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EXECUTIVE SUMMARY 

There have been important advances in non-motorized planning tools in recent years, including 
the development of the MoPeD pedestrian demand model (Clifton et al., 2013, 2015). This tool 
and others are increasingly requested by governments and agencies seeking to increase walking 
activity and create more walkable places. To date, the MoPeD tool has been piloted with success 
in the Portland region using data unique to Metro, the metropolitan planning organization. 
However, there is increasing interest from planning agencies in adapting the pedestrian modeling 
tools and their inputs for use in their own jurisdictions. Unfortunately, other regions often do not 
have uniform access to the same kinds of pedestrian environment data as Metro, particularly at 
such a fine-grained scale.  

In this next phase of our pedestrian modeling work (see Clifton et al., 2013, 2015), this project 
focuses on making our measures, models, and methods more transferable to other locations. 
Specifically, we will re-evaluate, compare and test our pedestrian index of the environment (PIE) 
measure using data resources more commonly available to planning agencies across the country. 
Next, we test the results of PIE and its input data in models of pedestrian mode choice for 
stability of estimation results within a region (intraregional) and between regions (interregional). 
This research is the next logical step in the MoPeD’s enhancement and is critical to enabling its 
utility beyond the Portland region. 

In terms of index inputs, the results of this project show that population density and pedestrian 
connectivity had the most consistent and strong relationship to walk mode choice across all of 
our regions, which echoed the long literature on this topic. However, the other components of the 
built environment included in PIE had more variability in their ability to explain walk mode 
choice. Employment density and its subset urban living infrastructure (ULI), intended to capture 
retail and service access, had less explanatory power and stability in the cities tested. Based upon 
these findings, we provide several guidelines for the construct of walkability indices, including 
variables and spatial scales.  

Our findings raise questions about the relationship between walking and the built environment 
within a region and thus, the intraregional transferability of one walkability index is suspect. 
Estimation results suggest that there may be different responses to the built environment in 
lower-density vs. higher density regimes and that these relationships may be nonlinear. However, 
smaller sample sizes of travel survey data in high density areas in all of the US cities tested pose 
limitations to drawing more confident conclusions from these results.  

The interregional comparisons of PIE and walk mode share between Los Angeles and Portland 
showed promise for the use of the index in different regions. In these two regions, model results 
showed a similar walk mode share for the same values of PIE constructed at the block group 
level. This provides initial support that the PIEbg construct may be transferrable between 
metropolitan regions, in part, due to population density's prominent role in PIE.  
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1.0 INTRODUCTION 

There is a growing demand for tools that can estimate pedestrian activity, forecast future walking 
levels, and be used for other transportation planning applications. Many metropolitan planning 
organizations (MPOs), in particular, seek tools to estimate pedestrian demand that can provide 
greater support for planning and policy-making activities, including:  increased sensitivity to 
pedestrian facilities, land use changes, and the built environment; better accounting for mode 
shifts and resulting changes in greenhouse gas emissions; more accurate estimates of physical 
activity levels for health impact assessments and of pedestrian exposure for traffic safety 
analyses; etc. While not yet widespread, regional travel demand forecasting for pedestrians 
continues to develop (Kuzmyak et al. 2014; Singleton et al. 2018); however, different MPOs 
have used various ad-hoc techniques that depend on their unique decision support needs, data 
sources, and modeling capabilities, with little consistency. Other agencies lack the technical 
capacity and funding to undertake model improvements on their own. Facing this reality, travel 
model transferability is of increasing interest (Rossi and Bhat 2014). A framework for modeling 
pedestrian demand with consistent data inputs that can be more easily transferred between 
regions would be of great value to practitioners, especially those at agencies with limited 
resources. 

Despite a long history of research documenting relationships between walking and 
environmental conditions—including effects of the built environment—models used in practice 
lag in their representation of the pedestrian environment. Pedestrian travel has been positively 
related to higher residential and employment densities, greater land use mix or diversity, more 
connected networks or higher intersection densities, greater accessibility to transit, and sidewalk 
and crossing conditions (e.g., Saelens and Handy 2008). Yet, most MPO regional models use 
only rough density measures to predict pedestrian demand (Singleton et al. 2018). While the lack 
of pedestrian-sensitive built environment data was a barrier in the past, today fine-grained 
archived spatial datasets are becoming more widely available, including point-, parcel-, or block-
level measures of the pedestrian environment. This has led to the development of a number of 
measures of the pedestrian environment, including the Pedestrian Index of the Environment, 
(Singleton et al. 2014), the Pedestrian Environment Factor (Greenwald and Boarnet 2001), the 
Pedestrian Environment Index (Peiravian et al. 2014), and others.  

The present-day issue is that the availability and formatting of these built environment data vary 
widely across and within regions, yielding challenges to the transferability of composite 
measures of the pedestrian environment (and models of pedestrian demand). A related issue 
involves finding the appropriate scale that balances tradeoffs between the use of small-scale and 
behaviorally-sensitive pedestrian environment data, the computational processing challenges that 
such data impose, and the general availability of those data now and in the future. 

Pedestrian modeling has also not kept pace with nor taken full advantage of developments 
happening in pedestrian data collection. Historically, one reason why few MPO models 
represented pedestrian travel was that the regional household travel surveys used to estimate 
such models captured few walking trips, often by design (Clifton and Muhs 2012). Today, 
surveys have improved their capture of pedestrian activity, and data collection efforts are 
increasingly being supplemented by short- and long-term pedestrian counts (Schneider et al. 
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2005). Surprisingly, these count data are rarely used in the development of regional pedestrian 
demand forecasting models and analysis tools, despite being a potential source of data for 
external validation, if not calibration. 

This project begins to address some of these research gaps and practical needs. It builds upon 
previous work developing a framework for Model of Pedestrian Demand (MoPeD) and a 
Pedestrian Index of the Environment (PIE) variable (Clifton et al. 2013, 2015) to make measures 
and models more transferrable and useful for forecasting.  

PIE is a composite index that is constructed from a set of models that estimate the probability of 
walking trips as a function of a built environment attribute. The value of PIE is calculated from a 
set of built environment variables representing activity density, block density, sidewalk density, 
transit access, neighborhood-oriented businesses and other factors (Singleton et al. 2014). PIE 
was originally developed for Portland, OR using the 2011 Oregon Household Travel Survey 
(OHAS) and built environment data at a small grid scale of 80 by 80 meters.  

MoPeD is a tool for predicting pedestrian demand using trip generation, mode choice, and 
destination choice models. These models predict walking trip probabilities for a variety of travel 
purposes using PIE and other socioeconomic and demographic information. MoPeD has been 
calibrated with OHAS data and applied to 80 by 80-meter grid cells in Portland, OR. 

These tools and others are increasingly requested by those interested in increasing walking 
activity and creating more walkable places. While MoPeD and PIE have been piloted with 
success in the Portland region using data unique to Metro, the metropolitan planning 
organization, there is increasing interest from planning agencies within and outside of Portland 
and Oregon (e.g.: City of Tigard, OR; Metropolitan Council of the Twin Cities, MN; San 
Francisco Public Health Department, CA) in adapting these pedestrian modeling tools for use in 
their own jurisdictions. Local governments desire to apply these tools for a variety of planning 
and forecasting purposes, including but not limited to regional demand modeling. Unfortunately, 
other regions often do not have uniform access to the same kinds of pedestrian environment data 
as Metro, particularly at such a fine-grained scale. Important challenges remain in model 
development that must be overcome if these tools are to achieve widespread application. Among 
the most critical needs are the standardization and forecasting of model inputs, particularly 
measures of the built environment. 

