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 Chapter 1. Introduction 

Economic choice modeling has been the mainstay of human behavioral modeling in 
many fields, including geography, urban planning, marketing, sociology, and 
transportation. The typical paradigm is based on a latent construct representing the value 
or utility that an individual decision-maker assigns to each of many available and 
mutually exclusive alternatives. The choice of an alternative is assumed to be the result of 
that alternative’s utility being higher than its competitors in the perception space of the 
decision-maker. This utility itself is typically mapped to observed characteristics of the 
decision-maker (such as the socio-demographics of an individual in work mode choice 
modeling) and observed characteristics of the alternatives (such as travel time and travel 
costs by alternative modes in work mode choice modeling). To acknowledge that there 
may be unobserved characteristics of decision-makers (such as attitudes and lifestyle 
preferences) that are likely to impact choice, one of three approaches has been used in the 
literature. The first approach allows the intrinsic preference for alternatives as well as the 
sensitivities to alternative attributes to vary across decision-makers, using discrete (non-
parametric) or continuous (parametric) random distributions to capture sensitivity 
variations (or taste heterogeneity). Early examples include the studies by Revelt and 
Train (1996), Bhat (1997), and Bhat (1998), and there have now been many applications 
of this approach, using latent multinomial logit and mixed logit formulations. A problem 
with this approach, though, is that some of the attitudes may be correlated with 
explanatory variables. Thus, an individual who is environmentally-conscious (say an 
unobserved variable) may locate herself or himself near transit stations, generating a 
correlation between the unobserved variable and a transit travel time variable used as an 
explanatory variable. Such correlations lead to inconsistent estimation. Besides, this 
method treats unobserved psychological preliminaries of choice (i.e., attitudes and 
preferences) as being contained in a “black box” to be integrated out. The second 
approach uses indicators of attitudes directly as explanatory variables in choice models. 
Such a technique has been used by Koppelman and Hauser (1978), Bhat et al. (1993), and 
many other subsequent studies. But this approach assumes that the indicators of attitudes 
directly represent the underlying attitudes that actually impact choice, which may not be 
the case. Rather, the indicators may be proxies of attitudes that are captured with some 
measurement error. Ignoring measurement error will, in general, lead to inconsistent 
estimation (see Ashok et al., 2002). Further, the attitude indicators may be correlated with 
other unobserved individual-specific factors that influence choice, rendering the 
estimation potentially inconsistent. In addition, the lack of a structural model to relate the 
attitudes to observed explanatory variables implies that the estimated model cannot be 
used in forecasting mode. The third approach is to undertake a factor analysis of the 
indicators to develop latent variables, typically using a multiple indicator multiple cause 
(MIMIC) model in which the latent variables are explained by a combination of 
observable indicators and observed (individual and alternative-specific) covariates. 
Essentially, factor analysis has the purpose of reducing the high number of correlated 
attitudinal indicators to a more manageable and relatively orthogonal set of latent 
variables, which are subsequently used as “error-free” explanatory variables (along with 
other covariates) in the choice model of interest. But such an approach, like the second 
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approach discussed earlier, is, in general, econometrically inconsistent. This is because 
latent variables specific to individual alternatives (such as comfort level of traveling on a 
bus in a mode choice model), or latent variables interacted with variables that vary across 
alternatives (such as perceptions of security that may interact with the travel time on the 
mode), lead to heteroscedasticity across the errors of the alternatives in the choice model, 
and latent variables applicable to a subset of alternatives (such as the sociable nature of 
the individual that may affect the utility ascribed to all transit modes) generate correlation 
patterns across the errors of the alternatives. Further, if the latent variables are interacted 
with individual-specific observed variables (such as the comfort level of traveling on the 
bus affecting bus utility through its interaction with the travel time on the bus), the result 
is also heterogeneity across individuals in the entire covariance matrix of alternatives 
(this is an issue that does not seem to have been acknowledged in the previous literature). 
Such a complex covariance matrix structure across alternatives and across individuals 
necessitates the explicit consideration of stochasticity in the latent variables. 

A rapidly growing field of study that integrates latent psychological constructs such as 
attitudes and preferences within traditional choice models takes the form of a hybrid 
model that is commonly referred to as the Integrated choice and latent variable (ICLV) 
model (see Ben-Akiva et al., 2002 and Bolduc et al., 2005). In this approach, the 
objective is to gain a deeper understanding into the decision process of individuals by 
combining traditionally used “hard” covariates with “soft” psychometric measures 
associated with individual attitudes and perceptions. In this way, there is recognition that 
latent individual-specific variables (attitudes and perceptions) may be just as important as 
observed covariates in shaping choice and that their inclusion is likely not only to shed 
more light on the actual decision process but also potentially enhance the predictive 
ability of the model (Temme et al., 2008, Bolduc and Alvarez-Daziano, 2010). A typical 
ICLV model includes a latent variable structural equation model that relates latent 
constructs of attitudes and perceptions to observed covariates. Further, the latent 
constructs (or variables) themselves are viewed as being manifested through the 
attitudinal and perception indicator variables in a latent measurement equation model, 
which recognizes the presence of measurement error in capturing the intrinsic latent 
constructs. In the event that one of more of the indicators are not observed on a 
continuous scale, but observed on an ordinal or nominal scale, the measurement equation 
also serves the role of mapping the continuous latent constructs to the ordinal or nominal 
scale of the observed attitudinal indicator variables. Finally, the “soft” latent variables 
and the “hard” observed variables are used together to explain choice in a random utility 
maximizing choice model set-up.   

While the number of applications of ICLV models has been on the rise in recent years 
(see, for example, Johansson et al., 2006, Bolduc et al., 2005, Temme et al., 2008, Daly et 
al., 2012, and Alvarez-Daziano and Bolduc, 2013), the use of such models is severely 
hampered by (1) the restrictive specifications used in application, (2) the difficulties 
encountered in estimation, and (3) the amount of time it takes to estimate these models 
(typically of the order of a day for one specification run). Thus, earlier applications of the 
ICLV model typically use an independent and identically distributed Gumbel error term 
for the stochastic component of the utility of alternatives, imposing a priori the notion 
that, net of the latent attitudinal factors and observed covariates, there is no remaining 
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correlation across the utilities of alternatives.1 Similarly, the error correlations in the 
latent variables are almost always ignored within the latent variable structural equation 
model, as has also been pointed out by Vij and Walker (2014). Such correlations in the 
latent variables may arise because of common underlying unobserved individual values 
that are precursors to attitude formation and that may impact multiple attitude variables at 
once (see Temme et al., 2008). Also, the estimation method of choice for ICLV models 
has been the maximum simulated likelihood approach, similar to those developed for the 
traditional mixed logit model with random coefficients or error components (see Bhat, 
2001). However, while these simulation techniques work quite well for the traditional 
mixed logit, their use in ICLV models has been problematic because the integrand in 
ICLV models is itself a mixture of two probabilities (the probability of choice conditional 
on explanatory and latent variables, and the probability of the latent variable conditional 
on explanatory variables), which has to be integrated over the distribution of the latent 
variables conditional on explanatory variables. On the other hand, the integrand in the 
mixed logit model is simply the multinomial probability that has to be integrated over the 
distribution of the unobservables, which is far easier and less involved. As a result, it is 
quite routine to encounter convergence problems in ICLV models. For example, Alvarez-
Daziano and Bolduc (2013) indicate that, unless the second derivatives of the logarithm 
of the likelihood function of ICLV models is analytically coded and provided, it is 
difficult to obtain convergence in ICLV models using simulation techniques. In this 
regard, they note that most software that allow for custom likelihood provision but use 
approximations to the Hessian during optimization do not guarantee convergence in 
ICLV models. This is particularly the case with many latent variables or constructs, since 
the number of latent variables has a direct bearing on the dimensionality of the integral 
that needs to be evaluated in the log-likelihood function of ICLV models. The 
consequence has been that most ICLV models in the literature have gravitated toward the 
use of a limited number of latent constructs, rather than exploring a fuller set of possible 
latent variables. Also, while Alvarez-Daziano and Bolduc (2013) present a Bayesian 
Markov Chain Monte Carlo (MCMC) simulation approach to estimating the ICLV 
model, this remains cumbersome, requires extensive simulation related to the Metropolis 
Hastings-within-Gibbs algorithm needed to generate an instance from the otherwise not-
explicitly-characterizable posterior distribution of the ICLV model, and poses 
convergence assessment problems as the number of latent variables (equivalent to the 
number of dimensions of integration within the classic MSL) increases (see Franzese et 
al., 2010 for a discussion of this issue). The MCMC method also becomes very 
challenging when there are several ordinal indicators of the latent variables in an ICLV 
model, which is why one would assume Alvarez-Daziano and Bolduc (2013) chose to 
work with all continuous indicators of latent variables in their study. Finally, the 
Bayesian MCMC methods typically parallel the computation intensity of classical MSL 
methods and so do not offer any substantial order-of-time computational advantages.     

