Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Performance Investigation of a Fiber Reinforced Composite Honeycomb Deck for Bridge Applications

Filetype[PDF-5.58 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
  • English

  • Details:

    • Corporate Creators:
    • Corporate Contributors:
    • Publication/ Report Number:
    • Resource Type:
    • Abstract:
      This report focuses mainly on the evaluation of stiffness and ultimate load-carrying capacity of Glass Fiber Reinforced Polymer (GFRP) honeycomb sandwich panels, with a sinusoidal core, used in bridge applications. Evaluation of fatigue performance is also included. Sixteen full scale panels with cross-section depths ranging from 5 in (125 mm) to 31.5 in (800 mm), instrumented with electrical resistance strain gages, displacement transducers, acoustic emission sensors and optical fibers for strain measurement, have been tested. A complete summary of experimental results is provided for each test, typically in the form of graphs of load vs. deflection and load vs. strain for all measured channels and photographs of failure modes. Coupon tests and shear tests on double lap specimens provided information about constituent material properties. The effect of width-to-depth ratio on unit stiffness was shown to be insignificant for panels with a constant depth of 6 in (150 mm) and width-to-depth ratios between one and five. A simple analytical formula for bending and shear stiffness, based on the material properties and geometry of a transformed section, was found to predict deflections within 20% accuracy. Although some factors influencing the ultimate load carrying capacity were clearly identified in this study, a reliable analytical prediction of the ultimate flexural capacity was not attained. This is due to the fact that failures occur in the bond lines between the outer faces and core, and that significant geometric variations along these bond lines can exist due to the wet layup process—even for theoretically identical specimens. Therefore, the use of wraps or internal ties (seven tested specimens had external wraps) is recommended. This serves to strengthen the relatively weak core-face interface and, as the research suggests, it could bring more consistency in determining the ultimate load-carrying capacity by shifting the ultimate failure from the resin bond material to the glass fibers. A preliminary proposal for design procedure of such wraps is presented. Finally, several 3D Finite Element models were developed and analyzed in order to better understand the behavior of these complex structural systems.
    • Format:
    • Funding:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26