In this next phase of our pedestrian modeling work, we focus on testing the ability of our 
measures, models, and methods to be more transferable to other locations. Specifically, we 
capitalize on the increased availability of pedestrian environment data to create a new PIE (called 
PIEbg) that utilizes more widespread data sources available at the census block group level. We 
re-evaluate, compare (with the original PIE, called PIE0 in this report) and test our PIEbg measure 
using data resources more commonly available to planning agencies across the country. Next, we 
examine this PIEbg variable and its association with walking in Portland amid both urban and 
suburban contexts (intra-regionally). Additionally, we examine differences in the PIEbg measure 
and its performance in regions outside of Portland (interregional transferability). These tasks 
balance data availability, scale, computational capacity, and behavioral realism. This updated 
suite of pedestrian modeling products has the potential to be more widely transferable and 
applicable to MPOs and other planning agencies beyond Portland. Finally, we test this new 
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measure across a large range of urban environments by estimating models of probability of 
walking using PIEbg as a single explanatory variable. This analysis tests the issue of linearity in 
the parameters and questions the validity of using a single parameter to represent the behavioral 
response to walking environment for all locations.  

Our overall research objective is to increase the availability of pedestrian demand tools for use 
by various planning agencies around the country. To do this, we are guided by the following 
research questions. 

How can PIE be constructed using data that are widely available to planning agencies 
across the country, but remain sensitive to pedestrian scales and variations in 
environmental conditions? PIE is central to representing the built environment in the trip 
generation and destination choice models within MoPeD. In its current form, PIE relies on 
detailed, disaggregate, spatial data that are available in the Portland region; but, in other areas of 
the country, these data are not uniformly available. In order for the MoPeD model to be 
transferable to other locations, we redesign PIE to make use of data resources that are more 
commonly available around the US and elsewhere and compare results with our original PIE 
construct. 

Should the measures of the built environment comprising PIE be weighted differently in 
different urban/suburban contexts? People walking in suburban locations may actually care 
about and respond to various environmental characteristics differently than people walking in 
urban locations. Suburban areas have been given relatively less attention in studies of pedestrian 
behavior, despite evidence of significant levels of walking observed there (Larco et al. 2013). To 
better understand walking behavior across a spectrum of contexts, we test for differences in the 
combinations of environmental features and thresholds used in PIE between urban and suburban 
locations for Portland. Additionally, we extend these tests to different cities to assess how PIE 
behaves and if we can find evidence that, the measurements are transferrable.  

The remaining report is organized into five additional sections. The Section 2.0 provides an 
introduction to the pedestrian model. Then, a brief summary of the background of the project, a 
review of the main issues about walking and travel behavior, and a synthesis of the 
transferability measures are provided in Section 3.0. The next section, Section 4.0 is a 
description of the data inputs and outputs, and discusses the main assumptions in the analysis, 
and reviews the construction of the data sets including the built environment and travel data. 
Section 5.0 covers the research methods and the implications of our approach and presents 
results. It is separated in four subsections: the reconstruction of our new index (PIEbg), the 
comparison with the older index (PIE0), and two sections analyzing the intra- and intercity 
transferability of our new index. Finally, Section 6.0 is a discussion and conclusions of this 
project with suggestions for policy and future research. 
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2.0 BACKGROUND 

The relationship between walking and the built environment has had a particular emphasis on the 
study of travel behavior. In 1997, Cervero and Kockelman proposed three attributes to 
characterize the built environment: diversity, design, and density (the D’s). Analyzing different 
metro areas from the US, they found that relationship between these variables and travel 
behavior are modest to moderate. Although they did not find strong relationships for each 
variable, they did suggest that the synergy among the three could cause impacts that are more 
appreciable. Other studies, focusing explicitly on walking, have found a stronger association 
with the built environment. Two reviews (Handy et al. 2002; Frank 2000) found positive and 
significant relationships between density and mixed land use with walking. In a 2006 review, 
Sallis et al. found that studies have yielded surprisingly consistent results but that utilitarian 
walking (and cycling) is generally higher in the areas with mixed uses, good street connectivity, 
and higher population densities. In another 2008 review, Saelens and Handy (2008) found more 
consistency among these same relationships even after controlling for self-selection. However, 
they found evidence in some studies indicating that the random samples of travel observations 
taken from the general population do not ensure sufficient variation and that multicollinearity 
among built environment characteristics makes it hard to identify the unique contribution of a 
specific attribute.  

None of the studies acknowledges any location bias in the selection of study participants. 
Specifically, there is a lack of variation in the overall urban structure and range of built 
environments tested in the literature. As noted by Saelens and Handy, the majority of studies are 
based on a small number of countries including the US. Overall residential densities in the US 
are the lowest in the world (Newman 2014; Huang et al. 2007). Additionally, the low level of 
compactness (Huang et al. 2007) adds the question of whether the density gradients have a role. 
Furthermore, having low residential densities on average means higher density areas may be 
scarce, thus, making them “hidden populations” or “hard-to-reach populations” for gathering 
travel behavior data from surveys. This means that the sampling process has to be very large to 
have a good accuracy level, or that places with a desirable density for walking may be 
nonexistent in many cases, especially in smaller size cities or towns. Thus, empirically-derived 
relationships between walking and the built environment using only lower-density observations 
may not apply to higher-density places or regions. A study of differences between major cities 
and rural small towns found that smaller towns did not have the nearby destinations to support 
walking, compared with city centers of major metropolitan areas that did have close destinations 
(Stewart et al. 2016). 

Another significant approach to determine the degree to which built environment characteristics 
affects travel behavior has been the calculation of elasticities from a meta-analysis or meta-
regressions (Ewing and Cervero 2010; Stevens 2017). This has been done for different cities and 
samples, with estimated elasticities of built environment variables ranging 0.0–0.3, suggesting an 
inelastic relationship with walking. Further discussions have focused on establishing the relative 
vs. absolute magnitude of this number (is it large or not?) but have neglected the potential 
complementarity among those variables characterizing the built environment. Besides, this 
approach avoids the discussion of multicollinearity in the characteristics of the built 
environment. The latest debates have centered on the usefulness of these methods (Clifton 2017; 
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Handy 2017; Ewing and Cervero 2017), as they have become common among different fields. 
The main concerns regarding these methods are the absence of longitudinal studies as well as the 
assumptions of linearity behind them, as there may be evidence that is not the case (Talen and 
Koschinsky 2014).  

Although these issues may be responsible for mixed results in studies of the relationships 
between walking and the built environment, there is extensive evidence that these relationships 
exist. Nevertheless, there is no consensus around the level or magnitude of effects and suggests 
that findings may have limited applicability in other locations. This project tries to fill these gaps 
by building and testing new indicators of the built environment from data sources that are more 
available and from there test how transferable are the measures among cities.  

Fox et al. (2014) identify a clear distinction between two types of model transferability: temporal 
transferability that refers to the validity of the models for long-term predictions, and spatial 
transferability that refers to the validity of models across different regions. For both types of 
transferability, there are methods to test model transferability (Ben-Akiva 1981; Lerman 1981) 
and approaches to updating the model parameters (Ben-Akiva and Bolduc 1987; Badoe and 
Miller 1995). However, the focus in the literature has been on identifying the statistical methods 
to transfer models and testing the accuracy of the prediction, rather than understanding the 
behavioral responses under different contexts.  

