicles and allow users to access these vehicles via membership and/or usage fees 
	 Business-to-Consumer: Vendors typically own/lease and maintain a fleet of vehicles and allow users to access these vehicles via membership and/or usage fees 

	 Peer-to-Peer: Companies supervise transactions among individual owners and renters by providing the necessary platform and resources needed for the exchange 
	 Peer-to-Peer: Companies supervise transactions among individual owners and renters by providing the necessary platform and resources needed for the exchange 


	 For-Hire: A customer or passenger hires a driver on an as-needed basis for transportation services. 
	 For-Hire: A customer or passenger hires a driver on an as-needed basis for transportation services. 
	 For-Hire: A customer or passenger hires a driver on an as-needed basis for transportation services. 


	Table 9. Possible options of the evolution of current transit in the future with developing technologies. 
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	Notes: CV: Connected Vehicle; EV: Electric Vehicle; AV: Autonomous  
	 
	Stocker & Shaheen (2017) stated that SAV (Shared Automated Vehicles) business models would depend on vehicle ownership and network operations and discussed the possibilities of each of the aforementioned business models. 
	Bosch et al. (2017) stated that public transportation (in its current form) would only remain economically competitive where demand can be bundled to larger units, which would be the case in dense urban areas, where public transportation can be cheaper than autonomous taxis (even if pooled) and private cars. In their study, they reviewed and listed past relevant studies and also estimated associated costs of emerging systems through a comprehensive approach. 
	Bosch et al. (2017) stated that public transportation (in its current form) would only remain economically competitive where demand can be bundled to larger units, which would be the case in dense urban areas, where public transportation can be cheaper than autonomous taxis (even if pooled) and private cars. In their study, they reviewed and listed past relevant studies and also estimated associated costs of emerging systems through a comprehensive approach. 
	Table 10
	Table 10

	 summarizes the operating costs, mainly per passenger-distance.  

	Table 10. Estimated operating costs for some emerging transit technologies 
	Table
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	TD
	Span
	System Type 

	TD
	Span
	Year 

	TD
	Span
	Cost 

	TD
	Span
	Currency 

	TD
	Span
	Cost Unit 

	TD
	Span
	Cost in 2018 US Dollars ($/km) 

	TD
	Span
	Note 

	TD
	Span
	Source 

	Span

	TR
	TD
	Span
	Purpose-built shared AV system for a small to medium town 

	2013 
	2013 

	0.09 
	0.09 

	$ 
	$ 

	Per trip-km 
	Per trip-km 

	0.10 
	0.10 

	  
	  

	Burns et al. (2013) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Burns et al. (2013) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Shared AV system (cost of AVs only) 

	2015 
	2015 

	0.31 
	0.31 

	$ 
	$ 

	Per kilometer 
	Per kilometer 

	0.33 
	0.33 

	Investment cost = $70,000 
	Investment cost = $70,000 

	Fagnant and Kockelman (2015) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Fagnant and Kockelman (2015) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Shared AVs 

	2015 
	2015 

	0.27 
	0.27 

	$ 
	$ 

	Per trip-km 
	Per trip-km 

	0.29 
	0.29 

	Operating cost plus 30% profit margin  
	Operating cost plus 30% profit margin  

	Johnson (2015) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Johnson (2015) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Purpose-built shared AVs used as pooled taxis 

	2015 
	2015 

	0.10 
	0.10 

	$ 
	$ 

	Per trip-km 
	Per trip-km 

	0.11 
	0.11 

	  
	  

	Johnson (2015) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Johnson (2015) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Fully autonomous vehicles used with ride-sharing 

	2016 
	2016 

	0.12 - 0.19 
	0.12 - 0.19 

	$ 
	$ 

	Per passenger-km 
	Per passenger-km 

	0.13 - 0.20 
	0.13 - 0.20 

	Lower-bound and upper-bound costs 
	Lower-bound and upper-bound costs 

	Stephens et al. (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Stephens et al. (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Ride-sharing scheme in an urban area in Germany 