In the current paper, we propose a different model formulation for the ICLV model, 
based on a multivariate probit (MNP) kernel that alleviates the specification and 

                                                 
1 While a more general covariance structure can be incorporated through the use of normally-mixed error-
components or random coefficients (or a combination), this adds more to the integration dimension and makes an 
already very difficult MSL estimation problem more difficult, which is certainly one important reason why earlier 
applications of the logit-kernel ICLV have not introduced such general covariance structures. 
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estimation challenges discussed above. To our knowledge, this is the first study to use a 
probit kernel within a general ICLV setting. In this context, it is quite remarkable that 
earlier and general ICLV formulations have not considered using an MNP kernel. We 
believe that this is because of a fixation with the mixed logit model, which may be easier 
to estimate than the MNP model in a traditional choice model when there are a number of 
alternatives and few random coefficients or error components to integrate over. But the 
situation changes with the ICLV model, and, in general, the MNP kernel is much more 
convenient to use. As we show in the rest of this paper, doing so has many advantages, 
especially when combined with our proposal to estimate the resulting model using Bhat’s 
maximum approximate composite marginal likelihood (MACML) inference approach. In 
particular, in our approach, the dimensionality of integration in the composite marginal 
likelihood (CML) function that needs to be maximized to obtain a consistent estimator 
(under standard regularity conditions) for the ICLV model parameters is independent of 
the number of latent variables and the number of ordinal indicator variables, and is only 
of the order of the number of alternatives in the choice model. Given that the number of 
alternatives in most applications of ICLV models is small, our formulation has a distinct 
advantage over the traditional ICLV formulation. Further, the use of our analytic 
approximation in the MACML approach to evaluate the multivariate cumulative normal 
distribution (MVNCD) function in the CML function corresponding to our MNP-based 
ICLV model simplifies the estimation procedure even further. Importantly, regardless of 
the number of ordinal indicators, or the number of latent variables, or the number of 
random coefficients in the choice model, or the covariance structures assumed in the 
ICLV model set-up, the proposed MACML procedure for estimating ICLV models 
requires the maximization of a function that has no more than bivariate normal 
cumulative distribution functions to be evaluated. This is quite remarkable. Additionally, 
our procedure does away with the convergence problems associated with the MSLE 
estimation. This is because of the smoothness of our analytically approximated log-
likelihood surface, which leads to well-behaved surfaces for the gradient and hessian 
functions. In turn, this allows the use of widely available optimization software in which 
the Hessian is approximated numerically. In addition, our approach very easily handles 
the case of ordinal indicators for the latent variables, as well as combinations of ordinal 
and continuous response indicators, rather than, as in almost all earlier studies, assuming 
these indicators to all be continuous (as in Alvarez-Daziano and Bolduc, 2013) or all be 
ordinal (Daly et al., 2012). In this regard, we develop a blue print, complete with 
appropriate matrix notation, for the formulation, estimation, and software coding of ICLV 
models with a combination of two different kinds of response indicators (the approach is 
extendible even to nominal indicators, though, for focus and presentation ease, we 
confine attention in this paper to ordinal and continuous variables). Finally, we provide 
some computational time statistics for estimating our MNP-based ICLV model using the 
MACML procedure, and show how our approach substantially reduces the time for 
estimating ICLV models. The order of magnitude reduction in computation time can then 
be used by analysts to explore a wide array of observed and latent variable specifications, 
rather than examining just a few specifications and settling quickly on one that may not 
be the best.  

The remainder of this paper is structured as follows. In the next section, we formulate our 
MNP-based ICLV model. In Section 3, we discuss identification considerations and the 
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estimation procedure. In Section 4, we develop the experimental design to generate a 
simulated mode choice data set that is then used in Section 5 to examine the performance 
of the proposed estimation procedure in terms of recovering parameters and evaluating 
the finite-sample behavior of the proposed estimator. Our use of a simulated data set 
rather than real data allows us to assess the performance of our estimation approach for 
different sample sizes. Finally, Section 6 summarizes the key findings of the paper and 
identifies directions for further research. 
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Chapter 2.  Model Formulation 

There are three components to the model: (1) the latent variable structural equation 
model, (2) the latent variable measurement equation model, and (3) the choice model. 
These components are discussed in turn below. In the following presentation, for ease in 
notation, we will consider a cross-sectional model. However, extension to the case of a 
panel model with multiple choice instances from the same individual is quite 
straightforward. Also, we will use the index l for latent variables (l=1,2,…L), and the 
index i for alternatives (i=1,2,…,I). As appropriate and convenient, we will suppress the 
index q for individuals (q=1,2,…,Q) in parts of the presentation.  

 2.1 Latent Variable Structural Equation Model 

For the latent variable structural equation model, we will assume that the latent variable 
*
lz  is a linear function of covariates as follows: 

,*
liz η+′= wαl  (1) 

where w  is a )1
~

( ×D  vector of observed covariates, lα  is a corresponding )1
~

( ×D  vector 

of coefficients, and lη  is a random error term assumed to be normally distributed. In our 

notation, the same exogenous vector w  is used for all latent variables; however, this is in 

no way restrictive, since one may place the value of zero in the appropriate row of lα  if a 

specific variable does not impact *
lz . Also, since *

lz  is latent, it will be convenient to 

impose the normalization discussed in Stapleton (1978) and used by Bolduc et al. (2005) 
by assuming that lη  is standard normally distributed. Next, define the )

~
( DL × matrix 

),...,( 21 ′= Lαααα , and the )1( ×L vectors )( **
2

*
1 ′= Lzzz ,...,,z*  and )'.,,,,( 321 Lηηηη =η  

To allow correlation among the latent variables, η  is assumed to be standard multivariate 

normally distributed: ],[~ Γ0η LN , where Γ  is a correlation matrix (as indicated earlier 
in Section 1, it is typical to impose the assumption that η  is diagonal, but we do not do 
so to keep the specification general). In matrix form, Equation (1) may be written as: 

η+= αwz*  (2) 

 2.2 Latent Variable Measurement Equation Model 

For the latent variable measurement equation model, let there be H continuous variables 
) ..., , ,( 21 Hyyy with an associated index h ) ..., ,2 ,1( Hh = . Let hhhh δy ξ+′+= *zd

 
in the 

usual linear regression fashion, where hδ  is a scalar constant, hd  is an )1( ×L vector of 

latent variable loadings on the hth continuous indicator variable, and hξ  is a normally 

distributed measurement error term. Stack the H continuous variables into a )1( ×H -

vector y, the H constants hδ  into a )1( ×H vector δ , and the H error terms into another 
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)1( ×H  vector ) ..., , ,( 21 Hξξξ=ξ . Also, let yΣ  be the covariance matrix of ξ . And 

define the )( LH ×  matrix of latent variable loadings ( ) .,...,, ′= H2,1 dddd  Then, one may 

write, in matrix form, the following measurement equation for the continuous indicator 
variables: 

ξdzδy * ++=  (3) 

Similar to the continuous variables, let there also be G ordinal indicator variables, and let 
g be the index for the ordinal variables ) ..., ,2 ,1( Gg = . Let the index for the ordinal 

outcome category for the gth ordinal variable be represented by gj . For notational ease 

only, assume that the number of ordinal categories is the same across the ordinal 
indicator variables, so that }. ..., ,2 ,1{ Jjg ∈  Let *

gy  be the latent underlying variable 

whose horizontal partitioning leads to the observed outcome for the gth ordinal indicator 
variable, and let the individual under consideration choose the gn th ordinal outcome 

category for the gth ordinal indicator variable. Then, in the usual ordered response 
formulation, we may write: gggg δy ξ~~~* +′+= *zd ,

 gg nggng y ,
*

1, ψψ <<− , where gδ  is a 

scalar constant, gd~  is an )1( ×L vector of latent variable loadings on the underlying 

variable for the gth indicator variable, and gξ  is a standard normally distributed 

measurement error term (the normalization on the error term is needed for identification, 
as in the usual ordered-response model; see McKelvey and Zavoina, 1975). Note also 
that, for each ordinal indicator variable, 

+∞==−∞=<<<< − JgggNNgggg gg ,1,0,1,2,1,0, and,0 ,  ;... ψψψψψψψψ . For later use, let 

.),...,(,),...,,( 1,3,2, ′′′′=′= − G21g ψψψψψ andJggg ψψψ  Stack the G underlying continuous variables 
*
gy  into a )1( ×G vector *y  and the G constants gδ

~
 into a )1( ×G vector δ~ . Also, define 

the )( LG ×  matrix of latent variable loadings ( ) ,
~

,...,
~

,
~~ ′

= G2,1 dddd  and let *y
Σ  be the 

correlation matrix of )
~

 ..., ,
~

 ,
~

(
~

21 Gξξξ=ξ . Stack the lower thresholds ( )Gg
gng  ..., ,2 ,11, =−ψ  

into a )1( ×G  vector lowψ  and the upper thresholds ( )Gg
gng  ..., ,2 ,1, =ψ  into another 

vector .upψ  Then, in matrix form, the measurement equation for the ordinal indicators 

may be written as: 

up
*

low
** ψyψ ,ξzdδy <<++= ~~~

.      (4)  

Define [ ] .)
~

(and,)
~

( ,)
~

(,, * ′′′=′′′=′′′=
′






 ′′= ξ,ξξd,ddδ,δδyyy


 Then, the continuous 

parts of Equations (3) and (4) may be combined into a single equation as: 












==













+
+

=++=
**

*

)(Var and ,~~) E(with
y

y

ΣΣ

ΣΣ
Σ '

yy

yy ξ
zdδ 

dzδ
y,ξzdδy

*

*
*      (5) 
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 2.3 Choice Model 

Assume a typical random utility-maximizing model, and let i be the index for alternatives 
(i = 1, 2, 3, …, I). Note that some alternatives may not be available for some individuals, 
but the modification to allow this is quite trivial. So, for presentation convenience, we 
will assume that all alternatives are available to all individuals. We also will assume fixed 
rather than random coefficients on the exogenous variables, though the consideration of 
normally distributed coefficients does not increase the computational complexity in our 
set-up (because of the normal kernel error term in the utilities, and the conjugate additive 
nature of the normal distribution).2 The utility for alternative i is then written as:  

,) iiiiU ε+′+′= *
i z(γxβ ϕ   (6) 

where ix is a (D×1)-column vector of exogenous attributes. β  is a (D×1)-column vector 

of corresponding coefficients, iϕ  is a )( LN i × -matrix of variables interacting with latent 

variables to influence the utility of alternative i, iγ  is a )1( ×iN -column vector of 

coefficients capturing the effects of latent variables and its interaction effects with other 
exogenous variables, and iε is a normal error term. The notation above is very general. 