For example, Nowrouzian and Srinivasan (2012) test spatial transferability of activity-based 
models in Florida and identify a gap in the study of transferability in this types of models. They 
found that transferability is limited and that further research must be done to identify the range of 
contexts in which the model can be applied. Karasmaa (2007) tests the spatial transferability of 
the simple four-step regional model in two different urban areas in Finland. The research shows 
that the models are largely transferable between these locations; however, doubts arise as to 
whether this evidence supports the idea of more universal model transferability or is limited to 
similar urban structures and cultural contexts. Another limitation in the transferability literature 
is that regional models focus more on motorized vehicles than walking and biking (see Singleton 
et al. 2018) and thus a specific examination of the transferability of relationships between the 
built environment and walking behavior is lacking. Thus, this project will try to fill this gap to 
test if there are systematic behavioral responses across and within different cities. 

3.0 PEDESTRIAN INDEX OF THE ENVIRONMENT (PIE) 

This study builds on our previous work by examining and improving upon the Pedestrian Index 
of the Environment (PIE), developed and described in the project reports (Clifton et al. 2013, 
2015). In order to understand this study, it is important to give a brief overview of our original 
concept of PIE, referred to as PIE0 in this report. PIE0 is an index comprising six built 
environment measures, listed below, and was computed for each PAZ in the system (N= 
1,465,252 in the four-county metro area of Portland, OR).  
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• comfortable cycling facilities; a proxy for low volume streets with traffic calming (local
density of weighted bicycle network links in a one-mile buffer of each PAZ (1.6 km));

• block size (average block size in a quarter-mile (0.4 km) buffer of each PAZ);

• people per acre (population plus employment density in a quarter-mile (0.4 km) buffer of
each PAZ);

• sidewalk density (total length of metro sidewalk inventory within a quarter-mile buffer of
each PAZ);

• transit access (a density measure of transit stops weighted by the service frequency in a
quarter-mile buffer); and

• urban living infrastructure (ULI) (the number of services, entertainment, and retail
services in a quarter-mile buffer of the origin PAZ).

In the calculation of the index, each of the built environment measures is weighted based upon 
their relative importance to walking behavior (see Clifton et al., 2013 for more information). To 
calculate these weights, we used the standardized coefficients from a univariate model that 
predicts the likelihood of walking as a function of each of the six built environment measures 
for the PAZ of the trip origin.  

For each built environment attribute 𝑗𝑗 , a univariate (walk/don't walk), binary-logit mode choice 
model 𝑗𝑗  is estimated to predict walking/other mode using as an explanatory variable the 
attribute score 𝑗𝑗  . Each model calibration delivers a utility function: 

𝑗𝑗  = 𝛽𝛽 0𝑗𝑗  + 1𝑗𝑗 𝑗𝑗

After this, PIE0 was constructed by weighting each built environment variable by the 
corresponding estimated coefficient 1𝑗𝑗   and summing the values over a specific spatial unit. 

The dataset used to provide the built environment characteristics used in PIE0 is the Context 
Tool, developed by Portland Metro. This dataset calculates the built environment characteristics 
within 80-meter by 80-meter grid cells (called Pedestrian Analysis Zones, or PAZs) and 
associates each raw measure with discrete values between 1 and 5. These discrete values were 
assigned using natural breaks in the distribution of each measure. Additionally, the travel 
behavior data used in the estimation of the binary logit models for the weights used in PIE0 were 
the Oregon Household Travel Survey (OHAS) from 2011. The sample consisted of 56,634 trips 
for a regular day, 36,463 trips of which correspond to the area where Portland Metro Context 
Tool had measured.  
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The coefficients for PIE0 are shown in Table 1 and the values for PIE0 for the Portland region are 
shown in Figure 1. The advantages of PIE0 were that it captured fine-grained variations in the 
walking environment at the PAZ scale (80-meters by 80-meters). This improves upon the course 
scale used in most regional travel models, where Traffic Analysis Zones (TAZs) are the unit of 
analysis. Additionally, this index weighted the different built environment attributes by their 
association with walking behavior and improves our characterization of “walkability”. Thus, 
PIE0 was statistically significant in our later analysis of travel behaviors (mode choice and trip 
generation). In addition to the contributions made by PIE0, MoPeD can be used as a stand-alone 
demand tool or in concert with Metro's regional travel model. Despite these improvements, the 
methodology still has some limitations. First, the data sources used for the model estimation used 
discrete values between 1 and 5 using natural breaks to transform the data rather than the direct 
values of the built environment variables. This presents problems in transferring the measures 
and the models to other places since each location will have its own distributions of these 
variables (and different corresponding natural breaks).  

Table 1 Binary Logit Models for PIE0 

Model  
Context Variable (zn) Coefficient (β) p-value pseudo-R2 

Model 1    
Bicycle Access  0.494 0.00 0.057 Constant -4.047 0.00 
Model 2    
Block Size 0.543 0.00 0.096 Constant -3.729 0.00 
Model 3    
People per Acre 0.812 0.00 0.095 Constant -4.304 0.00 
Model 4    
Sidewalk Density 0.500 0.00 0.083 Constant -3.900 0.00 
Model 5    
Transit Access 0.621 0.00 0.083 Constant -3.386 0.00 
Model 6    
ULI Density 0.549 0.00 0.073 Constant -3.204 0.00 

Data used for all models 
Trips (n) 36,463 
Walk 3,560 
Not Walk 32,903 
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Figure 1 Regional Map of the Built Environment Index PIE0  

4.0 DATA AND METHODS FOR NEW PIE (PIEBG)  

Our objective at large was to re-create pedestrian-specific measures of the built environment at a 
coarser scale (for the purpose of using more readily available data nation-wide), compare them 
with PIE0, and test whether their predictive capacity in models of walking mode choice in 
Portland, OR.  

The extension to this methodology was to estimate a new index that we called PIEbg, named for 
the spatial scale of its construct: The Census block group geographic unit. There is a total of 

1,324 block groups with an average area of 11.4 sq. meters (SD = 111.1 sq. meters).  

Figure 2 shows the difference between both units of analysis. The block group scale is similar to 
the traffic analysis zones (TAZ) commonly used in transportation planning methods. PIEbg was 
calibrated using an analogous methodology as PIE0. One of our objectives was to test the loss of 
power of our models in changing the scale and the data source, so we framed the PIEbg score to 
be similarly constructed as PIE0.  

In PIE0 the built environment data were scaled using natural breaks and assigned discrete values 
between 1 and 5. However, in PIEbg, we decided that this method lose too much information and 



10 
 

the induce error could even be higher at the larger scale of the block group, particularly when 
using a block group scale and thus, continuous values were assigned. For that reason, we scaled 
the data to be between 1 and 5 using continuous breaks. This is done by using the following 
formula: 

𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛 =
5 − 1

max (Z) − min (Z)
∗ (𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜 − min(Z)) + 1, 

where 𝑧𝑧 is the value that wants to be transform and the 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚 values correspond to the 
maximum and minimum value of the built environment data set for each city. 