	2016 
	2016 

	0.15 
	0.15 

	€ 
	€ 

	Per passenger-km 
	Per passenger-km 

	0.18 
	0.18 

	  
	  

	Friedrich and Hartl (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Friedrich and Hartl (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Fully autonomous vehicles used with ride-sharing 

	2016 
	2016 

	0.19 
	0.19 

	$ 
	$ 

	Per passenger-km 
	Per passenger-km 

	0.19 
	0.19 

	  
	  

	Johnson and Walker (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Johnson and Walker (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Fully autonomous vehicles in a ride-sharing scheme 

	2016 
	2016 

	0.09 
	0.09 

	€ 
	€ 

	Per passenger-km 
	Per passenger-km 

	0.11 
	0.11 

	Lower cost than rail services 
	Lower cost than rail services 

	Hazan et al. (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 
	Hazan et al. (2016) cited in (Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Autonomous bus in urban area  

	2017 
	2017 

	0.25 
	0.25 

	CHF 
	CHF 

	Per passenger-km 
	Per passenger-km 

	0.26 
	0.26 

	  
	  

	(Bosch, Becker, Becker, & Axhausen, 2017) 
	(Bosch, Becker, Becker, & Axhausen, 2017) 

	Span

	TR
	TD
	Span
	Autonomous bus in regional area  

	2017 
	2017 

	0.42 
	0.42 

	CHF 
	CHF 

	Per passenger-km 
	Per passenger-km 

	0.43 
	0.43 

	  
	  

	(Bosch, Becker, Becker, & Axhausen, 2017) 
	(Bosch, Becker, Becker, & Axhausen, 2017) 

	Span


	Notes: 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018). € 1 = $ 1.17 and CHF 1 = $ 1.01 (July 25, 2018)  
	Bosch et al. (2017) stated that the overhead costs of shared services were neglected in all previous cases that they reviewed (all rows of 
	Bosch et al. (2017) stated that the overhead costs of shared services were neglected in all previous cases that they reviewed (all rows of 
	Table 10
	Table 10

	 except the last two rows). This is a major limitation since the new service markets in the transport sector such as Uber and Lyft only offer overhead services rather than actual transportation services. In their comprehensive analysis, they accounted for potential impacts of electrification and automation on operating costs (
	Table 11
	Table 11

	); however, these impacts are predicted for solo (1 seat), midsize (4 seats), van (8 seats), and minibus (20 seats) vehicles. In addition, electrification and automation may decrease total operating cost per kilometer (of city and regional buses with 60 seats) by 5.5% and 55%, respectively (Bosch, Becker, Becker, & Axhausen, 2017). Since it’s possible that the smaller vehicles might be used in public transport using emerging technologies, they provided detailed cost estimates for vans (8 seats) and minibuse

	The Bosch et al. (2017) study results indicated that private vehicle ownership would remain attractive in comparison with other modes. Line-based public transportation will remain viable for high-demand relations (at dense urban areas); shared taxis and transit based on smaller vehicles would replace line-based public transportation on low-demand relations. One-seaters would be used for first- and last-mile connections if fleet heterogeneity would not be a problem, as was also studied and proposed by Chong 
	Zhang et al. (2018) proposed an analytical cost model of bus operations considering emerging automation technology. The generalized cost (the sum of waiting, riding, operating and capital cost) was modeled for conventional (level 0), semi-autonomous (level 4) and fully autonomous (level 5) bus services on a generic corridor-and-branches network. The bus company cost consists of bus operating cost (80%) and overhead cost (20%). Crew cost (40% of total cost) is a major cost component. The main impact of autom
	main cost components considered in the study included fixed or time-based costs, such as travel time cost, vehicle hour cost and so on. The analytical and numerical results supported the fully autonomous bus services even with high additional capital costs; however, the success of semi-autonomous bus services was weak and very dependent on network, demand and other factors. 
	 