Thus, if each of the latent variables impacts the utility of alternative i purely through a 
constant shift in the utility function, iϕ  will be an identity matrix of size L , and each 

element of iγ  will capture the effect of a latent variable on the constant specific to 

alternative i. Alternatively, if the first latent variable is the only one relevant for the 
utility of alternative i, and it affects the utility of alternative i through both a constant 
shift as well as an exogenous variable, then iN =2, and iϕ  will be a )2( L× -matrix, with 

the first row having a ‘1’ in the first column and ‘0’ entries elsewhere, and the second 
row having the exogenous variable value in the first column and ‘0’ entries elsewhere. A 
whole range of other latent variable specifications may also be considered based on 
appropriately configuring the matrix iϕ .  

To proceed further, let the variance-covariance matrix of the vertically stacked vector of 
errors ]) ..., , ,([ 21 ′= Iεεεε  be Λ .

 
The choice model above may be written in a more 

compact form by defining the following vectors and matrices: ),...,,( 21 ′= IUUUU  

1( ×I  vector), ),...,,,( ′= I321 xxxxx DI ×(  matrix), and ),...,, 21 ′′′′= Iϕϕϕ(ϕ  








 ×
=

LN
I

i
i

1

 matrix. Also, define the  






 ×
=

I

i
iNI

1

matrix γ , which is initially filled with 

all zero values. Then, position the )1( 1N×  row vector 1γ ′  in the first row to occupy 

columns 1 to 1N  , position the )1( 2N×  row vector 2γ ′  in the second row to occupy 

                                                 
2 One can also consider a skew-normal distribution for the coefficients that can accommodate asymmetric and non-
normal (but unimodal) distributions. This will still enable the application of our proposed procedure, because the 
cumulative distribution of the skew-normal takes the form of the multivariate cumulative normal distribution (see 
Bhat and Sidharthan, 2012). Alternatively, one can accommodate non-normality in our set-up by considering a scale 
mixture of normals.  
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columns 1N +1 to ,21 NN +  and so on until the )1( IN×  row vector Iγ ′  is appropriately 
positioned. Then, in matrix form, Equation (6) may be written as: 

ε,zλxβεzγxβU ** ++=++= )( ϕ  with ϕ.γλ =      (7)
 

Consider now that the individual under consideration chooses alternative m. Under the 
utility maximization paradigm, mi UU −

 
must be less than zero for all i ≠ m, since the 

individual chose alternative m. Let )(* miUUu miim ≠−= ,  and stack the latent utility 

differentials into a vector ( ) 



 ≠′= miuuu Immm ;,...,, **

2
*
1

*u .  

In the context of the choice model formulation above, several important identification 
issues need to be addressed (in addition to the usual identification consideration that one 
of the alternatives has to be used as the base for each nominal variable when introducing 
alternative-specific constants and variables that do not vary across the I  alternatives). 
First, only the covariance matrix of the error differences is estimable. Taking the 
difference with respect to the first alternative, only the elements of the covariance matrix 
Λ


 of ),,...,,( 32 Iςςςς =
 

where 1εες −= ii   ( 1≠i ), are estimable. However, the 

condition that 1−< I0u*  takes the difference against the alternative m
 
that is chosen. 

Thus, during estimation, the covariance matrix Λ


 (of the error differences taken with 
respect to alternative m is desired). Since m will vary across individuals, Λ


will also vary 

across households. But all the Λ


 
matrices must originate in the same covariance matrix 

Λ  for the original error term vector ε . To achieve this consistency, Λ  is constructed 
from Λ


 by adding an additional row on top and an additional column to the left. All 

elements of this additional row and column are filled with values of zeros. Second, an 
additional scale normalization needs to be imposed on Λ


. For this, we normalize the first 

element of Λ


 to the value of one. Third, in MNP models, identification is tenuous when 
only individual-specific covariates are used (see Keane, 1992 and Munkin and Trivedi, 
2008). In particular, exclusion restrictions are needed in the form of at least one 
individual characteristic being excluded from each alternative’s utility in addition to 
being excluded from a base alternative (but appearing in some other utilities). But these 
exclusion restrictions are not needed when there are alternative-specific variables. 
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Chapter 3.  Model System Identification and Estimation 

For convenience, Table 1 provides a list of all matrices and their dimensions. Also, as in 

all earlier studies of ICLV models, we assume that the error vectors η , ξ


, and ε  are 
independent of each other. Let θ  be the collection of parameters to be estimated: 

, ]Vech( ),Vech( , ),Vech( , ),(Vech, ),(Vech),Vech([ )ΛΣΓ


γβψdδαθ =
 
where )(Vech α

, )(Vech d


, and )(Vech γ  represent vectors of the elements of the α ,  d


, and γ , 
respectively, to be estimated, and Γ)(Vech  represents the vector of the non-zero upper 
triangle elements of Γ  (and similarly for other covariance matrices). The data for 
estimation include, for each individual, (1) the ϕ,x  and w  covariate matrices, (2) The 

)1( ×H -vector of continuous indicator variables, (3) the gn th outcome category for each 

of the g ordinal indicator variables, and (4) the observed choice outcome m (note that a 
particular empirical context may not have any continuous indicator variable, or may not 
have any ordinal indicator variable, but we will assume the presence of a combination of 
the two to reflect the general case).  

To develop the reduced form equations, replace the right side of Equation (1) for *z in 
Equations (5) and (7) to obtain the following system: 

ξηdαwdδξη)w(dδξzdδy *  +++=+++=++= α        (8)  

εληαwλxβεη)λ(αwxβεzλxβU * +++=+++=++=    (9) 

Now, consider the )]1)[( ×++ IGH  vector [ ]′′′= U,yYU 
. Define 










+
+

=
αwλxβ
αwdδB


  and  








+′′
′+′

=
ΛΓΓ

ΓΣΓ
Ω

λλdλ
λddd





    (10) 

Then ).( ΩB,MVN ~YU IGH ++                                       (11) 
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Table 1: Matrix notation, description, and dimension 

Equation Notation Represents… Dimension 

Structural 
Equation 

*z  Vector of latent variables 1×L  

α  Matrix of exogenous variable loadings on *z  DL
~×  

 w  Vector of exogenous variables affecting *z  1
~ ×D  

 η  Vector of errors in structural equation 1×L  

Measurement 
Equation 

Γ  
Correlation matrix of error vector η  in latent 
variable structural equation 

LL ×  

y  Vector of observed latent measurement equation 
dependent variables 

1)( ×+ HG  

 δ


 Intercept vector in measurement equation 1)( ×+ HG  

 d


 
Vector of coefficients representing the effect of 
latent variables on observed/latent indicators 

1)( ×+ HG  

 ξ


 Vector of error in measurement equation 1)( ×+ HG  

 Σ


 
Covariance matrix of ξ


 (assumed diagonal for 

identification) 
)()( HGHG +×+

Choice Model U  Vector of alternative utilities 1×I  

 β  Vector of exogenous variable effects on U  1×D  

 x  Vector of exogenous variables in choice model DI ×  

 γ  
Matrix of coefficients capturing effects of latent 
variables and their interactions with exogenous 
variables 








× 
=

I

i
iNI

1

 

 ϕ  Matrix of variables interacting with latent 
variables 

LN
I

i
i ×







=1

 

 ε  Utility error vector 1×I  

 Λ  Covariance matrix of ε  II ×  
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All parameters to be estimated in the B  vector and Ω  matrix are identifiable by ensuring 
that Γ  is a correlation matrix, and Σ


 is diagonal with the elements corresponding to the 

ordinal variables being normalized to 1. To see this, a helpful way is to first invoke 
Stapleton’s (1978) identification conditions for the MIMIC model of Equation (8) (that 
includes the latent variable structural and measurement equations). That is, we ignore the 
information contained about the latent variables (and the parameters of the structural 
model of Equation (1)) through the utilities in the choice model of Equation (6). Then, 
following the excellent exposition in Stapleton (which we do not reproduce here to 
conserve on space), one can show that, under the conditions that (a) Γ  is a correlation 
matrix, (b) Σ


 is diagonal with the elements corresponding to the ordinal variables being 

normalized to 1, and (c) for each latent variable, there is at least one indicator variable 
that loads only on that latent variable and no other latent variable (that is, there is at least 
one factor complexity one indicator variable for each latent variable), the elements of the 
parameter vectors δ


 and d


, and the elements of the matrices α , Γ  and Σ


, are all (over) 

identified. Next, we proceed to the choice model component. The covariance matrix of 
the reduced form of the choice model, ignoring the covariance between the MIMIC 
model and the choice model, is ΛΓ +′λλ . With a general specification of Λ  (butΛ  
should adhere to the conditions discussed in Section 2.3), and the identification of Γ  
from earlier, the choice model can provide estimates of all the elements of Λ , but then 
none of the coefficients of the matrix γ  embedded in λ  are identified from this 
covariance matrix. However, λ  appears both in the mean element αwλxβ +  of the 

choice model component in Equation (10) as well as in the covariance term dλ ′


Γ
between the errors of the indicator equation and the choice equation. To examine 
identification of the β  vector and the elements of the λ  matrix, it is instructive to 
consider the simple but challenging identification case when the latent variables appear in 
the choice model without any interactions with other exogenous variables (if all latent 
variables appear only as interactions and not as direct shifters of utility, then there will be 
effectively no common exogenous variable effects through the direct x  effect and 
through the indirect (via the latent variables) w  effect, and so identification of β  and λ  
is immediate through the mean αwλxβ + ). In the no interactions case, consider the 
specific case when each latent variable impacts the utility of each alternative (this 
corresponds to the situation when each iϕ  matrix is an identity matrix of size L, and 