After this, we used the same methodology of PIE0 where the weights of each attribute of the built 
environment are the coefficients of univariate logit models of the choice to walk estimated using 
household travel survey data for each region. The new indicator PIEbg is again transformed by 
multiplying with a constant to have a minimum value of 20 and a maximum value of 100 as with 
PIE0. 

𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐 =  
20

∑𝛽𝛽1𝑗𝑗 ∗ min 𝑧𝑧𝑗𝑗
 

One of the objectives of this project was to use widely-available data in order to make our 
measures of PIE transferrable. The US Environmental Protection Agency (EPA) created a unique 
dataset called the Smart Location Database (SLD) (Ramsey and Bell 2014; US EPA 2014) that 
includes information from the Census, the street design from Navteq’s NAVSTREETS street 
data, and transit data form each local agency, in General Transit Feed Specification (GTFS), that 
include all the time schedule and transit routes. This data source was selected because it is a 
resource that offers a large number of built environment variables, measured using equivalent 
methods, and it covers the entire country at a relatively small spatial scale. The Census block 
groups are clusters of blocks with a population between 600 and 3,000 people. Although 
pedestrian behavior is associated with a broad array of built environment characteristics, the 
following were selected based upon their availability in the SLD database (and thus their 
availability in all of our US study locations), their strong association with walking, and similarity 
to that used in PIE0. 

• People per acre: It is the addition of population and employment density. Population 
density is the gross population density of people per acre using the population of the 
decennial 2010 Census and the unprotected area defined in the Census Block Group. 
Employment density is calculated using the Census Longitudinal Employer-Household 
Dynamics (LEHD) data and dividing it by the unprotected area defined in the Census 
Block Group in acres. 

• Urban living infrastructure (ULI): Using the same data from employment density we 
filtered to include only commercial and entertainment employment. However, unlike the 
original ULI measure, which is a count of these establishments within a quarter-mile 
buffer, this ULI measure is a density measure. While they are both effectively describing 
density, the coefficients from these two different ULI measures cannot be directly 
compared because of their different construction.  
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• Transit accessibility: Aggregate frequency of all transit in a buffer of 0.25 miles of the 
block group in the peak hour using GTFS data from the local transit agencies.  

• Total road network density: The total miles of roadway per square mile. Highways that 
are divided are counted as two separate roadways.  

These variables in this new index differ from those used in the original PIE0 in two ways. First, 
our original measures of connectivity, block size, was substituted with total road network 
density. The reason for this is partially convenience: it is not available in the SLD dataset. The 
other alternative, intersection densities, were poorly defined in the SLD database making it 
difficult to interpret. Additionally, Berrigan et al. (2010) showed that intersection density and 
network density have almost a 90% of correlation, making them very similar. Therefore, we used 
total road network density to assess connectivity, which also gives the best fit in the model.  

Second, we did not include measures of sidewalk density and comfortable cycling facilities in 
our new construct. This omission was justified as both measures are not widely available. 
Further, the comfortable cycling facilities variable itself has a weak theoretical association with 
pedestrian travel. It was originally incorporated in PIE0 a proxy measure for the degree to which 
streets accommodated multimodal travel. Furthermore, the primary motivation for this exercise 
is to test how transferable are the relationships in PIE are across different locations and not 
necessarily to estimate a model to use for forecasting.  

 

Figure 2 Comparison between block groups (bold line) and PAZ (grid) in downtown Portland, 
OR 
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The next step in the process was to construct the built environment measures from the SLD data. 
The dataset, as explained previously, includes the residential density and employment density, so 
those measures were directly incorporated. To create ULI, we used commercial and retail 
employment density measures that also was a direct calculation. The total road network and the 
transit aggregated frequency were defined directly in the database so no calculation was needed. 

In synthesis, PIEbg is estimated with the same method of aggregating the univariate coefficients 
of the four variables described above. This process is as follows:  

a. Rescale the built environment variables from the SLD values to be a continuous measure 
between 1 and 5, with 1 representing the group of lowest values and 5 the highest. 

b. Do a spatial join of the Oregon Household Survey trips origins data with the SLD. In this 
way, we manage to get a data set of each trip with the associated data of the block group 
at the trip origin. 

c. Estimate individual univariate binary logit models of walking mode choice as a function 
of each of the built environment variables.  

d. Take the coefficients of each model and generate a PIEbg value for the block group level 
with the weights. The coefficients are multiplied by a constant so that PIEbg has a 
minimum value of 20 and a maximum value of a 100. For this task, we replicate the same 
method used in PIE0.  

The final PIEbg score is calculated using the following formula. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏 = 4.6 ∗ 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑐𝑐𝑝𝑝𝑝𝑝 + 4.8 ∗ 𝑈𝑈𝑈𝑈𝑃𝑃 + 4.7 ∗ 𝑐𝑐𝑝𝑝𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐 𝑚𝑚𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑎𝑎 + 6.1 ∗ 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 𝑚𝑚𝑝𝑝𝑐𝑐𝑛𝑛𝑐𝑐𝑝𝑝𝑛𝑛 𝑑𝑑𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎 

5.0 TESTING THE TRANSFERABILITY OF PIEBG  

This is section we present the results of our testing, comparison, and analysis of both walkability 
measures PIE0 and PIEbg constructed at different scales and with different data inputs. First, we 
compare our both walkability measures. Then, we test the relationship between PIEbg and 
walking within the Portland region to investigate whether one walkability measure is suitable for 
all urban contexts within one region. Or said differently, we are testing whether there is a 
different behavior response to PIE in urban vs. suburban areas. Finally, we introduce a more 
extensive analysis that includes different cities in the US. Our aim here is to test the inter-
regional transferability by examining how these measures perform in different metropolitan areas 
of the US. 

5.1 Comparing PIEbg and PIE0 

To compare the new measures of the walkability PIEbg constructed at the block group scale with 
nationally available data to the original measure PIE0 at a finer scale with region-specific data, 
we needed to compute PIEbg for the Portland region. The distributions of various data used to 
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construct PIEbg in Portland are shown in Figure 3. ULI, shown in orange, has a highly positive 
skew, meaning that there are very few block groups with scores above 2 and most of the block 
groups have low ULI score with a score of 1. The people density measure, shown in green, is 
less skewed, but also shows a large concentration of low values. This means that high values of 
both of these measures are scarce in the total composition of the region. Transit access, shown in 
pink, is also skewed to be high in very few places. The total road network density shown in 
purple is the only measure that it distributed more evenly across all of the values. Overall, this 
distribution makes sense for a region such as Portland, where the total land area is dominated by 
suburban landscapes and large park reserves with only a few highly urbanized nodes. This 
supports the notion that the landscape of North American cities may not have enough locations 
with sufficient densities to support non-automobile travel.  
 