	Table 11. Potential impacts of electrification and automation on operating costs 
	Table
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	TD
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	Item 

	TD
	Span
	Electric 

	TD
	Span
	Autonomous 

	Span

	TR
	TD
	Span
	Acquisition 

	- 
	- 

	+20% 
	+20% 

	Span

	TR
	TD
	Span
	Yearly insurance 

	-35% 
	-35% 

	-50% 
	-50% 

	Span

	TR
	TD
	Span
	Yearly tax 

	-100% 
	-100% 

	- 
	- 

	Span

	TR
	TD
	Span
	Yearly parking 

	- 
	- 

	- 
	- 

	Span

	TR
	TD
	Span
	Yearly toll 

	- 
	- 

	- 
	- 

	Span

	TR
	TD
	Span
	Maintenance 

	+28% 
	+28% 

	- 
	- 

	Span

	TR
	TD
	Span
	Cleaning 

	- 
	- 

	$0.02-0.05 per kilometer 
	$0.02-0.05 per kilometer 

	Span

	TR
	TD
	Span
	Tires 

	- 
	- 

	-10% 
	-10% 

	Span

	TR
	TD
	Span
	Fuel 

	-50% 
	-50% 

	-10% 
	-10% 

	Span


	Source: (Bosch, Becker, Becker, & Axhausen, 2017) 
	Table 12. Estimated operating costs considering different emerging technologies 
	Table
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	Span
	Mode 
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	Span
	Capacity 

	TD
	Span
	Technology 
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	Span
	Urban 