,γγλ ~== ϕ  where γ~  is of size LI ×  with each row comprising the coefficients 

representing the effects of the latent variable vector *z  on the utility of each alternative). 
In this case, if there are no common variables in each row of the x  matrix and the w  
vector, then the β  vector and the elements of the γ~  matrix are identifiable from the 
mean  element αwγxβ ~+  in the choice model (since α has already been identified from 
earlier). This is the most common way that identification has been achieved in most 
earlier ICLV studies, which use relatively "weak" structural equations and employ only 
individual-specific socioeconomic variables as explanatory factors of the latent variables. 
Alternatively, one may include common elements (including alternative-specific 
attributes in the choice model and those same variables in the structural model), but 
appropriate restrictions on the coefficients of the γ~  matrix (such as specifying no effects 
of the latent variables on one of the alternatives, and specifying generic coefficients 
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across all alternatives for those variables that are common, as we do in the simulation 
study in Equation (21)) will be adequate for identification from the mean element 

αwγxβ ~+  in the choice model.  Of course, if the elements of λ = γ~ can be identified 

purely from the covariance matrix element dλ ′


Γ of Ω , then β  can always be estimated 
even if all variables are common between each row of the x  matrix and the w  vector. 
However, general and convenient sufficiency rules for identification are not yet available 
in this general case of the ICLV model, and it is common place to resort to the more 
convenient case of ignoring the covariance term dλ ′


Γ when imposing sufficient (but not 

necessary) restrictions for identification. In this context, the issue of parameter 
identification in ICLV models remains an open research area, and few studies have 
discussed considerations related to the situation of overlapping explanatory variables in 
the structural equation and in the choice model. While we have provided sufficiency 
conditions based on the mean element αwγxβ ~+  in the choice model, these are likely to 
be restrictive and unnecessary because of identification possibilities through the 
covariance term dλ ′


Γ . We leave a detailed examination of this issue for future research 

(the reader is referred to Vij and Walker, 2014, for a recent treatment of identification in 
ICLV models, though they do so by compartmentalizing the ICLV model into 
independent components).  

To estimate the model, we need to develop the distribution of the vector 

( ) ( )*, , ,
′ ′′ ′ ′′ ′= = * *Yu y u y y u . To do so, define a matrix M  of size 

[ ] [ ]IHGIHG ++×−++ 1 . Fill this matrix up with values of zero. Then, insert an 
identity matrix of size HG + into the first HG +  rows and HG + columns of the matrix 
M . Next, consider the last )1( −I  rows and last I  columns, and insert an identity matrix 
of size )1( −I  after supplementing with a column of ‘-1’ values in the column 

corresponding to the chosen alternative. Then, we can write ),
~~

( Ω,BMVN ~Yu 1-IGH ++  

where BB M=~
 and .MMΩΩ ′=~

 Next, partition the vector B~  into components that 

correspond to the mean of the vectors *uyy and, , * , and the matrix Ω
~

 into the variances 

of *uyy and, , * and their covariances: 
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 (12) 

Define ( )′= *'*' uyu ,~ , so that  .)~,( ′′′= uyYu  Re-partition B~  and Ω
~

 in a different way 
such that: 












=








=
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*

u
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u
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BB ~
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where,~
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,   and    (13) 
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The conditional distribution of u~ , given y, is multivariate normal with mean 

( )yyuyuu ByBB ~~~~ 1
  ~~~ −′+= −ΩΩ



 
and variance   ~

1
  ~  ~  ~

~~~~
uyyuyuu ΩΩΩΩΩ −′−=


. Next, supplement 

the threshold vectors defined earlier as follows: ( )
′




 ′−′= − ,,~

1I∞lowlow ψψ , and 

( )
′




 ′′= −1,~

Iup 0ψψup , where  1I −− ∞  is a 1)1( ×−I -column vector of negative infinities, 

and 1−I0  is another 1)1( ×−I -column vector of zeros. Then the likelihood function may 
be written as: 

[ ] ,~~~ Pr)
~

|
~

()(   uplowHfL ψuψByθ yy ≤≤×−= Ω  (14)  

,),|~()
~

|
~

(   ~~1  

~

duff IG

D

H

u

uuyy BuBy ΩΩ


−+×−=
     

 

where the integration domain }~~~:~{
~ uplowu

D ψuψu ≤≤=  is simply the multivariate region 

of the elements of the u~  vector determined by the observed ordinal indicator outcomes, 
and the range )0,( 1I −−∞  for the utility differences taken with respect to the utility of the 
observed choice outcome variable. (.)1−+ IGf  is the multivariate normal density function 

of dimension .1−+ IG  The likelihood function for a sample of Q individuals is obtained 
as the product of the individual-level likelihood functions. If all the indicator variables 
are ordinal, then there is no y

 
vector and the first term in the likelihood equation above 

drops out. On the other hand, if all the indicator variables are continuous, then there is no 
*y  vector in the u~  vector, and the dimension of integration drops to 1−I . 

The above likelihood function involves the evaluation of a 1−+ IG  dimensional integral 
for each individual. As can be noticed, the dimensionality of integration does not increase 
with an increase in the number of latent variables in the model. This has been a major 
restrictive challenge in the typical way that ICLV models have been formulated and 
estimated, but not when we change to a probit kernel as we do here in this paper. Indeed, 
the independence of the integral dimensionality from the number of latent variables is 
remarkable, and should substantially enhance the applicability of the ICLV model. 
However, the dimensionality of the integration is still 1−+ IG , which can be 
computationally expensive if there are several ordinal variables, or if the choice variable 
has a number of alternatives. So, the Maximum Approximate Composite Marginal 
Likelihood (MACML) approach of Bhat (2011), in which the likelihood function only 
involves the computation of univariate and bivariate cumulative distributive functions, is 
used in this paper.3 

                                                 
3 Note, however, that the MACML inference approach is very general and its use requires appropriate customization 
to the problem at hand. Thus, the MACML estimation we propose here is very different from the application of the 
MACML method for the simple cross-sectional multinomial probit model in Bhat (2011). 
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 3.1 The MACML Estimation Approach 

The MACML approach, similar to the parent CML approach (see Varin et al., 2011, 
Lindsay et al., 2011, Bhat, 2011, and Yi et al., 2011 for recent reviews of CML 
approaches), maximizes a surrogate likelihood function that compounds much easier-to-
compute, lower-dimensional, marginal likelihoods. The CML approach, which belongs to 
the more general class of composite likelihood function approaches (see Lindsay, 1988), 
may be explained in a simple manner as follows. In the multi-dimensional model, instead 
of developing the likelihood function for the entire set of the choice outcome and 
observed ordinal indicators at once, as in Equation (14), one may compound (multiply) 
the probabilities of each pair of the choice outcome with an ordinal indicator, as well as 
the probabilities of each pair of ordinal indicators. The CML estimator (in this instance, 
the pairwise CML estimator) is then the one that maximizes the compounded probability 
of all pairwise events. The properties of the CML estimator may be derived using the 
theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, 
under usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and 
Reid, 2011), the CML estimator is consistent and asymptotically normally distributed 
(this is because of the unbiasedness of the CML score function, which is a linear 
combination of proper score functions associated with the marginal event probabilities 
forming the composite likelihood; for a formal proof, see Yi et al., 2011 and Xu and 
Reid, 2011).  

In the context of the proposed model, consider the following (pairwise) composite 
marginal likelihood function: 
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 (15) 

where i
 
is an index for the individual’s choice for the choice variable. In the above CML 

approach to estimating the ICLV model, the MVNCD function appearing in the CML 
function is of dimension equal to two for the second component in the equation above 
(corresponding to each pair of observed ordinal indicators), and equal to I  for the 
probabilities corresponding to the third component in the equation above (corresponding 
to each pair of the choice outcome and an ordinal indicator outcome). In the MACML 
approach, we estimate the third set of components of the CML function involving the 
choice outcome (that is, those components that have I dimensions of integration) with an 
analytic approximation method rather than a simulation method. This combination of the 
CML with an analytic approximation for the MVNCD function is effective because it 
involves only univariate and bivariate cumulative normal distribution function 
evaluations. The MVNCD approximation method used here is based on linearization with 
binary variables (see Bhat, 2011). As has been demonstrated by Bhat and Sidharthan 
(2011), the MACML method has the virtue of computational robustness in that the 
approximate CML surface is smoother and easier to maximize than traditional 
simulation-based likelihood surfaces.4  

                                                 
4 We should point out here that it is the combination of the probit based-kernel and the MACML approach that 
facilitates things in our approach. Specifically, the use of the probit based-kernel makes the reduced form utility 



 

16 

To explicitly write out the CML function in terms of the standard and bivariate standard 
normal density and cumulative distribution function, define Δω  as the diagonal matrix of 

standard deviations of matrix Δ , );(. **
ΔRφ  for the multivariate standard normal density 

function of dimension R and correlation matrix *Δ  ( 11* −
Δ

−
Δ= ωΔωΔ ), and );(. *ΔEΦ  for the 

multivariate standard normal cumulative distribution function of dimension E and 
correlation matrix *Δ . Let gS  be a )1( −+× IGI selection matrix constructed as 

follows. To begin with, fill this matrix with values of zero for all elements. Then, position 
an element of ‘1’ in the first row and the gth column. Also, position an identity matrix of 

size 1−I  in the last 1−I  rows and last 1−I  columns. Let  
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. Then, the CML function to be maximized is: 
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In the above expression, [ ]gϑ  represents the thg  element of the column vector ,ϑ  and 

similarly for other vectors. The reader will note that the expression in Equation (16) 
involves an MVNCD function evaluation that is utmost of dimension I. That is the 
dimensionality is purely a function of the number of alternatives in the choice model, 
irrespective of the number of latent variables or the number of ordinal indicators 
involved. Further, the MVNCD function of dimension I is itself approximated with the 
analytic approach in Bhat (2011), so that only univariate and bivariate normal cumulative 
distributions need to be evaluated. Write the resulting equivalent of Equation (16) as 

                                                                                                                                                             
functions in the choice model normally distributed, and develops a multivariate normally distributed form for the 
overall reduced forms in Equations (8) and (9). This is critical, because the CML approach cannot be used on 
Equations (8) and (9) if there were a mixing of a Gumbel error term with a normal error term as in the logit kernel-
based ICLV model formulation (the CML as applied here is predicated on the fact that marginal distributions of 
subsets of multivariate normally distributed variables are also multivariate normally distributed). Second, the CML 
inference approach simplifies the function to be maximized (with respect to parameters), which reduces the 
dimensionality of integration from what would be if a maximum likelihood inference approach is used (see 
Equations (14) and (15)). Finally, the analytic approximation of the MACML comes in handy to evaluate the CML 
function of Equation (15). 
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)(, θqMACMLL , after introducing the index q for individuals. The MACML estimator is then 

obtained by maximizing the following function: log .)(log)(
1

,
=

=
Q

q
qMACMLMACML LL θθ 5  

The covariance matrix of the parameters θ  may be estimated by the inverse of 
Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005).  