 

Figure 3 Distribution of the scaled attributes of the built environment for PIEbg in Portland, OR 

Using these data inputs, PIEbg was computed using the process outlined in the previous section. 
The resulting coefficients from the univariate binary logit models of walk mode choice for each 
built environment measure are shown in Table 2. The estimated coefficients range between 0.5-
0.7 with the total road network density showing the highest coefficient value. These coefficients 
are used to weight each individual measure in the construction of PIE, after scaling to give PIE a 
range of values between 20 and 100. 
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 Table 2 PIEbg estimation results: binary logit models of walk mode share  

Coefficient Model  
Built Environment variable (zn) (β) p-value pseudo-R2 

Model 1   0.03 
People (employment and residential) per acre [1-5] 0.52 0.00  
Constant -3.01 0.00 

Model 2   0.02 
ULI [1-5] 0.54 0.00  
Constant -2.94 0.00 

Model 3   0.05 
Road network density [1-5] 0.69 0.00  
Constant -4.12 0.00 

Model 4   0.03 
Transit accessibility [1-5] 0.50 0.00  
Constant -3.10 0.00 
    

Data used for all models  
Trips (n) 41,316  
Walk 3,946  
Not Walk 37,370  

 

The resulting weights for PIEbg are shown in Table 3 E below and compared to the 
commensurate measures from PIE0. Here, we can see that the person density has a similar weight 
of 4.6; however, the other variables were apparently more sensitive to the change in scale and 
resulted in higher weights in PIEbg than in PIE0.  
 

Table 3 Estimated weights for each built environment measure for PIE0 and PIEbg 

Component Range of 
values 

Weights for 
PIE0 

Weights for 
PIEbg 

 

People per acre 1 to 5 4.6 4.6  

ULI 1 to 5 3.1 4.8  

Road network density 1 to 5 - 6.1  

Block size 1 to 5 3.1 -  

Transit access 1 to 5 3.5 4.7  

Sidewalk completeness 1 to 5 2.8 -  

Bicycle access  1 to 5 2.8 -  
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Figure 4 shows the histogram of the resulting values of PIEbg for each block group computed 
using these data and weights across the Portland region. The most frequent scores occur in a 
range between 26 and 38. We see a limited number of locations that have high scores of PIEbg, 
which is characteristic of many North American cities.  

 

Figure 4 Frequency distribution of PIEbg scores by block group 
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Figure 5 Land percentage by PIEbg score 

Figure 6 shows this distribution spatially. The highest scores of PIEbg (shown in red) are all 
concentrated in the Central City of Portland. In contrast, the vast majority of the region has 
scores that are under 30 (dark green).  When analyzing the large patterns of the metro area, 
around the 90% of the land area has slightly less than half of the total population, a large share of 
this area is mainly rural/exurban. Furthermore, the areas with the highest walkability have scores 
that ranges between 40 and 100 represent less than the 1% of the area and only 5% of the 
population (~6.5% of the households sampled) and generates almost 14% of the total trips of the 
region. Visually from Figure 1 and Figure 6, we can see that despite the differences in the data 
sources, scale, and weighting scheme, the two walkability measures track similarly across the 
region. We will investigate these differences statistically and in models of walking below.  
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Figure 6 PIEbg distribution in Portland 

The two versions of PIE, PIE0, and PIEbg are compared for each block group in the study area. 
PIE0 is calculated at the pedestrian analysis zone, was averaged over the block group and plotted 
against the value of PIEbg. Both indices were calculated using dependent variables between 1 and 
5 and were weighted to have values between 20 and 100. Figure 7 shows the comparison of the 
two constructs in Portland, OR. As mentioned earlier, PIEbg scores are generally lower in value 
than PIE0 scores. This is due to differences in our approaches to scaling the originally built 
environment data (discrete values with natural breaks for PIE0; continuous rescaled data for 
PIEbg). However, both measures are coherent as the differences only reflect a change in the scale 
of the score, but both rise together. 

An interesting observation of this graph the breakpoint in the PIEbg score of 40 or PIE0 of 70. 
This is what Figure 6 would be the central city of Portland plus some outer neighborhoods or 
cities commercial areas. The notion is that in more walking areas the difference between both 
PIE become smaller, almost reaching the same value in the highest values. This would mean, that 
in higher values the continuous rescaling of PIEbg is more similar to the natural breaks approach 
of PIE0. Consequently, this could be interpreted as that the higher values of the characterization 
of the built environment are more clustered, meaning that the measures used by both versions of 
PIE become similar.  
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In sum, PIEbg is coincident with an aggregated PIE0 with some caveats. PIEbg is less sensitive to 
changes in the built environment for suburban contexts and more sensitive in more urban areas 
than PIE0. These differences are likely due to the reliance on natural breaks in PIE0 and 
continuous breaks in PIEbg than the use of different data sources or the change in scale. The next 
section will explore how PIEbg as a measure of walkability is associated with walk mode share 
at the block group level across the region.  

 

Figure 7 PIE0 versus PIEbg 

5.2 Intraregional measure transferability  

We now turn our attention to examining the question of how walk mode share varies within a 
region and the relationship with our measure of walkability, PIEbg. Here we question if the 
relationship between walking and the built environment changes over the spectrum of urban 
spaces and if one walkability measure (or one model of walking behavior estimated from a 
pooled sample from the region) is adequate. Or contrarily, do we need to segment models (or 
walkability measures) by the urban regime in order to better reflect this varying relationship over 
the region.  

To do this, we used the weighted expansion of Oregon Household Travel Survey, which inflates 
the sample of trips to represent the total population of trips, to compute the total amount of trips 
and walk trips in each block group (walk mode share). Figure 8 shows the resulting plot of the 
walk modal share by deciles of PIEbg. The graph shows two trends (or three if we include the 
first rise from decile 1 to 2). For the bottom, 60% of PIEbg areas have a walking share that varies 
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between 6-8%. The second tendency in the graph indicates an increase of walking share with the 
PIEbg scores at the seventh decile or greater. These two main differences in the slopes suggest 
that they might be two different behavioral responses to the built environment.  

 

Figure 8 PIEbg aggregated by deciles vs walking share 

These two regimes could be identified as the separation between a suburban environment with 
low people density and an urban environment with a higher people density. This suggests that the 
relationships between walking and the built environment should not be represented by just one 
formal functional and that this function may not be linear. More detailed information about the 
walking behavior and more data points across the spectrum of PIEbg are needed before we can 
discern and quantify relationship. In the next section, we are going to test the different regime 
hypothesis by contrasting two separated models versus a single one.  

These results suggest that it may not be appropriate to model the relationship between walk 
mode share and the built environment as a simple linear relationship or estimating a single model 
parameter for this relationship across all locations. Our findings suggest that there may be a 
threshold that separates two different regimes of walking behavior relative to the built 
environment. To examine this more closely, we test the results of a) a singular model with one 
parameter estimate for the built environment across all urban environments, with b) a model 
estimated at two intervals, with one parameter for areas that are more urban, another representing 
suburban environments. The model is a univariate binary logit model (the same of section 4.0) 
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that predicts the probability of walking as a function of a single independent variable, an index of 
the built environment, which is represented as PIEbg.  
 
The model estimation results are shown in Table 4. Model 1 and 2 are separate models for urban 
and suburban areas, respectively, where urban areas are defined as those areas with a PIEbg score 
of 40 or greater and suburban areas are those with a score below 40. Model 3 is a pooled model 
across all values of PIEbg. We used a PIEbg score of 40 because this was the approximate 
breakpoint in the relation between PIE0 and PIEbg in Figure 7 and the natural break in the 
distribution of PIE shown in Figure 1. However, one potential topic for future research is 
determining the exact breakpoint(s) of PIE in the defining these different regimes. For the 
purposes of this research, we will use 40 as the breakpoint and test the relationship between two 
regimes only due to sample size limitations and the maximum values of PIE in Portland, we 
could not test more with statistical accuracy.  
 