	TD
	Span
	Regional 

	Span

	TR
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	Span
	Per  Vehicle-km 

	TD
	Span
	Per Passenger-km 

	TD
	Span
	Per  Vehicle-km 

	TD
	Span
	Per Passenger-km 

	Span

	TR
	TD
	Span
	Bus 

	60 
	60 

	Conventional 
	Conventional 

	 $           7.37  
	 $           7.37  

	 $           0.55  
	 $           0.55  

	 $           6.92  
	 $           6.92  

	 $           0.92  
	 $           0.92  

	Span

	TR
	Electric 
	Electric 

	TD
	Span
	 $           7.00  

	 $           0.52  
	 $           0.52  

	TD
	Span
	 $           6.57  

	 $           0.87  
	 $           0.87  

	Span

	TR
	Autonomous 
	Autonomous 

	TD
	Span
	 $           3.32  

	 $           0.25  
	 $           0.25  

	TD
	Span
	 $           3.12  

	 $           0.41  
	 $           0.41  

	Span

	TR
	EV & AV 
	EV & AV 

	TD
	Span
	 $           3.15  

	 $           0.24  
	 $           0.24  

	TD
	Span
	 $           2.95  

	 $           0.39  
	 $           0.39  

	Span

	TR
	TD
	Span
	Minibus 

	20 
	20 

	Conventional 
	Conventional 

	 $           2.02  
	 $           2.02  

	 $           0.48  
	 $           0.48  

	 $           2.51  
	 $           2.51  

	 $           1.30  
	 $           1.30  

	Span

	TR
	Electric 
	Electric 

	 $           1.95  
	 $           1.95  

	 $           0.47  
	 $           0.47  

	 $           2.44  
	 $           2.44  

	 $           1.27  
	 $           1.27  

	Span

	TR
	Autonomous 
	Autonomous 

	 $           1.07  
	 $           1.07  

	 $           0.26  
	 $           0.26  

	 $           0.70  
	 $           0.70  

	 $           0.36  
	 $           0.36  

	Span

	TR
	EV & AV 
	EV & AV 

	 $           1.01  
	 $           1.01  

	 $           0.25  
	 $           0.25  

	 $           0.63  
	 $           0.63  

	 $           0.32  
	 $           0.32  

	Span

	TR
	TD
	Span
	Van 

	8 
	8 

	Conventional 
	Conventional 

	 $           3.66  
	 $           3.66  

	 $           1.75  
	 $           1.75  

	 $           2.42  
	 $           2.42  

	 $           1.25  
	 $           1.25  

	Span

	TR
	Electric 
	Electric 

	 $           3.60  
	 $           3.60  

	 $           1.72  
	 $           1.72  

	 $           2.38  
	 $           2.38  

	 $           1.23  
	 $           1.23  

	Span

	TR
	Autonomous 
	Autonomous 

	 $           0.80  
	 $           0.80  

	 $           0.38  
	 $           0.38  

	 $           0.60  
	 $           0.60  

	 $           0.31  
	 $           0.31  

	Span

	TR
	EV & AV 
	EV & AV 

	 $           0.77  
	 $           0.77  

	 $           0.36  
	 $           0.36  

	 $           0.57  
	 $           0.57  

	 $           0.29  
	 $           0.29  

	Span


	Source: (Bosch, Becker, Becker, & Axhausen, 2017) 
	Notes: Costs presented in 2018 US dollars. Shaded cells calculated based on 5.5% and 55% cost decrease of electrification and automation, respectively (Bosch, Becker, Becker, & Axhausen, 2017). Assumption: EV and AV influence independently and result in 57.25% decrease. 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018) 
	Presently, new transportation technologies are under development, such as AV and CV, while some other technologies are on the path to mass adoption, such as shared services and EV. Considering different rates of progress and adoption and the way these technologies may blend and interact, currently most of the predictions and scenarios are mixed with significant levels of speculation and contemplation. Some operating costs have been proposed and examined, but estimated costs may not be reliable due to uncert
	Presently, new transportation technologies are under development, such as AV and CV, while some other technologies are on the path to mass adoption, such as shared services and EV. Considering different rates of progress and adoption and the way these technologies may blend and interact, currently most of the predictions and scenarios are mixed with significant levels of speculation and contemplation. Some operating costs have been proposed and examined, but estimated costs may not be reliable due to uncert
	Table 8
	Table 8

	 were adjusted by the 5.5% and 55% reductions proposed by Bosch et al. (2017) for electrification and automation of buses, respectively. For smaller transit vehicles such as vans and minibuses, the values in Table 12 may be used. It should be noted that estimates were based on data from Switzerland but converted into 2018 US dollars. Table 13 presents the estimates in 2018 costs by different agency sizes. 

	 
	Table 13. Operating cost per revenue kilometer for buses by agency size for emerging technologies (2018 US dollars) 
	Table
	TR
	TD
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	Agency Size 

	TD
	Span
	Conventional 

	TD
	Span
	Electric 

	TD
	Span
	Autonomous 

	TD
	Span
	EV & AV 

	Span

	TR
	TD
	Span
	All Agencies 

	 $           7.29  
	 $           7.29  

	 $           6.92  
	 $           6.92  

	 $           3.28  
	 $           3.28  

	 $           3.12  
	 $           3.12  

	Span

	TR
	TD
	Span
	Small Agencies 

	 $           3.95  
	 $           3.95  

	 $           3.75  
	 $           3.75  

	 $           1.78  
	 $           1.78  

	 $           1.69  
	 $           1.69  

	Span

	TR
	TD
	Span
	Medium-sized Agencies 

	 $           5.18  
	 $           5.18  

	 $           4.92  
	 $           4.92  

	 $           2.33  
	 $           2.33  

	 $           2.22  
	 $           2.22  

	Span

	TR
	TD
	Span
	Large Agencies 

	 $           8.33  
	 $           8.33  

	 $           7.92  
	 $           7.92  

	 $           3.75  
	 $           3.75  

	 $           3.56  
	 $           3.56  

	Span


	Notes: 2018 Costs calculated using “CPI Inflation Calculator” (Bureau of Labor Statistics (BLS), 2018). Assumption: EV and AV influence independently and result in 57.25% decrease. 
	 