[ ] == −1)()( θθ GVMACML
11 )]()][([)]([ −− θθθ HJH ,   

where )(θH  and )(θJ  can  be estimated in a straightforward manner at the MACML 

estimate MACMLθ̂  as follows: 
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The code for the MACML estimation of the ICLV model is available at 
http://www.caee.utexas.edu/prof/bhat/CODES.htm.  

 3.2 Ensuring the Positive-Definiteness of Matrices 

The   

~
yΩ and   ~uΩ


covariance matrix in the CML function need to be positive definite. 

This can be assured by ensuring that the covariance matrix Ω
~

 is positive definite, which 
itself requires that Ω  be positive definite. From Equation (10), Ω  will be positive 
definite if the matrices Γ , Σ


, and Λ


 are positive definite. The simplest way to ensure 

the positive-definiteness of these matrices is to use a Cholesky-decomposition and 
parameterize the CML function in terms of the Cholesky parameters (rather than the 
original covariance matrices). Also, the matrix Γ  is a correlation matrix, which can be 
maintained by writing each diagonal element (say the aath element) of the lower 

triangular Cholesky matrix of Γ  as 
−

=

−
1

1

21
a

j
ajd , where the ajd  elements are the Cholesky 

factors that are to be estimated. In addition, note that the top diagonal element of Λ


 has 
to be normalized to one (as discussed earlier in Section 2.3), which implies that the first 

                                                 
5 In the case of repeated choice data from the same individual, the set of indicator variables are typically collected 
only once for an individual, which implies that the latent variables are fixed for an individual across the repeated 
choices (such as in a stated preference experiment). The third component of the composite marginal likelihood 
function for individual q in Equation (16) then is a product across all combinations of ordinal outcomes and choice 
occasions of the joint probability of each ordinal outcome and the outcome at each choice occasion. Thus, the 
difference from Equation (16) is that there is an additional outer product over T in the third component of Equation 
(16), where T is the number of choice occasions from the individual. In addition, there will be another fourth 
component in the CML function for repeated choice occasions that corresponds to the product of the likelihoods of 
each possible pairing of outcomes in the choice occasions. But the MACML estimation of this repeated choice 
model still entails the evaluation of only univariate and bivariate normal cumulative distributions. 
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element of the Cholesky matrix of Λ


 is fixed to the value of one. Finally, the matrix  Σ


 
is diagonal, and hence the Cholesky matrix of Σ


 is also diagonal (and comprises 

standard deviations of ξ


). The diagonals corresponding to ordinal variables in the 

Cholesky matrix of Σ


 are fixed to one for identification.  
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Chapter 4.  Simulation Study 

The simulation exercise undertaken in this section examines the ability of the MACML 
estimator to recover parameters from finite samples in an ICLV model of travel mode 
choice. The use of a simulated travel mode choice exercise is valuable because the true 
parameters underlying the data generating process (DGP) are set by the analyst, and the 
analyst can evaluate the behavior of the MACML estimator for different finite sample 
sizes. This is important to do when a new estimator is being proposed. Also, the framing 
of the simulation in the context of mode choice is purely for ease in interpretation and 
understanding; the results from the simulation exercise should be applicable to any other 
empirical context.  

In the simulation experiments, we consider three modal choice alternatives in a weekday 
intercity travel context: Drive, air, and bus.  

 4.1 Experimental Design 

In the latent variable structural equation model of Equation (2), consider five latent 
variables as follows: (1) Flexibility of travel by air ( *

1z ), (2) flexibility of travel by bus (
*
2z ), (3) comfort of travel by air ( *

3z ), (4) comfort of travel by bus ( *
4z ), and (5) 

environmental consciousness ( *
5z ). Of the five variables above, the first four are 

qualitative attributes specific to two modes (air and bus), while the last variable is an 
individual-specific qualitative attribute (that does not vary across modes). Also, consider 
six variables in the observed covariate vector w  to explain the latent variables: (1) 

Frequency of air service in the weekday ( 1w ), (2) frequency of bus service in the 

weekday ( 2w ), (3) travel time by air ( 3w ), (4) travel time by bus ( 4w ), (5) Income of 

traveler ( 5w ), and (6) Educational status of traveler ( 6w ). Then, we write Equation (2) 

as: 
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           (18) 

The α  matrix indicates the observed covariates influencing each latent variable. Thus, 
for example, the first row of the α  matrix indicates that the “flexibility of travel by air” 

)( *
1z  is affected by the frequency of air service in the weekday )( 1w  and the travel time 

by air )( 3w . The second row of the α  matrix indicates that the “flexibility of travel by 

bus” )( *
2z  is affected by the frequency of bus service in the weekday )( 2w  and the travel 
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time by bus )( 4w . The effect of the frequency of service by a mode on the perception of 
flexibility for that mode is specified to be 0.5 for both the air and bus modes. Similarly, 
the effect of travel time by a mode on the perception of comfort for that mode is specified 
to be 0.6 for both the air and bus modes. The same is true for the effect of frequency of 
service on a mode on the comfort level of travel on that mode, with this parameter fixed 
to 0.3 for both the air and bus modes. The comfort perception for the bus mode )( *

4z  is 

negatively influenced by the income earnings of the individual )( 5w  (see the “-0.4” entry 

in the fourth column and fourth row of the α  matrix), and environmental consciousness 
)( *

5z  is positively influenced by education status )( 6w  (see the “0.8” entry in the final 

column and final row of the α  matrix). The parameters to be estimated in the α  matrix 
may be stacked up in a vector 

].8.0and ,4.0 ,3.0 ,3.0 ,6.0 ,5.0 ,6.0 ,5.0[)Vech( 87654321 =−======== ααααααααα
 The correlation matrix  Γ  of η  is specified as follows: 
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(19) 

This generates a correlation in the unobserved factors impacting perceptions of flexibility 
and comfort for each of the air and bus modes. For ease, we maintain the same 
correlation coefficients between these two perceptions for each mode (as reflected by the 
value of 0.6 in the Γ  matrix in the first two rows). We also specify a correlation 
coefficient of 0.48 for the perceptions of comfort on the bus mode and environmental 
consciousness, to reflect the notion that those who are environmentally conscious may be 
more likely to view the bus mode as being comfortable than those less environmentally 
conscious. Thus, there are three parameters in the Γ  matrix. As indicated earlier, to 
maintain positive definiteness, we work with the Cholesky decomposition elements. 
Then, there are three Cholesky matrix elements to be estimated in ΓL  (

6.0 and,6.0,6.0 === Γ3Γ2Γ1 lll ), corresponding to the non-diagonal elements in the 

matrix (note that the diagonal elements are simply a function of the non-diagonal 
elements and are not estimated directly, because Γ is a correlation matrix with unit 
diagonals; see Section 3.2). Collectively, the three elements to be estimated in Γ , 
vertically stacked into a column vector, will be referred to as .Γl  
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In the latent variable measurement model of Equation (5), we assume one continuous 
indicator variable and four ordinal indicator variables: (1) Number of miles of non-
motorized travel on a typical day y  (the continuous indicator variable), (2) Ease of use of 

the air mode )( *
1y , (3) Ease of use of the bus mode )( *

2y , (4) level of relaxation on the air 

mode )( *
3y , and (5) level of relaxation on the rail mode )( *

4y . In the simulation 

experiments, we set the elements of the δ


 vector to the value of ‘1’ for the continuous 
variable and ‘-1’ for the remaining four ordinal variables. We assume that the number of 
miles of non-motorized travel on a typical day ( y ) is an indicator for environmental 

consciousness )( *
5z . The ease of use of the air mode )( *

1y  is a reflection of flexibility of 

travel by air )( *
1z , while the ease of use of the bus mode )( *

2y  is a reflection of flexibility 

of travel by bus )( *
2z . Similarly, the level of relaxation on each mode *

3( y  and )*
4y  is 

considered as an indicator variable for comfort of travel by that mode *
3(z  and )*

4z , 

respectively. Then, we write Equation (5) as:
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The δ


vector to be estimated has five elements: 

)1,1,1,1,1
~

( 4321 −=−=−=−=== δδδδδδ


, and the d


 matrix elements to be 

estimated also has five elements: ).6.0,5.0,4.0,3.0,2.0
~

( 4321 ====== dddddd


 The 

four ordinal variables are measured on a three point scale, so that 2,gψ=gψ for each 

ordinal variable g (g=1,2,3,4), and .),,( ′′′′′= 4321 ψ,ψψψψ  We set each of these 

thresholds to a value of 1.5. Thus, there are a total of four threshold parameters to 
estimate (with true parameter values of 1.5) across all the ordinal variables.6  

The covariance matrix Σ


 of ξ


 has to be diagonal for identification, with the elements 

corresponding to the ordinal variables being normalized to 1. So, the only element of Σ


 

                                                 
6 In our simulation experiment, we specify as many indicators as the number of latent variables. In typical models, 
the number of indicators will exceed the number of latent variables. However, the intent here is to show that our 
estimation procedure can easily handle many latent variables, as opposed to most earlier ICLV models that specify 
one or two latent variables (see Daly et al., 2012 or Bolduc et al. 2005 or Alvarez-Daziano and Bolduc, 2013). But, 
in many empirical contexts, latent variables are likely to be alternative-specific, which implies more than the 
traditional one or two latent variables. So, our emphasis in the simulation design was on incorporating five latent 
variables. On the other hand, having multiple indicators for each latent variable does not affect the dimensionality of 
integration either in the logit kernel-based ICLV model or our new model approach, though it increases the number 
of parameters to be estimated. Thus, given that we already have 38 parameters to estimate in the design, we have 
used one indicator for each latent variable to focus the simulation effort on showing how our approach is easily able 
to accommodate the realistic mode choice case of a high number of latent variables. 