The three models had very low explanatory power, which is expected from behavioral models in 
general and from a univariate model such as this. However, we are only estimating these models 
for comparison. From simple inspection of the results, it is noticeable that the coefficients are 
different between the three models. We tested the validity of separating the models using the 
likelihood ratios test. The test rejects the pooled model as valid (p<0.000), meaning that the 
correct specification should be two separated models. Therefore, this evidence supports our 
hypothesis that the built environment does not have the same effect on the choice to walk in a 
city. However, this difference may be due to a spatial sorting of people according to the 
differences in the attitudes and inherent preferences of the people in those respective areas. 
However, we are lacking information about those aspects and cannot test them in this study.  
 
A visualization of these model results is shown in Figure 9. This figure shows the predicted 
walking mode share plotted against the PIEbg score. The graph shows a different prediction for 
the probability of walking for the different set of models. From the two separated models (urban 
and suburban), we can see that the effect of the built environment is larger in the suburban 
context and less steep in the urban environment, but still considerable. Is important to notice that 
almost all Portland has a low PIE score, as only 0.6% of the block groups have over 60 in the 
score, and 0.04% of the total land area (the very central city). Remember the area in the analysis 
is the Metropolitan Statistical Area that is based in counties and includes plenty of rural lands. 
Therefore, the larger portion of Portland as shown in Figure 4 is around a PIEbg score of 30 that 
is consistent with the 8% overall walking share in the region. The pooled model in the vicinity of 
the score 30 shows a similar walking probability, however, there is an overestimation of 
probability trips in the rural/suburban area and underestimation in the transition between urban 
and suburban, and in the more urban areas. 
 
Despite the limitations, the exercise done here lends empirical evidence to support that concern 
that the relationship between walking and the built environment may be different (non-linear or 
linear in different regimes with different coefficients) across different environments within the 
same region. Thus, one model estimate may not be sufficient to capture this relationship and thus 
not transferable to all areas within a region.  
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Table 4 Pooled vs. Urban/Suburban Walk Mode Share Models 

Model  
Context variable (xn) Coefficient (β) p-value pseudo-R2 

Model 1 Urban   0.03 
PIEbg (40-100) 0.02 0.00  
Constant -2.83 0.00 
Log-Likelihood -2993   
Chi-squared 166   

Model 2 Suburban   0.03 
PIEbg (20-40) 0.10 0.00  
Constant -5.73 0.00 
Log-Likelihood -9364   
Chi-squared 521   

Model 3 All urban types   0.02 
PIEbg (20-100) 0.036 0.00  
Constant -3.56 0.00 
Log-Likelihood -12489   
Chi-squared 1060   

Log-Likelihood ratio test  segmentation of the model  0.00 
Data used for all models 

Trips (n) – all urban types 41,316 
Walk 3,946 
Not Walk 37,370 
Trips (n) – urban 6,350 
Walk 1,199 
Not Walk 5,151 
Trips (n) – suburban 34,966 
Walk 2,747 
Not Walk 32,219 
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Figure 9 Predicted walk probabilities 

5.3 Interregional measure transferability 

In this section, we test the differences in various estimations of PIEbg for different cities. As the 
objective was to assess the transferability of our walkability measure, we needed to associate it 
with travel behavior data from each city in our study. To test relationships within and across 
regions, we assembled four US travel surveys: those covering the state of California (Kunzman 
and Daigler 2013) as well as the metropolitan areas of Minneapolis–St. Paul (Cambridge 
Systematics 2014), Portland (Oregon Modeling Steering Committee 2012), and Seattle 
(Cambridge Systematics 2006). The California travel survey allowed for the inclusion of the 
Metropolitan Statistical Areas of Los Angeles, San Diego, and San Francisco-Oakland (without 
San Jose), bringing the total of US regions to six. 

Following the general procedures outlined in Section 4.0, we estimate PIEbg for five additional 
cities (Los Angeles, Minneapolis, San Diego, San Francisco, and Seattle) using household travel 
surveys and built environment data from each region. Then we compare the coefficient estimates 
across these regions to test if they are comparable and thus, indicate that PIE estimated from one 
region could indeed be applicable in another. Table 5 shows details from each metropolitan area 
travel survey and built environment attributes statistics.  
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Table 5 Trip information and built environment measures in each metropolitan area 

 LOS 
ANGELES 

MINNEAPOLIS 
– ST. PAUL PORTLAND SAN 

DIEGO 
SAN 

FRANCISCO SEATTLE 

Year of survey 2010-12 2010 2011 2010-
12 2010-12 2006 

Total trips 32.8M 11.1M 6.5M 7.8M 13.4M 12.6M 

Population 12.8M 3.3M 2.2M 3.1M 4.3M 3.4M 

Walking mode share 
(%) 11.0% 6.2% 8.6% 8.5% 15.9% 7.9% 

No. of block groups 8248 2314 1555 1795 2903 2483 

Population density 
range [ppl/acre] [0,300] [0,180] [0,100] [0,93] [0,319] [0,173] 

Population density 
mean [ppl/acre] (std. 
deviation) 

20 (16) 8 (9) 8 (7) 14 (11) 21 (24) 9 (10) 

Employment density 
range [ppl/acre] [0,579] [0,354] [0,251] [0,330] [0,900] [0,1120] 

Employment density 
mean [ppl/acre] (std. 
deviation) 

14 (5) 16 (4) 14 (4) 12 (4) 36 (8) 29 (5) 

ULI range [ppl/acre] [0,66] [0,127] [0,56] [0,73] [0,795] [0,115] 

ULI mean [ppl/acre] 
(std. deviation) 1 (3) 1 (4) 1 (3) 1 (3) 3 (24) 1 (4) 

Road network density 
range [miles/sq. 
miles] 

[0,69] [0,55] [0,54] [0,62] [0,65] [0,86] 

Road network density 
mean [miles/sq. 
miles] (std. deviation) 

21 (7) 17 (8) 18 (10) 19 (8) 22 (9) 17 (9) 

Transit accessibility 
range [aggregated 
frequency] 

[0,4401] [0,5038] [0,2351] [0,526] [0,2028] [0,1839] 

Transit accessibility 
mean [aggregated 
frequency] (std. 
deviation) 

71 (140) 128 (230) 151 (211) 35 (45) 86 (144) 49 (97) 

 

Some basic analysis shows that the city that has the most walking is San Francisco (15.9%). The 
larger city in population is Los Angeles with 12.8 million people. The population density ranges 
are higher in Los Angeles and San Francisco while the employment density is higher in Seattle 
and San Francisco.  
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Following the assembly and standardization of the datasets, we made a few exceptions to the 
methodology. We did not scale each of the built environment data to have values between 1 and 
5. Instead, we scaled the data to have an average of 0 and a standard deviation of 1. This allowed 
us to have standardized coefficients that let us directly compare the magnitude of the coefficients 
between cities. In doing this, the estimated standardized coefficients are only meant to be used 
for comparison across regions and not for application. Finally, we did not sum the employment 
and population density variables as we wanted to test the independent effect of each measure, 
however, we re-combine them as people density later in this section in an application to Los 
Angeles.  