	Based on the values in 
	Based on the values in 
	Table 8
	Table 8

	, Table 12, and Table 13, the following ranges of operating costs (2018 US dollars) per kilometer seem reasonable: 

	 Bus (conventional): $3.95 – 8.33 
	 Bus (conventional): $3.95 – 8.33 
	 Bus (conventional): $3.95 – 8.33 

	 Bus (emerging technologies): $1.69 – 3.56 
	 Bus (emerging technologies): $1.69 – 3.56 

	 Minibus (conventional): $2 – 2.5 
	 Minibus (conventional): $2 – 2.5 


	 Minibus (emerging technologies): $0.63 – 1.01 
	 Minibus (emerging technologies): $0.63 – 1.01 
	 Minibus (emerging technologies): $0.63 – 1.01 

	 Van (conventional): $2.42 – 3.66 
	 Van (conventional): $2.42 – 3.66 

	 Van (emerging technologies): $0.57 – 0.77 
	 Van (emerging technologies): $0.57 – 0.77 


	 
	7. ANALYSES AND RESULTS WITH VARIOUS TRANSIT OPERATING COSTS  
	A hypothetical rail transit line that has four stations was created to test the developed algorithm and demonstrate its efficiency. Also, we tested four trains to test and demonstrate the relocation of buses. In this example, the capacity for each bus is assumed to be eight passengers. We also waived passengers’ boarding and alighting time at the nodes and the stations. 
	A hypothetical rail transit line that has four stations was created to test the developed algorithm and demonstrate its efficiency. Also, we tested four trains to test and demonstrate the relocation of buses. In this example, the capacity for each bus is assumed to be eight passengers. We also waived passengers’ boarding and alighting time at the nodes and the stations. 
	Table 14
	Table 14

	 shows the number of boarding and alighting passengers for each station and for each train. For example, in Station 1, 20 passengers need to be picked up and get on and 20 passengers get off and need to be at Station 1, and so on. The bus speed is assumed to be 30km/h and the travel time value for passengers is assumed to be $20/hour. The origins and destinations of the boarding and alighting passengers are randomly generated around the rail line for four trains. 
	Figure 6
	Figure 6

	 shows the boarding (blue points) and alighting passengers (red points) around four stations. 

	 
	Table 14. Passenger information for each station 
	Table
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	Station 4 
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	Average total direct travel distance (Km)  
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	Boarding/ 
	Alighting passengers (prs) 
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	Average direct travel distance (Km)  
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	Span
	Boarding/ 
	Alighting passengers (prs) 
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	Span
	Average direct travel distance (Km)  
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	Span
	Boarding/ 
	Alighting passengers (prs) 

	TD
	Span
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	Span
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	Span
	Average direct travel distance (Km) 
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	20+20 
	20+20 
	20+20 

	1.1714 
	1.1714 

	19+16 
	19+16 

	1.1688 
	1.1688 

	18+22 
	18+22 

	1.1962 
	1.1962 

	18+17 
	18+17 

	1.2765 
	1.2765 

	1.2019 
	1.2019 

	Span


	 
	 
	Figure 6. Geographical distributions of the passengers 
	 
	 
	The generated demand on the hypothetical network is applied to the optimization algorithm. The key assumptions in the computation are bus speed of 30km/hr to convert passenger travel distance to their travel time, and $20/hr time value to convert their travel time to travel costs. As discussed in the literature review, estimating vehicle operating costs per distance requires wild estimations with many assumptions because the components for vehicle operating costs are in different dimensions, such as fixed c
	The generated demand on the hypothetical network is applied to the optimization algorithm. The key assumptions in the computation are bus speed of 30km/hr to convert passenger travel distance to their travel time, and $20/hr time value to convert their travel time to travel costs. As discussed in the literature review, estimating vehicle operating costs per distance requires wild estimations with many assumptions because the components for vehicle operating costs are in different dimensions, such as fixed c
	Figure 7
	Figure 7

	 shows the sample optimal network with $3/km operating costs. 

	Table 15
	Table 15
	Table 15

	 shows the network characteristics of five unit operating costs. Obviously, when unit operating costs decline ($5/km to $1/km), total operating costs ($395.85 to $90.60) and total costs ($640.66 to $302.91) decline. One thing that should be noted is when unit operating costs decline ($5/km to $1/km), average passenger travel distance (3.44 km to 2.99 km) and total passenger travel costs ($244.82 to $212.32) decline while total operating costs per unit operating costs increase (79.17 to 90.60). Also, the tot

	cost was not optimized with the lower unit operating costs. 
	cost was not optimized with the lower unit operating costs. 
	Figure 8
	Figure 8

	 shows the relationships between cost components of the transit network and unit operating costs. 