 

22 

to be estimated is the first element (= )
~

(Var ξ ). We set this value as 1, and estimate the 

standard error ξ~l  (for consistency with the Cholesky matrix elements in other covariance 

matrices) that also takes a true value of 1.  

 Finally, we specify the choice model (Equation 7) as follows: 
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In the above equation, the parameters to be estimated include the elements of the
 
β  

vector ( airASC ,β =0.5, 0.1, −=busASCβ , 0.1−=TTβ , and 8.0−=TCβ ) and the elements of 

the γ  matrix stacked up in a vector 

].3.0and,2.0,2.0,5.0,5.0,5.0[)Vech( 654321 ===−==== γγγγγγγ 7  

Next, we specify the covariance matrix .Λ
 
for the error vector ε  as 

,

0.10.00.0

6.00.10.0
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0.00.10.0

0.00.00.0

36.160.000.0
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There are two Cholesky matrix elements to be estimated in ΛL  ( 0.1,6.0 == Λ2Λ1 ll ). 
Collectively, these two elements, vertically stacked into a column vector, will be referred 
to as .Λl  

 To complete the simulation design, we draw values for the elements of the vector w 
(i.e., for 1w , 2w , 3w , 4w , 5w , and 6w ), and for the travel time and travel cost variables 

for each mode, from independent standard continuous uniform distributions. We consider 
different samples sizes to assess the accuracy and appropriateness of the asymptotic 
properties of the MACML estimator for finite sample sizes. In particular, we construct 

                                                 
7 In the general notation of Equation (7), 
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ϕ  is fixed and pre-specified based on the discussion in Section 2.3 and Equation (21), and the elements of the γ  

matrix are to be estimated.  
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synthetic simulated data samples of 500, 1000, and 2000 by drawing the corresponding 
number of realizations of the exogenous variables. Once drawn, the exogenous variables 
are held fixed for the rest of the simulation exercise. Next, for each data sample, the mean 
B  and covariance matrix Ω   for the vector YU  for each observation are computed based 
on Equation (10). Then, for each observation, we draw a realization of YU  from its 
multivariate distribution. The first five elements of the realization of the YU  vector for 
each observation correspond to y , *

1y , *
2y , *

3y , and *
4y . The value for y  is retained as is, 

and constitutes the continuous indicator value for each observation. The values for *
1y , 

*
2y , *

3y , and *
4y  are compared to the threshold values of 0 and 1.5 and, based on  this 

comparison, ordinal indicator variables are assigned for each of the four ordinal variables 
for each observation. Next, the last three elements of YU  correspond to carU , airU , and 

busU . The alternative with the highest utility is selected and designated as the chosen 

alternative for each observation. With this, a complete data set for each sample size (of 
500, 1000, 2000) is generated from which to estimate the following 38 parameters: 

,,,,,,,, 87654321 αααααααα ,,, Γ3Γ2Γ1 lll ,,,,,
~

4321 δδδδδ ,,,,,
~

4321 ddddd 4321 ψ ψψψ ,,, ,

ξ~l , airASC ,β , ,,busASCβ ,TTβ ,TCβ 654321 ,,,,, γγγγγγ .and, Λ2Λ1 ll  

For each sample size, the above data generation process is undertaken 50 times with 
different realizations of the YU  vector to generate 50 different data sets. After each data 
generation, we checked to ensure that there were adequate observations that “chose” each 
ordinal outcome for the ordinal indicator variables and “chose” each alternative for the 
choice variable. The estimator is then applied to each data set to estimate data specific 
values for the 38 parameters. A single random permutation is generated for each 
individual (the random permutation varies across individuals, but is the same across 
iterations for a given individual) to decompose the multivariate normal cumulative 
distribution (MVNCD) function into a product sequence of marginal and conditional 
probabilities (see Section 2.1 of Bhat, 2011).8 The estimator is applied to each dataset 10 
times with different permutations to obtain the approximation error. Thus, we run 500 
estimations for each sample size (50 data sets × 10 runs with different permutations per 
data set). Given the three sample sizes, there are a total of 500×3=1500 estimations 
undertaken. 

 4.2 Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the 
proposed model and the corresponding standard errors is evaluated, for each sample size, 
as follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets 
of permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) 
estimator.  

                                                 
8 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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(2) For each data set s, compute the mean estimate for each model parameter across the 10 
random permutations used. Label this as MED, and then take the mean of the MED 
values across the data sets to obtain a mean estimate. Compute the absolute 
percentage (finite sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean ×=APB  

(3) Compute the standard deviation of the MED values across the 50 datasets, and label 
this as the finite sample standard error or FSEE (essentially, this is the empirical 
standard error). Calculate the FSEE as a percentage of the mean estimate.  

(4) For each data set, compute the mean standard error for each model parameter across the 
10 draws. Call this MSED, and then take the mean of the MSED values across the 50 
data sets and label this as the asymptotic standard error or ASE (essentially this is 
the standard error of the distribution of the estimator as the sample size gets large). 
Compute the ASE as a percentage of the mean estimate.  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed 
using the MACML inference approach for the finite sample size used, compute the 
relative efficiency of the estimator as: 

FSEE

ASE
efficiency Relative =

  
      (23) 

Relative efficiency values in the range of 0.75-1.25 indicate that the ASE, as computed 
using the Godambe matrix in the MACML method, does provide a good approximation 
of the FSSE. In general, the relative efficiency values should be less than 1, since we 
expect the asymptotic standard error to be less than the FSSE. But, because we are 
using only a limited number of data sets to compute the FSSE, values higher than one 
can also occur. The more important point is to examine the closeness between the ASE 
and FSEE, as captured by the 0.75-1.25 range for the relative efficiency value. 

(6) Compute the standard deviation of the parameter values around the MED parameter 
value for each data set, and take the mean of this standard deviation value across the 
data sets; label this as the approximation error (APERR).   
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Chapter 5.  Simulation Results 

Tables 2, 3, and 4 provide the simulation results for the 500, 1000, and 2000 observation 
cases, respectively. The tables provide the true value of the parameters (second column), 
followed by the parameter estimate results and the standard error estimate results.  

Several observations may be made from the tables. First, the MACML procedure is able to 
recover the parameters remarkably well even with only 500 observations, with the APB 
value having a mean (across parameters) value of 5.10% (see the final row of Table 2 
labeled “Overall mean value across parameters” under the column “Absolute Percentage 
Bias (APB)”). The individual parameter APB values range from 0.3% to 14%, though even 
the seemingly large 14% APB is rather deceiving since the true estimate for this parameter 

(the d
~

 parameter) is 0.20 and the mean estimate of the parameter is 0.228. Thus, the 
absolute finite sample bias is only 0.028, but gets inflated in percentage because of the 
small magnitude of the true value for the parameter. The APB values also, in general, 
reduce steadily (but rather marginally) with an increase in sample size. The mean APB 
value reduces to 4.807% (with a range of 0.133% to 15.5%) with 1000 observations (see 
Table 3) and further to 4.158% (with a range of 0% to 10.4%) with 2000 observations (see 
Table 4).9 Second, across the different sample sizes, the mean APB values for the 

)],,,,
~

([ 4321 ddddd=d


 vector elements and for the γ  matrix elements 

( )]and,,,,,[)Vech( 654321 γγγγγγ=γ  are consistently higher than the overall mean APB. 

In particular, the mean APB values for the d


vector elements are 8.413%, 8.860%, and 
4.813% for the 500, 1000, and 2000 observations cases, and the corresponding mean APB 
values for the γ  matrix elements are 7.939%, 6.035%, and 4.950%. This suggests that the 

coefficients on the latent variable vector *z in the measurement equation (Equation 5) and 
in the choice model (Equation 7) are somewhat more difficult to recover than other 
parameters. This is not surprising, since these elements enter into the covariance matrix Ω  
in a non-linear fashion (see Equation 10), and Ω  itself enters into the composite likelihood 
function (Equation 15) in a complex manner. Third, the finite sample standard errors 
(FSSE) clearly decrease as the sample size increases. As a percentage of the mean 
estimate, the FSSE indicates an average value (across all parameters) of 47.7% for the case 
of 500 observations, 35.7% for 1000 observations, and 22.4% for 2000 observations. The 
same trend is observed for the asymptotic standard error (ASE), with the ASE (as a 
percentage of the mean estimate) having a mean value (across all parameters) of 52.2% for 
500 observations, 37.8% for 1000 observations, and 23.2% for 2000 observations. In 
general, these results indicate good empirical efficiency of the MACML estimator, 