 
 

 
 

Figure 10 Standardized coefficients for different built environment measures 

The results of these estimations for the different cities are shown in Figure 10. All the estimates 
were statistically significant (p < 0.001). Of the various built environment measures tested, the 
standardized coefficients for population density appear to have the most consistent values across 
the cities in the study, with values ranging from 0.37 in Portland to 0.51 in San Francisco. For 
the Los Angeles and San Diego regions, population density was the most important built 
environment characteristic in explaining walk mode choice. Given its stability and its relatively 
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high standardized coefficient, population density may be the most important built environment 
measure associated with the odds of walking across all of the cities, which is consistent with the 
literature. 

In contrast, road network density has much more variability based upon the statistics in Table 5 
that is reflected in the values of the standardized coefficients in Figure 10, which range from a 
low of 0.20 in Los Angeles to a high of 0.72 in Minneapolis. This was the most important 
measure in explaining walking for several cities: Minneapolis, Portland, San Francisco, and 
Seattle. This range of values is perplexing but may be a function of the computation of the 
attribute itself. Road network density includes all facility types, including freeways, and for that 
reason, it may have confounding results. For future work, we suggest using intersection density 
as the measure of pedestrian connectivity.  

The standardized coefficients for employment density and retail and entertainment employment 
density are also variable across the cities. The values for employment density range from a low 
of 0.02 in Los Angeles to a high of 0.14 in San Francisco. Overall, the coefficient values are low 
compared to the other built environment attributes, and probably the spatial distribution of 
employment, something that we have not covered here, might explain its influence on walking 
behavior. It may also be that employment density is an imperfect proxy for access to destinations 
and a local accessibility measure or a mixed use measure may be a more stable measure across 
locations.  

Narrowing the scope to retail, service, and entertainment establishments, as measured by ULI did 
not result in a decrease in the variation across places. The standardized coefficients varied from a 
low of 0.02 for San Diego to a high of 0.23 for Minneapolis. The suggestion to improve the 
measure of access to destinations holds.  

These results raise a lot of questions about the cause of these results, including how these 
variables are distributed across the different regions, where are the locations where walking trips 
are observed in the sample, and perhaps variations in the trip purposes. But the results suggest 
that a walkability measure estimated in one location may only be cautiously applied in other 
regions, if at all.  

To explore this issue further, we want to test the predictive ability of PIEbg estimated in one 
region and applied in a model of walk mode share in another. In order to make the broadest 
comparison, we chose to utilize PIEbg estimated from Portland in a univariate model of walk 
mode share in Los Angeles - the largest city in our study. We make additional modifications to 
the process of estimating PIEbg using Portland data. This time, the data for each built 
environment measure (xn) used in the calibration are not scaled at all because our aim is not to 
compare the coefficients but rather apply PIE in a model of walking. Because Portland and Los 
Angeles have different ranges and distributions of these variables, as shown in Table 5, we 
needed to ensure that the data were unscaled in the application across different locations. Second, 
population and employment density are re-combined into people per acre. The results are shown 
in Table 6. 
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Table 6 Unscaled PIEbg coefficients estimated from Portland data 

Built Environment Model  
variable (xn)1 Coefficient (β) p-value pseudo-R2 

Model 1   0.03 
People per acre  0.007 0.00  
Constant -2.486 0.00 

Model 2   0.02 
ULI 0.039 0.00  
Constant -2.402 0.00 

Model 3   0.05 
Road network density 0.052 0.00  
Constant -3.463 0.00 

Model 4   0.04 
Transit access 0.001 0.00  
Constant -2.598 0.00 

Data used for all models 
Trips (n) 41,316 
Walk trips 3,946 
Not walk trips 37,370 

 
Using the coefficients for each of these built environments as weights, we computed PIEbg for 
each block group in the Los Angeles region by using the following formula: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏 = 0.007 ∗ 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑐𝑐𝑝𝑝𝑝𝑝 + 0.039 ∗ 𝑈𝑈𝑈𝑈𝑃𝑃 + 
0.052 ∗ 𝑝𝑝𝑐𝑐𝑚𝑚𝑑𝑑 𝑚𝑚𝑝𝑝𝑐𝑐𝑛𝑛𝑐𝑐𝑝𝑝𝑛𝑛 𝑑𝑑𝑝𝑝𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎 + 0.001 ∗ 𝑐𝑐𝑝𝑝𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐 𝑚𝑚𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑎𝑎 

 
Figure 11 shows both the distribution in the city of unscaled PIEbg. Both areas have a clear 
central area that it is more walkable. In both cases, this area is small compared to the region.  
Even though the urban structure of Los Angeles seems very different from that of Portland, it 
seems from a visual inspection of the map that the PIEbg specification of Portland applied to Los 
Angeles make some intuitive sense. However, as seen in Table 5 Trip information and built 
environment measures in each metropolitan areaTable 5 many of the built environment attributes 
are much larger in Los Angeles than Portland. For example, the mean population density in each 
block group in Los Angeles is 20 people per acre, while in Portland is only 8. This means that 
the model estimation in Portland can omit and effect of what larger values of the built 
environment attributes may cause, causing that the PIEbg scores in Los Angeles only reach higher 
values in very few places. Additionally, as shown also in Table 5 is that Los Angeles have a 
lower average transit service than Portland and also as Figure 10 shows the coefficient for transit 
is smallest in Los Angeles than in the other cities, for that reason, the effect of transit might also 
be creating some noise in the scores.  
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Figure 11 Unscaled PIEbg distribution in Los Angeles and Portland 
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6.0 DISCUSSION AND CONCLUSIONS 

The analysis of aggregate and disaggregate pedestrian trips presented here examined the 
potential transferability of relationships between walking and the built environment within and 
across different regions. To summarize some of these findings:  

• The probability of walking has a clear relationship with PIEbg 

• An examination of PIEbg and walk mode share suggests that there may be different 
relationships between walking behaviors and the built environment across the spectrum 
of environments within a region. Our intraregional tests for transferability of models and 
measures revealed two regimes where these relationships may differ: urban versus 
suburban contexts. However, more research is needed to better understand these 
variations within a region and the conditions defining these regimes.  

• Population density has the strongest and most consistent relationship with walk mode 
share across the six US metropolitan regions tested in our study. 

• Interregional tests of transferability of PIEbg revealed similar walk mode share results in 
Los Angeles and Portland. This provides initial support that the PIEbg construct may be 
transferrable between metropolitan regions.  

More detailed discussion of these conclusions is below.  

6.1 Transferability of models and measures 

The findings were mixed in terms of the degree to which PIE could be applicable to areas 
beyond its estimation region. In our examination of intraregional transferability, there appeared 
to be different relationships between walking and the built environment in different parts of the 
region, divided simply into lower density (suburban) and higher density (urban) areas. This 
suggests that perhaps different constructs may be needed to represent different walking regimes 
within a region. Yet, the characteristics (thresholds) defining each walking regime are not the 
same in Portland and Los Angeles. Further, our findings also suggest that the relationship 
between PIEbg and walk mode shares may not be linear. This notion suggests the existence of 
different regimes of response from people to the built environment that should be better 
represented by our predictions tools.    