	The insight gained from these results is that if unit operating costs decrease, the portion of passenger travel costs in total costs increases, and the optimization process tends to reduce passenger costs more while it reduces total costs. Assuming that automation of the vehicles reduces the operating costs, it will reduce total operating costs, total costs and total passenger travel costs as well.  
	 
	 
	 
	Figure 7. Results of the feeder bus routings ($3/km Unit Operating Cost) 
	Table 15. The network characteristics of optimal feeder bus networks with various unit operating costs 
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	Unit operating cost ($/Km) 
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	Span
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	Span
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	Average passenger distance travelled to each station (Km) 
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	Span
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	Total bus operating cost ($) 
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	Total operating cost/Unit operating cost 
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	Span
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	Total cost($) 
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	Span
	Percentage Change (total cost) 
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	Span
	Total cost with $5/km network 

	Span

	TR
	Span

	TR
	TD
	Span
	$1/Km 

	#1 
	#1 

	23.96 
	23.96 

	2.72 
	2.72 

	3.06 
	3.06 

	2.99 
	2.99 

	212.32 
	212.32 

	  
	  

	90.60 
	90.60 

	  
	  

	90.60 
	90.60 

	78.32 
	78.32 

	302.91 
	302.91 

	  
	  

	323.99 
	323.99 

	Span

	TR
	#2 
	#2 

	21.49 
	21.49 

	2.37 
	2.37 

	3.05 
	3.05 

	68.98 
	68.98 

	Span

	TR
	#3 
	#3 

	23.17 
	23.17 

	2.86 
	2.86 

	3.22 
	3.22 

	80.37 
	80.37 

	Span

	TR
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	#4 

	21.98 
	21.98 

	2.66 
	2.66 

	3.42 
	3.42 

	75.25 
	75.25 

	Span

	TR
	TD
	Span
	$2/Km 

	#1 
	#1 

	20.72 
	20.72 

	2.91 
	2.91 

	3.27 
	3.27 

	3.06 
	3.06 

	217.62 
	217.62 

	2.50 
	2.50 

	172.97 
	172.97 

	90.92 
	90.92 

	86.48 
	86.48 

	99.53 
	99.53 

	390.59 
	390.59 

	28.95 
	28.95 

	403.16 
	403.16 

	Span

	TR
	#2 
	#2 

	20.94 
	20.94 

	2.43 
	2.43 

	3.12 
	3.12 

	90.39 
	90.39 

	Span

	TR
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	#3 

	23.17 
	23.17 

	2.86 
	2.86 

	3.22 
	3.22 

	103.54 
	103.54 

	Span

	TR
	#4 
	#4 

	21.66 
	21.66 

	2.69 
	2.69 

	3.46 
	3.46 

	97.13 
	97.13 

	Span

	TR
	TD
	Span
	$3/Km 

	#1 
	#1 

	20.72 
	20.72 

	2.91 
	2.91 

	3.27 
	3.27 

	3.09 
	3.09 

	219.98 
	219.98 

	1.08 
	1.08 

	256.67 
	256.67 

	48.39 
	48.39 

	85.56 
	85.56 

	120.25 
	120.25 

	476.65 
	476.65 

	22.03 
	22.03 

	482.33 
	482.33 
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	TR
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	#2 

	20.63 
	20.63 

	2.47 
	2.47 

	3.17 
	3.17 

	111.27 
	111.27 

	Span

	TR
	#3 
	#3 

	23.03 
	23.03 

	2.87 
	2.87 

	3.23 
	3.23 

	126.57 
	126.57 

	Span

	TR
	#4 
	#4 

	21.18 
	21.18 

	2.75 
	2.75 

	3.54 
	3.54 

	118.56 
	118.56 
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	TR
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	$4/Km 