                                                 
9 Note that the CML estimator score functions are unbiased and the CML estimator has the asymptotic properties of 
being consistent and normally distributed under usual regularity conditions (see Bhat, 2011, Xu and Reid, 2011, and 
Bhat, 2014). Thus, it is not very surprising that the APB does not change too much with an increase in the number of 
observations (after all, we are computing the mean value of parameters across 500 realizations for each sample size). 
Indeed, this is a distinct advantage of the CML for the ICLV relative to MSL and other simulation techniques. That 
is, the CML reduces the dimensionality while retaining the consistency property of the estimator. Then, because we 
can evaluate the reduced-dimension CML function (three-dimensional in our simulation experiment) very accurately 
using the analytic approximation for the MVNCD function, we are able to recover parameters very well, as reflected 
in the small APB values regardless of sample size.  
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especially when the sample size is of the order of 1000 or more. But, the FSSE and ASE 
values are particularly high for the γ  matrix elements, with the values (as a percentage of 
the mean estimate) being 86.7% (500 observations), 69.5% (1000 observations), and 
44.3% (2000 observations) for the FSEE, and 90.1% (500 observations), 72.2% (1000 
observations), and 43.3% (2000 observations) for the ASE. This suggests some caution in 
estimating models with small sample sizes when there are many latent variables. Fourth, 
the FSEE and the ASE values are close to one another regardless of sample size, with the 
relative efficiency (RE) value between 0.75-1.25 for all parameters in the case of sample 
sizes of 1000 and 2000, and the value between 0.75-1.25 for all but one parameter in the 
case of a sample size of 500. Overall, across all parameters, the average relative efficiency 
is in the range of 1.06-1.10 for all sample sizes, indicating that the asymptotic formula is 
performing well in estimating the finite sample standard error even for a sample size of the 
order of 500. Finally, the last columns of the tables present the approximation error 
(APERR) for each of the parameters, because of the use of different permutations. These 
entries indicate that the APERR reduces with sample size, as expected. However, even for 
the case of 500 observations, the average APERR is only 0.030 and the maximum is only 
0.078. More importantly, the approximation error (as a percentage of the FSEE or the 
ASE), averaged across all the parameters, is only of the order of 12% of the sampling 
error. This statistic decreases to 8% when the sample size increases to 1000 or 2000. The 
implication is that even a single permutation (per observation) of the approximation 
approach used to evaluate the MVNCD function provides adequate precision, in the sense 
that the convergent values are about the same for a given data set regardless of the 
permutation used for the decomposition of the multivariate probability expression.  

The convergence time for the proposed approach has a median value of about 40 minutes 
for the case of 500 observations, one hour for the case of 1000 observations, and 80 
minutes for the case of 2000 observations, all based on scaling to a desktop computer with 
an Intel Core™ i7 860@2.80GHz processor and 8GB of RAM. The time to compute the 
covariance matrix of the parameters was of the same order as the time for convergence. 
However, a more thorough analysis of computational times is warranted using a single 
machine. Further, it would be beneficial in a future study to run a rigorous exercise to 
compare, with a traditional MSL approach, the accuracy and econometric efficiency of our 
MACML estimator in finite samples, as well as computational times, even if with a much 
simpler model specification than that used in the current paper. Indeed, our main purpose 
in this study was to propose and apply the new method for a realistic specification rather 
than a “toy” specification. The important point is that completing 1500 estimations of 
ICLV models with (a) the very general specifications for the covariance matrices adopted 
here, (b) the presence of five latent variables, and (c) the presence of five indicators (four 
of which are ordinal) is literally infeasible with the traditional logit kernel specification and 
the maximum simulated likelihood (MSL) estimation approach, at least with the computer 
hardware that we had at our disposal for this research (which is also the kind of computer 
hardware typically available to most analysts). The typical approach is notorious for very 
long estimation times (if convergence is achieved at all), with durations of 15 hours or 
more not at all uncommon. The order of magnitude reduction in computation time 
resulting from the use of our approach can then be used by analysts to explore a wide array 
of observed and latent variable specifications, rather than examining just a few 
specifications and settling quickly on one that may not be the best.  
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Table 2: Simulation results for the 500 observations case with 50 datasets (based on a 
total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE) 

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1α  0.5 0.482 0.018 3.600 0.284 0.277 0.978 0.0350 

2α  0.6 0.588 0.012 2.000 0.203 0.225 1.105 0.0388 

3α  0.5 0.511 0.011 2.200 0.290 0.334 1.155 0.0298 

4α  0.6 0.622 0.022 3.667 0.303 0.324 1.070 0.0354 

5α  0.3 0.317 0.017 5.667 0.272 0.300 1.104 0.0237 

6α  0.3 0.314 0.014 4.667 0.133 0.161 1.207 0.0176 

7α    -0.4 
-
0.413 

0.013 3.250 0.203 0.238 1.173 0.0246 

8α  0.8 0.843 0.043 5.375 0.351 0.385 1.097 0.0201 

1Γl  0.6 0.573 0.027 4.500 0.266 0.296 1.114 0.0400 

2Γl  0.6 0.537 0.063   10.500 0.227 0.249 1.099 0.0282 

3Γl  0.6 0.576 0.024 4.000 0.256 0.316 1.235 0.0205 

δ~  1.0 1.004 0.004 0.400 0.056 0.066 1.193 0.0023 

1δ    -1.0 
-
1.029 

0.029 2.900 0.231 0.255 1.104 0.0122 

2δ    -1.0 
-
1.060 

0.060 6.000 0.239 0.274 1.148 0.0512 

3δ    -1.0 
-
1.027 

0.027 2.700 0.262 0.279 1.065 0.0262 

4δ    -1.0 
-
1.024 

0.024 2.400 0.174 0.200 1.150 0.0250 

d
~

 0.2 0.228 0.028   14.000 0.156 0.175 1.120 0.0047 

1d  0.3 0.330 0.030   10.000 0.163 0.184 1.131 0.0249 

2d  0.4 0.428 0.028 7.000 0.311 0.375 1.206 0.0780 

3d  0.5 0.512 0.012 2.400 0.342 0.395 1.156 0.0422 
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Table 2: (Continued) Simulation results for the 500 observation case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.652 0.052 8.667 0.211 0.268 1.268 0.0440 

1ψ
 1.5 1.479 0.021 1.400 0.136 0.153 1.126 0.0125 

2ψ  1.5 1.572 0.072 4.800 0.283 0.296 1.044 0.0678 

3ψ     1.5 1.538 0.038 2.533 0.315 0.325 1.031 0.0345 

4ψ     1.5 1.511 0.011 0.733 0.217 0.243 1.117 0.0316 

1ξl     1.0 0.967 0.033 3.300 0.099 0.088 0.882 0.0012 

airASC ,β  0.5 0.498 0.002 0.400 0.378 0.428 1.133 0.0174 

busASC ,β   -1.0 
-
0.997 

0.003 0.300 0.476 0.569 1.195 0.0275 

TTβ   -1.0 
-

1.071 
0.071 7.100 0.250 0.256 1.023 0.0298 

TCβ   -0.8 
-

0.869 
0.069 8.625 0.196 0.209 1.066 0.0241 

1γ  0.5 0.540 0.040 8.000 0.214 0.258 1.204 0.0482 

2γ  0.5 0.530 0.030 6.000 0.483 0.493 1.021 0.0475 

3γ   -0.5 
-
0.496 

0.004 0.800 0.212 0.257 1.209 0.0216 

4γ  0.2 0.221 0.021    10.500 0.244 0.287 1.174 0.0233 

5γ  0.2 0.222 0.022 11.000 0.327 0.269 0.823 0.0385 

6γ  0.3 0.334 0.034 11.333 0.297 0.326 1.095 0.0152 

1Λl  0.6 0.621 0.021 3.500 0.459 0.460 1.002 0.0397 

2Λl  1.0 0.924 0.076 7.600 0.430 0.434 1.011 0.0353 

Overall mean value across 
parameters 0.030 5.100 0.262 0.288 1.106 0.0300 
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Table 3: Simulation results for the 1000 observations case with 50 datasets (based on a 
total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1α  0.5 0.496 0.004 0.800 0.136 0.161 1.184 0.0209 

2α  0.6 0.574 0.026 4.333 0.158 0.193 1.222 0.0243 

3α  0.5 0.454 0.046 9.200 0.180 0.208 1.156 0.0152 

4α  0.6 0.537 0.063   10.500 0.176 0.194 1.097 0.0171 

5α  0.3 0.311 0.011 3.667 0.211 0.222 1.047 0.0118 

6α  0.3 0.319 0.019 6.333 0.189 0.206 1.090 0.0118 

7α    -0.4 
-
0.409 

0.009 2.250 0.179 0.176 0.983 0.0161 

8α  0.8 0.824 0.024 3.000 0.279 0.292 1.047 0.0142 

1Γl  0.6 0.585 0.015 2.500 0.198 0.184 0.929 0.0187 

2Γl  0.6 0.606 0.006 1.000 0.154 0.134 0.870 0.0111 

3Γl  0.6 0.550 0.050 8.333 0.217 0.191 0.876 0.0139 

δ~  1.0 0.988 0.012 1.200 0.047 0.044 0.957 0.0015 

1δ    -1.0 
-
1.021 

0.021 2.100 0.149 0.120 0.805 0.0069 

2δ    -1.0 
-
1.056 

0.056 5.600 0.189 0.191 1.011 0.0230 

3δ    -1.0 
-
1.020 

0.020 2.000 0.131 0.138 1.062 0.0141 

4δ    -1.0 
-
1.029 

0.029 2.900 0.174 0.194 1.115 0.0131 

d
~

 0.2 0.231 0.031   15.500 0.079 0.090 1.139 0.0020 

1d  0.3 0.320 0.020 6.667 0.066 0.079 1.197 0.0171 

2d  0.4 0.424 0.024 6.000 0.248 0.255 1.028 0.0344 

3d  0.5 0.544 0.044 8.800 0.192 0.234 1.219 0.0251 
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Table 3: (Continued) Simulation results for the 1000 observations case with 50 
datasets (based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.644 0.044 7.333 0.226 0.269 1.190 0.0237 