One reason that defining these regimes and the functional form of the relationship between 
walking and the built environment was difficult is because of the relatively smaller sample sizes 
in the urban areas resulted in noise in the estimates. Thus, larger sample sizes from higher 
density areas are needed to better understand these relationships. Further, there are potential 
correlations with the socio-economic characteristics of travelers and the characteristics of the 
locations of travel, which point to the need to control for this in walkability measures (discussed 
in the next subsection).  
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Based upon our analysis, travel behavior surveys from the US cities we studied tend to have 
greater proportion of sample from lower density areas associated with American suburban form 
and smaller sample sizes in areas with higher walkability and overall walking activity, which 
represent a smaller proportion of both land mass and population of those cities. This may not be 
the case in international contexts, where more of the urbanized regions are of a higher density 
than the US. Creating pooled samples with comparable and consistent data from cities around the 
world is becoming a more realistic endeavor with standardization of travel surveys and the 
availability of built environment data. This would be an asset to understanding the relationships 
between travel behavior and the built environment, broadly, and identifying the various regimes 
of walking, specifically.  

From our analysis, the distribution of walkable places and their relative locations across the 
region appear to be important. For example, Los Angeles region has more variation in its urban 
structure and is more polycentric than Portland. This raises the question of the role of the larger 
urban spatial structure in supporting walking activity. By urban structure we mean the number 
and distribution of centers or sub-centers across a region, the density gradients, the clustering or 
contiguity of walkable places, and the spatial extent of the urbanized area (total land area). These 
are characteristics that are not captured well in local and regional accessibility measures and 
perhaps represent a meso-scale description of the built environment.  

 

Figure 12 The role of walkability gradients 

Figure 12 shows an example of walkability across a fictitious cross section of an urban region, 
from the city center outward. While all areas across the red dashed line have the same objective 
measure of walkability, there is significant variation in the walkability gradients as well the total 
space that has that level of walkability or more. One question to investigate is would those 
locations proximate to the city center, where walkability is relatively high and sustained across 
the space, have the same walk mode share or absolute levels of walking as those farther from the 
center with the same objective measure of walkability but different gradients and total area of 
walkable space. Or put another way, would we expect pockets of walkability to perform 
similarly as places where walkability is sustained over a larger area? At the moment, our 
methods of analysis do not consider this and this may be an area of fruitful future work that may 
help to explain the differences we see between regions.    
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6.2 Representing the built environment 

The ways that we have been construction PIE have limited its transferability and have 
problematic issues that limit its usefulness. This new construct, PIEbg has some important 
differences to our original PIE0, in part because of our need to have comparable measure across 
cities. When PIE0 was developed in 2011, the data available in Portland were unique and at a 
scale not widely available (PAZs - 80m x 80m grid cells). This presented the opportunity to 
examine walking at a scale more consistent with the behavior of interest and with zones of 
uniform size. However, these data were originally continuous and were then reduced to 
categorical on a scale of 1 to 5 based upon natural breaks in their distribution over the Portland 
region in the base year. This resulted in the loss of variation as well as reducing its applicability 
to other regions or even future Portland conditions.  

In this research, we attempted to address this limitation in the creation of PIEbg. However, this 
new built environment construct also has limitations. In using the SLD data at the block group 
level, we then had comparable data across regions but the fine-grained and consistently-sized 
spatial resolution of the PAZ grid cells was lost. Further, we realize that in estimating the various 
coefficients (or weights) for PIE with built environment variables while not controlling for socio-
economic characteristics may bias those estimates. Also, there may be econometric issues with 
our constructs in that we are using the coefficients from a walk mode choice model as weights in 
our final construction of PIE and then in turn, using that very construct in other models of mode 
choice and trip distribution in MoPeD. These limitations are problematic. 

Now at the end of this research process, we have some important recommendations about future 
attempts to create a walkability measure using various built environment characteristics. The 
literature has revealed a myriad of associations between the built environment and walking 
behavior. Many of these characteristics are highly correlated with one another and then, are 
problematic when including them as separate independent variables in a model. Thus, this is one 
of the rationales for creating an aggregate index or measure that reflects the walking 
environment. Given the variations in the availability of data, the difficulties in interpretation, and 
the correlations between these phenomena, we recommend parsimony in the selection of built 
environment characteristics to represent in such a measure.  

We recommend using continuous data to represent the built environment rather than reducing the 
information to a categorical measure. The reasons for this are maintaining the variation in the 
measure as well as the difficulty in representing environments that exceed the conditions present 
in the estimation year.  

Of those measures tested in our study, population density consistently explained more of the 
variation in walk mode share, followed by measures representing pedestrian connectivity. These 
two built environment characteristics are important to include and not as highly correlated with 
one another as we originally believed. Several measures of connectivity were tested over the 
course of this project: average block size, road network density, and average streets per node. 
There are various concerns and limitations with each. Employment density was highly variable, 
including the ULI measure, that attempts to capture access to local destinations.  
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Contemporaneous with this study, new guidebook on measuring non-motorized connectivity was 
completed (FHWA, 2018) with the input and participation of this study's author, and offers 
suggestions that may resolve these issues. Based upon this guidebook, we recommend including 
a pedestrian connectivity measure that captures access to destinations into future walkability 
indices. This compensates for the low performance of employment density and incorporates 
network connectivity in one measure.  

Transit accessibility and service is a difficult measure to incorporate consistently. From a 
theoretical perspective, the links between transit and access and egress mode of travel is logical. 
However, in this work, we are only considering trips where walking is the single mode of 
transport. Thus, the rationale for including transit accessibility is less clear. One could argue that 
in areas with good transit, more trips would be made on foot by persons traveling to the area via 
transit. However, this may be a proxy for (or confounded with) the built environment conditions 
in these locations. In development of a walkability measure, it may be best to omit transit 
accessibility from the direct representation of walkability and instead include as an additional 
measure for better interpretation of results.  

When data permit, using uniform grid cells as the spatial unit of analysis is preferable to block 
groups, which suffer from a size differential that is correlated with population density. Others 
have examined the effects of the size of these grid cells on model performance and have found 
tradeoffs between size, model run times, and accuracy (Zhang et al. 2018). However, the loss of 
accuracy from doubling the grid size from 80m grids to 160m grids is nominal compared to the 
advantages for model runs and data availability.  

In terms of the econometric issues with PIE, future representations of walkability using PIE 
index will be computed as the sum of the portion of utility function of a walking mode choice 
model that deals with the built environment. By minimizing the number of built environment 
variables included in this estimation, correlation between built environment variables does not 
exceed the threshold for concern. Thus, they can be included directly without the use of an index. 
Here socio-economic and other important characteristics will be controlled for to include 
inflation of the coefficients for the built environment variables. This development and 
presentation of these results are outside the scope of this report but are based upon lessons 
learned during the process of this research.  

6.3 Future work 

Several limitations inhibit stronger conclusions from this analysis. First, there are a limited 
number of cities included in this exploratory analysis. A more comprehensive study needs a 
larger number of cities with different activity density distributions (particularly on the high end) 
and varying urban spatial structure, including those from other countries. This expansion of the 
work could help to define regimes, and how these measures interact at different thresholds. 
Additional analysis may also include more advanced spatial analysis techniques.  

In addition to considering the recommendations for the construct of PIE and other walkability 
measures, future work may want to include more course measures of the built environment to 
better capture urban structure, such as amount and distribution of density, total land area, density 
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gradients and continuity, and mixed-use, as they may play a role in understanding traveler 
response to the built environment, including pedestrian behaviors.  

The consideration of non-linearities in the built environment-walking relationship is one 
contribution of this work that deserves more exploration. Although more analysis is needed to 
understand the specific functional form that these non-linearities take, our analysis provides 
evidence that continuing to assume linear relationship across the urban spectrum is questionable. 
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