	#1 
	#1 

	20.00 
	20.00 

	3.03 
	3.03 

	3.40 
	3.40 

	3.21 
	3.21 

	228.28 
	228.28 

	3.77 
	3.77 

	332.40 
	332.40 

	29.50 
	29.50 

	83.10 
	83.10 

	140.49 
	140.49 

	560.68 
	560.68 

	17.63 
	17.63 

	561.50 
	561.50 
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	TR
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	#2 

	19.53 
	19.53 

	2.65 
	2.65 

	3.41 
	3.41 

	131.21 
	131.21 
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	TR
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	#3 

	22.86 
	22.86 

	2.90 
	2.90 

	3.27 
	3.27 

	149.49 
	149.49 

	Span

	TR
	#4 
	#4 

	20.72 
	20.72 

	2.83 
	2.83 

	3.64 
	3.64 

	139.50 
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	Figure 8. Various cost components for various unit operating costs 
	8. CONCLUSIONS 
	Although demand responsive feeder bus operation is possible even with human-driven vehicles, it is not very popular and mostly available as a special service because of the high operating costs due to the intensive labor costs. However, once automated vehicles become available, small-sized flexible door-to-door feeder bus operation can become more realistic, and preparing for that is necessary to catch the rapid improvement of automated vehicle technology. So, in this research, an algorithm for the optimal 
	 The example was developed and tested to demonstrate the developed algorithm. The algorithm successfully handled relocating the buses when the optimal bus routings were not feasible with the available buses at certain stations. Also the developed algorithm considered the maximum acceptable Degree of Circuity (DOC) for each passenger’s trip while minimizing total costs including total passenger travel time and vehicle traveled distance. Unlike package delivery and pickup problems, each individual considers h
	As expected, with higher Max DOCs, total costs of the service decreased due to the more relaxed constraint. With the higher ratio, the minimum number of buses used and vehicle traveled distance also decreased while passengers’ total travel time more likely increased, although it did not show a clear relationship with the Max DOC. This study also found that the expectation of the shorter passenger travel time with the lower Max DOC due to a more direct route was not always fulfilled because of the less effic
	Although total costs were reduced with the higher Max DOC due to the more relaxed constraint for the algorithm, the savings in total costs were not significant. So, transit agencies will decide whether 
	to choose lower individual passengers’ maximum DOC for less maximum additional travel time for individual passengers or higher individual passengers’ maximum DOC for less total costs and less transit operating costs. 
	This study also provides a mechanism for future evaluations of how efficient automated feeder services are and how they will compare with the fast-approaching automated ridesharing and carsharing services. Eventually, these studies will help predict users’ travel behaviors and modal choices between the automated ridesharing/carsharing operation and the automated feeder service for mass transit.  
	For future research, a feeder bus routing algorithm for the trains with much shorter headways is being developed, which requires a passenger-feeder bus-train matching process in the algorithm. Also, the algorithm using smarter metaheuristics, one that incorporates composite heuristics for the larger and real networks, will be developed and adopted. 
	Automated vehicles are expected to provide safer service and reduce accidents, and also expected to lower operating costs by eliminating or reducing labor costs. 
	Unlike fixed route mass transit, small vehicle demand responsive service uses flexible routing, which means lower unit operating costs not only decrease total operating costs and total costs but also can affect routing and impact network characteristics.  
	In this research, optimal flexible demand responsive feeder transit networks were generated with various unit transit operating costs using the authors’ previously developed routing optimization algorithm. Then network characteristics of those feeder networks were examined and compared.  
	The results showed that when unit operating costs decline, total operating costs and total costs obviously decline. Furthermore, when unit operating costs decline, the average passenger travel distance and total passenger travel costs decline while the ratio of total operating costs per unit operating costs increases. That means if unit operating costs decrease, the portion of passenger travel costs in total costs increases, and the optimization process tends to reduce passenger costs more while it reduces 
	networks because the feeder networks were not optimized with the lower unit operating costs. Assuming that automation of the vehicles reduces the operating costs, it will reduce total operating costs, total costs and total passenger travel costs as well.  
	In the future, more various demand distribution and scenarios will be applied to develop more general results.  
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