1ψ
 1.5 1.453 0.047 3.133 0.090 0.098 1.089 0.0084 

2ψ  1.5 1.529 0.029 1.933 0.226 0.219 0.969 0.0287 

3ψ     1.5 1.491 0.009 0.600 0.127 0.137 1.079 0.0165 

4ψ     1.5 1.498 0.002 0.133 0.169 0.200 1.183 0.0156 

1ξl     1.0 0.983 0.017 1.700 0.031 0.035 1.129 0.0006 

airASC ,β  0.5 0.474 0.026 5.200 0.279 0.326 1.168 0.0119 

busASC,β   -1.0 
-
1.036 

0.036 3.600 0.316 0.306 0.968 0.0195 

TTβ   -1.0 
-
1.064 

0.064 6.400 0.182 0.193 1.060 0.0201 

TCβ   -0.8 
-
0.855 

0.055 6.875 0.147 0.158 1.082 0.0158 

1γ  0.5 0.491 0.009 1.800 0.205 0.221 1.078 0.0364 

2γ  0.5 0.522 0.022 4.473 0.311 0.337 1.084 0.0242 

3γ   -0.5 
-
0.521 

0.021 4.271 0.227 0.234 1.026 0.0124 

4γ  0.2 0.220 0.020   10.000 0.164 0.188 1.146 0.0121 

5γ  0.2 0.220 0.020   10.000 0.305 0.299 0.980 0.0102 

6γ  0.3 0.317 0.017 5.667 0.187 0.183 0.979 0.0089 

1Λl  0.6 0.593 0.007 1.167 0.376 0.364 0.968 0.0207 

2Λl  1.0 0.943 0.057 5.700 0.270 0.311 1.152 0.0198 

Overall mean value across 
parameters 0.027 4.807 0.189 0.200 1.062 0.0163 
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Table 4: Simulation results for the 2000 observations case with 50 datasets (based on a 
total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1α  0.5 0.4 0.019 3.800 0.098 0.103 1.051 0.0082 

2α  0.6 0.563 0.037 6.167 0.135 0.141 1.044 0.0099 

3α  0.5 0.448 0.052   10.400 0.100 0.118 1.180 0.0011 

4α  0.6 0.562 0.038 6.333 0.101 0.113 1.108 0.0128 

5α  0.3 0.290 0.010 3.333 0.068 0.054 0.806 0.0051 

6α  0.3 0.278 0.022 7.333 0.075 0.076 1.013 0.0058 

7α    -0.4 
-
0.408 

0.008 2.000 0.124 0.136 1.097 0.0096 

8α  0.8 0.863 0.063 7.875 0.216 0.212 0.981 0.0072 

1Γl  0.6 0.606 0.006 1.000 0.069 0.051 0.750 0.0139 

2Γl  0.6 0.623 0.023 3.833 0.096 0.089 0.927 0.0086 

3Γl  0.6 0.541 0.059 9.833 0.158 0.170 1.076 0.0130 

δ~  1.0 0.999 0.001 0.100 0.033 0.032 0.970 0.0011 

1δ    -1.0 
-
1.081 

0.081 8.100 0.098 0.101 1.031 0.0031 

2δ    -1.0 
-
1.024 

0.024 2.400 0.106 0.116 1.094 0.0166 

3δ    -1.0 
-
1.037 

0.037 3.700 0.092 0.105 1.130 0.0108 

4δ    -1.0 
-
1.020 

0.020 2.000 0.114 0.132 1.158 0.0077 

d
~

 0.2 0.200 0.000 0.000 0.052 0.058 1.115 0.0013 

1d  0.3 0.321 0.021 7.000 0.061 0.066 1.082 0.0070 

2d  0.4 0.422 0.022 5.500 0.124 0.125 1.008 0.0277 

3d  0.5 0.532 0.032 6.400 0.125 0.141 1.128 0.0174 

 



 

32 

Table 4: (Continued) Simulation results for the 2000 observations case with 50 
datasets (based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.631 0.031 5.167 0.135 0.145 1.149 0.0153 

1ψ
 1.5 1.461 0.039 2.600 0.056 0.066 1.179 0.0034 

2ψ  1.5 1.493 0.007 0.467 0.109 0.129 1.183 0.0218 

3ψ     1.5 1.503 0.003 0.200 0.113 0.122 1.080 0.0134 

4ψ     1.5 1.483 0.017 1.133 0.120 0.141 1.175 0.0098 

1ξl     1.0 0.997 0.003 0.300 0.016 0.018 1.125 0.0003 

airASC ,β  0.5 0.527 0.027 5.400 0.180 0.203 1.128 0.0086 

busASC,β   -1.0 
-
1.026 

0.026 2.600 0.223 0.217 0.973 0.0157 

TTβ   -1.0 
-
1.030 

0.030 3.000 0.129 0.149 1.155 0.0141 

TCβ   -0.8 
-
0.821 

0.021 2.625 0.108 0.121 1.120 0.0115 

1γ  0.5 0.481 0.019 3.800 0.141 0.168 1.191 0.0144 

2γ  0.5 0.474 0.026 5.200 0.226 0.230 1.013 0.0198 

3γ   -0.5 
-
0.501 

0.001 0.200 0.165 0.170 1.030 0.0100 

4γ  0.2 0.219 0.019 9.500 0.086 0.092 1.070 0.0098 

5γ  0.2 0.216 0.016 8.000 0.160 0.127 0.794 0.0059 

6γ  0.3 0.309 0.009 3.000 0.132 0.132 1.000 0.0077 

1Λl  0.6 0.609 0.009 1.500 0.247 0.246 0.992 0.0183 

2Λl  1.0 0.938 0.062 6.200 0.265 0.311 1.174 0.0094 

Overall mean value across 
parameters 0.025 4.158 0.122 0.130 1.060 0.0105 
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Chapter 6.  Conclusions 

Integrated choice and latent variable (ICLV) models are increasingly being considered in 
many fields as a means to gain a deeper understanding into the decision process of 
individuals as well as to potentially improve predictive ability. However, consideration 
and actual use of these models have been two different things in the literature. In 
particular, the use of ICLV models has been severely hampered by the difficulties 
encountered in usual maximum simulated likelihood (MSL) estimation as well as the 
amount of time to estimate these models (typically of the order of a day for one 
specification run, and even that for rather restrictive specifications). The reason for the 
estimation problems and computation time issues is that, in the traditional way of doing 
things, the integrand in ICLV models is itself a mixture of two probabilities (the 
probability of choice conditional on explanatory and latent variables, and the probability 
of the latent variable conditional on explanatory variables), which has to be integrated 
over the distribution of the latent variables conditional on explanatory variables.  

In the current paper, we have proposed a different model formulation for the ICLV 
model, based on a multivariate probit (MNP) kernel for the choice component. To our 
knowledge, this is the first study to use a probit kernel within a general ICLV setting. As 
we show in the paper, combining this MNP-based choice model formulation with Bhat’s 
maximum approximate composite marginal likelihood (MACML) inference approach 
immediately alleviates the specification and estimation challenges discussed above, and 
provides substantial computational time advantages. In particular, the dimensionality of 
integration in the log-likelihood function is independent of the number of latent variables, 
and we are able to specify quite general covariance structures (up to certain identification 
limits) in the error terms involved in the ICLV set-up. Further, our proposed approach 
easily accommodates ordinal indicators for the latent variables, as well as combinations 
of ordinal and continuous response indicators. The approach can be extended in a 
relatively straightforward fashion to also include nominal indicator variables.  

The paper designed a simulation experiment in a virtual context of travel mode choice, 
and undertook a simulation exercise to evaluate the ability of the MACML approach to 
recover model parameters. The simulation results show that, irrespective of the sample 
size used in estimation (the sample sizes tested were 500, 1000, and 2000 observations), 
the MACML estimator recovers the parameters of the model remarkably well. The 
MACML estimator is also quite efficient in the overall, though the results indicate the 
need for relatively large sample sizes. This is needed to pin down the effects of the latent 
variables in the choice model. Additional investigation of efficiency consideration in the 
context of the proposed MACML estimation of ICLV models is an important direction 
for future research. For example, an extensive simulation study to compare the MACML 
estimation of probit-based ICLV models (based on Equation (15)) with the MSL 
estimation of probit-based ICLV models (based on Equation (16)) would be helpful, to 
examine the impact of different settings (such as the number of ordinal versus continuous 
indicators, the number of latent variables, general versus independent covariance matrix 
specifications for the latent variables and/or choice alternative utilities, the number of 
choice alternatives, and varying sample sizes) on not only efficiency considerations, but 
also estimation convergence and the accuracy of parameter recovery. But, for all sample 
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sizes, the asymptotic formula (based on the inverse of the Godambe information matrix) 
in our proposed MACML approach is performing well in estimating the finite sample 
standard errors. Also, the approximation error due to the use of a single permutation (per 
observation) in the analytic approximation for the MVNCD function evaluation is so 
small that it is a non-issue.  

There were no convergence issues in our proposed approach even though we have not yet 
coded the Hessian of the analytically approximated CML function that is maximized 
(rather, we currently use a numerical procedure to obtain the Hessian, and then use the 
numerical Hessian and the analytic gradient in the computation of the Godambe 
covariance matrix of Equation 17). Additionally, the computational time is much lesser 
than for traditional logit-based kernels and associated MSL estimation procedures. 
Importantly, it is quite remarkable that this paper is the first study to use a probit choice 
kernel within a general ICLV setting. This is far more convenient for the usual 
applications for the ICLV models where the number of alternatives is few, and the 
number of latent variables can be many. Further, interactions of latent variables with 
individual demographic and other observed variables is easy to accommodate.  

In closing, it is hoped that our new ICLV formulation and associated inference approach 
will unshackle researchers and practitioners from the constraints imposed by the 
traditional ICLV formulation, and open the door for the extensive use of “soft” 
psychometric measures (along with traditionally used “hard” covariates) in discrete 
choice modeling. Future research efforts should consider the performance of our 
inference approach with normal and non-normal random coefficients, interactions of 
latent variables with observed variables, panel settings with varying numbers of 
observations per individual, multiple indicators per latent variable, and increasing number 
of alternatives in the choice model. However, the results in this paper paint a very 
encouraging picture for the use of the MACML method for the quick, accurate, and 
practical estimation of ICLV models with flexible and rich stochastic specifications.  
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